
Correcting parameter bias caused by taking logs of exponential data 
William J. Thompson and J. Ross Macdonald 
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, 
North Carolina 27599-3255 

(Received 23 July 1990; accepted for publication 26 October 1990) 

Exponential growth and decay are ubiquitous in physics, 
and when teaching techniques of data analysis in experi­
mental physics we show students how the simple device of 
taking logarithms can reduce a highly nonlinear problem 
to a linear one, from which estimates of the slope (expo­
nent) and intercept (preexponential) can be readily ob­
tained, either graphically or by using a linear 1east-squares-
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fitting program. Here, we show that this seemingly 
innocuous procedure of taking logs usually results in bi­
ased values of fitting parameters but that such biases can 
often be simply corrected. This problem is mentioned but 
not solved in, for example, Ref. 1. 

A moment of reflection will show why the biasing oc­
curs. Consider the example of data that range from 1/ M 
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through unity up to M. For large M there are two sub­
ranges, with lengths roughly unity and M, respectively. 
After taking (natural) logs, the subranges are each of 
length In(M), so that the smallest values of the original 
data have been unnaturally extended relative to the larger 
values. The effect of this is to make derived parameter esti­
mates different from the true values. 

In the course of a recent extensive analysis2 of data-fit­
ting methods for nonlinear data of wide range and nonuni­
form error variance ("heteroscedasticity"), we discovered 
that the existence of such parameter bias is known to statis­
ticians but it has not been quantified by them, and that texts 
on statistical and data analysis methods for the physical 
sciences usually do not even mention it. In the following, 
we present a simplified version of our analysis that physics 
students can follow and that is realistic. 

We first define the fitting function, Y, in terms of the 
independent variable, x, by the exponential relation 

Y(x) = A exp(Bx), (1) 

in which the fitting parameters are the preexponential A 
and the exponent B (positive for growth, negative for de­
cay). Suppose that the data to be described by the function 
in Eq. (1) are y(x;); that is, 

y(x;) = Y(x;) + e;, (2) 

in which e; is the unknown random error for the ith datum. 
Under log transformation, Eqs. (I) and (2) result in 

In(y;) =In(A) + In [1 +e;lY(x;)] + Bx;, (3) 

which, if the e; were ignored, would be a linear relation 
between the transformed data and the independent vari­
able values x;. If Eq. (1) is substituted into Eq. (3), A and 
B appear in a very complicated nonlinear way that prevents 
the use of linear least-squares methods. 

To proceed requires an "error model," that is, a model 
for how the distribution of the errors e; depends upon the 
x;. The only possibility in Eq. (3) that allows straightfor­
ward estimates of bias and that is independent of the x; is to 
assume proportional random errors, that is, 

e; = aY(x; )P(O,l;), (4) 

in which a is the same standard deviation of e;lY(x;) at 
each i. The notation P(O,l;) is to be interpreted as follows. 
In statistics P( 0,1) denotes an independent probability dis­
tribution, P, having zero mean and unity standard devi­
ation at each i. Since I is a unit vector, I;. = 1 for all i, and 
P(O,l;) is a random choice from P(O,l) for each i. For 
example, a Gaussian distribution has P(O,I;) 

= exp( - t7/2)/~(21T), where t; is a random variable 
parametrizing the distribution of errors at each data point. 
Proportional errors (constant percentage errors from 
point to point) are common in many physics measure­
ments by appropriate design of the experiment. An excep­
tion is radioactivity measurements, which have Poisson 
statistics3 with square-root errors, unless counting inter­
vals are steadily increased to compensate count rates that 
decrease with time. 

Before Eqs. (3) and (4) can be used for fitting, we have 
to take expectation values, E in statistical nomenclature,4 
on both sides, corresponding to many repeated measure­
ments of each datum. We assume that each X; is precise, so 
that we obtain 

(5) 
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in which the biased estimate of the intercept, A b' is given by 

Ab = A exp(E{ln[ 1 + aP(O,l) ]}). (6) 

The use of I rather than I; is a reminder that the expecta­
tion value is to taken over all the data. Even when only a 
single set of observations is available, it is still most appro­
priate to correct the bias in the estimate of A by using Eq. 
(6) as described below. An estimate of the fractional stan­
dard deviation a can be obtained either experimentally by 
choosing a representative x; and making repeated measure­
ments ofy;, or computationally it can be obtained from the 
standard deviation of the least-squares fit. 2 

Equation (6) shows that a straightforward least-squares 
fit of the log-transformed data will give a biased value for A, 
namely A b' and that the amount of bias will depend both 
upon the size of the error (a) and its distribution (P) but, 
most importantly, not at all on the x;. Note also that in this 
error model the exponent B (which is often of primary 
interest) is unbiased. 

The bias in A can be estimated by expanding the loga­
rithm in Eq. (6) in a Maclaurin series, then evaluating the 
expectation values term by term. The unbiased value, A, 
can be estimated from the extracted biased value Ab in Eq. 
(5) by solving for A in Eq. (6) to obtain 

A = Ab exp[ Lb (P)], (7) 

where the bias term, Lb (P), is given by 

Lb(P) =~/2+S(P), (8) 

with 

(9) 

where the sum starts at m = 3 and Em denotes the mth 
• moment of the distribution P. The first term in the Ma­

claurin series vanishes because P is to have zero mean, 
while the second term contributes ~ /2, since P is to have 
unity standard deviation (second moment about the 
mean). The remaining sum, Eq. (9), depends on the error 
distribution P. For example, for the commonly assumed 
Gaussian (normal) distribution P = P G , its third moment 
vanishes because of its symmetry and its fourth momentS 
gives Lb (P G ) ;:::; ~ /2 + 3a4 /4, while for the uniform (rec­
tangular) distribution P = P v' one obtains L b (P V ) ;:::; ~ / 
2 + 9a4 /20. 

Table I gives examples of the bias induced in the preex­
ponential A by a logarithmic transformation. Note that A 
needs to be corrected upward by 0.5% for data with 10% 
standard deviation (a = 0.1) and upward by about 5% for 
data with 30% random errors (a = 0.3). 

Table I. Logarithmic bias estimate exponents in Eqs. (7) and (8) for 
lowest order, for Gaussian (P (j ), for Monte Carlo simulation estimated 
(L" Me) from the distributions displayed in Fig. I, and for uniform (PI') 

error distributions. 

(T 

Bias estimate 0.1 0.2 0.3 

a2/2 0.00500 0.0200 0.045 
L,,(PG ) 0.00508 0.0214 0.053 
L hMC 0.00508 0.0214 0.054 
L,,(Pu ) 0.00505 0.Q208 0.049 
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Fig. 1. (a) The Gaussian (normal) distribution'PG (0,1), with zero mean 
and unity standard deviation randomly sampled 200 000 times. (b) The 
distribution ofln[ 1 + aPG (0,1) 1, as used in Eq. (6), with the same ab­
scissa as in (a), for u = 0.2. In both plots the central vertical shows the 
mean and the outer verticals show 1 s.d. from the mean. By including all 
the points in the sample shown in (a), the In distribution acquires the very 
long negative tail shown in (b). 

As a way of confirming the above analysis, we made a 
Monte Carlo simulation of the random error distributions, 
as follows. We used a computer random number generator 
to provide a sample of200 000 values from a Gaussian dis­
tribution, and we forced this sample to have zero mean and 
unity standard deviation, as the above analysis uses. The 
sample was then sorted into 800 bins, producing the distri­
bution shown in Fig. 1 (a). Choosing 0" = 0.1, 0.2, or 0.3, 
we then formed In [1 +O"P( 0,1) ], as in Eq. (6). The corre­
sponding distribution for 0" = 0.2 (20% error) is shown in 
Fig. 1 (b), where the long negative tail that induces the bias 
in A is evident. The Monte Carlo estimate of the bias is just 
the negative of the mean value of this distribution, which 
we call Lb Me' Table I shows that the agreement with our 
analytic estimate, L b (P G ) , is very close. 
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The mathematically punctilious reader should object to 
our analysis for the Gaussian distribution, because the ar­
gument of the In function in the error model may become 
negative, even though this is very improbable if 0" is small. 
(ForO" = 0.2 the probability is about 3 X 10- 7

.) Therefore, 
in the analytical treatment Eq. (9) represents an asympto­
tic series which eventually diverges, while in the Monte 
Carlo simulation if the sample size is very large the chance 
of getting a negative argument increases. Formally, this 
problem can be circumvented by defining suitably truncat­
ed distributions whose low-order moments are nearly the 
same as the complete distributions, so that there are no 
practical consequences. For a uniform distribution, the 
problem arises only if 0"> 11/3 = 0.58, which would usual­
ly be considered too large an error to justify anything more 
than a cursory fit. 

Clearly, the simple corrections suggested by Eqs. (7)­
(9) are worth making if the assumption of proportional 
random errors, Eq. (4), is realistic. It is also reassuring that 
the exponent B is unbiased under this assumption. For any 
other error model the logarithmic transformation induces 
biases in both the exponent B and the preexponent A which 
cannot be easily corrected. 
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