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Abstract 
 

Background: Breast cancer is the deadliest cancer amongst women globally, with metastatic 
breast cancer being particularly deadly. Pyruvate carboxylase (PC) catalyzes the conversion of 
pyruvate to oxaloacetate for anaplerotic refilling of TCA cycle intermediates, feeding numerous 
energetic and biosynthetic pathways. Upregulation of PC is an important contributor to 
metabolic reprogramming and aggressiveness in metastatic breast cancer. Less understood, 
however, is the effects of PC expression on metabolic reprogramming and the TME in primary 
tumors. In this study, we investigate whether suppression of PC alters metabolism and drives 
microenvironmental adaptation in a primary tumor model of breast cancer.  
 
Methods: C57Bl/6 mice were injected with M-Wnt cells transduced with doxycycline-inducible 
ShRNA targeting PC. Doxycycline treatment began once tumors were palpable. Tumors were 
harvested 4 weeks following injection. Tumor transcriptomic analysis was conducted via GSEA 
and enrichment mapping following Affymetrix microarray analysis. Digital cytometry using 
CIBORSORTx was conducted to determine tumor microenvironment composition. In vitro 
metabolic adaptation to PC suppression in breast cancer cell lines following knockdown of PC 
was analyzed. Perturbations of mitochondrial metabolism and respiration were assessed by 
extracellular flux analysis. Assays of extracellular lactate and glucose concentrations determined 
changes in the production and utilization of carbon sources in the context of loss of PC.  
 
Results: In vivo suppression of PC resulted in increased tumor mass and volume relative to 
control. Gene expression data from PC knockdown tumors revealed distinct transcriptomic 
profiles between groups. GSEA analysis further showed profound suppression of immunological 
pathways following loss of PC, indicating that PC knockdown resulted in a diminished immune 
response. Digital cytometry supported this finding with PC suppression resulting in decreased 
proportions of critical innate and adaptive immune cell populations. Metabolic assays revealed 
that cells with PC knockdown export more lactate into their environment and respire less 
efficiently, without consuming additional glucose. This indicates potential mitochondrial 
dysfunction with loss of PC-derived anaplerosis 
 
Conclusion: PC knockdown resulted in increased lactate production with a decrease in 
mitochondrial respiration, suggesting that diminished PC-mediated anaplerosis alters carbon 
utilization and contributes to metabolic reprogramming. Suppression of PC also resulted in 
tumors with distinct transcriptomic profiles versus control, with signatures of immune responses 
diminished in response to loss of PC. As lactate is a profound immunosuppressive signaling 
molecule in the TME, it may be a driver of TME immunosuppression in response to PC 
suppression. We conclude that PC knockdown promotes a metabolically altered tumor 
microenvironment associated with immunosuppression and tumor growth.  
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Introduction 

Breast Cancer Prevalence and Mortality 

 Breast cancer is the most commonly diagnosed cancer globally, representing 11.7% of 

total cases, and is the leading cause of cancer death in women[1]. In the United States alone, the 

American Cancer Society predicts 284,000 new breast cancer cases and 44,130 deaths in 

2021[2]. Triple negative breast cancer (TNBC), defined as those cancers that are estrogen 

receptor-negative, progesterone receptor-negative, and HER2/neu negative, have poor prognoses 

relative to other subtypes, due in part to a lack of targeted therapies and increased incidence of 

metastatic spread[3]. While patients with localized TNBC have a five-year survival rate of 91%, 

TNBC patients with metastatic spread to distal organs have only a 12% five-year survival 

rate[2]. Metastatic breast cancer is particularly deadly due to limited surgical resection options, 

with the first-line treatment instead being palliative chemotherapy regimens[4]. The most 

common sites for metastatic spread from the breast are to the lungs, liver, and bone, with each 

site presenting unique challenges to treatment[5].  Research into the biological mechanisms 

underlying the metastatic processes to these sites is crucial to identify targeted therapies for 

successful interventions.  

Metabolic Reprogramming in Cancer 

 A hallmark of cancer is the reprogramming of cellular metabolism to promote growth, 

proliferation, and survival[6]. Central to this reprogramming is increased glycolysis and 

fermentation of pyruvate to lactate in the presence of adequate oxygen concentrations, termed 

aerobic glycolysis[7]. This metabolic phenotype was first characterized in cancer over 90 years 

ago by Otto Warburg and is subsequently known as the Warburg effect[8]. Many theories have 

been proposed for why rapidly proliferating cells such as tumor cells engage in aerobic 
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glycolysis, as it is a less carbon efficient means by which to derive ATP from glucose[9]. 

Although early theories from Warburg suspected damaged mitochondria to be the cause of 

cancer and the mechanism driving the need for aerobic glycolysis[10], it’s now understood that 

functioning mitochondria play an important role in cancer cell metabolism for energetic and 

biosynthetic needs[11]. Emerging evidence suggests that the need for faster NADH to NAD+ 

turnover via lactate dehydrogenase rather than the electron transport chain promotes aerobic 

glycolysis in rapidly proliferating cancer cells, where the demand for oxidative equivalents 

exceeds the demand for ATP production[12].  

In addition to intrinsic metabolic changes, cancer cells are often in a dynamic cooperation 

with non-transformed cells in the tumor microenvironment (TME), exchanging nutrients and 

growth factors with cancer-associated fibroblasts, immune cells, and epithelial cells among 

others[13-15]. In addition to the heterogeneous cell populations within the TME, zonal 

differences in hypoxia and nutrients are often present due to incomplete vascularization of the 

tumor[16]. These differences result in cell populations of similar origin possessing unique 

metabolic phenotypes depending on their access to oxygen, making it difficult to challenge 

tumors with metabolic inhibitors of only one enzyme or pathway[17]. To overcome their 

insufficient vasculature, tumors often overexpress proangiogenic factors, such as vascular 

endothelial growth factor (VEGF)[18]. Not only do these factors increase the growth potential of 

the tumor by supplying nutrients and oxygen, but are also important mediators of metastasis, as 

VEGF upregulation induces an invasive phenotype in multiple cancers[19, 20].  

Metastasis from a primary tumor through the vasculature and to distal organs is a 

dynamic multi-step process, often referred to as the metastatic cascade[21]. This process can be 

divided into five steps: invasion of the basement membrane, intravasation into the vasculature or 
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lymphatic system, survival in the circulation, extravasation from vasculature to secondary tissue, 

and colonization of the secondary site[22]. In order for successful completion of the metastatic 

cascade, metastasized cells must metabolically adapt to both the circulatory system and the 

foreign microenvironment of the secondary site, with each possessing varying nutrient 

concentrations, oxygen levels, and nonmalignant cell populations[23, 24]. To overcome this 

challenge, many aggressive breast cancer cell lines possess greater metabolic flexibility than 

non-aggressive lines, with the ability to readily switch between glycolysis and oxidative 

phosphorylation in response to different extracellular environments[25]. Metabolic 

reprogramming in metastatic spread is further complicated by the heterogeneity of the secondary 

tissues, with distinct metabolic profiles observed in liver, lung, and bone metastases[26]. In the 

liver, increased HIF-1𝛼 activity and expression of the HIF-1𝛼 target pyruvate dehydrogenase 

kinase-1 (PDK1) drives a glycolytic phenotype with increased conversion of glucose-derived 

pyruvate into lactate and a reduction in oxidative phosphorylation[26]. In contrast, metastasis to 

the bone and lung is driven by enhanced oxidative phosphorylation marked by increased 

expression of the major mitochondrial biogenesis regulator PGC-1𝛼[27]. Thus, the study of 

metabolic reprogramming and targeted interventions in breast cancer will benefit from 

considering the heterogeneity in environmental conditions seen within and between primary 

tumors as well as the unique demands of the various secondary sites.  

Lactate and Immunosuppression of the TME 

Metabolic reprogramming in cancer cells can result in a wide range of metabolic 

phenotypes; however, one consistent feature of most cancers is the enhanced production of 

lactate[28]. While lactate concentrations in the blood and healthy tissues range from 1.5-3.0 mM, 

tumors are capable of producing up to 40 times more lactate than normal tissues, resulting in a 
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TME with lactate concentrations as high as 30 mM[29, 30]. Long considered an inert waste 

product of glycolysis, lactate is now regarded as an important signaling molecule and carbon 

source in many tissues, including tumors[31]. Indeed, 13C-labeled nutrient studies have shown 

that in most organs, the main route through which glucose is incorporated into TCA cycle 

intermediates is through circulating lactate[32]. This preferential conversion of circulating lactate 

to TCA intermediates has been replicated in human tumors[33]. Specifically, oxidative tumors 

cells near the vasculature preferentially utilize lactate exported into the TME from highly 

glycolytic cells without adequate access to oxygen, leaving glucose available in the TME for 

those hypoxic cells in a process termed metabolic symbiosis[34]. Considerable tumor cell 

heterogeneity within tumors is common, in part due to rapidly growing tumors constructing 

insufficient vasculature and the resulting spatial and temporal differences in hypoxia[35]. Thus, 

metabolic symbiosis is one process by which to enhance the metabolic flexibility of solid tumors 

with varied access to oxygen, yielding a survival advantage for cancer cells in an otherwise 

hostile TME.  

Lactate is also recognized as a potent signaling molecule and a driver of 

immunosuppression in cancers[36]. Evasion of immune destruction is a hallmark of cancer and 

represents a significant barrier to successful elimination of tumors with standard treatments such 

as chemotherapy[37]. Immunotherapies, such as immune checkpoint inhibitors (ICIs), are being 

utilized in multiple cancers to diminish immunosuppressive pathways and enhance 

immunosurveillance of tumors[37, 38]. However, other TME characteristics such as impaired 

immune cell infiltration and nutrient competition are known to limit the efficacy of 

immunotherapies, highlighting the complexity of tumor immune evasion[39, 40].  
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Within the TME, the complex cross talk between immune and cancer cells can both 

inhibit or enhance tumor growth[41]. Tumors utilize several immunosuppressive pathways in 

both innate and adaptive immune cells to evade destruction, including direct tumor cell 

mechanisms, such as downregulation of MHC molecules on the cell surface, or through 

production of immunosuppressive cytokines or metabolites that impair immune cell 

function[42]. The TME suppresses the direct anti-tumor immune response mediated by CD8+ 

cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, as well as causes dysregulation of 

immune cell recruitment and activation via regulatory T cells (Treg), CD4+ T-cells, and antigen 

presenting cells (APCs)[43]. In order to effectively overcome these immunological limitations, 

therapies must address both factors of tumor immunosuppression, including eliminating immune 

suppressing factors and enhancing tumor-killing activities of CTLs or NK cells[44]. ICIs such as 

those targeting cytotoxic T-lymphocyte associated protein 4 (CTLA-4) or the programmed death 

receptor 1 (PD-1) have shown promise in the treatment of some solid tumors (e.g. melanoma and 

lung cancer), promoting antitumor immunity and resulting in extension of progression-free 

survival in a significant subset of patients[45]. However, other cancers, including breast, have 

only seen modest responses with ICI’s, indicating an incomplete rescue of tumor 

immunosurveillance[46]. Hence, delineating how tumors continue to evade immune destruction 

is vital to expand the efficacy of immunotherapies.   

Lactates role as an immunosuppressive metabolite is now well recognized and believed to 

play a role in the limited efficacy of immunotherapies[47]. LDHA expression is correlated with 

reduced immunosurveillance and poorer clinical outcomes, and is a strong predictor of 

ipilimumab (CTLA-4) efficacy in advanced melanoma[48, 49]. Lactate exerts its 

immunosuppressive effects on both innate and adaptive immune cells, causing anergy and 
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reduced function in T-cells, inhibition of antigen presentation by dendritic cells (DCs), and 

polarization of tumor associated macrophages (TAMs) toward their wound healing M2-like 

phenotype[50-52]. These cell specific effects suppress the overall anti-tumor immune response, 

as LDHA suppression in melanoma cells led to impaired growth of tumors in immune-competent 

C57BL/6 mice, yet had little effect in immunodeficient mice[48]. In addition to its role in 

immune cell signaling, lactate metabolism also plays a role in acidification of the TME, which 

further impedes immune cell function in a lactate-independent manner. Lactate is exported from 

the cell via the monocarboxylate transporter (MCT) family of H+/lactate- symporters, resulting in 

a pH between 6.4-7.0 in the TME[53]. Low pH levels in solid tumors is associated with invasive 

growth and metastasis through a variety of mechanism, including increased angiogenic signaling 

through the release of VEGF, degradation of the extracellular matrix by proteinases, and immune 

evasion[54-56]. As aerobic glycolysis and its characteristic enhancement of lactate production is 

a common metabolic phenotype in cancer, the contribution of lactate to the energetics and 

immunosuppression of the TME is a vital component of future research studying the efficacy of 

metabolic or immune-based therapies.  

Pyruvate Carboxylase in Breast Cancer 

 Upregulation of anabolic pathways that supply macromolecules for cellular division is a 

crucial part of the metabolic reprogramming of rapidly proliferating cancer cells[57]. Critical to 

this anabolic metabolism is the refilling of TCA cycle intermediates to support ATP and biomass 

production, a process termed anaplerosis[58]. In mammalian cells, adequate concentrations of 

TCA cycle intermediates are required for the biosynthesis of lipids, non-essential amino acids, 

nucleotides, glutathione, heme, and other cellular components, with many of these products 

recognized as crucial metabolites in cancer[59, 60]. The major anaplerotic pathways in the cell 
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are the pyruvate carboxylase (PC) mediated conversion of pyruvate to oxaloacetate and the 

conversion of glutamine to alpha-ketoglutarate via glutaminase (GLS) and glutamate 

dehydrogenase(GDH). PC serves two primary biosynthetic functions: production of oxaloacetate 

for phosphoenolpyruvate carboxykinase (PEPCK) to convert to phosphoenolpyruvate, allowing 

the bypass of pyruvate kinase in gluconeogenesis, and sustaining oxaloacetate and thus other 

TCA cycle intermediate levels in the mitochondria for biosynthetic and energetic purposes[61]. 

The relative contribution of PC and glutamine in anaplerosis varies by tissue and physiological 

condition[62]. In many cancers, glutamine is the primary anaplerotic precursor, contributing to 

up to 90% of oxaloacetate pools[63]. However, PC is the preferred anaplerotic enzyme in some 

glutamine-independent cell lines[64], indicating the ability of both pathways to support 

mitochondrial metabolism in cancer.  

In instances of inherited PC deficiency, a rare autosomal recessive disorder, patients often 

present with severe lactic acidosis in the blood, indicating excess production and export of 

lactate[65]. Without PC-dependent anaplerosis, the pyruvate dehydrogenase (PDH)-catalyzed 

decarboxylation of pyruvate to acetyl-CoA is the primary reaction for glucose-derived carbon 

incorporation into the TCA cycle for mitochondrial metabolism[66]. However, the lactic acidosis 

seen in PC deficiency cases suggests that PDH cannot incorporate all PC-fated pyruvate into the 

TCA cycle, with the remaining pyruvate being shunted into lactate production. Without PC-

derived oxaloacetate, less glucose-derived substrates are available for acetyl-CoA to condense 

with and form citrate, forcing increased reliance on other anaplerotic pathways fueled by amino 

acids or odd-chained fatty acids[67]. Insufficient availability of oxaloacetate will cause 

mitochondrial acetyl-CoA levels to rise, inhibiting PDH activity[68]. Thus, PC-dependent 

anaplerosis and PDH activity are both necessary for maximum incorporation of glucose-derived 
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carbons into the TCA cycle in cells that cannot meet their anaplerotic needs through amino acids 

or odd-chain fatty acids[69]. In conditions of PC deficiency, the PDH complex is unable to fully 

catalyze the increased available pyruvate, with cells instead increasing the flux through LDHA 

and lactate export.  

While glutamine has been extensively studied as a contributor to cancer’s anabolic 

metabolism and as a potential target for metabolic therapies[70], accumulating evidence now 

indicates PC as a significant driver of growth and progression in multiple cancers[62]. PC 

activity has been proven critical to the metabolism of non-small-cell lung cancers, with its 

knockdown resulting in diminished TCA cycle activity, inhibition of lipid biosynthesis, and 

decreased proliferation[71]. PC activity is also important for breast cancer metastasis to the 

lungs, with lung metastases showing higher PC-dependent anaplerosis than primary tumor 

cells[72]. Further, suppression of PC in breast cancer mouse models significantly reduces rates 

of metastasis to the lungs, indicating that pulmonary metastatic outgrowth is dependent on PC 

activity[73]. This observed PC-dependence in lung cancers and breast-cancer-derived lung 

metastases is most likely a product of the oxygenated lung microenvironment and the subsequent 

shift to an oxidative metabolism with increased oxidative stressors[73]. In contrast to the 

restricted, transient nature of oxygen concentrations in most tumors, well-oxygenated tumors in 

the lung may require PC-mediated aerobic utilization of pyruvate.  

In breast cancer cell lines, PC expression is 2-3 fold higher in highly metastatic breast 

cancer lines relative to those with low metastatic potential[74]. Additionally, targeting PC in 

vitro reduces proliferation and migration of the metastatic cell line MDA-MB-231[75, 76]. These 

studies indicate that PC activity is important to breast cancer cell lines independent of its role in 

pulmonary metastases survival. Depletion of PC potently inhibited pulmonary metastasis in 4T1 
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cells, but did not have an effect on primary tumor growth in an orthotopic injection model[73], 

though the effect of PC suppression on tumor metabolism and remodeling of the TME at the 

primary site was not examined. Thus, although PC’s role in breast cancer aggressiveness and 

lung metastasis is now well established, its role in the progression of the primary tumor is less 

understood. Additional studies are needed to further explain the roles of PC expression in 

primary tumor metabolism and in the TME. Due to the severe lactic acidosis seen in PC 

deficiency cases, we hypothesize that PC suppression in primary tumors will impact lactate 

metabolism and increase its concentration in the TME. As lactate is a potent signaling molecule 

and known immunosuppressive metabolite, its increased concentration may affect non-

transformed cells in the TME such as innate and adaptive immune cells. This study thus aimed to 

delineate the effects of PC suppression on the metabolism of primary tumors and how the 

resulting metabolic reprogramming impacts the TME.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 14 
 

Methods 
 

Cell Culture 

M-Wnt cells transduced with lentiviral particles containing a doxycycline-inducible short 

hairpin RNA (ShRNA) targeting PC construct (Smartvector), herein referred to as ShPC M-Wnt 

cells, were a kind gift from Dr. D. Teegarden (Purdue University, Indiana). PC knockdown was 

confirmed via qPCR. Cells were cultured in Gibco RPMI Medium containing 10% Fetal Bovine 

Serum (FBS), 11mM glucose, 2mM glutamine, and penicillin/streptomycin unless otherwise 

noted.  

Animal Study 

The mouse study was approved by the Institutional Animal Care and Use Committee of 

the University of North Carolina at Chapel Hill. Mice were housed in a climate-controlled 

Division of Comparative Medicine facility with ad libitum access to water and diet. 10 female 

C57BL/6 mice (Charles River Labs, Wilmington, MA) were injected in the 4th mammary fat pad 

with 50,000 ShPC M-Wnt cells. Mice were randomized to the control or treatment group (n=5), 

with the treatment group having ad libitum access to water supplemented with 150ug/mL of 

doxycycline. Doxycycline supplementation began once tumors were palpable. Mice were 

sacrificed 4 weeks following injection and excised tumors were measured and weighed ex vivo. 

Tumors were then flash frozen.  

Microarray Data Analysis  

 Total RNA was extracted from excised tumors using the E.Z.N.A Total RNA isolation kit 

(Omega Bio-tek). Isolated RNA was labeled, hybridized to a Clariom S HT array 

(ThermoFisher), and processed by the UNC Functional Genomics Core. Gene expression data 

was analyzed via TAC4 software. Principle Component Analysis (PCA) plot of the most 
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differentially expressed genes (defined as two-fold expression difference and p-value < 0.05) 

was generated using the FactoMineR (version 2.4), factoextra (version 1.0.7), NbClust (version 

3.03) packages in R (version 3.6.2).  

Gene Set Enrichment Analysis 

Microarray gene expression data was utilized for pathway enrichment analysis via Gene 

Set Enrichment Analysis (GSEA)[77]. Mouse Gene Symbol Remapping to Human Orthologs 

(Version 7.2) was selected from GSEA-MSIGDB file servers. The Gene sets Hallmarks[78] and 

Gene Ontology (GO) Bioprocesses were used with gene set permutation type and 1,000 

permutations. Leading edge analysis of gene sets enriched at the most conservative statistical 

cutoffs (FDR q-value ≤ 0.001) was performed in GSEA.  

Cytoscope Enrichment Mapping 

 GSEA data from GO Bioprocesses gene set was exported into Cytoscape (version 3.8.2) 

with statistical cutoffs for significant enrichment at FDR-q value < 0.05 and a similarity index = 

0.35. The similarity coefficient was used at a cutoff of 0.5 to connect related GO Bioprocesses 

gene sets. Cytoscape plug-ins EnrichmentMap (version 3.3), clusterMaker (version 3.0), 

clusterMaker Dimensionality Reduction (version 1.1), and AutoAnnotate (version 1.3) were 

utilized to generate an enrichment map as previously described[79].  

CIBORSORTx  

Digital Cytometry via CIBERSORTx software was performed online 

(https://cibersortx.stanford.edu) using the “Impute Cell Fraction” module[80]. Seq-ImmuCC 

signatures[81] were utilized as the signature matrix file to identify mouse immune cell 

populations. Batch correction was enabled and quintile normalization was disabled. 1,000 

https://cibersortx.stanford.edu/
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permutations for significance analysis were performed to find significant differences (p-value < 

0.05) in immune cell fractions between groups. 

In Vitro Assays 

ShPC M-Wnt cells were seeded in 6-cm plates for 24 hours with control media ± 

doxycycline. Culture media was then deproteinated with 3KD spin filters for 20 minutes at 

16,000 RCF in 4°C. Lactate concentrations in media were quantified following 1:40 dilution of 

media in assay buffer with the Sigma-Aldrich Lactate Assay Kit. Glucose concentrations were 

quantified following 1:10 dilution of media in assay buffer with the ThermoFisher Glucose 

Colorimetric Detection Kit. Samples were incubated for 30 minutes. Absorbance was measured 

at 570 nm for lactate samples and 560 nm for glucose samples  

Extracellular Flux Analysis 

Mitochondrial metabolism alterations were evaluated with a Seahorse XFe96 Metabolic 

Analyzer (Agilent Technologies). ShPC M-Wnt cells were seeded in a 96-well Seahorse 

bioanalyzer plate for 24 hours with control media ± doxycycline. Control media was then 

removed and 100 μL of assay medium (XF base medium supplemented with 10mM D-glucose 

and 2mM glutamine or 10mM D-glucose, 2mM glutamine and 10mM L-lactate) was added to 

respective wells. The plate was incubated in a CO2-free chamber at 37°C for 1 hour. Basal 

oxygen consumption rate (OCR) was measured with the Seahorse Mito Stress Test protocol. 

Following the assays, cells within each well were lysed and protein content was measured using 

a BCA Assay for normalization.  
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Results 
 

I. Pyruvate carboxylase knockdown alters tumoral gene expression in vivo 

Although PC has been associated with breast cancer metastasis to the lung, its roles in  

metabolic reprogramming and the TME at the primary site remain unclear. To study the effects 

of PC knockdown in a primary tumor model of TNBC, C57BL/6 mice were injected with M-Wnt 

cells transduced with a doxycycline-inducible ShRNA construct targeting PC (ShPC) and treated 

with or without doxycycline. This study revealed increased tumor mass and volume in the 

knockdown group (Dox) relative to control (Supplementary Figure 1A-C), a finding in contrast 

to previously described literature in which PC suppression led to decreased proliferation in vitro 

[75, 76] and no growth effect in vivo[73]. In order to investigate the mechanisms underlying the 

increased tumor growth, transcriptomic analysis of RNA isolated from dissected tumors was 

conducted to identify potential differences in gene expression caused by the loss of PC.  

To determine whether the transcriptomic profile of each tumor clustered together within 

treatment groups, hierarchal clustering was conducted of the most variably expressed genes 

between Dox tumors and control. Indeed, strong clustering within relative to between groups was 

observed (Figure 1A). Heatmap visualization and dendrogram branching indicates that the 

samples within each group are related to one another more so than to the samples of the other 

group. This finding indicates that the PC knockdown tumors alter their transcriptomes relative to 

control in a similar fashion. Dimensionality-reduction via principle component analysis (PCA) of 

the data again shows strong clustering within groups (Figure 1B). All samples from each 

respective group are outside the 95% confidence interval of the other group, although they are 

not significantly different as there is overlap between the confidence intervals. This data suggests 
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that PC knockdown relative to control conditions resulted in distinct transcriptomic differences 

between tumors.  

  

      
       
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Clustering of most differentially expressed genes between PC knockdown tumors 
(Dox) versus control (p-value < 0.05 and 2-fold difference) (n = 5). Hierarchical clustering of 
heat map containing genes with significantly different expression levels reveals strong clustering 
within groups relative to between (A). Principle component analysis reveals strong clustering 
within groups, 95% confidence intervals indicated by ellipses (B).  
 
 

II. Suppression of PC promotes a GSEA enrichment profile indicative of an 
immunosuppressive tumor microenvironment 

 
Having demonstrated that loss of PC results in distinct transcriptomic changes in tumors, 

gene set enrichment analysis (GSEA) was utilized to identify major pathways present within the 

tumor derived gene lists. Following statistical comparisons of genome-wide expression data, the 

differential gene list yielded is often exceedingly long without any apparent biological themes. 

Attempting to analyze single genes from this list can be impractical due to size and complexity, 

but may also miss important effects of related genes along a pathway, as smaller increases in 

A B 
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expression of a related group of genes may be more biologically relevant than large increases in 

a single gene. An alternative to single-gene analysis is GSEA, which allows for the functional 

characterization of phenotypes based on curated gene lists that represent biological pathways. By 

ranking the genes within the gene list by their correlation with the two experimental conditions 

(PC knockdown versus control), it can then be determined whether a pathway is over-represented 

in one condition over the other. This analytical method allows for more biologically relevant 

analysis and identification of which pathways are driving transcriptomic differences. 

The Hallmarks gene set contains refined gene lists that represent well-defined biological 

states with the aim of reducing noise and redundancy between gene lists[78]. GSEA using the 

Hallmarks gene set revealed 12 pathways that were significantly enriched (FDR q-value < 0.05) 

in the control condition and 5 pathways enriched in PC knockdown. GSEA calculates the 

normalized enrichment score (NES) by walking down the ranked list and calculating a running 

sum statistic that increases when a gene is present within a gene set and decreases when it is not. 

The NES is the greatest deviation from zero the running sum reaches normalized to gene set size, 

and represents the magnitude to which a gene set is over-represented at the top (positive NES) or 

bottom (negative NES) of the ranked gene list. The enrichment plot for interferon gamma 

response shows the gene set is over-represented at the bottom of the ranked gene list, with the 

black lines representing individual genes and their position along the gene list (Figure 2A). The 

negative NES corresponds to a negative correlation with the Dox group, indicating that 

suppression of PC downregulated this pathway. Of the 12 pathways downregulated in the Dox 

condition, 8 were related to immune processes, 2 are involved in lipid metabolism, and the 

remaining relate to common metabolic and cell cycle pathways (Figure 2B).  The 8 immune gene 

sets (Table 1) are involved in multiple aspects of the immune system, affecting both innate and 



 20 
 

adaptive leukocyte signaling and function, as well as inflammatory signaling. As these processes 

are critical towards effective anti-tumor immunity, the downregulation of these pathways in the 

Dox condition suggests that the host immune response to PC knockdown tumors is diminished 

relative to control. Heatmap visualization of the genes present in the immunological gene sets 

shows strong clustering of samples within groups versus between groups (Figure 2C), indicating 

that hierarchical clustering using solely immune-related genes segregates the two groups.  
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Figure 2. Gene set enrichment analysis (GSEA) with Hallmarks gene sets. Enrichment plot for 
the gene set Interferon Gamma Response shows the pathway is overrepresented in the control 
group (n = 5), indicating a positive correlation with the control condition (A). Hallmarks gene 
sets with statistically significant normalized enrichment scores (NES) (FDR q-value < 0.05) (B). 
Heat map of the immune related gene sets shows strong clustering within groups relative to 
between the two conditions (C).  
 
 

 

A 

B C 



 22 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Hallmark gene sets related to immune processes with statistically significant 
normalized enrichment scores (FDR q-value < 0.05). 8 out of 12 pathways significantly 
downregulated in the Dox group were involved in the host immune response.  
 
 
 To further investigate the specific pathways contributing to the transcriptomic differences 

caused by PC knockdown, gene ontology (GO) Bioprocesses pathways were also analyzed via 

GSEA. GO bioprocesses is a more granular database than Hallmarks, with 3,992 gene sets. This 

increased breadth of different biological mechanisms may lend further insight into phenotypic 

differences between samples, as well as indicate pathways poorly represented in Hallmark gene 

sets. However, the size, complexity, and partial redundancy of the results makes interpretation 

difficult. Network-based visualization tools are one method to address this redundancy and allow 

for useful interpretation of the data. Cytoscape’s Enrichment Map software was utilized for 

visualization and cluster formation of the GO Bioprocesses results in order to identify the major 

pathways present within related gene sets (Figure 3). Circles (nodes) represent gene sets 

significantly enriched in either condition (FDR q-value < 0.05) and are sized proportionally to 

Hallmarks NES FDR q-val 

Interferon Gamma Response -2.54 0 

Allograft Rejection -2.41 0 

Interferon Alpha Response -2.33 0 

IL6/JAK/STAT3 Signaling -2.17 0 

Inflammatory Response -1.97 0 

TNF𝛼 Signaling Via NFKB -1.82 0.001 

IL2/STAT5 Signaling -1.80 0.001 

Complement -1.70 0.002 
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the number of genes within the gene set. Lines (edges) connecting two nodes represent at least 

50% overlap of genes between those two sets, with increasing line weight corresponding to 

overlap over 50%.  

 

 
 

Figure 3. Pathway enrichment analysis of GO Bioprocesses gene sets to visualize pathway 
clusters with redundant genes. Circles (nodes) represent individual gene sets and are sized 
relative to the number of genes they contain. Lines (edges) connecting nodes represent at least 
50% overlap of genes between the two gene sets, with increased line weight indicating amount of 
overlap above 50%. All gene sets shown are enriched in control (indicated in blue), as 
enrichment analysis with GO Bioprocesses did not yield any gene sets significantly enriched in 
the Dox condition.  
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 The analysis of GO Bioprocesses resulted in no gene sets that were significantly enriched 

in the Dox condition, with no FDR q-values at or below 0.05. The control condition had 461 

significantly enriched gene sets, resulting in only blue (enriched in control) nodes on the 

enrichment map. Similar to the findings of the Hallmarks analysis, immune-related gene sets 

were the most numerous of the Bioprocesses gene sets enriched in the control group, indicating 

downregulation of these processes in the PC knockdown condition. The effectiveness of this 

network-based approach to identify pathways associated with PC not identified in Hallmarks was 

supported by a vitamin response cluster, which represents well-established regulation of PC by 

vitamin D[82]. Cytoscape’s clustering algorithms group similar pathways into biological themes. 

Multiple clusters with similar characteristics to the significantly enriched Hallmarks gene sets 

such as regulation of innate and adaptive leukocytes, interferon-𝛾 response, and STAT signaling 

were present, as well as newly identified pathways such as antigen and toll-like receptor 

signaling. Together these results indicate suppression of PC promotes a transcriptomic profile 

indicative of immunosuppression and tumor immune evasion.  

To determine the subset of genes most commonly contributing to the enrichment of gene 

sets, leading edge analysis was conducted using 131 gene sets from the GO Bioprocesses 

analysis that were enriched in the control condition and were significant at a highly conservative 

statistical cutoff (FDR q-value ≤ 0.001).  The leading-edge subset is the genes within a gene set 

that appear in the ranked list before the running sum for NES reaches its peak. These genes are 

thus the main drivers of the normalized enrichment scores for the selected gene sets. The top ten 

most common genes from the 131 leading edge subsets analyzed are shown in table 2. The 

majority of the genes encode cytokines or cytokine receptors (IL12B, TNFSF4, IL6, XCL1, 

IL23R, IL1B, and IL10), suggesting that the Dox group had impaired immune signaling within 
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the tumor microenvironment, an observation consistent with downregulation of gene sets related 

to immune response seen in both Hallmarks and Go Bioprocesses analysis. These findings from 

GSEA suggest that critical pathways involved in the host immune response were suppressed in 

PC knockdown.  

 

Genes 
Number 
of Gene 

Sets 
Classification 

IL12B 74 Cytokine (T-cell differentiation) 

TNFSF4 68 Cytokine (OX40 ligand) 

IL6 62 Cytokine (Inflammatory Response) 

XCL1 62 Cytokine (Leukocyte 
migration/activation) 

IL23R 57 Cytokine Receptor (JAK2/STAT3 
signaling) 

HLA-E 55 MHC Class I Antigen (NK cell 
recognition) 

PTPRC 53 CD45 Antigen (T-cell activation) 

IL1B 53 Cytokine (Inflammatory Response) 

HAVCR2 51 Immune Checkpoint Receptor 
(CD8+ T-cell exhaustion) 

IL10 50 Cytokine (Anti-inflammatory) 
 
Table 2.  Most common leading edge subset genes from 131 gene sets with the greatest 
enrichment in the control group (FDR value ≤ 0.001).  
 
 

III. Cell fractions of critical immune populations are altered in response to PC 
knockdown 
 

Having discovered the downregulation of critical pathways involved in immune signaling 

and activation in response to loss of PC, gene expression data was then utilized to determine 

immune cell composition in the TME. Common methods for deriving cell fractions from bulk 
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tissue, such as immunohistochemistry and flow cytometry, are often limited in their study of cell 

heterogeneity by the availability of phenotypic markers for cell recognition. An alternative 

approach is to use computational methods and previously described expression signatures for 

deconvolution of cell types from bulk expression data. CIBORSORTx is the leading such tool, 

with a regression coefficient of 0.97 in comparison to flow cytometry of healthy lung tissue[83]. 

This form of digital cytometry was utilized to discover if the downregulation of immunological 

pathways in response to loss of PC results in alterations to the abundance of key tumor 

infiltrating leukocytes (TILs).  

Indeed, the cell fractions of 3 immune cell populations involved in the immunological 

response to tumors were significantly different between groups at a p-value of 0.05 (Figure 4). 

M0 macrophages were found at a higher cell fraction, while Th1 and resting natural killer cells 

(NK cells) were found at lower cell fractions in the Dox group. Differences in cell fraction of M1 

macrophages and Naïve CD8+ T-cells between groups were not statistically significant. Taken 

together, the differences in cell fractions between groups for M0 macrophages, Th1 cells, and 

Resting NK cells support previous findings that immunological pathways in tumors with PC 

knockdown were altered relative to control. Cause and effect are difficult to separate as lower 

abundance of immune cells in the TME could cause the downregulation of immunological 

pathways and vice versa. Nevertheless, gene expression data has revealed that PC knockdown 

results in a TME with diminished activation of  inflammatory and anti-tumor immune cell 

regulatory pathways.  
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Figure 4. Digital cytometry using CIBERSORTx estimated immune cell fractions of tumor 
infiltrating leukocytes. Cell fractions were determined for M0 macrophages (A), M1 
macrophages (B), naïve CD8+ T cells (C), Th1 cells (D), and resting natural killer (NK) cells (E) 
and compared between control and dox groups (n = 5). Statistical analysis conducted using 
unpaired t tests was used to determine statistical significance (p-value < 0.05).  
 
 

IV. PC knockdown results in metabolic reprogramming marked by increased lactate 
efflux and impaired mitochondrial metabolism  

 
To investigate the mechanisms by which loss of PC may lead to an immunosuppressive 

TME, in vitro experiments with the doxycycline-inducible ShPC M-Wnt cell line were 

conducted. As PC serves as a critical enzyme in both gluconeogenic and anaplerotic pathways, 

its knockdown was expected to result in considerable metabolic reprogramming that could alter 

the TME nutrient pool, impacting not only malignant cells but tumor-infiltrating leukocytes.  

 Changes to glucose consumption and lactate production were first assessed to determine 

if PC suppression altered flux through glycolysis and lactate dehydrogenase (LDH). Indeed, 
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colorimetric assays measuring concentrations of L-lactate and D-glucose in cell culture media 

found a statistically significant increase in lactate concentration in the media (Figure 5A), as well 

as a significant decrease in glucose consumption in the Dox condition after 24 hours (Figure 5B). 

While both results were statistically significant, the effect size of the changes in lactate 

concentration were greater than the relative changes in glucose consumption, with an 

approximately 25% increase and 6% decrease, respectively. These results indicate that loss of PC 

results in more carbon being shunted through lactate dehydrogenase (LDH) and exported as 

lactate rather than into the TCA cycle or other biosynthetic pathways that branch from 

glycolysis. This effect comes without a marked increase in glucose consumption, implying the 

increased lactate export is a function of increased flux through LDH, rather than simply a greater 

intake of glucose with a concomitant increase in lactate production.  

To investigate the effect of reduced pyruvate derived TCA cycle intermediates, extracellular 

flux analysis was used to assess perturbations to mitochondrial metabolism in response to PC 

suppression. As PC is an important anaplerotic enzyme, its knockdown was expected to alter 

mitochondrial metabolism and subsequently, the relative oxygen consumption rate (OCR) of the 

doxycycline treated ShPC cells. To gain more insight into the effects of extracellular carbon 

sources on mitochondrial metabolism, the cells were transferred from control media ± 

doxycycline to Seahorse media supplemented with either 2mM glutamine and 10mM D-glucose 

(Figure 5C) or 2mM glutamine, 10mM D-glucose, and 10mM L-lactate (Figure 5D) prior to 

experimentation. The addition of L-lactate to the media in one of the conditions was informed by 

the increased lactate efflux seen in the previous lactate assays, and used to better emulate nutrient 

availability PC knockdown tumors would experience in vivo. As expected, the Dox group had a 

significant decrease in relative OCR relative to control in both conditions. The condition which 
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included L-lactate saw a greater drop in relative OCR between the Dox group and control, 

indicating that lactate availability does not rescue mitochondrial metabolism perturbations. These 

in vitro results suggest that to compensate for loss of PC, M-Wnt cells shunt more carbons from 

glucose into lactate production, resulting in less pyruvate-derived TCA cycle intermediates and a 

subsequent decrease in OCR.  

 

Figure 5. In vitro metabolic effects of PC knockdown. Lactate concentration (A) and glucose 
consumption (B) were measured in cell culture media of ShPC M-Wnt cells following 24 hours 
of treatment with control media ± doxycycline (n = 5). To determine relative oxygen 
consumption rate (OCR), ShPC M-Wnt cells were cultured in control media ± doxycycline for 
24 hours then transferred to Seahorse media supplemented with 2mM glutamine and 10mM D-
glucose (C) or 2mM glutamine, 10mM D-glucose, and 10mM L-lactate (D). Statistical analysis 
conducted using unpaired t tests was used to determine statistical significance (p-value < 0.05). 
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Discussion 
 

PC expression in breast cancer is correlated with increased tumor size, stage, and 

metastatic potential, as well as survival of breast-cancer derived pulmonary tumors[72, 74]. Less 

understood is the impact of PC activity on metabolic reprogramming and the TME within 

primary tumors. Thus, we utilized orthotopic injection of ShPC M-Wnt cells to investigate how 

PC expression impacts primary tumors in a mouse model of TNBC. PC knockdown resulted in 

increased tumor mass and volume relative to control. Previous work modulating PC expression 

in models of breast cancer have either detected no primary tumor growth effect or a reduction in 

primary tumor growth following PC suppression[73, 75, 76]. Thus, our results represent a novel 

relationship between PC and primary tumor growth in models of TNBC. This study sought to 

investigate the transcriptomic and metabolic effects of PC suppression to delineate potential 

mediators of the observed pro-growth phenotype and add to the growing body of literature 

surrounding PC and tumor growth in models of breast cancer.  

We discovered that the transcriptomes of PC knockdown tumors were altered relative to 

control, with strong intergroup clustering revealing that the transcriptomic changes were more 

similar between PC knockdown samples than to the control samples. This indicates that the 

metabolic reprogramming resulting from loss of PC activity led to a distinct gene expression 

profile that was consistent between PC knockdown tumors. Alterations to tumoral gene 

expression in response to loss of PC activity was expected, as gene expression and metabolism 

reciprocally regulate one another in order to maintain cellular homeostasis[84]. Metabolic 

reprogramming and the subsequent changes to metabolic enzyme levels not only affects flux 

through metabolic pathways but can also direct the subcellular localization of these enzymes to 

the nucleus, where they can then regulate gene expression through multiple mechanisms, 
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including chromatin-remodeling, histone-modification, and serving as transcription factors[85]. 

Further, these metabolically driven gene expression changes can result in a favorable 

transcriptome for cancer progression, as multiple metabolic enzymes are known to be essential 

components of oncogene driven transcriptional programs[86]. For example, the PDH complex is 

one of the primary enzymes which generates acetyl-CoA for use in the TCA cycle or fatty acid 

synthesis. While typically thought of as a mitochondrial enzyme, PDH has been shown to 

localize to the nucleus in response to mitochondrial stress where it produces a nuclear pool of 

acetyl-CoA that increases the acetylation of histones important for S-phase entry[87]. As PC is 

an anaplerotic enzyme influencing the levels of TCA cycle intermediates, its suppression-

mediated changes to acetyl-CoA/PDH levels may be one of numerous mechanisms by which its 

knockdown is altering tumoral gene expression. Another potential mechanism that may be 

driving the transcriptomic changes is an altered immune profile in the TME, as changes in 

nutrient and metabolite concentrations in response to metabolic changes are potent mediators of 

immune infiltration and activation[88]. As immune cells make up a substantial portion of the 

cells within the TME[89], changes to their activity could be driving the overall transcriptomic 

profile of the tumors.  

GSEA has emerged as a powerful analytical tool capable of identifying biological themes 

from genome wide expression data and is now widely used to gain insight into metabolic, 

immunological, and other oncogenic processes in various cancers. In our GSEA of 

transcriptomic data from control and Dox-treated tumors, the majority of Hallmarks gene sets 

downregulated following PC suppression were related to immunological pathways. Indeed, all 

immunologic gene sets described in Hallmarks were suppressed by PC knockdown. These 

downregulated pathways involve regulation of innate and adaptive immune processes, both of 
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which are critical for tumoral immunosurveillance and can be reprogrammed to support tumor 

progression[90]. Hierarchal clustering using these immunological gene sets again shows strong 

clustering within conditions relative to between, indicating that the immunological changes are 

consistent between PC knockdown samples. This effect of PC expression on immune regulation 

has not been described in the literature and may contribute to enhanced tumor growth, as 

immune evasion is a hallmark of cancer[38].  

Two of the downregulated Hallmarks pathways in the PC knockdown group were the 

interferon gamma (IFN-𝛾) and interferon alpha (IFN-𝛼) responses. Impaired signaling of Type-I 

(IFN- 𝛼) and Type-II (IFN- 𝛾) interferons is a key mechanism underlying immune dysfunction in 

breast cancer[91]. Effective interferon signaling is vital to the anti-tumor immune response by 

both innate and adaptive immune cell populations, stimulating clonal expansion and 

differentiation of CD8+ T-cells as well as positively regulating natural killer cell-mediated 

cytotoxicity[92, 93]. However, the net effect of IFNs on the TME is complex, as IFN signaling 

has also been identified as a key driver of immunosuppression and resistance to 

immunotherapies[94, 95]. The conflicting effects of IFNs in the TME can in part be explained by 

the differential responses to IFN signaling in cancer cells versus immune cells. Inactivation of 

the type I IFN receptor IFNAR1 in CD8+ T-cells results in inhibition of CTL viability and 

decreased efficacy of immune checkpoint therapies[96]. However, loss of IFNAR1 in cancer 

cells rendered them more susceptible to CD8+ T-cell mediated killing[97], indicating that while 

IFN signaling may promote an activated immune cell profile, type 1 IFN signaling may also be a 

mechanism of CTL-independent immune evasion in cancer cells.  

Inflammatory response, TNF𝛼 signaling, and IL6/STAT3 signaling Hallmark gene sets 

were also reduced following suppression of PC, indicating diminished pro-inflammatory 
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signaling in the TME. Inflammatory signaling in cancer is complex, with roles in both 

immunosuppression and immune-mediated cancer elimination[98]. Ultimately, the relative 

expression of various signaling molecules (cytokines, metabolites) as well as the makeup of the 

immune cell population in the TME are what determine if inflammatory signaling leads to an 

anti-tumor or pro-tumor immune response[99]. IL-6 and TNF𝛼 are markers of an inflammatory 

TME and are produced by a multitude of immune cells, namely activated macrophages, dendritic 

cells, and T cells[100]. Thus, downregulation of IL-6/ TNF𝛼 signaling and the inflammatory 

response in the PC knockdown tumors may be indicative of an immune profile marked by 

diminished presence or function of these cytokine secreting immune cells, a characteristic of 

immune “cold” tumors[101].  Cold tumors are classified as having low levels of T-cell 

infiltration and activation, caused in part by defective sensing from innate immune cells[102]. 

Taken together, the downregulation of interferon and inflammatory signals is emblematic of an 

immunosuppressed microenvironment, with diminished infiltration and activation of TILs.   

Enrichment mapping of significant GO Bioprocesses gene sets following GSEA revealed 

similar findings to Hallmarks, with the majority of identified clusters relating to immune 

processes that regulate innate and adaptive responses. Multiple clusters were consistent with 

identified Hallmark gene lists, such as IFN- 𝛾 response, STAT signaling, and response to 

cytokine stimulus, further supporting those findings. Clusters identified such as toll-like receptor 

signaling and antigen receptor signaling are not covered in Hallmarks analysis, however, are 

consistent with the proposed immune profile of diminished signaling and activation of TILs.  

To further characterize the immune profile of the TME, leading edge analysis was used to 

find genes that were commonly contributing to differences in gene expression between groups. 

The majority of the ten most common genes identified via leading edge encoded cytokines, 
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cytokine receptors, or other immune activating antigens, again supporting the idea of an immune 

cold TME. Several genes directly related to T-cell differentiation, activation, and survival were 

common to the leading edges, including IL-12, PTPRC (CD45), and TNFSF4 (OX40-ligand). 

IL-12 is an interleukin produced by macrophages, dendritic cells, and neutrophils in response to 

antigenic stimulation, and mediates differentiation of naïve T-cells into Th1 cells[103]. As Th1 

cells are major producers of IFN-𝛾, this finding provides a possible mechanism for the 

downregulation of the IFN-𝛾 signaling found in Hallmarks analysis. PTPRC is present on all 

immune- differentiated hematopoietic cells and is an important regulator of T-cell 

activation[104], while TNFSF4 supports T-cell survival as a costimulatory signal[105].  

Decreased expression of these genes would indicate impaired signaling between antigen-

presenting cells and T-cells, further supporting an immunosuppressive TME profile.  

Given the downregulation of immunological gene sets found in the PC knockdown 

condition, we next determined if these changes resulted in alterations to the abundance of 

immune cells in the TME. Traditionally, identification and quantification of immune cell 

populations is conducted using immunohistochemistry or flow cytometry. Alternatively, digital 

cytometry is a computational method of calculating cell fractions using deconvolution of gene 

expression profiles from bulk tissues to infer and quantify specific cell types. We utilized 

CIBORSORTx in our digital cytometry analysis, as it has been proven effective in distinguishing 

closely related cell populations as well as determining activation states of the same cell type, all 

while maintaining concordance with traditional methods[80, 83]. CIBORSORTx revealed that 

PC suppression resulted in decreased cell fractions of Th1 and resting NK cells, as well as an 

increased cell fraction of M0 macrophages. Tumor associated macrophages (TAMs) make up the 

majority of the immune cells in the TME of breast cancer and their infiltration has been 
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correlated with increased metastatic risk and poor prognosis[106]. M0 are the resting, 

nonactivated subgroup of macrophages, distinct from the polarized M1 and M2 states. 

Polarization of TAMs from M0 to M1 or M2 is orchestrated by the cytokine milieu of the 

TME[107]. M1 polarization occurs in response to microbial products or IFN−𝛾 and is associated 

with proinflammatory cytokine release, nitric oxide production, and protection against bacteria, 

viruses, and cancer. M2 polarization occurs in response to various signals including Il-4, IL-13, 

or glucocorticoids, and is associated with wound healing and tissue repair[108]. TAMs in the 

TME predominantly resemble M2-like macrophages and contribute to immunosuppression and 

tumor development[109]. A higher cell fraction of M0 macrophages in PC knockdown tumors 

indicates a lack of polarizing stimuli in the TME. This result further supports the previous 

findings of impaired innate signaling following PC suppression.   

Th1 cells, reduced in the PC knockdown tumors, are a subset of CD4+ T-cells that are 

involved in proinflammatory responses. IFN-𝛾, IL-2, and TNF𝛼 are important Th1-

cytokines[110]; thus, data from GSEA of Hallmarks and GO Bioprocesses which found 

downregulation of these pathways in the PC knockdown condition reveal a potential pathway of 

Th1 cell-mediated signaling dysfunction in the TME. As stated previously, leading edge analysis 

from GO Bioprocesses found decreased expression of the gene encoding IL-12, which promotes 

differentiation of naïve T-cells into Th1 cells. As IL-12 has potent signaling effects in the TME, 

its downregulation may have contributed to the decreased cell fraction of Th1 cells, although 

further investigation is needed to control for other factors affecting naïve T-cell differentiation, 

and to delineate the role of IL-12 signaling in the TME following PC suppression.  

Resting NK cells were also found in lower proportion in response to PC suppression. NK 

cells are the predominant innate lymphocyte that mediates anti-tumor immunity[111]. The 
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transition from resting to activated NK cells depends on the integration of signals from both 

activating and inhibitory receptors[112]. Decreased cell fractions of resting NK cells could imply 

either impaired infiltration of NK cells into the TME or a higher proportion of activated NK 

cells, although no significant difference was found in the cell fractions of activated NK cells. 

Taken together, the increased abundance of nonpolarized, M0 macrophages and the decreased 

abundance of Th1 cells and resting NK cells indicate that the transcriptomic changes caused by 

PC suppression result in an altered immune cell population indicative of diminished innate 

signaling and polarizing stimuli.  

Following transcriptomic analysis, in vitro metabolic assays were conducted in order to 

determine the metabolic consequences of PC suppression that may direct TME remodeling. As 

PC is a critical enzyme for both gluconeogenesis and anaplerotic refilling of TCA cycle 

intermediates[113], we anticipated its knockdown to result in reprogramming of tumor cell 

metabolism. This reprogramming not only alters metabolic pathways within cancer cells, but 

affects metabolite concentrations in the TME, which can have profound effects on the 

metabolism and function of TILs and APCs[88]. Without normal function of PC, pyruvates other 

primary metabolic fates in the cell are reduction into lactate via lactate dehydrogenase, 

conversion to acetyl-CoA for entry into the TCA cycle via PDH, or transamination to form 

alanine[114]. As PDH is heavily regulated by acetyl-CoA and cellular redox status, it is limited 

in its capability to enhance pyruvate to acetyl-CoA flux in the face of increase pyruvate 

concentrations. Further, acetyl-CoA requires oxaloacetate to condense with and form citrate for 

flux through the TCA cycle; however, PC suppression reduces pyruvate-derived oxaloacetate. 

Instead of entry into the TCA cycle, increased flux through LDHA and a subsequent increase in 

lactate production was expected, as infants born with a genetic PC deficiency often present with 
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severe lactic acidosis in the blood[65]. Further, PC suppression in pancreatic beta cells results in 

decreased malate and citrate, increased concentrations of pyruvate and lactate, and no changes to 

alanine concentrations[115]. Although PC suppression in pancreatic beta cells lends insight into 

the metabolic reprogramming that results from loss of PC activity in the pancreas, these 

metabolite alterations may not be concordant with changes seen in cancer cells. Thus, 

metabolomic analysis of the tumor interstitial fluid in PC knockdown tumors is necessary to 

confirm the relative levels of these metabolites in response to PC suppression in cancer.  

We investigated the effect of PC suppression on lactate production and glucose 

consumption by measuring the concentration of these metabolites in the cell culture media 

following 24H treatment of control media ± doxycycline. As expected, PC suppression led to a 

~25% increase in lactate production relative to control. Importantly, increased glucose 

consumption was not the cause of this increase in lactate production, as PC suppression led to a 

small but significant decrease in glucose consumption. Lactate has profound signaling properties 

in the TME, and promotes immunosuppression via interactions with both innate and adaptive 

immune cells[116, 117]. In cytotoxic T lymphocytes, lactic acid was shown to suppress both 

proliferation and cytokine production, with up to 50% decreases in IFN- 𝛾 and Il-2 

production[50], both of which were involved in pathways shown to be downregulated in our 

GSEA. Lactate exposure has also been shown to promote immunosuppressive phenotypes in 

innate immune cells, including polarization of M2-like macrophages, myeloid-derived 

suppressor cells (MDSC), and immature DCs[116, 118]. Thus, increased lactate production and 

export into the TME may play an important role in promoting the immunosuppression observed 

in tumors following PC suppression. It is important to note that these assays were conducted in 

2D culture, as 3D tumors may have more complex interplay between tumors cells. Oxidative 
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cancer cells are known to uptake lactate derived from hypoxic cells located farther from the 

tumor vasculature to fuel their TCA cycle, a phenomenon known as metabolic symbiosis[119]. 

This effect could be an immunosuppression-independent mechanism fueling the pro-growth 

effect of PC suppression as a result of increased lactate production; hence, further investigation 

in the in vivo environment is needed.  

Given its role as a key anaplerotic enzyme supplying oxaloacetate to the mitochondria, 

PC suppression was also expected to reduce the concentration of TCA cycle intermediates. 

Radiotracing experiments in PC knockdown breast cancer cell lines have shown lowered glucose 

incorporation into downstream metabolites of oxaloacetate including malate, citrate, and 

aspartate[120]. Our finding of increased production of lactate without a concomitant increase in 

glucose consumption agree with this model, as increased flux through LDHA rather than PC and 

PDH would leave less glucose-derived carbons for entry into the TCA cycle. To test if loss of PC 

affected mitochondrial metabolism, extracellular flux analysis was used to measure relative 

oxygen consumption rate (OCR) as a proxy for electron transport chain (ETC) activity. As 

extracellular carbon sources other than glucose could also affect TCA filling and consequently 

ETC function, OCR was measured in the presence of either 2mM glutamine and 10mM D-

glucose or 2mM glutamine, 10mM D-glucose, and 10mM L-lactate. Exported lactate in the TME 

can serve as a potential nutrient for tumors and is a primary source of carbon for the TCA 

cycle[32]; thus, it is possible that adding lactate to the media prior to OCR measurements would 

rescue the mitochondrial perturbations expected from PC suppression. However, both conditions 

saw a significant decrease in OCR following suppression of PC. This finding supports the 

hypothesis that PC suppression results in alterations to mitochondrial metabolism, with three 

additional carbon sources unable to rescue this effect.  
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Taken together, these in vitro findings explain important alterations to central carbon 

metabolism following PC suppression and offer a potential mechanism underlying the 

immunosuppression of the TME. The fate of pyruvate is a key regulatory point governing the 

metabolic reprogramming of cancer cells. We have found that loss of pyruvate-derived 

oxaloacetate from PC results in increased production and export of lactate without an increase in 

glucose consumption, resulting in perturbations to mitochondrial metabolism due to the 

diminished flux of carbons for the TCA cycle. As lactate is a potent immunosuppressive 

signaling molecule, it may be a driver of the immunosuppression in the TME following PC 

suppression. Given this increase in lactate production and its known roles in the TME, targeting 

of LDHA with inhibitors such as FX11 may hold promise in reversing the immunosuppression 

and pro-growth phenotype caused by increased lactate export in conditions such as those caused 

by PC suppression. However, future studies controlling for lactate concentrations and other TME 

modulators (hypoxia, vascularization, metabolites) are needed to better discern the most 

consequential effects of PC suppression and reveal effective therapeutic targets. Future 

experimentation involving radiolabeling of carbon sources would also further elucidate the 

mechanisms by which PC suppression alters incorporation of carbons into TCA cycle 

intermediates and elucidate other important metabolic pathways under the regulation of pyruvate 

metabolism, including alanine formation via transamination, 3-phosphoglycerate derived serine 

production, and flux through the pentose phosphate pathway (PPP) for production of NADPH 

and nucleotide precursors. These pathways were not investigated in this study, however, may be 

contributing to the metabolic reprogramming and transcriptomic changes caused by PC 

suppression. These studies would yield further insight into the remodeling of the TME and the 

mechanisms underlying the observed immunosuppression 
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Conclusion 

Pyruvate carboxylase’s role in breast cancer is a growing area of interest, with important 

connections to tumor growth and metastasis. This study investigated the mechanisms underlying 

a pro-growth tumor phenotype observed in response to PC knockdown. Transcriptomic analysis 

revealed that PC suppression induced changes to the gene expression of bulk tumors, with 

pathways involved in immune signaling discovered to be downregulated. This gene expression 

profile is indicative of an immunosuppressed TME, which may be driving the observed pro-

growth effect. Metabolic reprogramming caused by loss of PC activity was also observed, with 

increased production of lactate and diminished OCR. Lactate is a potent signaling molecule and 

may play an important role in the observed immunosuppression of the TME. Immunosuppressive 

TMEs are currently being targeted to enhance the efficacy of immunotherapies, such as ICIs. Our 

results suggest that targeting of lactate dehydrogenase or lactate’s transporters MCT1 and MCT4 

may hold promise in reversing the immunosuppressive effects of increased lactate export and 

make ICI more effective in the face of PC suppression. Taken together, this study revealed a 

novel relationship between PC expression and primary tumor growth and TME composition in a 

model of TNBC. The metabolic alterations seen in our model and the subsequent remodeling of 

the immunological network in the TME should be considered in future studies to better 

understand the effects of PC modulation in breast cancer models.  
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Supplemental Information 
 

 

 
Supplemental Figure 1A-C. Tumor data from mouse study (n = 5). C57Bl/6 mice were injected 
with M-Wnt cells transduced with doxycycline-inducible ShRNA targeting PC. Doxycycline 
treatment began once tumors were palpable. Tumors were harvested 4 weeks following injection. 

 


