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Figure 1: subcortical region in human brain 

 

Incorporating the Geometric Relationship of Adjacent Objects in Multi-Object Shape Analysis 

 

Abstract: 

 

Modeling the shared boundary region between adjacent 3D objects can provide useful information 

regarding the geometric relationship of objects when performing multi-object shape analysis. Our 

analysis goes about modeling the shared boundary region of 3D objects with a 2D s-rep. An s-rep 

is able to capture shape features like width, boundary locations, boundary normals, and object 

curvature. A 2D s-rep is fit to the shared boundary region of adjacent objects by mapping the 

shared boundary region onto the medial surface of an ellipsoid. Mapping onto a flat surface allows 

for the creation of the 2D s-rep, which we can map back to the curved shared boundary region. 

Incorporating the 2D s-rep of the shared boundary region along with the 3D s-reps of the adjacent 

objects allows for a more detailed multi-object representation to utilize for shape analysis. We 

conducted an experiment with computer generated data of pairs of deformed ellipsoids that were 

either stretched, bent, or shifted and analyzed how well our representation is able to classify a 

deformed pair of ellipsoids from an undeformed pair. Our study found that a representation that 

included a 2D s-rep of the shared boundary region increased the classification accuracy for 

classifying bent and shifted ellipsoids, but decreased the accuracy for stretched ellipsoids. 

 

1. Introduction: 

 

When attempting to perform classification or hypothesis 

testing for disorders that affect multiple structures in the 

human body, it is preferable to study the joint shape of multiple 

structures as opposed to studying individual structures one at 

a time. For example, many neurodevelopmental processes 

affect multiple structures in the brain. Individuals with autism 

have differently shaped and sized subcortical structures than 

individuals without autism. Additionally, multi-object shape 

analysis is utilized in the automatic segmentation of multiple 

objects from medical images, e.g., for radiation therapy 

treatment planning. Understanding the shape prior of the whole region rather than an individual 

object could be expected to improve segmentation accuracy.  

 

In the paper, our1 approach to performing multi-object shape analysis involves not only modeling 

individual objects with 3-D s-reps, but also modeling the shared boundary region between 

adjacent objects with a 2-D s-rep. By including the model of the shared boundary region, we will 

be able to obtain shape statistics not only on the shape of the objects, but also on the geometric 

relationship of those adjacent objects. We have chosen s-reps as our means of using an object 
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representation because s-reps are able to capture a richer set of features compared to alternative 

methods like PDMs (Hong et al., 2016). 

 

In section 2 entitled “s-reps,” I will go deeper into what an s-rep is for a single object in 3D and 

how it is fitted to a particular anatomical structure. In section 3 entitled “Statistics,” I will discuss 

the statistical techniques utilized for preparing the data and for conducting hypothesis testing and 

classification. Following the statistics section, in Section 4, “Multi-Object Shape Analysis”, I will 

cover our method of getting a representation of a multi-object region. This will include our way of 

obtaining a geometric representation of a multi-object region in the human body. Section 5, 

entitled “2D s-rep,” will cover my method of fitting an s-rep to a 2D object on a flat or curved 

surface. Section 6, entitled “Data Generation,” will discuss how the data for our statistics was 

generated. Section 7, “Results and Analysis,” will display our classification accuracy for 

conducting classification on our computer-generated test cases. Section 8, “Future Work,” will 

cover our future applications of the research and possible improvements to the work. 

 

2. S-reps: 

 

An s-rep for a 3D or 2D object (Pizer et al., 2019) is composed of a skeleton and a collection of 

top and bottom spoke vector pairs on the skeleton that fill the inside of the object. An s-rep is a 

particularly useful representation for shape analysis because it is able to capture geometric 

properties like boundary normals and object width. Another useful feature of s-reps is that they 

are all going to be in correspondence because they are all formed from a common reference 

ellipsoid and richly depend on the object shape. Correspondence is especially important when 

attempting to produce statistics on a training 

population. Studies have further 

corroborated this idea that s-reps provide a 

better object representation to produce 

statistics. A study in 2016 by Hong et. al fit 

both PDMs and s-reps to hippocampi and 

performed classification on the resulting 

object representations. The ROC curves 

shown in Figure 2 indicate that 

Euclideanized s-reps were able to classify 

those with schizophrenia more accurately 

than methods using either Euclideanized or 

non-Euclideanized PDMs.  

 

Now, what is the process of fitting an s-rep to a target object in 3D represented by its boundary? 

The initialization portion of the fitting involves using a curvature flow to smooth the target object 

into that of an ellipsoid, calculating the s-rep for the given ellipsoid, and applying the inverse of 

the curvature flow along with an interpolation technique to deform the s-rep to fit the boundary of 

the target object.  

 

Figure 2: ROC curves displaying effectiveness of utilizing 
       s-reps 
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The second stage of the s-rep fitting is the refines the s-rep. This stage optimizes the positional 

and orientational fit of the s-rep. Following the refinement step, the s-rep fitting process is 

complete. Figure 3 provides visuals of the s-rep fitting process. 

 

Once an s-rep is fit to a given 3-D object, the features of the fitted s-rep are used for shape 

analysis. These features include: spoke length, spoke direction, and skeletal point locations.  

 

3. Statistics: 

 

Before performing statistics, it is vital to Euclideanize and commensurate the features in order to 

improve classification performance. So, it is helpful to utilize principal nested spheres on direction 

vectors and apply the log to features with only positive values in order to Euclideanize them. 

Additionally, it is necessary to commensurate the data, and this can be done by normalizing the 

data by subtracting by the mean and dividing by the standard deviation. 

 

Once you have Euclideanized and commensurated the features, there are various statistical 

algorithms to use to perform different tasks. One possibility, for classification, is to train an 

algorithm that discriminates the data between two classes. Distance Weighted Discrimination is 

a good method to utilize for this task. It is superior to that of support vector machines because 

support vector machines are prone to non-robustness due to data piling issues, especially for high 

dimensional data. DWD avoids this issue by using all sample points to determine the feature 

space direction that separates the classes. 

 

4. Multi-Object Analysis: 

 

There are many circumstances in which performing 

analysis of multiple structures jointly could be 

advantageous over studying structures individually. For 

example, it is found that neurodevelopmental processes 

affect multiple structures in the brain. Thus, when 

attempting to use shape analysis to classify whether an 

individual has some neurodevelopmental disorder like 

autism, it is valuable to study multiple objects jointly. The 

image on the right shows how Alzheimer’s affects entire 

Figure 3:  
 
(a): Mesh of the target 
object.  
(b): Near ellipsoid 
shape after applying 
mean curvature flow. 
(c): Computed s-rep 
of best fitting ellipsoid 
(d): Final refined s-rep 
for target object 

 
 

Figure 4: Image comparing the brain of a 
healthy individual vs. brain of individual with 
Alzheimer’s disease  
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regions in the brain. Early analysis of the joint shape of multiple structures in the brain can serve 

to be useful in the early diagnosis of Alzheimer’s disease.  

 

In order to perform multi-object analysis, it is still necessary to fit the individual objects within the 

multi-object system with s-reps. It is desirable to ensure that the 3D s-reps of adjacent objects are 

consistent with each other. This consistency of s-reps is to make sure that the implied boundary 

of the two objects do not interpenetrate or pull away from each other. The s-reps are made 

consistent by ensuring collinearity of each pair of s-reps’ spokes that share a boundary point on 

the shared boundary region. 

 

Once the s-reps are fit to the objects in the multi-object region, we can concatenate features of 

all the s-reps and perform statistics on the joint representation of the entire region. Additionally, 

there are more features we can include in this joint representation. Our method includes 

information on the geometric relationship between adjacent objects. We propose fitting a 2D s-

rep to the shared boundary region of adjacent objects and including its features in the joint 

representation of multi-object regions. Including the geometric relationship of adjacent objects 

can serve to provide additional features to hopefully improve classification accuracy. 

 

5. 2D s-rep 

 

Similar to the motivation of fitting s-reps to target objects in 3D, a 2D s-rep provides a geometric 

representation that optimizes first order and second order fit of the target object in 2D. The 

process of fitting a 2D s-rep to a 2D target object is similar to the same process in 3D. The 2D s-

rep fitting process involves two stages. The first stage involves a curve evolution to smooth the 

boundary into that of an ellipse, calculating the 2D s-rep for the ellipse, and applying the inverse 

of the curvature flow to deform the s-rep to fit the 2D target object. The second stage refines the 

s-rep to optimize the positional and orientational fit of the s-rep.  

 

2D s-reps can be fit to objects on flat spaces or curved spaces. I was the primary developer of 

the code of fitting 2D s-reps to 2D objects, and I will go over the procedure for both fitting a 2D s-

rep in the following sections.  

 

Flat s-reps: 

 

Given a target object as seen in Figure 5, we may desire to 

fit a 2D s-rep to the object to perform statistical shape 

analysis. We begin be using a curvature flow to smooth the 

boundary of the object until it is near the shape of an ellipse. 

Each iteration of the curvature flow works by going through 

all the discrete points on the objects boundary, and fitting a 

circle through the current points and its two adjacent points. 

From this circle, we can obtain a curvature value and move 

the point along the direction to the normal of the curve by the 

curvature value. Once each point has been moved in the 
Figure 5: Boundary of 2D target object 
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direction of its normal, an iteration of the curvature flow is completed. It is important to keep track 

of all the local diffeomorphisms after each iteration of the curvature flow in order to be able to 

apply the inverse of this process later in the s-rep fitting. After every iteration of the curvature flow, 

the best fitting ellipse to the points along the boundary of the object is computed.  

 

The best fitting ellipse is found by performing an 

Eigenanalysis on the the second-moment matrix 

about the center of mass of the points (Stojmenovic 

and Nayak, 2017). Once we have the best fitting 

ellipse, we calculate sum of the distances between 

the points on the boundary of the target object and 

their closest points on the boundary of the ellipse. 

Once the distances between the points are small 

enough, we can end the curvature flow. The target 

object following the curvature flow and its best fitting ellipse are shown in Figure 6. 

 

After the curvature flow, we calculate the s-rep for the 

ellipse. The s-rep for the ellipse is found by first 

sampling skeletal points along the major axis of the 

ellipse. The first and last skeletal points are found by 

moving along the major axis from both of the vertices 

of the ellipse towards the other vertex by the radius of 

curvature value. The rest of the skeletal points are 

found by sampling m1cos(𝜃) where m1 is the length of 

the skeleton and 𝜃 is a constant value. After the 

skeletal points are sampled, we find the boundary 

points of the spokes by calculating the nearest point on the boundary of the ellipse from the 

skeletal point. Each skeletal point will have an up and down spoke, each of which will go from the 

skeletal point to the nearest point on the ellipse on its repective side. The calculated s-rep for a 

given ellipse is shown in Figure 7. 

 

Following the calculation of the s-rep for the ellipse, we 

deform the s-rep to fit the boundary of the near-ellipse 

shape of the last diffeomorphism of the curvature evolution. 

The transformation of the skeletal and boundary points of 

the s-rep is conducted via Thin Plate Splines where the 

points on the ellipse are the source points and the points on 

the near ellipse are the target points. Now, we conduct an 

iterative process of deforming the s-rep into fitting the 

original target object’s boundary. Using the local 

diffeomorphisms of the curvature flow, we  have the Kth 

diffeomorphism providing the source points and the K-1th diffeomorphism providing the target 

points, and we continue to transform the s-rep. Once we are back the original boundary of the 

target object, we have obtained an initial s-rep fit for the target object. 

Figure 6: (blue): target object after curvature flow 
(red): best fitting ellipse 

Figure 7: Best fitting ellipse with computed s-rep. 
(black): spokes of s-rep 
(red line): the red line is the spine of the s-rep 
 

Figure 8: Initialized s-rep for target object 
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The previous steps were part of the Initialization portion of 

fitting an s-rep to a 2D target object’s boundary. Following 

the Initialization, we refine the fit of the s-rep to capture first 

and second order properties of the object boundary. This 

stage utilizes an optimization technique to obtain an s-rep 

that minimizes deviations from Damon’s medial conditions 

(Damon 2003). 

 

The optimization function involves three penalties. The first 

penalty is the sum of the square distances from the spoke 

boundary points to the target object boundary, the second penalty penalizes non-orthogonality of 

the spokes to the target boundary, and the last penalty penalizes the crossing of spokes. Once 

we have optimized the fit to the target object, we have successfully obtained a flat 2D s-rep. 

 

Curved S-reps: 

 

Our method of fitting an s-rep to a 2D target object on a curved surface 

involves mapping that curved surface to a flat region, fitting a flat 2D 

s-rep to the mapped boundary, and mapping that s-rep back to the 

curved space of the target object. In context of our goal, we are looking 

to fit an s-rep to the shared boundary region between adjacent objects. 

In order to map the shared boundary region of the 3D target objects 

to a flat surface, we begin by mapping the  shared boundary region 

onto the skeleton of the 3D s-rep of the primary object. The process 

of mapping a point on the boundary of an object onto its skeleton 

involves interpolating the spokes on the skeleton and finding the 

skeletal point of the spoke whose boundary point matches the target 

point on the boundary. Once the shared boundary region is mapped 

onto the skeleton, we sample the (U,V) coordinates along the 

boundary of this mapped region. The (U,V) coordinates are found by utilizing the skeletal grid as 

a coordinate system. The mapped shared boundary region on the skeleton is shown in Figure 11. 

 

Once we have mapped the shared boundary region onto 

an object’s skeleton and found the (U,V) coordinates, we 

now able to map this region to a flat surface. During the 

s-rep initialization step for the 3D object whose skeleton 

we mapped the shared boundary region onto, we would 

have found the best fitting ellipsoid for that 3D object and 

calculated the s-rep for the ellipsoid. The skeleton of the 

best fitting ellipsoid is flat, and we can map the region 

from the 3D object’s skeleton onto the skeleton of the 

ellipsoid. We map this region by mapping points from 

their (U,V) coordinate on the 3D object’s skeleton to their 

Figure 9: Refined s-rep for target object 

Figure 10: Points on the shared 
boundary region (black) get 
mapped to points onto the 
object’s skeleton (white). 
 

Figure 11: (left): shared boundary region mapped 
onto an adjacent object’s skeleton. (right): shared 
boundary region mapped onto the adjacent object’s 
best fit ellipse’s skeleton 
 



 

Akash Krishna 

(a) (b) (c) (d) (e) 

respective (U,V) coordinate on the ellipsoid’s skeleton. We now have a 2D boundary on a flat 

surface that we can use to fit an s-rep.To fit an s-rep for the region on the flat skeleton of an 

ellipsoid, we utilize the s-rep fitting process for flat surfaces as detailed in the previous section.  

 

After computing flat s-rep, we need to map this s-rep back onto the curved surface of the shared 

boundary region. This involves obtaining the (U,V) coordinates of the skeletal and boundary points 

of the flat s-rep. We also sample points along the spokes of the s-rep and obtain the coordinates 

of those sampled points. Using the (U,V) coordinates we map the s-rep onto the skeleton of the 

3D object. We then map the s-rep onto the shared boundary region by finding the boundary points 

of the spokes of the 3D object s-rep whose skeletal points share a point with the 2D s-rep. This 

completes the procedure of fitting an s-rep to a shared boundary region on a curved surface. 

 

6. Data Generation:  

 

I have generated adjacent deformed ellipsoids to test the effectiveness of including an s-rep of 

the shared boundary region when performing classification tasks. I have a control group of pairs 

of adjacent ellipsoids with minimal bending and minimal streching. I have also generated test 

cases where the adjacent ellipsoids have both bent by the same amount, each lengthened by 

different amounts, or shifted in respect to the other. I attempt to see how well we are able to 

classify the control group ellipsoids from the pairs of ellipsoids with each category of deformation. 

In particular, we seek to compare how incorporating consistent s-reps and including the s-rep of 

the shared boundary region affects the classification accuracy. 

 

Figure 12: (a): Pair of adjacent deformed ellipsoids. (b): Indented region displays the shared boundary region on one of the 
ellipsoids (c): s-rep of left-most object. (d): s-rep of right-most object. (e): 2D s-rep of shared boundary region 

 

Figure 13: Pairs of 
generated deformed 
ellipsoids used for 
classification 
(left): Pair of ellipsoids 
where one is stretched. 
(middle): Pair of ellipsoids 
with bending. (right): Pair 
of ellipsoids where one 
has shifted 
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For the control group of ellipsoid pairs, each ellipsoid has axes lengths of 16, 9, and 4 and have 

their centers at point (0, 0, 1.5) and (0, 0, -1.5). The control group has minimal amount of 

stretching, bending, and shifting determined by a normal probability distribution. Stretching is 

done by lengthening the major axis by a factor. Bending is done by subtracting the z-component 

of a point by a bend factor times the x-component squared: [z = z – (b*x2)] where b is the bend 

factor. Shifting is done by moving the ellipse along the y-axis. The normal distributions for the 

amount of stretch factor, bend factor, and shift distance for each of the four classes is given in 

Table 1 below.  

 

Normal Distribution of Deformations (mean, std) 

 Stretching 
Distribution 

Bending 
Distribution 

Shifting Distribution 

Control (0, 0.03) (0, 0.015) (0, 0.25) 

Stretch (0.1, 0.03) (0, 0.015) (0, 0.25) 

Bend (0, 0.03) (0.035, 0.015) (0, 0.25) 

Shift (0, 0.03) (0, 0.015) (0.7, 0.25) 

For each of the four classes of pairs of ellipsoids, I have generated 30 test cases for each class 

and have fit two 3D s-reps for the adjacent objects and a 2D s-rep for the shared boundary region 

for each test case. The representation for each pair of objects consists of the two 3D s-reps for 

each individual object and a 2D s-rep for the shared boundary region. The features utilized from 

the 3D s-rep are the skeletal point locations, the spoke lengths, and the spoke directions. The 

features utilized in the 2D s-rep are the skeletal point locations, and the spoke points along evenly 

sampled distances along the curved spokes. The features from the 3D s-reps and the 2D s-reps 

are concatenated together and make up the feature set for a given sample. After obtaining the 

features for each of the samples, I euclideanized the features and used DWD to see the 

classification accuracy of the different representations. 

 

Results and Analysis:  

 

I tested the classification accuracy using different representations of the deformed ellipsoid pair. 

The first representation was simply the two 3D s-reps of the individual objects, the second 

representation was the two 3D s-reps after being made consistent with one another, and the third 

representation was the pair of consistent s-reps and the 2D s-rep of the shared boundary region. 

The classification accuracy for the three representations are displayed in Table 2.  

Classification Accuracy 

 Stretch Bend Shift 

3D s-reps 88% 84% 92% 

consistent 3D s-reps 88% 85% 92% 

consistent 3D s-reps 
+ 2D s-rep 

89% 85% 94% 

Table 1: Displays the mean and the standard deviations of the normal distributions of deformations applied to each class of 

ellipsoid pairs. The stretching value is the factor that the major axis is stretched. The shift value is the amount shifted in the y-

direction  

Table 2: Displays classification accuracy for different representations of the adjacent ellipsoid pairs.  
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For the first row, using information about the two 3D s-reps only, including their relative positions, 

already a fair level of classification is achieved. The other two rows use sources of additional 

information characterizing the shape relationships of the two objects other than their relative 

positions. 

 

The results in the second row do not clearly convey the effect of making the s-reps of the adjacent 

objects consistent by modifying spokes along the shared boundary to be collinear with each other. 

Using the consistent s-reps representation either led to no change or a slight improvement in 

classification accuracy.  The consistency mapping requires interpolations which may lower the 

information about the shape of the object. The interpolations and the consistency mapping effects 

may counteract each other in a way that is poorly understood. 

 

In all of the deformation classes adding the 2D s-rep appears maintain or improve classification 

accuracy over the modified consistent s-reps alone. Additionally, the combination of consistent s-

reps with the 2D shared boundary s-rep always led to a higher classification accuracy compared 

to the unmodified s-reps. 

 

There are many possible explanations for the wide range of outcomes of the classification 

accuracy. Firstly, there were only 45 samples for the different classes, so the lack of samples may 

not have led to accurate results.  

 

For classifying the streched ellipsoids, the accuracy remained the same after utilizing consistent 

3D s-reps over the typical 3D s-rep. We believe this is because of there was little information to 

be gained from the typical s-rep representation as the classification accuracy was already high. 

The accuracy goes up slightly after including the 2D s-rep of the shared boundary to the 

representation with the consistent s-reps. This is potentially because the 2D s-rep offered 

information on the shape of the shared boundary region not offered by the consistent s-rep like 

curvature and width. 

 

For classifying bent ellipsoids from the control group, there was a small accuracy increase from 

the regular 3D s-rep to the consistent s-rep. The accuracy did not further increase after including 

the 2D s-rep of the shared boundary region. This may have occurred because the consistent s-

reps already provide some insight into the shape of the shared boundary region, and the additional 

features provided by the 2D s-rep were not useful in discriminating the two classes. 

 

Classifying the shifted ellipsoids had the highest gain in percentage after inclusion of consistent 

s-reps and a 2D s-rep of the shared boundary region. Using a representation of consistent 3D s-

reps over the regular 3D s-rep did not have an increase in accuracy. However, including the 2D 

s-rep along with the consistent s-rep further increases the accuracy by 2% over using just the 

individually fit s-reps. This is likely due to the shifting of the ellipsoids significantly changing the 

shape of the shared boundary region. 
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Summary of Contributions: 

 

The code for this research can be found here: https://github.com/AkashK23/MultiObjectShapeAnalysis 

My contribution to this code base includes the following:  

1. Making 3D s-reps of adjacent objects consistent with each other.  

2. Computing the shared boundary and projecting it onto the (curved) skeleton of one of the 

objects.  

3. Mapping the projection of the shared boundary on the curved skeleton onto the flat 

skeleton of an ellipsoid. 

4. Fitting 2D s-reps to 2D objects on a flat surface. 

5. Mapping the 2D s-rep on the flat skeleton back onto the curved skeleton and thence back 

onto the shared boundary. 

6. Integrating all of these modules into a pipeline that allows for the simulations and analyses 

described in the experiment. 

All of this code is available to be integrated with the web-resident Slicer SALT shape analysis 

toolkit. 

 

I also conducted this experiment. I generated 120 ellipsoid pairs, used my code to deterime the 

consistent 3D s-reps and the curved 2D s-rep, and tied in PNS and DWD code to determine the 

classification accuracy.   

 

Future Applications: 

 

There are many possible applications of this work. I plan on applying my code to classify real 

disorders. Many neurological disorders like Parkinson’s, Autism, Alzheimer's, etc. affect the shape 

of structures in the brain. Using real-life examples will provide a clear indication of the usefullness 

of including information on the geometric relationship of adjacent objects. 

 

The usecase of modeling the geometric relation of adjacent objects could also be useful in the 

automatic segmentation of anatomical structures from medical images. In many cases, there is 

not a contrast in pixel intensity of adjacent structures, so having prior information as to the 

geometric relationship of the objects can serve to be useful in accurately segmenting objects. 

 

Desired Future Improvements: 

 

There are also many possible improvements and modifications to be made to the work done. For 

one, our method of obtaining the 2D s-rep of the shared boundary region involved mapping the 

boundary region onto the skeleton of the undeformed ellipsoid, mapping it to a flat surface, fitting 

an s-rep, and mapping it back onto the shared boundary. It could be useful to see how mapping 

this shared boundary region onto the other ellipsoid’s skeleton affects the classification accuracy 

or if including both 2D s-reps into our representation has any impact on the classification accuracy. 

 

Additionally, there are current limitations in our approach of obtaining the 2D s-rep. Our approach 

does not account for cases where the shared boundary region maps onto the top and bottom side 

https://github.com/AkashK23/MultiObjectShapeAnalysis
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of the deformed ellipsoid’s skeleton. A possible way to account for this would be to utilize the 

spherical topology of the (U, V) representation of the 3D s-rep. 
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