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The surface passivation of semiconductors on different surface orientations results in vastly

disparate effects. Experiments of GaAs/poly(3,4-ethylenedioxythiophene/indium tin oxide solar

cells show that sulfur passivation results in threefold conversion efficiency improvements for the

GaAs (100) surface. In contrast, no improvements are observed after passivation of the GaAs

(111B) surface, which achieves 4% conversion efficiency. This is explained by density-functional

theory calculations, which find a surprisingly stable (100) surface reconstruction with As defects

that contains midgap surface states. Band structure calculations with hybrid functionals of the

defect surface show a surface state on the undimerized As atoms and its disappearance after

passivation. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826480]

III–V semiconductors are attractive materials that are

used in a variety of cutting-edge devices, such as solar cells.

A fundamental aspect of these devices is their limitation at

the interface because of surface states. It is important to

understand the nature of these surface states, which may be

caused by adatoms, surface defects, or the interface between

two materials. Such an understanding will lead to better meth-

ods to reduce surface states through surface passivation.

Recent reports have demonstrated dramatic improvements in

solar cell efficiency after surface passivation.1–6 Unpassivated

surface states lead to a recombination of photogenerated

charge carriers, which lowers energy conversion rates. A pop-

ular passivation method is sulfur surface passivation4,6–8 with

Na2S�9H2O,8 ammonium sulfide, (NH4)2S/(NH4)2Sx,4,6,9,10 or

thiols.11,12 In addition to increasing solar cell efficiencies, sul-

fur passivation improves photoluminescence intensity,8,12

makes the Schottky barrier height dependent on the contact

metal,9 improves the C-V characteristics of metal/insulator/-

semiconductor structures,10 and heightens the peak power

output of lasers.13 While sulfur passivation has been demon-

strated to improve device performances on the (100)

surface,8–11,13 very few articles have demonstrated sulfur pas-

sivation of the (110) or (111) surfaces. Sulfur passivation

removed native oxides in the GaAs (110) and (111) surfa-

ces,14,15 but, oddly, these works did not report any device

enhancement effects on these surfaces.

There is some ongoing debate on how passivation

improves semiconductors. Earlier theoretical models7,16,17

looked at sulfur bonded GaAs (100) surfaces that have

unique reconstructions at high temperature, such as the 2 � 1

reconstruction17 at 580 �C (Refs. 14, 18–20) and the 2 � 6

reconstruction21 at 370 �C. Although these structures were

found at high temperatures, sulfur passivation is typically a

room temperature process.4,6,8 As such, these unique surface-

reconstructed structures of sulfur bonded GaAs are not the

structures we consider in this letter.

More recent papers on sulfur passivation have pointed to

the role of native oxides in the creation of surface states. This

was originally proposed by Nannichi and co-workers,22 who

explained why a (NH4)2S treatment improves GaAs devices

in their experiments. Their model builds on Spicer’s “unified

defect model,”23 a model which proposes that the midgap

surface states can arise due to the formation of Ga or As

defects, which in turn create dangling bonds on the surface.

These dangling bond states lead to recombination losses in

GaAs devices. Nannichi and co-workers explained that the

defects appear when native oxides form on the GaAs surface.

While most studies show agreement that midgap surface

states arise by native oxides, previous density-functional

theory (DFT) studies have explained the exact chemical na-

ture of these surface states in two different ways. The first has

attributed the midgap surface states intrinsically to bonds

formed between the oxygen and the GaAs.24–27 The second

has attributed the midgap surface states to Ga or As dangling

bonds formed when the native oxides create defects on the

GaAs surface,28–30 unrelated to bonds formed with oxygen.

In this Letter, we aim to shed some light on the nature of

these surface states. We present experimental results as well

as theoretical results based on DFT. The experimental results

show that passivation is dependent on the surface orientation,

which leads to improvements in conversion efficiency for the

GaAs (100) surface but not for the GaAs (111B) surface.

This is explained by our DFT results, which show that sur-

face defects can form more easily on the (100) surface than

on the (111B) surface. Because of the higher density of

defect surface states on the GaAs (100) surface, passivation

will have a dramatic effect on this surface orientation in

comparison with the (111B) surface. We further show witha)Electronic Mail: ted.yu@csulb.edu
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theory that sulfur reacts with the most likely GaAs (100) sur-

face defect to remove surface states.

Our experiments31 consist of conversion efficiency tests

of inorganic/organic hybrid solar cell devices. The solar cell

sandwiches consist of GaAs, PEDOT:PSS (poly(3,4-ethyle-

nedioxythiophene: poly(styrenesulfonate)), and ITO (indium

tin oxide) glass. We tested four different GaAs surfaces:

(100) and (111B), with and without sulfur passivation. The

sulfur passivation was a two-step process11 with octanethiol

solution followed by ammonium sulfide solution in the layer

between the GaAs and PEDOT:PSS. The PEDOT:PSS was

spin coated on the passivated/nonpassivated GaAs and ITO

glass. We brought the PEDOT:PSS sides together, while fac-

ing each other, to form the GaAs/PEDOT:PSS/ITO sandwich.

All of the processes were performed at room temperature.

The characteristics of the solar cells I-V were tested with

dark and bright current measurements, which determined the

Voc, conversion efficiency, and saturated current as provided

in Table I.

When we compare the efficiency, g, of the passivated

versus unpassivated GaAs (100) device, we see in Table I

that g is dramatically improved with passivation by nearly a

factor of three. The saturated current, Js, is reduced from 2.54

to 0.93 mA/cm2 after passivation. In addition, Voc is

increased from 0.33 to 0.51 V.31 These results suggest that

the improvement is due to the reduction of surface states. For

the GaAs (111B) surface, we see that there is little efficiency

change from passivation. This is a highly reproducible result,

and we consistently see �2–3 times efficiency improvement

for the (100) surfaces up to �2%, while the efficiency of the

(111B) surface stays relatively unchanged at �4% for many

samples. The slight efficiency decrease of 0.24% for this par-

ticular (111B) sample may be a result of the thin sulfur passi-

vation layer, which decreases light absorption.

In earlier works, it was found experimentally that sulfur

passivation removes native oxides on GaAs (100), (110), and

(111B) surfaces.14,15,20 For the (111B) surface, we find that

the removal of these native oxides by sulfur passivation does

not improve conversion efficiency. This result suggests that

the bonds formed by the native oxides on the GaAs (111B)

are not the direct cause of the midgap surface state, but

rather these states are caused by surface defects which can

remain even after the native oxides are removed. Our subse-

quent theoretical analysis from DFT explores how defects

can cause surface states and explains the orientation depend-

ence of sulfur passivation.

The FHI-AIMS32 code is used for the DFT calculations.

It is an all-electron code that uses atom centered numeric

orbitals as a basis set. For these calculations, we use the pre-

defined light basis setting, which has radial s, p, and d char-

acters with an overall cutoff radius of 5 Å and a Hartree

potential expansion up to l¼ 4. DFT with the Perdew-Burke-

Ernzerhof (PBE)33 approximation of the generalized gradient

approximation (GGA) exchange-correlation functional and

with accurate Van der Waals (VdW) corrections34 is used to

relax the five bi-layered GaAs slabs with 10 bi-layers of vac-

uum. The bottom three bi-layers are fixed, and the bottom

Ga layer of the GaAs slabs is terminated with pseudohydro-

gen atoms that contain 1.25 electrons to represent bonds to

As atoms. The slab thickness, vacuum layer thickness,

k-points, and basis set are found to be well converged for the

GaAs surface in terms of energy differences.

DFT with the Heyd-Scuseria-Ernzerhof (HSE-06)35

exchange-correlation functional and a non-optimized 25%

mixing factor is used to determine the band structure and den-

sity of states (DOS) of the geometrically relaxed surfaces.

This hybrid functional does not underestimate the band gap

like the GGA functionals and in some cases is able to match

the bulk band gap. When using experimental lattice parame-

ter, a bulk band gap of 1.34 eV is obtained, compared to the

experimental value of 1.42 eV.36 Both the PBE-VdW and

HSE-VdW calculations have an optimized GaAs lattice pa-

rameter of 5.71 Å, which is used in all calculations. This is

only a 1% overestimation from the experimental lattice pa-

rameter of 5.65 Å.37 Using the optimized lattice parameter,

the most important GaAs (100) b2(2 � 4) surface reconstruc-

tion on a five bi-layer slab is found to have a band gap of

1.65 eV. For GaAs slabs, the calculated band gap is highly

thickness-dependent and decreases toward the bulk value as

the slab thickness is increased beyond five bi-layers.25,38

Figure 1 shows our phase diagram results for the GaAs

(100) surface using the method outlined previously.39,40 It

includes a number of previously studied surface reconstruc-

tions and some defect surfaces. From our calculations, the

TABLE I. Reported open circuit voltage (Voc), conversion efficiency (g),

and saturated current (Js), of four different ITO/PEDOT:PSS/GaAs Schottky

junction solar cells. The effect of the passivation on the GaAs (100)

Schottky junction is significant, while its effect on GaAs (111B) is not. The

saturated current of the GaAs (111B) devices is lower than that of GaAs

(100), which shows that there are fewer surface states on the (111B) surface.

Surface Passivation V0C (V) g (%) JS(nA/cm2)

(100) No 0.33 0.67 2.54

(100) Yes 0.51 1.91 0.93

(111B) No 0.65 4.08 1.3 � 10�3

(111B) Yes 0.65 3.84 1.0 � 10�3

FIG. 1. Phase diagram for different GaAs (100) surface reconstructions. The

three most stable reconstructions are (red lines) a2(2 � 4), b2(2 � 4), and

c(4 � 4). Also represented are surface reconstructions with surface defects.

The most stable defect surface reconstruction, b2(2 � 4)-Defect D is shown

in a bold blue line.

173902-2 Yu et al. Appl. Phys. Lett. 103, 173902 (2013)
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thermodynamically favorable surface reconstructions for

GaAs (100) are a2(2 � 4) at low lAs, b2(2 � 4) at intermedi-

ate lAs, and c(4 � 4) at high lAs.
40 For the GaAs (111B) sur-

face, the favorable surface reconstructions are the �19 � �19

reconstruction at low lAs and the As trimer (2 � 2) at inter-

mediate and high lAs.
40,41 For the GaAs (110) surface, the

unreconstructed surface is the most stable, and at high lAs,

the As-terminated surface reconstruction is most stable.40

These results agree with phase diagrams based on chemical

potential reported previously.40,41 The only exception is that

previous DFT results with PBE using pseudopotentials show

that the GaAs (100) f(4 � 2) reconstruction42 is most favor-

able at low lAs, while the all-electron code we use show that

the a2(2 � 4) reconstruction is slightly more stable.43

While these surfaces are thermodynamically most favor-

able, we are interested in the energy cost to create defects on

them. According to the paper by Nannichi and co-workers,22

the surface states arise when native oxides create defects of

As or Ga on the GaAs surface. Therefore, the energy cost to

create a defect of As or Ga from the GaAs surface will be a

direct indicator of the native oxide’s ability to create surface

states. Figure 2 shows the possible As and Ga defect sites,

and Table II shows the energies required to remove the

surface atoms into a bulk phase reservoir, where En,defect

¼Edefect surfaceþEn (bulk)�Eperfect surface, and n¼As or Ga.

After removal of an As or Ga atom, the surface no lon-

ger satisfies the electron counting rule,44 and midgap surface

states appear (see band structure calculations below). For the

a2(2 � 4) surface, the lowest energy to create such a surface

state is to remove a Ga atom at a cost of 0.88 eV. For the

b2(2 � 4) reconstruction, the energy cost is 0.84 eV to

remove a top As atom. For the c(4 � 4) reconstruction, the

energy cost is 1.63 eV to remove an As atom from the corner.

The reason that the energy cost of removing a top As atom in

the b2(2 � 4) reconstruction is so stable is because the two

Ga atoms underneath form a stable Ga-Ga bond after the re-

moval of the As atom. This is similar to the Ga dimerization

seen in the stable a2(2 � 4) reconstruction as reported origi-

nally by Yamaguchi.45 We find that for the GaAs (100) sur-

face, the c(4 � 4) structure has the highest cost to create a

midgap surface state and would be the most desirable struc-

ture to minimize surface states. Therefore, our calculations

suggest that high lAs during the growth of the GaAs (100)

will reduce surface states caused by As defects.

When comparing the (100) and (111B) GaAs surface

orientations, we compare the (100) b2(2 � 4) and (111B)

As trimer surfaces (which are stable at intermediate lAs).

Their energy costs for creating an As defect are 0.84 eV and

1.45 eV, respectively. We find that for the GaAs (100) sur-

face, the energy to create Defect D is lower, and a surface

state can be generated much easier than for the (111B) sur-

face. We interpret our results as follows: the energy to

remove an As atom to generate a defect on the GaAs

(111B) surface is so large that the native oxides do not gen-

erate surface states on this surface, making the passivation

step unnecessary, as is evident in the negligible conversion

efficiency improvement in our experimental (111B) device

upon passivation. In the phase diagram of Figure 1, we see

that the surface structure b2(2 � 4)-Defect D is the most

stable defect structure of the GaAs (100) surface. We note

that it is surprisingly more favorable than the a(2 � 4)

reconstruction.40

In Figure 3, we show the band structure and DOS of the

b2(2 � 4)-Defect D surface. The DOS of a perfect b2(2 � 4)

surface (dashed line) has no surface states. Defect D gener-

ates a surface state, V1, and a conduction band minimum

(CBM) state, C1. Figure 4 shows the b2(2 � 4) Defect D sur-

face structure and the location of V1 and C1 orbitals. When

the As defect is created, the bonds to atoms A, B, and C are

broken. The atoms B and C dimerize, which stabilize this

structure. This leaves an unpaired electron on the undimer-

ized As (A). This undimerized As is the location of the sur-

face state, V1. The new C1 is located at the empty orbitals of

B and C that previously bonded toward the direction of the

defect.

Next, we look in depth at how (NH4)2S and thiols react

with the b2(2 � 4)-Defect D surface. (NH4)2S forms S in the

reaction: (NH4)2S! 2NH3þH2þ S. Thiols, such as ethane-

thiols (CH3CH2SH) form self-assembled monolayers11

(SAM) on the surface as follows: CH3CH2SH ! 1=2H2

þCH3CH2S•. Figure 4 illustrates the b2(2 � 4) Defect D

structure and the different Ga and As sites on the surface.

We have calculated the binding energy and replacement

energy of S and CH3CH2S• on this surface, referencing the

As, Ga, and S bulk phase chemical potentials. When compar-

ing binding and replacement at various sites,31 we find that it

is energetically more favorable for sulfur (from (NH4)2S) to

replace rather than to bind on the surface at replacement site

A (2.09 eV). For CH3CH2S•, the highest binding energy site

is at the two-fold site AB (1.67 eV).

FIG. 2. As (white) and Ga (red) defects on GaAs reconstructed surfaces.

The energy (in eV) to remove an As or Ga from the surfaces at sites is listed

in Table II. The lowest energy to remove a defect is in position D of the

b2(2 � 4) surface with an energy of 0.84 eV.

TABLE II. Defect energies, En, defect, of various surface sites. The defect

energy for site D is the lowest.

Site A B C D E F G H I J K L M

E (eV) 0.88 1.95 2.21 0.84 2.15 1.91 1.63 1.82 1.77 1.16 1.75 1.75 1.45

173902-3 Yu et al. Appl. Phys. Lett. 103, 173902 (2013)
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The substitution of sulfur at replacement site A restores

the band gap and removes the midgap surface state, V1.31

Sulfur, with one more valence electron than As, pairs the

undimerized electron and pushes the V1 state below the

band gap. The C1 state remains. The binding of CH3CH2S•

at the two-fold site AB pairs the undimerized electron on As

(A) and pushes the V1 state below the band gap.31 This

removes the midgap surface state and restores the band gap.

Because of the bond formed between CH3CH2S• and Ga (B),

the C1 state on atom B slightly delocalizes to atoms G, H,

and I.

In conclusion, our experimental and theoretical results

explain the defect nature of surface states and how the effec-

tiveness of surface passivation varies for different surfaces.

Our experimental results show that sulfur passivation

improves the conversion efficiency of the GaAs (100) sur-

face but not the GaAs (111B) surface. To explain this, we

find with DFT calculations that the GaAs (100) b2(2 � 4)

surface has a cost of only 0.84 eV to remove an As atom

from its top layer, thus forming a surprisingly stable defect

surface reconstruction. In contrast, the GaAs (111B) surface

has a higher cost of 1.45 eV to remove an As atom from its

surface. This removal of an As atom from the surface forms

a defect surface that has a midgap surface state, as shown in

the band structure. During sulfur passivation, we show where

(NH4)2S and CH3CH2SH prefer to react with the GaAs

defect surface to remove the midgap surface state. Even after

the sulfur passivation, the GaAs (100) surface still shows

lower solar conversion efficiency than the GaAs (111B) sur-

face. This may be due to the inefficiency of the sulfur passi-

vation process and not all of the surface states having been

removed. Based on the results of this paper, with everything

else being equal, we speculate that a GaAs (100) surface

with the c(4 � 4) reconstruction would have less surface

states and improved conversion efficiency compared to the

b2(2 � 4) reconstruction.

This work was funded by the National Science

Foundation under Grant DMR-1125931. We would like to

thank participants of the IPAM program on “Materials

Defects: Mathematics, Computation, and Engineering” for

fruitful discussions, especially Peter Kratzer, J€org

Neugebauer, and Joshua Shapiro. We appreciate the FHI-

AIMS team for help with the FHI-AIMS code, with special

thanks to Volker Blum and Sergey Levchenko. Special

thanks to Joseph Papac for help in reviewing this manuscript.

1G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, Nat.

Commun. 4, 1497 (2013).
2J. V. Holm, H. I. Jorgensen, P. Krogstrup, J. Nygard, H. Liu, and M.

Aagesen, Nat. Commun. 4, 1498 (2013).
3S. Hu, Y. Kawamura, K. C. Huang, Y. Li, A. F. Marshall, K. M. Itoh, M.

L. Brongersma, and P. C. Mcintyre, Nano Lett. 12(3), 1385 (2012).
4G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Leonard, J. Shapiro, and

D. L. Huffaker, Nano Lett. 11(6), 2490 (2011).
5Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, Nano

Lett. 11, 2527 (2011).
6G. Mariani, R. B. Laghumavarapu, B. T. de Villers, J. Shapiro, P.

Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, Appl. Phys. Lett.

97(1), 013107 (2010).
7J. M. Jin, M. W. C. Dharmawardana, D. J. Lockwood, G. C. Aers, Z. H.

Lu, and L. J. Lewis, Phys. Rev. Lett. 75(5), 878 (1995).
8C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, Appl. Phys.

Lett. 51(1), 33 (1987).
9J. F. Fan, H. Oigawa, and Y. Nannichi, Jpn. J. Appl. Phys., Part 2 27(11),

L2125 (1988).
10J. F. Fan, H. Oigawa, and Y. Nannichi, Jpn. J. Appl. Phys., Part 2 27(7),

L1331 (1988).
11P. Arudra, G. M. Marshall, N. Liu, and J. J. Dubowski, J. Phys. Chem. C

116(4), 2891 (2012).
12M. H. Sun, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, and C. Z. Ning,

Nano Lett. 12(7), 3378 (2012).
13A. J. Howard, C. I. H. Ashby, J. A. Lott, R. P. Schneider, and R. F.

Corless, J. Vac. Sci. Technol. A 12 (4), 1063 (1994).
14H. Oigawa, J. F. Fan, Y. Nannichi, K. Ando, K. Saiki, and A. Koma, Jpn.

J. Appl. Phys., Part 2 28(3), L340 (1989).
15H. Ohno, H. Kawanishi, Y. Akagi, Y. Nakajima, and T. Hijikata, Jpn. J.

Appl. Phys., Part 1 29(11), 2473 (1990).
16K. N. Ow and X. W. Wang, Phys. Rev. B 54(24), 17661 (1996).
17G. Hirsch, P. Kruger, and J. Pollmann, Surf. Sci. 402(1–3), 778 (1998).

FIG. 3. The left panel represents the

band structure of the b2(2 � 4)-Defect

D surface. The shaded area represents

GaAs bulk states. The right panel rep-

resents the corresponding DOS. The

dashed line is for a surface without a

defect, the solid line for a surface with

a defect. V1 and C1 represent the sur-

face state and CBM.

FIG. 4. Orbital visualization (blue (�) and red (þ)) of the surface state, V1,

and the CBM state, C1 of the b2(2 � 4)-Defect D structure. Energetically,

sulfur prefers to replace at site A with a replacement energy of 2.09 eV.

CH3CH2S• prefers to bind at the two-fold site AB (binding energy, 1.67 eV).

Both reactions remove the midgap surface state, V1. White, red, yellow,

black, and gray atoms represent As, Ga, S, H, and C atoms, respectively.
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