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Spin flip probability of electron in a uniform magnetic field
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The probability of a spin flip of an electron is calculated. It is assumed that the electron resides
in a uniform magnetic field and interacts with an incoming electromagnetic pulse. The scattering
matrix is constructed and the time needed to flip the spin is calculated.
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INTRODUCTION

Controlling the spin state of an electron is becoming
an increasingly important issue. Spintronics continues
to advance and managing the spin of the electrons is a
vital concern. Quantum information seeks long lived cu-
bit states that allow reversible transfer and control.[1],[2]
Moreover, in generalized theories of gravity the spin gives
rise to a new field, called torsion, which may someday be
measured from spin flipping techniques.[3],[4]
A review of experiments involving spin flips in solids

has been given,[5] and more recently experimental in-
vestigations of nonlinear optical effects for spin polarized
electrons in semiconductors has been undertaken.[6] Spin
flip by a dc voltage in a quantum dot was also reported.[7]
For these reasons it is important to know the effect

of an electromagnetic wave on the spin state. A classi-
cal investigation was undertaken by Gover,[8] who stud-
ied electron beams interacting with an electromagnetic
pulse. While the main subject was spin resonant radia-
tive emission, it was noted the spin flip is enhanced when
coherent light is used. A related problem dates back to
Brown,[9] who studied the geonium “atom,” which is a
single particle placed in a Penning trap. In this case the
magnetic field is not uniform.
In this Letter we compute the quantum mechanical

probability of an electron spin flip induced by an elec-
tromagnetic pulse. In particular we consider an electron
trapped in a uniform magnetic field, but otherwise free.
Now we assume an electromagnetic pulse is incident on
the electron and ask, what is the spin flip probability.
We start with the transition amplitude, defined by

Sfi = −ie
∫

d4xψfγ
σAσψi (1)

where f and i denote final and initial states, Aσ is the
electromagnetic potential, and for now ~ = 1 = c.
Normally the final and initial states are free particle

wave functions, but that is not appropriate here. For

one thing, from a philosophical view, it is not sensible to
describe about the spin of an electron without a fiducial
field by which one can measure the spin. In order to
quantify the spin, there must a field, usually a magnetic
field. Thus we consider the scattering of a bound state to
another bound state, so the asymptotic wave functions
should be those of an electron in a magnetic field, which
is assumed to be constant.
The wave function for an electron trapped in a uniform

magnetic field in the z direction was found long ago and
is given by[10]

ψn = Cf e
−i(Ent−pn

xx−pn
z z)e−ξ2/2un (2)

where the momentum terms are eigenvalues,

C2
n =

√
eB(En +m)

2LxLzEn
(3)

and

ξ =
√
eBy − px√

eB
, (4)

where the energy eigenvalues are

E2
n = m2 + p2z + 2neB (5)

where hn = NnHn, Hn are the Hermite polynomials,
Nn = 1/

√

2nn!
√
π, and by definition the Hermite poly-

nomial with a negative subscript is zero. The un are
given below.
One precautionary note is given before the calculation

is presented. The cross section for spin flip is inherently
small because the electromagnetic interaction mixes the
“large” part of the Dirac spinor with the ”small part”
(whereas, for example, a chiral term mixes large with
large). Thus other terms not involving spin flip are much
larger, in general. These terms include momentum trans-
fer effects, where the electron acquires a velocity (as in
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Compton scattering in lowest order). Thus, an electron
at rest trapped in a uniform magnetic field can, besides
spinflipping, acquire a net velocity from the interaction.
However, if the electron is bound to a solid, then the elec-
tron will be held in place. However, in this case the the
interaction Hamiltonian will differ than that used here,
in that there is an additional potential to be included.
In order to get an exact spin flip probability one must

use the exact bound state wave functions and potential
of a bound electron in an external field. However, such
conditions are not known exactly, in general, and so the
calculation used here may be taken as an estimate, pro-
vided the internal fields are small compared to the exter-
nal field. For example, in a typical paramagnetic salt the
local magnetic field of the order of 50 mT, which is small
compared to the 4 T field used here.
Now we will calculate the probability of a spin flip

starting with the scattering matrix

Sfi = limt→∞ < ψf |ψi > . (6)

As mentioned above, we are considering the scattering
between two (quasi) bound states, but the analysis fol-
lows along the usual lines. We start with the Dirac equa-
tion for a particle bound in a uniform magnetic field, with
potential Aσ, that experiences an incoming electromag-
netic wave with potential Ãσ,

(iγσ∂σ − eγσ(Aσ + Ãσ))ψ = mψ. (7)

The propagator is defined according to

(iγσ∂σ − eγσAσ −m)∆ = δ(x− y) (8)

so that we have the general solution

ψ(x) = φ(x) − i

∫

d4y∆V (y)ψ(y) (9)

where V = eγσÃσ and φ is the solution to the homo-
geneous equation. A full treatment of the propagator is
not needed here since we are only interested in the first
order effects, so that

Sfi = δfi +

∫

d4xψfV ψi. (10)

The essential difference between this and (1) is that in
(10) the wave functions correspond to a free particle but
in the above the functions are those of an electron in a
magnetic field.
Now we consider the spin flip such that the final state

is spin up and the initial state is spin down. In this case
we have,

uf =









hn−1

0
pfzhn−1/(Ef +m)

−
√
2neBhn/(Ef +m)









(11)

and

ui =









0
hn

−
√
2neBhn−1/(Ei +m)
−pizhn/(Ei +m)









. (12)

In the above all of the hn are hn(ξ), where ξ is the
dimensionless argument given above (ξ =

√

eB/~cy −
−pxc/

√
eB~c in cgs).

It is assumed that we have box normalization, but only
in a two dimensional box. This is so because ψ is a func-
tion of y. Thus we may impose periodic boundary con-
ditions in x and z, but not in y. In essence, in order to
obtain the Hermite polynomials, it is assumed the solu-
tion must vanish at infinity. Imposing different boundary
conditions would yield solutions that differ than those
given above.
The sides are given by Lx and Lz. It may be noted that

the gauge freedom in the choice of the electromagnetic
potential translates to a freedom in the choice of y or x,
or a combination of the two.
To begin the calculation, let us write (10) as

Sfi = − iCfCi

L0

∫

d4xei(Ef t−pf
xx−pf

zz)e−ξ2

Mfie
−i(Eit−pi

xx−pi
zz) (13)

where L0 = ω/eE and the matrix element is

Mfi = u†fγ
0γσAσui, (14)

which becomes

Mfi = (15)

A0

(√
2
√

B(n+ 1)qhnhn+1p
i
z

(Ef +m)(Ei +m)
−

√
2
√
Bnqhn−1hnp

f
z

(Ef +m)(Ei +m)

)

+A1

(

h2np
f
z

(Ef +m)
− h2np

i
z

(Ei +m)

)

+A2

(

ih2np
i
z

(Ei +m)
− ih2np

f
z

(Ef +m)

)

+A3

(√
2
√

B(n+ 1)qhnhn+1

(Ef +m)
−

√
2
√
Bnqhn−1hn
(Ei +m)

)

.
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Our main interest lies in spin flipping and not on trans-
lation. Therefore we focus here on the terms that are
independent of the initial and final momentum (other-
wise, if these eigenvalues are zero, we see that the matrix
element vanishes). For this reason we take the electro-
magnetic potential to be of the form Aσ = {0, 0, 0, A3}.
We see from our choice of the potential, the matrix

elements occur with Hermite polynomials with different
indices. Due to the orthogonality we see that this term
would vanish unless the potential is a function y. For
these reasons, assuming the electromagnetic field is a
Gaussian pulse, we take

E = E0 cos(ky − ωt)e−(ky−ωt
d

)2 (16)

where in the following we drop the subscript on the am-
plitude and d is a dimensionless constant that essentially
determines the number of wavelengths in the pulse. We
assume that d >> 1 so that the potential may be written
as

A3 ≈ −E
ω
sin(ky − ωt)e−( ky−ωt

d
)2 ≡ E

ω
f, (17)

which gives the electric field in the x direction, the mag-
netic field in the −z direction, and the wave propagating
in the y direction.
Using this in (13) we can perform the x and z integrals

yielding delta functions,

Sfi = −iCiCf

L0
XY a (18)

where X ≡ 2πδ(pfx − pix) and Y ≡ 2πδ(pfz − piz) and

a =

∫

dtdye−ξ2fei(Ef−Ei)tufγ
3A3ui. (19)

Now, we define a± = a+ − a− so that, after integrating
over time,

a± =
d
√
π

2iω
eK
∫

dye−ξ2+bξ

√
2eB

(√
ni

hnf−1hni−1

Ei +m
− nf

hnf
hni

Ef +m

)

(20)

where K = −(d∆+/2ω)2, ∆± = Ef − Ei ∓ ω, and b =
ikL1(1 + ∆+/ω).
For below, we define L1 = 1/

√
eB and φ = px/

√
eB.

To prepare for the final spatial integration we assume a
photon is absorbed, so we are interested in a+ which is
simply called a from here on, and write this as,

a = N2L1

∫

dξe−ξ2+bξMfi (21)

where

N2 =
√
π
dc

2iω
eK . (22)

We make the substitution µ = ξ − b/2, complete the
square, and use the identity,

Hn(x+ y) =

n
∑

k=0

(

n
k

)

Hk(x)(2y)
n−k (23)

where

(

n
k

)

are the binomial coefficients, so that

a = N3

∫

dµ

nf
∑

k=0

ni
∑

k′=0

e−µ2

(24)

(

nf

k

)(

ni

k′

)

hk(ξ)h
′
k(ξ)b

nf−kbni−k −R

where N3 =
√
2eB~cN2L1e

b2/4 and R is defined as the
entire term preceding it with nf and ni replaced by nf−1

and ni−1.
The integrals may be performed without trouble since

the hn are orthonormal with the weight function e−ξ2 .
The result is

Sfi = −i CiCf

L0(Ef +m)
N3

√
nfXYΣ−R (25)

where

Σ ≡
nf
∑

n

bnf+ni−2n

(

nf

n

)(

ni

n

)

. (26)

Now we define P as

P =

∫

|Sfi|2dρ (27)

where ρ is density of states. Earlier we adopted two di-
mensional box normalization in the x and z directions,
so the phase space of this volume is

ρ = dpxdpz
LxLz

(2π)2
. (28)

Performing the phase space integral we finally have,

P = πd2Σ2e2Q
Ei +m

EiEf (Ef +m)

BE2c3e3

~ω4
(29)

where Q = b2/4− d2(∆+)2/4ω2.
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If P is less than one then we may interpret this as the
probability that the electron suffers a spin flip. However,
as defined P may be greater than one, which physically
corresponds to the fact that the electron will eventually
flip back, and then again, and so on. In this case P
represents the number of times the particle flips. In many
cases we are interested in investigating the parameters for
which P = 1. For example, let us calculate how long it
takes for the particle to flip.
Suppose we consider the transition ni = 0, nf = 1. Let

us further assume that the electromagnetic field is tuned
to the transition energy, and take px = 0. With this the
result reduces to P = πd2E2/B2, which may written in
terms of the intensity of the electromagnetic wave, I as
(in cgs)

P =
8π2d2

cB2
I. (30)

Consider the question, how long must the pulse last
in order to flip the spin. Earlier we defined d and the
number of wavelengths in our pulse, so that dλ = ct.
Now we solve for the time, t = T , such that P = 1. The
result is

T =
λB

π

√

1

8cI
. (31)

One should note this result holds at resonance only, off
resonance the scattering matrix decreases exponentially
with time, and the corresponding spin flip time increases
quickly.
This result seems to be compatible with a result of Hu

et. al., who determine the spin flip time of an electron
to be greater than 0.1 µs. To emulate those results we
consider a magnetic field of 4.0 T in a field of 200 mW.
To estimate the intensity we assume a distance of 30 cm
and a standard 16 dB gain antenna, which gives T =
27 µs. However, in that experiment, they considered a
low density of electrons CdTe in quantum wells, so the
comparison cannot be given too much weight.

Alternatively one may ask what intensity is required
to flip an electron in a given time interval. Using the
parameters given above, for example, it would take about
5 W cm−2 to flip the electron in one microsecond.

In the above it was assumed that d >> 1, which means
there are many wavelengths in the pulse. It is natural to
ask what the result for small d is. To investigate the
effects of a short pulse let us take the potential to be
the Gaussian form of width d. This corresponds to a
field that looks like a single wavelength of the order of
d in length. The calculation may be carried through as
above, and the result is that the time needed to flip a
pulse is reduced by a factor of 2d4.

In summary, the probability of the spin flip of an elec-
tron in a uniform magnetic field was calculated in the
case that an electromagnetic pulse was incident on the
electron. At resonance the time it takes to flip the spin
was estimated.
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