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Abstract: In this paper, we consider the problem of frequency estimation of undamped 

superimposed exponential signals model.  We propose two iterative techniques of 

frequency estimation using genetic algorithms.  The proposed methods use an elitism 

based generational genetic algorithm for obtaining the least squares and the approximate 

least squares estimates. In the simulation studies, it is observed that the proposed methods 

give nearly efficient estimates, having mean square error almost attaining the 

corresponding Cramér-Rao lower bound.  The proposed methods significantly do not 

depend on the initial guess values otherwise required for other iterative methods of 

frequency estimation.  It is also observed that the proposed methods have fairly high 

breakdown point with respect to different types of outliers present in the data.  Outlier 

robustness and accuracy of the proposed methods are compared with the classical 

approaches for this problem. 
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1. Introduction 
Estimating the frequencies of superimposed exponential signals embedded in additive 

noise is a fundamental problem in signal processing. In several applications, particularly 

in communications, radar, sonar, geophysical seismology, the signals dealt with can be 

described by the following superimposed undamped exponential signals model: 
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where )(tµ denotes the noise free complex valued sinusoidal signal;{ } 1
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are 

its amplitudes and frequencies, respectively; and )}({ tε is an additive observational noise. 

The complex valued form (1), of course, is not encountered in practice, as practical 

signals are always real valued.  However, in many applications both the in-phase and 

quadrature components of the studied signals are available. In case of a real-valued 

sinusoidal signal, this means that both the sine and the corresponding cosine components 

are available. These two components may be processed by arranging them in a two 

dimensional signal vector or a complex valued signal of the form of (1) (see Stoica and 

Moses [2003], page 144, for more details).  Since the complex valued description of the 

in-phase and quadrature components of a sinusoidal signal is the most convenient one 

from a mathematical viewpoint, most of the literature in signal processing deals with the 

complex valued superimposed undamped exponential signals. 

The noise )}({ tε in the model is usually assumed to be complex valued circular white 

noise defined as; 
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where st ,δ is the delta function. The variance or power of the noise is 22)( σε =tE .
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Thus, the real and imaginary parts of a complex circular white noise are real-valued white 

noise sequences of identical power equal to 22σ , and uncorrelated with one another. 

The frequencies { } 1

M
k k

ω
=

are such that ]1,0[∈kω and are distinct. Given a sample of size n,

)}(),...,2(),1({ nyyy , the problem is to estimate the unknown amplitudes, the unknown 

frequencies and also order M, if the order is unknown. In the present paper, we assume M

to be known and focus on the problem of frequency estimation, i.e. determination of 

{ } 1

M
k k

ω
=

from the set of observations )}(),...,2(),1({ nyyy . Note that if M is unknown, first 

we can estimate M, using the method proposed by Kundu and Mitra [2000a]. Once the 

frequencies are estimated, estimation of the amplitudes becomes a simple linear 

regression problem. More precisely, as we will see later, for given{ } 1

M
k k

ω
=

, the 

observations y(t) can be written as a linear regression function whose unknown regression 

coefficients are equal to the unknowns amplitudes. 

The estimation of the frequencies of the sinusoidal components, given by model (1), 

embedded in additive white noise is a fundamental problem in signal processing. Due to 

the practical importance of this model, a battery of methods attempting to obtain efficient 

estimators have been proposed in the recent past.  These methods can broadly be 

classified into two groups, one that attempts to find efficient computational algorithms 

for the solution of the least squares estimators (LSEs) through iterative techniques and 

the other group providing non-iterative parameter estimates of the unknown parameters. 

Notable among the iterative methods aimed at finding the LSEs are the approaches of 

Bressler and MaCovski [1986], Hwang and Chen [1993], Kundu [1993], Kannan and 

Kundu [1994], Li and Stoica [1996].  Non-iterative methods include the methods of 

Pisarenko [1973], Ulrych and Clayton [1976], Schmidt [1979], Tufts and Kumaresan 

[1982], Roy and Kailath [1989], Quinn [1994], Kundu and Mitra [1995] and Bai, Rao, 

Chow and Kundu [2003]. 

It is observed in all the iterative procedures that the performances of the different 

estimators depend heavily on the initial value chosen.  Most of the iterative procedures 

may not even converge if the initial guesses are not ‘sufficiently close’ to the 

corresponding true values.  The estimation problem becomes even more complex when 

outliers are present in the data. Most of the commonly used methods for frequency 
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estimation fail even with moderate levels of contamination. Recently, researchers have 

started exploring various robust frequency estimation techniques that are robust to 

presence of outliers in the data.  The aim of this paper is to find an algorithm whose 

performance does not depend significantly on initial guesses and also having a reasonably 

high breakdown point with respect to presence of outliers as compared to the non-robust 

methods.  Breakdown point, with respect to presence of outliers, indicates the outlier 

contamination proportion at which the method fails to resolve the frequencies correctly.  

In this paper, we propose a genetic algorithm (Quagliarella et. al. [1997]) based iterative 

algorithm to obtain the least squares estimates for the model (1). It is observed that the 

proposed method produces efficient frequency estimates attaining the Cramér-Rao lower 

bound (CRLB) and performs quite well in the presence of outliers.  The rest of the paper 

is organized as follows. In section 2, we give the least square formulation of the problem. 

The approximate least squares formulation is described in section 3. Section 4, presents 

the proposed genetic search based iterative algorithms for frequency estimation. The 

empirical studies, implementing the proposed algorithms and comparing them with the 

classical approaches, will be presented in section 5. Finally, the conclusions will be 

discussed in section 6. 

 

2. Least Squares formulation 
The least squares estimates of the signal parameters for the model (1) are the minimizers 

of the following criterion function,  

( )
2

2

1 1
, ( ) k

n M
i t

k
t k

y t e π ωψ ω α α
= =

= −∑ ∑
% %

, (3) 

where ω
%

is the vector of frequencies and α
%

is the vector of amplitudes. The sinusoidal 

model determined through minimization of (3) has the smallest sum of squares distance 

to the observed data. Since ( ),ψ ω α
% %

is a nonlinear function of its arguments ω
%

and α
%

,

the parameter estimates minimizing (3) are called the nonlinear least squares (NLS) 

estimators. When the white noise )(tε is Gaussian, the minimization of (3) can also be 

interpreted as the method of maximum likelihood (Stoica and Moses [2003], page 377). 
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Although, the criterion in (3) depends on both ω
%

and α
%

, it can be conveniently 

concentrated with respect to the ‘nuisance parameters’ α
%

. Introducing the notations,  

[ ](1), (2),... ( ) TY y y y n=
%

, (4) 
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and [ ]1,..., T
Mα α α=

%
, (6) 

we can write ( ),ψ ω α
% %

in (3) as 

( ) *, ( ( ) ) ( ( ) )Y A Y Aψ ω α ω α ω α= − −
% %% % % % % %

, (7) 
where, ‘*’ denotes the complex conjugate of a vector or a matrix. 

Under the condition of distinct frequencies, the Vandermonde matrix ( )A ω
%

is of rank M

(under the weak condition that Mn ≥ ) and * 1( ( ) ( ))A Aω ω −

% %
exists. We observe that for 

given ω
%

, minimizingα
%

is given by * 1 *ˆ ( ( ) ( )) ( )A A A Yα ω ω ω−=
%% % % %

. Plugging in this α̂
%

in 

(7), we get the concentrated likelihood function * * 1 *( ) ( )( ( ) ( )) ( )Y A A A A Yϕ ω ω ω ω ω−=
% %% % % % %

and 

the LSE of ω
%

is obtained by minimizing ( )ϕ ω
%

. Thus the non-linear least squares (NLS) 

estimators ofω
%

and α
%

which minimize ( ),ψ ω α
% %

are given by 

* * 1 *ˆ arg max ( )( ( ) ( )) ( )Y A A A A Y
ω

ω ω ω ω ω− =  
%

% %% % % % %
, (8) 

* 1 *
ˆ

ˆ ( ( ) ( )) ( )A A A Y
ω ω

α ω ω ω−

=
=

% %%% % % %
. (9) 

The NLS estimators for this problem are optimal under various considerations. The 

estimators are strongly consistent (Kundu and Mitra [2000b]), asymptotic normal with a 

covariance matrix that coincides with the Cramér-Rao bound under the normality 

assumption on the error random variables (Rao and Zhao [1993]). Hence, under the 

Gaussian hypothesis, the NLS method provides frequency estimates that are the most 

accurate, in the sense of minimum variance in a fairly general class of estimators.  It is 

further observed that, the performance of the NLS method does not critically depend on 

the assumption that the noise process is white. If the noise process is non white, the NLS 

still gives consistent frequency estimates (Stoica and Nehorai [1989]). The fact that the 
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NLS approach gives optimal estimates, spurred a renewed interest in the NLS approach 

and in reliable algorithms for performing the minimization required in (3) (see, e.g., 

Hwang and Chen [1993]; Kannan and Kundu [1994]; Li and Stoica [1996]). 

Unfortunately, the good statistical performance associated with the NLS method of 

frequency estimation is difficult to achieve, for a number of reasons. The optimizing 

function (3) has a complicated multimodal shape with a very sharp global maximum 

corresponding to ω̂
%

(Stoica et al. [1989]). Hence, finding ω̂
%

by a local search algorithm 

requires very accurate initialization.  Initialization procedures that provide fairly accurate 

approximations of the maximizer of (3) have been proposed in (Kumaresan, Scharf, and 

Shaw [1986], Bressler and MaCovski [1986], Kundu and Mitra [1995]). However, there 

is no available method that is guaranteed to provide frequency estimates within the 

attraction domain of the global maximum ω̂
%

of (3), especially in situations when the 

observation set is contaminated with outliers.  As a consequence, general-purpose search 

algorithms, like the Gauss-Newton algorithm, the Newton-Raphson algorithm or the 

Levenberg-Marquardt algorithm, may well fail to converge to ω̂
%

, or may even diverge.  

The least squares frequency estimation for the exponential signals model given in (1) 

becomes even more difficult when outliers are present in the dataset.  

3. Approximate Least Squares 
In the previous Section, we have discussed the least squares estimators and it is observed 

that finding the least squares estimators involves an M-dimensional optimization 

procedure.  To reduce the computational complexity, approximate least squares 

estimators (ALSEs) were proposed by Kundu and Mitra [2000b] and their properties 

were studied.  It is observed that the least squares estimators and the approximate least 

squares estimators enjoy the same asymptotic properties. The approximate least squares 

estimators can be briefly described as follows; 

In the formulation of the ALSE, we assume, without loss of generality 

that 22
2

2
1 .... Mααα ≥≥≥ . Consider the following function 

2
2

1

1( ) ( )
n i t

t
I y t e

n
π ωω −

=
= ∑ . (10) 
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Suppose 1ω
( maximizes )(ωI , then 1ω

( is the ALSE of 1ω . The amplitude 1α can be 

estimated as  

2
1

1

11 ( )
n

i t

t

y t e
n

π ωα
=

= ∑
(( . (11) 

Now to obtain the ALSE of 2ω
( , we first obtain an adjusted data vector y(

%
from the original 

data, where  
2

1
1( ) ( ) i ty t y t e π ωα= −
((( . (12) 

Using the adjusted data y(
%

, we find the ω that maximizes (10). Maximizing ω provides 

the estimate for 2ω
( . We repeat this process of finding sequentially the frequency estimates 

and an adjusted data vector until all the unknown frequencies are estimated.  For details 

of the ALSE algorithm and their asymptotic statistical properties, the readers are referred 

to Kundu and Mitra [2000b]. 

 

4. Frequency Estimation using Genetic Algorithms 
In this section, we present the genetic search based iterative algorithms for the frequency 

estimation problem. First, we give a brief introduction about the basic concepts of a 

genetic search procedure and then present the proposed algorithms. 
 
4.1 Basics of Genetic Search Procedures 

In this subsection, we discuss in brief the technique of solving optimization problems 

using genetic algorithms.   

Genetic Algorithm (GA) is a branch of artificial intelligence that borrows the ideas from 

Darwinian evolution.  It is a stochastic global optimization search method that mimics the 

natural biological evolution, which is based on the ideas of ‘natural selection’ and 

‘genetics’. The process of natural selection is nature’s way of searching for better and 

better organisms and argues that individuals with certain characteristics are more suited 

to survive and pass those characteristics to their next generation. Genetic algorithms 

operate on a population of potential solutions and applying the principle of ‘survival of 

the fittest’ produce better and better approximations to a solution.  

Detailed discussions on Genetic algorithms and their varied applications may be found in 

Chambers [1995a and 1995b] and Quagliarella et al. [1997].     
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A standard generational GA is a method of stochastic optimization that can be formulated 

as; 

{ }
Maximize                

Subject to  0,1 n n

F(x)

x∈Θ = ⊂ℜ
%

%

. (13) 

The function to be maximized, F: ℜ→Θ , is called the fitness function in a GA 

framework.  To start the GA stochastic optimization, a population consisting of possible 

solutions is initialized.  Each individual of this population, also called a chromosome, is 

an n-dimensional binary string.   

The members of the initial population are first evaluated for their fitness.  We use a rank 

based fitness function (Baker [1985]).  In this procedure, the individuals (chromosomes) 

are assigned fitness according to their rank in the population rather than their raw 

performance. Simpler versions of genetic algorithms use a proportional fitness function.  

Based on the fitness values of the chromosomes, a variety of selection rules can be 

applied for selection of the fit chromosomes (also called the fit parents). The commonly 

used selection schemes are stochastic random sampling with replacement, stochastic 

sampling with partial replacement, remainder stochastic sampling with or without 

replacement, stochastic universal sampling and stochastic tournament. For a detailed 

discussion on various selection procedures, see for example Goldberg [1989].  We have 

adopted a stochastic sampling with replacement approach in this paper.  Members 

selected from the current population using the selection operator, are next combined to 

produce new chromosomes by passing their genetic string material. 

The operator for producing new chromosomes is the crossover operator.  The crossover 

operator is applied, according to a pre-assigned crossover probability, on two selected 

parents.  Crossover produces new individuals that have some parts of both the parent’s 

genetic material.  The simplest form of crossover is the one-point crossover.  More 

frequently used crossover operators are multipoint crossover, uniform crossover and 

reduced surrogate crossover.  The simple one-point crossover is performed in the 

following way.  Consider the following 2 parent binary strings 

Parent I: 0011001100110011  

and  

Parent II: 1100110011001100. 
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An integer position i, is selected uniformly at random between 1 and the chromosome 

length minus 1 and the genetic information is exchanged between the parents about this 

point producing the two new offspring chromosomes. Figure 1a illustrates a one-point 

crossover at the crossover point 9i = .

Figure 1a: A one-point crossover 
 
For a multi-point crossover, say an m-point crossover, m crossover positions, 

1 2, ,..., mk k k ; {1, 2,..., chromosome length-1}ik ∈ are chosen at random with no repetitions 

and arranged in ascending order.   The bits between the successive crossover points are 

exchanged between the two parents to produce the two new offspring chromosomes.  A 

4-point crossover is illustrated in Figure 1b, vertical lines indicating the 4 crossover 

points. 

 

Figure 1b: A 4-point crossover 

10       01010     111111111111         1111111111     01

01      01010     000000000000         1111111111     10 

10      10101     111111111111         0000000000     01 

 01      10101     000000000000         0000000000     10 

Parent I 

Parent II 

Offspring I 

Offspring II 

00110011         00110011 

 11001100         11001100 

 00110011         11001100 

 11001100         00110011 

Parent I 

Parent II 

Offspring I 

Offspring II
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A genetic operator called mutation, is further applied to the new chromosomes produced 

by the crossover process.  Mutation is randomly applied with a pre-assigned low mutation 

probability and is considered to be a genetic operator that ensures that the probability of 

searching any given string will never be zero and thus has the effect of tending to inhibit 

the possibility of convergence of the genetic algorithms to a local optimum.  Mutation 

causes the chromosomes genetic representation to be changed according to a probabilistic 

rule.  In the binary string representation, mutation will cause a single bit to change its 

state, i.e. 0 1 or 1 0.⇒ ⇒

While populating the next generation after selection, crossover and mutation have been 

performed, we adopt an elitist strategy (De. Jong [1975], Thierens [1997]).  Elitism 

encourages the inclusion of highly fit genetic material, from earlier generations, in the 

subsequent generations. Under this approach, a predetermined fraction of the most-fit 

individuals is deterministically allowed to propagate through successive generations.  The 

fractional difference between the number of chromosomes in the old population and the 

number of chromosomes produced by selection and recombination is termed as the 

generation gap and is filled using the elitist approach.  

Thus, starting from the initial population of chromosomes and applying the GA operators 

of selection, crossover and mutation, GA moves on to the next generation of 

chromosomes.  Chromosome strings of the next generation are decoded (if necessary), 

objective function is evaluated, a fitness value assigned and new set of chromosomes are 

selected, using the selection operator, for creation of the subsequent generation and so the 

process continues through subsequent generations. 

Since GA is a stochastic search procedure, it is difficult to formally specify its 

convergence criteria.   It is quite possible under the GA stochastic optimization that the 

fitness of a population may remain static for a number of generations before a superior 

individual is found and hence application of conventional termination criteria becomes 

inappropriate. Commonly used approaches are; termination of GA after a prespecified 

number of generations or termination of GA if no better solution is found after a 

predetermined number of generations, keeping track of the best solution found over 

generations under both the approaches.   
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The algorithmic steps of the discussed generational GA using elitism are presented in 

Figure 2. 

To apply the discussed algorithm to any arbitrary optimization problem given by; 

Maximize                 

Subject to n

G(y)

y

∈Ω ⊂ℜ 

%

%

, (14) 

a correspondence between the search space Ω and appropriate space of binary strings Θ

is established.  The correspondence is usually established using a coding technique.  The 

use of Gray coded binary strings is the most commonly used approach.  For calculating 

the objective function of the optimization problem, the Gray coded binary strings can be 

decoded using a linear or a logarithmic scaling. 

Step 1: Randomly initialize the initial population generation of chromosomes of coded 

binary strings representing possible solutions. 

Step 2: Evaluate the objective function for each of the chromosomes (after decoding, if 

necessary) and obtain their fitness values. 

Step 3: Using selection operator, populate the fit parents pool, size of the pool being 

dependent on the generation gap. 

Step 4: Apply crossover (with a pre-assigned crossover probability), exchanging genetic 

material of parents to obtain offspring. 

Step 5: Apply mutation on the mated chromosome strings with pre-assigned mutation 

probability. 

Step 6: Use elitist strategy to fill the generation gap. 

Step 7: Repeat the steps 2 to 6 till termination criteria is met. 

Figure 2: Algorithmic steps of a generational GA using elitism 

 
4.2 Proposed Method of Least Square Frequency Estimation 

In this subsection, we present the proposed algorithm of least squares frequency 

estimation using a genetic search procedure.  We have observed that the least square 

frequency estimation for the undamped exponential signals model (1), reduces to finding 

the solution of the optimization problem 
* * 1 *ˆ arg max ( )( ( ) ( )) ( )Y A A A A Y

ω
ω ω ω ω ω− =  

%
% %% % % % %

. (15) 
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In the genetic search formulation of the frequency estimation problem, we take the 

function  
* * 1 *( ) ( )( ( ) ( )) ( )Y A A A A Yξ ω ω ω ω ω−=
% %% % % % %

, (16) 
as the objective function and aim to find the optimum solution through repeated 

application of the three genetic operators of selection, crossover and mutation, over 

successive generations.  

The parameter space, Ω for the present frequency estimation problem is given by 

[0, 1] [0, 1]........... [0, 1] MΩ = × × ⊂ℜ . (17) 

Since genetic algorithms work with coded information rather than directly with the 

optimization variables, it is necessary here to use a coding technique.  There are various 

approaches for coding and a particular coding method has influence on the computation 

speed and the accuracy of the obtained results.  The simplest approach is to use a binary 

representation with only two bits information data 0 and 1 and most of the coding method 

for GA searching is usually done using binary coding and decoding techniques.  

We first look for a simple binary chromosomal representation of a typical parameter 

vector in the parameter space Ω . We can encode any ω∈Ω
%

to a binary string of length 

Mp, where, p denotes the length of the binary bit representation of any component of the 

parameter vector ω
%

, i.e. for each of the M frequencies, we obtain a p-bit encoded binary 

representation.  Thus encoding each parameter in the parameter vector as a binary string 

of length p and then concatenating these, we can form a single chromosome. The number 

of bits, p, depends on the level of precision desired.   The binary coding of the parameter 

space is schematically presented in Figure 3. 

It is however well-known that, ordinary binary coding can result in a search process 

being deceived or unable to efficiently locate the global minima due to large Hamming 

distances in the representational mapping between adjacent values (Hollstien [1971]).  

Hamming distance between two binary strings being defined as the minimum number of 

bits that must be changed in order to convert one bit string into another. 

Use of Gray coding, derived from the binary coding, is advocated in the GA literature, as 

a method to overcome the hidden representational bias. The literature of GA and its 

applications report that Gray coding exhibits accelerated convergence rate of the 

objective function, and provides better accuracy than the binary coded GA (Caruana and 
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Schaffer [1988], Yokose et. al. [2000]). Superior performance of a Gray coded GA is 

mainly attributed to the fact that Gray codes do not bias the searching direction, as is the 

case of ordinary binary coding having a large Hamming distance between adjacent 

values. 

A Gray code represents each number in the sequence of integers { }0,1,..., 2 1K − as a 

binary string of length K in an order such that adjacent integers have Gray code 

representations that differ in only one bit position. Use of Gray code thus allows going 

through the integer sequence requiring flipping just one bit at a time. This is called the 

adjacency property of Gray codes.  Gray code takes a binary sequence and shuffles it to 

form a new sequence with the adjacency property. 
 

Original frequency parameters 

Mωωω :............:: 21

p-bit binary              p-bit binary                                                                                             p-bit binary  
representation of 1ω representation of 2ω representation of Mω

Transformed binary string representation of length Mp of original parameters 

Figure 3: Binary coding of the original frequency parameters 
 
We use here a Gray coding derived from the initial binary coding presented in Figure 3. 

To initialize the genetic search, we populate an initial population of a predetermined 

number of chromosomes.  Each member of this initial population is a Gray coded binary 

string of length Mp, each of which corresponds to a possible parameter vector 

solution, 0ω ∈Ω
%

. The value of the objective function (16), for each of the members of 

01011….10 11010….11 11100….01
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this initial population, is evaluated by decoding the Gray coded binary strings and 

computing their corresponding fitness values using a ranking method. We use a linear 

scaling for decoding of the encoded binary strings.   
 

Step 1: Randomly initialize initial population generation (of a predetermined size) of 

chromosomes of Gray coded binary strings of length Mp.

Step 2: Decode the Gray coded binary strings using a linear scaling. 

Step 3: Evaluate the objective function (16) for each of the decoded strings and obtain 

their fitness values using a ranking method. 

Step 4: Preserve the information about the string with highest fitness value. 

Step 5: Using a stochastic sampling with replacement method, populate fit parents pool, 

size of the pool depending on the generation gap. 

Step 6: From the selected parents pool, we select pairs in order and apply a two-point 

crossover (with a pre-assigned crossover probability), exchanging genetic material of 

parents to obtain offspring chromosome. 

Step 7: Apply mutation on the mated chromosome strings with small pre-assigned 

mutation probability. 

Step 8: Use elitist strategy to fill the generation gap. 

Step 9: Repeat the steps 2 to 6 till maximum number of generations is reached or no 

better solution is found after 25 generations. 

Step 10: ˆGA LSEω −
%

is the most fit decoded string found among all the generations. 

Figure 4: GA-LSE algorithm 
 

In the empirical section, we will apply the proposed procedure of GA based least square 

frequency estimation for parameter estimation of simulated models.  We will also present 

extensive simulation studies to investigate the possible effect of different type of outliers 

present in the data. 

 
4.3 Genetic Algorithm based Approximate Least Square Frequency Estimation 

In this subsection, we outline the proposed algorithm of approximate least squares 

frequency estimation using the genetic algorithms.  We have observed in the formulation 

of the approximate least squares estimators for the undamped exponential signals model 
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(1), that we can conveniently reduce the M-dimensional optimization search required for 

finding the exact least squares estimators to M 1-dimensional optimization searches for 

finding the approximate least squares estimators.   This leads to a significant reduction in 

the computational time required for genetic algorithms based formulation.   

Under the genetic algorithms based approximate least squares estimation formulation, we 

obtain the frequencies sequentially, sequencing depending upon the norm of the 

corresponding amplitudes.  Accordingly, we first estimate the frequency with highest 

norm amplitude, then using the adjusted data obtained using equation (12); we obtain the 

estimate for the frequency having the next highest norm amplitude.  This process goes on 

until we estimate all the frequencies. At each step, genetic algorithms based ALSE for 

that step frequency is computed through a 1-dimensional generational GA with elitism 

strategy.  

For computing the genetic algorithms based ALSE of the frequency corresponding to the 

highest norm amplitude, i.e. 1 [0,1]ω ∈ , we code it to a binary string of length p using 

Gray coding and use a linear scaling for decoding.  p denoting the length of the binary 

string representation of the parameter 1ω . To start the GA based ALSE procedure, we 

populate an initial population, of a predetermined size, of binary strings of length p-bits.  

The optimization criterion function for the chromosomes, after decoding, is given by 

(10).  We walk through the GA steps, as presented in Figure 2, repeatedly, till the 

termination criterion is reached.  The GA based approximate least square (GA-ALSE) 

solution of 1ω , say ALSEGA−)1(ω̂ , is the most fit individual evolving among all the 

generations, at the point when termination criterion is reached. Once we obtain 

ALSEGA−)1(ω̂ , the estimate of corresponding amplitude is obtained using (11).  The adjusted 

data { (1), (2)......, ( )}y y y n( ( ( is obtained using (12).  From the adjusted data, proceeding in 

the same way, as that used for obtaining ALSEGA−)1(ω̂ , we obtain ALSEGA−)2(ω̂ . The process is 

continued until all the frequencies are estimated.  The algorithm for obtaining the ALSE 

of the parameters is presented in Figure 5.  The main advantage of using the GA-ALSE 

approach over the GA-LSE approach is in terms of the computational complexity and 

time, which we will investigate in the simulation studies. 
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Step 1: Randomly initialize initial population generation (of a predetermined size) of 

chromosomes of Gray coded binary strings of length p.

Step 2: Decode the Gray coded binary strings using a linear scaling. 

Step 3: Evaluate the objective function (10) for each of the decoded strings and obtain 

their fitness values using a ranking based method. 

Step 4 –Step 9: Same as that in GA-LSE algorithm. 

Step 10: Obtain ALSEGA−)1(ω̂ , as the most fit decoded string found among all the 

generations. 

Step 11: Compute the amplitude estimate (1)ˆ GA ALSEα − and the adjusted data 

{ (1), (2)......, ( )}y y y n( ( ( is obtained using (12). 

Step 12: Using the adjusted data, obtained in Step 11, repeat the steps Step 1-Step 9 to 

get (2)ˆ GA ALSEω − and  (2)ˆ GA ALSEα − .

Step 13: Continue the above steps till all the frequencies are estimated. 

Figure 5: GA-ALSE algorithm 
 

5. Simulation Studies and Discussions 
In this section, we present the simulation studies to access the performance of the 

proposed procedures, GA-LSE and GA-ALSE under various conditions.  We also 

perform simulations to check the robustness and performance with respect to outliers 

being present in the data. All the simulations have been done using MATLAB random 

number generators. 
 

5.1 Effect of bits on the performance the estimators 

Binary string representation of the frequencies impels a discretization of the frequency 

range, discretization depending upon the number of bit length p used for each parameter.  

It is thus natural that the performance of the estimators will depend upon the bit length.  

To ascertain the effect of the number of bits in the binary string representation of the 

frequency parameters, we perform a simulation on the following model: 

( )( ) 1.0exp (2 )0.5 ( )y t i t tπ ε= + ; 1, 2,..., 25.t = (18) 
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)(tε is taken as independently and identically distributed complex normal noise sequence, 

with mean zero and variance 22σ for both the real and imaginary parts of )(tε . For 

each data set, we estimated the GA-LSE and the GA-ALSE for the frequency parameter. 

Table 2 presents the average estimates and the mean square errors (MSEs) of the GA-

LSE over 100 simulation runs with 2 1σ = , obtained using the GA parameters given in 

Table 1.   We also present the corresponding CRLB for comparison in Table 2. 
 

Table 1: Choice of genetic parameters for the simulations of model (18) 

Genetic Parameter Values 
Number of chromosomes in one population 150 
Coding Gray coding 
Scaling Linear 
Range of parameter [0,1]ω∈
Crossover probability 0.70 
Crossover method 2-point 
Mutation probability 0.01 
Elitism Top 10%  
Maximum number of generation 200 

We observe from the results that initially the performance of the GA-LSE improves 

drastically with increase in string length and stabilizes around 15 to 20 bits where the 

MSE attains the CRLB.  We observe similar results for the GA-ALSE.  In all subsequent 

computations we use a 20-bit representation of a single frequency parameter. 
 

Table 2: Performance of the GA-LSE for different bit lengths 
Length of binary string Average Estimate MSE CRLB 

4 0.4553 0.0641 
6 0.5006 6.298 E-5 
8 0.5001 1.430 E-5 
10 0.5000 1.214 E-5 
15 0.4993 9.766 E-6 
20 0.5001 9.367 E-6 
30 0.4998 9.370 E-6 

 

9.726 E-6 

5.2 Performance of GA-LSE and GA-ALSE at different SNR levels and sample sizes 

We next investigate the performance of the proposed method at various SNR levels and 

sample sizes. We consider the following 2–component simulation model: 

)()2exp()2exp()( 2211 ttitity εωπαωπα ++= ; t = 1, 2,…n. (19) 

17 of 35

Wednesday , December  14, 2005

Elsevier



Rev
ie

w
 C

op
y

18

The true values of the parameters of the simulation model are 0.21 =α , 0.32 =α ,

5.01 =ω and 7.02 =ω . )(tε is taken as independently and identically distributed 

complex normal noise sequence, with mean zero and variance 22σ for both the real and 

imaginary parts of )(tε . Furthermore, the real and the imaginary parts are independently 

distributed.  Simulation is performed over three different sample sizes ( )n , 25, 50 and 75.  

For each of these sample sizes, we generated different scenarios, varying the noise power 
2σ from )2.14(5.0 ≅SNR  to )1.8(2 ≅SNR . SNR denotes the ‘Signal-to-Noise’ ratio, 

given by )(log10 10 energynoiseenergysignalSNR = . For each data set, we estimated 

the GA-LSE and the GA-ALSE for the frequency parameter vector )7.0,5.0( . The 

choice of the genetic parameters for the genetic algorithm setup is same as that presented 

in Table 1. The bit length corresponding to each parameter is taken as 20. The average 

estimates, the MSEs and average number of GA generations required over 100 

simulations for all the components of the frequencies are computed. We have also 

reported the corresponding CRLB for comparison.  The results for sample size 25 are 

reported in Table 3, sample size 50 in Table 4 and results for sample size 75 are reported 

in Table 5. 

From the result tables, we observe that the GA-LSE and GA-ALSE frequency estimation 

techniques perform quite well. The MSE of the proposed methods are almost equal to the 

corresponding CRLB even for reasonably low SNR and small sample sizes. In most of 

the cases, we observe that the estimators are nearly efficient, having their MSEs equal or 

nearly equal to the CRLB. . Thus they are able to attain the maximum possible accuracy 

corresponding to unbiased estimators of the respective model parameters.  During the 

simulations, we observe that GA-ALSE is computationally much more efficient than the 

GA-LSE method.  For completing a single run of simulation with population size of 50 

chromosomes and 200 generation, GA based ALSE procedure takes 14 seconds on a 

1000 Mhz, Pentium 3 processor, as against 90 seconds for GA based LSE.  It is also 

observed that the computationally efficient GA-ALSE takes on an average less than half 

the number of generations as that required for GA-LSE, giving estimates, on an average, 

as accurate as GA-LSE. From the results tables, it is further observed, that for a fixed 
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level of 2σ , MSE decreases as n increases and for a fixed value of n, MSE increases as 
2σ increases.  This is true for both the GA-LSE and GA-ALSE.   

 

Table 3: GA-LSE and GA-ALSE frequency estimation results for sample size 25 
Frequency 1 1ω = 0.5 Frequency 2 2ω = 0.7

2σ (SNR) GA-LSE GA-ALSE GA-LSE GA-ALSE
Av. Est. 0.4999 0.4998 0.7002 0.7015 

MSE 1.552E-6 1.591E-6 5.291E-7 2.985E-6 
Av. Gen. 75 32 75 32 

0.5 (14.15)

CRLB 1.215E-6 5.395E-7 
Av. Est. 0.4997 0.4997 0.7001 0.7014 

MSE 1.990E-6 2.025E-6 1.247 E-6 3.297E-6 
Av. Gen. 73 30 73 32 

1(11.14) 

CRLB 2.432E-06 1.082E-06 
Av. Est. 0.5000 0.4999 0.7003 0.7016 

MSE     3.647E-6 3.720E-6 1.634 E-6 4.118E-6 
Av. Gen. 74 34 74 32 

1.5 (9.38)

CRLB 3.648E-06 1.621E-06 
Av. Est. 0.4998 0.4997 0.7002 0.7016 

MSE 5.275 E-6 5.352 E-6 2.486 E-6 4.929 E-6 
Av. Gen. 72 30 72 29 

2 (8.13) 

CRLB 4.863E-06 2.161E-06 
Table 4: GA-LSE and GA-ALSE frequency estimation results for sample size 50 

Frequency 1 1ω = 0.5 Frequency 2 2ω = 0.7
2σ (SNR) GA-LSE GA-ALSE GA-LSE GA-ALSE

Av. Est. 0.5001 0.5000 0.7000 0.7004 
MSE 1.692 E-7 1.579 E-7 6.488 E-8 1.935 E-7 

Av. Gen. 73 31 73 34 
0.5 (14.15)

CRLB 1.520E-07 6.763E-08 
Av. Est. 0.5000 0.5000 0.7000 0.7004 

MSE 3.393 E-7 3.375 E-7 1.651 E-7 4.127 E-7 
Av. Gen. 73 29 73 36 

1(11.14) 

CRLB 3.040E-07 1.350E-07 
Av. Est. 0.4999 0.4999 0.7000 0.7003 

MSE 5.173 E-7 5.089 E-7 2.093 E-7 3.203 E-7 
Av. Gen. 73 31 73 33 

1.5 (9.38)

CRLB 4.559E-07 2.026E-07 
Av. Est. 0.4999 0.4999 0.7000 0.7004 

MSE 5.417 E-7 5.959 E-7 2.911 E-7 4.275 E-7 
Av. Gen. 71 33 71 30 

2 (8.13) 

CRLB 6.079E-07 2.710E-07 
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Table 5: GA-LSE and GA-ALSE frequency estimation results for sample size 75 

Frequency 1 1ω = 0.5 Frequency 2 2ω = 0.7
2σ (SNR) GA-LSE GA-ALSE GA-LSE GA-ALSE

Av. Est. 0.5000 0.5000 0.7000 0.7002 
MSE 4.961 E-8 4.454 E-8 2.212 E-8 4.996 E-8 

Av.Gen. 74 37 74 29 
0.5 (14.15)

CRLB 4.509E-08 2.001E-08 
Av. Est. 0.5000 0.5000 0.7000 0.7002 

MSE 9.331 E-8 8.496 E-8 4.469 E-8 2.165 E-7 
Av.Gen. 71 31 71 29 

1(11.14) 

CRLB 9.018E-08 4.002E-08 
Av. Est. 0.5000 0.5001 0.7000 0.7002 

MSE 1.413 E-7 1.367 E-7 6.080 E-8 8.689 E-8 
Av.Gen. 72 28 72 33 

1.5 (9.38)

CRLB 1.350E-07 6.003E-08 
Av. Est. 0.5000 0.5000 0.7000 0.7001 

MSE 1.775 E-7 1.713 E-7 9.185 E-8 1.004 E-7 
Av.Gen. 72 34 72 33 

2 (8.13) 

CRLB 1.801E-07 8.004E-08 

5.3 Performance of GA-LSE and GA-ALSE for closely spaced frequencies 

In this subsection, we study the performance of the proposed methods when the 

frequencies are closely spaced.  We provide a detailed performance analysis 

corresponding to different degree of separation of the frequencies. We consider the same 

2-component superimposed exponential model (19).   The true values of the amplitude 

parameters of the simulation model are 1 2.0α = , 0.32 =α . The noise sequence )(tε is 

same as that considered earlier.  In order to ascertain the effect of the degree of separation 

of the frequencies on the performance, we vary the degree of separation from 0.20 to 0.01 

at two different 2σ levels ( 2σ =0.5 and 2σ =2.0).  The sample size is fixed at 25. The 

results are tabulated in Table 6.  The CRLB of the frequency parameter estimate 

corresponding to 1α , at 2σ =0.5 being 1.215E-6 and 4.863E-06 at 2σ =2.0 and the CRLB 

of the frequency parameter estimate corresponding to 2α , at 2σ =0.5 being 5.395E-7 

and 2.161E-06 at 2σ =2.0.  
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Table 6: Performance of the proposed methods for different degree of separation  
Average Estimate MSE Degree of 

Separation 
of Signals 

 
2σ

Actual 
Frequency GA-LSE GA-ALSE GA-LSE GA-ALSE

0.50 0.4999 0.4998 1.552E-6 1.591E-6 0.5 
0.70 0.7002 0.7015 5.291E-7 5.985E-7 
0.50  0.4998 0.4997 5.275 E-6 5.352 E-6 

0.20 
2.0 

0.70 0.7002 0.7016 2.486 E-6 4.929 E-6 
0.50 0.5000 0.4999 1.642 E-6 1.781 E-6 0.5 
0.60 0.6000 0.6001 5.822 E-7 5.999 E-7 
0.50 0.5001 0.5001 5.248 E-6 5.575 E-6 

0.10 
2.0 

0.60 0.6000 0.6001 1.591 E-6 1.919 E-6 
0.50 0.4997 0.4993 1.583 E-6 1.606 E-6 0.5 
0.55 0.5501 0.5517 5.952 E-7 3.199 E-6 
0.50 0.5003 0.4998 8.296 E-6 6.519 E-6 

0.05 
2.0 

0.55 0.5497 0.5516 3.308 E-6 3.913 E-6 
0.50 0.5005 0.4863 7.697 E-6 1.880 E-4 0.5 
0.52 0.5195 0.5155 4.695 E-6 2.124 E-5 
0.50 0.4997 0.4884 3.138 E-5 2.060 E-4 

0.02 
2.0 

0.52 0.5203 0.5181 1.714 E-5 6.551 E-5 
0.50 0.4976 0.4534 5.821 E-5 0.01404 0.5 
0.51 0.5182 0.5504 0.002468 0.01207 
0.50 0.4164 0.3883 0.02682 0.03678 

0.01 
2.0 

0.51 0.5779 0.6137 0.02322 0.03418 
The results of Table 6 indicate that the proposed methods have reasonably high 

breakdown point while resolving closely spaced frequencies.  Even at fairly low degree 

of separation, 0.05, both the methods provide estimates with MSEs very close to the 

CRLB, at both the SNR levels.  In general, GA-LSE performs marginally better than the 

GA-ALSE and has a lower breakdown point than the GA-ALSE. The threshold of the 

GA-ALSE seems to be around 0.02 degree of separation.  The threshold level of GA-LSE 

seems to be even lower.  Thus, both the proposed methods are able to provide fairly 

accurate estimates when the degree of separation of the frequencies is greater than 0.02, 

even at low SNR levels.   

 

5.4 Performance of GA-LSE and GA-ALSE for higher order superimposed model 

In this subsection, we perform simulations to ascertain the performance of the proposed 

methods in case of higher order superimposed model. We consider the following 10-

component superimposed exponential signals model: 
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10
2

1
( ) ( ); 1,2,...,ki t

k
k

y t e t t nπ ωα ε
=

= + =∑ (20) 

The true amplitude parameter vector of model (20) is  

( )1.5 2.0 2.25 2.45 2.2 2.3 1.2 1.7 2.4 2.5 Tα =
%

and the true frequency vector is  

( )0.14 0.21 0.33 0.39 0.48 0.56 0.67 0.73 0.81 0.86 Tω =
%

.

The noise sequence )(tε is same as that considered for models (18) and (19).  Simulation 

is performed over two different sample sizes, 50 and 100.  For each of these sample sizes, 

we generated different scenarios, varying the noise power 2σ from 0.5 to 2.0.  Since the 

number of components is large, we only compute the computationally efficient GA-

ALSE and report its performance.  For comparison of the GA-ALSE results, we report 

also the corresponding CRLBs.  The results are presented in Table 7. 

We observe from the simulations study of model (20) that the GA-ALSE performs quite 

well for the 10-component superimposed exponential signals model and are able to 

resolve all the frequencies with reasonable degree of accuracy in most of the cases.  
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Table 7: Simulation results of GA-ALSE for model (20)  
Average Estimate MSE CRLB ω 2σ

50n = 100n = 50n = 100n = 50n = 100n =
0.5 0.1406 0.1400 7.452 E-7 5.774 E-8 2.701 E-7 3.376E-08 
1.0 0.1404 0.1400 8.395 E-7 1.051 E-7 5.403 E-7 6.754E-08 
1.5 0.1404 0.1399 1.146 E-6 1.132 E-7 8.105 E-7 1.013E-07 

0.14 

2.0 0.1404 0.1404 1.719 E-6 1.719 E-6 1.080 E-6 1.350E-07 
0.5 0.2100 0.2103 1.888 E-7 1.562 E-7 1.519 E-7 1.899E-08 
1.0 0.2098 0.2103 4.429 E-7 1.503 E-7 3.039 E-7 3.799E-08 
1.5 0.2097 0.2103 9.226 E-7 1.734 E-7 4.559 E-7 5.699E-08 

0.21 

2.0 0.2099 0.2099 1.021 E-6 1.021 E-6 6.079 E-7 7.599E-08 
0.5 0.3305 0.3301 5.215 E-7 3.762 E-8 1.200 E-7 1.500E-08 
1.0 0.3301 0.3300 7.467 E-7 7.611 E-8 2.401 E-7 3.001E-08 
1.5 0.3301 0.3300 1.194 E-6 7.724 E-8 3.602 E-7 4.503E-08 

0.33 

2.0 0.3299 0.3299 1.186 E-6 1.186 E-6 4.803 E-7 6.004E-08 
0.5 0.3919 0.3901 4.056 E-6 4.836 E-8 1.012 E-7 1.265E-08 
1.0 0.3918 0.3901 3.854 E-6 7.408 E-8 2.025 E-7 2.531E-08 
1.5 0.3917 0.3901 3.708 E-6 6.065 E-8 3.038 E-7 3.798E-08 

0.39 

2.0 0.3916 0.3916 3.617 E-6 3.617 E-6 4.051 E-7 5.064E-08 
0.5 0.4801 0.4800 4.876 E-7 4.549 E-8 1.256 E-7 1.570E-08 
1.0 0.4798 0.4799 8.678 E-7 6.809 E-8 2.512 E-7 3.140E-08 
1.5 0.4798 0.4799 1.087 E-6 1.041 E-7 3.768 E-7 4.710E-08 

0.48 

2.0 0.4798 0.4798 1.225 E-6 1.225 E-6 5.024 E-7 6.280E-08 
0.5 0.5618 0.5601 3.716 E-6 7.222 E-8 1.149 E-7 1.436E-08 
1.0 0.5615 0.5601 2.978 E-6 9.166 E-8 2.298 E-7 2.873E-08 
1.5 0.5614 0.5601 3.004 E-6 9.621 E-8 3.447 E-7 4.309E-08 

0.56 

2.0 0.5615 0.5615 3.165 E-6 3.165 E-6 4.596 E-7 5.745E-08 
0.5 0.6698 0.6700 4.018 E-7 5.088 E-8 4.221 E-7 5.276E-08 
1.0 0.6698 0.6699 1.169 E-6 1.055 E-7 8.443 E-7 1.055E-07 
1.5 0.6698 0.6699 1.943 E-6 1.627 E-7 1.266 E-6 1.583E-07 

0.67 

2.0 0.6695 0.6695 3.040 E-6 3.040 E-6 1.688 E-6 2.110E-07 
0.5 0.7315 0.7303 2.412 E-6 1.270 E-7 2.103 E-7 2.629E-08 
1.0 0.7313 0.7303 2.587 E-6 1.538 E-7 4.207 E-7 5.259E-08 
1.5 0.7314 0.7303 2.580 E-6 1.801 E-7 6.310 E-7 7.888E-08 

0.73 

2.0 0.7313 0.7313 3.009 E-6 3.009 E-6 8.414 E-7 1.052E-07 
0.5 0.8116 0.8103 2.814 E-6 1.809 E-7 1.055 E-7 1.319E-08 
1.0 0.8115 0.8104 2.698 E-6 2.513 E-7 2.110 E-7 2.638E-08 
1.5 0.8114 0.8103 2.577 E-6 2.418 E-7 3.166 E-7 3.958E-08 

0.81 

2.0 0.8116 0.8116 3.203 E-6 3.203 E-6 4.221 E-7 5.276E-08 
0.5 0.8604 0.8607 4.103 E-7 1.915 E-7 9.726 E-8 1.216E-08 
1.0 0.8604 0.8606 5.494 E-7 3.261 E-7 1.945 E-7 2.431E-08 
1.5 0.8603 0.8606 6.494 E-7 5.732 E-7 2.918 E-7 3.648E-08 

0.86 

2.0 0.8602 0.8602 7.919 E-7 6.919 E-7 3.891 E-7 4.864E-08 
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5.5 Computational aspects of GA-LSE and GA-ALSE 

There are two critical aspects of the GA based ALSE/LSE frequency estimation 

procedure. The first one is the number of generations required to arrive at the frequency 

estimate and the second one is the information about the generation-wise progress of the 

criterion function (LSE or ALSE), in terms of the criterion function value corresponding 

to the solution found up to that generation.  We will report the average number of 

generations required over 100 simulations in different cases and will report graphically 

the generation-wise progress of the criterion function. Table 8 gives the average number 

of generations that were required over 100 simulations for GA-LSE and GA-ALSE.  For 

the GA-ALSE, the first figure inside the parentheses indicates the number of generations 

required for estimating 1ω and the second figure indicates the number of generations 

required for estimating 2ω . The population size in all these computations is fixed at 150. 

Table 8: Average number of GA generations for finding LSE and ALSE 
Average number of GA generations 

Sample size 25 Sample size 50 Sample size 75 2σ
(SNR) GA-LSE GA-ALSE GA-LSE GA-ALSE GA-LSE GA-ALSE 

0.5  
(14.15) 

75 (32, 32) 73 (31, 34) 74 (37,29) 

1
(11.14) 

73 (30, 32) 73 (29, 36) 71 (31, 29) 

1.5  
(9.38) 

74 (34, 32) 73 (31, 33) 72 (28, 33) 

2
(8.13) 

72 (30, 29) 71 (33, 30) 72 (34, 33) 

We observe from the results that GA-LSE is computationally much faster, requiring less 

number of generations to arrive at the frequency estimates, having nearly the same 

accuracy as that of GA-LSE.  This is true for all the cases considered. 

In Figure 6 and Figure 7, we graphically present the generation-wise progress of the 

(scaled) optimum criterion function values of two representative cases. Figure 6 presents 

the GA-ALSE results and Figure 7 reports the GA-LSE results.  The results correspond to 

GA-ALSE and GA-LSE computations with sample size 25 and 5.02 =σ .
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Figure 6: Generation-wise progress of the criterion function for GA-ALSE (frequency 1) 
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Figure 7: Generation-wise progress of the criterion function for GA-LSE 
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From the above figures, we observe that, for both GA-LSE and GA-ALSE, optimum 

criterion function value stabilizes fairly fast, irrespective of the population size. On an 

average, the GA-ALSE achieves this stabilization of the optimum criterion function value 

earlier than the GA-LSE. It is also observed that, for both the methods, the final fitness 

values for different population sizes are very close.  This further indicates that the 

performance of the proposed genetic algorithms based frequency estimation procedures 

do not significantly depend on the population size, provided the number of GA 

generations is reasonably large. 

5.6 Performance of GA-LSE and GA-ALSE in outlier contaminated datasets 

We next investigate the effect of presence of various types of outliers on the GA-LSE and 

GA-ALSE frequency estimates, at different contamination levels.  The data for the outlier 

simulation studies are generated in the following way. To contaminate a simulated 

dataset with k% outliers, we randomly choose k% of the total data points and generate the 

data corresponding to these points from a model different than the original simulation 

model (19). In the outlier simulation studies, we take the sample size as 25 and consider 

three different types of outliers.  These are; (i) outlier observations are generated from a 

model with different amplitudes (we call these ‘amplitude outliers’), (ii) outlier 

observations are generated from a model with different frequencies (we call these 

‘frequency outliers’) and (iii) outlier observations are generated from a model with 

different noise structure (we call these ‘noise outliers’).   In case of the ‘amplitude 

outliers’, we consider the outlier data being generated from 

)())7.0(2exp(0.3))5.0(2exp(85.1)( ttitity εππ ++= ; t=1, …25. (21) 

)(tε as in the formulation of model (16). For the ‘frequency outliers’, we consider the 

outlier data model as; 

)())7.0(2exp(0.3))35.0(2exp(0.2)( ttitity εππ ++= ; t=1, …25. (22) 

Finally for the ‘noise outliers’, we consider the model (19) with )(tε complex Gaussian 

having variance of it’s real and imaginary parts as )2(10 2σ . We consider three levels of 

outlier contaminations, (i) 4 out of 25 observations are outliers ( %16≅ ), (ii) 6 out of 25 

observations are outliers ( %24≅ ) and (iii) 8 out of 25 observations are outliers ( %32≅ ). 
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2σ is varied from 0.5 ( 2.14≅SNR ) to 2.5 ( 7.2SNR ≅ ).  We report the average estimates 

and the MSEs of the GA-LSE and GA-ALSE, over 100 simulation runs.  For comparison 

of the performance of the proposed methods with usual method of least square frequency 

estimation, we report the results of Noise Space Decomposition (Kundu and Mitra 

[1995]) estimator initialized LSE using Quasi-Newton method with Levenberg-

Marquardt adjustment (NSD-LM).  The results for the 16% outliers are presented in 

Tables 9-11, 24% outliers in Tables 12-14 and 32% outliers in Tables 15-17.  

From the results of the outlier study, we observe that the proposed GA-LSE and GA-

ALSE methods perform quite well with the levels and types of outliers considered in the 

simulation study.  The outlier simulation study also brings forth the breakdown points of 

the proposed methods and the NSD-LM method, with respect to contamination and SNR 

levels. For the frequency outlier case, it is observed that the GA based methods and the 

usual method perform equally well at high SNR levels for 16% contamination.  It is also 

observed that, as compared to the proposed methods, the usual method breaks down 

much earlier, with respect to outlier contamination and SNR levels. The NSD-LM breaks 

down around 7 SNR at 16% level, around 8 SNR at 24% and around 14 SNR at 32%. The 

proposed methods clearly outperform the NSD-LM beyond these breakdown points.  The 

breakdown points of the GA based methods are around 7 SNR at 24% and 32% 

contamination levels. At these points, estimation of the frequency with lower contribution 

to signal energy deteriorates drastically.  For the amplitude outlier case, we observe that 

the proposed methods as well as the usual NSD-LM perform quite well in all the 

scenarios considered and this type of outlier perturbation does not seem to have a 

significant effect. For the noise outlier case, once again, we observe that the proposed 

methods clearly outperform the usual NSD-LM at higher contamination levels, especially 

at low SNR levels. Performance of the proposed methods and the NSD-LM method are 

similar at high SNR levels at all the contamination levels.  For the NSD-LM method, we 

observe that the breakdown points are at the SNR level of 8 at contamination levels 16% 

and 24%; and at the SNR level of 11 at 32% contamination level. For the GA-LSE and 

GA-ALSE methods, the respective breakdown points arrives much later, at around SNR 

level of 7 at 32% contamination level. We thus observe from the outlier simulation study 

that the proposed methods of frequency estimation seem to be fairly robust in presence of 
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outliers in the data and they have a reasonably high breakdown point, even at low SNR 

levels of the signal.  

 
Table 9: GA-LSE, GA-ALSE and NSD-LM for 16% frequency outliers scenario 

 Frequency 1: 1ω = 0.5 Frequency 2: 2ω = 0.72σ
(SNR)  GA-LSE GA-ALSE NSD-LM GA-LSE GA-ALSE NSD-LM

Av. Est. 0.5002 0.5002 0.5006 0.7003 0.7014 0.7001 0.5  
(14.15) MSE 6.088E-6 6.200E-6 5.697 E-6 1.934E-6 3.709E-6 3.373 E-6

Av. Est. 0.5006 0.5005 0.5005 0.7002 0.7013 0.7004 1
(11.14) MSE 6.969E-6 6.943E-6 7.784 E-6 2.354E-6 3.832E-6 2.568 E-6

Av. Est. 0.5001 0.5001 0.4994  0.7001 0.7013 0.7005 1.5 
(9.38) MSE 8.127E-6 8.392E-6 8.104 E-6 3.361E-6 4.911E-6 3.598 E-6

Av. Est. 0.5002 0.5002 0.5004 0.7004 0.7015 0.7000 2
(8.13) MSE 1.163 E-5 1.186 E-5 1.131 E-5 3.821 E-6 5.731 E-6 2.916 E-6

Av. Est. 0.5001 0.5000 0.4817 0.7000 0.7012 0.6900 2.5 
(7.16) MSE 1.465 E-5 1.499 E-5 0.0326 3.026 E-6 4.124 E-6 0.0101 

Table 10: GA-LSE, GA-ALSE and NSD-LM for 16% amplitude outliers scenario 
 Frequency 1: 1ω = 0.5 Frequency 2: 2ω = 0.72σ

(SNR)  GA-LSE GA-ALSE NSD-LM GA-LSE GA-ALSE NSD-LM
Av. Est. 0.5000 0.5000 0.5001 0.6999 0.7013 0.7000 0.5  

(14.15) MSE 1.591 E-6 1.623 E-6 1.374 E-6 5.466 E-7 2.996 E-6 6.309 E-7
Av. Est. 0.5002 0.5002 0.4999 0.7001 0.7015 0.7000 1

(11.14) MSE 2.621 E-6 2.659 E-6 2.644 E-6 1.307 E-6 3.577 E-6 1.122 E-6
Av. Est. 0.4998 0.4997 0.5000 0.7000 0.7013 0.6999 1.5 

(9.38) MSE 4.288 E-6 4.406 E-6 4.127 E-6 1.827 E-6 4.130 E-6 1.634 E-6
Av. Est. 0.4998 0.4998 0.4998 0.6999 0.7013 0.6999 2

(8.13) MSE 5.685 E-6 5.809 E-6 6.826 E-6 2.514 E-6 4.959 E-6 2.411 E-6
Av. Est. 0.5002 0.5001 0.5000     0.6999     0.7013 0.6999 2.5 

(7.16) MSE 6.050 E-6 6.252 E-6 6.213 E-6 2.588 E-6 4.181 E-6 2.909 E-6
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Table 11: GA-LSE, GA-ALSE and NSD-LM for 16% noise outliers scenario 
 Frequency 1: 1ω = 0.5 Frequency 2: 2ω = 0.72σ

(SNR)  GA-LSE GA-ALSE NSD-LM GA-LSE GA-ALSE NSD-LM
Av. Est. 0.5000 0.5000 0.4999 0.7001 0.7015 0.7001 0.5  

(14.15) MSE 3.235E-6 3.214E-6 4.108 E-6 1.358E-6 3.474E-6 1.213 E-6
Av. Est. 0.4996 0.4995 0.4997 0.6999 0.7013 0.7000 1

(11.14) MSE 8.769E-6 8.998E-6 6.356 E-6 2.767E-6 4.256E-6 2.684 E-6
Av. Est. 0.4997 0.4996 0.4996 0.7002 0.7015 0.7001 1.5 

(9.38) MSE 1.019E-5 1.031E-5 8.396 E-6 4.959E-6 6.631E-6 4.259 E-6
Av. Est. 0.4982 0.4982 0.4968 0.6998 0.7011 0.7007 2

(8.13) MSE 5.662 E-5 6.292 E-5 5.364 E-4 6.594 E-6 7.532 E-6 7.179 E-6
Av. Est. 0.5001 0.4999 0.5120 0.7001 0.7013 0.7167 2.5 

(7.16) MSE 6.261 E-5 6.302 E-5 0.0104 8.169 E-6 9.534 E-6 0.0224 

Table 12: GA-LSE, GA-ALSE and NSD-LM for 24% frequency outliers scenario 
 Frequency 1: 1ω = 0.5 Frequency 2: 2ω = 0.72σ

(SNR)  GA-LSE GA-ALSE NSD-LM GA-LSE GA-ALSE NSD-LM
Av. Est. 0.5004 0.5004 0.5008 0.7002 0.7012 0.6999 0.5  

(14.15) MSE 8.531 E-6 8.724 E-6 7.267 E-6 3.254 E-6 4.301 E-6 2.425 E-6
Av. Est. 0.5010 0.5010 0.4956 0.7000 0.7010 0.7003 1

(11.14) MSE 1.313 E-5 1.338 E-5 7.639 E-4 2.685 E-6 3.679 E-6 2.984 E-6
Av. Est. 0.5008 0.5008 0.4971 0.7002 0.7013 0.6999 1.5 

(9.38) MSE 1.243 E-5 1.273 E-5 6.277 E-4 3.331 E-6 4.778 E-6 5.134 E-6
Av. Est. 0.5004 0.5004 0.4924 0.7004 0.7014 0.7004 2

(8.13) MSE 1.684 E-5 1.729 E-5 2.066 E-3 3.261 E-6 4.952 E-6 5.141 E-6
Av. Est. 0.4974 0.4974 0.4402 0.7013 0.7023 0.7100 2.5 

(7.16) MSE 1.411 E-3 1.412 E-3 0.2851 1.494 E-4 1.517 E-4 0.0151 

Table 13: GA-LSE, GA-ALSE and NSD-LM for 24% amplitude outliers scenario 
 Frequency 1: 1ω = 0.5 Frequency 2: 2ω = 0.72σ

(SNR)  GA-LSE GA-ALSE NSD-LM GA-LSE GA-ALSE NSD-LM
Av. Est. 0.4998 0.4998 0.5002 0.7000 0.7013 0.7000 0.5  

(14.15) MSE 1.608 E-6 1.673 E-6 1.467 E-6 5.490 E-7 3.011 E-6 4.039 E-7
Av. Est. 0.5000 0.4999 0.4999 0.6999 0.7013 0.6999 1

(11.14) MSE 3.249 E-6 3.323 E-6 2.257 E-6 1.319 E-6 3.561 E-6 1.256 E-6
Av. Est. 0.5001 0.5001 0.4999 0.7000 0.7014 0.6999 1.5 

(9.38) MSE 4.766 E-6 4.848 E-6 4.007 E-6 1.838 E-6 4.131 E-6 2.185 E-6
Av. Est. 0.5000 0.4999 0.4999 0.7002 0.7015 0.6999 2

(8.13) MSE 5.991 E-6 6.203 E-6 5.241 E-6 2.509 E-6 4.977 E-6 2.714 E-6
Av. Est. 0.5006 0.5006 0.5000     0.6998 0.7012 0.7003 2.5 

(7.16) MSE 6.883 E-6 7.016 E-6 6.084 E-6 3.043 E-6 4.393 E-6 2.630 E-6
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Table 14: GA-LSE, GA-ALSE and NSD-LM for 24% noise outliers scenario 
 Frequency 1: 1ω = 0.5 Frequency 2: 2ω = 0.72σ

(SNR)  GA-LSE GA-ALSE NSD-LM GA-LSE GA-ALSE NSD-LM
Av. Est. 0.5001 0.5000 0.5001 0.7000 0.7014 0.6997 0.5  

(14.15) MSE 6.085E-6 6.127E-6 3.776 E-6 2.376E-6 4.162E-6 2.171 E-6
Av. Est. 0.4992 0.4991 0.5003 0.7003 0.7016 0.7001 1

(11.14) MSE 9.923E-6 1.041E-5 7.333 E-6 3.697 E-6 6.338E-6 3.412 E-6
Av. Est. 0.4999 0.4998 0.4996 0.7003 0.7016 0.6999 1.5 

(9.38) MSE 1.803 E-5 1.877 E-5 1.139 E-5 7.181 E-6 9.186 E-6 6.214 E-6
Av. Est. 0.5006 0.5004 0.4922 0.7007 0.7019 0.7024 2

(8.13) MSE 7.159 E-5 7.261 E-5 4.457 E-3 9.098 E-6 1.173 E-5 4.512 E-4
Av. Est. 0.5016 0.5016 0.3662 0.7001 0.7013 0.7667 2.5 

(7.16) MSE 1.462 E-4 1.451 E-4 0.6812 7.981 E-6 9.559 E-6 0.3672 

Table 15: GA-LSE, GA-ALSE and NSD-LM for 32% frequency outliers scenario 
 Frequency 1: 1ω = 0.5 Frequency 2: 2ω = 0.72σ

(SNR)  GA-LSE GA-ALSE NSD-LM GA-LSE GA-ALSE NSD-LM
Av. Est. 0.5011 0.5011 0.4824 0.7004 0.7014 0.7003 0.5  

(14.15) MSE 8.745 E-6 8.825 E-6 2.951 E-3 2.517 E-6 4.363 E-6 3.272 E-6
Av. Est. 0.5008 0.5007 0.4728 0.7006 0.7016 0.7003 1

(11.14) MSE 1.173 E-5 1.192 E-5 0.0138 3.021 E-6 5.269 E-6 4.564 E-6
Av. Est. 0.5009 0.5008 0.4539 0.7003 0.7013 0.7010 1.5 

(9.38) MSE 1.639 E-5 1.669 E-5 0.0878 3.627 E-6 5.149 E-6 1.208 E-3
Av. Est. 0.5019 0.5019 0.3822 0.7001 0.7011 0.7079 2

(8.13) MSE 2.002 E-5 2.018 E-5 0.8688 4.296 E-6 5.509 E-6 0.0491 
Av. Est. 0.5036 0.5058 0.3003 0.7013     0.7042 0.7397 2.5 

(7.16) MSE 1.321 E-3 1.744 E-3 0.9712  5.634 E-4 4.711 E-4 0.0967 

Table 16: GA-LSE, GA-ALSE and NSD-LM for 32% amplitude outliers scenario 
 Frequency 1: 1ω = 0.5 Frequency 2: 2ω = 0.72σ

(SNR)  GA-LSE GA-ALSE NSD-LM GA-LSE GA-ALSE NSD-LM
Av. Est. 0.5000 0.4999 0.4999 0.7000 0.7013 0.6999 0.5  

(14.15) MSE 1.631 E-6 1.692 E-6 1.132 E-6 5.689 E-7 3.140 E-6 5.457 E-7
Av. Est. 0.4995 0.4996 0.4998 0.7001 0.7014 0.6999 1

(11.14) MSE 2.503 E-6 2.608 E-6 2.552 E-6 1.391 E-6 3.668 E-6 1.021 E-6
Av. Est. 0.4997 0.4997 0.4999 0.6999 0.7013 0.7000 1.5 

(9.38) MSE 4.816 E-6 4.856 E-6 3.523 E-6 1.851 E-6 4.173 E-6 1.205 E-6
Av. Est. 0.4999 0.4998 0.4998 0.7001 0.7015 0.7001 2

(8.13) MSE 6.231 E-6 6.382 E-6 5.236 E-6 2.529 E-6 5.016 E-6 2.395 E-6
Av. Est. 0.5002 0.5001 0.4997 0.6999 0.7013 0.7001 2.5 

(7.16) MSE 4.242E-6 4.310 E-6 6.534 E-6 3.288 E-6 5.017 E-6 3.680 E-6
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Table 17: GA-LSE, GA-ALSE and NSD-LM for 32% noise outliers scenario 
 Frequency 1: 1ω = 0.5 Frequency 2: 2ω = 0.72σ

(SNR)  GA-LSE GA-ALSE NSD-LM GA-LSE GA-ALSE NSD-LM
Av. Est. 0.5000 0.5000 0.4998 0.7000 0.7013 0.7000 0.5  

(14.15) MSE 4.214 E-6 4.195 E-6 5.475 E-6 2.295 E-6 3.950 E-6 2.058 E-6
Av. Est. 0.4998 0.4997 0.4991 0.6999 0.7013 0.6999 1

(11.14) MSE 7.738 E-6 8.003 E-6 1.358 E-4 3.265 E-6 4.829 E-6 4.715 E-6
Av. Est. 0.4980 0.4979 0.4994 0.6999 0.7011 0.7001 1.5 

(9.38) MSE 4.382 E-4 4.384 E-4 1.395 E-4 4.898 E-6 6.003 E-6 6.488 E-6
Av. Est. 0.5001 0.5000 0.4784 0.6999 0.7011 0.7091 2

(8.13) MSE 1.993 E-5 2.020 E-5 0.0421 9.308 E-6 1.059 E-5 0.0063 
Av. Est. 0.4999 0.4997 0.2988 0.7056 0.7067 1.0276 2.5 

(7.16) MSE 1.543 E-3 1.545 E-3 3.5712 1.618 E-3 1.627 E-3 9.0657 

5. Conclusions 
In this paper, we propose two methods for frequency estimation of undamped 

superimposed exponential signals model.  The proposed methods use generational GA, 

with elitism, to obtain least squares and approximate least squares estimates.  The 

proposed GA-LSE method uses the elitist GA stochastic search procedure for locating the 

optima, with respect to the M unknown frequencies, of the concentrated likelihood 

function.  The computationally efficient GA-ALSE solves for the unknown frequencies 

through a sequential M 1-dimensional GA for finding the approximate least squares 

estimators.  

The proposed frequency estimation techniques differ from standard approaches of least 

squares frequency estimation in a number of ways. Firstly, the GA based least square 

frequency estimation technique search a population of possible optimal solutions in 

parallel.  Secondly, the proposed methods do not require derivative information or other 

auxiliary information, only the levels of fitness influence the direction of search. Thirdly, 

the proposed methods being based on genetic algorithms, use probabilistic transition rules 

rather than deterministic ones.  Because of these, the proposed procedure does not suffer 

from the drawbacks of the standard least square frequency estimation for this problem.  

Simulation results show that both GA-LSE and GA-ALSE gives frequency estimates that 

are nearly efficient in the sense that the mean square errors of the resultant estimates are 
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equal or almost equal to the corresponding CRLB.  It is further observed that, GA-ALSE 

is computationally much more efficient than the GA-LSE, with significant reduction in 

the computational time, attaining almost the same accuracy as that of GA-LSE, even for 

small sample sizes.  The proposed methods appear to be fairly robust with respect to 

outliers present in the data and are able to resolve the frequencies with high level of 

accuracy, performing significantly better than the classical methods at high outlier 

contamination levels.   

The proposed methods of frequency estimation can easily be extended to other important 

signal processing models, known to have computational complexity and heavy 

dependence on initial value chosen for frequency estimation problem.  Furthermore, we 

can extend the idea used in this paper to obtain M-estimates and other robust estimates, 

say, robust estimates based on least trimmed squares or least median squares type of 

approaches (Rousseeuw [1998]). 
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Table Captions 
Table 1: Choice of genetic parameters for the simulations of model (18) 

Table 2: Performance of the GA-LSE for different bit lengths 

Table 3: GA-LSE and GA-ALSE frequency estimation results for sample size 25 

Table 4: GA-LSE and GA-ALSE frequency estimation results for sample size 50 

Table 5: GA-LSE and GA-ALSE frequency estimation results for sample size 75 

Table 6: Performance of the proposed methods for different degree of separation  

Table 7: Simulation results of GA-ALSE for model (20) 

Table 8: Average number of GA generations for finding LSE and ALSE 

Table 9: GA-LSE, GA-ALSE and NSD-LM for 16% frequency outliers scenario 

Table 10: GA-LSE, GA-ALSE and NSD-LM for 16% amplitude outliers scenario 

Table 11: GA-LSE, GA-ALSE and NSD-LM for 16% noise outliers scenario 

Table 12: GA-LSE, GA-ALSE and NSD-LM for 24% frequency outliers scenario 

Table 13: GA-LSE, GA-ALSE and NSD-LM for 24% amplitude outliers scenario 

Table 14: GA-LSE, GA-ALSE and NSD-LM for 24% noise outliers scenario 

Table 15: GA-LSE, GA-ALSE and NSD-LM for 32% frequency outliers scenario 

Table 16: GA-LSE, GA-ALSE and NSD-LM for 32% amplitude outliers scenario 

Table 17: GA-LSE, GA-ALSE and NSD-LM for 32% noise outliers scenario 

 

Figure Captions 
Figure 1a: A one-point crossover 

Figure 1b: A 4-point crossover 

Figure 2: Algorithmic steps of a generational GA using elitism 

Figure 3: Binary coding of the original frequency parameters 

Figure 4: GA-LSE algorithm 

Figure 5: GA-ALSE algorithm 

Figure 6: Generation-wise progress of the criterion function for GA-ALSE (frequency 1) 

Figure 7: Generation-wise progress of the criterion function for GA-LSE 
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