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Abstract 
 As attention is paid to the state of plastic pollution in the environment, an increasing area of 

research is in ocean microplastics. These very small pieces of plastic can come in a variety of shapes and 

colors and occur when larger plastic pieces begin to decay. Microplastics have been found on land, in 

surface water, in the depths of the ocean, and even in the bellies of fish. They are an important subset 

of plastic pollution, and one that could easily work through the ocean ecosystem with unknown 

consequences. While there is not a large amount of data on the subject, this paper attempts to model 

the spatial distribution of these microplastics in the world’s oceans. The data used was collected by the 

group Adventure Scientists, an organization that relies on citizen scientists to collect data on a variety of 

environmental issues. Collected from 2013 to 2017, there were 1393 points across the oceans. The 

spatial statistics methods used to calculate the estimate of the average number of particles per liter was 

kriging. The average amount of microplastics per liter in the ocean is estimated to be 5.4757 pieces per 

liter. Pieces are highly concentrated in the polar regions and other areas of accumulation. This paper 

expands on research done by staff at Adventure Scientists by including spatial statistics methods. 

I. Overview/Purpose 
Plastic is an incredible material. It is durable, moldable, flexible, lightweight, and can be used for an 

incredibly vast array of products, from playset slides to single-use water bottles to casing for medical 

monitoring tools. Unfortunately, their adaptability also means that plastics can be found almost 

ubiquitously, including in the oceans. While some plastics are recycled and more still make their way 

into landfills, plastic waste that is not responsibly disposed of can be seen in staggering quantities in the 

oceans. According to the nonprofit group the Ocean Conservancy, there are an estimated 150 million 

tons of plastic in the ocean, with 8 million tons entering every year (Leonard, 2020). This plastic makes 

its way throughout the ocean ecosystem, being mistaken as food by animals such as sea turtles, fish, and 

seagulls, as well as absorbing harmful chemicals.  

While it seems like plastic is indestructible, it does break down into what are called microplastics. 

Microplastics are generally considered to be pieces of plastic ranging up to about 5 millimeters, though 

this definition is flexible. Microplastics occur when wear and tear break down a plastic, or when small 

fibers are shed from synthetic or semisynthetic materials. These pieces are called microfibers and will be 

referred to as “filament-shaped” through the rest of this report. Shockingly, a 2018 study on the 

frequency of microplastics in mesopelagic fish in the northwest Atlantic ocean found 73% of the 

sampled fish to have microplastics and microfibers in their bellies, a statistics that should concern 
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anyone (Wieczorek et al, 2018). Researchers have even found microplastics in sea salt produced for 

human consumption, between 50-280 microplastic pieces per kilogram of salt (Iñiguez, 2017). 

If any progress is to be made to clean up marine plastics and microplastics, the spatial distribution 

would be incredibly useful to know. If it is known where microplastics tend to form and collect, then 

groups that clean up ocean waste could concentrate their efforts on those critical areas, thus optimizing 

their results. Plastics may collect in the polar regions or in gyres. Gyres are regions in the middle of an 

ocean formed by swirling currents. These currents are usually along the equator and along coastlines, 

and they sweep floating plastics or plants into the center of the gyre. The floating pieces then 

accumulate in the center of the gyre. The Sargasso Sea off the coast of North America, a region of slow-

moving waters filled with the algae sargassum, is the result of a gyre, as is the Great Pacific Garbage 

Patch off the coast of California, which is a massive accumulation of marine debris. There are five gyres 

in the world’s oceans: the Northern Pacific, the Southern Pacific, the Northern Atlantic, the Southern 

Atlantic, and the Central Indian gyres. The remainder of this paper focuses on the data collection effort 

and the statistical components for modeling the marine microplastic spatial distribution.  

II. Data Gathering 
Data collection efforts began in May of 2020. Internet search engines were used first in an effort to 

find a dataset of ocean plastics on a global scale, as well as several experts in the field. These sources did 

provide some relevant datasets, which are listed below in the table. Many of the datasets were collected 

by citizen science groups. Datasets tended to include the date of sampling, location (longitude and 

latitude), data about the sea surface conditions, including Beaufort scale rating and surface salinity at 

the time of sampling, and some measurement of the number of microplastics in the sample. This final 

measure varied the most, and this lack of standardization is part of the difficulty with finding consistent 

microplastics data. Also, there were a fair number of studies that collected information of plastic waste 

but did not include microplastics. 

Organization/Individual 

Owner 

Years 

collected 

Number of 

datapoints 

Measurement 

of microplastics 

Reason for not using 

NOAA boat race 2017-2018 96 Particles per 

cubic meter 

96 data points was not a 

sufficient amount to complete 

a global spatial model. 
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Mississippi State 

University 

2017-2018 590 Number of 

particles 

While this dataset contained a 

fair amount of data, the 

geographic distribution was 

not wide enough for this 

project. It covered only the 

coastal areas of the Gulf of 

Mexico. 

L. Lebreton and M. 

Eriksen 

2007-2013 1571 

(680 

capturing 

micro-

plastics) 

Particles per 

square 

kilometer 

This dataset has more data 

points than the dataset used. 

However, it was collected 

using surface manta tows, 

which have been known to 

undersample microplastics 

(Barrows, 2017). 

Adventure Scientists 2013-2017 1393 Particles per 

liter 

This dataset included a fair 

amount of data, including a 

breakdown of the pieces by 

shape and color. Its 

geographic distribution was 

one of the broadest. 

 

Dataset of Interest 
After exploring the available data about microplastics, the dataset collected by the group Adventure 

Scientists was chosen for the spatial modeling. Adventure Scientists is an organization dedicated to 

collecting data about environmental issues. They tend to use volunteers and outdoor enthusiasts to 

collect data from remote areas, provide training for these volunteers, assemble the data, and provide 

quality control checks for their data before making it available. This particular dataset was collected 

from 2013 to 2017 by volunteers. Volunteers would either be already going on a boat charter or would 

join a charter already planned. Thus, the samples are not random and were not intentionally designed 

by Adventure Scientists. It includes 1393 points across all five oceans, making it one of the most 

extensive datasets specifically about microplastics to date. The volunteers would collaborate with boats 

that were already going out to sea, and samples were taken throughout the voyage. Buckets of 
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approximately one liter in volume were used to collect seawater, and the location, data and time, sea 

surface salinity, wind speed, and other variables were recorded for each sample. The microplastics 

themselves were counted and classified back on land. The process was done with a high level of quality 

assurance in mind and can be read about in detail in the 2018 paper by Barrows et al. 

Some of the drawbacks of this dataset were the lack of a sampling scheme and the varying density 

of samples across the globe. Because samples were taken from pre-existing boat charters, they are not 

randomized and do not conform to a grid sampling method, which would be preferable for spatial 

modeling. It would be preferable if the dataset included samples taken from randomly-selected 

geographic coordinates. However, this is logistically unfeasible given the remoteness of the open ocean. 

Further, some areas such as the mid-Atlantic Ocean have a much higher sampling density of points while 

other areas like the Southern Ocean and the Indian Ocean have much fewer points. This is not ideal for 

the aim of this project, which is to study the global distribution of microplastics in the ocean. If one part 

of the global ocean is undersampled, then this will weaken the “globalness” of the results. Neither of 

these traits are ideal for the spatial modeling, but this dataset was one of the few with over a thousand 

samples and specifically focused on microplastics. 

One region well-sampled in the dataset is the mid-Atlantic. This is because Adventure Scientists 

partnered with the Atlantic Rally for Cruisers race, a trans-Atlantic boat race that took place between 

November and December 2014. 473 samples were collected through this collaborative effort, 

accounting for a large percentage of the open ocean data. 

The other dataset with over a thousand samples was the Lebreton dataset. Collected from 2007-

2013 and with 1571 datapoints, there are more samples than the Adventure Scientists dataset. This 

dataset has similar drawbacks as the Adventure Scientists dataset: the sample locations are not random, 

and the distribution of samples is varying in density across the globe. In addition to these, the Lebreton 

dataset included two sampling methods: a surface trawl and a visual survey. The surface trawl method 

involved dragging a net across the ocean surface for a length of time between 15 and 60 minutes. The 

visual survey was intended to record occurrences of large plastics such as discarded fishing net or plastic 

bottles. Observers recorded the number and type of large plastics they saw off the bow of the ship for a 

length of time between 15 and 60 minutes. There were 680 surface trawl datapoints and 891 visual 

survey datapoints. This dataset was not used because only the 680 surface trawl datapoints can report 

on the microplastic distribution. 
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This dataset includes 1393 data points and 141 variables. The majority of those variables are subsets 

of the total microplastics counts, broken down by color, size, and type of plastic. The possible colors 

were blue, black, red, green, transparent, and “other”, the possible shapes were round-shaped, 

filament-shaped, and “other”, and the possible sizes were less than 1.5 millimeters, 1.6-3.1 millimeters, 

3.2-5 millimeters, and 5.1-9.6 millimeters. Additional covariates collected were the date and time of the 

sample, the latitude and longitude of the sampling location, as well as several written location 

descriptors (such as which ocean or whether the location was coastal or in the open ocean), the water 

temperature in degrees Celsius, depth of the sample in meters, the wind speed in knots and wind 

direction, the date filtered, the date counted, and sample volume. 

Previous work with this dataset was done by researchers from Adventure Scientists. In the 2018 

paper about the dataset, Barrows describes the overall patterns seen in the data. Microfibers are the 

most commonly seen particles, and the highest concentrations of particles are found in the polar 

regions, as anticipated by several models (Isobe, 2017; Wilcox, 2015). Generally, the open ocean had 

higher concentrations than coastal regions. The global microplastic average based off the data was 

found to be 11.8 particles per liter with a standard deviation of 24 particles per liter, an estimate roughly 

three times higher than other studies (Barrows, 2018). Barrows believes this is because the grab 

sampling method allows for more pieces to be caught and counted. 

III. Exploratory Data Analysis 
Data was collected from across the globe, but particularly in the mid-Atlantic Ocean and along the 

coastline of North America. The map below shows the locations of the data samples, with each red point 

indicating one sample.  
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When looking at the data by location and year, we can see that many of the visually grouped 

clusters were sampled during the same year. For example, the large Atlantic swath was all sampled 

during 2014 while the points off the coast of Japan were sampled during 2016. This should hopefully 

make analysis within each data-area possible without too much worry about the temporal influence. Of 

course, the data could be further broken down and analyzed while considering the temporal ocean 

changes, and we will look for evidence of spatial correlation within each year later in this document. The 

number of samples in each year is noted below the map, as well as where they tend to be located. 
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Year Number of points Regions 

2013 50 West central Atlantic, Southern Alaska, Southern 

Atlantic/Antarctica 

2014 725 Central Atlantic, Great Pacific Garbage Patch, East and 

West coasts of North America, Mediterranean 

2015 318 Central Atlantic, West coast of North America, East coast 

of South America 

2016 249 North of North America, East Pacific, Southeast Asia, 

Caribbean  

2017 51 Southern tip of South America/Antarctica, 

Madagascar/Indian Ocean 

 

As we can see from both the map of location points and the histogram of Ocean Basins (counts 

of records in each ocean), there are the most points in the Atlantic Ocean, followed by the Pacific, the 

Indian, the Arctic, and the Southern. We can see from the map that there is a large swath of points in 

middle of the Atlantic Ocean (20 degrees North), looking to be the densest part of the map. The coasts 

of North America also seem to be covered fairly well. There is a noticeable gap of data in the Southern 
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Ocean, the South of the Indian Ocean, and the South of the Pacific Ocean. This is not ideal when 

attempting to model the microplastic distribution globally but must be tolerated. 

 

To go further into where samples were taken, we can look at whether the samples were taken 

from a coastal location or an open ocean location. Each data points of the dataset includes this variable, 

which reflects how far the point is from the nearest shoreline. If the point is within 12 nautical miles 

from shore, it is classified as coastal; otherwise, it is classified as open ocean. This distance is what the 

United Nations Convention on the Law of the Sea defines as the breadth of a state’s territorial sea 

(UNCLOS, 1982) and was used by Adventure Scientists as the demarcation between the two states 

(Barrows, 2018). Generally, there is more coastal data than open ocean data for each ocean, though the 

Atlantic Ocean has more open ocean data. There are 708 coastal locations and 685 open ocean locations 

represented in the data. This variable could be included as a covariate in the model, but as of the writing 

of this report, it has not yet been included. 
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 One interesting feature of the dataset is the wide range in the microplastics counts. There are 

186 samples where there were no microplastics found in the sample. There are also 131 samples with a 

count greater than 30 microplastics per sample, and 29 samples with more than 100 pieces per sample. 

The histogram below shows the microplastic count per liter for all 1393 samples in the dataset. It is 

extremely skewed right with a minimum value of 0 and a maximum value of 243. 
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Summary Statistics, Microplastics per liter 

Minimum First Quartile Median Mean Third Quartile Maximum 

0.000 1.538 4.167 11.801 10.909 243.077 

 

If we exclude the samples with a microplastics per liter rate greater than 100, we can get more 

of a sense of the shape of the distribution. This is simply “zooming in” to the left side of the distribution. 

 

 

Summary Statistics, Microplastics per liter (samples with fewer than 100 pieces per liter) 

Minimum First Quartile Median Mean Third Quartile Maximum 

0.000 1.538 4.000 9.043 10.400 92.308 

 

 As we begin to model this data, we will have to keep in mind its highly skewed structure, as well 

as the high number of 0 values. Intuitively, we would want to know both where there are places with 

very low microplastic counts and places with very high microplastic counts, so it would not be good to 

ignore either one. Places with microplastic rates of more than 30 pieces per liter are mapped below in 
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red, and places with microplastic rates of zero are shown in blue. We can see that these two groups 

overlap spatially in the middle Atlantic. Otherwise, the two groups remain distant from each other and 

somewhat clustered within themselves. 

 

 The three shapes recorded were round, filament, and other shaped plastics. Round shaped 

plastics would include microbeads, formerly used in beauty products as an exfoliant. Filament shaped 

plastics would include plastic fibers that are shed from garments when washed. Other shaped plastics 

includes anything nor in the other two categories. Filaments were present in 1193 samples, other-

shapes were found in 460 samples, and rounds were found in only 19 samples, making filaments by far 

the most common shape. Further, there were 737 samples where filaments were the only shape found. 

When looking at boxplots of the number of pieces of each type found in the samples, we see that the 

filaments have a much wider distribution and higher maximum value than either of the two other 

categories. This conforms with the observations done by Barrows et al. in their 2018 paper based on the 

same dataset. 
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Many microfibers, a prominent form of filament, are released when washing clothing made of polyester 

(Kennedy, 2020). There is currently nothing preventing those fibers from entering waterways and 

eventually the ocean. This would be an excellent place for policy makers to reduce the microfiber 

pollution. 

IV. Overview of Spatial Statistics 
 The method used to analyze the global microplastics distribution is a form of spatial statistics 

called kriging. In order to understand the methods that follow, it is important to have an overview of 

this topic. The following section provides that overview in the context of this project. 

 The purpose of kriging is to estimate the value of some stochastic spatial process {Y(s),  s  ∈ D}, 

where 𝐷 ⊆ ℝ௡ and 𝑛 ∈ ℤ, at an unsampled location s* based on the data from the sampled locations, 

{𝑠ଵ, 𝑠ଶ, … , 𝑠௞}, 𝑘 ≥ 1, 𝑘 ∈ ℤ.  In this case, the spatial process {Y(s),  s  ∈ D} is defined for 𝐷 ⊆ ℝଶ and 

represents the number of microplastic particles per liter. Arguably, this process should be modeled on 

ℝଷ because the Earth is a three-dimensional globe. However, because we will be working with map 

projections, which flatten the globe onto a conceptual piece of paper, we will be in ℝଶ, where each 𝑠 ∈

𝐷 contains latitude and longitude coordinates. 

 It is generally assumed in kriging models that the data is Gaussian, meaning that for locations 

{𝑠ଵ, 𝑠ଶ, … , 𝑠௞}, 𝑘 ≥ 1, the vector (𝑌(𝑠ଵ), 𝑌(𝑠ଶ), . . . , 𝑌(𝑠௞)) follows a multivariate normal distribution. 

From the histograms in the exploratory data analysis section, we know that our Y(s), the number of 

microplastics per liter, does not follow with this.  

 An important property of spatial data is its stationarity. Generally speaking, this refers to 

whether the distribution stays the same even if the data is shifted by some distance. Strict stationarity 

expresses exactly that. For some ℎ ∈ ℝ௡ and {𝑠ଵ, 𝑠ଶ, … , 𝑠௞}  ∈  𝐷, 𝑘 ≥ 1, 𝐷 ⊆ ℝ௡, a spatial process Y(s) 

is said to be strictly stationary if the vector (𝑌(ℎ + 𝑠ଵ), 𝑌(ℎ + 𝑠ଶ), . . . , 𝑌(ℎ + 𝑠௞)) is equivalent in 

distribution to (𝑌(𝑠ଵ), 𝑌(𝑠ଶ), . . . , 𝑌(𝑠௞)). A process is said to be weakly stationary if 𝜇(𝑠)  ≡  𝜇, or the 

mean is the same for all locations, and if 𝐶𝑜𝑣(𝑌(𝑠ଵ), 𝑌(𝑠ଶ))  =  𝐶(𝑠ଵ − 𝑠ଶ), where 𝐶(∙) is a covariance 

function (discussed more below). In other words, the covariance between two points can be written as a 

function based only on location. For many reasons, we would not expect the rate of microplastics in the 

ocean to be either weakly or strictly stationary, but it is still a good working assumption.  

 Another important property of spatial data is isotropy. This pertains to the covariance function 

and its related function the variogram. The variogram is a function related to the variance between the 
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difference of two values at two locations. When assuming that 𝜇(𝑠) is a constant and equal to 0, then 

let 

𝑣𝑎𝑟{𝑍(𝑠ଵ) − 𝑍(𝑠ଶ)}  = 2 𝛾(𝑠ଵ − 𝑠ଶ). 

The function 2 𝛾(𝑠ଵ − 𝑠ଶ) is called the variogram, and 𝛾(𝑠ଵ − 𝑠ଶ) is called the semivariogram. When we 

have weak stationarity, we can show the following 

𝑣𝑎𝑟{𝑍(𝑠ଵ) − 𝑍(𝑠ଶ)}  =  𝑣𝑎𝑟{𝑍(𝑠ଵ)}  +  𝑣𝑎𝑟{𝑍(𝑠ଶ)}  −  2 𝑐𝑜𝑣{𝑍(𝑠ଵ), 𝑍(𝑠ଶ)} 

𝑣𝑎𝑟{𝑍(𝑠ଵ) − 𝑍(𝑠ଶ)}  =  𝑐𝑜𝑣{𝑍(𝑠ଵ), 𝑍(𝑠ଵ)}  +  𝑐𝑜𝑣{𝑍(𝑠ଶ), 𝑍(𝑠ଶ)}  −  2 𝑐𝑜𝑣{𝑍(𝑠ଵ), 𝑍(𝑠ଶ)} 

𝑣𝑎𝑟{𝑍(𝑠ଵ) − 𝑍(𝑠ଶ)}  =  𝐶(𝑠ଵ − 𝑠ଵ)  +   𝐶(𝑠ଶ − 𝑠ଶ) −  2  𝐶(𝑠ଵ − 𝑠ଶ) 

𝑣𝑎𝑟{𝑍(𝑠ଵ) − 𝑍(𝑠ଶ)}  = 2 𝐶(0)  −  2  𝐶(𝑠ଵ − 𝑠ଶ) 

2 𝛾(𝑠ଵ − 𝑠ଶ)  = 2 𝐶(0)  −  2  𝐶(𝑠ଵ − 𝑠ଶ) 

𝛾(ℎ)  = 𝐶(0)  −  𝐶(ℎ) 

Where 𝐶(∙) is a covariance function. Now back to isotropy. If 𝛾(ℎ) can be written as 𝛾଴( ||ℎ|| ) where 

||ℎ|| is the length of vector h, then the process is isotropic. In other words, a process is isotropic if the 

semivariogram only depends on the distance between two points. If a process is anisotropic, then the 

semivariogram can be written as 𝛾(ℎ) =  𝛾଴( ||𝐴ℎ|| ) where A is a 𝑑 ×  𝑑 matrix. This matrix A 

represents a linear transformation of ℝ௡, and when A is the identity matrix, then we are back to the 

isotropic case. There are methods to handle anisotropic processes, but because we will be assuming that 

the distribution of microplastics in the ocean is isotropic, we will not go into the details here. 

 When the variogram is isotropic, 𝛾଴( ||ℎ|| ) can taken many different forms, depending on the 

shape of the data. Potential functions for 𝛾଴( ||ℎ|| ) include a linear, spherical, Gaussian, Matern, and 

exponential functions. Each is written as a function of h and some vector of parameters 𝜃. We will now 

describe the Matern and exponential functions because these are used in the analysis. The Matern 

function is one of the more mathematically complicated functions dependent on a scale parameter and 

a shape parameter, both of which must be greater than 0. When the shape parameter is equal to ଵ

ଶ
, then 

this corresponds to the exponential form, used in this analysis. The exponential function can be written 

as 

𝛾଴(𝑡)  =  {
௖బା௖భ(ଵି௘ష೟/ೃ)        ௜௙ ௧ வ଴

଴                                  ௜௙ ௧ୀ଴  
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Where 𝑐଴, 𝑐ଵ, and R are positive constants. When t is very near to 0, 𝛾଴(𝑡) ~ 𝑐଴. This value is called the 

nugget. It is similar to a y-intercept, except because it is only defined when t > 0, it never actually 

touches the y axis. As t increases, the function will increase and then begin to level off. When the 

function levels off, the value of 𝛾଴(𝑡) is called the sill. The sill is attained at a finite value t = R, called the 

range. Together, the nugget, sill, and range define a classic variogram with a concave shape that levels 

off as t increases.  

 Once there is evidence in the data that suggests there is a spatial dependence in the data, and 

once a covariance function has been selected, then the next step is to estimate the parameters of the 

covariance function given the data. This can be done with a method of moments estimation, least 

squares estimation, maximum likelihood or restricted maximum likelihood estimation (REML), or 

Bayesian estimation. Because the functions used in this analysis use REML methods, we will go into 

more detail concerning this method. 

 The maximum likelihood estimator relies on maximizing the likelihood or log-likelihood function. 

This depends on the underlying distribution of the data, usually assumed to be a multivariate normal 

distribution. However, the estimator for the variance of this distribution is biased. The restricted 

maximum likelihood estimator uses a vector of contrasts to find the unbiased estimator of the variance. 

The likelihood function is still used to find the parameters in vector 𝜃 that maximize the likelihood 

function. The derivation of how to solve for this is too complex for the purpose of this section, which is 

to give a general overview of the spatial statistics used in this project. 

 Once the parameters 𝜃 have been estimated, then the next step is to compute a kriging model. 

Named for it’s originator, kriging uses the existing data and the parameters of the covariance function 

(also computed given the data) to estimate the value of the spatial process at an unsampled location. 

Written in another way, given 𝑦(𝑠ଵ), 𝑦(𝑠ଶ), . . . , 𝑦(𝑠௡), we want to predict the value 𝑦(𝑠଴) for 𝑠଴ ∉

 {𝑠ଵ, . . . , 𝑠௡}. Again, the data is assumed to have a vector mean and matrix covariance. The covariance 

matrix Σ is computed using the covariance function, where Σ௜,௝ is the number in the ith row and jth 

column of Σ and Σ௜,௝  =  𝛾଴(𝑠ଵ − 𝑠ଶ). A regression model is then computed, and parameters for the 

coefficients are estimated. Then, for any new point, the value can be predicted. The result is an optimal 

linear interpolator for the space. 

 While there could be many more details added to this section, this should be sufficient to give 

the reader a sense of the types of analysis done in this report. 
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V. Variogram Models 
The first step for modeling a spatial distribution is to find a model for the variogram. As 

mentioned earlier, for this project, the stochastic process of interest is the rate of microplastics per liter 

of ocean water, referred to as {Y(s),  s  ∈ D} for 𝐷 ⊆ ℝଶ. The two-dimensional plane is taken to be the 

pair of latitude and longitude coordinates for each point. While it must be remembered that the Earth is 

a sphere and all maps are a faulty projection of the surface, the variogram uses the distance between 

two points. This can be calculated accurately and reliably, regardless of the map projection used to 

visualize the data. In this case, we use the Haversine method for calculating the distance between two 

points, otherwise known as the great-circle distance. In this calculation,  

𝑑(𝑠ଵ, 𝑠ଶ)  = 2𝑟 𝑎𝑟𝑐𝑠𝑖𝑛(ට𝑠𝑖𝑛ଶ(
𝑦ଶ − 𝑦ଵ

2
) +  𝑐𝑜𝑠(𝑦ଵ) 𝑐𝑜𝑠(𝑦ଶ) 𝑠𝑖𝑛ଶ(

𝑥ଶ − 𝑥ଵ

2
)) 

where 𝑠௜ =  (𝑥௜, 𝑦௜) 𝑎𝑛𝑑 𝑥௜  𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑎𝑛𝑑 𝑦௜  𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒. This function computes the 

distance between two points under the assumption that the Earth is a giant sphere. The Earth is actually 

an ellipsoid, but it is a commonly used method. 

Before embarking on calculating a variogram, we would like to ensure that the necessary 

assumptions hold, or at least are not blatantly broken. Variograms should be stationary and isotropic 

(though there are tools to handle anisotrophic cases). Stationarity means that the distribution for one 

group of points has the same distribution as the same group shifted by a random distance. Due to ocean 

currents and gyres, we do not expect this to hold. For example, the distribution of microplastics in a gyre 

such as the slow-moving Great Pacific Garbage Patch may not be equivalent in distribution to a sample 

along the fast-moving Atlantic Gulf Stream. However, we will assume that the distribution is stationary. 

If a process is isotropic, then the variogram only depends on the distance between points. There is no 

geometric transformation needed in isotropic cases. We assume that the process is isotropic because 

the rate of microplastics per liter at a location should be directly related to other locations by the 

distance. Finally, we will assume that the covariance function is positive definite. 

Before attempting to answer whether the data from 2013 through 2017 should be treated as 

one unit of broken down into their individual years, we needed to find or create code to calculate our 

variogram. Two potential candidates were the variog() function in the package geoR and the 

fit.variogram() function in the gstat package. These ultimately did not prove to be very useful. The 

former resulted in a plot that did not conform to the classic variogram shape and that could not be 
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easily adapted to change the distances and tolerance region sizes while the latter required a very 

specific data format that was more difficult to figure out than necessary. 

In order to address this, the code was written by hand by the author. The code is included in the 

Appendix of this paper. The function used the Haversine method for calculating distance between two 

points and recorded the distance in kilometers. Because the data was not collected on a grid, a 

changeable tolerance region was included in the function. Further, the starting and ending distance 

were changeable, meaning that variogram could start at 10 kilometers and go through 500 kilometers or 

start at 100 kilometers and go through 300 kilometers, as desired by the user. A method of moments 

calculation was used. 

The following variogram was calculated from 10 kilometers to 510 kilometers with a tolerance 

region or buffer of 10 kilometers. Because the data was not on a standardized grid, a tolerance or buffer 

region was used so that datapoints would actually be included in the estimate. This means that for the 

method of moments variogram estimator, 

2 𝛾ො(ℎ)  =  
1

|𝑁(ℎ)|
 ෍ {𝑍(𝑠௜)  −  𝑍(𝑠௝)} ^2

(௦೔,௦ೕ) ∈ ಿ(೓)

 

Where N(h) refers to the set of points within some small neighborhood around h. In mathematical 

notation, 

𝑁(ℎ)  =  {(𝑠௜, 𝑠௝) ∶  𝑠௜  −  𝑠௝ ∈  𝑇(ℎ) } 

Where T(h) is the small neighborhood around h. This way of plotting a variogram does give promising 

evidence of spatial correlation because we are seeing the classic concave curve shape with a nugget, sill, 

and range. 
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Variograms by Year 
 In order to address the question of whether or not a temporal component should be included in 

the model, variograms were calculated for each year of data from 2013 to 2017. The number of points in 

each year varied widely, with 50 samples in 2013, 725 samples in 2014, 318 samples in 2015, 249 

samples in 2016, and 51 samples in 2017. Maps of the point locations for each year are provided in the 

appendix. The yearly variograms tended to also show evidence of spatial correlation through their 

variogram shape, but the years with fewer points showed this less clearly. This could be due to the low 

number of points or to the way the data was binned, but it also sparked the idea for attempting kernel 

smoothing, as discussed later in this report. When viewing the map of the sampling locations for 2017, 

there is a clear group of points off the southern tip of South America and another off the northern coast 

of Madagascar. These two places are quite far away from each other and may experience different 

means and variances in their microplastic distribution. More on this will be discussed in the Kernel 

Smoothing section. 

 The variogram for the 2013 data was constructed with 50 samples over a distance of 10 to 510 

kilometers in 50-kilometer increments. In this case, the tolerance region was set to be a 25-kilometer 

radius circle around h. The plot does not show the classic variogram shape but does show an overall 

increase in the variogram value as the distance between points increases.
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 The variogram for the 2014 data was constructed with 725 samples over a distance of 10 to 510 

kilometers in 25-kilometer increments. The tolerance region was set to 10 kilometers. The plot shows 

evidence for spatial correlation. 
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 The variograms for the other years looked similar to the two shown here and were not included 

for the sake of brevity. There is some evidence that each of the years show spatial correlation, and it 

may be interesting to add a temporal component to the analysis. In this analysis, a comparison will be 

done between data collected before 2015 and data collected after (and including) 2015.  

Variogram for Transformed Data 
 Because of the highly skewed nature of the data, several transformations of the microplastic 

count per liter were investigated to try and make the data more Gaussian in nature. The square root of 

the microplastics per liter, a logarithmic transformation, and a kernel smoothing method designed to 

standardize means and variances across different regions. The kernel smoothing method results were 

not as expected and are discussed later, but the most promising of these transformations was a 

logarithmic transformation, log (1 + 𝑚𝑖𝑐𝑟𝑜𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠. 𝑝𝑒𝑟. 𝑙𝑖𝑡𝑒𝑟). This resulted in the following 

histogram: 
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This plot remains skewed but less drastically. The range of values is much more condensed and 

manageable than the untransformed data. The large bar at the zero represents samples that had no 

microplastics in them. The rest of the plot appears almost like a Gaussian distribution or a Poisson 

distribution. Because of this, models for a truncated Gaussian or zero-inflated Poisson model will be 

considered. The variogram of the transformed data also provides evidence of spatial correlation. 

 



Konrad 23 
 

The remainder of the modeling is based off of this transformation. So while the spatial process of 

interest is the number of microplastics per liter {𝑌(𝑠)}, the process being modeled is {𝑍(𝑠), 𝑠 ∈

𝐷, 𝑤ℎ𝑒𝑟𝑒 𝑍(𝑠) = 𝑙𝑜𝑔൫1 + 𝑌(𝑠)൯}. 

VI. Restricted Maximum Likelihood Estimators for Spatial Parameters 

 After seeing that there was evidence for spatial correlation in both the untransformed and 

transformed data across all years, the next step was to find estimates for the covariance function 

parameters. This was done using the function spatialProcess() from the R package fields.  When given a 

specific covariance function from, the spatialProcess() function uses the restricted maximum likelihood 

estimator to estimate the nugget, sill, and range, as mentioned earlier in the spatial statistics overview 

section. The function needed only unique values in order to work, and there were 27 data points in the 

dataset that were considered duplicates by the spatialProcess() function. These points had the same 

latitude and longitude values, but different microplastic counts. Interestingly, each pair of duplicate 

points was also taken on the same date. It is possible that the samplers took multiple samples from the 

same general site and entered the same location for these samples. Regardless, these duplicates were 

subsetted out for the running of the function, with the duplicated entry being removed chosen at 

random, leaving a dataset with 1366 values. 

 The spatialProcess() function estimates the nugget 𝜎ଶ, process variance 𝜌, and range 𝜃 

parameters of the covariance function. The sill of the function is equivalent to 𝜎ଶ + 𝜌. It uses the REML 

method to estimate these parameters. An exponential model was used for the initial variogram 

estimation of the log transformation 𝑍(𝑠) = 𝑙𝑜𝑔൫1 + 𝑌(𝑠)൯ with the following results. 

 Nugget Sill Range (miles) 

Value, spatialProcess() 0.9156 1.8822 12.8644 

 

While other models were used earlier in the process (Matern with smoothness 1, Wendland model), it 

was decided that the exponential would serve as a stable and very similar model to the other options. 

 An alternative method for estimating the parameters was attempted as well. The function likfit() 

from the package geoR  was also used for estimating the variogram parameters. It also used Restricted 

Maximum Likelihood estimators, and returned the following results: 
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 Nugget Sill Range (miles) 

Value, likfit() 0.8402 1.8515 13.8716 

 

These results are similar, but not the same. This comparison was done because geoR functions were 

used for the kriging step, so it was important to verify that fields and geoR would return similar results. 

While the results are not equal, they are of the same magnitude, so the analysis was continued. 

 It is worth taking a moment to consider whether the REML method is the most viable to use for 

this data. As we know, the REML method assumes the data is Gaussian, an assumption that does not 

hold in this case. The variogram could have been fitted with more crude methods instead. However, this 

does not mean that we cannot use the REML method, especially because the trouble with this dataset is 

the high rate of 0’s in the data, signifying no microplastics in the sample. REML and kriging are both used 

in cases where the Gaussian assumption may not hold, so it is worthwhile to explore what can be done 

with these Gaussian models. Nevertheless, these assumptions may be broken to a sufficient degree that 

an alternate, likely Bayesian, approach may have to be taken. This Bayesian approach is briefly discussed 

towards the end of this report. 

VII. Kriging Models 
The next step for modeling the spatial distribution of ocean microplastics is to use a kriging 

method. This process uses the data provided and the covariance model parameters to predict the value 

of the microplastics at all unsampled locations in a region. It assumes that the data in question is 

Gaussian, an assumption that does not, unfortunately, seem to be upheld in this case. Nevertheless, we 

will still attempt a preliminary kriging model. 

The R code package geoR was used for kriging, and the function used was krige.conv() This was 

used because of the usability factors. It was easy to predict points on a grid with this function, to map 

them, and to then retrieve those values for analysis. The equivalent fields functions, Krig() and 

surface.Krig() were not as usable on those three facets.  

The model was predicted on a hexagonal grid of points covering the globe. This was done using 

the packages devtools, dggridR, and rgdal. The initial output grid included points on both land and 

ocean. Because microplastic estimates we not wanted on landmasses, points over the land were filtered 

out using the GIS software ArcGIS. The resulting grid contained 11,900 points and is shown below. 



Konrad 25 
 

 

 When the kriging function was run, the following graph was produced. Blues and greens indicate 

higher log-microplastics rates while reds and oranges indicate lower log-microplastic rates. The variance 

plot is also included. 
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From this, we see that there are microplastic hot-spots in the Arctic Ocean above North America, to the 

east of Hawaii in what is known as the Great Pacific Garbage Patch, in the Caribbean, the southwest 
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coast of Africa, and southwest of Sumatra. These results are somewhat expected (Barrows, 2018), and a 

more more specific comparison is done later. There are microplastic cold-spots along the Pacific coast of 

South America, waters surrounding Britain and Scandanavia, and the south of Australia. 

 When the data was transformed back to its original scale, the resulting map was much more 

difficult to interpret visually. It is included below. 

 

 Models were also calculated that exclusively examined the distribution by shape (filament, 

round, other shape) and by color (black, blue, red, transparent, other color). This was done for all years 

combined, also on a log scale. Each model was given a subset of the data corresponding to the variable 

of interest, and variogram parameter estimation, kriging model, and map was done. For the sake of 

brevity, these results are not included here. They can be found in the appendix. 

 Models were then calculated in order to assess whether there was any time effect present in 

the data. The data was grouped into a before-2015 subset (including data from 2013 and 2014) and an 

after-2015 subset (including data from 2015, 2016, and 2017). This division had a similar magnitude of 

points in each group, 759 and 607 respectively. The process was repeated for log- micropplastic-rates on 

all plastic types combined, as well as by color and by shape. It was anticipated that the later time group 



Konrad 28 
 

would have more microplastics per liter than the earlier time group. However, the data does not show 

this. 

VIII. Analysis of Kriging Results 
Overall 
We will now look at the results for the microplastic rates over all years and all variables combined. There 

were 11900 data points predicted. 

 

Summary Statistics, Microplastics per liter prediction, on a log scale 

Minimum First Quartile Median Mean Third Quartile Maximum 

-0.1238 1.0690 1.4871 1.5429 1.8442 4.8407 

The variance was 0.5590. The negative values, which are, of course, unrealistic, are a result of the high 

number of 0 entries in the data coupled with a Gaussian assumption.  



Konrad 29 
 

 
 

Summary Statistics, Microplastics per liter prediction 

Minimum First Quartile Median Mean Third Quartile Maximum 

-0.1165 1.9124 3.4241 5.7457 5.3227 125.5628 

The variance was 86.1444. 

This is a highly skewed distribution, reflective of the input data. There are 21 points that were predicted 

to be negative on both a log scale and the original scale. It is not known why this happened. The average 

number of microplastics per liter in the ocean is 5.7457 pieces per liter.  

These results were analyzed by ocean. The ocean divisions can be seen below. 
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There were 549 prediction points in the Arctic, 2815 in the Atlantic, 2367 in the Indian, 5468 in the 

Pacific, and 701 in the Southern Ocean.  

  

Summary Statistics, Microplastics per liter prediction for the Arctic Ocean 

Minimum First Quartile Median Mean Third Quartile Maximum 

0.3128 3.8858 4.5879 11.5715 7.5007 99.8980 
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Summary Statistics, Microplastics per liter prediction for the Atlantic Ocean 

Minimum First Quartile Median Mean Third Quartile Maximum 

0.0128 2.2948 3.7800 5.7018 5.6855 125.5628 

 

 

Summary Statistics, Microplastics per liter prediction for the Indian Ocean 

Minimum First Quartile Median Mean Third Quartile Maximum 

-0.1012 1.6347 3.1336 3.6185 4.2965 35.8395 

 

  



Konrad 32 
 

 

Summary Statistics, Microplastics per liter prediction for the Pacific Ocean 

Minimum First Quartile Median Mean Third Quartile Maximum 

-0.1165 1.5753 2.8516 6.1917 6.1373 119.2590 

 

 

Summary Statistics, Microplastics per liter prediction for the Southern Ocean 

Minimum First Quartile Median Mean Third Quartile Maximum 

1.399 3.979 4.245 5.063 4.771 48.629 

 

The following chart displays the mean microplastics per liter prediction for all of the oceans. 

 Average estimate, microplastics per liter 

All 5.4757 

Arctic 11.5715 

Atlantic 5.7018 

Indian 3.6185 

Pacific 6.1917 
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Southern 5.0633 

 

  

We see that the Arctic has the highest average prediction value while the Indian Ocean has the lowest 

prediction value. However, this ocean was not sampled as thoroughly as they could have been, so these 

estimates come with a grain of salt. 

 Next, an estimate of the total number of microplastic pieces in the surface of the ocean was 

calculated. This was done by assuming that samples were coming from the top 30 centimeter of ocean 

water and by using surface area estimates provided by NOAA. The volume of the surface of the ocean 

was then calculated as follows: 

𝑉𝑜𝑙𝑢𝑚𝑒௟௜௧௘௥௦ =  𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎௞௠^ଶ ∗
1000 × 100𝑐𝑚

1𝑘𝑚
∗

1000 × 100𝑐𝑚

1𝑘𝑚
∗ 30𝑐𝑚 ∗ 

1 𝑙𝑖𝑡𝑒𝑟

1000𝑐𝑚^3
 

The following table shows the steps taken to calculate the estimated number of microplastic pieces in 

the ocean. 

 
Microplastic 

estimate per liter 

Surface Area 

(kilometers squared) 

Volume 

(Liters) 
Piece Count Estimate 

All 5.7457 361,900,000 1.0857e+17 6.238149e+17 

Arctic 11.5715 15,558,000 4.66740e+15 5.400885e+16 

Atlantic 5.7018 85,133,000 2.55399e+16 1.456244e+17 
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Indian 3.6185 70,560,000 2.11680e+16 7.659726e+16 

Pacific 6.1917 168,723,000  
5.06169e+16 

3.134064e+17 

Southern 5.0633 21,960,000 6.58800e+15 3.335705e+16 

 

These estimates for the averages were not done with weighted averages based on the variance of the 

spatial model; meaning, estimates near many original data points are weighted the same as estimates 

far, far away from any original data points. This is not the best way to handle this because many 

estimates were generated far from data points, making them less credible.  

By Variable Type  
 As mentioned earlier, the variogram estimate and kriging model were done separately for 

subsets of the data. These subsets were based off of the shape and color of the microplastic pieces. 

While global distribution maps were generated for each subset, they did not differ drastically from the 

overall distribution pattern; the same hotspots and cold-spots were present. The distributions 

themselves, ignoring the spatial component do differ somewhat and are included in the appendix. The 

average and variance of these models are below, calculated in the same way as above. 

  



Konrad 35 
 

 Estimate 
Total 5.7457 
Filament 5.4901 
Round 0.0115 
Other Shape 0.3004 
Black 0.8996 
Blue 2.0125 
Red 0.6751 
Transparent 2.3487 

 

Transparent plastics are the most prominent color, and filaments are the most prominent shape. 

By Year 

 The models were also done on two divisions of years. The first group of years was 2013 and 

2014, referred to as pre2015, which included 759 data points. The second group of years was 2015, 

2016, and 2017, referred to as post2015, which included 607 data points. The location of the points can 

be seen below. As is obvious below, the points do not overlap very much, except in the Atlantic Ocean. It 

would be better for the comparison if the sampling locations in the different time groups were close to 

each other, but such is the data. 

  

A summary of the results of the models can be found below. The results are reporting the microplastics-

per-liter on an untransformed scale. 
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Pre2015 
estimate 

Post2015 
estimate 

Total 12.1367 3.131 
Filament 11.704 3.0692 
Round 0.0181 -0.00015 
Other 
shape 

0.6509 0.1361 

Black 2.0147 0.4425 
Blue 2.27 1.176 
Red 0.955 0.4429 
Transparent 4.9259 1.1788 

 

From this, we see that the years 2013 and 2014 have higher microplastics rates than the years 2015, 

2016, and 2017 across all subsets of the data. This is not what we expected to see and may be due to 

the sampling locations and values rather than an overall reduction of microplastics in the surface of the 

ocean, but there is no reason to think these estimates are incorrect. In order to investigate this further, 

an analysis of point-pairings could be done, with one point in the pre-2015 group and the other located 

geographically near and from the post-2015 group. However, this would rely on an assumption that the 

ocean surface is relatively static, which is not the case. 

IX. Discussion 
Model Areas for Improvement 
 From the very beginning, it was known that the kriging method would not be the best method 

for modeling the distribution of microplastics in the ocean. This is because kriging relies on an 

assumption of Gaussian data while the ocean plastic data was heavily skewed right. Thus, all of the 

estimates are likely overestimates. Further, kriging works best when data points are on or close to a 

grid, or at least covering the area of interest. This most certainly was not the case, with large swathes of 

every ocean unsampled. These two properties of the data, its skewness and its sampling locations, do 

not lend themselves well to this sort of modeling and throw some doubt into the estimates. 

 When a covariance function is modeling using covariates, the kriging model must also 

include covariates. This poses an issue for this dataset because of the unknown covariate values for 

unsampled locations. For example, ocean salinity could be used as a covariate for the covariance 

function, but because the salinity of every unsampled location in the ocean is not known and available 

to be used, salinity cannot be used in the model. It would be possible to include a certain indicator 

variable for the model, one indicating whether a sample was taken on the coast or in the open ocean. 
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This is a variable included in the Adventure Scientists dataset, and one that could be implemented for 

prediction sites using geographic information systems techniques to indicate whether or not a point is 

within 12 nautical miles of a coastline.  

Comparison with Previous Results 
 The paper by Barrows, Cathey, and Peterson in 2018 is the only other paper found by the writer 

that addresses works with the same dataset used here. Barrows is a member of the Adventure Scientists 

team, and the paper gave an overview of their sampling methods and an analysis of the data. In this 

analysis of the data, the spatial distribution of plastics is ignored, and the data are analyzed as if they 

had no spatial component at all. With this in mind, Barrows calculated the average microplastic particles 

per liter as a simple arithmetic mean, where 𝑦௜  is the rate of microplastics per liter at the ith datapoint: 

1

1393
× ෍ 𝑦௜

ଵଷଽଷ

௜ୀଵ
 =  11.8 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠/𝑙𝑖𝑡𝑒𝑟 

The estimate also included a standard error or 0.6 particles per liter, also calculated with no regard to 

the spatial component. This is much larger than the estimate of 5.4757 particles/liter obtained through 

this spatial analysis.  

 Barrows includes estimates for the Arctic, Atlantic, Pacific, Indian, and Southern oceans as well. 

In her analysis, the Arctic and the Southern oceans contained the highest average rate of particles per 

liter, as 31.3 and 15.4 particles per liter, respectively. This analysis ranked the Arctic Ocean as having the 

highest rate, at 11.6 particles per liter, while the Pacific Ocean was the second highest, with the rate 

being 6.1917. Again, the Barrows estimates are higher than the estimates obtained here. This may be 

due to the large amount of 0-valued data entries in the data causing many prediction points to be 

estimated low. It may also be because prediction points that are far from any sample points are 

estimated very low, causing the average to drop as well. In reality, there are probably microplastics in 

the waters predicted to have 0 microplastics per liter in them, so our estimate is probably low. 

Nevertheless, including the spatial component is very important for understanding the distribution of 

microplastics in the ocean, and it is worthwhile to have obtained these results. 

X. Other methods 
Other methods were attempted when addressing how to estimate the number of microplastics 

in the ocean. For various reasons, they did not yield fruitful results, but they are discussed here. 
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Kernel Smoothing and Standard Normal Transformation 
As mentioned in the Variogram by Year section, there was some evidence to support the idea 

that different sections of the ocean have different means and variances of microplastic distribution. 

Intuitively, this also makes sense; sections of ocean that have slow moving water such as ocean gyres 

may serve as microplastic sinks, as they do for larger pieces of plastic, while section of the ocean with 

fast-moving currents such as the Atlantic Ocean’s Gulf Stream may have fewer pieces of microplastics 

found in their waters. If this is the case, then it would not make sense to compare the high-microplastic 

regions directly to the low-microplastic regions. The variance between them would be too large. So, a 

kernel smoother and standard normal transformation were attempted. 

Gaussian smoothers were used for each point after taking a weighted average of the points 

within a 150-kilometer radius of the original point, a region referred to as the neighborhood. The 

weight, or kernel, for each of the neighborhood point was calculated with a Gaussian smoother: 

𝐾(𝑠̃, 𝑠) = 𝑒
షభ

మ
ቀ

ೞ෤షೞ

ഃ
ቁ

మ

, 

where 𝑠̃ is the center point,  𝑠 is a point in the neighborhood, and 𝛿 is the radius of the neighborhood. 

Weighted averages and variances of the microplastics points for the neighborhood of each point were 

calculated with this smoother function.  

Once each point was transformed to a standard normal distribution using its neighborhood’s 

mean and variance, the histogram of the z-values was plotted. If the transformations worked well, we 

could expect this histogram to look like a Gaussian distribution centered at 0 with a variance of 1. 

However, we knew before the graphing of the distribution that it would likely not appear like a 

𝑁𝑜𝑟𝑚𝑎𝑙(0,1) distribution, owing to the fact that each neighborhood had an average of 11.37 neighbors 

and that roughly 13% of the data had no neighbors at all. The results are almost comical. With a variance 

of 546.7, the distribution summary is as follows: 

Z-transformation distribution, radius of 150km 

Minimum First Quartile Median Mean Third Quartile Maximum 

-150.510 -19.302 -4.105 -11.662 0.000 177.589 
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Because these results do not approximate a standard normal distribution, this implementation of 

Gaussian smoothers does not seem to be a good route in order to address varying microplastic 

distributions globally. Potentially, the Gaussian smoother could be changed to a linear or spherical 

model. Further, the neighborhood could be widened to include more points in each neighborhood. After 

all, 150 kilometers was a fairly arbitrary value. However, changing the smoothing function will not be 

enough to fix the results, and when 300 kilometers was set as a buffer region, the summary statistics for 

the distribution were similar, and the variance was larger, at 629.8. 

Z-transformation distribution, radius of 300km 

Minimum First Quartile Median Mean Third Quartile Maximum 

-150.3085 -26.2504 -9.9132 -14.7523 -0.7587 175.6907 

 

Because of the failure of the transformed data to conform to a 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) distribution, this method 

of Gaussian smoothing was not pursued further. 

Bayesian Latent Process 
 Due to the difficulties inherent in the data, the idea of using a Bayesian hierarchical latent 

process for the data was considered and investigated extensively. This model allows for an underlying 
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distribution to set the parameter used to generate each data realization, effectively being another way 

to execute the idea of a normal transformation. In other words, the microplastic distribution Y can be 

generated when given some underlying process Z. Z is usually defined to be a Gaussian process, and Y|Z 

can be any other distribution. For our purposes, we would like to use a Poisson or zero-inflated Poisson 

process. Diggle and Ribeiro demonstrated how to use a Poisson log-linear model with a latent process in 

their 2007 book Model-based Geostatistics. They applied the process to nuclear radiation values on the 

island of Rongelap, and a similar process could be used for the microplastics data. This implementation 

would have used the geoR package, which generally requires very specific data formats to work. 

 Another possibility for implementing the latent process model is with Banerjee, Carlin, and 

Gelfand’s R package spBayes. Taking a Bayesian approach, a conditional Poisson model can be 

implemented, but not a zero-inflated Poisson model. Prior and posterior distributions were written by 

Prof. Richard Smith, as well as the framework for the iterative process on how to update the parameters 

and latent process. This was attempted and coded by hand by the author. 

Many coding issues were encountered along the way, causing the parameter estimates to not 

converge. Due to this and a need for finished results, this approach was abandoned. If the currently 

unknown coding issues can be resolved, however, then this approach would provide a useful 

comparison with the traditional kriging done above. 

XI. Conclusion 
While this model proceeded with many caveats underlying it, the dataset was extremely un-

standard for a spatial modeling process. The results may not be entirely reliable, but the fact that 

estimates were able to be found at all is beneficial for understanding microplastics in the ocean. 

Looking to the future of microplastics monitoring, it would be incredibly beneficial if there were 

a semi-automated process for sampling and counting microplastics. As it is, humans must collect the 

sample manually, filter it manually, and count all the microplastics on the filter. All three of these steps 

require time, effort, and logistical coordination. If even one of those steps could be automated, 

microplastics could be collected and counted easier. It is feasible that a machine learning algorithm 

could assist in counting the microplastics. Samples of microplastic filters could be photographed, 

counted, and used as a training set for the algorithm. If the algorithm is able to classify objects as 

microplastics and then be able to reliably count them, then new samples of microplastics could be 

processed faster. This would help aid in the data collection process, hopefully allowing more samples to 



Konrad 41 
 

be taken and increasing the available microplastics data, one of the most important factors for the 

modeling of their distribution. A similar procedure to this has been done by scientists in Italy, but they 

used 3D imaging for their machine learning algorithm and were concerned with distinguishing between 

microplastics and organic diatoms (Bianco, 2019). 

With all this being said, the most efficient thing to do to address the issue of ocean microplastics 

and plastics in general would be to clean up beach plastics first. When plastics are left along the 

shoreline, it decays and breaks down into microplastics. Higher temperatures from lying on the sand in 

the sun cause this degradation to happen more quickly than in the ocean, as well as higher oxygen 

concentrations (Andrady, 2011), making beach cleanups a critical component for preventing the 

creation of new microplastics. Shorelines are much easier to access than the open ocean, and clean-ups 

can be done by volunteers with no prior experience, another reason for focusing on beach cleanups. 

Tomoya and Hirofumi showed in their 2015 paper that there are times when a beach cleanup’s effect 

will be greatest, chiefly when the amount of plastics on the beach reaches a local maximum. Hence, the 

timing of beach cleanups can be optimized to enhance beach cleanup efforts, thus “decreasing the total 

mass of toxic metals that could leach into the beach from marine plastics and prevent the fragmentation 

of marine plastics” (Tomoya and Hirofumi, 2015).  

Microplastics are an important source of pollution that should be spatially modeling in order to 

identify regions of accumulation and to best implement cleanup solutions. Because of the high number 

of samples with no microplastics, a zero-inflated Poisson distribution may prove to be better at 

modeling the microplastic distribution than the methods used here. Further, the parameters used for 

the preliminary variogram and kriging model should be reevaluated in order to find the best fit. This 

paper does show that there is evidence for spatial correlation in microplastic distribution and that 

kriging methods could be used to model their distribution. 
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Appendix A: Code for the Variogram Function 
The following R code was used to create the variograms seen in this report.  

library(geosphere) 
 
variogram = function(coords_in, mp_in, low, high, interval, delta, 
main){ 
  output1 = c() 
   
  coords = coords_in 
  mp = as.numeric(c(mp_in)) 
   
  for (h in seq(low,high,interval)){ 
    if((h/10)%%5 == 0){ 
      print(h) 
    } 
    sum1=0 
    sum2=0  
    for (i in (1:nrow(coords))){ 
      distv = as.numeric(distm(c(coords$long[i], coords$lat[i]),     
data.frame(coords$long, coords$lat), distHaversine))  
      distv=distv/1000  
      distvplus=data.frame(distv, mp)  
      distvsub = subset(distvplus, distv>h-delta & distv<h+delta) 
      sum1=sum1+nrow(distvsub) 
      if (nrow(distvsub) != 0){  
        sum2 = sum2+sum((distvsub$mp-coords$pieces.per.L[i])^2) 
      } 
    } 
    value1 = sum2/sum1 
    output1 = c(output1, value1)  
  } 
  plot(seq(low, high, interval), output1, main = main) 
} 
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Appendix B: Maps of sampling locations by year 

 

 

 

 

Appendix C: Results by variable type 
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