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ASYMPTOTIC RESULTS FOR MAXIMUM LIKELIHOOD

ESTIMATORS IN JOINT ANALYSIS OF REPEATED

MEASUREMENTS AND SURVIVAL TIME1

By Donglin Zeng and Jianwen Cai

University of North Carolina at Chapel Hill

Maximum likelihood estimation has been extensively used in the
joint analysis of repeated measurements and survival time. However,
there is a lack of theoretical justification of the asymptotic properties
for the maximum likelihood estimators. This paper intends to fill this
gap. Specifically, we prove the consistency of the maximum likelihood
estimators and derive their asymptotic distributions. The maximum
likelihood estimators are shown to be semiparametrically efficient.

1. Introduction. Joint analysis of both repeated measurements and sur-
vival time has received much attention in the last decade. The motivation
of such analysis arises from many medical studies. For example, in an HIV
study, the progression of CD4 cell counts in HIV patients and the time to pa-
tients’ death are of interest. Three different types of questions can be asked.
One may wish to know the effect of a particular factor, such as age at the
entry, on both the progression of CD4 cell counts and the risk of death. In-
terest may also arise in studying the longitudinal pattern of CD4 cell counts
over a time period; however, the longitudinal path can be truncated due to
drop-out or death. In another analysis, one may focus on how the actual
CD4 cell count predicts the risk of HIV-related disease, where the true CD4
cell count is often missing or measured with error.

To answer these or similar questions in other medical studies, joint models
for repeated measurements and survival time have been proposed. In gen-
eral, a mixed-effects model (Chapter 9 in [7]) with normal random effects is
used to model repeated measurements, while a proportional intensity model
[2] is used to model the hazard function of survival time. The covariates in
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the models can be subjects’ baseline variables, study time or error-free CD4
cell counts, and so on. Random effects are used in both the mixed model
and the proportional hazards model to account for the dependence between
repeated measurements and survival time due to unobserved heterogeneity.
In some of the literature, such a joint model is described as either a selection
model or a pattern-mixture model, depending upon how they are derived.
When the conditional distribution of survival time given repeated measure-
ments is modeled, the derived joint model is called a selection-model; when
the conditional distribution of repeated measurement given survival time is
modeled, the derived joint model is called a pattern-mixture model. Selec-
tion models have been studied by many authors in different contexts, for
example, Tsiatis, DeGruttola and Wulfsohn [23], Wulfsohn and Tsiatis [27]
and Xu and Zeger [28, 29]. On the other hand, Wu and Carroll [26], Wu
and Bailey [25] and Hogan and Laird [12] proposed pattern-mixture models.
In some studies where repeated measurements are considered as an inter-
nal covariate predicting risk of survival time, joint analysis is regarded as a
missing covariate problem or measurement error problem in a proportional
hazards model. For instance, Chen and Little [5] considered the missing co-
variate problem in the proportional hazards model, although the covariates
there were assumed to be time-independent. One referee drew our attention
to the paper by Dupuy, Grama and Mesbah [8]. In their paper, the authors
stated the asymptotic results for the proportional hazards model with time-
dependent covariate, where the covariate was modeled using a parametric
distribution instead of a mixed-effects model and the covariate was assumed
to be measured without error.

In most of the joint analysis literature, nonparametric maximum like-
lihood estimation has been proposed (e.g., [23, 27]). Here, nonparametric
maximum likelihood estimation means that the nuisance parameter, for ex-
ample, the cumulative baseline hazard function in the proportional hazards
model, can be a function with jumps at some discrete observations (for a
complete review of the nonparametric maximum likelihood estimation in a
proportional hazards model, refer to [15]). Computationally, the EM algo-
rithm [6] has often been used to calculate the maximum likelihood estimates,
where random effects are treated as missing.

However, although the maximum likelihood estimates have been shown to
perform well in numerical studies [13], theoretical justification of the asymp-
totic properties of the maximum likelihood estimates has not been well es-
tablished, except for Chen and Little [5], who thoroughly studied this issue
in a proportional hazards model with missing time-independent covariates.
Therefore, in this paper we aim to derive the asymptotic properties of the
maximum likelihood estimators in the joint models. Specifically, we rigor-
ously prove the consistency of the maximum likelihood estimators and derive
their asymptotic distributions. Our theoretical results further confirm that
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nonparametric maximum likelihood estimation, which has been proposed
in the literature [12, 23, 27], provides efficient estimation. Additionally, we
show that the profile likelihood function can be used to give a consistent
estimator for the asymptotic variance of the regression coefficients.

The structure of this paper is as follows. A general frame for modeling
both repeated measurements and survival time is given in Section 2. The
EM algorithm for maximum likelihood estimation is briefly described after-
ward. Section 3 gives our main results on the asymptotic properties of the
maximum likelihood estimators. The proofs for the main theorems are given
in Sections 4 and 5. Some technical details are provided in the Appendix.

2. Maximum likelihood estimation in joint models.

2.1. Models and assumptions. In the joint analysis of repeated measure-
ments and survival times, repeated measurements are considered as the re-
alizations of a certain marker process (usually an internal covariate, Sec-
tion 6.3.2 in [16]) at finite time points. We use Y (t) to denote the value of
such a marker process at time t and we introduce a counting process R(t)
(cf. II.1 of [1]) which is right-continuous and only jumps at time t where
a measurement is taken. Furthermore, we use NT (t) and NC(t) to denote
the counting processes generated by survival time T and censoring time C,
respectively; that is, NT (t) = I(T ≤ t) and NC(t) = I(C ≤ t), where I(·) is
the indicator function. Both Y (t) and T are outcome variables of interest.

One essential assumption in all of the joint models proposed in the liter-
ature is that the association between the marker process and the survival
time is due to observed covariate processes such as baseline information or
study time, and so on, which are denoted by X (t), and unobserved subject-
specific effects, which are denoted by a. However, the previous statement is
vague, and so we will provide more rigorous assumptions in the following.
To do that, we introduce more notation: we denote H̄X (t) as the longitu-
dinal covariate history prior to time t and denote H̄Y (t) as the longitu-
dinal response history prior to time t; that is, H̄X (t) = {X (s) :s < t} and
H̄Y (t) = {Y (s) :s < t}. Additionally, we denote τ as the end time of the
study. Then we impose the following model assumptions:

(A.1) Random effect a follows a multivariate normal distribution with mean
zero and covariance Σa.

(A.2) For any t ∈ [0, τ ], the covariate process X (t) is fully observed and
conditional on a, H̄X (t), H̄Y (t) and T ≥ t, the distribution of X (t)
depends only on H̄X (t). Moreover, with probability one, X (t) is con-
tinuously differentiable in [0, τ ] and maxt∈[0,τ ] ‖X ′(t)‖<∞, where ‖·‖
denotes the Euclidean norm in real space and X ′(t) denotes the deriva-
tive of X (t) with respect to t.



4 D. ZENG AND J. CAI

(A.3) Conditional on a, H̄X (t), H̄Y (t), X (t) and T ≥ t, the intensity of the
counting process NT (t) at time t is equal to

λ(t) exp{(φ ◦ W̃(t))Ta + W(t)Tγ},(1)

where W(t) and W̃(t) are sub-processes of X (t) and φ is a constant

vector of the same dimension as W̃(t). For any vectors v1 and v2 of the
same dimension, v1 ◦ v2 is the vector obtained by the component-wise
product of v1 and v2.

(A.4) Conditional on a, H̄X (t), H̄Y (t), X (t) and T > t, the marker process
Y (t) satisfies

Y (t) = X(t)Tβ + X̃(t)Ta + ε(t),(2)

where X(t) and X̃(t) are sub-processes of X (t) and ε(t) is a white
noise process with variance σ2

y .

(A.5) Conditional on a, H̄X (T ), H̄Y (T ), X (T ) and T , the intensity of the
counting process NC(t) at time t depends only on H̄X (t) and X (t) for
any t < T .

(A.6) Conditional on a, H̄X (T ), H̄Y (T ), X (T ), T and C, the intensity of
the counting process R(t) depends only on H̄X (t) and X (t) for any
t < T ∧C.

Remark 2.1. The structure models (1) and (2) cover most of the joint
models proposed in the literature. For example, we consider a clinical trial for
HIV-patients with two treatment arms and covariates measured at the entry,
such as age and gender and so on, in addition to the recording of CD4 counts
along the follow-up. If we are interested in studying the simultaneous effects
of the treatments on both CD4 count and survival time, after adjusting
for other covariates at the entry and subject-specific effects, we can choose
each of W̃(t), W(t), X(t) and X̃(t) to include treatment variable and/or
covariates measured at the entry. Furthermore, we can use t as a covariate in
models (1) and (2) to study time-dependent effects. In another situation, if
Y (t) is considered as a marker process subject to measurement error which
predicts risk of death (e.g., [23]), then one would use the error-free covariate

for Y (t), which equals X(t)Tβ + X̃(t)Ta based on (2), as one predictor with
a coefficient µ in the proportional hazards model (1). Some re-arrangement
shows that the obtained hazards model is a special case of the expression
(1), where W̃(t) = X̃(t), W(t) = X(t), φ is the vector with each component
being µ and γ = µβ.

Remark 2.2. In assumptions (A.5) and (A.6), we implicitly assume that
there exist some appropriate measures such that the intensity functions of
NC(t) and R(t) exist. In the missingness context, (A.5) and (A.6) are special
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cases of the coarsening at random assumption [10]. In fact, we can allow (A.5)
and (A.6) to be even more general; for example, the intensities of NC(t)
and R(t) can depend on the observed history of repeated measurements.
Since this generality will not change our subsequent arguments, we choose
to work with the current simpler assumptions. Assumptions (A.5) and (A.6)
can be further simplified under some special situations: when X (t) is equal
to g(X; t), where g(·) is a deterministic function and X are random variables
at time zero, then assumptions (A.5) and (A.6) can be replaced with the
following assumptions: conditional on X, C and R(t) are independent of
T , H̄Y (T ) and a. Such assumptions have been used in [23]. Another special
situation when (A.6) is satisfied is when repeated measurements are obtained
on fixed schedules, as seen in many cohort studies of clinical experiments.

Under assumptions (A.1)–(A.6), the conditional distribution function for
the right-censored event time (Z = T ∧C,∆ = I(T ≤C)), the repeated mea-
surement process {(Y (t)I(R(t) − R(t−) > 0),R(t)) : t < Z} and {X (t) : t ≤
Z}, given random effects a, can be written as

f(X (0))
∏

t≤Z

{f(X (t)|H̄X (t))}
∏

t<Z

{f(Y (t)|a, H̄X (t),X (t))}δR(t)

×
∏

t≤Z

{1−E[dNT (t)|T ≥ t,a, H̄X (t),X (t)]}1−δNT (t)

×{E[dNT (t)|T ≥ t,a, H̄X (t),X (t)]}δNT (t)

×
∏

t≤Z

{1−E[dNC(t)|H̄X (t),X (t)]}1−δNC (t)

×{E[dNC (t)|H̄X (t),X (t)]}δNC (t)

×
∏

t<Z

{1−E[dR(t)|H̄X (t),X (t)]}1−δR(t){E[dR(t)|H̄X (t),X (t)]}δR(t).

Here δNT (t) = NT (t) − NT (t−), δNC(t) = NC(t) − NC(t−) and δR(t) =
R(t)−R(t−).

We further assume that the parameters in f(X (0)), f(X (t)|H̄X (t)),
E[dNC(t)|H̄X (t),X (t)] and E[dR(t)|H̄X (t),X (t)] are distinct from the pa-
rameters in models (1) and (2). The latter consist of θ = (σy,Vec(Σa)

T ,βT ,

γT ,φT )T and Λ(t) =
∫ t
0 λ(s)ds, where Vec(Σa) is the vector consisting of all

the elements in the upper triangular part of Σa. Then the observed likeli-
hood function of (θ,Λ) from n i.i.d. observations is proportional to

n∏

i=1

∫

a

{
(2πσ2

y)
−Ni/2 exp{−(Yi −X

T
i β − X̃

T
i a)T (Yi −X

T
i β − X̃

T
i a)/2σ2

y}

× λ(Zi)
∆i exp

[
∆i{(φ ◦ W̃i(Zi))

T
a + Wi(Zi)

Tγ}
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(3)

−
∫ Zi

0
e(φ◦W̃i(s))T a+Wi(s)Tγ dΛ(s)

]}

× (2π)−da/2|Σa|−1/2 exp{−a
T
Σ

−1
a a/2}da,

where for subject i, Yi denotes the vector of the observed repeated mea-
surements, Xi denotes the matrix with each column equal to the observed
covariate Xi(t) at the time of each measurement, X̃i denotes the matrix

with each column equal to the observed covariate X̃i(t) at the time of each
measurement, Ni is the number of the observed repeated measurements and
da is the dimension of a.

2.2. Maximum likelihood estimation. We can obtain the nonparametric
maximum likelihood estimates for θ and Λ based on (3). To do that, we let
Λ(·) be an increasing and right-continuous step-function with jumps only at
Zi for which ∆i = 1. Moreover, the maximum likelihood estimates maximize
a modified object function of (3), which is obtained by replacing λ(Zi) in
(3) with Λ{Zi}, the jump size of Λ(·) at Zi. We denote the logarithm of the
modified object function as ln(θ,Λ).

The expectation–maximization (EM) algorithm has been used to calcu-
late the maximum likelihood estimates. In the EM algorithms, the random
effects, ai, i= 1, . . . , n, are treated as missing. Thus, the M-step is to solve
the conditional score equations of the complete data given the observed data.
Such a conditional expectation is evaluated using the Gaussian–quadrature
approximation in the E-step (Chapter 5 of [9]). Since Λ can be derived via
one-step plug-in in the M-step, such EM algorithms often converge rapidly.
However, neither the efficiency nor the convergence of the EM algorithm has
been well justified for this context.

We denote the maximum likelihood estimates by (θ̂, Λ̂). The profile log-
likelihood function for θ can be used to estimate the asymptotic covariance
of θ̂, as given in [18]. In detail, we define the profile log-likelihood function of
θ as pln(θ) = maxΛ∈Zn

ln(θ,Λ), where Zn consists of all the right-continuous
step functions only with positive jumps at Zi for which ∆i = 1. Then the
second-order numerical differences of pln(θ) at θ = θ̂ can be used to approx-

imate the asymptotic variance of θ̂. Especially, for any constant sequence
hn =O(n−1/2) and any constant vector e,

−(nh2
n)

−1{pln(θ̂ + hne)− 2pln(θ̂) + pln(θ̂ − hne)}

approximates e
T
Ie. Here, I is the efficient information matrix for θ and it

is also equal to the inverse of the asymptotic covariance of
√
nθ̂. However,



REPEATED MEASUREMENTS AND SURVIVAL 7

this result is not trivial and will be fully stated and justified in the following
sections.

Simulation studies conducted in the past literature [5, 13] have indicated
good performance of the maximum likelihood estimates and the proposed
variance estimation approach in small samples.

3. Main results. In this section we provide the asymptotic properties
of (θ̂, Λ̂). Theorem 3.1 concerns the consistency of the estimators; The-
orem 3.2 gives their asymptotic distribution; the use of the profile log-
likelihood function is justified by Theorem 3.3.

In addition to (A.1)–(A.6), some technical assumptions are needed for our
main theorems.

(A.7) Recall that N is the number of observed repeated measurements.
There exists an integer n0 such that P (N ≤ n0) = 1. Moreover,
P (N > da|H̄X (T ),X (T ), T )> 0 with probability one.

(A.8) The maximal right-censoring time is equal to τ .

(A.9) Both P (XT
X is full rank) and P (X̃T

X̃ is full rank) are positive. Ad-

ditionally, if there exist constant vectors C0 and C̃0 such that, with
positive probability, W(t)TC0 = µ(t),W̃(t) ◦ C̃0 = 0 for a determin-

istic function µ(t) for all t∈ [0, τ ], then C0 = 0, C̃0 = 0 and µ(t)≡ 0.
(A.10) The true parameter for θ, denoted by θ0 = (σ0y,Vec(Σ0a)

T ,βT0 ,γ
T
0 ,

φT0 )T, satisfies ‖θ0‖ ≤M0, σ0y >M−1
0 , min‖e‖=1 e

T
Σ0ae>M−1

0 for
a known positive constant M0.

(A.11) The true hazard rate function, denoted by λ0(y), is bounded and
positive in [0, τ ].

Remark 3.1. Assumption (A.7) stipulates that some subjects have at
least da repeated measurements. Assumption (A.8) is equivalent to saying
that any subject surviving after time τ is right-censored at τ . Since (A.2),
(A.10) and (A.11) imply that, conditional on H̄X (τ) and X (τ), the proba-
bility of a subject surviving after time τ is at least some positive constant
c0, we conclude that P (C ≥ τ |H̄X (τ),X (τ)) = P (C = τ |H̄X (τ),X (τ)) ≥ c0
with probability one. The assumptions given in the first half of (A.9) are
the same as the identifiability assumption used in a linear mixed effects
model, while the second half of (A.9) is used to identify the regression co-
efficients in the proportional hazards model (1). When X(t) = [1,X] and

X̃(t) = W(t) = W̃(t) = X for time-independent variables X, assumption
(A.9) is equivalent to the linear independence of [1,X] with positive prob-
ability. Finally, assumption (A.10) indicates that θ0 belongs to a known
compact set within the domain of θ, denoted by Θ.

We obtain the following theorems.
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Theorem 3.1. Under assumptions (A.1)–(A.11), the maximum likeli-

hood estimator (θ̂, Λ̂) is strongly consistent under the product metric of the
Euclidean norm and the supremum norm on [0, τ ]; that is,

‖θ̂ − θ0‖+ sup
t∈[0,τ ]

|Λ̂(t)−Λ0(t)| → 0 a.s.

Theorem 3.1 states the strong consistency of the maximum likelihood esti-
mator. Although it is assumed that θ̂ is bounded, we impose no compactness
assumption on the estimate Λ̂. In fact, obtaining the boundedness of Λ̂ is
the key to the proof of Theorem 3.1. The proof will be given in Section 4.
Once the result of Theorem 3.1 holds, Theorem 3.2 states the asymptotic
properties of the maximum likelihood estimator.

Theorem 3.2. Under assumptions (A.1)–(A.11),
√
n(θ̂ − θ0, Λ̂ − Λ0)

weakly converges to a Gaussian random element in Rd × l∞[0, τ ], where d
is the dimension of θ and l∞[0, τ ] is the metric space of all bounded func-

tions in [0, τ ]. Furthermore,
√
n(θ̂ − θ0) weakly converges to a multivariate

normal distribution with mean zero and its asymptotic variance attains the
semiparametric efficiency bound for θ0.

The definition of semiparametric efficiency can be found in Section 3 of [3].

Theorem 3.2 declares that θ̂ is an efficient estimator for θ0. The proof of
Theorem 3.2 is based on the Taylor expansion of the score equations for
θ̂ and Λ̂ around the true parameters θ0 and Λ0. The key to the proof of the
theorem is to show that the information operator for (θ0,Λ0) is continuously
invertible in an appropriate metric space. The proof of Theorem 3.2 will be
given in Section 5.

When both Theorems 3.1 and 3.2 are true, we can verify the smooth
conditions in Theorem 1 of [18] and show that the profile log-likelihood

function, pln(θ), approximates a nondegenerate parabolic function around θ̂.
Particularly, the inverse of the curvature of the profile log-likelihood function
at θ̂ can be used to estimate the asymptotic variance of θ̂. In other words,
the following result holds.

Theorem 3.3. Under assumptions (A.1)–(A.11), 2{pln(θ̂) − pln(θ0)}
weakly converges to a chi-square distribution with d degrees of freedom and,
moreover,

−pln(θ̂ + hne)− 2pln(θ̂) + pln(θ̂ − hne)

nh2
n

p→e
T
Ie,

where hn = Op(n
−1/2), e is any vector in Rd with unit norm, and I is the

efficient information matrix for θ0.
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Remark 3.2. Specifically, to estimate the (s, l)-element of I, we let
es and el be canonical basis elements which have ones at the sth coor-
dinate and lth coordinate, respectively, and have zeros elsewhere. Then the
(s, l)-element of I can be estimated by

−(nh2
n)

−1{pln(θ̂ + hnes + hnel)

− pln(θ̂ + hnes − hnel)− pln(θ̂ − hnes + hnel) + pln(θ̂)}.

4. Proof of Theorem 3.1. In this section we prove the consistency result
for (θ̂, Λ̂). We recall that ln(θ,Λ) is equal to

n∑

i=1

log

∫

a

[
(2πσ2

y)
−Ni/2

× exp{−(Yi −X
T
i β − X̃

T
i a)T (Yi −X

T
i β − X̃

T
i a)/2σ2

y}

×Λ{Zi}∆i exp

{
∆i((φ ◦ W̃i(Zi))

T
a + Wi(Zi)

Tγ)(4)

−
∫ Zi

0
e(φ◦W̃i(t))T a+Wi(t)T γ dΛ(t)

}

× (
√

2π )−da |Σa|−1/2 exp{−a
T
Σ

−1
a a/2}

]
da

and (θ̂, Λ̂) maximizes ln(θ,Λ) over the space {(θ,Λ) :θ ∈Θ,Λ ∈Zn}.
The proof of the consistency can be established by verifying the following

steps (i)–(iii). One particular remark is that all the following arguments are
made and hold for a fixed ω in the probability space, except for some zero-
probability set; thus, all the bounds or constants given below may depend
on this ω.

(i) The maximum likelihood estimate (θ̂, Λ̂) exists.

(ii) We will show that, with probability one, Λ̂(τ) is bounded as n goes
to infinity.

(iii) If (ii) is true, by the Helly selection theorem (cf. page 336 of [4]), we

can choose a subsequence of Λ̂ such that Λ̂ weakly converges to some right-
continuous monotone function Λ∗ with probability 1; that is, the measure
given by µ([0, t]) = Λ̂(t) for t ∈ [0, τ ] weakly converges to the measure given
by µ∗([0, t]) = Λ∗(t). By choosing a sub-subsequence, we can further assume

θ̂ → θ∗. Thus, our third step is to show θ∗ = θ0 and Λ∗ = Λ0.

Once the above three steps are proved, we conclude that, with probability 1,
θ̂ converges to θ0 and Λ̂ weakly converges to Λ0 in [0, τ ]. However, since Λ0 is
continuous in [0, τ ], the latter can be strengthened to uniform convergence;
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that is, supt∈[0,τ ] |Λ̂(t) − Λ0(t)| → 0 almost surely. Hence, Theorem 3.1 is
proved.

The proofs of (i)–(iii) are given in the following.

Proof of (i). It suffices to show that the jump size of Λ̂ at Zi for which
∆i = 1 is finite. Since for each i such that ∆i = 1,

Λ{Zi}∆i exp

{
−

∫ Zi

0
e(φ◦W̃i(t))

T
a+Wi(t)

T γ dΛ(t)

}

≤ exp{−2((φ ◦ W̃i(Zi))
T
a + Wi(Zi)

Tγ)}Λ{Zi}−1,

ln(θ,Λ) is less than
n∑

i=1

log

∫

a

[
(2πσ2

y)
−Ni/2

× exp{−(Yi −X
T
i β − X̃

T
i a)T (Yi −X

T
i β − X̃

T
i a)/2σ2

y}

× exp{−∆i((φ ◦ W̃i(Zi))
T
a + Wi(Zi)

Tγ)}

×Λ{Zi}−∆i(
√

2π )−da |Σa|−1/2 exp{−a
T
Σ

−1
a a/2}

]
da.

Thus, if for some i such that ∆i = 1 and Λ{Zi} →∞, ln(θ,Λ) →−∞. We
conclude that the jump size of Λ must be finite. On the other hand, θ belongs
to a compact set Θ. Then the maximum likelihood estimate (θ̂, Λ̂) exists.
�

Proof of (ii). Define ξ̂ = log Λ̂(τ) and rescale Λ̂ by the factor eξ̂ . We

denote the rescaled function as Λ̃; thus Λ̃(τ) = 1. To prove (ii), it is sufficient

to show ξ̂ is bounded.
Clearly ξ̂ maximizes the log-likelihood function ln(θ̂, Λ̃e

ξ). After some

algebra in expression (4), we obtain that, for any Λ ∈ Zn, n−1ln(θ̂,Λ) is
equal to

−
∑n
i=1Ni

n
log{

√
2πσ̂2

y } −
1

n
log{(

√
2π )da |Σ̂a|1/2}+

1

n

n∑

i=1

log |Vi|1/2

+
1

n

n∑

i=1

∆iWi(Zi)
T γ̂ − 1

n

n∑

i=1

(Yi −X
T
i β̂)T (Yi −X

T
i β̂)/2σ̂2

y

+
1

2n

n∑

i=1

{(φ̂ ◦ W̃i(Zi))∆i + X̃
T
i (Yi −X

T
i β̂)/σ̂2

y}T

×V
−1
i {(φ̂ ◦ W̃i(Zi))∆i + X̃

T
i (Yi −X

T
i β̂)/σ̂2

y}
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+
1

n

n∑

i=1

[
∆i log Λ{Zi}+ log

{∫

a

exp

{
−a

T
a

2
−

∫ Zi

0
eQ1i(t,a,θ̂) dΛ(t)

}
da

}]
,

where Vi = X̃
T
i X̃i/σ̂

2
y + Σ̂

−1
a and

Q1i(t,a, θ̂) = {φ̂ ◦ W̃i(t)}TV
−1/2
i a + Wi(t)

T γ̂

+ {φ̂ ◦ W̃i(t)}TV
−1
i {(φ̂ ◦ W̃i(Zi))∆i + X̃

T
i (Yi −X

T
i β̂)/σ̂2

y}.

Thus, since 0 ≤ n−1ln(θ̂, e
ξ̂Λ̃)− n−1ln(θ̂, Λ̃), it follows that

0 ≤ 1

n

n∑

i=1

∆iξ̂+
1

n

n∑

i=1

log

{∫

a

exp

{
−a

T
a

2
− eξ̂

∫ Zi

0
eQ1i(t,a,θ̂) dΛ̃(t)

}
da

}

(5)

− 1

n

n∑

i=1

log

{∫

a

exp

{
−aTa

2
−

∫ Zi

0
eQ1i(t,a,θ̂) dΛ̃(t)

}
da

}
.

According to assumption (A.2), there exist some positive constants C1, C2

and C3 such that |Q1i(t,a, θ̂)| ≤ C1‖a‖ + C2‖Yi‖ + C3. If we denote a0 as
the standard multivariate normal distribution, from the concavity of the
logarithm function,

log

∫

a

exp

{
−a

T
a

2
−

∫ Zi

0
eQ1i(t,a,θ̂) dΛ̃(t)

}
da

= (2π)da/2 logEa0

[
exp

{
−

∫ Zi

0
eQ1i(t,a0,θ̂) dΛ̃(t)

}]

≥ (2π)da/2 logEa0 [exp{−eC1‖a0‖+C2‖Yi‖+C3}]
≥ (2π)da/2Ea0[−eC1‖a0‖+C2‖Yi‖+C3 ]

= −eC2‖Yi‖+C4 ,

where C4 is another constant. Thus, by the strong law of large numbers and
assumption (A.4),

− 1

n

n∑

i=1

log

{∫

a

exp

{
−a

T
a

2
−

∫ Zi

0
eQ1i(t,a,θ̂) dΛ̃(t)

}
da

}
≤ 1

n

n∑

i=1

eC2‖Yi‖+C4

can be bounded by some constant C5 from above. Then (5) becomes

0 ≤ 1

n

n∑

i=1

∆iξ̂

+
1

n

n∑

i=1

log

{∫

a

exp

{
−a

T
a

2
− eξ̂

∫ Zi

0
eQ1i(t,a,θ̂) dΛ̃(t)

}
da

}
+C5
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≤ 1

n

n∑

i=1

∆iξ

+
1

n

n∑

i=1

I(Zi = τ) log

{∫

a

exp

{
−a

T
a

2
− eξ̂

∫ τ

0
eQ1i(t,a,θ̂) dΛ̃(t)

}
da

}

(6)

+
1

n

n∑

i=1

I(Zi 6= τ) log

{∫

a

exp

{
−a

T
a

2

}
da

}
+C5

≤ 1

n

n∑

i=1

∆iξ

+
1

n

n∑

i=1

I(Zi = τ) log

{∫

a

exp

{
−a

T
a

2
− eξ̂

∫ τ

0
eQ1i(t,a,θ̂) dΛ̃(t)

}
da

}

+C6,

where C6 is a constant.
On the other hand, since for any Γ≥ 0 and x > 0, Γ log(1+ x

Γ)≤ Γ · xΓ = x,

we have that e−x ≤ (1 + x
Γ)−Γ. Therefore,

exp

{
−a

T
a

2
− eξ̂

∫ τ

0
eQ1i(t,a,θ̂) dΛ̃(t)

}

≤ exp

{
−a

T
a

2

}{
1 + eξ̂

∫ τ

0
eQ1i(t,a,θ̂) dΛ̃(t)/Γ

}−Γ

≤
∫

a

ΓΓ exp

{
−a

T
a

2

}{
eξ̂

∫ τ

0
eQ1i(t,a,θ̂) dΛ̃(t)

}−Γ

da

≤
∫

a

ΓΓ exp

{
−a

T
a

2
− Γξ̂

}{∫ τ

0
eQ1i(t,a,θ̂) dΛ̃(t)

}−Γ

da.

Since Q1i(t,a, θ̂)≥−C1‖a‖ −C2‖Yi‖ −C3, (6) gives that

0 ≤C6 +
1

n

n∑

i=1

∆iξ̂

+
1

n

n∑

i=1

I(Zi = τ) log

{
e−Γξ̂ΓΓ

×
∫

a

exp

{
−a

T
a

2
+C1Γ‖a‖+C2Γ‖Yi‖+C3Γ

}
da

}

≤C6 +
1

n

n∑

i=1

∆iξ̂ −
Γ

n

n∑

i=1

I(Zi = τ)ξ̂ +C7(Γ),
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where C7(Γ) is a deterministic function of Γ. By the strong law of large
numbers, n−1 ∑n

i=1 I(Zi = τ) → P (Z = τ)> 0. Then we can choose Γ large
enough such that n−1 ∑n

i=1 ∆i ≤ (2n)−1Γ
∑n
i=1 I(Zi = τ). Thus, we obtain

that

0≤C7(Γ) +C6 −
Γ

2n

n∑

i=1

I(Zi = τ)ξ̂.

In other words, if we let B0 = exp{4(C6 +C7(Γ))/ΓP (Z = τ)}, we conclude

that Λ̂(τ)≤B0. Note that the above arguments hold for every sample in the
probability space except a set with zero probability. Thus, we have shown
that, with probability 1, Λ̂(τ) is bounded for any sample size n. �

Proof of (iii). In this step we will show that if θ̂ → θ∗ and Λ̂ weakly
converges to Λ∗ with probability one, then θ∗ = θ0 and Λ∗ = Λ0. For con-
venience, we use O to abbreviate the observed statistics (Y,X, X̃,Z,∆,N)

and {W(s),W̃(s),0≤ s≤ Z} and denote G(a,O;θ,Λ) as

(2πσ2
y)

−N/2{(2π)da |Σa|}−1/2

× exp

{
−(Y −X

Tβ − X̃
T
a)T (Y−X

Tβ − X̃
T
a)

2σ2
y

− a
T
Σ

−1
a a

2

+ ∆((φ ◦ W̃(Z))Ta + W(Z)Tγ)−
∫ Z

0
e(φ◦W̃(t))T a+W(t)T γ dΛ(t)

}
.

Moreover, we define

Q(z,O;θ,Λ) =

∫
a
G(a,O;θ,Λ)exp{(φ ◦ W̃(z))T a + W(z)Tγ}da∫

a
G(a,O;θ,Λ)da

,

and for any measurable function f(O), we use operator notation to define
Pnf = n−1 ∑n

i=1 f(Oi) and Pf =
∫
f dP = E[f(O)]. Thus, Pn is the em-

pirical measure from n i.i.d. observations and
√
n(Pn −P) is the empirical

process based on these observations (cf. Section 2.1 of [24]). We also de-
fine a class F = {Q(z,O;θ,Λ) : z ∈ [0, τ ],θ ∈ Θ,Λ ∈ Z,Λ(0) = 0,Λ(τ) ≤B0},
where B0 is the constant given in step (ii) and Z contains all nondecreasing
functions in [0, τ ]. According to Appendix A.1, F is P-Donsker.

We start to prove (iii). Since (θ̂, Λ̂) maximizes the function ln(θ,Λ), where
Λ is any step function with jumps only at Zi for which ∆i = 1, after dif-
ferentiating ln(θ,Λ) with respect to Λ{Zi}, we obtain that Λ̂ satisfies the
equation

Λ̂{Zk}= ∆k/[nPn{I(Z ≥ z)Q(z,O; θ̂, Λ̂)}]|z=Zk
.
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Thus, imitating the above equation, we can construct another function, de-
noted by Λ̄, such that Λ̄ is also a step function with jumps only at observed
Zk and the jump size is given by

Λ̄{Zk}= ∆k/[nPn{I(Z ≥ z)Q(z,O;θ0,Λ0)}]|z=Zk
.

Equivalently,

Λ̄(t) =
1

n

n∑

k=1

I(Zk ≤ t)∆k

Pn{I(Z ≥ z)Q(z,O;θ0,Λ0)}|z=Zk

.

We claim Λ̄(t) uniformly converges to Λ0(t) in [0, τ ]. To prove the claim, we
note that

sup
t∈[0,τ ]

∣∣∣∣Λ̄(t)−E

[
I(Z ≤ t)∆

P{I(Z ≥ z)Q(z,O;θ0,Λ0)}|z=Z

]∣∣∣∣

≤ sup
t∈[0,τ ]

∣∣∣∣∣
1

n

n∑

k=1

I(Zk ≤ t)∆k

[
1

Pn{I(Z ≥ z)Q(z,O;θ0,Λ0)}

− 1

P{I(Z ≥ z)Q(z,O;θ0,Λ0)}

]∣∣∣∣
z=Zk

∣∣∣∣∣

+ sup
t∈[0,τ ]

∣∣∣∣(Pn −P)

[
I(Z ≤ t)∆

P{I(Z ≥ z)Q(z,O;θ0,Λ0)}|z=Z

]∣∣∣∣

≤ sup
z∈[0,τ ]

∣∣∣∣
1

Pn{I(Z ≥ z)Q(z,O;θ0,Λ0)}
− 1

P{I(Z ≥ z)Q(z,O;θ0,Λ0)}

∣∣∣∣

+ sup
t∈[0,τ ]

∣∣∣∣(Pn −P)

[
I(Z ≤ t)∆

P{I(Z ≥ z)Q(z,O;θ0,Λ0)}|z=Z

]∣∣∣∣.

According to Appendix A.1, {Q(z,O;θ0,Λ0) : z ∈ [0, τ ]} is a bounded and
Glivenko–Cantelli class. Since {I(Z ≥ z) : z ∈ [0, τ ]} is also a Glivenko–Cantelli
class and the functional (f, g) 7→ fg for any bounded two functions f and g
is Lipschitz continuous, {I(Z ≥ z)Q(z,O;θ0,Λ0) : z ∈ [0, τ ]} is a Glivenko–
Cantelli class. Then we obtain that supz∈[0,τ ] |Pn{I(Z ≥ z)Q(z,O;θ0,Λ0)}−
P{I(Z ≥ z)Q(z,O;θ0,Λ0)}| converges to 0. Moreover, from Appendix A.1,
P{I(Z ≥ z)Q(z,O;θ0,Λ0)} is larger than P{I(Z ≥ τ) exp{−C8 −C9‖Y‖}}
for two constants C8 and C9, so is bounded from below. Thus, the first term
on the right-hand side of the above inequality tends to zero. Additionally,
since the class {I(Z ≤ t)/P{I(Z ≥ z)Q(z,O;θ0,Λ0)}|z=Z : t ∈ [0, τ ]} is also a
Glivenko–Cantelli class, the second term on the right-hand side of the above
inequality vanishes as n goes to infinity. Therefore, we conclude that Λ̄(t)
uniformly converges to

E

[
I(Z ≤ t)∆

P{I(Z ≥ z)Q(z,O;θ0,Λ0)}|z=Z

]
.
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It is easy to verify that this limit is equal to Λ0(t). Thus, our claim that Λ̄
uniformly converges to Λ0 in [0, τ ] holds.

From the construction of Λ̄, we obtain that

Λ̂(t) =

∫ t

0

Pn{I(Z ≥ z)Q(z,O;θ0,Λ0)}
Pn{I(Z ≥ z)Q(z,O; θ̂, Λ̂)}

dΛ̄(z).(7)

Λ̂(t) is absolutely continuous with respect to Λ̄(t). On the other hand, since
{I(Z ≥ z) : z ∈ [0, τ ]} and F are both Glivenko–Cantelli classes, {I(Z ≥
z)Q(z,O;θ,Λ) : z ∈ [0, τ ],θ ∈ Θ,Λ∈ Z,Λ(τ) ≤B0} is also a Glivenko–Cantelli
class. Thus,

sup
z∈[0,τ ]

|(Pn −P){I(Z ≥ z)Q(z,O; θ̂, Λ̂)}|

+ sup
z∈[0,τ ]

|(Pn −P){I(Z ≥ z)Q(z,O;θ0,Λ0)}| → 0 a.s.

On the other hand, using the bounded convergence theorem and the fact that
θ̂ converges to θ∗ and Λ̂ weakly converges to Λ∗, P{I(Z ≥ z)Q(z,O; θ̂, Λ̂)}
converges to P{I(Z ≥ z)Q(z,O;θ∗,Λ∗)} for each z; moreover, it is straight-

forward to check that the derivative of P{I(Z ≥ z)Q(z,O; θ̂, Λ̂)} with re-

spect to z is uniformly bounded, so P{I(Z ≥ z)Q(z,O; θ̂, Λ̂)} is equi-con-
tinuous with respect to z. Thus, by the Arzela–Ascoli theorem (page 245
of [21]), uniformly in z ∈ [0, τ ],

P{I(Z ≥ z)Q(z,O; θ̂, Λ̂)}→P{I(Z ≥ z)Q(z,O;θ∗,Λ∗)}.
Then it holds that, uniformly in z ∈ [0, τ ],

Λ̂{z}
Λ̄{z} =

Pn{I(Z ≥ z)Q(z,O;θ0,Λ0)}
Pn{I(Z ≥ z)Q(z,O; θ̂, Λ̂)}

→ P{I(Z ≥ z)Q(z,O;θ0,Λ0)}
P{I(Z ≥ z)Q(z,O;θ∗,Λ∗)} .(8)

After taking limits on both sides of (7), we obtain that

Λ∗(t) =

∫ t

0

P{I(Z ≥ z)Q(z,O;θ0,Λ0)}
P{I(Z ≥ z)Q(z,O;θ∗,Λ∗)} dΛ0(z).

Therefore, since Λ0(t) is differentiable with respect to the Lebesgue measure,
so is Λ∗(t) and we denote λ∗(t) as the derivative of Λ∗(t). Additionally,

from (8) we note that Λ̂{Z}/Λ̄{Z} uniformly converges to dΛ∗(Z)/dΛ0(Z) =

λ∗(Z)/λ0(Z). A second conclusion is that Λ̂ uniformly converges to Λ∗ since
Λ∗ is continuous.

On the other hand,

n−1ln(θ̂, Λ̂)− n−1ln(θ0, Λ̄)

= Pn

[
∆log

Λ̂{Z}
Λ̄{Z}

]
+ Pn

[
log

∫
a
G(a,O; θ̂, Λ̂)da∫

a
G(a,O;θ0, Λ̄)da

]

≥ 0.
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Using the result of Appendix A.1 and similar arguments as above, we can ver-
ify that log[

∫
a
G(a,O; θ̂, Λ̂)da/

∫
a
G(a,O;θ0, Λ̄)da] belongs to a Glivenko–

Cantelli class and

P

[
log

∫
a
G(a,O; θ̂, Λ̂)da∫

a
G(a,O;θ0, Λ̄)da

]
→P

[
log

∫
a
G(a,O;θ∗,Λ∗)da∫

a
G(a,O;θ0,Λ0)da

]
.

Since Λ̂{Z}/Λ̄{Z} uniformly converges to λ∗(Z)/λ0(Z), we obtain that

P

[
log

{
λ∗(Z)∆

∫
a
G(a,O;θ∗,Λ∗)da

λ0(Z)∆
∫
a
G(a,O;θ0,Λ0)da

}]
≥ 0.

However, the left-hand side of the inequality is the negative Kullback–Leibler
information. Then it immediately follows that, with probability one,

λ∗(Z)∆
∫

a

G(a,O;θ∗,Λ∗)da = λ0(Z)∆
∫

a

G(a,O;θ0,Λ0)da.(9)

Our proof is completed if we can show θ∗ = θ0 and Λ∗ = Λ0 from (9).
Since (9) holds with probability one, (9) holds for any (Z,∆ = 1) and (Z =
τ,∆ = 0), but may not hold for (Z,∆ = 0) when Z ∈ (0, τ). However, we
can show that (9) is also true for (Z,∆ = 0) when Z ∈ (0, τ). To see that,
treating both sides of (9) as functions of Z we integrate these functions over
the interval (Z, τ) to obtain

∫

a

G(a,O;θ∗,Λ∗)da|∆=0,Z=τ −
∫

a

G(a,O;θ∗,Λ∗)da|∆=0,Z=Z

=

∫

a

G(a,O;θ0,Λ0)da|∆=0,Z=τ −
∫

a

G(a,O;θ0,Λ0)da|∆=0,Z=Z .

After comparing this equality with another equality, which is given by (9)
at ∆ = 0 and Z = τ , we obtain

∫

a

G(a,O;θ∗,Λ∗)da|∆=0 =

∫

a

G(a,O;θ0,Λ0)da|∆=0;

that is, (9) also holds for any Z and ∆ = 0.
Thus, we let ∆ = 0 and Z = 0 in (9). After integrating over a, we have

that with probability one,

1

σ∗y
N

|Σ∗
a
−1 + X̃

T
X̃/σ∗y

2|−1/2

|Σ∗
a|1/2

× exp

{
−(Y−X

Tβ∗)T (Y −X
Tβ∗)

2σ∗y
2

+
1

2σ∗y
4 (Y −X

Tβ∗)T X̃

(
Σ

∗
a
−1 +

X̃
T
X̃

σ∗y
2

)−1

X̃
T (Y −X

Tβ∗)

}
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(10)

=
1

σN0y

|Σ−1
0a + X̃

T
X̃/σ2

0y|−1/2

|Σ0a|1/2

× exp

{
−(Y−X

Tβ0)
T (Y−X

Tβ0)

2σ2
0y

+
1

2σ4
0y

(Y −X
Tβ0)

T
X̃

(
Σ

−1
0a +

X̃
T
X̃

σ2
0y

)−1

X̃
T (Y−X

Tβ0)

}
.

By comparing the coefficients of YY
T , Y and the constant term in the

exponential parts, we obtain

1

σ∗y
4 X̃

(
Σ

∗
a
−1 +

X̃
T
X̃

σ∗y
2

)−1

X̃
T − 1

σ∗y
2

(11)

=
1

σ4
0y

X̃

(
Σ

−1
0a +

X̃
T
X̃

σ2
0y

)−1

X̃
T − 1

σ2
0y

,

X
Tβ∗ = X

Tβ0(12)

and

1

σ∗y
N

|Σ∗
a
−1 + X̃

T
X̃/σ∗y

2|−1/2

|Σ∗
a|1/2

=
1

σN0y

|Σ0a
−1 + X̃

T
X̃/σ0y

2|−1/2

|Σ0a|1/2
.(13)

By (A.9), (12) gives β∗ = β0. We multiply both sides of (11) by X̃
T from

the left and by X̃ from the right. According to assumption (A.9), it holds
that, with positive probability,

1

σ∗y
4

(
Σ

∗
a
−1 +

X̃
T
X̃

σ∗y
2

)−1

X̃
T
X̃− 1

σ∗y
2 =

1

σ4
0y

(
Σ

−1
0a +

X̃
T
X̃

σ2
0y

)−1

X̃
T
X̃− 1

σ2
0y

.

Thus,

σ∗y
2 + Σ

∗
aX̃

T
X̃ = σ2

0y + Σ0aX̃
T
X̃.

Combining this result with (13) and by assumption (A.7), where P (N >
da|H̄X (τ),X (τ))> 0, we have that σ∗y = σ0y. This further gives Σ

∗
a = Σ0a.

Next, to show that φ∗ = φ0,γ
∗ = γ0 and Λ∗ = Λ0, we let ∆ = 0 in (9) and

notice that (9) can be written as

Ea

[
exp

{
−

∫ Z

0
e(φ

∗◦W̃(t))T
a+W(t)T γ∗

dΛ∗(t)

}]

=Ea

[
exp

{
−

∫ Z

0
e(φ0◦W̃(t))T a+W(t)T γ0 dΛ0(t)

}]
,
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where a follows a normal distribution with mean {X̃T
X̃/σ2

0y + Σ
−1
0a }{(Y −

X
Tβ0)

T
X̃/σ2

0y}T and covariance [X̃T
X̃/σ2

0y + Σ
−1
0a ]−1. However, for any

fixed X̃ and X, treating X̃
T
Y as parameters in this normal family, a is

the complete statistic for X̃
T
Y. Therefore,

exp

{
−

∫ Z

0
e(φ

∗◦W̃(t))T
a+W(t)Tγ∗

dΛ∗(t)

}

= exp

{
−

∫ Z

0
e(φ0◦W̃(t))T

a+W(t)Tγ0 dΛ0(t)

}
.

Equivalently,

e(φ
∗◦W̃(t))T

a+W(t)Tγ∗

λ∗(t) = e(φ0◦W̃(t))T
a+W(t)Tγ0λ0(t).

According to assumptions (A.9) and (A.11), φ∗ = φ0,γ
∗ = γ0 and Λ∗ = Λ0.

�

5. Proof of Theorem 3.2. The asymptotic properties for the estimators
(θ̂, Λ̂) follow if we can verify the conditions in [24], Theorem 3.3.1. For
completeness, we state this theorem below (the version from Appendix A
of [19]).

Theorem 5.1 (Theorem 3.3.1 in [24]). Let Sn and S be random maps
and a fixed map, respectively, from ψ to a Banach space such that:

(a)
√
n(Sn − S)(ψ̂n)−

√
n(Sn − S)(ψ0) = o∗P (1 +

√
n‖ψ̂n −ψ0‖).

(b) The sequence
√
n(Sn − S)(ψ0) converges in distribution to a tight

random element Z.
(c) The function ψ→ S(ψ) is Fréchet differentiable at ψ0 with a contin-

uously invertible derivative ∇Sψ0 (on its range).

(d) S(ψ0) = 0 and ψ̂n satisfies Sn(ψ̂n) = o∗P (n−1/2) and converges in outer
probability to ψ0.

Then
√
n(ψ̂n −ψ0)⇒−∇S−1

ψ0
Z.

In our situation, the parameter ψ = (θ,Λ) ∈ Ψ = {(θ,Λ) :‖θ − θ0‖ +
supt∈[0,τ ] |Λ(t)−Λ0(t)| ≤ δ} for a fixed small constant δ (note Ψ is a convex
set). Define a set

H = {(h1, h2) :‖h1‖ ≤ 1,‖h2‖V ≤ 1},
where ‖h2‖V is the total variation of h2 in [0, τ ] defined as

sup
0=t0≤t1<t2<···<tm=τ

m∑

j=1

|h2(tj)− h2(tj−1)|.
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Moreover, we let

Sn(ψ)(h1, h2) = Pn{lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2]},
S(ψ)(h1, h2) = P{lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2]},

where lθ(θ,Λ) is the first derivative of the log-likelihood function from one
single subject, denoted by l(O;θ,Λ), with respect to θ, and lΛ(θ,Λ)[h2] is
the derivative of l(O;θ,Λε) at ε = 0, where Λε(t) =

∫ t
0 (1 + εh2(s))dΛ0(s).

Thus, it is easy to see that Sn and S are both maps from Ψ to l∞(H) and√
n{Sn(ψ)− S(ψ)} is an empirical process in the space l∞(H).
According to Appendix A.2, the class

G =

{
lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2]− lθ(θ0,Λ0)

T
h1 − lΛ(θ0,Λ0)[h2],

‖θ − θ0‖+ sup
t∈[0,τ ]

|Λ(t)−Λ0(t)|< δ, (h1, h2) ∈H
}

is P-Donsker (cf. Section 2.1 of [24]). Moreover, Appendix A.2 also implies
that

sup
(h1,h2)∈H

P[lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2]− lθ(θ0,Λ0)
T
h1 − lΛ(θ0,Λ0)[h2]]

2 → 0

when ‖θ − θ0‖ + supt∈[0,τ ] |Λ(t) − Λ0(t)| → 0. Then (a) follows from Lem-
ma 3.3.5 of [24]. By the Donsker theorem (Section 2.5 of [24]), (b) holds as
a result of Appendix A.2 and the convergence is defined in the metric space
l∞(H). (d) is true since (θ̂, Λ̂) maximizes Pnl(O;θ,Λ), (θ0,Λ0) maximizes

Pl(O;θ,Λ) and (θ̂, Λ̂) converges to (θ0,Λ0) from Theorem 3.1.
It remains to verify the conditions in (c). The proof of the first half in (c)

is tedious so we defer it to Appendix A.3. We only need to prove that ∇Sψ0

is continuously invertible on its range in l∞(H). From Appendix A.3, ∇Sψ0

can be written as follows: for any (θ1,Λ1) and (θ2,Λ2) in Ψ,

∇Sψ0(θ1 − θ2,Λ1 −Λ2)[h1, h2]
(14)

= (θ1 − θ2)
TΩ1[h1, h2] +

∫ τ

0
Ω2[h1, h2]d(Λ1 −Λ2)(t),

where both Ω1 and Ω2 are linear operators on H and Ω = (Ω1,Ω2) maps
H⊂Rd×BV [0, τ ] to Rd×BV [0, τ ], whereBV [0, τ ] contains all the functions
with finite total variation in [0, τ ]. The explicit expressions of Ω1 and Ω2 are
given in Appendix A.3. From (14), we can treat (θ1 − θ2,Λ1 − Λ2) as an
element in l∞(H) via the following definition:

(θ1 − θ2,Λ1 −Λ2)[h1, h2] = (θ1 − θ2)
T
h1 +

∫ τ

0
h2(t)d(Λ1 −Λ2)(t)

∀ (h1, h2) ∈Rd ×BV [0, τ ].
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Then ∇Sψ0 can be expanded as a linear operator from l∞(H) to itself.
Therefore, if we can show that there exists some positive constant ε such
that εH⊂ Ω(H), then for any (δθ, δΛ) ∈ l∞(H),

‖∇Sψ0(δθ, δΛ)‖l∞(H) = sup
(h1,h2)∈H

∣∣∣∣δθ
TΩ1[h1, h2] +

∫ τ

0
Ω2[h1, h2]dδΛ(t)

∣∣∣∣

= ‖(δθ, δΛ)‖l∞(Ω(H)) ≥ ε‖(δθ, δΛ)‖l∞(H).

Hence, ∇Sψ0 is continuously invertible.
To prove εH⊂Ω(H) for some ε is equivalent to showing that Ω is invert-

ible. We note from Appendix A.3 that Ω is the summation of an invertible
operator and a compact operator. According to Theorem 4.25 of [20], to
prove the invertibility of Ω, it is sufficient to verify that Ω is one to one: if
Ω[h1, h2] = 0, then by choosing θ1 − θ2 = ε̃h1 and Λ1 − Λ2 = ε̃

∫
h2 dΛ0 in

(14) for a small constant ε̃, we obtain ∇Sψ0(h1,
∫
h2 dΛ0)[h1, h2] = 0. By the

definition of ∇Sψ0 , we notice that the left-hand side is the negative informa-
tion matrix in the submodel (θ0 + εh1,Λ0 + ε

∫
h2 dΛ0). Therefore, the score

function along this submodel should be zero with probability one. That is,

lθ(θ0,Λ0)
T
h1 + lΛ(θ0,Λ0)[h2] = 0; that is, if we let (hy1,h

a
1,h

β
1 ,h

φ
1 ,h

γ
1 ) be the

corresponding components of h1 for the parameters (σy,Vec(Σa),β,φ,γ),
respectively, and let Da be the symmetric matrix such that Vec(Da) = h

a
1 ,

then with probability one,

0 =

∫

a

G(a,O;θ0,Λ0)

×
[
a
T
Σ

−1
0a DaΣ

−1
0a a

2
−Tr(Σ−1

0a Da)−
Nh

y
1

σ0y

+
(Y −X

Tβ0 − X̃
T
a)T (Y −X

Tβ0 − X̃
T
a)hy1

σ3
0y

+
X(Y −X

Tβ0 − X̃
T
a)hβ1

σ2
0y

(15)

+ ∆{(W̃(Z) ◦ h
φ
1 )Ta + W(Z)Th

γ
1 }

−
∫ Z

0
e(φ0◦W̃(t))T

a+W(t)Tγ0{(W̃(t) ◦ h
φ
1 )Ta + W(t)Th

γ
1 }dΛ0(t)

]
da

+

∫

a

G(a,O;θ0,Λ0)

[
∆h2(Z)

−
∫ Z

0
h2(t)e

(φ0◦W̃(t))T a+W(t)Tγ0 dΛ0(t)

]
da.
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Note that (15) holds with probability one, so it may not hold for any Z ∈
[0, τ ] when ∆ = 0. However, if we integrate both sides from Z to τ and
subtract the obtained equation from (15) at ∆ = 0 and Z = τ , it is easy to
show that (15) also holds for any Z ∈ [0, τ ] when ∆ = 0. Particularly, we let
∆ = 0 and Z = 0 in (15), and define

Va = {Σ−1
0a + X̃

T
X̃/σ2

0y}−1 and ma = VaX̃
T (Y−X

Tβ0)/σ
2
0y .

We obtain

1

2
Tr(Σ−1

0a DaΣ
−1
0a Va) +

1

2
m
T
aΣ

−1
0a DaΣ

−1
0a ma −

1

2
Tr(Σ−1

0a Da)−
Nh

y
1

σ0y

+
h
y
1

σ3
0y

{
(Y −X

Tβ0)
T (Y −X

Tβ0)

− 2

σ2
0y

(Y−X
Tβ0)

T
X̃VaX̃

T (Y −X
Tβ0)

+ Tr(X̃T
X̃Va) + m

T
a X̃

T
X̃ma

}

+ {(Y −X
Tβ0)

T
X− (X̃ma)

T
X} h

β
1

σ2
0y

= 0.

Examining the coefficient for (Y − X
Tβ0) gives that h

β
1 = 0. The terms

without (Y−X
Tβ0) give

− 1

2σ2
0y

Tr(X̃T
X̃VaΣ

−1
0a Da)−

Nh
y
1

σ0y
+

h
y
1

σ3
0y

Tr(X̃T
X̃Va) = 0.(16)

Moreover, the coefficients for the quadratic term (Y−X
Tβ0)(Y−X

Tβ0)
T

are equal to

1

2σ4
0y

X̃VaΣ
−1
0a DaΣ

−1
0a VaX̃

T

(17)

+
h
y
1

σ3
0y

[
I − 2

σ2
0y

X̃VaX̃
T +

1

σ4
0y

X̃VaX̃
T
X̃VaX̃

T
]

= 0.

Multiplying both sides of (17) by X̃
T from the left and by X̃ from the right

gives

1

2σ4
0y

X̃
T
X̃VaΣ

−1
0a DaΣ

−1
0a Va

+
h
y
1

σ3
0y

{
I − 2

σ2
0y

X̃
T
X̃Va +

1

σ4
0y

X̃
T
X̃VaX̃

T
X̃Va

}
= 0.
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Since X̃
T
X̃Va/σ

2
0y = I −Σ

−1
0a Va, we obtain

1

2σ4
0y

X̃
T
X̃VaΣ

−1
0a DaΣ

−1
0a Va

+
h
y
1

σ3
0y

{
I − 1

σ2
0y

X̃
T
X̃Va −

1

σ2
0y

X̃
T
X̃VaΣ

−1
0a Va

}
= 0.

Furthermore, if we multiply the above equation by V
−1
a Σ0a from the right

and take the trace of the matrix, we have

1

2σ4
0y

Tr(X̃T
X̃VaΣ

−1
0a Da)

+
h
y
1

σ3
0y

{
Tr

(
V

−1
a Σ0a −

1

σ2
0y

X̃
T
X̃Σ0a −

1

σ2
0y

X̃
T
X̃Va

)}
= 0.

After substituting equation (16) into the above equation, we obtain
{
N + Tr

(
1

σ2
0y

X̃
T
X̃Σ0a

)
−Tr(V−1

a Σ0a)

}
h
y
1 = 0.

Thus, h
y
1 = 0 based on assumption (A.7) and, moreover, from (17), Da = 0.

Next, we let ∆ = 0 in (15) and obtain

Ea

[
exp

{
−

∫ Z

0
e(φ0◦W̃(t))T a+W(t)T γ0 dΛ0(t)

}

×
∫ Z

0
e(φ0◦W̃(t))T a+W(t)Tγ0

×{(W̃(t) ◦ h
φ
1 )Ta + W(t)Th

γ
1 + h2(t)}dΛ0(t)

]
= 0,

where a follows a normal distribution with mean

{X̃T
X̃/σ2

0y + Σ
−1
0a }{(Y −X

Tβ0)
T
X̃/σ2

0y}T

and covariance {X̃T
X̃/σ2

0y + Σ
−1
0a }−1. However, for any fixed X̃ and X,

treating X̃
T
Y as parameters in this normal family, a is a complete statistic

for X̃
T
Y. Therefore,

∫ Z

0
e(φ0◦W̃(t))T a+W(t)T γ0{(W̃(t) ◦ h

φ
1 )Ta + W(t)Th

γ
1 + h2(t)}dΛ0(t) = 0.

From assumption (A.9), this immediately gives h
φ
1 = 0, hγ1 = 0 and h2(t) ≡ 0.

Since conditions (a)–(d) have been proved, Theorem 3.3.1 of [24] concludes

that
√
n(θ̂ − θ0, Λ̂ − Λ0) weakly converges to a tight random element in
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l∞(H). Moreover, we obtain
√
n∇Sψ0(θ̂ − θ0, Λ̂−Λ0)[h1, h2]

(18)
=
√
n(Pn −P){lθ(θ0,Λ0)

T
h1 + lΛ(θ0,Λ0)[h2]}+ op(1),

where op(1) is a random variable which converges to zero in probability

in l∞(H). From (14), if we denote (h̃1, h̃2) = Ω−1(h1, h2), then (18) can also
be written as

√
n

{
(θ̂ − θ0)

T
h1 +

∫ τ

0
h2(t)d(Λ̂−Λ0)(t)

}

(19)
=
√
n(Pn −P){lθ(θ0,Λ0)

T
h̃1 + lΛ(θ0,Λ0)[h̃2]}+ op(1).

In other words,
√
n(θ̂ − θ0, Λ̂−Λ0) weakly converges to a Gaussian process

in l∞(H). Particularly, if we choose h2 = 0 in (19), then θ̂
T
h1 is an asymp-

totic linear estimator for θT0 h1 with influence function being lθ(θ0,Λ0)
T
h̃1 +

lΛ(θ0,Λ0)[h̃2]. Since this influence function is in the linear space spanned by
the score functions for θ0 and Λ0, Proposition 3.3.1 in [3] concludes that the
influence function is the same as the efficient influence function for θT0 h1;

that is, θ̂ is an efficient estimator for θ0 and Theorem 3.2 has been proved.

6. Proof of Theorem 3.3. According to the profile likelihood theory for
the semiparametric model (Theorem 1 in [18]), we need to construct an
approximately least favorable submodel and verify all the conditions in that
theorem. To construct the least favorable submodel, from (19) there exists

a vector of functions, denoted by h̃2, such that lθ(θ0,Λ0) + lΛ(θ0,Λ0)[h̃2]
is the efficient score function for θ0. Thus, the least favorable submodel at
(θ,Λ) is given by ξ 7→ (ξ,Λξ(θ,Λ)), where Λξ(θ,Λ) = Λ+(ξ−θ)

∫
h̃2 dΛ. For

this submodel, conditions (8) and (9) in [18] hold.

We note that, in the consistency proof of Theorem 3.1, when θ̂ is not nec-

essarily the maximum likelihood estimate but θ̂
p→θ0, the same arguments

as in the proofs of (ii) and (iii) give that Λ̂
θ̂
, which maximizes ln(θ̂,Λ) over

Zn, is bounded and its limit should be equal to Λ0. Thus, condition (10)
in [18] holds. Condition (11) in [18] can be checked straightforwardly. Fur-
thermore, using similar arguments as in Appendix A.2, we can directly check
the Donsker property of the class

{
∇ξl(ξ,Λξ(θ,Λ)) :‖ξ − θ0‖+ ‖θ − θ0‖+ sup

t∈[0,τ ]
|Λ(t)−Λ0(t)|< δ

}

and the Glivenko–Cantelli property of the class
{
∇2
ξξl(ξ,Λξ(θ,Λ)) :‖ξ − θ0‖+ ‖θ − θ0‖+ sup

t∈[0,τ ]
|Λ(t)−Λ0(t)|< δ

}
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for a small constant δ.
Hence, Theorem 3.3 follows from Theorem 1 and Corollaries 2 and 3

in [18].

7. Discussion. We have derived the asymptotic properties of the maxi-
mum likelihood estimators for joint models of repeated measurements and
survival time. Our results provide a theoretical justification for the maxi-
mum likelihood estimation in such types of analysis.

Our proofs can be generalized to obtaining the asymptotic properties
of the maximum likelihood estimators in other joint models, for example,
the joint models of repeated measurements and multivariate survival times
which were discussed by Li and Lin [17] and Huang, Zeger, Anthony and
Garrett [14], the joint models of repeated measurements and recurrent event
times [11], and so on. Moreover, based on our proof, we can see that The-
orems 3.1–3.3 hold even if the random effect, a, has slightly heavier tails
than the normal density, for example, if the tail approximates exp{−‖a‖α},
where 1<α< 2. We also note that recent work by Tsiatis and Davidian [22]
used the conditional score equation approach to obtain consistent estimates
for the regression coefficients in the proportional hazards model (1) without
any assumptions on random effects. However, their estimates are not effi-
cient and the applicability of the maximum likelihood estimation under this
situation is yet unknown.

APPENDIX

A.1. Donsker property of F . Recall that F = {Q(z,O;θ,Λ) : z ∈ [0, τ ],θ ∈
Θ,Λ ∈A}, where A= {Λ ∈ Z,Λ(τ) ≤B0}. We can rewrite Q(z,O;θ,Λ) as

Q(z,O;θ,Λ) =Q1(z,O;θ)
Q2(z,O;θ,Λ)

Q3(z,O;θ,Λ)
,

where

Q1(z,O;θ)

= exp{W(z)Tγ + ∆((φ ◦ W̃(z)) + 2X̃T (Y −X
Tβ))TV−1(φ ◦ W̃(z))},

Q2(z,O;θ,Λ)

=

∫

a

exp

[
−a

T
a

2
−

∫ Z

0
exp{(φ ◦ W̃(t))TV−1

a + W(t)Tγ + U(t)}dΛ(t)

]
da,

Q3(O;θ,Λ)

=

∫

a

exp

{
−a

T
a

2
−

∫ Z

0
e(φ◦W̃(t))T V−1a+W(t)T γ dΛ(t)

}
da.
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Here, V = X̃
T
X̃/σ2

y+Σ
−1
a and U(t) = (φ◦W̃(t))TV−1((φ◦W̃(z))+X̃

T (Y−
X
Tβ)/σ2

y).
Using assumption (A.2), we can easily show that Q1(z,O;θ) is continu-

ously differentiable with respect to z and θ and

‖∇θQ1(z,O;θ)‖+

∣∣∣∣
d

dz
Q1(z,O;θ)

∣∣∣∣ ≤ eg1+g2‖Y‖

for some positive constants g1 and g2. Furthermore, it holds that

‖∇θQ2(z,O;θ,Λ)‖+

∣∣∣∣
d

dz
Q2(z,O;θ,Λ)

∣∣∣∣

≤
∫

a

exp

{
−a

T
a

2

}
eg3‖a‖+g4‖Y‖+g5B0 da

≤ eg6+g7‖Y‖

and ‖∇θQ3(O;θ,Λ)‖ ≤ eg8+g9‖Y‖ for some positive constants g3, . . . , g9. Ad-
ditionally,

|Q2(z,O;θ,Λ1)−Q2(z,O;θ,Λ2)|

≤
∣∣∣∣
∫

a

exp

{
−a

T
a

2

}∫ Z

0
e(φ◦W̃(t))T V−1a+W(t)T γ+U(t) d(Λ1 −Λ2)(t)da

∣∣∣∣

≤ (2π)da/2

∣∣∣∣
∫ Z

0
e(φ◦W̃(t))T V−2(φ◦W̃(t))/2+W(t)T γ+U(t) d(Λ1 −Λ2)(t)

∣∣∣∣

≤ (2π)da/2
∫ Z

0
|Λ1(t)−Λ2(t)|

×
∣∣∣∣
d

dt
[e(φ◦W̃(t))T

V
−2(φ◦W̃(t))/2+W(t)T γ+U(t)]

∣∣∣∣dt

+ (2π)da/2|Λ1(Z)−Λ2(Z)|e(φ◦W̃(Z))T V−2(φ◦W̃(Z))/2+W(Z)T γ+U(Z)

≤ eg10+g11‖Y‖
{
|Λ1(Z)−Λ2(Z)|+

∫ τ

0
|Λ1(t)−Λ2(t)|dt

}
,

where g10 and g11 are two positive constants. Similarly,

|Q3(z,O;θ,Λ1)−Q3(z,O;θ,Λ2)|

≤ eg10+g11‖Y‖
{
|Λ1(Z)−Λ2(Z)|+

∫ τ

0
|Λ1(t)−Λ2(t)|dt

}
.

On the other hand, there exist positive constants g13, . . . , g16 such that
|Q1(z,O;θ)| ≤ eg12+g13‖Y‖, |Q2(z,O;θ,Λ)| ≤ (2π)−da/2 and Q3(z,O;θ,Λ) ≥
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∫
a
exp{−aT a

2 − eg14+g15‖a‖B0} ≥ g16 > 0. Therefore, by the mean-value theo-
rem, we conclude that, for any (z1,θ1,Λ1) and (z2,θ2,Λ2) in [0, τ ]×Θ×A,

|Q(z1,O;θ1,Λ1)−Q(z2,O;θ2,Λ2)|

≤ eg17+g18‖Y‖
{
‖θ1 − θ2‖+ |Λ1(Z)−Λ2(Z)|(A.1)

+

∫ Z

0
|Λ1(t)−Λ2(t)|dt+ |z1 − z2|

}

holds for some positive constants g17 and g18.
According to Theorem 2.7.5 in [24], the entropy number for the class

A satisfies logN[·](ε,A,L2(P )) ≤ K/ε, where K is a constant. Thus, we
can find exp{K/ε} brackets, {[Lj ,Uj ]}, to cover the class A such that, for
each pair of [Lj ,Uj ], ‖Uj −Lj‖L2(P ) ≤ ε. We can further find a partition of
[0, τ ] × Θ, say S1 ∪ S2 ∪ · · · , such that the number of partitions is of the
order (1/ε)d+1 and for any (z1,θ1) and (z2,θ2) in the same partition, their
Euclidean distance is less than ε. Therefore, the partition {S1, S2, . . .} ×
{[Lj ,Uj ]} bracket covers [0, τ ]×Θ×A and the total number of the partition
is of order (1/ε)d+1 exp{1/ε}. Thus, from (A.1), for any Sk and [Lj ,Uj], the
set of the functions {Q(z,O;θ,Λ) : (z,θ) ∈ Sk,Λ ∈ A,Λ ∈ [Lj,Uj ]} can be
bracket covered by

[
Q(zk,O;θk,Λj)

− eg17+g18‖Y‖
{
ε+ |Uj(Z)−Lj(Z)|+

∫ τ

0
|Uj(t)−Lj(t)|dt

}
,

Q(zk,O;θk,Λj)

+ eg17+g18‖Y‖
{
ε+ |Uj(Z)−Lj(Z)|+

∫ τ

0
|Uj(t)−Lj(t)|dt

}]
,

where (zk,θk) is a fixed point in Sk and Λj is a fixed function in [Lj,Uj ].
Note that the L2(P ) distance between these two functions is less than O(ε).
Therefore, we have

N[·](ε,F ,‖ · ‖L2(P )) ≤O(1)

(
1

ε

)d+1

e1/ε.

Furthermore, F has an L2(P )-integrable covering function, which is equal
to O(eg17+g18‖Y‖). From Theorem 2.5.6 in [24], F is P-Donsker.

In the above derivation, we also note that all the functions in F are
bounded from below by e−g19−g20‖Y‖ for some positive constants g19 and
g20.
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A.2. Donsker property of G. For any (h1, h2) ∈H, if we let (hy1,h
a
1,h

β
1 ,

h
φ
1 ,h

γ
1 ) be the corresponding components of h1 for the parameters (σy,Σa,β,

φ,γ), respectively, then lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2] has the expression

[
µ1(O;θ,Λ)Th1 −

∫ Z

0
µ2(t,O;θ,Λ)Th1 dΛ(t)

]

+ ∆h2(Z)−
∫ Z

0
µ3(t,O;θ,Λ)h2(t)dΛ(t),

where

µ1(O;θ,Λ)Th1

=

{∫

a

G(a,O;θ,Λ)da

}−1

×
∫

a

G(a,O;θ,Λ)

[
a
T
Σ

−1
a DaΣ

−1
a a

2
−Tr(Σ−1

a Da)−
Nh

y
1

σy

+
(Y−X

Tβ − X̃
T
a)T (Y −X

Tβ − X̃
T
a)hy1

σ3
y

+
X(Y−X

Tβ − X̃
T
a)hβ1

σ2
y

+ ∆{(W̃(Z) ◦ h
φ
1 )Ta + W(Z)Th

γ
1 }

]
da,

µ2(t,O;θ,Λ)Th1

=

{∫

a

G(a,O;θ,Λ)da

}−1

×
∫

a

G(a,O;θ,Λ)e(φ◦W̃(t))T a+W(t)T γ

× {(W̃(t) ◦ h
φ
1 )Ta + W(t)Th

γ
1 }da

and

µ3(t,O;θ,Λ)

=

{∫

a

G(a,O;θ,Λ)da

}−1 ∫

a

G(a,O;θ,Λ)e(φ◦W̃(t))T
a+W(t)T γ da.

Here, Da is a symmetric matrix such that Vec(Da) = h
a
1 .

For j = 1,2,3, we denote ∇θµj and ∇Λµj[δΛ] as the derivatives of µj with
respect to θ and Λ along the path Λ+εδΛ. Then using similar calculations to
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Appendix A.1, it is tedious to verify that ∇Λµj[δΛ] =
∫ t
0 µj+3(s,O;θ,Λ)dδΛ(s)

and that there exist two positive constants r1 and r2 such that∑

j

{|µj |+ |∇θµj|} ≤ er1+r2‖bY‖.

On the other hand, by the mean value theorem, we have that, for any
(θ,Λ,h1, h2) and (θ̃, Λ̃, h̃1, h̃2) in Ψ×H,

lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2]− lθ(θ̃, Λ̃)T h̃1 − lΛ(θ̃, Λ̃)[h̃2]

= (θ − θ̃)T∇θµ1(O;θ∗,Λ∗)h1 +

∫ Z

0
µ4(t,O;θ∗,Λ∗)Th1 d(Λ− Λ̃)(t)

−
∫ Z

0
(θ − θ̃)T∇θµ2(t,O;θ∗,Λ∗)h1 dΛ(t)

−
∫ Z

0

∫ t

0
µ5(s,O;θ∗,Λ∗)d(Λ− Λ̃)(s)h1 dΛ(t)

−
∫ Z

0
µ2(t,O;θ∗,Λ∗)Th1 d(Λ− Λ̃)(t)

−
∫ Z

0
(θ − θ̃)T∇θµ3(t,O;θ∗,Λ∗)h2(t)dΛ(t)(A.2)

−
∫ Z

0

∫ t

0
µ6(s,O;θ∗,Λ∗)d(Λ− Λ̃)(s)h2(t)dΛ(t)

−
∫ Z

0
µ3(t,O;θ∗,Λ∗)h2(t)d(Λ− Λ̃)(t)

+ µ1(O; θ̃, Λ̃)T (h1 − h̃1)−
∫ Z

0
µ2(t,O; θ̃, Λ̃)T (h1 − h̃1)dΛ(t)

+ ∆(h2(Z)− h̃2(Z))−
∫ Z

0
µ3(t,O; θ̃, Λ̃)(h2(t)− h̃2(t))dΛ̃(t),

where (θ∗,Λ∗) is equal to ε∗(θ,Λ)+ (1− ε∗)(θ̃, Λ̃) for some ε∗ ∈ [0,1]. Thus,

|lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2]− lθ(θ̃, Λ̃)T h̃1 − lΛ(θ̃, Λ̃)[h̃2]|

≤ er1+r2‖Y‖
{
‖θ − θ̃‖+ ‖h1 − h̃1‖+ |Λ(Z)− Λ̃(Z)|

+

∫ τ

0
|Λ(t)− Λ̃(t)|[dt+ d|h2(t)|+ d|h̃2(t)|]

+ |h2(Z)− h̃2(Z)|+
∫ τ

0
|h2(t)− h̃2(t)|[dΛ1(t) + dΛ2(t)]

}
,

where d|h2(t)| = dh+
2 (t) + dh−2 (t) and d|h̃2(t)| = dh̃+

2 (t) + dh̃−2 (t). There-
fore, by using the same arguments as in Appendix A.1 and noting that
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logN[·](ε,{h2 :‖h2‖V ≤B1},L2(Q)) ≤K/ε for a constant B1 and any prob-
ability measure Q where K is a constant (Theorem 2.7.5 of [24]), we obtain

logN[·](ε,G,L2(P )) ≤O

(
1

ε
+ log ε

)
.

Hence, G is P-Donsker.
Furthermore, from (A.2) we can calculate that

|lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2]− lθ(θ0,Λ0)
T
h1 − lΛ(θ0,Λ0)[h2]|

≤ er1+r2‖Y‖
{
‖θ − θ0‖+ |Λ(Z)−Λ0(Z)|+

∫ τ

0
|Λ(t)−Λ0(t)|dt

}

+

∣∣∣∣
∫ Z

0
µ3(t,O;θ∗,Λ∗)h2(t)d(Λ−Λ0)(t)

∣∣∣∣.

If ‖θ − θ0‖ → 0 and supt∈[0,τ ] |Λ(t) − Λ0(t)| → 0, the above expression con-
verges to zero uniformly. Thus,

sup
(h1,h2)∈H

P[lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2]− lθ(θ0,Λ0)
T
h1 − lΛ(θ0,Λ0)[h2]]

2 → 0.

A.3. Derivative operator ∇Sψ0
. From (A.2) we can obtain that

lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2]− lθ(θ0,Λ0)
T
h1 − lΛ(θ0,Λ0)[h2]

= (θ − θ0)
T

{
∇θµ1(O;θ∗,Λ∗)−

∫ Z

0
∇θµ2(t,O;θ∗,Λ∗)dΛ0(t)

}
h1

+ h
T
1

∫ τ

0
I(t≤Z)

{
µ4(t,O;θ∗,Λ∗)− µ2(t,O;θ∗,Λ∗)

− µ5(t,O;θ∗,Λ∗)

∫ Z

t
dΛ0(s)

}
d(Λ−Λ0)(t)

− (θ − θ0)
T

∫ τ

0
I(t≤Z)∇θµ3(t,O;θ∗,Λ∗)h2(t)dΛ0(t)

−
∫ τ

0

{
I(t≤Z)µ6(t,O;θ∗,Λ∗)

∫ Z

t
h2(s)dΛ0(s)

+ I(t≤ Z)µ3(t,O;θ∗,Λ∗)h2(t)

}
d(Λ−Λ0)(t).

Then it is clear that

∇Sψ0(θ − θ0,Λ−Λ0)[h1, h2]

= (θ − θ0)
T
P

{
∇θµ1(O;θ0,Λ0)−

∫ Z

0
∇θµ2(t,O;θ0,Λ0)dΛ0(t)

}
h1
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+ h
T
1

∫ τ

0
P

[
I(t≤Z)

{
µ4(t,O;θ0,Λ0)

− µ2(t,O;θ0,Λ0)

− µ5(t,O;θ0,Λ0)

∫ Z

t
dΛ0(s)

}]
d(Λ−Λ0)(t)

− (θ − θ0)
T

∫ τ

0
P{I(t≤ Z)∇θµ3(t,O;θ0,Λ0)}h2(t)dΛ0(t)

−
∫ τ

0
P

{
I(t≤ Z)µ6(t,O;θ0,Λ0)

∫ Z

t
h2(s)dΛ0(s)

+ I(t≤Z)µ3(t,O;θ0,Λ0)h2(t)

}
d(Λ−Λ0)(t).

It is tedious to check that, for j = 1,2, . . . ,6,

sup
t∈[0,τ ]

‖µj(t,O;θ∗,Λ∗)− µj(t,O;θ0,Λ0)‖

≤ er3+r4‖Y‖
{
‖θ∗ − θ0‖+ sup

t∈[0,τ ]
|Λ∗(t)−Λ0(t)|

}
.

Thus,

P[lθ(θ,Λ)Th1 + lΛ(θ,Λ)[h2]− lθ(θ0,Λ0)
T
h1 − lΛ(θ0,Λ0)[h2]]

= ∇Sψ0(θ − θ0,Λ−Λ0)[h1, h2]

+ o

(
‖θ − θ0‖+ sup

t∈[0,τ ]
|Λ(t)−Λ0(t)|

)
(‖h1‖+ ‖h2‖V ).

Therefore, S(ψ0) is Fréchet differentiable.
We can rewrite ∇Sψ0(θ − θ0,Λ− Λ0)[h1, h2] as h

T
1 Ω1[h1, h2] +

∫ τ
0 Ω2[h1,

h2]d(Λ−Λ0), where

Ω1[h1, h2] = h
T
1 P

{
∇θµ1(O;θ0,Λ0)−

∫ Z

0
∇θµ2(t,O;θ0,Λ0)dΛ0(t)

}

−
∫ τ

0
P{I(t≤Z)∇θµ3(t,O;θ0,Λ0)}h2(t)dΛ0(t)

and

Ω2[h1, h2] = h
T
1 P

[
I(t≤Z)

{
µ4(t,O;θ0,Λ0)− µ2(t,O;θ0,Λ0)

− µ5(t,O;θ0,Λ0)

∫ Z

t
dΛ0(s)

}]

−P

{
I(t≤ Z)µ6(t,O;θ0,Λ0)

∫ Z

t
h2(s)dΛ0(s)

}



REPEATED MEASUREMENTS AND SURVIVAL 31

−P{I(t≤ Z)µ3(t,O;θ0,Λ0)}h2(t).

Then the operator Ω = (Ω1,Ω2) is the bounded linear operator from Rd ×
BV [0, τ ] to itself. Moreover, we note that Ω = A + (K1,K2), where
A(h1, h2) = (h1,−P{I(t ≤ Z)µ3(t,O;θ0,Λ0)}h2(t)), K1(h1, h2) = Ω1[h1,
h2]−h1 and

K2(h1, h2) = h
T
1 P

[
I(t≤ Z)

{
µ4(t,O;θ0,Λ0)− µ2(t,O;θ0,Λ0)

− µ5(t,O;θ0,Λ0)

∫ Z

t
dΛ0(s)

}]

−P

{
I(t≤ Z)µ6(t,O;θ0,Λ0)

∫ Z

t
h2(s)dΛ0(s)

}
.

Obviously, A is invertible. K1 maps into a finite-dimensional space, so it is
compact. The image of K2 is a continuously differentiable function in [0, τ ].
According to the Arzela–Ascoli theorem (page 245 in [21]), K2 is a compact
operator from Rd ×BV [0, τ ] to BV [0, τ ]. Therefore, we conclude that Ω is
the summation of an invertible operator and a compact operator.
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