
Issue in Honor of Prof. William F. Bailey  ARKIVOC 2011 (v) 211-216 

 Page 211 ©ARKAT-USA, Inc. 

A convenient dicarboxylation of ortho-terphenyl 

 
E-Joon Choi,a,b Kyung Min Parkb and Edward T. Samulskia,* 

aDepartment of Chemistry, University of North Carolina at Chapel Hill, 

Chapel Hill, North Carolina 27599-3290, USA 

bDepartment of Polymer Science and Engineering, Kumoh National Institute of Technology, 

Kumi, Kyungbuk 730-701, Korea 

et@unc.edu  

 

Dedicated to William (Bill) F. Bailey on the occasion of his 65th birthday 

 

DOI: http://dx.doi.org/10.3998/ark.5550190.0012.518 

 

Abstract 

We report a facile dicarboxylation of ortho-terphenyl, an important moiety for preserving 

conjugation in organic light-emitting diodes (OLEDs) where linear conjugated structures lead to 

intractable solids.  
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Introduction 

 

Heeger, MacDiarmid and Shirakawa were awarded the 2000 Nobel Prize in Chemistry for their 

work on electrically conducting polymers. Such polymers as well as conducting low molar mass 

molecules typically employ conjugated aromatic rings to establish delocalization, a prerequisite 

for electron/hole transport. Moreover, the number of rings and their substitution patterns enable 

one to tune the band gap separating the HOMO from the LUMO in organic light emitting diode 

(OLED) and organic photovoltaic (OPV) materials1,2. Canonical examples include poly(p-

phenylenes) and poly(2,5-thiophenes). However, extended conjugation leads to intractable 

materials; “brick dust″ is the colloquial expression for these infusible and insoluble materials.  

For example, oligomers of p-phenylenes I and 2,5-thiophenes II become intractable for n ≈ 6. 

The prototypical donor component in OPV solar cells is poly(3-hexylthiophene) known as P3HT 

III (R= -C6H13), but the (preferably regio-regular3) sidechains of P3HT, while increasing 

solubility, are deleterious as they dilute the content of conjugated core in condensed phases. On 

the other hand, alternating 2,5-thiophene with p-phenylene in five-ring oligomers IV makes the 

polyaromatics more tractable and dramatically affects the band gap (increased coplanarity of 

successive rings across the phenyl-thiophene covalent C—C bond accrues because of reduced 

steric interactions between the hydrogen atoms on neighboring heterocycle)4, the usual way to 
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circumvent the tractability issue is to attach sidechain substituents. One way to maintain some 

degree of conjugation, while retaining tractability and high aromatic content, is to incorporate 

ortho-substituted linkages. We recently introduced o-terphenyl into the so-called mesogenic core 

of all-aromatic liquid crystals converting, for example, the seven-ring, linear oligomer into a 

low-melting, glass-forming solid V5. Herein, we report a facile route to functionalize o-terphenyl 

for incorporation into tractable, ester-linked, and aromatic-rich materials. 

 

 
Scheme 1 

 

Results and Discussion 

 

Terphenyl isomers are commercially available, and thus dicarboxylation is a viable and facile 

way to functionalize them. In particular, 4,4″-terphenyldicarboxy acids are useful for 

polycondensation to wholly-aromatic polyamides6, polyesters etc. In the literature, methods for 

synthesizing 4,4″-terphenyldicarboxy acids with o-, m- or p-substitution position have been 

individually reported. The 4,4″-p-terphenyldicarboxylic acid7 was simply synthesized by 

dicarboxylation reaction of p-terphenyl with oxalyl chloride and aluminum chloride using carbon 

disulfide as a solvent in a high yield. Since the reaction of m-terphenyl with oxalyl chloride in 

the presence of AlCl3 afforded a mixture of mono- and dicarboxylic acids that are insoluble in 

most organic solvents, the 4,4″-m-terphenyldicarboxylic acid8 was synthesized by hydrolysis of 

the diester prepared from methanol using SOCl2. On the other hand, 4,4″-o-terphenyldicarboxy 

acid9 was prepared from 4,4″-dibromo-o-terphenyl10 by a Grignard reaction and the latter can be 

prepared from 2-iodo-4′-methylbiphenyl by cross-coupling chemistry. Alternatively, oxidation of 
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4,4″-dimethyl-o-terphenyl11 can be used for the preparation of the 4,4″-o-terphenyldicarboxylic 

acid. 

In this paper we report that the conventional synthetic route to 4,4″-o-terphenydicarboxylic 

acid (prepared by a dicarboxylation with excess oxalyl chloride and aluminum chloride in carbon 

disulfide; see Scheme 2) is in fact much more convenient than the synthetic route based on a 

Grignard reaction of the dibromide. Interestingly, at the first stage of our dicarboxylation 

reaction, the expected dicarboxylated product was not produced. Instead the acid anhydride 

between 4,4″-o-terphenyldicarboxylic acid and excess oxalyl chloride was obtained quanti-

tatively with the trace amount of a tri-carboxylated by-product. Subsequent hydrolysis of the 

anhydride intermediate gave a better than 90% yield of the 4,4″-o-terphenydicarboxylic acid. 

The acid anhydride: mp 120 ºC; TLC (silica gel, hexane/ethyl acetate = 5:1, v/v), Rf 0.70; 1H 

NMR (400 MHz, DMSO-d6)  7.80 (d, J 8.4 Hz, 4H), 7.50 (m, J 31.5 Hz, 4H), 7.21 (d, J = 8.5 

Hz, 4H). 4,4″-o-Terphenyldicarbonyl dichloride was readily prepared from the 4,4″-o-

terphenyldicarboxylic acid by using SOCl2 and converted to the corresponding esters by reaction 

with octyl- or heptyloxy-phenol. An alternate route using N,N'-dicyclohexylcarbodiimide (DCC) 

is also viable. In Figure 1a, the tri-substituted byproduct can be excluded by the observed 

symmetric resonance pattern for 2. This symmetry is retained in the NMR spectra of ultimate 

target molecules such as V (Figure 1b). Figure 2 exhibits the characteristic resonances of the 1- 

and 2-protons in 4 make the assignment of nmr spectra of esters straightforward. 

 
 

Scheme 2 
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Figure 1. 1H NMR spectra of (a) 2 and (b) V at 400 MHz. 
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Figure 2. 1H NMR spectra of (a) 4 and (b) 5 at 400 MHz. 
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Experimental Section 

 

General. IR and NMR spectra were obtained by Thermo scientific Nicolet 6700 FT/IR and 

Bruker 400 MHz NMR spectrometer, respectively. Elemental analyses were performed with a 

Thermofinnigan EA1108. The melting temperatures were determined by a differential scanning 

calorimeter (Seiko DSC 220C) at a heating rate of 10 C/min or a capillary MP apparatus. 

 

4,4″-o-Terphenydicarboxylic acid (2). A one-neck flask (200 mL) equipped with Claisen 

adapter and Ar-gas inlet was charged with of carbon disulfide (70 mL), o-terphenyl (7.6 g, 0.033 

mmol), and oxalyl chloride (25 g, 0.20 mol). This solution was cooled to 0 ºC and anhydrous 

aluminum chloride (10 g, 0.75 mol) was added in several batches. After the obtained dark-brown 

mixture was stirred for 1 h at 0 ºC, additional aluminum chloride (10 g, 0.75 mol) was added. 

Then the ice-bath was removed, and stirring was continued overnight at room temperature. The 

mixture was poured slowly into a mixture of dilute hydrochloric acid with crushed ice. The 

carbon disulfide was evaporated under reduced pressure. The obtained pale yellow solid was 

filtered, washed with dilute hydrochloric acid and water, which was an anhydride of the desired 

dicarboxylic acid. In order to decompose the anhydride, it was treated with 10% KOH solution in 

methanol. The obtained potassium carboxylate was acidified by conc. HCl, using pH paper as 

indicator. This crude product was washed with water, recrystallized from a mixture of ethanol 

and water (7:1 v/v), and dried under vacuum at 60 ºC: mp 345 ºC (decomp.) (Lit.4 317-320 ºC); 
1H NMR (400 MHz, DMSO-d6)  12.94 (s, 2H, ArCO2H), 7.81 (d, J 8.2 Hz, 4H), 7.51 (m, J 31.2 

Hz, 4H), 7.23 (d, J 8.2 Hz, 4H). 

4,4˝-Bis(p-octylphenyloxycarbonyl)-o-terphenyl (4). 4,4˝-o-Terphenyl-dicarboxylic acid 2 

(0.500 g; 1.57 mmol), 4-octylphenol (0.648 g; 3.14 mmol), N,N'-dicyclohexylcarbodimide (0.648 

g; 3.14 mmol), and 4-dimethylaminopyridine (0.038 g; 0.31 mmol) were added to 

dichloromethane (30 mL). The reaction mixture was stirred overnight at room temperature. Then 

the mixture was diluted with dichloromethane (70 mL) and washed with distilled water (70 mL). 

Only the dichloromethane soluble fraction was collected, and dichloromethane was removed by 

evaporation using a rotator evaporator. The crude product was dried under vacuum and purified 

by column chromatography on silica gel with a mixture of hexane/ethyl acetate (6:1 v/v). FT-IR 

(KBr pellet, cm-1): 3052 (Aromatic C-H stretch), 2927 (Aliphatic C-H stretch), 1733 (Conj. C=O 

stretch), 1608 (Aromatic C=C stretch), 1264 (C-O-C symmetry stretch). 1H NMR (400 MHz, 

CDCl3, δ in ppm): 8.07 (d, J 8.16 Hz, 4H), 7.5 (d, J 2.38 Hz, 4H), 7.28 (t, J 9.52 Hz, 4H), 7.22 

(d, J 8.5 Hz, 4H), 7.11 (d, J 7.82 Hz, 4H), 2.62 (t, J 7.82 Hz, 4H), 1.62 (m, 4H), 1.3 (d, J 15.65 

Hz, 20H), 0.89 (t, J 7.15 Hz, 6H).  13C NMR (100 MHz, CDCl3, δ in ppm): 165.1, 148.8, 146.4, 

140,5, 139.5, 130.6, 130.0, 130.0, 129.3, 128.4, 128.0, 121.3, 35.4, 31.9, 31.4, 29.4, 29.3, 29.2, 

22.6, 14.1.  Elem. Anal.: Calc. for C48H54O4: C 82.96, H 7.83; Found: C 81.67, H 8.31. 

4,4˝-Bis(p-hexyloxyphenyloxycarbonyl)-o-terphenyl (5). 4,4˝-o-Terphenyl-dicarboxylic acid 2 

(0.500 g; 1.57 mmol) and 4-(heptyloxy)phenol (0.654 g; 3.14 mmol), N,N'-

dicyclohexylcarbodimide (0.648 g; 3.14 mmol), and 4-dimethylaminopyridine (0.038 g; 0.31 
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mmol) were dissolved in dichloromethane (30 mL). The reaction mixture was stirred overnight at 

room temperature. Then the mixture was diluted with dichloromethane (70 mL) and washed with 

distilled water (70 mL). Only the dichloromethane soluble fraction was collected, and 

dichloromethane was removed by evaporation using a rotator evaporator. The crude product was 

dried under vacuum and purified by column chromatography on silica gel with a mixture of 

hexane/ethyl acetate (6:1 v/v). FT-IR (KBr pellet, cm-1): 3062 (Aromatic C-H stretch), 2932 

(Aliphatic C-H stretch), 1738 (Conj. C=O stretch), 1608 (Aromatic C=C stretch), 1269-1245 (C-

O-C symmetry stretch). 1H NMR (400MHz, CDCl3, δ in ppm): 8.04 (d, J 8.42 Hz, 4H), 7.48 (d, 

J 2.52 Hz, 4H), 7.25 (t, J 8.53 Hz, 4H ), 7.08 (d, J 8.85 Hz, 4H), 6.90 (d, J 9.1 Hz, 4H),  3.93 (t, J 

6.63 Hz, 4H), 1.76 (m, 4H), 1.43 (m, 4H), 1.29 (m, 12H), 0.88 (t, J 6.97 Hz, 6H). 13C NMR (100 

MHz, CDCl3, δ in ppm): 165.4, 156.9, 146.5, 144.2, 139.5, 130.6, 130.0, 129.9, 128.4, 128.0, 

122.3, 115.1, 68.4, 31.8, 29.2, 29.0, 26.0, 22.6, 14.1.  Elem. Anal.: Calc. for C46H50O6: C 79.05, 

H 7.21; Found: C 78.18, H 7.68. 
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