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Cook’s [J. Roy. Statist. Soc. Ser. B 48 (1986) 133–169] local influ-
ence approach based on normal curvature is an important diagnostic
tool for assessing local influence of minor perturbations to a statistical
model. However, no rigorous approach has been developed to address
two fundamental issues: the selection of an appropriate perturbation
and the development of influence measures for objective functions
at a point with a nonzero first derivative. The aim of this paper
is to develop a differential–geometrical framework of a perturbation
model (called the perturbation manifold) and utilize associated met-
ric tensor and affine curvatures to resolve these issues. We will show
that the metric tensor of the perturbation manifold provides impor-
tant information about selecting an appropriate perturbation of a
model. Moreover, we will introduce new influence measures that are
applicable to objective functions at any point. Examples including
linear regression models and linear mixed models are examined to
demonstrate the effectiveness of using new influence measures for the
identification of influential observations.

1. Introduction. Assessing local influence of perturbing a statistical model
has been an active area of statistical research in the past twenty years since
the seminal work of Cook [7]. See, for example, Beckman, Nachtsheim and
Cook [3], Tsai and Wu [26], St. Laurent and Cook [25], Wu and Luo [31, 32],
Ouwens, Tan and Berger [21], Pan and Fang [22] and Zhu and Lee [38],
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among many others. The key idea of the local influence approach is to uti-
lize the concept of normal curvature in differential geometry (Efron [10] and
Bates and Watts [2]) in assessing the local behavior of the likelihood dis-
placement function. Zhu and Lee [37] proposed a generalization of Cook’s
[7] approach based on the Q-function in the EM algorithm to assess local
influence of a small perturbation to a class of models with incomplete data.
Zhu, He and Fung [41] developed a local influence method for generalized
partial linear models for longitudinal data. Lee and Tang [17] examined local
influence in structural equation models. Zhu and Zhang [40] used measures
of local influence to assess the extent of discrepancy between a hypothetical
model and the underlying model from which the data are generated. The
local influence approach is also useful for sensitivity analysis of missing data
modeling (Verbeke and Molenberghs [27] and Verbeke et al. [28]).

The aim of this paper is to construct influence measures in assessing local
influence of perturbations to a statistical model. Specifically, we address two
important issues related to the local influence approach: the appropriate
choice of a perturbation vector and development of influence measures for
assessing an objective function at any point.

The first issue, selecting an appropriate perturbation vector, has been
largely neglected. This issue, however, is central to the development of the
local influence approach, because arbitrarily perturbing a model may lead
to inappropriate inference about the cause (e.g., influential observations) of
a large effect. For instance, when data form clusters (e.g., subjects in lon-
gitudinal studies and families in genetic studies), then perturbing a cluster
with more observations likely produces a larger effect. However, to the best
of our knowledge, no diagnostic methods have ever been developed to take
into account the differing number of observations in each cluster (see Section
4 for further discussion). Moreover, because the components of a perturba-
tion vector may not be orthogonal to each other, special care should be taken
when we interpret local influence measures from such a perturbation. Thus,
it is desirable to measure the amount of perturbation, the extent to which
each component of a perturbation vector contributes to, and the degree of
orthogonality for the components of a perturbation vector.

The second issue is the development of influence measures for objec-
tive functions at a point with a nonzero first derivative. Fung and Kwan
[11] showed that the normal curvature is not scale invariant and provided
some examples to illustrate that ambiguous conclusions may be drawn when
applied to objective functions with a nonzero first derivative. However,
they did not provide any methodology to address this drawback. Conformal
normal curvature (Poon and Poon [23]) is invariant under the conformal
reparametrization at a point with a zero first derivative (called a critical
point), but it is not scale invariant at a point with a nonzero first deriva-
tive. These difficulties have limited the application of normal curvature to
objective functions that have zero first derivative at the critical point.
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We will introduce a geometrical structure, called the perturbation mani-
fold, for a perturbation model and use its associated metric tensor and affine
connection to address the above two issues. The metric tensor of the pertur-
bation manifold can measure the amount of perturbation and the orthog-
onality between the different components of a perturbation vector. Thus,
the properties of metric tensors (e.g., positive definiteness) can be used to
choose an appropriate perturbation to a statistical model. Furthermore, once
an appropriate perturbation is chosen, we use the first and second deriva-
tives of the objective function (e.g., the likelihood displacement function in
Cook [7]) to construct influence measures. These influence measures can be
easily applied to any objective function evaluated at any point in order to
quantify the local influence of minor perturbations to a statistical model.

2. Perturbation manifold and influence measures.

2.1. Motivation. Let p(Y|θ) be the probability function for an M(n)×1
random vector YT = (Y T

1 , . . . , Y
T
n ), parameterized by an unknown param-

eter vector θ = (θ1, . . . , θq)
T in an open subset Θ of Rq. In addition, each

Yi is an mi × 1 random vector, where
∑n

i=1mi =M(n). For instance, in
longitudinal studies, mi may represent the number of observations in the
ith cluster. On the basis of the assumed model p(Y|θ) and observations
in yT = (yT

1 , . . . ,y
T
n ), we can then carry out statistical inference, such as

estimation and hypothesis testing.
Let ω = (ω1, . . . , ωp)

T be a perturbation vector and let ω vary in Ω⊂Rp.
If a perturbation vector ω, which is introduced to perturb p(Y|θ), has a
large effect, then it is important to know the cause (e.g., influential obser-
vations or invalid model assumptions) of such a large effect. Therefore, it is
important to develop statistical methods to quantify the effect of perturbing
a statistical model and pinpoint the potential cause.

In Cook [7] a general method was developed to assess the local influence
of perturbing a statistical model by introducing ω into p(Y|θ), denoted by
p(Y|θ,ω). The proposed methodology is based on the directional curvature
of an influence graph, which is defined as

IG(ω) = (ωT , f(ω))T ,(1)

where f :Rp →R1 is a sufficiently smooth (differentiable a certain number
of times) objective function. Consider the straight line ω(t): ω(t) =ω0 + th
in Euclidean space Rp and the lifted line IGh(ω(t)) for any nonzero vector
h, where ω0 is a fixed column vector in Rp. The tangent vector and upward-

point normal vector of the lifted line are, respectively, given by
( Ip,
∇T

f

)
and

(1 +∇T
f ∇f )

−1/2
(
−∇f

1

)
, where ∇f = (∂f(ω)/∂ωi) is evaluated at ω0 and Ip
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is the p × p identity matrix. The normal curvature of the influence graph
(Cook [7]) is given by

Ch =
1

(1 +∇T
f ∇f )1/2

hTHfh

hT (Ip +∇f∇T
f )h

,(2)

where Hf denotes the matrix (∂2f(ω)/∂ωi ∂ωj) evaluated at ω0. The maxi-
mum value of Ch and the corresponding direction have been widely used to
assess the effects of using ω(t) =ω0+ th to perturb a statistical model. Poon
and Poon [23] defined a conformal normal curvature at ω0 in the direction
h as

Bh =
1

‖Hf‖M
hTHfh

hT (Ip +∇f∇T
f )h

,(3)

where ‖ · ‖M denotes the norm of a matrix such that ‖Hf‖M =
√
tr[Hf ]2.

However, Ch is not scale invariant at any ω with ∇f 6= 0, because the normal

curvature of ÎG(ω) = (ωT , kf(ω))T is given by

Ĉh =
1

(1 + k2∇T
f ∇f )1/2

khTHfh

hT (Ip + k2∇f∇T
f )h

6=Ch,

which may lead to ambiguous conclusions as k varies (Fung and Kwan [11]).
The same problem also arises with Bh, that is, Bh is not scale invariant. In
particular, Fung and Kwan [11] argued that the conclusions drawn from the

new graph ÎG(ω) should be the same as those from the old graph IG(ω) =
(ωT , f(ω))T .

2.2. Statistical perturbation manifold. We use p(Y|θ,ω) to denote the
density function such that

∫
p(Y|θ,ω)dY = 1. To assess the local influ-

ence of a model perturbation, we are primarily interested in the behavior of
p(Y|θ,ω) as a function of ω around ω0, not the parameter vector θ. From
now on, θ is assumed to be known or be fixed at a given value (e.g., the max-
imum likelihood estimate) and p(Y|θ,ω0) = p(Y|θ). Moreover, p(Y|θ,ω)
satisfies the four regularity conditions on page 16 of Amari [1] and ω0 rep-
resents no perturbation.

The perturbed model p(Y|θ,ω) is characterized by a set of perturbations
ω, which has a natural geometrical structure (Amari [1]). The perturbed
modelM = {p(Y|θ,ω) :ω ∈Ω} can be regarded as a p-dimensional manifold.
When a coordinate system ω is given, ei (i= 1, . . . , p) are the natural basis of
the tangent space Tω ofM associated with the coordinate system (Amari [1]

and Li and McCullagh [18]). Let T
(1)
ω be the vector space of M at ω, which

is spanned by p functions ∂iℓ(ω|Y,θ), where ℓ(ω|Y,θ) = log p(Y|θ,ω). A
natural isomorphism exists between these two tangent vector spaces Tω and
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T
(1)
ω . The vector space T

(1)
ω is called the 1-representation of the tangent space

of M . For any tangent vector h=
∑p

i=1 h
iei ∈ Tω, the 1-representation h(Y)

of h in T
(1)
ω is given by h(Y) =

∑p
i=1 h

i ∂iℓ(ω|Y,θ), where ∂i = ∂/∂ωi.

Definition 1. The inner product of two basis operators ∂i and ∂j is

gij(ω) = 〈∂i, ∂j〉=Eω[∂iℓ(ω|Y,θ)∂jℓ(ω|Y,θ)],(4)

where Eω denotes the expectation taken with respect to p(Y|θ,ω). The p2

quantities gij(ω), i, j = 1, . . . , p, form the metric tensor.

The metric matrix G(ω) = (gij(ω)) is an expected Fisher information
matrix with respect to the perturbation vector ω. The elements of G(ω)
measure the amount of perturbation that all components of a perturbation
vector ω contribute to a statistical model. The (i, i)th element gii(ω) itself
indicates the amount of perturbation introduced by the ith component of
ω. The off-diagonal elements of G(ω) represent the association between

different components of ω. For instance, let rij(ω) = gij(ω)/
√
gii(ω)gjj(ω).

A large absolute value of rij(ω) indicates strong association between the
ith and jth components of ω. In particular, if G(ω) is a diagonal matrix,
then all components of ω are orthogonal to each other in the perturbed
model (Cox and Reid [9]). Moreover, if G(ω) is not positive definite for a
perturbation scheme, then p operators ∂i are linearly dependent. Thus, this
indicates that some components of the perturbation vector are redundant
and these redundant components should be removed; for further discussion,
see Section 3.3.2.

Based on the above discussion, an appropriate perturbation to a statistical
model should satisfy at least two conditions as follows:

(a) G(ω) is positive definite in a small neighborhood of ω0;
(b) the off-diagonal elements of G(ω) at ω0 should be as small as possible.

Condition (a) is required to avoid any redundant components of ω. Condi-
tion (b) is required to ensure that we can easily pinpoint the cause of a large
effect. For instance, if differing components of ω are highly associated, then
it is difficult to infer whether a large effect is caused by a single component
of ω or by several components of ω. Therefore, an appropriate perturbation
requires that G(ω0) should be diag(g11(ω

0), . . . , gpp(ω
0)). Moreover, we can

always choose a new perturbation vector ω̃, defined by

ω̃ =ω0 + c−1/2G(ω0)1/2(ω −ω0),(5)

such that G(ω̃) evaluated at ω0 equals cIp, where c > 0. Therefore, without
loss of generality, we assume that an appropriate perturbation ω satisfies
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G(ω0) = cIp. However, it is not generally possible to find a perturbation
vector such that G(ω) = cIp for all ω ∈Ω.

We introduce the following geometrical quantities for the perturbed model
M based on the metric tensor. First, the length ‖h‖2 of a tangent vector
h ∈ Tω is given by

‖h‖2 = 〈h,h〉=
∑

i,j

hihjgij(ω) = hTG(ω)h.(6)

Let C :ω(t) = (ω1(t), . . . , ωp(t)) be a smooth curve on the manifold M con-
necting two points ω1 =ω(t1) and ω2 =ω(t2). The distance S(ω

1,ω2) from
ω1 to ω2 along the curve C is given by

S(ω1,ω2) =

∫ t2

t1

√√√√
∑

i,j

gij(ω(t))
dωi(t)

dt

dωj(t)

dt
dt.(7)

The skewness tensor T and a family of affine connections Γα for any α ∈R1

are, respectively, defined as

Tijk(ω) = Eω[∂iℓ(ω|Y,θ)∂jℓ(ω|Y,θ)∂kℓ(ω|Y,θ)],

and Γα
ijk(ω) = Eω[∂i ∂jℓ(ω|Y,θ)∂kℓ(ω|Y,θ)] + 0.5(1− α)Tijk(ω). It can be

shown that Γα
ijk(ω) = Γ0

ijk(ω)−αTijk(ω)/2, where Γ0
ijk(ω) is the Christoffel

symbol for the Lévi–Civita connection of the metric tensor and

Γ0
ijk(ω) = 1

2 [∂igjk(ω) + ∂jgik(ω)− ∂kgij(ω)].

With the above quantities, the perturbation model M is a statistical man-
ifold, which plays an important role in understanding the behavior of the
perturbed model (Amari [1], Kass and Vos [14], Lauritzen [15] and Zhu and
Wei [39]).

Definition 2. A statistical perturbation manifold (M,G(ω), T (ω)) is
the manifold M with a metric G(ω) and a covariant 3-tensor T (ω).

Now we consider a specific smooth curve in M , called an α-geodesic.

Definition 3. ω(t) is called an α-geodesic with respect to the affine
connection Γα

ijk(ω) if it satisfies the equation

d2ωi(t)

dt2
+

∑

s,j,k

gis(ω(t))Γα
jks(ω(t))

dωj(t)

dt

dωk(t)

dt
= 0,(8)

where gis(ω) is the (i, s)th element of G(ω)−1.
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The geodesic is a direct extension of the straight line ω(t) = ω0 + th in
Euclidean space (Amari [1] and Kass and Vos [14]). In particular, as we
move along a geodesic, the tangent vector of the geodesic does not change
in length and direction. If Γα

ijk(ω) = 0 for all ω, then the manifold is α-flat

and the geodesic equation for this α is linear in t: ω(t) =ω0 + th.
Some important properties related to the above geometrical quantities

are summarized in the following lemma, whose proof can be found in Amari
[1], pages 40, 51–52.

Lemma 1. Let φ = (φ1, . . . , φp) = φ(ω) be a new coordinate system of
M , ∂a = ∂/∂φa, Ba

i = ∂φa/∂ωi and Bi
a = ∂ωi/∂φ

a. Then the geometrical

quantities ofM in the coordinate system φ can be written as gab =
∑

i,jB
i
aB

j
bgij ,

Tabc =
∑

i,j,kB
i
aB

j
bB

k
c Tijk and Γα

abc =
∑

i,j,kB
i
aB

j
bB

k
cΓ

α
ijk +

∑
i,j gijB

i
c∂aB

j
b .

We use the indices i, j, k, and so on, to denote quantities related to the
coordinate system ω and the indices a, b, c, and so on, to denote quantities
related to the coordinate system φ.

2.3. Influence measures and their properties. Let f(ω) :Rp →R1 be the
objective function (e.g., the likelihood displacement function in Cook [7] or
the residual sum of squares in Wu and Luo [32]), which defines the aspect
of inference of interest for sensitivity analysis. Let ω(t) be a smooth curve
on M with ω(0) = ω0 and dω(t)/dt|t=0 = h ∈ Tω0 . Therefore, f(ω(t)) is a
function of ω(t) defined on the perturbation manifold M . It follows from a
Taylor series expansion that

f(ω(t)) = f(ω(0)) + ḟh(0)t+
1
2 f̈h(0)t

2 + o(t2).(9)

The first and second derivatives of f(ω(t)) at t= 0 are, respectively, given
by

ḟh(0) =
∑

j

∂f(ω0)

∂ωj
hj =∇T

f h and f̈h(0) = hTHfh+∇T
f

d2ω(0)

dt2
.(10)

If ∇f 6= 0, then the first-order term ḟh(0) mainly characterizes the local
influence of a perturbation vector ω to a model. However, if ∇f = 0, then it

follows from (9) and (10) that ḟh(0) and f̈h(0) reduce to zero and hTHfh,

respectively; therefore, we must use the second order term f̈h(0) to assess
the local behavior of the objective function when ∇f = 0.

An important question is how to assess the local influence of minor pertur-
bations to a model when ∇f 6= 0. This is the so-called first-order approach in
Wu and Luo [31]. For instance, in a transformation model, f can be defined
as the transformation parameter estimate, whose first derivative does not
equal 0 at ω0 (Lawrance [16]). We introduce a first-order influence measure
as follows.
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Definition 4. The first-order influence measure (FI) in the direction
h ∈ Tω0 is defined as

FIf,h =FIf(ω0),h =
hT∇f∇T

f h

hTGh
,(11)

where G=G(ω0).

The proposed FI has an interesting geometrical interpretation and is in-
variant with respect to arbitrary reparametrizations at any point in ω. We
are now led to the following theorem.

Theorem 1. We have the following results:

(i) FIf,h = limt→0 [f(ω(t))− f(ω(0))]2/S(ω(0),ω(t))2.
(ii) If φ is a diffeomorphism of ω, then FIf(ω),h is invariant with respect

to any reparametrization corresponding to φ and FIkf,h = k2FIf,h holds for
any k.

Proof. It follows from (7) that S(ω(0),ω(t))2 = t2hTGh+ o(t2). Using
l’Hôpital’s rule and (9), we can prove (i). Assuming ω =ω(φ) and φ=φ(ω),
the Jacobian matrices of the above coordinate transformations are given by
Φ = ∂φ/∂ω and Ψ= ∂ω/∂φ. Differentiating the identities φ[ω(φ)] =φ and
ω[φ(ω)] =ω with respect to φ and ω, respectively, leads to ΨΦ=ΦΨ= Ip.
Thus, we have G(φ) = ΨTG(ω)Ψ and ∇f(φ0) =ΨT∇f(ω0), where φ0 = ω0.

Using Definition 4, we can prove (ii). �

The statistical significance of Theorem 1 is two-fold. First, Theorem 1(i)
indicates that the first-order measure is associated with the first derivative
of f(ω(t)) on M evaluated at t= 0. If M is a Euclidean space, hTh= 1 and
ω(t) = th+ω0, then FIf,h reduces to the square of the directional derivative
of f at ω0 in the direction h, given by limt→0[f(ω

0 + th) − f(ω0)]2/t2.
Second, although ω may not be an appropriate perturbation, we can always
use G to obtain an appropriate perturbation ω̃ in (5), which yields

FIf(ω̃),h|ω̃=ω0 =
hTG−1/2∇f∇T

fG
−1/2h

hTh
.

The maximum value of FIf,h equals ∇T
fG

−1∇f , which quantifies the de-
gree of local influence of ω̃ to a statistical model, while the corresponding
direction vector h̃max =G−1/2∇f can be used for identifying influential ob-
servations (Lawrance [16]).

We use f̈h(0) to assess the second-order local influence of ω to a statisti-
cal model, even when ∇f 6= 0. The approach which utilizes the information
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in f̈h(0) is called the second-order approach (Wu and Luo [31, 32]). How-
ever, for a general curve ω(t) on M , f̈h(0) may not be geometrically well
behaved (Murray and Rice [20]). Instead, we only consider the 0-geodesic
ω(t) associated with the Lévi–Civita connection of the metric tensor G(ω),
which is unique and defined in an interval containing 0 such that ω(t) =ω0

and dω(t)/dt= h ∈ Tω0 . Then, we can obtain a covariant version of Taylor’s
theorem (Murray and Rice [20] and McCullagh and Cox [19]) as follows:

f(ω(t)) = f(ω0) + t∇T
f h+ 1

2t
2hT H̃0

fh+ o(t2),(12)

where H̃0
f = H̃0

f(ω0) and the (i, j)th element of H̃0
f(ω) is given by

[H̃0
f(ω)](i,j) = ∂i∂jf(ω)−

∑

s,r

gsr(ω)Γ0
ijs(ω)∂rf(ω).

The matrix H̃0
f(ω) is called the covariant Hessian of f(ω) (Zhu and Wei [39]

and Murray and Rice [20]). Because Γ0
ijk(ω) is symmetric with respect to

i and j, it can be shown that H̃0
f(ω) is a symmetric matrix. In particular,

H̃0
f(ω) satisfies the following property (Murray and Rice [20]).

Lemma 2. Let φ be a diffeomorphism of ω with Jacobian matrix Ψ =
∂ω/∂φ. Then H̃0

f(φ) =ΨT H̃0
f(ω)Ψ.

Lemma 2 shows that H̃0
f(ω) is a 2-tensor, so it is geometrically well be-

haved.

Definition 5. The second-order influence measure (SI) in the direction
h ∈ Tω0 is defined as

SIf,h = SIf(ω0),h =
hT H̃0

fh

hTGh
.(13)

The standardized SI (SSI) in the direction h ∈ Tω0 is defined as

SSIf,h = SSIf(ω0),h =
1

‖G−1H̃0
f‖M

hT H̃0
fh

hTGh
.(14)

We can establish the following properties of SIf,h and SSIf,h.

Theorem 2. We have the following results:

(i) SIf(ω0),h = limt→0 2[f(ω(t))− f(ω(0))− t∇T
f h]/S(ω(0),ω(t))2.
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(ii) Suppose φ is a diffeomorphism of ω. Then SIf(ω0),h and SSIf(ω0),h

are invariant with respect to any reparametrization corresponding to φ at
ω0. Moreover,

SIkf(ω),h = kSIf(ω),h and SSIkf(ω),h = SSIf(ω),h,(15)

for any k 6= 0 and ω ∈Ω.
(iii) Let {(λi,ui), i= 1, . . . , p} be the eigenvalue–eigenvector (E–E) pairs

of H̃0
f with respect to G. Then, for any direction h, we have 0≤ SSIf,h ≤ 1,

SIf,ui
= λi and SSIf,ui

= λ̂i =
λi√∑p
j=1λ

2
j

,

where λ̂i is the normalized eigenvalue.

Proof. Using (7), (12) and l’Hôpital’s rule, we can prove Theorem 2(i).
Because a diffeomorphism exists between ω and φ such that ω =ω(φ) and
φ = φ(ω), we have ΨΦ = ΦΨ = Ip. Moreover, because G(φ) is a metric

tensor and H̃0
f(φ) is a 2-tensor, we have

G(φ) =ΨTG(ω)Ψ and H̃0
f(φ0)

=ΨT H̃0
f(ω0)Ψ.

Consider a geodesic ω(t) with ω(0) = ω0 and dω(0)/dt = h ∈ Tω0 . Then
φ(ω(t)) is a geodesic in the φ-coordinate such that φ(ω0) =φ0 and dφ(ω(0))/dt=
Φh. If G is positive definite, then it follows from Lemmas 1 and 2 that

SIf(φ0),Φh
=

hTΦT H̃0
f(φ0)

Φh

hTΦTG(φ0)Φh
=

hTΦTΨT H̃0
f(ω0)ΨΦh

hTΦTΨTG(ω0)ΨΦh
= SIf(ω0),h.

Similarly, we can show SSIf(φ0),Φh
= SSIf(ω0),h. Thus, SIf,h and SSIf,h are

invariant with respect to reparametrization φ at ω0. For any k, we have
H̃0

kf(ω) = kH̃0
f(ω) and equation (15) holds for any ω and k 6= 0. This proves

Theorem 2(ii). By using Definition 5, we thus prove Theorem 2(iii). This
completes the proof of Theorem 2. �

Theorem 2 has the following implications. First, if ω is an appropriate per-
turbation and ∇f = 0, then SSIf,h =Bh and SIf,h =Ch. We note that most
of the examples in Cook [7] fall into this scenario. In general, even though we
may choose a perturbation ω which is not appropriate, we can always use G
to obtain an appropriate perturbation ω̃ in (5). In this case, the normal cur-
vature and the second-order influence measures will lead to the same results
when ∇f = 0 and the chosen perturbation is appropriate. Therefore, the
diagnostic method proposed here can be regarded as an extension of Cook’s
[7] local influence approach in a more general setting. Second, SIf(ω),h and
SSIf(ω),h are scale invariant even when ∇f 6= 0, whereas Ch and Bh are
not (Fung and Kwan [11]). This generalization facilitates new methods and
techniques for doing sensitivity analyses of a statistical model.



DIAGNOSTIC METHODS 11

2.4. New local influence approach. What follows are the four key steps
in assessing local influence of perturbing a parametric model p(Y|θ):

Step 1. Choose a perturbation scheme ω such that
∫
p(Y|θ,ω)dY = 1.

Step 2. Given the perturbed model, calculate the geometrical quantities
[e.g., gij(ω), Tijk(ω), and Γα

ijk(ω)] of the perturbation manifold.

Step 3. Check whether the perturbation ω is appropriate, that is, G(ω0) =
cIp. If yes, go to Step 4 below. Otherwise, find a new perturbation scheme
and go back to Step 2.

Step 4. Choose an objective function f(ω). If ∇f = 0, then use SI and
SSI to assess local influence of minor perturbations to a model. However, if
∇f is nonzero, then use FI, SI and SSI together.

3. Appropriate perturbations in four examples. We examine four exam-
ples to illustrate how to calculate geometrical quantities for a perturbation
manifold and show how to find an appropriate perturbation in the exam-
ples. We also consider several objective functions to assess the local influence
of an appropriate perturbation to a parametric model in each of the four
examples.

3.1. Case-weight perturbation. Suppose that Y1, . . . , Yn are independent
with m1 = · · · = mn = 1 and p(y|θ) can be written as

∏n
i=1 p(yi;θ). We

consider case-weight perturbation, in which L(θ|ω) is given by

L(θ|ω) =
n∑

i=1

ωiℓ(yi;θ),(16)

where ℓ(yi;θ) = log p(yi;θ). Thus, p= n and ω0 = 1n is an n×1 vector with
all elements equal to 1. The density of the perturbation model p(y|θ,ω) is
given by

p(y|θ,ω) =
n∏

i=1

{exp{ωiℓ(yi;θ)}[ci(ωi;θ)]
−1},(17)

where ci(ωi;θ) =
∫
exp{ωiℓ(yi;θ)}dyi for all i = 1, . . . , n. After some alge-

braic calculations, we have the following results.

Theorem 3. If the four regularity conditions of Amari [1] hold for
p(y|θ,ω), then the following results hold for case-weight perturbation:

(i) ∂i log ci(ωi;θ) = Eω[ℓ(yi;θ)] and ∂θ log ci(ωi;θ) = ωiEω[∂θℓ(yi;θ)], where
the expectation Eω is taken with respect to p(y|θ,ω);

(ii) ∂2i log ci(ωi;θ) = Varω[ℓ(yi;θ)],

∂2θ log ci(ωi;θ) = ωiEω[∂
2
θ ℓ(yi;θ)] + ω2

i Varω[∂θℓ(yi;θ)]
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and

∂θ∂i log ci(ωi;θ)

= Eω[∂θℓ(yi;θ)]

+ ωiEω({∂θℓ(yi;θ)−Eω[∂θℓ(yi;θ)]}{ℓ(yi;θ)−Eω[ℓ(yi;θ)]});
(iii) gij(ω) = Varω[ℓ(yi;θ)]δij , Γ

α
ijk(ω) = 0.5(1− α)Tijk(ω) and

Tijk(ω) = Eω[{ℓ(yi;θ)−Eω[ℓ(yi;θ)]}3]δijδik for i, j, k = 1, . . . , n,

where δij is the Kronecker delta;
(iv) the geodesic ω =ω(t) with respect to Γα

ijk(ω) satisfies
∫ ω

ω0
exp

{∫
gii(ξ)Γα

iii(ξ)dξ

}
dξ = hit

for i= 1, . . . , n, where ω(0) =ω0 and dω(t)/dt= h= (h1, . . . , hn)
T . In par-

ticular, ω(t) =ω0 + th is a 1-geodesic.

Proof. The log-likelihood function of p(y|θ,ω) is given by

ℓ(ω|y,θ) = log p(y|η) =
n∑

i=1

[ωiℓ(yi;θ)− log ci(ωi;θ)],

where η = (θ,ω). By using Eω[∂ηℓ(ω|y,θ)] = 0 and Eω[−∂2ηℓ(ω|y,θ)] =
Eω{[∂ηℓ(ω|y,θ)][∂ηℓ(ω|y,θ)]T }, we can obtain (i) and (ii).

By differentiating ℓ(ω|y,θ) with respect to ω, we have ∂iℓ(ω|y,θ) =
ℓ(yi;θ) − ∂i log ci(ωi;θ) and ∂2i ℓ(ω|y,θ) = −∂2i log ci(ωi;θ). Therefore, we
can directly calculate the geometric quantities gij(ω), Γα

ijk(ω) and Tijk(ω),
which lead to (iii).

The geodesic ω =ω(t) with respect to Γα
ijk(ω) satisfies a second-order dif-

ferential equation which is defined by d2ωi(t)/dt
2+gii(ω)Γ0

iii(ω)[dωi(t)/dt]
2 =

0, with initial conditions ω(0) =ω0 and dω(t)/dt= h. We can prove (iv) by
solving this second-order differential equation (Coddington [6]).

Theorem 3 establishes the manifold of case-weight perturbation in (16). If
the Yi are also identically distributed, then G(ω0) = g11(ω

0)In and the per-
turbation in (16) is an appropriate one. Moreover, if we treat both responses
and covariates as random variables, the perturbation in (16) is appropriate
even for the regression case. In general, if

G= diag(Varω0 [ℓ(y1;θ)], . . . ,Varω0 [ℓ(yn;θ)]) 6= cIn

for any c > 0, then we consider a new perturbation ω̃ in (5) with c= 1 such
that G(ω̃) = In at ω0 and

L(θ|ω̃) =
n∑

i=1

[1 +
√
Varω0 [ℓ(yi;θ)](ω̃i − 1)]ℓ(yi;θ).(18)
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With the development above, we can now choose an objective function (e.g.,
the likelihood displacement) and calculate its associated influence measures
{FI, SI, SSI} to assess local influence of the perturbation (16). For instance,

if we are interested in a particular component of θ, say, θ1, we may use θ̂1(ω)

as an objective function, where θ̂1(ω) is the maximum likelihood estimate
of θ1 under the perturbation (18). �

3.2. Location-scale family. Suppose that Y1, . . . , Yn are independent and
m1 = · · ·=mn = 1. Let θ = (βT , σ2). Each p(yi;θ) = σ−1p0(σ

−1(yi−µ(xT
i β)))

belongs to a location-scale family such that p0 is a known density satisfying∫
xp0(x) = 0 and

∫
x2p0(x) = 1, where µ(·) is a given function and xi is a

q1 × 1 vector. Thus, E(yi) = µi = µ(xT
i β) and Var(yi) = σ2.

We consider three different perturbations: case-weight perturbation, per-
turbation of the variance and perturbation of the response. Then we establish
a perturbation manifold for each of these perturbations as follows.

For case-weight perturbation, since ℓ(yi;θ) = log p0(σ
−1(yi − µi))− logσ,

we can use the transformation ei = (yi − µi)/σ to obtain gij(ω) =
Varω,0[log p0(ei)]δij . Similarly, we can calculate Γα

ijk(ω) = (1−α)Tijk(ω) and

Tijk(ω) = Eω,0({log p0(ei)−Eω,0[log p0(ei)]}2)δijδkj .
For the perturbation of variance, we consider a heterogeneous variance of

y = (y1, . . . , yn)
T such that Var(y) = σ2 diag(1/ω2

1 , . . . ,1/ω
2
n). In this case,

ω0 = 1n and p = n. The log-likelihood function for the perturbed model
is given by −n logσ +

∑n
i=1 logωi +

∑n
i=1 log p0(ti), where ti = ωiσ

−1[yi −
µ(xT

i β)]. After some algebraic manipulations, we get gij(ω) =
δijω

−2
i E0{[x∂x log p0(x) + 1]2}, Tijk(ω) = δijδikω

−3
i E0{[x∂x log p0(x) + 1]3},

and

Γα
ijk(ω) =−δijδikω−3

i (E0{[x∂x log p0(x) + 1]2}

+0.5αE0{[x∂x log p0(x) + 1]3}),
where ∂x = ∂/∂x and the expectation E0 is taken with respect to p0(x).

For the perturbation of response, we consider adding a perturbation ωi

to yi such that ℓ(ω|Y,θ) is given by −n logσ +
∑n

i=1 log p0(σ
−1[yi + ωi −

µ(xT
i β)]). Let ti = σ−1[yi+ωi−µ(xT

i β)]. With some calculations, we can ob-
tain gij(ω) = δijσ

−2E0{[∂x log p0(x)]2}, Tijk(ω) = δijδikσ
−3E0{[x∂x log p0(x)+

1]3} and Γα
ijk(ω) =−0.5αTijk(ω). Thus, since Γ0

ijk(ω) vanishes for all i, j, k =

1, . . . , n, the straight line ω(t) =ω0 + th is a 0-geodesic.
Combining the above results, we have the following theorem.

Theorem 4. If all p(yi;θ) = σ−1p0(σ
−1(yi − µ(xT

i β))) belong to the
same location-scale family, then

G(ω0) = cIn and Ch = cSILD(ω0),h
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hold for case-weight perturbation, the perturbation of variance and the per-
turbation of response, where LD(ω) denotes the likelihood displacement func-
tion in Cook [7].

Theorem 4 indicates that the three perturbation schemes considered here
are appropriate perturbations. Therefore, for LD(ω) introduced in Cook
[7], both {SI,SSI} and the normal curvature lead to the same results for
location-scale families under the three commonly used perturbations.

3.3. Linear regression model. Consider the linear regression model

Y =Xβ+ ǫ,(19)

where Y is an n× 1 vector of responses, X is an n× q1 covariate matrix, β
is a q1 × 1 vector of unknown parameters and ǫ= (ǫ1, . . . , ǫn)

T is an n× 1
random vector of errors with distribution N [0, σ2In]. Here θ = (β, σ2). In
this section we fix θ at its maximum likelihood estimate.

3.3.1. Perturbation of error variances. We consider a perturbation to
error variances via an n× 1 perturbation vector ω such that

Var(ǫ) = σ2 diag(1/ω1, . . . ,1/ωn)(20)

and ω0 = 1n. It has been shown in Theorem 4 that gij(ω) = 0.5ω−2
i δij ,

Tijk(ω) =−ω−3
i δijδjk and Γα

ijk(ω) = 0.5(1−α)Tijk(ω). Thus, the perturba-
tion (20) is an appropriate one. However, for illustrative purposes, assume
that we consider another perturbation scheme φ= (φ1, . . . , φn)

T such that

Var(ǫ1) = σ2
k0

k0 − 1 + φ1
, Var(ǫ2) = σ2φ−1

2 , . . . ,Var(ǫn) = σ2φ−1
n ,(21)

where k0 > 0. Therefore, it can be shown that φ0 =ω0 andG(φ0) = diag(1/2k20 ,
1/2, . . . ,1/2). Thus, G(φ0) = cIn if and only if k0 = 1. That is, the pertur-
bation vector φ is appropriate only when k0 = 1 in (21), which reduces to
(20).

The perturbation of error variances is applied to the residual sum of
squares, that is, f(ω) = −RSS (ω) = −r(ω)T r(ω), where r(ω) is the
residual vector under the perturbation (20). It can be shown that at
ω0 = 1n,∇−RSS = (−r21, . . . ,−r2n)T andH−RSS = 2D(r)PXD(r), where PX =
(pij) =X(XTX)−1XT and D(r) = diag(r1, . . . , rn), in which ri, i= 1, . . . , n,
are ordinary residuals when ω0 = 1n. Because G = 0.5In, FI−RSS ,h =
2(hT∇−RSS )

2/hTh for any h. In particular, we can obtain the maximum
value of FI−RSS ,h as

∑n
i=1 r

4
i and the corresponding direction vector is given

by hmax = ∇−RSS/
√∑

j=1 r
4
j , which is the same as Lawrance’s [16] diag-

nostic. Subsequently, we use SI−RSS ,h to assess the local influence of the
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perturbation (20) to model (19). For α= 0, it can be shown that H̃0
−RSS

=

2D(r)PXD(r) − D(r2), where D(r2) = diag(r21 , . . . , r
2
n). Thus, we have

SI−RSS ,Ei
= 2r2i (2pii − 1.0)σ−2 ≈ −2r2i σ

−2 for i = 1, . . . , n, where Ei is an
n× 1 vector with ith element one and zero otherwise for i= 1, . . . , n. There-
fore, if an observation has a large absolute residual, then it will be identified
as influential by using hmax and SI−RSS ,Ei

.

3.3.2. Perturbation of the explanatory vector. Consider the perturbation

Xω =X +WS,(22)

where W = (ωik) is an n× q1 matrix of perturbations, S = diag(s1, . . . , sq1)
with si 6= 0 for each i and sk converts ωik to the appropriate size and unit so
that skωik is compatible with the (i, k)th element of X . With some calcu-
lations, it can be shown that G(ω) = SββTS ⊗ In/σ

2, where ⊗ is the Kro-
necker product of two matrices. Because ∂ℓ(ω|Y,θ)/∂ωik for k = 1, . . . , q1
are linearly dependent, the metric matrix is only positive semidefinite. In
this case, the singularity of G(ω) indicates that we have introduced too
many perturbation parameters; and therefore, some perturbation parame-
ters should be removed. One possibility is to transform ω ∈Rp into ω∗ ∈Rr

(p > r) and make the metric tensor positive definite in the new coordinate
system.

Another perturbation scheme is

Xω =X +W ∗1∗S,(23)

where W ∗ = diag(ω1, . . . , ωn) and 1∗ is an n× q1 matrix with all elements
equal to 1. After some calculations, we can obtain gij(ω) = δij(

∑q1
k=1 skβk)

2/σ2

and Tijk(ω) = Γα
ijk(ω) = 0 for all i, j, k = 1, . . . , n. The corresponding per-

turbation manifold is α-flat for any α ∈R1 (Amari [1]). Moreover, the com-
monly considered line ω(t) = ω0 + th is a geodesic with respect to Γα

ijk(ω)

for any α ∈ R1 in this perturbation manifold. In particular, the perturba-
tion (23) is an appropriate one, because the metric matrix G(ω) = cIn and
is independent of ω.

3.4. Testing a parametric family. Suppose that Y1, . . . , Yn are indepen-
dent and identically distributed and the density of Yi, denoted by p0(yi;θ),
belongs to a certain parametric family, such as a Gaussian distribution. We
consider a log-linear expansion perturbation of p0(yi;θ) as follows (Claeskens
and Hjort [5]). Let {ψj(yi;θ) : j = 1, . . . ,m} be a set of functions such that
they are orthogonal with respect to p0(yi;θ) and also orthogonal to ψ0(yi;θ) =
1. That is,

∫
ψj(yi;θ)ψk(yi;θ)p0(yi;θ)dyi = δjkE0(ψ

2
k) for all j, k = 0, . . . ,m
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and i= 1, . . . , n, where E0 denotes the expectation with respect to p0(yi;θ).
For each i, the log-linear expansion perturbation is defined by

p(yi;θ,ω) = p0(yi;θ)c(ω)−1 exp

{
m∑

j=1

ωjψj(yi;θ)

}
,(24)

where c(ω) =
∫
p0(yi;θ) exp{

∑m
j=1ωjψj(yi;θ)}dyi. Thus, the log-likelihood

function for the perturbed model is given by

ℓ(ω|Y,θ) =
n∑

i=1

log p0(yi;θ) + n
m∑

j=1

ωjψj(θ)− nφ(ω),

where ψj(θ) =
∑n

i=1ψj(yi;θ)/n and φ(ω) = log c(ω). In this case, ω0 = 0m,
an m× 1 vector with all elements 0, and p=m.

After some algebraic derivations, we can obtain the geometrical quan-
tities of the perturbation (24) as follows. Because ∂jℓ(ω|Y,θ) = nψj(θ)−
n∂jφ(ω), we have gjk(ω) = n∂j ∂kφ(ω), Tjkl(ω) = n∂j ∂k ∂lφ(ω) and
Γα
jkl(ω) = 0.5(1−α)Tjkl(ω) (Amari [1]). In particular, G(ω0) = ndiag(E0(ψ

2
1),

. . . ,E0(ψ
2
m)). It can be shown that the perturbation in (24) is an appropriate

one if and only if E0(ψ
2
j ) are homogenous, that is, E0(ψ

2
1) = · · ·= E0(ψ

2
m).

Even though E0(ψ
2
j ) are not homogenous, we can always choose a new per-

turbation ω̃ =G(ω0)1/2ω such that

p(yi;θ,ω) = p0(yi;θ)c(ω̃)−1 exp

{
m∑

j=1

ω̃jψj(yi;θ)/
√
E0(ψ2

j )

}
.(25)

This ω̃ is an appropriate perturbation with G(ω̃)|0m = Im.
We consider the log-likelihood ratio f(ω̃) = ℓ(ω̃|Y,θ)− log p(Y|θ) as our

objective function. Direct calculation leads to

∇f =
√
n

(
ψ1(θ)√
E0(ψ

2
1)
, . . . ,

ψm(θ)√
E0(ψ2

m)

)T

and FIf,h =
hT∇f∇fh

hTh
.

The maximum value of FIf,h is ∇T
f ∇f = n

∑m
j=1ψj(θ)

2/E0(ψ
2
j ), which is the

well-known score test statistic for testing H0 :ω = 0 when θ is either known
or replaced by its estimate (Claeskens and Hjort [5]). Moreover, for each
Ej , FIf,Ej

= nψj(θ)
2/E0(ψ

2
j ) is the score test statistic for testing H0 :ωj = 0,

where Ej is anm×1 vector with ith element equal to one and zero otherwise
for j = 1, . . . ,m. We can use FIf,Ej

to detect the most influential perturba-
tion from all m perturbations. Under some conditions (e.g., m grows slowly
with n), the score statistic ∇T

f ∇f converges weakly to a nondegenerate ran-
dom variable (Claeskens and Hjort [5]), which can be used to characterize
the asymptotic behavior of the influence measures FIf,h.

Combining the above results, we have the following theorem.
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Theorem 5. If p0(y;θ) belongs to a certain parametric family, then
the perturbation ω̃ in (25) is an appropriate perturbation. In particular, the
maximum value of FIf,h is the score test statistic for testing the hypothesis
H0 :ω = 0.

4. Application to linear mixed models. We consider data that are com-
posed of a response yij and a q1 × 1 covariate vector xij for j = 1, . . . ,mi

within clusters i= 1, . . . , n. We define the linear mixed models as

yi = xiβ+ ǫi,(26)

where yi = (yi1, . . . , yimi
)T is an mi × 1 vector, xT

i = [xi1, . . . ,ximi
], β is a

q1 × 1 vector of unknown parameters and ǫi is normally distributed with
mean zero and covariance matrix Σi =Σi(ξ), in which ξ is a q2 × 1 vector.
Thus, θT = (βT ,ξT ) is a q × 1 vector, where q = q1 + q2.

For the linear mixed model, because the estimates of θ (e.g., maximum
likelihood estimates) may heavily depend on a small portion of the data
or even one observation (or cluster), it is important to detect both influen-
tial clusters and influential individual observations. However, at either the
subject or individual level, we cannot distinguish between influence due to
the specific cluster characteristics and influence due to the characteristics of
specific observations within a cluster. For further discussion on these issues,
see Ouwens, Tan and Berger [21], Zhu and Lee [37, 38], Zhu, He and Fung
[41] and Fung, Zhu, Wei and He [12], among many others.

The likelihood displacement function (Cook [7]) will be used throughout
this section. We define L(θ) = log p(Y|θ) and L(θ|ω) = log p(Y|θ,ω). Let
θ̂ and θ̂ω be the maximum likelihood estimates of L(θ) and L(θ|ω), respec-

tively; the likelihood displacement function is given by LD(ω) = 2[L(θ̂)−
L(θ̂ω)]. It can be shown that HLD = 2∆T (−L̈)−1∆, where ∆ is a q × p
matrix with elements ∂2L(θ|ω)/∂θi ∂ωj and L̈ is a q × q Hessian matrix

with elements L̈ij = ∂2L(θ)/∂θi ∂θj evaluated at θ̂ and ω0. We calculate

the Hessian matrix −L̈ as

−L̈≈
n∑

i=1

[
xT
i Σ

−1
i xi 0

0 0.5∂ξΣi(ξ)(Σ
−1
i ⊗Σ−1

i )∂ξΣi(ξ)
T

]
,

where ∂ξΣi(ξ) = ∂ vec(Σi(ξ))/∂ξ is a q2 ×m2
i matrix, in which we define

vec(Z) = (z11, . . . , z1mi
, . . . , zmi1, . . . , zmimi

)T

for any mi ×mi matrix Z = (zij). We calculate the geometrical quantities
of the perturbation manifold, the ∆= ∂2L/∂θ ∂ω matrix and the influence
measures below.
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4.1. Perturbation of individual covariance matrix. We consider the per-
turbation of the individual covariance matrix by assuming that

Cov(yi) = ω−1
i Σi for all i= 1, . . . , n.(27)

Thus, ω0 = 1n and p = n. For the perturbed model, both L(θ|ω) and
ℓ(ω|Y,θ) equal

−1
2

n∑

i=1

log |Σi|+ 1
2

n∑

i=1

ni logωi − 1
2

n∑

i=1

ωi(yi − xiβ)
TΣ−1

i (yi − xiβ).

After some calculations, we have gij(ω) = 0.5miω
−2
i δij , Tijk(ω) =−miω

−3
i ×

δijδik and Γα
ijk(ω) = 0.5(1 − α)Tijk(ω). At ω0, G = diag(0.5m1, . . . ,0.5mn)

indicates that the amount of perturbation introduced by ωi is proportional
to mi, the number of observations in the ith cluster. Thus, ω is an appro-
priate perturbation if and only if m1 = · · ·=mn. Although mi may not be
homogeneous, we can always consider an appropriate perturbation ω̃ in (5)
such that G(ω̃)|ω0 = In and

Cov(yi) = [1 + (ω̃i − 1)/
√
0.5mi]Σi for i= 1, . . . , n.(28)

For the appropriate perturbation (28), we get

∆i =
∂2L(θ|ω̃)

∂θ ∂ω̃i
=
√
0.5m

−1/2
i (2eTi Σ

−1
i xi, [∂ξΣi(Σ

−1
i ⊗Σ−1

i ) vec(eie
T
i )]

T )T ,

where ei = yi − xiβ. For simplicity, let β be the parameter of interest. It
can be shown (Cook [7]) that

CEi
= SILD ,Ei

= 2m−1
i eTi Σ

−1/2
i PiiΣ

−1/2
i ei,

where Pii =Σ
−1/2
i xi(

∑n
j=1x

T
j Σ

−1
j xj)

−1xT
i Σ

−1/2
i .

4.2. Perturbation of responses.

4.2.1. Scheme one. We consider the perturbation

yi(ω) = yi + ωi1mi
.(29)

Thus, ω0 = 0n and p = n, where 0n represents an n × 1 vector with all
elements equal to 0. For the perturbed model, both L(θ|ω) and ℓ(ω|Y,θ)
equal

−1
2

n∑

i=1

log |Σi| − 1
2

n∑

i=1

(yi + ωi1mi
− xiβ)

TΣ−1
i (yi + ωi1mi

− xiβ).

After some calculations, we have gij(ω) = 1Tmi
Σ−1
i 1mi

δij , Tijk(ω) = 0 and

Γα
ijk(ω) = 0. In this case, G = diag(1Tm1

Σ−1
1 1m1 , . . . ,1

T
mn

Σ−1
n 1mn) and the
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ith diagonal element of G also depends on the number of observations in the
ith cluster. This perturbation manifold is α-flat for any α ∈R1 and ω(t) = th
is a geodesic with respect to Γα

ijk for any α. However, ω is an appropriate

perturbation if and only if 1Tm1
Σ−1
1 1m1 = · · · = 1Tmn

Σ−1
n 1mn . Therefore, ω

may be not an appropriate perturbation, but we can always consider an
appropriate perturbation ω̃ in (5) such that G(ω̃)|ω0 = In and

yi(ω̃) = yi + ωi1mi
/
√
1Tmi

Σ−1
i 1mi

for i= 1, . . . , n.(30)

For the perturbation ω̃ in (30), we have

∆i = (1Tmi
Σ−1
i xi, [∂ξΣi(Σ

−1
i ⊗Σ−1

i ) vec(1mi
eTi )]

T )T .

Let ξ be the parameter of interest. It can be shown that

CEi
= 4(1Tmi

Σ−1
i 1mi

)−1

× vec(1mi
eTi )

T (Σ
−1/2
i ⊗Σ

−1/2
i )Qii(Σ

−1/2
i ⊗Σ

−1/2
i ) vec(1mi

eTi ),

where Qii is defined as

(Σ
−1/2
i ⊗Σ

−1/2
i )(∂ξΣi)

T

[
n∑

j=1

(∂ξΣj)(Σ
−1
j ⊗Σ−1

j )(∂ξΣj)
T

]−1

× (∂ξΣi)(Σ
−1/2
i ⊗Σ

−1/2
i ).

4.2.2. Scheme two. We consider the mean shift perturbation model

yi(ω) = yi +ωi,(31)

where ωi = (ωi1, . . . , ωimi
)T . Thus, ω0T = (0Tm1

, . . . ,0Tmn
) and p =

∑n
i=1mi.

For the perturbed model, both L(θ|ω) and ℓ(ω|Y,θ) equal

−1
2

n∑

i=1

log |Σi| − 1
2

n∑

i=1

(yi +ωi − xiβ)
TΣ−1

i (yi +ωi − xiβ).

After some calculations, we have gij(ω) = Σ−1
i δij , Tijk(ω) = 0 and Γα

ijk(ω) =
0, where i, j and k vary from 1 to n. The structure of the metric tensor
G(ω) = (gij(ω)) indicates that the perturbations ωi in different clusters are
orthogonal to each other, whereas the components {ωil : l = 1, . . . ,mi} of
ωi are associated with each other. This perturbation manifold is also α-
flat for any α ∈ R1 and ω(t) = th is a geodesic with respect to Γα

ijk(ω) for
any α. However, ω is not an appropriate perturbation, because G(ω)|ω0

does not have the form cIM , whereM =
∑n

i=1mi. Therefore, we consider an
appropriate perturbation ω̃ in (5) with c= 1 such that G(ω̃)|ω0 = In and

yi(ω̃) = yi +Σ
−1/2
i ω̃i for i= 1, . . . , n.(32)
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For the perturbation ω̃ in (32), we have ∆i = [Σ−1
i xi, (e

T
i Σ

−1
i ⊗Σ−1

i )∂ξΣ
T
i ]

T .
Let ξ be the parameter of interest. It can be shown that (Cook [7])

Ri = 4Σ
1/2
i (eTi Σ

−1/2
i ⊗Σ

−1/2
i )Qii(Σ

−1/2
i ei ⊗Σ

−1/2
i )Σ

1/2
i

is the submatrix of HLD corresponding to the ith perturbation vector ω̃i.
Therefore, CEi,l

= SILD,Ei,l
, which corresponds to the lth diagonal element

of Ri, where Ei,l is a p× 1 vector with a 1 at the (
∑i−1

k=1mk + l)th element
and 0 otherwise.

4.3. Yale infant growth data. The Yale infant growth data were collected
to study whether cocaine exposure during pregnancy may lead to the mal-
treatment of infants after birth, such as physical and sexual abuse. A total
of 298 children were recruited from two subject groups (cocaine exposure
group and unexposed group). The key feature of this dataset is that differ-
ent children had different numbers and patterns of visits during the study
period. We refer to Wasserman and Leventhal [29] and Stier et al. [24] for a
detailed description of the study design and data collection. Recently, Zhang
[34, 35] developed multivariate adaptive splines for the analysis of longitudi-
nal data (MASAL) to analyze the Yale infant growth data. The importance
of our reanalysis here is to develop a local influence approach for the MASAL
model.

For the Yale infant growth data, Zhang [35] selected the MASAL model

yij = xT
ijβ+ ǫi,j,

where xij = (1, d, (d−120)+, (d−200)+, (ga−28)+, d(ga−28)+, (d−60)+(ga−
28)+, (d−490)+(ga−28)+, sd, s(d−120)+)T , in which d and ga are the age of
visit and gestational age, respectively, and s is the indicator for gender, with
one indicating a girl and zero indicating a boy. In addition, we assume that
ǫi = (ǫi1, . . . , ǫimi

)T ∼ N [0,Σi(ξ)] and Σi(ξ) is determined by the variance
and autocorrelation parameters, which are, respectively, given as

V (d) = exp(ξ0 + ξ1d+ ξ2d
2 + ξ3d

3) and ρ(l) = ξ4 + ξ5l,

where l is the lag between two visits. For simplicity, we assume that all knots
are given so that the MASAL model reduces to the linear mixed model (26).
The total number of data points is

∑n
i=1mi = 3176 and the total number of

clusters is n= 298. The estimated parameters are

βT = (0.744,0.029,−0.0092,−0.0059,0.204,

0.0005,−0.0007,−0.0009,−0.0026,0.0022)

and

ξ = (−0.53,0.0064,−1.9 × 10−5,2.1× 10−8,0.929,−0.0013)T

(Zhang [35]).
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We calculated the local influence measures for the three perturbations
discussed in Sections 4.1 and 4.2 and present the main findings of the local
influence approach in Figures 1–3.

For the perturbation of the individual covariance matrix, the quantity SIEi

for perturbation (28) reveals four influential subjects {141,246,269,285}
(Figure 1), whereas subjects {141,246} do not stand out as influential using
normal curvature for perturbation (27). Because m141 = 4 and m246 = 5 are
much smaller than the average number of observations 3176/298 = 10.6, a
relatively large normal curvature from subjects {141,246} represents a large
effect. A closer inspection of the data (not presented here) shows that the

Fig. 1. Yale infant growth data: (a) index plot of 3176 × SIEi
/298 for the appropriate

perturbation (28); (b) CEi
for perturbation (27) against 3176× SIEi

/298 for the appro-
priate perturbation (28).

Fig. 2. Yale infant growth dataset: (a) metric tensor gii(ω
0) for perturbation (29) and

the number of observations for each subject; (b) CEi
for perturbation (29) and 1.9× SIEi

for the appropriate perturbation (30).
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raw and fitted curves for these four subjects differ substantially, especially
at the last observation.

The metric tensor gii(ω
0) for perturbation (29) is positively correlated

with the number of observations in each subject [Figure 2(a)]. Furthermore,
because the variability of gii(ω

0) is relatively small, normal curvatures under
perturbation (29) are close to second-order influence measures [Figure 2(b)].
Both CEi

and SIEi
reveal four influential subjects {111,116,246,274} [Fig-

ure 2(b)]. Furthermore, for perturbation (32), SIEi
suggest that (3,7), (24,7),

(24,8), (227,11), (290,12), (290,13) and (109,12) are seven influential ob-
servations, where for each (i, l), i denotes the subject number and l denotes
the observation number [Figure 3(a)–(b)].

5. Conclusion. We have introduced a local influence method to assess
minor perturbations to a statistical model. Our method extends the previ-
ous local influence method (Cook [7]) in several aspects. First, we propose
to use the metric tensor of a perturbation manifold to select an appropri-
ate perturbation to a model. The major advantage of using an appropriate
perturbation is that it leads to a nice interpretation of the effect of all el-
ements of a perturbation vector on a statistical model. We have shown in
Sections 3.1–3.3 that most of the perturbation schemes considered in Cook’s
[7] examples are appropriate. However, we have also shown in several exam-
ples, such as linear mixed models and testing parametric families, that some
commonly used perturbations may not yield an appropriate perturbation;
see Sections 3.4 and 4. Second, we have developed influence measures with
nice geometrical interpretations for smooth objective functions at any point.
The influence measures proposed here avoid the previous drawback that the

Fig. 3. Yale infant growth data: (a) rescaled CEi,l
for perturbation (31) and SIEi,l

for
the appropriate perturbation (32); (b) connected curves of SIEi,l

of five influential subjects
{3,24,109,227,290} for the appropriate perturbation (32).
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normal curvature is not well defined for some objective functions at points
with a nonzero first derivative. In addition, the proposed second-order influ-
ence measures reduce to normal curvatures for the likelihood displacement
function (Cook [7]). Third, we have established a connection between the
score test statistic and the FI measures; see Section 3.4. Finally, we have
also examined a number of models to highlight the importance of choosing
an appropriate perturbation and the broad spectrum of applications of this
local influence method.

Many issues still merit further research. One major issue is calculation of
the influence measures and metric tensor under different situations, such as
measurement error models (Carroll, Ruppert and Stefanski [4]; Zhong, Wei
and Fung [36]), generalized linear models with missing data (Ibrahim, Chen,
Lipsitz and Herring [13]), partially linear models (Zhu, He and Fung [41])
and structural equation models (Yuan and Bentler [33]). Another major is-
sue is to establish relationships between the influence measures and other
influence diagnostics, such as case-deletion measures and leverage (Cook and
Weisberg [8] and Wei, Hu and Fung [30]). It is also important to develop
appropriate influence diagnostics for detecting influential clusters in longitu-
dinal data by taking into account the number of observations in each cluster
and models used to fit the longitudinal data. However, the influence diag-
nostics calculated in PROC MIXED of SAS 9.1 (SAS Institute Inc., Cary,
NC) do not take into account the number of observations in each cluster;
therefore, these influence diagnostics may give misleading results. We expect
that the metric tensor of the perturbation manifold will play a critical role
in this new development.

Acknowledgments. We thank the Editor Morris Eaton, the Associate
Editor and two anonymous referees for valuable suggestions, which greatly
helped to improve our presentation. Reprints can be requested via e-mail:
heping.zhang@yale.edu or htzhu@email.unc.edu.
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