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Abstract: 
Beer commonly contains proteins such as hordeins, non-specific lipid-transfer 

protein 1 (LTP-1), and protein Z. The normal physiological functions of these proteins 

include seed storage and lipid transfer, but in beer they influence desirable beverage 

characteristics like head foam, aroma, and the formation of chill haze. Prior beer 

proteomics studies have detected variations in barley protein content across different 

brewing stages while others have observed changes due to known behavior of yeasts 

(ie. flocculation). Previous studies have mainly assessed samples brewed under lab 

conditions. Our study, in a departure from earlier studies, addresses the gap in research 

examining the proteome profiles of commercial beers. We compare the abundance of 

specific proteins in multiple species across different types of beer and cider to 

determine the proteomic impact of brewing conditions and ingredients by comparing the 

proteins in our beer and cider samples to data from previously published studies. We 

isolated proteins from our samples by performing a sample preparation protocol 

developed by the Protein Research Group (PRG), a subgroup of the Association of 

Biomolecular Resources Facilities (ABRF). Once peptides were cleaned, quantified, and 

recovered we analyzed samples by liquid chromatography coupled to mass 

spectrometry (LC-MS) analysis at the UNC Proteomics Core Facility. We assessed our 

proteomic workflow by comparing the number of proteins we identified with other beer 

proteomics datasets. Protocol validity and reproducibility was assessed through PCA 

plots and Pearson correlations among sample replicates. Overrepresentation analysis 

of yeast proteins highlights functional biological pathways that contribute to desirable 

protein expression and correspond to yeast genes. We studied other ingredient-related 

effects by comparing protein abundances of barley and yeast proteins previously 
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explored by beer proteomic literature to make predictions about beer quality. This 

allowed us to evaluate differences in sample preparation and LC-MS methods, as well 

as to compare beer protein results with the other 50 participants of the ABRF PRG beer 

study from around the world. Our research will contribute to the growing body of 

research in the field of beer proteomics. 

 

Introduction: 

Beer is a popular beverage throughout the world. What began as an ancient 

practice of combining sugary broths and yeast has become a mechanized, industrial 

process that serves many millions of people. Given the wide scale of the production and 

consumption of beer, it is surprising that there is limited research currently available on 

the biochemical composition of the drink. Previous studies have identified proteins in 

beer that are responsible for particular desirable qualities like chilled haze and foam.1 

Other studies have documented changes in protein representation based on changes in 

malting and the use of various yeast strains.2 

Brewing can be conceptually understood as the process of feeding sugar-rich 

solutions to organisms that release alcohol into solution that can be separated and 

consumed. The process differs regionally and depending on the size/ capacity of the 

brewery, as some brewers may carry out particular ingredient modifications on-site, 

others importing ingredients from third-party suppliers. From beginning to end, beer 

brewing traditionally begins with the malting of milled barley grain. Wheat and rye are 

commonly malted for the same purpose. Dried, cleaned barley is malted by soaking and 

drying the grain, and then drying again after germination has taken place. Germination 
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produces proteins and enzymes that are required to break down barley starch in 

subsequent mashing stages, and malted barley proteins conserved by the end of the 

brewing process influence the taste and texture of beer.  

Mashing follows malting and is responsible for producing the final “sugary broth,” 

known as wort, that yeast is added to during the fermentation process consume to 

generate alcohol. During mashing, crushed malt is mixed with hot water between 62.2-

70C, which activates malt enzymes. These enzymes convert sugars in malted barley to 

maltose and dextrin, then the wort is separated from the grain. The wort is subsequently 

boiled for pasteurization, and then boiled with additional ingredients to impart particular 

flavors that are expected to be maintained for the remainder of the brew stages.3 Hops, 

and refined sugars are traditional additives, and fruits and spices are commonly added 

at this stage as well. Once the boiled and flavored wort has been cooled depending on 

the kind of beverage desired, specific strains of yeast are added to generate alcohol via 

the consumption of sugar and the excretion of alcohol and carbon dioxide in a process 

known as fermentation. The product that we now have is called “bright beer” and can be 

filtered and carbonated before being packed for human consumption. Heating during 

mashing and fermentation steps during the brewing process are expected to influence 

the kinds of proteins that are present in the final product.4 Appendix Figure 2 is a 

schematic of the beer brewing process. 

There are many varieties of beers and ciders, and I will discuss changes in the 

brewing process that account for their differences. The main distinction between the 

brewing process for beers and ciders is that is that in ciders apple juice is substituted for 

wort. Barley and other grains are not ingredients in cider, whereas they are in beer. This 
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also means that additional flavor can be imparted after fermentation has concluded via 

the addition of sweeteners, juices, and concentrates. Hops are not used in the brewing 

process because ciders are not meant to be bitter. Most commercial beers fit into one of 

two categories, which are lagers and ales. Ales and lager differ based on whether they 

top or bottom-ferment, respectively. Flocculation behavior in yeast is what this 

difference is attributed to, and top-fermenting strains are less flocculent. Ales typically 

ferment between 18-22C and lagers ferment between 7-15C.5 The temperature and 

length of aging that follows fermentation is also different between the two, with ales 

aging between 4.4-13C for a short time and lagers aging between 0-7C for a relatively 

long time. While it is known that the brewing process contributes to flavor and foam 

characteristics of beer, little is known about the specific effects that proteome profiles 

have these attributes. 

Mass spectrometry-based proteomics is an invaluable tool for identify, 

quantifying and characterizing proteins in an unbiased manner. In the ‘bottom-up’ 

proteomics approach, a protease digests a protein sample, converting the sample into a 

peptide mixture that is then analyzed by liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS). During the MS/MS analysis, peptides are fragmented inside 

the mass spectrometer, and the harmonic oscillations of the particles within the orbitrap 

are converted via a Fourier transformation to generate mass to charge (m/z) ratios. The 

MS and MS/MS data are then searched against a public protein database and 

measured peptide sequence information is mapped back to respective theoretical 

peptide sequences determined by molecular weight. These databases are built from 

genome sequence data, since protein sequences can be derived from the genomic 
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data. With this technique not only can peptide/protein sequences be identified, but 

proteins can also be quantified based on the relative abundance of the protein across 

samples.6 

Determining the abundance of particular proteins can help us predict 

modifications to known ingredients, however the broader benefits of better and more 

frequent biochemical characterization of beer is analogous to those of testing drinking 

water or other widely consumed products; These analyses are important to perform 

because they can inform the public of potential public health dangers or dietary 

concerns. Additionally, quantitative analysis of beer sample proteomic data can provide 

insights that can enable brewers and food chemists to optimize recipes to improve the 

expression of desirable proteins. Phylogenetic trees can be produced based on proteins 

identified and genetic improvement of grain and yeast strains are important goals in the 

field of beer proteomics.  

There are multiple reasons why proteomic analysis of beers and ciders is 

interestingly challenging: Firstly, beer is made with multiple ingredients from different 

species, so special attention has to be paid when selecting databases to search raw 

data against. Secondly, many of the species where ingredients specific to beer originate 

are not well-studied, so genomic sequence information/protein databases for those 

species may be lacking. Thirdly, we are measuring fragments of proteins produced by 

peptide-level cleavage that takes place during brewing. As mentioned previously, the 

various stages in the brewing process contribute to the proteins that are present in the 

final beverage. Prior research has recognized non-tryptic cleavage events in peptides 

that have been attributed to yeast or barley enzyme-driven proteolysis that occurs 
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during brewing. At a physical level, the hydrolytic activity that takes place following 

malting and during the mash phase limits the molecular weights of proteins present in 

beer to a range of 5-100kDa.7 Figure 1 of the appendix contains a diagrams of barley 

germination and hydrolytic cleavage. 

While challenges exist in this analysis, current publications in beer proteomics 

have identified proteins that make significant contributions to beer quality which is 

determined by characteristics like foam and haze formation. The field has already 

established relationships between the enrichment of particular proteins and physically 

observed qualities in beer. Proteins that influence foam formation and stability include 

low molecular weight barley proteins like hordeins, lipid-transfer proteins, and a serine-

like protease (serpin) known as protein Z. LTP-1 is a common lipid-transfer protein in 

beer, and is known to have strong foam forming properties, and improved foam 

stabilizing properties in the presence of hordeins or protein Z.8 Protein Z has multiple 

isoforms that have been studied and has known foam stabilization properties. Previous 

publications have also demonstrated relationships between relative proportions of 

hordeins, lipid-transfer proteins, and protein Z, and malting level, or Kolbach (KI) index 

of barley used to make the wort.7 Additionally, proteinase A from yeast is known to 

degrade LTP-1 during fermentation.9 

In our study, we aim to employ an adapted version of the PRG sample 

preparation protocol for proteomic analysis of commercial beer samples to determine 

the accuracy and wider application of the protocol, and to assess the proteomic profiles 

of a diverse group of commercial beer and cider samples. Our beers primarily come 

from microbreweries around North Carolina, so we will be able to better understand the 
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quantitative impact of ingredient choices and brewing techniques by modifying database 

search parameters and performing additional comparisons. Ingredient species were 

divided into flavorants, or spice and fruit proteins, and grains and yeasts.  

To determine the protein composition of our beverages, we took aliquots of 

commercial beers and ciders, precipitated proteins with acetone, digested with trypsin 

enzyme, and cleaned the peptides with C18 spin-columns. According to peptide 

concentration data from BCA quantitation, we normalized peptide amounts and 

analyzed the same amount of each peptide sample using a LC-MS/MS on a Thermo 

Easy nLC 1200 coupled to a QExactive mass spectrometer (Thermo). Raw data were 

analyzed in Proteome Discoverer 2.4 (Thermo), by searching against 14 UniprotKB 

protein databases. Within Proteome Discoverer, label-free quantitative values were 

extracted using area under the curve, and protein abundances could be compared 

across samples to assess protein abundance differences among different species, 

beverages, and other quantitative categories. All results were filtered using a 1% false 

discovery rate (FDR) to filter out low scoring proteins. Perseus software and R were 

used for Pearson correlation and analysis of genetic pathway enrichment respectively. 

Overall, we identified 547 number of total proteins derived from 20 of different 

species across 10 different commercial beers/ciders. We demonstrate that beer of 

similar type shares similar proteomics profiles, according to principal component 

analysis, with the exception of the two replicates of the same cider were very 

compositionally different. We selected a group of commonly expressed proteins 

previously identified in beer, for example, the barley proteins that show varying 

abundances depending on malting and foam presence, to make additional predictions 



 

 9 

about beverage quality. This work will contribute to the larger ABRF PRG project; the 

raw data collected for locally sourced commercial beer samples at UNC has been 

uploaded to a public repository and will be compared with data collected from 

international commercial beer samples. From this, we will be able to compare the 

proteomic results of the ABRF pale ale ‘standard’ across multiple labs to determine how 

different preparations and mass spec analyses can influence the results. We will also be 

able to compare beers from around the world to one another to shed insight into how 

location, specific brewing processes, and ingredient choices can affect the proteomic 

profiles. This study is among the first known of its kind and will add to the growing body 

of beer proteomics research. 

 

Analysis/ Methods: 
 
Wet-lab sample preparation: 

The method used for preparing the beer proteomics samples was presented by 

Brett Phinney (UC Davis) and Ben Neely (NIST) in the PRG’s Beer Proteomics project 

proposal. The described method was designed so that any proteomics lab across the 

world could apply it to their beer samples; regardless of participant’s location, they 

should have all supplies listed in the method already in their lab. Meta-proteomic 

analysis will eventually be conducted using the large pool of submitted raw data to draw 

conclusions about geography-based protein representation, and other factors that 

contribute to variable protein abundance across international commercial beer samples. 

Tables and figures corresponding to wet-lab sample preparation are presented in the 

supplementary methods section (Tables 1-4, Figure 1). 
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Protein Precipitation: 
We began by collecting our beer samples and cider samples (Supplemental 

methods, Table 1). Including the ABRF standard, we had 8 beers and 2 ciders to digest, 

clean, and analyze. We aliquoted 2 mL of each drink into conical tubes and stored them 

at 4C. Two replicates of each beverage were prepared by aliquoting 50 uL of each 

sample into Eppendorf tubes before adding 200 uL of acetone to each tube to 

precipitate the proteins from solution. After vortexing for 15 seconds, tubes were moved 

to the -20C freezer to incubate overnight to ensure complete precipitate formation. The 

next day, samples were centrifuged at maximum speed to pellet the protein, washed 

with acetone, and decanted twice before air drying the protein pellet. 

 
Trypsin Digestion: 

Once the protein was dried, we performed in-solution digestion of each sample 

with trypsin according to the PRG sample preparation guidelines. We calculated the 

volumes of our reagents, and proceeded with reconstituting, reducing, alkylating, and 

adding trypsin to each of our samples (Supplemental methods, Table 2). Adding trypsin 

cleaves proteins at the c-termini of arginine and lysine. To improve the digestion 

efficiency of trypsin, dithiothreitol (DTT) is used to linearize folded proteins, and 

iodoacetamide (IAA) is used to alkylate the linearized proteins to prevent cysteine 

bonds from reforming. The samples were incubated at 37C overnight, then the next day 

they were acidified with trifluoracetic acid (TFA) to stop the digestion. 

 
Peptide Desalting for Mass Spectrometry: 

Peptide cleaning with desalting spin columns (Pierce) is performed after 

digestion to remove any salts or small molecules that could interfere with downstream 

LC/MS/MS analysis. We began by opening refrigerated columns and spinning at 5000g 
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for 1 minute, before discarding the storage solution. We added 200 uL ACN (pH=10) to 

the column, and spun at 5000 x g for 1 minute, adding 200 uL of ACN again before 

repeating. We performed 2 wash steps in the same manner as the ACN wash, but with 

0.1% TFA (pH=2). Then the samples, reconstituted in 0.1% TFA, are loaded onto the 

spin columns and centrifuged at lower speed (3000 x g) for subsequent spins to avoid 

sample loss.  The samples are washed with 0.1% TFA two times, then eluted with 70% 

ACN, 0.1% TFA into a new Eppendorf tube. Eluted, cleaned peptides are dried down 

via vacuum centrifugation.  

 
BCA Colorimetric Assay: 

The BCA peptide colorimetric assay (Pierce) is performed to determine the 

concentration of cleaned peptides in each of our samples. From this method we created 

two calibration curves in case sample concentrations are particularly high or low. We 

first prepared a serial dilution by adding 100 uL of peptide standard to tube A, and then 

transferred 50 uL into tubes B through G. We added a diluent, which is 0.1% formic 

acid, to each tube B-G before transferring the standard. Finally, we prepared the 

working reagent, adding enzymatically active reagent C last. After the plate was 

incubated adequately, we analyzed it on the plate reader (make, model) we assumed 

that there were about 100 ug of lyophilized peptides in each tube, so a 2x dilution was 

performed by adding 200 uL 0.1% formic acid to get to a concentration of 0.5 ug/ uL. 

Then, we transferred 25 uL of each of the 2x diluted solutions to new tubes and added 

25 uL of formic acid to get to bring the new solution to a 4x dilution. 

 
Peptide Resuspension and Vialing: 
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All of the samples had a concentration of 0.3 ug/ul or higher, which is ideal for 

proteomics analysis, with the exception of the cider samples which had lower 

concentration. We ultimately decided to lyophilize and resuspend the cider samples 

then reconstituted them in a lower volume of 0.1% formic acid to increase 

concentration. This was done by placing samples 11-14 in the lyophilizer for 1.5 hours 

before adding the appropriate volume of diluent to normalize the sample concentration 

to 0.3 ug/uL, which is what we also normalized all other samples to (Supplemental 

methods, Table 3). For all of our samples we pipetted thawed peptides and necessary 

amounts of diluent to get to 20 uL of total volume of a 0.3 ug/uL solution. Samples were 

ready for vialing after vortexing for 15 seconds to ensure all volumes were thoroughly 

mixed. Finally, mass spectrometer vials were labeled, and the total 20 uL sample 

volume was transferred to the 22 respective vials. 4 additional ‘pooled sample’ vials 

were created, containing 1 uL of each sample to run for quality assessment purposes. 

 

Data analysis: 
We performed database searches against the raw data generated via mass 

spectrometry. Based on the ingredients reported by manufacturers, we determined 

potential organisms whose proteins would be represented in our various samples. In 

total we obtained 14 database files from UniProtKB, including various yeasts and fruits 

(Supplemental methods, Table 4). We analyzed the raw data to Proteome Discoverer 

2.4 (PD2.4) software and applied standard search parameters to generate lists of high-

confidence proteins that were present in our samples. From these lists, we could draw 

several conclusions regarding the presence/absence of proteins derived from the 
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different ingredients in each beer, the relative abundance of proteins across the 

samples, and assess the molecular weight range of the proteins identified. 

We used Perseus software to perform Pearson correlation tests among replicate 

samples. Normalized scaled abundance data was uploaded in tab-delimited form (.txt) 

and non-values were converted to 0 to avoid errors. The ‘column correlation’ function 

was selected in Perseus because sample replicates were arranged in columns in the 

Excel exported from PD2.4 following database comparison searches. A new matrix was 

produced with values of Pearson coefficient R between -1 and 1, and visualized in a 

heatmap with clustered terms to assess replicate similarity (Supplemental methods, 

Figure 1). 

To determine the functional biological groups of proteins enriched, particularly for 

the strains of yeast identified in our database searches, we used DAVIDBioinformatics 

and Morpheus web tools to produce heatmaps. Yeast proteins were selected for this 

analysis even though they have low abundances across our samples, because they are 

essential to fermentation, and yeast already has many known targets for optimization 

via genetic engineering (ie. Mutations, knockouts etc.). Additionally, yeast is the most 

well-annotated species of all species used in this analysis; therefore, there is a good 

amount of information known about the yeast protein’s biological functions.  We 

selected the top-15 high-confidence proteins from all yeast species represented in our 

analysis for every beverage replicate. Replicate protein lists for single beverages were 

combined and protein accessions were converted to gene entrez IDs. Gene entrez IDs 

were loaded into DAVIDBioinformatics to perform over-enrichment analysis, and data 
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was downloaded, organized, and visualized using Morpheus (Supplemental methods, 

Figure 2). 

 

Results: 

a.  

b.  
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c.  
Figure 1: Identification of protein species in beverages. A. Unique flavorant proteins per beverage for 
maximum counts detected among replicate pairs. B. Unique grain & yeast proteins per beverage for 
maximum counts detected among replicate pairs. C. Color-coded table of protein species identifications 
(flavorants, grain & yeast) per beverage analyzed. Grey cells indicate no prediction was recorded, blue 
cells in Predicted and Experimental tables indicate 1 or greater high-confidence hits for proteins of 
particular ingredients (species). In Overall table, blue cells denote correct predictions and red cells denote 
incorrect predictions. 

 

One of the central goals of this project was to measure and identify proteins that 

contribute to the flavors and structure of commercial beers and ciders because of the 

limited research that is currently available. We noted that ingredient contributions are 

two-sided; flavorant proteins include fruits and spices and all other ingredients included 

in the comparison databases were grain and yeast proteins. To measure the unique 

flavorant protein compositions of the beverages, we searched the raw mass 

spectrometry data against publicly available UniProtKB protein databases. The majority 

of the database files are ‘reviewed’, denoting protein lists were submitted from literature 

and also manually annotated. The flavorant protein species included coconut, pumpkin, 

apple, raspberry, tomato, and vanilla, grape, and cinnamon. Non-flavorant, or grain and 
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yeast-derived proteins, included ale, lager, and fission yeast, barley, yeast, wheat, corn, 

and rice. 

Overall, we identified 547 proteins altogether; of these, roughly 80 proteins were 

identified in all beverage samples analyzed belonging to barley, yeast, wheat, and corn 

species. Of all the flavorant protein species considered in our database search, vanilla 

had the highest number of unique (only vanilla-specific) high-confidence proteins 

identified. AE Ciders contained the most unique flavorant proteins of any beverages, 

and the ABRF standard had the most unique flavorant proteins among beers specifically 

(Figure 1A). From the comparisons against our grain and yeast protein databases, we 

found that Schizosaccharomyces pombe (fission yeast) was the best represented 

among proteins from all yeast species, and rice had the most high-confidence proteins 

recorded in the analysis (Figure 1B). 

Another goal of our analysis was to make species-level identifications as a 

means of determining the accuracy and validity of our own analysis. We sorted our 

high-confidence protein abundance data generated by the database searches by 

species and noted which species had proteins of any abundance per beverage. Figure 

1C provides an overview of flavorant protein species that were predicted and identified 

prior to and following the flavorant database searches. We normalized unique flavorant 

protein totals to remove obviously errant species identifications (ie. Tomato), and 

determined that 44.4% of our initial predictions of ingredient presence/ absence were 

correct. We also did not detect any proteins belonging to hops. 
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a.  

b.  
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c.  
Figure 2: Assessment of compositional similarities among replicates via PCA plots and Pearson 
correlation. A. Replicates circled in red are AE Ciders (1-2) B. (Zoom) Highlighted samples denote cider 
(BullCity) and lager (Stella + Heineken) samples. AE Ciders replicates are omitted in this plot. C. 
Heatmap and clustered samples to visualize Pearson correlation across replicates. Grey cells indicate no 
value (same replicate comparison), Green, Black, and Red cells indicate low, medium, and high 
correlations between compared samples, respectively. 

 
Beyond reviewing the general, relative abundance and overall presence of 

species and unique proteins, we sought to assess the clustering, or the compositional 

similarities among samples based on identified peptides. From the database 

comparison run with all flavorant, yeast, and grain protein lists, ProteomeDiscover2.4 

generated a principal component analysis (PCA) plot from which we could visually 

assess similarities. An initial takeaway is that the AE Ciders replicates cluster on the far 

left of the first PCA plot, while all other samples cluster towards the right (Figure 2A). 

This indicates that the protein composition of the AE Ciders replicates is very different 
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relative to all the other samples analyzed. Annotation of the zoomed in plot (excluding 

the AE Ciders) reveals a clustering pattern that is potentially ingredient-related: The 

highlighted, grouped samples that cluster furthest to the right of the zoomed-in PCA plot 

correspond to the replicates of the cider and lager samples (Figure 2B). Furthermore, 

the beers brewed at the largest commercial volume, and also our only lager samples, 

Stella and Heineken, cluster very well together. 

Another goal of this project was to determine the validity and accuracy of our 

wet-lab sample preparation protocol. We did this by reviewing the PCA plots, as well as 

by running a Pearson correlation between replicates in Perseus (MaxQuant) using 

protein abundance data. The grouping of replicates in the PCA plot illustrate the 

similarity in replicate composition. The majority of replicates were grouped along the 

horizontal axis (PC1- 41.5%) (Figure 2B). To better represent replicate similarity, we 

conducted a Pearson correlation and visualized data using conditionally formatted cells. 

We can see red cells for all replicate comparisons, and a larger proportion of black cells 

for pooled samples (samples 23-26) and non-pooled sample comparison, which was 

expected given pooled samples contained elements of every sample analyzed (Figure 

2C). Overall these results suggest high reproducibility in the wet-lab sample preparation 

method, and ability to use a common proteomic wet-lab method to study beer samples. 
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Figure 3: Protein abundance assessment for estimation of beer quality (barley, yeast) A. All yeast high-
confidence proteins, organized by species. B. Highest molecular weight proteins represented among all 
samples, decreasing in weight going down. C. Highest PSM number proteins represented among all 
samples, decreasing in PSM number going down. D. Barley proteins previously identified in beer 
proteomics literature which relate to beer and ingredient quality. 
  

Once we were able to assess beverage similarity via the PCA plots, we sought to 

understand the protein composition of beverages using parameters that do not 

necessarily categorize proteins by species. We sorted all proteins from highest to lowest 

molecular weight, discarding keratin and trypsin proteins. Keratin proteins are common 

contaminants that can enter samples from human hair, skin, nails during wet-lab 

preparation stages, while trypsin proteins correspond to inactivated trypsin enzyme that 

was not removed during desalting or separation on the UPLC.  
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 All of our beer and cider samples contained yeast, because fermentation 

conducted by yeast is responsible for the production of alcohol. Our database search 

yielded high-confidence proteins for 3 species of yeast, which were Saccharomyces 

pastorianus (Lager yeast), Saccharomyces cerevisiae (Ale yeast), and 

Schizosaccharomyces pombe (Fission yeast) that are known to be used for beer and 

wine brewing.10 It is evident that ale yeast proteins are relatively higher in abundance in 

ABRF (ale), BruePrint Briarberry (sour ale), and NoDa Gordgeous (pumpkin ale). 

Pooled samples showed consistent, intermediate protein abundance values across 

proteins from all species, which was expected. Lager yeast proteins made up 4 out of 

52 of the high-confidence yeast proteins identified, and they were better represented in 

lager samples (Heineken and Stella Artois) as expected. Austin Eastciders replicates 

showed relatively high abundances of fission yeast, while Bull City Ciders showed 

almost none (3A). 

Two major takeaways from the high molecular weight proteins chart are that rice 

proteins make up the vast majority of high molecular weight proteins in our beverages, 

and AE Ciders replicates contain the highest abundance of high molecular weight 

proteins (Figure 3B). We then sorted all proteins from highest to lowest number of 

peptide spectrum matches (PSMs), which is a measure of relative abundance, to 

assess abundances of the top-20 highest-PSM proteins in our samples. The protein in 

this list with the highest number of PSMs across all beverages is a barley protein called 

‘non-specific lipid-transfer protein 1’ (highlighted in purple). This means that this protein 

had the most corresponding peptides detected relative to any other protein recorded by 

the mass spectrometer. This common protein was measured at a similar abundance 
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among all beverages except the ciders. Barley proteins generally made up the majority 

of the top-20 highest-PSM proteins (Figure 3C). Barley proteins are highlighted in 

orange. 

 Previous literature has determined the relationship between the relative 

abundances of certain barley proteins and corresponding measures of beer quality.7 

Supplementary table 4 lists the 11 barley proteins, their functions, and known 

contributions to beer. We took the given abundance data for the selected proteins and 

calculated the relative proportions of protein abundance using maximum values among 

sample replicates.  

It is evident that Heineken and Stella beers (lagers) had the highest proportions 

of B1-hordein (P06470) and Gamma-hordein-3 (P80198), while NoDa Porter, NoDa 

Pumpkin, BruePrint Sour, and Stella show higher proportions of B3-hordein (P06471) 

and Gamma-hordein-1 (P17990) relative to all other beverages. Both cider samples had 

the lowest proportions of all barley proteins, which was expected given barley is not an 

ingredient commonly used in cider. Barley lipid-transfer proteins (LTPs) were generally 

expressed in higher proportions in lagers and ales, relative to all other beverages. 

Including lagers, NoDa Porter and Pumpkin beverages also had relatively higher 

proportions of serpins (Figure 3D). 
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a.  

b.  
Figure 4: Yeast Protein GO Term Over-enrichment Analysis A. GO Term over-enrichment by beverage. 
B. GO Term over-enrichment, organized by beverage style. 
 

Yeast is a model organism that is well understood genetically, and a critical 

ingredient in beer brewing. Yeast is responsible for producing alcohol and carbon 

dioxide from sugars present in wort, under oxygen free conditions. Yeast proteins 

remain in beer at the time of packaging and influence beer quality broadly. Previous 

studies sought to assess the proteomic effects of recipe-level modifications. This 
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analysis may serve as the first steps of using proteomic data to generate research 

hypotheses for the genetic optimization of yeast in beer and cider production. Gene 

Ontology (GO) Biological Process (BP) terms were selected for review because 

categories pertain to organism-specific gene functionality of varying specificity. Genes 

that correspond to GO terms can be found on the Amigo database and then mapped to 

yeast vectors and modified for desired effects (ie. mutated, upregulated etc.). 

Among all beverages analyzed, the ribosome functionality term was commonly 

moderately over-enriched. We expected that beverages brewed by the same brewery 

and of the same style (ale or lager) would show the over-enrichment of similar terms 

due to the use of the same strain of yeast. What we found however was that different 

NoDa and Wicked Weed beers did not show similar patterns of over-enrichment. This is 

likely due to the proteolytic or homology-level effects of the various flavorant and grain 

species used, or perhaps effects of modified gene expression that is a result of different 

yeast diets during fermentation. In a comparison of beverage categories, it is apparent 

that GO term over-enrichment is quite different which may be partially due to the 

species-level differences in yeast used to brew ales, lagers, and ciders. While this 

analysis is not comprehensive enough to make direct connections between beverage-

specific GO term over-enrichment and protein abundance, it can provide clues about 

what genes to perform initial shotgun analysis on from which more detailed and 

extensive experimentation and proteomic characterization may proceed. 

 
Discussion 

Our overall goals for this project were to use an adapted wet-lab sample 

preparation protocol to first efficiently prepare proteomic samples from beers and ciders, 
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We ultimately compared differences in ingredient-protein abundances against known 

values from previously published literature. We began by providing a higher-level view 

of unique proteins counts for individual protein species (flavorants vs. non-flavorants), 

then assessed replicate and beverage sample similarity with PCA plots and visualized 

Pearson correlations. Abundance data was then further assessed according to overall 

protein molecular weight, and also among proteins identified in literature that vary in 

expression according to the malt-level (KI index) of barley used, and contribute to beer 

foam generation and stability. Finally, highly abundant yeast protein accessions were 

converted into gene lists from which heatmaps to visualize the enrichment of certain 

functional gene groups (GO-terms). Our findings validate the PRG methodology for 

LC/MS analysis of alcoholic beverages, and open the door for further analysis that may 

be useful for beverage optimization for commercial brewers. 

From this research we were able to generate the following conclusions: Firstly, 

as demonstrated by the peptide BCA results, as well as the mass spectrometry 

proteomics results, the proteomic sample preparation method was effective and highly 

reproducible between replicates. Secondly, we can use this method to identify 

ingredients present in beverages, measure differences in protein abundance, and make 

further assessments regarding beer and ingredient quality, and identify relevant 

biological categories for additional research. Thirdly, peptide-level fragmentation and 

sequence homology among species may contribute to overlapping and errant protein 

identifications. Future studies should account for high levels of certain proteins and 

discrepancies in database sizes to improve the accuracy of the database comparison 

portion of this analysis. 
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We expected to identify flavorant proteins listed in the ingredients of the 

respective beverages in our database search against the same ingredients. For 

example, NoDa Pumpkin is a pumpkin ale, so we expected pumpkin and ale yeast 

proteins to be present in our samples of the beverage. We identified both proteins in the 

NoDa Gordgeous (pumpkin ale) sample, however these proteins were also identified at 

similar levels (number of unique proteins identified) for all other samples. We also 

reviewed the unique proteins present in ciders and found similar overlap. Ciders are not 

brewed with barley, rather apple juice is used instead, so we expected to see apple 

proteins present in cider samples. Instead, we found apple proteins in all beverages, 

and despite having the lowest numbers among all samples the ciders contained unique 

barley proteins as well (Figures 1A,1B).  

There are two main reasons why we generally observe erroneous protein 

identifications in our beverages: One reason is that there may be protein sequence 

homology among these yeast strains, and with so many additional non-lager yeast 

proteins it is possible that the lager yeast proteins recorded are simply those that are 

very similar in sequence to some of the non-lager yeast proteins that were identified. 

Additionally, other unknown or non-sequenced/ un-characterized flavorants could be in 

these beers and their sequences could be very similar to those of a database we did 

include. This could be a reason why we identified, for example, pumpkin in several 

beers not known to contain pumpkin, and tomato and vanilla proteins in all beverages. 

The accuracy of our wet-lab sample preparation methodology was confirmed by 

assessing the compositional similarities of replicates. It is evident that replicates of the 

same samples cluster together along the horizontal axis of the PCA plot, representing 
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overall compositional similarity (Figure 2B). Pearson correlation performed in Perseus 

yielded high correlation values (red) between replicates, and low correlation scores 

(green) for non-replicates. Pooled samples showed intermediate correlation levels 

(black), which was expected given those samples were produced by combining all 

aliquots together after peptide isolation and cleaning. Additionally, the PCA plots 

revealed that Austin East Ciders (AE Ciders) was the most compositionally different 

beverage (Figure 2A), which may be due in part to higher abundances of rice and 

fission yeast proteins relative to all other beverages. 

While it is difficult to assess which proteins account for most of the compositional 

difference in Austin Eastciders, it is worth noting that this beverage showed high 

abundances of rice proteins (Figure 3B). Rice may be added to improve the volume of 

wort produced by mashing, but is excluded from some recipes because it is not as 

desirable of a brewing grain as barley. The main reason that this beverage shows 

higher abundances of rice proteins is likely to improve cider yield. Research from Kirin 

Labs also notes that high molecular weight proteins added to beverages brewed with 

low levels of malt show improvements in texture. Though rice protein molecular weights 

are much higher than those listed by Kirin (10-20 kDa), it is possible that hydrolytic 

cleavage driven by yeast proteinases may cleave rice proteins to desirable weights by 

the time fermentation has concluded.11 Cider does not contain malt, so though rice is 

viewed as an inferior ingredient in the brewing process, it is worth exploring the foam-

generation properties of rice and other high molecular weight proteins in traditional low-

malt or no-malt beverages.  
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The majority of beer proteomics literature seeks to better understand the 

relationships between the proteomic profiles of alcoholic beverages and their observed 

physical characteristics. We reviewed protein abundance proportion differences 

between specific barley proteins across all beverages to predict physical beverage and 

ingredient characteristics such as the formation and stabilization of beer foam and KI 

index, which pertains to the level of malting that occurs in barley used for brewing 

(Appendix, Table 1). According to Schulz, Phung et al. beers with higher proportions of 

particular hordeins (accessions: P06470, P06471, and P80198) are those that use high 

KI index malt.4 

We noted earlier that Heineken and Stella beers (lagers) had the highest 

proportions of B1-hordein (P06470) and Gamma-hordein-3 (P80198), so this 

comparison suggests that our lager samples use the most extensively malted barley 

during brewing. One beer that may also be brewed with high KI index malt is the NoDa 

Coco Loco (porter), which shows the highest proportions of both B3-hordein (P06471) 

and Gamma-hordein-1 (non-literature). The literature suggests other barley proteins that 

are expressed in high proportions when malting is at a low KI index, however they were 

not present in our final high-confidence protein list suggesting that the majority of known 

barley-containing beverages were using malted barley in the higher end of the KI index. 

We compared proportions of additional barley proteins with functional effects in 

beer to make more predictions about beer quality. All LTPs were more highly expressed 

in lagers and ales, and BruePrint Sour was the only beer that had a low LTP-1 

proportion, but a very high LTP-3 proportion. While the LTP-1 reaction with yeast 

proteinases is a known process in foam degradation in alcoholic beverages, the impact 
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of LTP-3 on foam formation should be studied further given sour beers are known to 

have foam of poor stability. Though some common explanations attribute the poor 

stability to the lack of hops used in the sour brewing process, barley LTP-3 abundance 

may have an inverse relationship with foam stability.  

The final literature barley proteins that we compared the proportions of among 

our beverages were serpin-like Z proteins. The Z proteins from barley that were 

identified among our beverages Z4, ZX, Z7. Isoforms Z4 and Z7 are known to be 

commonly found in beer and were predicted to be identified in our samples. These 

proteins have also been noted to show a linear relationship between their contribution to 

the stabilization of beer foam and the amount of malting in the barley used for brewing.8 

So, for beverages with highly malted barley, we would expect a larger contribution to 

beer foam stability from Z proteins. From our previous analysis, we noted that our lager 

samples likely used the most malted barley (high KI). We would add to our earlier 

prediction, that somewhat higher proportions of Z proteins in lagers generally may be 

due to this linear interaction previously noted. Additionally, given NoDa Porter has the 

highest respective proportions of Z4 and Z7, and may use higher KI malt given the 

enrichment of B3-hordein (P06471), NoDa Porter may have the most stable foam 

among all beverages analyzed in this study. 

Yeast proteins have been minimally explored in beer proteomics literature, with 

regards to connections between abundance and ingredient-level quality. Proteinase A 

and other literature-characterized yeast proteins found in previous studies were not 

present among the roughly 550 high-confidence proteins identified in all beverages. It is 

possible that higher levels of other identified species (ie. rice proteins in Austin 
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Eastciders) negatively biased the calculated yeast protein abundances by decreasing 

them. We performed GO term over-enrichment analysis primarily to make up for this 

inconvenience. Additionally, because many elements of this research is exploratory in 

nature, GO term over-enrichment analysis serves to outline future steps to better 

understand and control the proteome of alcoholic beverages. However, because yeast 

is a popularly used organism in synthetic biology research and for wide applications of 

cloning and genetic engineering, the field may seek to upregulate or knockout genes 

that correspond to high-enriched terms in the lab and prepare aliquots of beer samples 

for analysis via LC/MS.  

As mentioned earlier, protein representation is responsible for the taste of beer. 

While taste itself is difficult to gauge objectively, beer proteomics offers alternative 

quantitative tools to make such assessments. A brewer or researcher may seek to 

improve their brew by reinforcing the abundances of specific yeast proteins. The 

proteins selected may be those that are highly represented already, so for Austin 

Eastciders we might continually measure prohibitin-2 and heat shock proteins after 

running experimental treatments. While GO terms and proteins are not correlated in this 

analysis, brewers may consult over-enriched categories to pick genes to modulate with 

the hopes of improving or controlling the yield of yeast proteins of interest. While yeast 

is not the only contributor to flavor, genetic improvement of yeasts paired with similar 

LC/MS approaches may spurn novel research outcomes in the field of beer proteomics, 

and perhaps influence paradigm changes in brewing globally. Previous beer proteomics 

research has established methods for preparation of lab-brewed samples.5 Such 

methods may be modified to incorporate upstream genetic manipulation of brewing 
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yeast of choice for the subsequent characterization of protein content. In the same way 

that commercial breweries maintain lines of active yeast that were evolutionarily 

optimized via natural selection and cross breeding, breweries may leverage lab 

resources to improve yeast strains and ultimately beverage quality in a rapid, targeted 

fashion. 

Though we were successful in making species-level protein identifications and 

drawing conclusions from protein abundance data for beverages, it is apparent that 

some of the aforementioned difficulties for this analysis introduced some error to our 

overall analysis. The initial concern related to the homology-related overlap of peptide 

identifications during our database search conducted in PD2.4. It is evident that 

proteolytic cleavage can be driven by barley proteins during mashing and yeast 

proteinase A during fermentation, so our starting samples contained many more 

polypeptides of shorter length due to hydrolysis. This means that after trypsin digestion, 

we would have reduced peptides again to units of smaller size and more similar 

sequence identity. The mass spectrometer would have read peptides of similar weight 

as simpler units of proteins belonging to species that were not used as ingredients (ie. 

tomato, pumpkin, vanilla). We believe that this issue skewed our analysis because 

proteins belonging to unrepresented species had more of a chance of being included in 

our final list of high-confidence proteins.  

Another source of error may have come from the relative sizes of our UniProtKB 

species databases. High-confidence proteins in our analysis are determined by how 

many times particular peptide sequences are recognized by calculations based on the 

harmonic motion of peptides. In our analysis we noticed that lager yeasts only made up 
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only 7.7% of all yeast proteins (Figure 3A), and UniProtKB lists 6,721 proteins for ale 

yeast, while lager yeast only has 15. There were likely many lager yeast proteins 

included in Heineken and Stella Artois beers, however this public database does not 

include them. Future yeast proteomics efforts may be able to improve the 

characterization of lager yeast and subsequently improve assessments of yeast protein 

abundance. 

 As mentioned previously, future beer proteomics research would be aided by the 

improvement of protein database mapping. It is unclear how the ambiguity of peptide 

and ultimately protein identifications due to evolutionary and proteolytic homology can 

be resolved, so perhaps future studies should also characterize the beer peptidome to 

improve the resolution of this analysis. LTP-3 has been characterized in work studying 

the mash stage of brewing, however our conclusion that high levels of LTP-3 in sour 

ales may degrade beer foam motivates research to better understand its molecular 

interactions given cleavage of LTP-1 in mashing influences foam formation in bright 

beers. Future beer meta-proteomics studies of this kind should also include steps to 

measure beer quality parameters like density of gas and foam depth because of the 

importance of measuring these qualities to the beer industry, consumers, and previous 

beer proteomics research. 

Just as our evaluation of commercial alcoholic beverages using LC/MS-based 

proteomic analysis is a relatively new research approach, so too would be the 

characterization of yeast protein abundance from beers brewed with genetically 

engineered yeast strains. We were able to highlight over-enriched biological groups that 

are mapped to known yeast genes, and future studies may seek to reinforce the 
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expression of desirable yeast proteins by modulating gene expression in living yeasts. 

Beer proteomics has established methods to brew and analyze small quantities of beer 

in the lab, and optimization via cloning may be coupled to optimize beer via proteome-

driven hypothesis making. Synthetic biology is interested in optimizing the fermenting 

abilities of brewers yeast specifically to produce materials like plastics and biofuels, so 

perhaps similar approaches can be adopted in commercial brewing. 

Finally, the broad characterization of flavorant and non-flavorant proteins in 

commercial beers is important in the realm of citizen science given the popularity of 

beer and homebrewing globally. Just as labs commonly sequence DNA, and people 

choose to submit saliva for genetic analysis by companies like 23andMe, improving the 

accessibility of beer proteomics research and identifying parameters with obvious 

connections to elements of beer and ingredient quality may lead to demand for 

proteomic characterization of the beers and ciders they brew and consume. The 

opportunities to expand on this research are endless, and collaboration across a host of 

technological disciplines will improve efforts to characterize the proteome of beer. 
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Supplement: Supplemental Methods and Appendix 
 
Supplemental Methods:  
Table 1: Beverage samples, ingredients and ABV%, and measured concentrations 

 
Yeast and grain proteins are referred to as non-flavorant proteins in this analysis, as they are 
not explicitly listed in beverage ingredients by manufacturers. Ingredients and ABV% were 
unavailable for ABRF standard. 
 
Table 2: Reagent volumes for digestion of precipitated proteins 

 
 
Table 3: Volumes of diluent and sample to normalize peptide concentrations 

Sample Beverage Type Fermentation Location ABV% Conc. (ug/uL)
MD13-1 Ale Top CA, USA 0.42
MD13-2 Ale Top CA, USA 0.42
MD13-3 Ale Top NC, USA 6.2 0.93
MD13-4 Ale Top NC, USA 6.2 0.88
MD13-5 Ale Top NC, USA 4.5 0.42
MD13-6 Ale Top NC, USA 4.5 0.41
MD13-7 Ale Top NC, USA 8.5 1.1
MD13-8 Ale Top NC, USA 8.5 1.06
MD13-9 Ale Top NC, USA 7.3 0.46
MD13-10 Ale Top NC, USA 7.3 0.47
MD13-11 Cider TX, USA 5 0.1
MD13-12 Cider TX, USA 5 0.09
MD13-13 Cider NC, USA 6 0.1
MD13-14 Cider NC, USA 6 0.1
MD13-15 Ale Top NC, USA 6.4 0.73
MD13-16 Ale Top NC, USA 6.4 0.78
MD13-17 Ale Top CA, USA 0.47
MD13-18 Ale Top CA, USA 0.43
MD13-19 Lager Bottom Amsterdam 5 0.37
MD13-20 Lager Bottom Amsterdam 5 0.37
MD13-21 Lager Bottom Belgium 5 0.4
MD13-22 Lager Bottom Belgium 5 0.41

Stella Artois yeast
Stella Artois yeast

Heineken A-yeast, Irish malt, hops
Heineken A-yeast, Irish malt, hops

Gluten-free yeast
Gluten-free yeast

California ale yeast
California ale yeast
California ale yeast
California ale yeast
White wine yeast
White wine yeast

Brown malt, chocolate malt
Brown malt, chocolate malt

Orange, apple, raspberry
Orange, apple, raspberry
Apple
Apple
Pumpkin
Pumpkin

Cinnamon, golden raisins, vanilla

Stell Artois Rep. 1
Stell Artois Rep. 2

Sample Name Grains and YeastFlavorants

Coconut, chocolate
Coconut, chocolate
Blackberry, raspberry, orange, lemon, bacteria
Blackberry, raspberry, orange, lemon, bacteria
Cinnamon, golden raisins, vanilla

NoDa Gordgeous Rep. 1
NoDa Gordgeous Rep. 2
ABRF PRG Standard Rep. 3
ABRF PRG Standard Rep. 4
Heineken (standard) Rep. 1
Heineken (standard) Rep. 2

Wicked Weed Pernicious IPA Rep. 1
Wicked Weed Pernicious IPA Rep. 2
Austin East Ciders Blood Orange Rep. 1
Austin East Ciders Blood Orange Rep. 2
Bull City Off Main Rep. 1
Bull City Off Main Rep. 2

ABRF PRG Standard Rep. 1
ABRF PRG Standard Rep. 2
NoDa Coco Loco Rep. 1
NoDa Coco Loco Rep. 2
BruePrint Briarberry Rep. 1
BruePrint Briarberry Rep. 2
Wicked Weed Milk & Cookies Rep. 1
Wicked Weed Milk & Cookies Rep. 2
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Table 4: Protein species database names and sources 

 

Protein species databases organized by yeast, grain or flavorant.  
 

Figure 1: Perseus data import instructions 

Sample Conc ug/uL 

MD13-1 0.42
MD13-2 0.42
MD13-3 0.93
MD13-4 0.88
MD13-5 0.42
MD13-6 0.41
MD13-7 1.1
MD13-8 1.06
MD13-9 0.46
MD13-10 0.47
MD13-11 0.1
MD13-12 0.09
MD13-13 0.1
MD13-14 0.1
MD13-15 0.73
MD13-16 0.78
MD13-17 0.47
MD13-18 0.43
MD13-19 0.37
MD13-20 0.37
MD13-21 0.4
MD13-22 0.41

5
5.3

Normalize to 0.3 ug/ul - 
sample volume (ul)

43.5
39.3
42.1
41.2
11.8
12.3

Heineken standard Rep 2
Stella Artois Rep 1
Stella Artois Rep 2

Volume of diluent to add 
to get 20ul total volume 

5.8
5.6

13.5
13.2

5.9
5.3

Bull City off Main Rep 2
NoDa Gordgeous Rep 1
NoDa Gordgeous Rep 2
ABRF PRG standard Rep 1
ABRF PRG standard Rep 2
Heineken standard Rep 1

Wicked Weed Milk & Cookies Rep 2
Wicked Weed Pernicious IPA Rep 1
Wicked Weed Pernicious IPA Rep 2
Austin East Ciders Blood Orange Rep 1
Austin East Ciders Blood Orange Rep 2
Bull City off Main Rep 1

Beverage

ABRF PRG standard Rep 1
ABRF PRG standard Rep 2
NoDa Coco Loco Porter Rep 1
NoDa Coco Loco Porter Rep 2
BruePrint Briarberry Rep 1
BruePrint Briarberry Rep 2
Wicked Weed Milk & Cookies Rep 1

7.2
6.2
3.9
3.6

14.6
14.4

7
7.1

16.1
16.4

15
14.7

12.6
12.4

8.2
7.7

12.8
13.8

5.4
5.6
13

12.9
13

11.8

14.2
14.4

6.5
6.8

14.1
14.7

Common Name Category Reviewed? Source
Ale Yeast Yeast Yes UniProtKB
Lager Yeast Yeast Yes UniProtKB
Wine Yeast Yeast Yes UniProtKB
Fission Yeast Yeast Yes UniProtKB
Fungal Yeast Yeast Yes UniProtKB
Wheat Grain Yes UniProtKB
Corn Grain Yes UniProtKB
Barley Hordeum vulgare Grain Yes UniProtKB
Rice Oryza sativa subsp. japonica Grain Yes UniProtKB
Apple Malus domestica Flavorant Yes UniProtKB
Chocolate Theobroma cacao Flavorant Yes UniProtKB
Cinnamon Flavorant Yes UniProtKB
Coconut Flavorant Yes UniProtKB
European Hop Flavorant Yes UniProtKB
Grape Flavorant Yes UniProtKB
Pumpkin Flavorant Yes UniProtKB
Raspberry Flavorant Yes UniProtKB
Vanilla Flavorant No UniProtKB

Triticum aestivum

Schizosaccharomyces pombe
Candida albicans

Humulus lupulus

Vanilla planifolia

Vitis vinifera
Cucurbita maxima
Rubus idaeus

Species Name
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces bayanus

Zea mays

Cocos nucifera
Cinnamomum verum
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Nodes were selected to replace missing values in original protein abundance matrix, and then to 
calculate column correlations according to replicate protein abundances. Heatmap of 
conditionally formatted R values with hierarchical clustering along axes.  
 

Figure 2: GO term over-enrichment analysis instructions 

 

Appendix: 

Table 1: Literature barley proteins and roles in beer foam formation and stabilization 
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Barley proteins identified in previous literature with known contributions to beer quality. Proteins 
are grouped into three categories: hordeins, LTPs, and protein Zs. Hordein proportions were 
compared to previous beer proteomics trends to make predictions about ingredient quality. 
(Blasco et al.)  
 

Figure 1: Diagrams of barley germination (malting) and proteolytic cleavage sites 

a.  

b.  

Protein Accession
B1-hordein OS P06470
B3-hordein (Fragment) OS P06471
Gamma-hordein-3 OS P80198

Gamma-hordein-1 OS P17990
Non-specific lipid-transfer protein 1 OS P07597

Probable non-specific lipid-transfer protein OS P20145

Non-specific lipid-transfer protein 3 OS Q43766

Non-specific lipid-transfer protein Cw18 OS Q43871
Serpin-Z4 OS P06293
Serpin-ZX OS Q40066
Serpin-Z7 OS Q43492

Degraded by yeast proteinase A, foam stabilization

Degraded by yeast proteinase A, foam stabilization

Degraded by yeast proteinase A, foam stabilization
Serine-like protease, foam stabilization
Serine-like protease, foam stabilization
Serine-like protease, foam stabilization

Storage proteins that are soluble when hydrolyzed, foam production
Storage proteins that are soluble when hydrolyzed, foam production
Storage proteins that are soluble when hydrolyzed, foam production

Role in beer

Storage proteins that are soluble when hydrolyzed, foam production
Degraded by yeast proteinase A, foam stabilization
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c.  

A) Diagram of enzyme and starch production proceeding during barley germination. Source 
B) Cartoon X-ray crystal structure of commonly cleaved LTP-1 protein. (Kerr et al.) Cleavage 
site sequences (underlined not included in B) (Kerr et al.)  

 

Figure 2: Schematic of beer brewing process 

 

Hydrolytic activity among barley proteins during mashing, hydrolytic activity among barley and 
yeast proteins during fermentation, and further denaturation effects driven by temperature 
influence protein expression in commercial beers and ciders. (Blasco et al.)  
 
Figure 3: Barley protein abundance proportions corresponding to malting (KI) index 



 

 39 

 

Selected proteins with significant differences in relative abundance in bright beer made from 
high or low KI malt. (Schulz, Phung et al.)  
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