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ESTIMATING MARGINAL SURVIVAL FUNCTION BY
ADJUSTING FOR DEPENDENT CENSORING

USING MANY COVARIATES1

BY DONGLIN ZENG

University of North Carolina at Chapel Hill

One goal in survival analysis of right-censored data is to estimate the
marginal survival function in the presence of dependent censoring. When
many auxiliary covariates are sufficient to explain the dependent censoring,
estimation based on either a semiparametric model or a nonparametric
model of the conditional survival function can be problematic due to the
high dimensionality of the auxiliary information. In this paper, we use
two working models to condense these high-dimensional covariates in
dimension reduction; then an estimate of the marginal survival function can
be derived nonparametrically in a low-dimensional space. We show that such
an estimator has the following double robust property: when either working
model is correct, the estimator is consistent and asymptotically Gaussian;
when both working models are correct, the asymptotic variance attains the
efficiency bound.

1. Introduction. Right-censored data with dependent censoring are common
in many epidemiological studies. Such data consist of n i.i.d. copies of the
observation (Y = T ∧ C,R = I (T ≤ C),L), where T is the failure time of
interest, C is the right censoring time, and L includes the covariate information.
Usually, the covariates L contain not only subject demographic information and
disease history, but also much other auxiliary information which researchers
are not primarily interested in but which is informative in predicting subjects’
failure time or explaining why subjects drop out, or both. For example, in a
typical medical study, L may contain the patient’s willingness to participate in the
study, the patient’s accessibility to hospitals, the social support from the patient’s
family members, or the patient’s genetic information, and so on. When much
auxiliary information has been collected, in practice, it is safe to assume that L is
sufficient to explain the dependence between T and C. Equivalently, T and C are
independent when conditional on L.

The purpose of this article is to estimate the marginal survival function of T

using right-censored data. A standard estimate is the Kaplan–Meier estimate.
However, it is well known that, when T and C are dependent, this estimator is
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inconsistent. Another intuitive approach to estimate the survival function of T

is to estimate the conditional distribution of T given L using a semiparametric
model [e.g., the Cox proportional hazard model; see Cox (1972)], the proportional
odds model [Bennett (1983), etc.], or via nonparametric estimation approaches
such as using a local likelihood function [Tibshirani and Hastie (1987)]. Then
the estimate of the marginal survival function of T is simply the empirical
average of the conditional distribution of T given L over all the observed
covariates. However, the above approaches can be problematic when the auxiliary
covariates, L, consist of many variables. This is because when L has at least
three dimensions, nonparametric estimation of the distribution of T given L is
infeasible in a moderate-sized sample due to the curse of dimensionality; and in
any semiparametric model, the parametric function of L in the model of T given
L is likely to be misspecified. Consequently, these intuitive approaches bias the
estimation of the survival function of T .

To reduce the limitation in the above intuitive approaches, in this article we
propose two working models for both the lifetime T and the censoring time C

given all the covariates L. Then two-dimensional condensed information of L is
extracted from the working models and used as the new covariates in place
of L. The estimator of the survival function is obtained by maximizing a pseudo-
likelihood function nonparametrically in the space with the reduced dimension. It
is shown that if either working model is correct, the estimator of the marginal
survival function is consistent and asymptotically Gaussian; if both working
models are correct, the asymptotic variance of the estimator attains the generalized
Cramér–Rao bound of the full model space [cf. Bickel, Klaassen, Ritov and
Wellner (1993)]. The first property is named “double robustness” by Robins,
Rotnitzky and van der Laan (2000), since the estimator remains consistent if one
working model is misspecified but the other one is correct.

The method of using the condensed information of the high-dimensional
covariates in the estimation dates back to the propensity score approach by
Rubin (1976) in a simple regression, where the propensity score was defined as
the predicted missing probability given all the covariates. Little (1986) further
combined the propensity score and the mean score, the latter of which was
defined as the predicted mean response given all the covariates, to estimate the
population mean in a survey study. Such methods have been recently developed
and generalized to study dependent censoring in semiparametric regression
and survival analysis by Robins and others [Rotnitzky and Robins (1995),
Robins, Rotnitzky and van der Laan (2000) and Scharfstein and Robins (2002)].
Although all the above mentioned approaches including ours pursue the summary
information of the covariates, sometimes referred to as the propensity score or risk
score, using the working models for T and C given L, the estimation approach
we take is much different from theirs. Robins, Rotnitzky and van der Laan’s
approach is to begin with an inverse-weighted estimating equation, where only
the complete observations are used in the estimating equation and each complete
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observation is weighted with the inverse of the probability of not being censored;
a final estimating equation for estimating the marginal survival distribution is
to subtract from the inverse-weighted estimating equation the projection on
the score tangent space. However, the method we propose in this article is a
purely likelihood-based approach: we first obtain the condensed covariates by
optimizing the pseudolikelihood functions based on the working models; we then
optimize another pseudolikelihood function to derive the estimate of T ’s survival
function. Therefore, the likelihood-based approach we take only involves simple
optimization steps and the estimate turns out to have a simple expression; by
contrast, the approach in Robins, Rotnitzky and van der Laan (2000) requires a
practical user to have knowledge of the projection on the score space.

This article is organized as follows: In Section 2 we give the details of estimating
the marginal survival function; the asymptotic properties of our estimator are then
given in Section 3, where we also provide an algorithm to estimate the asymptotic
variance; the numerical results from a simulation study are given in Section 4;
finally, the article concludes with some discussion. Most of the proofs in this article
are deferred to the Appendix.

2. Estimation. Under the assumption that T and C are independent given L,
the observed likelihood function for n observations can be written as

n∏
i=1

[
hT |L(Yi |Li)

Ri e−HT |L(Yi |Li)hC|L(Yi|Li)
1−Ri e−HC|L(Yi |Li)fL(Li)

]
,

where hT |L(·|L) and hC|L(·|L) are the hazard rate functions for T and C given L,
respectively; HT |L(·|L) and HC|L(·|L) are their respective cumulative hazard
functions. Our estimation procedure consists of the following steps.

Step 1. We propose two working models for both the lifetime T and the
censoring time C given L. Our working models for T given L and C given L are
Cox’s proportional hazard models; that is, we tentatively assume that

hT |L(y|l) = λT (y)eβ ′l , hC|L(y|l) = λC(y)eγ ′l

for some unknown functions λT (·), λC(·) and some parameters (β, γ ).

Step 2. We derive the estimator of (β, γ ) simply by performing Cox’s regres-
sions, or equivalently, we maximize the following pseudolog partial likelihood
functions:

L̃
(n)
1 (β) = 1

n

n∑
i=1

Ri

[
β ′Li − log

( ∑
Yj≥Yi

eβ ′Lj

)]
,

L̃
(n)
2 (γ ) = 1

n

n∑
i=1

(1 − Ri)

[
γ ′Li − log

( ∑
Yj≥Yi

eγ ′Lj

)]
,
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to estimate β and γ , respectively. We denote the estimators as (β̂n, γ̂n). It will
be shown in the next section that there exist two constants β∗ and γ ∗ such that
β̂n and γ̂n converge to β∗ and γ ∗ in probability, respectively.

Step 3. Acting as if the two limit constants β∗ and γ ∗ were known, we obtain
the estimator of the hazard rate function of T given (β∗′L,γ ∗′L) as follows.
Denote Z∗ = (β∗′L,γ ∗′L). When either of the working models is right, it will
be shown that T and C are independent given Z∗ in Lemma 3.1. In other words,
the two-dimensional covariate Z∗ is sufficient to explain the dependence between
T and C. Therefore, we replace the covariates L by Z∗ in the observations and
obtain a reduced dataset (Yi,Ri,Z

∗
i = (β∗′Li, γ

∗′Li)), i = 1, . . . , n. Clearly, the
likelihood function for this reduced data can be verified to be

n∏
i=1

[
hT |Z∗(Yi |Z∗

i )Ri e−HT |Z∗ (Yi |Z∗
i )hC|Z∗(Yi |Z∗

i )1−Ri e−HC|Z∗(Yi |Z∗
i )fZ∗(Z∗

i )
]
,

where hT |Z∗(·|Z∗), hC|Z∗(·|Z∗) are the hazard rate functions of T and C given Z∗,
respectively, and HT |Z∗(·|Z∗),HC|Z∗(·|Z∗) are their corresponding cumulative
hazard functions. So we can estimate hT |Z∗(y|z) by maximizing a local version
of the observed log-likelihood function

n∑
i=1

K

(
Z∗

i − z

an

)[
Ri log hT |Z∗(Yi|z) − HT |Z∗(Yi |z)],

where K(·, ·) is a symmetric two-dimensional kernel function and an is a
bandwidth to be chosen later. Easy calculation shows that the maximizer for
hT |Z∗(y|z) is an empirical function with a point mass at each observed Yj and

the mass is equal to RjK(
Z∗

j −z

an
)/(

∑
Ym≥Yj

K(
Z∗

m−z

an
)).

Step 4. Therefore, the estimator for the cumulative hazard function is given by

ĤT |Z∗(y|z) = ∑
Yj ≤y

RjK((Z∗
j − z)/an)∑

Ym≥Yj
K((Z∗

m − z)/an)
.

The estimator for the conditional survival function of T given Z∗ is then
ŜT |Z∗(t|z) = ∏

s≤t (1 − ĤT |Z∗({s}|z)). Finally, the estimator for the marginal
survival function of T is simply the empirical average of ŜT |Z∗(t|z) over all the
Z∗

i , i = 1, . . . , n. That is, it is equal to

1

n

n∑
i=1

n∏
j=1

(
1 − K((Z∗

i − Z∗
j )/an)IYj≤tRj∑n

m=1 K((Z∗
i − Z∗

m)/an)IYj≤Ym

)
.
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Step 5. Since the two constants β∗ and γ ∗ are unknown but can be consistently
estimated by β̂n and γ̂n, we replace (β∗, γ ∗) with (β̂n, γ̂n) in the last estimator
obtained in Step 4. Thus, we obtain an estimator for the survival function of T as

Ŝn(t) = 1

n

n∑
i=1

n∏
j=1

(
1 − K((Ẑi − Ẑj )/an)IYj≤tRj∑n

m=1 K((Ẑi − Ẑm)/an)IYj ≤Ym

)
.

3. Main results. Before we present the main results of this article, we assume
the following conditions hold.

ASSUMPTION 3.1. T and C are independent conditional on L.

ASSUMPTION 3.2. Let τ be the ending time of the study. For any l in the
support of L, the conditional density of (T ,C) given L = l is continuously twice-
differentiable in [0,∞) × [0, τ ) and its second derivatives are uniformly bounded.
Moreover, L has bounded second derivative in its support.

ASSUMPTION 3.3. There exists an unknown constant θ such that for any l in
the support of L,

inf
l

P (T ≥ τ |L = l) > θ > 0,

inf
l

P (C ≥ τ |L = l) = inf
l

P (C = τ |L = l) > θ > 0 a.s.

ASSUMPTION 3.4. The kernel function K(x1, x2) is continuously twice
differentiable with bounded second derivatives. Moreover, it satisfies

K(−x1,−x2) = K(x1, x2),

|∇xj
K(x1, x2)| ≤ O(1)

1 + x2
1 + x2

2

, j = 1,2.

ASSUMPTION 3.5. (logan)2

na2
n

→ 0, na2
n → ∞, na4

n → 0.

REMARK 3.1. Assumption 3.3 implies that all the subjects surviving until
τ will be right-censored at τ , due to the end of the study. In Assumption 3.4, an
example of kernel functions satisfying the conditions is k(x1, x2) = exp{−(x2

1 +
x2

2)} or any symmetric smooth function with bounded support. The conditions in
Assumption 3.5 stipulate the choice of the bandwidth and control the asymptotic
bias of Ŝn(t) resulting from the kernel estimation. First, based on Dabrowska
(1987), (logan)

2/(na2
n) → 0 ensures the unform convergence of ĤT |Z∗(t|z), a type

of kernel estimator for the cumulative hazard function. Second, it is known that for
a kernel smoothing estimator with bandwidth an in the two-dimensional real space,
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the convergence rate is of the order
√

na2
n and the bias is of the order a2

n. Such bias
carries into the estimator Ŝn(t). Thus, na4

n → 0 in Assumption 3.5 ensures that the
asymptotic bias of

√
n(Ŝn(t) − S0(t)) resulting from the kernel estimation will be

zero. Clearly, one choice of the bandwidth an in Assumption 3.5 can be O(1)n−α

where α ∈ (1
4 , 1

2) and we will use an = O(n−1/3) in the subsequent simulation
study.

3.1. Asymptotic properties of β̂n and γ̂n.

THEOREM 3.1. Under Assumptions 3.1–3.5, there exist β∗ and γ ∗ such that

√
n(β̂n − β∗) = 1√

n

n∑
i=1

Sβ(β∗, Yi,Ri,Li) + op(1),

√
n(γ̂n − γ ∗) = 1√

n

n∑
i=1

Sγ (γ ∗, Yi,Ri,Li) + op(1)

for some influence functions Sβ and Sγ . Thus, both
√

n(β̂n −β∗) and
√

n(γ̂n −γ ∗)
converge weakly to some multinormal distributions.

Theorem 3.1 shows that (β̂n, γ̂n) converges to some constants even though using
Cox’s proportional hazard models as working models may be wrong. Obviously,
if the model of T given L is a Cox’s proportional hazard model, then β∗ is the
correct coefficient of L specified in this model; if the model of C given L is a
Cox’s proportional hazard model, then γ ∗ is the correct coefficient of L specified
in this model. Furthermore, we show that, when either working model is correct,
the condensed variables (β∗′L,γ ∗′L) are sufficient to explain the dependence
between the lifetime and the censoring time.

LEMMA 3.1. Suppose either of the working models is right, that is, either
the model for T given L is a Cox’s proportional hazard model or the model
for C given L is a Cox’s proportional hazard model. Let Z∗ = (β∗′L,γ ∗′L). Then
T and C are independent given Z∗, and moreover, the cumulative hazard function
of T given Z∗ is equal to

∫ t
0

duP (T ∧C≤u,R=1|Z∗=z)
P (T ∧C≥u|Z∗=z)

.

PROOF. We only show that the results are true if the working model for C

given L is a Cox’s proportional hazard model. For any t1, t2 > 0,

P (T < t1,C < t2|Z∗) = EL|Z∗[P (T < t1|L)P (C < t2|L)]
= EL|Z∗[P (T < t1|L)P (C < t2|Z∗)]
= P (C < t2|Z∗)P (T < t1|Z∗).
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Therefore, T and C are independent conditional on Z∗. Hence,∫ t

0

duP (T ∧ C ≤ u,R = 1|Z∗ = z)

P (T ∧ C ≥ u|Z∗ = z)

= −
∫ t

0

d
du

∫ ∞
u [P (c ≥ T |Z∗ = z) − P (u ≥ T |Z∗ = z)]dFC(c)

P (C ≥ u,T ≥ u|Z∗ = z)
du

=
∫ t

0

duP (T ≤ u|Z∗ = z)

P (T ≥ u|Z∗ = z)
= HT |Z∗(t|z). �

3.2. Asymptotic properties of the estimator Ŝn(t). The main result is the
asymptotic property for Ŝn(t) given below.

THEOREM 3.2. Under Assumptions 3.1–3.5, if either of the two working
models is correct, that is, either the model for T given L is a Cox’s proportional
hazard model or the model for C given L is a Cox’s proportional hazard model,

√
n
(
Ŝn(t) − S(t)

) �⇒ G(t) in l∞([0, τ ]),
where G(·) is a Gaussian process.

REMARK 3.2. Indeed, the covariance of G(·) has an explicit form. From the
proof of Theorem 3.2, Ŝn(t) is an asymptotic linear estimator of S(t) and its
influence function, denoted as A(t;Y,R,L), is equal to

e−HT |Z∗ (t|Z∗) − S(t) − RIY≤t e
HT |Z∗(Y |Z∗)+HC|Z∗ (Y |Z∗)−HT |Z∗(t|Z∗)

+
∫ t∧Y

0
eHT |Z∗(u|Z∗)+HC|Z∗ (u|Z∗)−HT |Z∗(t|Z∗) duHT |Z∗(u|Z∗)(3.1)

+ B1(t;Y,R,L) + B2(t;Y,R,L),

where B1(t;Y,R,L) is

−E

[
e−HT |Z∗ (t|Z∗)∇γ |γ=γ ∗

∫ t

0

duP (Y ∧ C ≤ u,R = 1|γ ′L,β∗′L)

P (T ∧ C ≥ u|γ ′L,β∗′L)

]
× Sγ (γ ∗, Y,R,L)

and B2(t;Y,R,L) is

−E

[
e−HT |Z∗ (t|Z∗)∇β |β=β∗

∫ t

0

duP (T ∧ C ≤ u,R = 1|γ ∗′L,β ′L)

P (T ∧ C ≥ u|γ ∗′L,β ′L)

]
× Sβ(β∗, Y,R,L).

Therefore, the covariance function, denoted by r(s, t), for the limit Gaussian
process is equal to Cov(A(s;Y,R,L),A(t;Y,R,L)). Interestingly, the covari-
ance of the limiting process G(·) does not depend on the choice of the kernel
function or the choice of the bandwidth in deriving the estimator Ŝn(t).
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In the expression of (3.1), the two terms B1(t;Y,R,L) and B2(t;Y,R,L)

contribute to the variation in estimating Ŝn(t) due to the estimation of β∗ and γ ∗.
Moreover, if the working model of T given L is correct, by repeating the arguments
in proving Lemma 3.1, we easily obtain that for any γ ,∫ t

0

duP (T ∧ C ≤ u,R = 1|γ ′L,β∗′L)

P (T ∧ C ≥ u|γ ′L,β∗′L)
= HT |β∗′L,γ ′L(t|β∗′

L,γ ′L).

Therefore,

−E

[
e−HT |Z∗ (t|Z∗)∇γ |γ=γ ∗

∫ t

0

duP (T ∧ C ≤ u,R = 1|β∗′L,γ ′L)

P (T ∧ C ≥ u|β∗′L,γ ′L)

]
= ∇γ |γ=γ ∗Ee

−HT |β∗′L,γ ′L(t|β∗′L,γ ′L) = ∇γ |γ=γ ∗S(t) = 0.

Hence, we conclude that B1(t;Y,R,L) is zero. Similarly, B2(t;Y,R,L) is zero
if the working model for C given L is correct.

COROLLARY 3.1. In the expression of (3.1), if the working model for T

given L is correct, B1(t;Y,R,L) = 0; if the working model for C given L is
correct, B2(t;Y,R,L) = 0.

As a result, when both working models are correct, B1(t;Y,R,L) =
B2(t;Y,R,L) = 0 and moreover, HT |Z∗(t|Z∗) = HT |L(t|L), HC|Z∗(t|Z∗) =
HC|L(t|L). Hence, simple calculation gives that the influence function in (3.1)
for Ŝn(t) is equal to

ST |L(t|L) − S(t) + R(I (T ≥ t) − S(t))

SC|L(T |L)

+
∫

E

[
R(I (T ≥ t) − S(t))

SC|L(T |L)

∣∣∣L,T ≥ u,C ≥ u

]
dMC(u),

where dMC(u) = (1 − R)dI (Y ≤ u) − I (Y ≥ u)dHC|L(u|L) is the martingale
process for the censoring time. This turns out to be the efficient influence function
for S(t) in the full model space, which was derived in an unpublished manuscript
by Gill, van der Laan and Robins (1997). Consequently, we have obtained the
following corollary.

COROLLARY 3.2. When both working models are correct, the asymptotic
variance of Ŝn(t) is the same as the generalized Cramér–Rao bound for S(t).

3.3. Variance estimation for estimating a Fréchet differentiable functional
of S(t). In survival analysis, practical interest may include the estimation of
some functional of S(t), such as the survival probability at a fixed time t0, the
observed mean lifetime E[T |T ≤ τ ], and median lifetime, and so on. Denote
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such a functional of S(t) as �(S(t)). Then we can estimate it with �(Ŝn(t)).
Furthermore, if �(·) is Fréchet differentiable with its first derivative along
direction Ŝn(t) − S(t) given by

∫ τ
0 (Ŝn(t) − S(t)) dψ(t) for a bounded variation

function ψ , then the functional delta theorem concludes that
√

n(�(Ŝn(t)) −
�(S(t))) has an asymptotic normal distribution with mean zero and variance
σ 2 = ∫ τ

0
∫ τ

0 r(s, t) dψ(s) dψ(t), where r(s, t) = E[A(s;Y,R,L)A(t;Y,R,L)].
In this section we want to give a general procedure for estimating σ 2.

Denote Pn as the empirical measure of the i.i.d. observations (Yi,Ri,Li),
i = 1, . . . , n. Clearly, one consistent estimator of σ 2 is given by∫ τ

0

∫ τ

0
Pn[Â(t;Y,R,L)Â(t;Y,R,L)]dψ(s) dψ(t)

in which Â(t;Y,R,L) is a consistent estimator of A(t;Y,R,L). To obtain
Â(t;Y,R,L), we estimate each term in the expression (3.1) separately.

First, in (3.1), we substitute HT |Z∗(t|Z∗) and HC|Z∗(t|Z∗) with their corre-
sponding estimators ĤT |Z∗(t|Ẑ) and ĤC|Z∗(t|Ẑ) following Step 3 of Section 2;
furthermore, according to the proof of Theorem 3.1, we can consistently estimate
the influence functions for β̂n and γ̂n, by Ŝ(β̂n, Y,R,L) and Ŝ(γ̂n, Y,R,L), re-
spectively. Specifically, Ŝβ(β̂n, y, r, l) is{

Pn

[
R

(Pn[IY≥y′LL′eγ̂ ′
nL]

Pn[IY≥y′eγ̂ ′
nL] − Pn[IY≥y′Leγ̂ ′

nL]⊗2

Pn[IY≥y′eγ̂ ′
nL]2

)∣∣∣∣
y′=Y

]}−1

×
{
rl − r

Pn[Iy≤Y Leβ̂ ′
nL]

Pn[Iy≤Y eβ̂ ′
nL]

− leβ̂ ′
nlPn

[
RIY≤y

Pn[IY≤y′eβ̂ ′
nL]|y′=Y

]
(3.2)

+ eβ̂ ′
nlPn

[
RIY≤yPn[IY≤y′Leβ̂ ′

nL]|y′=Y

Pn[IY≤y′eβ̂ ′
nL]2|y′=Y

]}
,

and Ŝγ (γ̂n, y, r, l) is{
Pn

[
(1 − R)

(Pn[IY≥y′LL′eγ̂ ′
nL]

Pn[IY≥y′eγ̂ ′
nL] − Pn[IY≥y′Leγ̂ ′

nL]⊗2

Pn[IY≥y′eγ̂ ′
nL]2

)∣∣∣∣
y′=Y

]}−1

×
{
(1 − r)l − (1 − r)

Pn[Iy≤Y Leγ̂ ′
nL]

Pn[Iy≤Y eγ̂ ′
nL] − leγ̂ ′

nlPn

[
(1 − R)IY≤y

Pn[IY≤y′eγ̂ ′
nL]|y′=Y

]
(3.3)

+ eγ̂ ′
nlP

[
(1 − R)IY≤yPn[IY≤y′Leγ̂ ′

nL]|y′=Y

Pn[IY≤y′eγ̂ ′
nL]2|y′=Y

]}
.

Additionally, we can estimate

−E

[
e−HT |Z∗ (t|Z∗)∇γ |γ=γ ∗

∫ t

0

duP (T ∧ C ≤ u,R = 1|γ ′L,β∗′L)

P (T ∧ C ≥ u|γ ′L,β∗′L)

]
(3.4)
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and

−E

[
e−HT |Z∗ (t|Z∗)∇β |β=β∗

∫ t

0

duP (T ∧ C ≤ u,R = 1|γ ∗′L,β ′L)

P (T ∧ C ≥ u|γ ∗′L,β ′L)

]
(3.5)

using the following lemma.

LEMMA 3.2. For any constants (β, γ ), we define an estimator of S(t),
denoted by Ŝn(t;β,γ ) by repeating Steps 1–4 in Section 2 for fixed β and γ . Let
e1, . . . , ek be the canonical bases in Rdim(β∗), that is, ei has 1 at the ith position
and 0’s elsewhere. Similarly, let d1, . . . , dl be the canonical bases in Rdim(γ ∗).
Moreover, we select a constant εn such that εn = o(an),

√
nεn → ∞. Then when

one of the working models is correct, the two statistics, defined by

V̂γ̂n
= 1

εn


Ŝn(t; β̂n, γ̂n + εnd1) − Ŝn(t)

...

Ŝn(t; β̂n, γ̂n + εndl) − Ŝn(t)

(3.6)

and

V̂
β̂n

= 1

εn


Ŝn(t; β̂n + εne1, γ̂n) − Ŝn(t)

...

Ŝn(t; β̂n + εnek, γ̂n) − Ŝn(t)

 ,(3.7)

are consistent estimators of (3.4) and (3.5), respectively.

So finally, one consistent estimator for A(t;Y,R,L) is given by

e−ĤT |Z∗ (t|Ẑ) − Ŝn(t) − RIY≤t e
ĤT |Z∗(Y |Ẑ)+ĤC|Z∗ (Y |Ẑ)−ĤT |Z∗ (t|Ẑ)

+
∫ t∧Y

0
eĤT |Z∗ (u|Ẑ)+ĤC|Z∗(u|Ẑ)−ĤT |Z∗ (t|Ẑ) duĤT |Z∗(u|Ẑ)

+ V̂γ̂n
Ŝγ (γ̂n, Y,R,L) + V̂

β̂n
Ŝβ(β̂n, Y,R,L).

REMARK 3.3. The numerical method for estimating (3.4) and (3.5) is much
more convenient for implementation, compared with the direct estimation of the
conditional probabilities in these two expressions. When the bandwidth an has
order n−1/3, one choice of εn may be of the order n−5/12. Computationally, except
that the final evaluation of the variance requires a numerical double integration,
the computing time in the other steps is only a linear order of the computing time
for computing Ŝn(t), which is about O(n3a2

n). The storage in the computation is
the same order as storing an n × n numerical array.

REMARK 3.4. As a special example, the asymptotic variance for
√

n(Ŝn(t0)−
S(t0)) can be approximated by Pn[Â(t0;Y,R,L)]2 for any fixed time t0 ∈ [0, τ ].
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4. Simulation study. We have performed a simulation study to show the ad-
vantages of our approach in small samples. In the simulation, three covariates, de-
noted as X1,X2,X3, were independently generated from the uniform distribution
between 0 and 1. The lifetime T was generated from Cox’s proportional hazard
model, whose hazard rate function had the following form:

hT |X(t|X) = λT (t) exp{β1X1 +β2X2 +β3X3 +β12X1X2 +β13X1X3 +β23X2X3}.
The values of the parameters in the simulation were taken to be β1 = −1, β2 = 4,
β3 = 3, β12 = 0, β13 = 6, β23 = 10, λT (t) = t4e−5. The censoring time C was
the minimum of τ = 2 and C∗, where C∗ was produced using Cox’s proportional
hazard model with the hazard rate function given by

hC|X(t|X) = λC(t) exp{γ1X1 +γ2X2 +γ3X3 +γ12X1X2 +γ13X1X3 +γ23X2X3}.
We chose the parameters as γ1 = 1, γ2 = 1, γ3 = 1, γ12 = 0, γ13 = 5, γ23 = 10,
λC(t) = t4e−4.5. The choice of the parameter values demonstrated that the
dependent censoring between T and C was significant (theoretically, the marginal
correlation between T and C was around 75%) and the censoring proportion was
not too low (the theoretical censoring probability for this setting is 45%).

We followed the procedure in Section 2 to estimate the survival function for T

with the kernel function k(x1, x2) = exp{−(x2
1 + x2

2)} but started with different
working models for T and C given (X1,X2,X3). Especially, if we denoted X as
(X1,X2,X3) and denoted X2 as their two-way interactions, six pairs of working
models could be considered:

Pair 1. We modelled both T and C using all the main effects X and the two-way
interactions X2 as well as an independent variable Z, which was generated
from the uniform distribution between 0 and 1.

Pair 2. We modelled both T and C using all the main effects X and the two-way
interactions X2.

Pair 3. We modelled T using X and X2; however, we modelled C using only the
main effects X. So we misspecified the model for C.

Pair 4. We modelled C using X and X2; however, we modelled T using only the
main effects X. So we misspecified the model for T .

Pair 5. We modelled both T and C using only the main effects X. That is, we
misspecified both models.

Pair 6. We did not account for any covariates and the Kaplan–Meier estimate was
used to estimate the survival function.

By comparison of the bias and variation among the above six pairs of working
models, we expected to verify that the estimates accounting for dependent
censoring using covariates in the estimation always perform better than the
Kaplan–Meier estimate, that including an irrelevant variable does not bias the
estimate and that double robustness is evidenced in small samples.
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Moreover, we studied how the estimates varied with the different choices
of the sample size n, the bandwidth an and the oscillation parameter εn. We
thus generated data with sample size n = 50 or n = 100. For each generated
sample, we used varied bandwidths an = n−1/3,3n−1/3,6n−1/3 to calculate the
estimates. In addition, we used different choices εn = n−5/12,5n−5/12,10n−5/12

to calculate the standard errors and the coverage probabilities in estimating the
survival probabilities for t = τ/5,2τ/5. Such computation was repeated 500 times.

For both n = 50 and n = 100, the average censoring proportion was about 45%
and the marginal correlation between T and C was 77% in the simulated samples.
Tables 1 and 2 report our findings. In Table 1 we give the average mean square
error of the estimates on 50 grid points, which is defined as

1

50

50∑
i=1

(
Ŝn

(
(i − 1)τ

50

)
− S

(
(i − 1)τ

50

))2

.

In Table 2 we report the average bias and the 95% confidence interval coverage
probabilities for estimating the survival probabilities at times τ/5 and 2τ/5. Since
it has been found that the coverage probabilities vary very little when εn varies in
our choices, we only report the results for εn = n−5/12.

From Table 1, it is clear that the Kaplan–Meier estimates have the largest mean
square error and the estimates adjusting for dependent censoring using covariates
can reduce it by 50% for sample size 50 and by over 60% for sample size 100.
Moreover, using the irrelevant covariate Z in the regression models does not
increase the mean square error, and when either of the regression models is correct

TABLE 1
Mean square error from 500 samples

MSE(×10−3) MSE(×10−3) MSE(×10−3)

n model T model C an = n−1/3 an = 3n−1/3 an = 6n−1/3

50 (X,X2,Z) (X,X2,Z) 7.2 6.9 6.8
(X,X2) (X,X2) 7.2 6.8 6.8
(X,X2) (X)a 7.0 6.7 6.7
(X)a (X,X2) 7.1 6.9 7.0
(X)a (X)a 7.7 7.4 7.5
(−)b (−)b 17.4 17.4 17.4

100 (X,X2,Z) (X,X2,Z) 3.5 3.4 3.3
(X,X2) (X,X2) 3.5 3.4 3.3
(X,X2) (X)a 3.4 3.3 3.3
(X)a (X,X2) 3.7 3.5 3.5
(X)a (X)a 4.3 4.0 4.0
(−)b (−)b 13.0 13.0 13.0

Notation. (· · ·)a: model is misspecified; (−)b: the Kaplan–Meier estimate is used.
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TABLE 2
Estimate of the survival probability at times t = τ/5 and t = 2τ/5 from 500 samples with

εn = n−5/12

S(τ/5) S(2τ/5)

n an model T model C bias(×10−2) 95% cp bias(×10−2) 95% cp

50 n−1/3 (X,X2,Z) (X,X2,Z) 0.94 0.94 1.97 0.92
(X,X2) (X,X2) 0.94 0.94 1.95 0.92
(X,X2) (X)a 0.96 0.94 2.03 0.93
(X)a (X,X2) 1.05 0.93 2.23 0.92
(X)a (X)a 1.22 0.93 2.99 0.92
(−)b (−)b 5.69 0.87 10.72 0.70

3n−1/3 (X,X2,Z) (X,X2,Z) 0.94 0.94 1.95 0.91
(X,X2) (X,X2) 0.96 0.94 2.02 0.91
(X,X2) (X)a 1.00 0.93 2.12 0.90
(X)a (X,X2) 1.08 0.92 2.23 0.89
(X)a (X)a 1.46 0.92 3.02 0.87
(−)b (−)b 5.69 0.87 10.72 0.70

6n−1/3 (X,X2,Z) (X,X2,Z) 1.30 0.93 2.50 0.90
(X,X2) (X,X2) 1.33 0.93 2.58 0.90
(X,X2) (X)a 1.50 0.93 2.72 0.89
(X)a (X,X2) 1.54 0.92 2.76 0.89
(X)a (X)a 2.16 0.92 3.58 0.87
(−)b (−)b 5.69 0.87 10.72 0.70

100 n−1/3 (X,X2,Z) (X,X2,Z) 0.44 0.94 1.37 0.96
(X,X2) (X,X2) 0.44 0.94 1.33 0.95
(X,X2) (X)a 0.48 0.93 1.36 0.94
(X)a (X,X2) 0.52 0.92 1.51 0.92
(X)a (X)a 0.95 0.93 2.73 0.89
(−)b (−)b 5.44 0.75 10.50 0.51

3n−1/3 (X,X2,Z) (X,X2,Z) 0.45 0.92 1.46 0.93
(X,X2) (X,X2) 0.48 0.93 1.42 0.92
(X,X2) (X)a 0.57 0.92 1.48 0.92
(X)a (X,X2) 0.55 0.91 1.52 0.91
(X)a (X)a 1.13 0.90 2.83 0.89
(−)b (−)b 5.44 0.75 10.50 0.51

6n−1/3 (X,X2,Z) (X,X2,Z) 0.79 0.92 1.89 0.91
(X,X2) (X,X2) 0.82 0.92 1.89 0.92
(X,X2) (X)a 0.99 0.93 2.09 0.91
(X)a (X,X2) 0.96 0.91 1.98 0.91
(X)a (X)a 1.67 0.90 3.23 0.89
(−)b (−)b 5.44 0.75 10.50 0.51

Notation. (· · ·)a: model is misspecified; (−)b: the Kaplan–Meier estimate is used.
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(i.e., both the main effects and the two-way interactions among X1,X2,X3 are
used in the regression), the mean square errors are, on average, 10% less than
for the case which only uses the main effects in both regressions. The mean
square errors of the estimates are fairly robust to the choice of the bandwidth.
The results displayed in Table 2 further evidence the above findings from the
view of the point estimates of S(t) and the corresponding coverage probabilities.
Table 2 shows that when either regression model is specified correctly, the biases
in the estimates are less than for the cases when both models are misspecified; the
Kaplan–Meier induces the largest biases. Overall, these biases decrease by 50%
when the sample size increases from 50 to 100. With the sample size 50 or 100, the
coverage probabilities using the methods proposed in Section 3 are fairly accurate
for t = τ/5 when either regression model is specified correctly; however, they tend
to be smaller for t = 2τ/5 due to the larger bias caused by high censoring at the
tail. When the bandwidth is large (for instance, an = 6n−1/3), the biases increase
due to oversmoothing, but the coverage probabilities do not vary much.

Our simulation study indicates that the estimates of the survival function
by adjusting for dependent censoring using auxiliary covariates always induce
smaller mean square errors, fewer biases and more accurate coverage probabilities
compared with the Kaplan–Meier estimates. Moreover, the estimates have better
performance when either the model for T or the model for C given the covariates is
used correctly. The overall mean square errors of the consistent estimates are fairly
robust to the choice of the bandwidth; but the point estimates and the inference vary
with the choices of the bandwidth and the location of time points.

5. Discussion. Both our theoretical justification of large samples and simula-
tion studies with small samples conclude that, when right-censored data include
high-dimensional auxiliary covariates, condensing such information by utilizing
working models for both lifetime and censoring time given covariates can make
adjusting for dependent censoring possible and produce an estimator which is ro-
bust to the misspecification of either working model and robust to accidentally
using irrelevant information.

It is observed in our simulations that the choice of the bandwidth an plays an
important role in influencing the bias and the inference for the point estimate.
A large an may oversmooth the conditional hazard rate estimator (in fact, with
simple calculation, for fixed n, if an is close to infinity, our estimate approximates
the Kaplan–Meier estimate), while a small an may overfit the conditional hazard
rate estimator, and thus introduce large variation in estimation. So far, we let an be
a constant only depending on n and no general selection rule is followed; however,
the simulation results imply that a data-adaptive and location-adaptive an may
give a better performing estimate. The cross-validation approach may be used to
choose an or we can use the k nearest neighbor approach in nonparametric hazard
regression. We will explore this issue more in the future.
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Though we hope that our working models are correct, we never know in reality.
To make this hope more likely, we may use more general models other than
Cox proportional hazard models as working models, for example, we can use a
generalized additive model or use splines as covariates in the working models,
and so on. A model selection rule is thus useful in choosing the optimal working
models in terms of the performance of the estimates and the model complexity.
Therefore, a test for goodness of fit as well as a test for comparing two different
sets of working models will be useful in practice.

Finally, when L includes the time-dependent covariates, our approach is not
obvious to fit this situation. This is because the condensed information (β ′L,γ ′L)

is still time-dependent so their dimension is infinite; then an essential problem is
how to derive a nonparametric estimate of the marginal survival function in the
presence of even a single time-dependent covariate. Further exploration of this
issue is ongoing.

APPENDIX: PROOFS

PROOF OF THEOREM 3.1. We consider only the estimator β̂n in the
following. The argument for the estimator γ̂n is similar. Obviously, β̂n maximizes

L̃
(n)
1 (β) = 1

n

n∑
i=1

Riβ
′Li − 1

n

n∑
i=1

Ri log

( ∑
Yj≥Yi

eβ ′Lj

)
.

Note that L̃n
1(β) is a concave function of β and its limit, which is equal to

L̃1(β) = P[Rβ ′L − R logE[IY≥ye
β ′L]|y=Y ], is a strictly concave function. By

an argument similar to that in Andersen and Gill (1982), we obtain that with
probability 1, β̂n converges to the unique maximum of L̃1(β), denoted by β∗.

After the linearization of the equation L̃
(n)
1 (β̂n) = 0 around β∗, we obtain that

√
n(β̂n − β∗) = √

n(Pn − P)S(β∗, Y,R,L) + op(1),

where the influence function S(β∗, y, r, l) is equal to

−{∇2
ββL̃1(β

∗)}−1
{
rl − r

P[Iy≤Y Leβ∗′L]
P[Iy≤Y eβ∗′L] − leβ∗′lP

[
RIY≤y

P[IY≤y′eβ∗′L]|y′=Y

]

+ eβ∗′lP
[
RIY≤yP[IY≤y′Leβ∗′L]|y′=Y

P[IY≤y′eβ∗′L]2|y′=Y

]}
. �

PROOF OF THEOREM 3.2. Recall Z∗ = (β∗′L,γ ∗′L) and Ẑ = (β̂ ′
nL, γ̂ ′

nL).
We assume one of the working models is correct so T and C are independent
given Z∗ from Lemma 3.1. The whole proof consists of three steps: In the first
step, we show the uniform consistency of ĤT |Z∗(t|z), thus Ŝn(t); then we write
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√
n(Ŝn(t) − S(t)) as a linear functional of the empirical processes; in the third

step, we apply empirical process theory to obtain the asymptotic properties.
First, the following result holds and the proof is given in Dabrowska (1987).

LEMMA A.1. For any z in the support of Z∗,∥∥∥∥Pn[K((Z∗ − z)/an)IY≥t ]
Pn[K((Z∗ − z)/an)] − P (Y ≥ t|Z∗ = z)

∥∥∥∥
l∞([0,τ ])

P→ 0,

∥∥∥∥Pn[K((Z∗ − z)/an)IY≤tR]
Pn[K((Z∗ − z)/an)] − P (Y ≤ t ,R = 1|Z∗ = z)

∥∥∥∥
l∞([0,τ ])

P→ 0.

LEMMA A.2. For any z in the support of Z∗,∥∥∥∥Pn[K((Ẑ − z)/an)IY≥t ]
Pn[K((Ẑ − z)/an)]

− P (Y ≥ t|Z∗ = z)

∥∥∥∥
l∞([0,τ ])

P→ 0,

∥∥∥∥Pn[K((Ẑ − z)/an)IY≤tR]
Pn[K((Ẑ − z)/an)]

− P (Y ≤ t ,R = 1|Z∗ = z)

∥∥∥∥
l∞([0,τ ])

P→ 0.

PROOF. For convenience, we denote

gn(β, γ ) = 1

a2
n

Pn

[
K

(
(β ′L,γ ′L) − z

an

)
IY≥t

]
.

We show that supt∈[0,τ ] |gn(β̂n, γ̂n) − gn(β
∗, γ ∗)| → 0 a.s. By the property of the

kernel function and the mean value theorem, we have that

|gn(β̂n, γ̂n) − gn(β
∗, γ ∗)|

≤ 1

na2
n

n∑
i=1

∣∣∣∣∇K

(
(β̃ ′L, γ̃ ′L) − z

an

)∣∣∣∣O( |β̂n − β∗|
an

+ |γ̂n − γ ∗|
an

)
,

where (β̃, γ̃ ) is between (β̂n, γ̂n) and (β∗, γ ∗). Hence, for any z = (z1, z2) in the
support of Z∗,

|gn(β̂n, γ̂n) − gn(β
∗, γ ∗)|

≤ Op

(
1√
nan

)[
1

na2
n

n∑
i=1

1

1 + (β̃ ′Li − z1)
2/a2

n + (γ̃ ′Li − z2)
2/a2

n

]

≤ Op

(
1√
nan

)[
1

na2
n

n∑
i=1

1

1 + (β∗′Li − z1)
2/a2

n + (γ ∗′Li − z2)
2/a2

n

]
,

where the last step follows because |∇xj
log(1 + x2

1 + x2
2)|, j = 1,2, is uniformly

bounded and |β̃ ′L−β∗′L|
an

+ |γ̃ ′L−γ ∗′L|
an

≤ Op(1). Notice that

P
[

1

a2
n

1

1 + (β∗′L − z1)2/a2
n + (γ ∗′L − z2)2/a2

n

]
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is uniformly bounded. So supt∈[0,τ ] |gn(β̂n, γ̂n) − gn(β
∗, γ ∗)| ≤ Op( 1√

nan
).

Similarly, we can obtain that

sup
t∈[0,τ ]

∣∣∣∣∣ 1

na2
n

n∑
i=1

K

(
Ẑ − z

an

)
− 1

na2
n

n∑
i=1

K

(
Z∗ − z

an

)∣∣∣∣∣ p→0.

Combining this result with Lemma A.1, it is clear the first half of Lemma A.2
holds. The second half of Lemma A.2 can be proved similarly. �

LEMMA A.3. Denote

ĤT |Z∗(t|z) =
∫ t

0

dsPn[K((Ẑ − z)/an)RIY≤s]
Pn[K((Ẑ − z)/an)IY≥s]

and

ŜT |Z∗(t|z) = ∏
s≤t

(
1 − ĤT |Z∗({s}|z)).

Then for any z in the support of Z∗, in probability ‖ĤT |Z∗(t|z) − HT |Z∗(t|
z)‖l∞([0,τ ]) → 0 and ‖ŜT |Z∗(t|z) − ST |Z∗(t|z)‖l∞([0,τ ]) → 0.

PROOF. The first result follows from Assumption 3.3, Lemma A.2 and the
following inequality:∥∥ĤT |Z∗(t|z) − HT |Z∗(t|z)∥∥l∞([0,τ ])

=
∥∥∥∥∫ t

0

dsPn[K((Ẑ − z)/an)RIY≤s]
Pn[K((Ẑ − z)/an)IY≥s]

−
∫ t

0

dsE[RIY≤s|Z∗]
E[IY≥s |Z∗]

∥∥∥∥
l∞([0,τ ])

≤
∥∥∥∥Pn[K((Ẑ − z)/an)IY≤tR]

Pn[K((Ẑ − z)/an)]
− P (Y ≤ t ,R = 1|Z∗ = z)

∥∥∥∥
l∞([0,τ ])

×
{

min
t∈[0,τ ]

∣∣∣∣Pn[K((Ẑ − z)/an)IY≥t ]
Pn[K((Ẑ − z)/an)]

∣∣∣∣}−1

+
∥∥∥∥Pn[K((Ẑ − z)/an)IY≥t ]

Pn[K((Ẑ − z)/an)]
− P (Y ≥ t|Z∗ = z)

∥∥∥∥
l∞([0,τ ])

×
{

min
t∈[0,τ ]

∣∣∣∣Pn[K((Ẑ − z)/an)IY≥t ]
Pn[K((Ẑ − z)/an)]

P (Y ≥ t |Z∗ = z)

∣∣∣∣}−1

. �

For the second result, we use the Duhamel equation and integration by parts:
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for any t ∈ [0, τ ],∣∣ŜT |Z∗(t|z) − ST |Z∗(t|z)∣∣
=

∣∣∣∣ST |Z∗(t|z)
∫ t

0

ŜT |Z∗(u − |z)
ST |Z∗(u|z) d

(
ĤT |Z∗(u|z) − HT |Z∗(u|z))∣∣∣∣

=
∣∣∣∣ŜT |Z∗(t − |z)(ĤT |Z∗(t|z) − HT |Z∗(t|z))
−

∫ t

0

(
ĤT |Z∗(u|z) − HT |Z∗(u|z))

×
(

dŜT |Z∗(u − |z)
ST |Z∗(u|z) − ŜT |Z∗(u − |z) dST |Z∗(u|z)

ST |Z∗(u|z)2

)∣∣∣∣
≤

(
1 + 2

min P (T > τ |Z∗ = z)2

)
max

0≤s≤t

∣∣ĤT |Z∗(s|z) − HT |Z∗(s|z)∣∣.
For the second step, we will write ĤT |Z∗(t|z) − HT |Z∗(t|z), then Ŝn(t) − S(t)

in terms of the empirical process (Pn − P). First, we obtain

ĤT |Z∗(t|z) − HT |Z∗(t|z)

= (Pn − P)

[
1/a2

nK((Ẑ − z)/an)IY≤tR

Pn[1/a2
nK((Ẑ − z)/an)IY≥y]|y=Y

]

− P
[

1/a2
nK((Ẑ − z)/an)IY≤tR(Pn − P)[1/a2

nK((Ẑ − z)/an)IY≥y]|y=Y

Pn[1/a2
nK((Ẑ − z)/an)IY≥y]2|y=Y

]

+
{

P
[

1/a2
nK((Ẑ − z)/an)IY≤tR

P[1/a2
nK((Ẑ − z)/an)IY≥y]|y=Y

]
− HT |Z∗(t|z)

}
= I + II + III.

For III, a simple transformation in the integral gives that uniformly in z in the
support of Z∗ and t ∈ [0, τ ],

III =
∫ t

0

duP (R = 1, Y ≤ u|Ẑ = z)

P (Y ≥ u|Ẑ = z)
+ Op(a2

n) − HT |Z∗(t|z).

On the other hand, since by Lemma 3.1
∫ t

0
duP (R=1,Y≤u|Z∗=z)

P (Y≥u|Z∗=z)
= HT |Z∗(t|z), we

perform the Taylor expansion of the above expansion around (β∗, γ ∗), and then
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III becomes

III = ∇β |β=β∗
[∫ t

0

duP (Y ≤ u,R = 1|(β ′L,γ ∗′L) = z)

P (Y ≥ u|(β ′L,γ ∗′L) = z)

]
(β̂n − β∗)

+ ∇γ |γ=γ ∗
[∫ t

0

duP (Y ≤ u,R = 1|(β∗′L,γ ′L) = z)

P (Y ≥ u|(β∗′L,γ ′L) = z)

]
(γ̂n − γ ∗)

+ Op(a2
n) + Op

(
1

n

)
.

For convenience, we introduce more notation:

hn
1(y, r, l;β,γ, t, z) = 1/a2

nK(((β ′l, γ ′l) − z)/an)Iy≤t r

Pn[1/a2
nK(((β ′L,γ ′L) − z)/an)IY≥y] ,

h2(y, l;β,γ, t, z) = 1

a2
n

K

(
(β ′l, γ ′l) − z

an

)

× P
[

1/a2
nK(((β ′L,γ ′L) − z)/an)IY≤t IY≤yR

Pn[1/a2
nK(((β ′L,γ ′L) − z)/an)IY≥y]2|y=Y

]
,

B(β, γ, z, t) =
∫ t

0

duP (Y ≤ u,R = 1|(β ′L,γ ′L) = z)

P (Y ≥ u|(β ′L,γ ′L) = z)
.

After substituting this notation into the expression ĤT |Z∗(t|z) − HT |Z∗(t|z), then
further substituting into ŜT |Z∗(t|z)−ST |Z∗(t|z) in the Duhamel equation, we have
that, uniformly in t ∈ [0, τ ],

ŜT |Z∗(t|z) − ST |Z∗(t|z)

= −S(t|z)
{
(Pn − P)

[∫ t

0

ŜT |Z∗(u − |z)
ST |Z∗(u|z) dhn

1(Y,R,L; β̂n, γ̂n, u, z)

]

− (Pn − P)

[∫ t

0

ŜT |Z∗(u − |z)
ST |Z∗(u|z) dhn

2(Y,L; β̂n, γ̂n, u, z)

]
(A.1)

+
[∫ t

0

ŜT |Z∗(u − |z)
ST |Z∗(u|z) du∇βB(β∗, γ ∗, z, u)

]
(β̂n − β∗)

+
[∫ t

0

ŜT |Z∗(u − |z)
ST |Z∗(u|z) du∇γ B(β∗, γ ∗, z, u)

]
(γ̂n − γ ∗)

}

+ Op(a2
n) + Op

(
1

n

)
.

Note that√
n
(
Ŝn(t) − S(t)

) = √
n
(
Pn[ŜT |Z∗(t|Ẑ)] − P[ST |Z∗(t|Ẑ)])

= √
n(Pn − P)[ŜT |Z∗(t|Ẑ)] + √

nP
[(

ŜT |Z∗(t|Ẑ) − S(t|Ẑ)
)]

.
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After using (A.1) and the results of Lemmas A.2 and A.3, we obtain that uniformly
in t ∈ [0, τ ],

√
n
(
Ŝn(t) − S(t)

)
= √

n(Pn − P)wn(Y,R,L; β̂n, γ̂n, t)
(A.2)

+ P
[
ST |Z∗(t|Z∗)∇βB(β∗, γ ∗,Z∗, t)

]√
n(β̂n − β∗)

+ P
[
ST |Z∗(t|Z∗)∇γ B(β∗, γ ∗,Z∗, t)

]√
n(γ̂n − γ ∗) + op(1),

where

wn(y, r, l; β̂n, γ̂n, t)

= ŜT |Z∗(t|ẑ) − S(t)

− P
[
ST |Z∗(t|Ẑ)

∫ t

0

ŜT |Z∗(u − |Ẑ)

ST |Z∗(u|Ẑ)
dhn

1(y, r, l; β̂n, γ̂n, u, Ẑ)

]

+ P
[
ST |Z∗(t|Ẑ)

∫ t

0

ŜT |Z∗(u − |Ẑ)

ST |Z∗(u|Ẑ)
dhn

2(y, l; β̂n, γ̂n, u, Ẑ)

]
.

In the third step, empirical process theory is applied to the above expression for√
n(Ŝn(t) − S(t)) to obtain the asymptotic properties of Ŝn(t). We consider the

empirical process{√
n(Pn − P)wn

(
Y,R,L;β∗ + θ1√

n
,γ ∗ + θ2√

n
, t

)
: t ∈ [0, τ ],

θ1 = Op(1), θ2 = Op(1)

}
,

which is indexed by (t, θ1, θ2). First, we claim that uniformly in t ,

wn(Y,R,L; β̂n, γ̂n, t)

→ ST |Z∗(t|Z∗) − S(t) − RIY≤tST |Z∗(t|Z∗)
P (Y ≥ y′|Z∗)|y′=Y

+ ST |Z∗(t|Z∗)
∫ t∧Y

0
eHT |Z∗ (u|Z∗)+HC|Z∗ (u|Z∗) dHT |Z∗(u|Z∗)

in probability. This is true by using arguments similar to those in the proofs
of Lemmas A.2 and A.3. Second, with technical calculation we can verify
that each function in the class indexed by (t, θ1, θ2) belongs to BV [0, τ ] as
a function of t and is Lipschitz continuous with respect to (θ1, θ2) with the
Lipschitz coefficient bounded by O( 1√

nan
) in probability. Thus we can check each
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condition of Theorem 2.11.23 in van der Vaart and Wellner (1996) and obtain that,
in l∞([0, τ ]),

√
n(Pn − P)wn(Y,R,L; β̂n, γ̂n, t)

= √
n(Pn − P)

×
[
ST |Z∗(t|Z∗) − S(t) − RIY≤tST |Z∗(t|Z∗)

P (Y ≥ y′|Z∗)|y′=Y

+ ST |Z∗(t|Z∗)
∫ t∧Y

0
eHT |Z∗(u|Z∗)+HC|Z∗ (u|Z∗) duHT |Z∗(u|Z∗)

]
+ op(1).

Therefore, from (A.2) we obtain that uniformly in t ∈ [0, τ ],
√

n
(
Ŝn(t) − S(t)

)
= √

n(Pn − P)

×
[
ST |Z∗(t|Z∗) − S(t) − RIY≤tST |Z∗(t|Z∗)

P (Y ≥ y′|Z∗)|y′=Y

+ ST |Z∗(t|Z∗)
∫ t∧Y

0
eHT |Z∗ (u|Z∗)+HC|Z∗ (u|Z∗) duHT |Z∗(u|Z∗)

]
− P[ST |Z∗(t|Z∗)∇βB(β∗, γ ∗,Z∗, t)]√n(β̂n − β∗)

− P[ST |Z∗(t|Z∗)∇γ B(β∗, γ ∗,Z∗, t)]√n(γ̂n − γ ∗) + op(1).

Combining with the result of Theorem 3.1, we obtain Theorem 3.2. �

PROOF OF LEMMA 3.2. Obviously, the estimator Ŝn(t) is the same as
Ŝn(t; β̂n, γ̂n). By repeating the proof of Theorem 3.2, we can obtain that if
|β − β∗| + |γ − γ ∗| = o(an), then

Ŝn(t;β,γ ) − S(t)

= (Pn − P)

[
ST |Z∗(t|Z∗) − S(t)

− RIY≤tST |Z∗(t|Z∗)eHT |Z∗(Y |Z∗)+HC|Z∗ (Y |Z∗)

+ ST |Z∗(t|Z∗)
∫ t∧Y

0
eHT |Z∗ (u|Z∗)+HC|Z∗ (u|Z∗) duHT |Z∗(u|Z∗)

]

− P
{
ST |Z∗(t|Z∗)[B(β,γ,Z, t) − HT |Z∗(t|Z∗)]} + op

(
1√
n

)
,

where we recall B(β,γ, z, t) = ∫ t
0

duP (Y≤u,R=1|(β ′L,γ ′L)=z)
P (Y≥u|(β ′L,γ ′L)=z)

.
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We especially choose γ = γ̂n and β = β̂n + εnv where v is any constant
vector on Rdim(β∗) with norm 1. After linearizing the B(β,γ,Z, t) around β = β∗,
γ = γ ∗, we find that

Ŝn(t; β̂n + εnv, γ̂n) − S(t)

= −P
{
ST |Z∗(t|Z∗)[B(β∗, γ ∗,Z∗, t) − HT |Z∗(t|Z∗)]}

− εnP{ST |Z∗(t|Z∗)∇βB(β∗, γ ∗,Z∗, t)}v + Op

(
1√
n

)
+ O(ε2

n).

When one of the working models is correct,

−P
{
ST |Z∗(t|Z∗)[B(β∗, γ ∗,Z∗, t) − HT |Z∗(t|Z∗)]} = 0.

Moreover, Ŝn(t) − S(t) = Op( 1√
n
). Therefore,

Ŝn(t; β̂n + εnv, γ̂n) − Ŝn(t)

εn

P→−P{ST |Z∗(t|Z∗)∇βB(β∗, γ ∗,Z∗, t)}v.

Similarly, for any constant vector ṽ in Rdim(γ ∗) with norm 1,

Ŝn(t; β̂n, γ̂n + εnṽ) − Ŝn(t)

εn

P→−P{ST |Z∗(t|Z∗)∇γ B(β∗, γ ∗,Z∗, t)}ṽ.

So the conclusions in the lemma hold. �
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