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1. Introduction 

The amount of digital music available has overwhelmingly increased during the last few 

decades with the development of Internet and music technology. The use of digital music 

platforms has gradually replaced many traditional music consumption methods, such as tapes, 

CDs, and vinyl records. The explosive growth of digital music requires powerful knowledge 

management techniques and tools. Without these tools, users will face a vast music catalog that 

cannot be fully utilized. The research on Music Information Retrieval (MIR) is dedicated to 

solving these problems. 

As a subfield of multimedia Information Retrieval, MIR is a highly dynamic and 

multidisciplinary field of research relates to various other research disciplines, involving 

researchers from the disciplines of musicology, library and information science, cognitive 

science, computer science, electrical engineering, and so on. Narrowing the focus on 

information retrieval (IR) and information representation related to music, we can distinguish 

three broad categories of strategies in terms of their data source: music content-based, music 

context-based and user context-based approaches. The music content-based approach extract 

music features from the audio signal itself, such as rhythm patterns, melodies, chords 

progressions, loudness, and so on. The music context-based approaches make use of text-based 

data related to music, such as the performer’s background, the song’s lyrics, images of album 

cover, or co-occurrence information derived from playlists. The user context-based approaches 

put focuses on users’ personal data, such as their mood, physiological and spatial-temporal 

context, listening pattern and history, and so on. The following Figure 1.1 show their difference. 
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Figure 1.1 Features of music content-based, music context-based and user context-based 
approaches 

 
In the user scenarios of digital music, many user requirements are proposed, including music 

identification, query by humming, auto music transcription and alignment, and so on. Among 

all these tasks, music recommendation is one of the most important and challenging tasks: 

recommending music for each user in a personalized way. MIR researchers use various music-

related metadata to process and build algorithms to address this task. The state-of-the-art 

approaches to music recommendation are based on measuring music similarity between raw 

audio tracks, music-related metadata on the Web, and users’ profiles, eliciting similar music. 

In these ways, all content-based audio features, text-based music-related metadata, and user-

based community metadata can be used. By using different types of data, several approaches 

were developed respectively. Using user-based community metadata, the most used one is 
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Collaborative Filtering (CF), which analyzes one single user's behavior and compares it to other 

similar users’ behaviors. The trick here is that it recommends new things based on the similarity 

between users’ behaviors, not between items’ intrinsic properties. The second method, using 

music content-based audio features, is the music content-based model. It analyzes to determine 

similar songs based on their similar acoustic patterns and audio features. The third method is 

the music text-based method. It uses music-related metadata originating from playlists, web 

pages, song lyrics, etc., extensively applied techniques from Information Retrieval and Natural 

Language Processing, such as TF-IDF weighting, Bag-of-Words representation, Part-of-

Speech Tagging, and so on. The last method is called the hybrid approach, which combines 

two or more approaches of the previous three methods (Knees et al., 2015). 

However, in today’s industry, the music content-based and music context-based 

methods have not been employed very successfully in large-scale music repositories so far. 

Compare to the former two methods, it seems that user context-based methods especially 

collaborative filtering approaches have higher user acceptance and outperform the other two 

methods for music retrieval. It does not need to analyze the massive music-related data, but 

focuses on the users themselves, which can better realize personalized recommendations. 

Despite user context-based collaborative filtering algorithms are widely studied and 

applied in the industry, their main applications are in e-commerce and video streaming media 

areas, performing tasks such as e-commerce product recommendations (e.g., Amazon), and 

movie recommendations (e.g., Netflix). Related datasets are also concentrated in these areas, 

such as the Amazon product dataset [1], MovieLens dataset [2], and Netflix Prize dataset [3]. 

Other music-related datasets such as million song dataset [4] and Spotify dataset [5] mainly 

focus on audio features and text metadata, which can be used in research directions of music 

content-based and music context-based methods. The only public user context-based music 

datasets that could be used to perform user rating-based collaborative filtering is the antique 
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R2-Yahoo! Music dataset [6], which was collected 15 years ago from 2002 to 2006, and the 

songs and artists are basically from English-speaking countries. Currently, there is no public 

user context-based dataset specially developed for Chinese music, and there is almost no past 

research using the Chinese music dataset to study the recommendation algorithms. MIR 

research has been developing in the U.S and other European countries for over 20 years, but it 

just gets started in China recent years. 

Due to cultural differences, people from different countries and regions may have 

different consumption habits for music. For the same piece of music, people from English-

speaking countries and Eastern countries may give different ratings. These cultural and 

customary differences may cause the collaborative filtering technology developed using 

English data sets to be unsuitable for the markets of Eastern countries. China is now the largest 

music consumer market, and people’s demand for music recommendations is increasing. By 

studying collaborative filtering algorithms for Chinese music, it is possible to meet the needs 

of more people for music consumption, and at the same time create huge economic benefits. 

Therefore, in this thesis, we plan to gather music-related information from Chinese 

music streaming platforms and build a new user rating-based dataset to evaluate the 

effectiveness of those algorithms. NetEase Cloud Music [9] is currently one of the largest music 

streaming providers in China, with over 300 million users and a music database containing over 

10 million songs. We will crawl our data from their website, and more details are in section 3.1. 

Also, as the core of the recommendation system, the research of recommendation algorithms 

has received extensive attention from academia and industry for years. Score prediction is the 

core issue in the research of recommendation algorithms. Although there are endless research 

studies on various algorithms of recommendation systems, in the field of music 

recommendation, there is a lack of systematic comparison of various collaborative filtering 
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algorithms and evaluate their effectiveness. So, this thesis also plans to select a series of major 

CF algorithms and test them on our dataset.  

MIR research on music recommendation benefits users since they could interact with 

digital music in a more convenient way. It also has great commercial value for music streaming 

providers including Spotify and Apple Music, especially for those companies operating in 

China since the data used in this thesis focus on Chinese music. By implementing MIR 

technologies to their products, music streaming companies can improve their users’ experience. 

From the business point, better users' experience attracts more customers and improves users’ 

loyalties to the product, which increases sales and profit. 

In this thesis, I propose to explore user context-based methods for music 

recommendations. My research question is: Do our CF algorithms work on our Chinese Music 

dataset? And What are the differences between their performance? The research in this thesis 

has two contributions: first, developing a new dataset from music-related user data on Chinese 

music, as standing in 2021; second, comparing several collaborative filtering algorithms 

(Memory-based and Model-based) for music recommendation on our dataset. The remainder 

of this thesis organized as follows. In section 2, related works in the three directions of music 

content-based, music context-based and user context-based methods will be introduced, and 

the focus is on the user context-based. In section 3, the methods of developing our dataset and 

the models used in our experiment will be discussed. Section 4 describes the results and 

discussions of our experiment. Finally, Section 5 discuss our conclusion and the future work. 
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2. Related Works 

2.1  Introduction 

In this chapter, the introduction of the three general categories of artist-related data, music 

content-based, music context-based and user context-based data, mentioned in section 1 are 

presented. The purpose is to give an overview of the three research directions, to discuss related 

work, and to present the state-of-the-art in the corresponding areas. The structure of this chapter 

is as following: first, we first introduce the three types of metadata can be used; second, briefly 

go through selected research studies using music content-based and text-based methods. Third, 

go through some research studies using user context-based methods and collaborative filtering 

techniques used in this direction. 

 

2.2  Three Types of Musical Metadata 

Pachet (2005) distinguished three types of musical metadata:  

(1) Acoustic metadata refers the digital signals obtained by analyzing the audio files. 

(2) Cultural metadata is produced by users in culture environments. 

(3) Editorial metadata refers to metadata manually annotated by the expert editors. 

While acoustic metadata is a content-based method that focuses on extracting and using the 

attributes of the audio itself, cultural and editorial metadata focus on music-related textual data, 

including artists, genres, styles, labels, and users’ reviews and ratings, and so on. 
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2.3  Music Content-based Methods 

The concept of music similarities has traditionally been defined on the audio track level. It is 

calculated on the low-level and high-level audio-based features. Those features can be extracted 

by applying Digital Signal Processing (DSP) techniques. Those features are commonly known 

as content-based, audio-based, or signal-based. An overview of common content-based 

extraction techniques is presented in (Casey et al., 2008). There are vast number of existing 

literatures on the topic of audio feature extraction and similarity measurement between pieces 

of music. 

In general, content-based features could be low-level representations that stem from the 

spectral centroid (Scheirer and Slaney, 1997), zero-crossing rate (Gouyon et al., 2000), 

bandwidth and band energy ratio (Li et al., 2001), amplitude envelope (Burred and Lerch, 2003). 

Alternatively, audio-based features may be aggregated from low-level properties, and then 

represent aspects on a high level of music understanding. Those high-level features usually aim 

at capturing rhythmic patterns and descriptors (Pampalk et al., 2002a, Dixon et al., 2003, 

Gouyon et al., 2004, Dixon et al., 2004), spectral properties in order to describe timbre (Foote, 

1997, Logan, 2000, Logan and Salomon, 2001, Aucouturier and Pachet, 2004, Aucouturier et 

al., 2005, Mandel and Ellis, 2005), collaborative tagging (Aucouturier et al., 2007), and 

melodiousness (Pohle, 2009, Vikram and Shashi, 2017). 
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2.4  Music Context-based Methods 

In this section, we review research studies that exploit textual representation of musical 

knowledge originating from playlists, web pages, and song lyrics, etc. Techniques from 

Information Retrieval (IR) and Natural Language Processing (NLP) were extensively applied, 

such as the TF-IDF weighting, Bag-of-Words representation, Part-of-Speech Tagging, and so 

on. One of the first approaches in this direction is in (Pachet et al., 2001), where they exploit 

radio station playlist and compilation CD databases and check the co-occurrences information 

between tracks and artists. A later research study by Baccigalupo et al. (2008) exploits playlists 

to derive artist similarity is on a web community. 

Another source for artist similarity is the extremely large amount of available Web 

pages. Since the Internet reflects the opinions from lots of different people, interest groups, and 

companies, approaches to derive artist similarity from Web data incorporate the kind of 

“collective knowledge” and “wisdom of the crowd”, and thus provide an important indication 

for the perception of music. Cohen and Fan (2000) enlarged the work of Shardanand and Maes 

(1995), and proposed the first work that crawled and filtered data from the Web to generate 

lists of similar music by different genres and artists. Whitman and Lawrence (2002) presented 

the first work dealing with free text metadata on the Web about musical artists for music 

recommendation engines. Much of their work is a combination of techniques in information 

retrieval applied to the music domain. They analyze and extract different term sets (unigrams, 

bigrams, noun phrases, artist names, and adjectives) from a set of about 400 artists by Part-of-

Speech tagger from artist-related Web pages. Based on the term occurrences, term profiles are 

created for each artist. By this way, the similarity of artists is estimated by the term profiles 

between them. And then they generated a system to calculate the words co-occurrence of those 

artists by using TF.IDF and Gaussian Scoring Metric. 
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Collaborative tags provide another perspective towards similarity between music. A tag 

basically contains a short description about a specific aspect to the item. The more people label 

an item with the same tag, the more the tag is considered to be relevant to the item. Geleijnse 

et al. (2007) use tags from Last.fm [7], a music website where users could use tags to describe 

the music they listen to, and to generate a “tag ground truth” for artists similarities. They filter 

out redundant and useless tags and only use the set of tags associated with tracks by the artist 

of their choice. Then, the similarities between artists can be calculated by the number of 

overlapping tags. Compare with web-based text methods, tag-based methods have several 

advantages, including a more music-targeted and smaller vocabulary with less unrelated terms, 

and availability of descriptors for individual tracks rather than just artists. 

The lyrics of songs can also be used to consider music similarities, since they usually 

represent information about the artist or the performer, such as cultural background, political 

orientation, and style of music. Logan et al. (2004) use song lyrics of tracks by 399 artists to 

determine their similarity. Mahedero et al. (2005) prove the usefulness of lyrics for four 

important tasks: language identification, structure extraction, thematic categorization, and 

similarity measurement. Other research studies do not explicitly aim at finding similarities in 

lyrical, but at revealing conceptual clusters (Kleedorfer et al. 2008), classifying songs into 

genres (Mayer et al., 2008), and mood categories (Hu et al., 2009). 
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2.5  User Context-based Methods 

User feedback is another source to considering music similarity. Methods using this data source 

are also known as Collaborative Filtering (CF). To perform this similarity estimation, one must 

have access to a community and its activities. Therefore, CF methods are usually applied in 

real-world recommendation applications such as Amazon and Netflix. 

 

2.5.1 Collaborative Filtering 

Collaborative filtering is an effective technique in recommendation systems. It can be 

categorized into two main methods as memory-based (Neighborhood-based) and model-based 

(Latent factor models) collaborative filtering. From a general point of view, collaborative 

filtering refers to the process of exploiting large amounts of collaboratively generated data to 

filter items irrelevant for a given user from a repository. The aim is to retain and recommend 

those items that are likely a good fit to the taste of the target user.  

 

2.5.2 Explicit and Implicit User Feedback 

CF is characterized by large amounts of users and items and makes heavy use of users’ taste or 

preference data, which expresses some kind of explicit rating or implicit feedback. Feedbacks 

on music items are sometimes given explicitly in the form of ratings. These ratings can be given 

on different levels or scales, including continuous natural values (e.g., between 1 and 100 score; 

1-5/1-10 stars), binary ratings (e.g., thumbs up/down; like/unlike). Users' implicit feedback 

could be obtained from their actions during retrieval, such as browsing or by tapping. For 

example, users’ browsing time, skipping a song, and purchase/consume history could be used 

as their implicit feedback. 
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Collected explicit ratings are usually represented in a user-item matrix R, where 𝑟!,# 	> 

0 indicates that user u has given a rating to item i (u has listen to i at least once), and higher 

values shows stronger preference. Given implicit feedback data, such a matrix can be 

constructed in a similar manner. For instance, a value 𝑟!,# 	> 0 could also indicate that u has 

bought the CD, or has the song in the collection. 𝑟!,# < 0 indicates that user u dislike item i (u 

has skipped song i while listening or u has rated i negatively), and 𝑟!,# = 0 shows that there is 

no information available (or neutral opinion). When without additional evidence, a number of 

assumptions music usually be made in order to create such a matrix from implicit data (Ricci 

and Shapira, 2015). 

The goal of such approaches is to “complete” the user-item matrix. Based on the 

completed matrix, we want to predict those unrated items’ rating. Generally, there are two types 

of rating prediction approaches, memory-based and model-based collaborative filtering. 

  

 
2.5.3 Memory-based Collaborative Filtering 

Memory-based collaborative filtering, also called Neighborhood-based CF, operates 

directly on the full rating matrix, which is in the memory. Although this requirement usually 

makes them not very fast and resource-demanding, they are still widespread due to their 

simplicity, exploitability, and effectiveness (Desrosiers and Karypis, 2011). Some potential 

disadvantages of memory-based collaborative filtering include scalability and sensitivity to 

data sparseness issue (Lemire and Maclachlan, 2005). 

Shardanand and Maes (1995) proposed the personalized music recommendation system 

RINGO, by using social information filtering. The system maintains user profiles on their 

interests (positive and negative attitudes) towards specific music. And then it compares users’ 
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profiles to infer their degree of similarity. Finally, it can recommend users music with the music 

in their similar users’ profiles. 

Celma (2009) provides a detailed discussion of collaborative filtering methods for 

music recommendation based on real-world examples from the music field. In Celma’s work, 

Memory-based CF systems handles two types of similarity relationships: item-to-item 

similarity (songs or artist), and user-to-user similarity. The similarity between items can be 

calculated by comparing each N-dimensional row vectors, where N is the total number of users. 

The similarity between users can be calculated by comparing the corresponding M-dimensional 

column vectors, where M is the total number of items. 

For vector comparison, cosine similarity and Pearson’s correlation coefficient are 

popular choices. For example, Slaney and White (2007) analyze 1.5 million user ratings given 

by 380,000 users from the Yahoo! music service and obtain the similarity of music piece by 

comparing normalized rating vectors on the items and calculating their respective cosine 

similarities. 

 

2.5.3.1 User-based Collaborative Filtering 

The user-based CF approach recommends items to the target user from his/her similar users. 

For example, as seen in the Figure 2.1, in this case, user 1 and user 3 have similar music 

preferences, so they are considered as a neighbor to each other.  Since user 1 gives a like to 

item A, the user-based CF system would recommend A to user 3. User-based CF uses users’ 

rating scores on items to consider their similarities and finds their k nearest neighbors. Then, 

the system can make predictions based on weighted averaging score by combining all neighbors’ 

ratings. 
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Figure 2.1 User-based Collaborative Filtering Logic Flow 

 

To make our ideas into equation, a predicted rating 𝑟′!,# for user u and an item i is calculated 

by finding 𝐾!, the set of k nearest neighbors according to their rating preference with u, and 

combine their ratings for item i (Konstan et al., 1997):  

 

 

 

Where 𝑟$,# denotes the rating of user g given to item i, �̅�! is the average rating of user u, and 

sim(u,j) is a weighting factor that corresponds to the similarity to the neighboring users. 

 
 

2.5.3.2 Item-based Collaborative Filtering 

The item-based CF approach recommends items by checking similarities between the items 

that are already associated with the user. For example, as seen in the Figure 2.2, in this case, 

item A and item C are similar, so they are considered as a neighbor to each other. Since the 

user gives a like to item A, the item-based CF system would recommend C to the user. Item-
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based CF analyzes a set of items that the target user has already evaluated to calculate the 

similarities between all items and the target item. Then, the system can make predictions for 

target items by comparing the user’s previous preferences on the set.  

 

Figure 2.2 Item-based Collaborative Filtering Logic Flow 

 

 
While user-based CF identifies neighboring users by examining the rows of the user-item 

matrix, item-based CF operates on the columns to find similar items. Predictions 𝑟′!,# are then 

made by finding the set of k most similar item to i that have been rated by u and combining the 

ratings. Since the number of rated items from each user is usually smaller than the total number 

of items, item-to-item similarities can be pre-calculated and cached. In many real-world 

recommender systems, item-based CF is thus chosen over user-based CF for performance 

reasons (Linden et al., 2003). For determining nearest neighbors (kNNs), in both user-based 

and item-based CF, cosine similarity or “cosine-like measure” are utilized (Nanopoulos et al., 

2009). 
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2.5.4 Model-based Collaborative Filtering 

There are many model-based approaches to collaborative filtering, in which some are based on 

Linear Algebra, such as Matrix Factorization, Principal component analysis (PCA), and 

Eigenvectors; some others use techniques derived from Artificial Intelligence, such as Bayes 

methods, Latent Classes, and Neural Networks; some others are based on clustering (Drineas 

et al., 2002). Compared with memory-based methods, model-based algorithms are usually 

preforming faster at query time, although they might need expensive learning and updating 

phases. In our thesis, we focus on the Matrix Factorization-based methods. 

2.5.4.1 Matrix Factorization-based Collaborative Filtering 

Model-based CF methods that build upon latent factors representation are obtained by learning 

factorization models of the rating matrix, e.g., (Hofmann, 2004), (Koren et al., 2009). Compare 

with memory-based CF methods, matrix factorization-based CF have a few advantages, 

including higher accuracy, shorter processing time since they avoid the massive calculations 

directly on the rating matrix like kNN methods, and creates more explicit and compact 

representations. The results of the KDD-Cup 2011 competition shows that matrix factorization 

methods can significantly improve prediction accuracy in the music field (Dror et al., 2011). 

The assumption under the matrix factorization-based CF is that the observed ratings are 

the result of a number of latent factors of user characteristics (e.g., preference or taste, 

“personality”) and item characteristics (e.g., genre, mood, instrumentation). The purpose of 

matrix factorization is trying to estimate those hidden parameters from users’ ratings. These 

parameters should explain the observed ratings by characterizing both users and items in an ℓ-

dimensional space of factors. These computations derived factors basically describe the 

variance in the rating data and may not be human interpretable (Ricci and Shapira, 2015). 
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In the matrix factorization model, the rating matrix R can be decomposed into two 

matrices W and H such that R = WH, where W relates to users and H to items. In the latent 

space, both users and items are represented as ℓ-dimensional vectors. Each user u is represented 

as a vector 𝑤! =	𝑅ℓ, and each item i as a vector ℎ# =	𝑅ℓ. W = [𝑤&…𝑤']( and H = [ℎ&…ℎ']( 

are thus f × ℓ	and ℓ × n matrices respectively. Entries in 𝑤! and ℎ# measure the relatedness to 

the corresponding latent factor. These entries can be negative. The number of latent factors is 

chosen such that ℓ	 ≪ 𝑛,𝑚, which yields a significant decrease in memory consumption in 

comparison to memory-based CF. Also rating prediction is much more efficient once the model 

has been trained by simply calculating the inner product 𝑟′!,# =	𝑤!(ℎ#. More generally, after 

learning the factor model from the given ratings, the complete matrix 𝑅) = 	𝑊𝐻 contains all 

ratings predictions for all user-item pairs. 

 
 
 
2.5.5 Users’ Interactions with Recommender Systems 

Other research studies explore users’ interaction with their recommender systems. Pohle et al. 

(2007) present a user interface that allows users to choose musical concepts tags they extracted 

from last.fm [7], and recommend them music match with the concepts tags they choose. Knees 

and Widmer (2008) present an approach to adapt user preferences on music by incorporating 

relevance feedback. Mesnage et al. (2011) build a social music recommender system by 

investigating Facebook, and recommend music based on users’ friend relationships and their 

interactions with other users.  
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2.6  Conclusion 

We have gone through the state-of-the-art methods of music content-based, music context-

based, and user context-based in music recommendation tasks. In contrast to the content-based 

and text-based approaches reviewed in sections 3 and 4, collaborative filtering techniques used 

in user context-based methods could outperform the previous two methods in today’s industry 

since they do not require any additional metadata and calculations that related to the music 

pieces themselves. Due to the nature of rating matrix, similarities can be directly calculated 

without correlating the occurrence of metadata with actual items. However, these CF 

approaches are sensitive to factors such as popularity biases and data sparsity. 

In the following section, we discuss the process of our dataset preparations, and 

introduce the CF models will be used in our experiment. 
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3. Methodology 

3.1  Dataset 

The raw dataset was crawled from NetEase Cloud Music [9], one of the largest music streaming 

platforms in China, with over 300 million users and a music database containing over 10 million 

songs. On this platform, users can search and listen to a large number of songs. When a user 

encounters a song he likes, he/she can click the “Like” button and add it to his/her playlist. 

Users can add tags to their playlists to illustrate the style of the songs in the playlist, such as 

"Mandarin", "Popular", "Electronic", etc. Each user can create multiple playlists, and at the 

same time set the playlists to be public so that they can be accessed by other users. Accessing 

the playlists of other users is the major way for users to explore music. On the homepage of the 

platform, popular playlists are displayed for other users to access. Users can also subscribe 

other users' playlists to get the latest music trends. The homepage interface of NetEase Cloud 

Music is shown on Figure 3.1. The interface of a single playlist is shown on Figure 3.2. 

Interestingly, NetEase Cloud Music has already provided users with a "Daily Song 

Recommendation" playlist function. According to the user's behavior, this playlist will 

automatically generate 20 songs that the user may like every day. The company may use more 

indicators to help them measure users' behavior, such as users remove an item from the playlist, 

user skipping a song, and the time they spent on a particular page and the number of clicks. 

However, we cannot access this part of the information, nor can it be obtained through web 

crawling. The only information we can obtain is the playlist of each user and the songs 

contained in it. Since we want to focus on Chinese Music, we only crawl the playlists that 

contain Mandarin tags. 
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Figure 3.1 Interface of NetEase Cloud Music’s Homepage 

 
 

 

Figure 3.2 Interface of a single playlist 
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Our dataset contains over 50,000 public playlists contain Mandarin tag of 

corresponding users and more than 200,000 songs. The format is in JSON, and the size of our 

file playlist.detail.all.json is 16.08 Gigabyte. In addition to the metadata of the playlist, each 

playlist also includes all the tracks in the playlist and their metadata. The sample format of each 

playlist and each song are listed in the Appendix A and Appendix B. 

 
 
3.1.1 Parse Dataset 

Since the raw dataset contains too many playlists and songs, it is difficult to process this amount 

of information on a personal computer. Also, some of the playlists in the dataset only have few 

songs, which cause the problem of data sparsity. So, we need to parse the raw dataset. 

We find that the playlists with more subscribers, in general, have more songs. Those 

users are considered active users of the platform. So, we only take those playlists with more 

than 100 subscribers (subscribedCount > 100). The total number of playlists that fit the 

requirement is 1076, containing 49774 songs. Also, the raw dataset contains too much 

information, including createTime, updateTime, description, URLs and many tags, etc. This 

part of the information is not very helpful to our research, so we decided to extract only a few 

of the most important elements and convert the raw dataset into a simplified dataset. For each 

playlist, only four dimensions of the information including playlist name, category, playlist id, 

and the number of subscribers is extracted. For each song, only four dimensions of the 

information including song id, song title, singer, and song popularity is extracted. For each 

playlist and the songs contained in it, we organize them into the following Table 3.1: 
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Table 3.1 Sample format of a Playlist 

 
Playlist ##流行,华语##57364826##3572 

Track 1 28643203::花房姑娘::崔健::57.0 

Track 2 407007442::末班车::信::46.0 

Track 3 33162226::友情岁月::李克勤::85.0 

Track 4 28387594::无赖::林忆莲::74.0 

Track … ...... 

 
 
 
 
3.1.2 Format Dataset for Recommender System 

Users’ rating to an item is an explicit feedback. For some datasets, they contain such 

information, so those rating could be used in the matrix. Nonetheless, for other datasets, they 

do not contain rating information, just as the dataset in our experiment. In this case, we need to 

use users’ implicit feedback as their rating information. For example, users’ browsing, or 

purchase history could be used as their rating. 

Since the playlist is a collection behavior, which shows the user's interest in the songs 

in the playlist, the songs in each user's playlist can be regarded as a positive feedback of the 

user for the songs in the playlist. However, users’ negative feedback on songs cannot be directly 

reflected in the user’s collection behavior. This is determined by user’s behavior when 

consuming music. When they dislike a song, the usual behavior is to skip it. Although NetEase 

Cloud Music provides users with the function of disliking songs, which is a clear negative 

feedback, users usually choose to skip the current song instead of clicking the dislike button 

for the song they dislike, resulting in a small amount of data in this part. Also, the data of users' 

dislike songs are not displayed on the playlist page and cannot be obtained through crawlers. 
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Based on these considerations, we assume that the songs that are not collected by users 

reflect their dislike of these songs to a certain extent. Although it is a bit arbitrary, we decided 

to directly sample the songs outside of each user’s playlist as a negative feedback for them. 

This creates a binary matrix, where “1” stands for “rated and like”, and “0” for “dislike”. 

Although songs may not be selected into the playlist is because users have not listened to these 

songs, we believe this is the best solution to approach our dataset based on our knowledge. The 

entire experiment was performed under this assumption, which could be one of our limitation, 

and further discussion is in the section 4. 

 

 

Figure 3.3 Sample MovieLens dataset format 

 

For mainstream python recommendation system frameworks, the most basic data format 

supported is the MovieLens dataset [2] ,and its data format is user-item-rating-timestamp. Its 

format is shown in Figure 3.3. In order to use the framework, we decide to process our data 

into the same format. For rating information, we set the positive feedback to score 1.0, and the 

negative feedback to 0.0. For timestamp information, since our data do not have this part of 

information, and it actually have no effect on our algorithms, we simply give them the same 

value 1300000. Since we find the average items contained in all the playlists is 150 items, we 
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construct 150 negative sample for each user and generate the files music_format_neg.txt. Then 

we merge the data of music_format_neg.txt into music_format.txt to get the final model training 

data music_format_full.txt. In the modeling process, we randomly split the train set at the ratio 

of 75%:25%, and take 25% as the test set. The final data format is as the following Table 3.2: 

 

Table 3.2 Sample format of our dataset following MovieLens 

user_id, song_id, score, time_stamp 

392991828,33891487,1.0,1300000 

392991828,31168297,1.0,1300000 

392991828,101085,1.0,1300000 

392991828,407761300,1.0,1300000 

392991828,29738501,0.0,1300000 

392991828,48365894,0.0,1300000 

...... 

 

 

 
3.2  Models 

This paper uses the python library Surprise (Hug, 2020) in the modeling process of the 

recommender system. Surprise is a Python library for building and analyzing rating prediction 

algorithms. It was designed to closely follow the scikit-learn API. 

We use the models listed in Table 3.3 to predict the user-item ratings and we will discuss 

their performance in the section 4. 
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Table 3.3 Models used in our experiment 

 
Category Name Description 

Baseline Min Predictor A baseline algorithm predicting a 

minimum rating based on the train set. 

Baseline Max Predictor A baseline algorithm predicting a 

maximum rating based on the train set. 

Baseline Normal Predictor A baseline algorithm predicting a 

random rating based on the distribution 

of the train set. 

Memory-based 

(Neighborhood-based) 

kNN Basic A basic kNN CF algorithm. 

Memory-based 

(Neighborhood-based) 

kNN with Means An improved kNN algorithm, taking the 

mean normalization of each user into 

account. 

Memory-based 

(Neighborhood-based) 

kNN with Z-Score An improved kNN algorithm, taking the 

z-score normalization of each user into 

account. 

Model-based 

 

Slope One A simple yet accurate CF algorithm. 

Model-based 

(Matrix Factorization) 

SVD An algorithm to identify latent 

semantic factors by decomposing 

matrix. 

Model-based 

(Matrix Factorization) 

SVD++ An improved SVD algorithm, taking 

implicit ratings into account. 
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3.2.1 Notation Schema 

Our notation schema is listed in following Table 3.4. 
 
 

Table 3.4 Notation Schema 

 the set of all ratings. 

 the training set, the test set, and the set of predicted ratings. 

 the set of all users. u and v denote users. 

 the set of all items. i and j denote items. 

 the set of all users that have rated item i. 

 the set of all users that have rated both items i and j. 

 the set of all items rated by user u. 

 the set of all items rated by both users u and v. 
 the true rating of user u for item i. 

 the estimated rating of user u for item i. 

 the baseline rating of user u for item i. 

 the mean of all ratings. 

 the mean of all ratings given by user u. 

 the mean of all ratings given to item i. 

 the standard deviation of all ratings given by user u. 

 the standard deviation of all ratings given to item i. 

 the k nearest neighbors of user u that have rated item i. 

 the k nearest neighbors of item i that are rated by user u. 
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3.2.2 Baselines 

We propose three baseline models to evaluate the effectiveness of all other models. The idea 

here is our algorithms must at least perform better than our baselines to prove they are doing a 

predictive job. The Min Predictor would always output 0, which means dislike; and the Max 

Predictor would always output 1, which means like. The Normal Predictor predicts a random 

number based on the normal distribution of our training set, which would be a fraction number 

between 0 and 1. 

3.2.2.1 Min Predictor 

Min Predictor predicts a minimum rating based on the train set, which is 0 in our dataset. 

 
�̂�!# = min 𝑟!# 

 

3.2.2.2 Max Predictor 

Max Predictor predicts a maximum rating based on the train set, which is 1 in our dataset. 

 
�̂�!# = max 𝑟!# 

 
 

3.2.2.3 Normal Predictor 

The Normal Predictor Baseline algorithm predicts a random rating based on the distribution of 

the train set. The prediction�̂�!# is generated from a normal distribution  where 𝑢<  and 

𝜎< are estimated from the training data using Maximum Likelihood Estimation. 
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3.2.3 kNN-based Models 

The k-Nearest-Neighbors (kNN) is a non-parametric classification and case-based learning 

method, which keeps all the training data for classification (Ricci and Shapira, 2015). It is 

simple but effective in many cases. For a user u to be classified, its k nearest neighbors are 

retrieved, and this forms neighborhoods of u. The kNN-based algorithm automates the general 

principles of word-of-mouth, in which people consider and rely on the opinions of other like-

minded people to evaluate items. It mainly including user-based and item-based two directions. 

In the user-based CF scenario, when user A needs personalized recommendations, the 

system would first find other users who have similar interests with A, and then recommend 

those items that those user likes but that the user A has never known. The user-based CF 

algorithm mainly includes two steps: First, investigate the set of users with similar interests to 

the target users, and find its k nearest neighbors; Second, find items in those users’ collections 

and not in the collection of the target user, and recommend them to the target users. 

The item-based CF is the most widely used algorithm in the industry, recommending 

similar items to the users they previously liked. The item-based collaborative filtering 

algorithm mainly includes two steps: First, calculate the similarity between all items in the set 

with the target item, and find its k nearest neighbors; Second, generate recommendations for 

the user based on the similarity of items. 

In all the kNN algorithms performed in our experiment, we set their k value equals 40. 
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3.2.3.1 kNN Basic 

A basic form of kNN algorithm. The prediction �̂�!# is set as: 

 

User-based:  

Item-based:  

3.2.3.2 kNN With Normalization 

Normalization is the process of adjusting values measured on a different scale to a common 

scale. It compensates for the difference in users' behavior by adjusting the rating scale, and 

make the range comparable or same with other users' ratings. Without normalization, our data 

would be unscaled and hence highly intricate to calculate and compare with other parameters 

(Pandey et al., 2017). There are many normalization techniques, including feature scaling, 

coefficient of variation, studentized residual, standard score (Z-Score), etc. In this thesis, we 

use Mean-centering and Z-Score to Normalize (Breese et al., 1998). 

 

3.2.3.2.1 kNN with Means 

kNN with Means is an improved kNN algorithm, in which the mean ratings of each user or item 

are considered. The idea of centering the mean is to determine whether a rating is positive or 

negative by comparing it with the mean rating. In user-based CF, the raw rating 𝑟!#  is 
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transformed into ℎ(𝑟!#) by subtracting the average of the rating 𝑟!?  to 𝑟!#. In item-based CF, the 

ℎ(𝑟!#) is done in the similar manner. 

ℎ(𝑟!#) = 𝑟!# − 𝑟!?  

 

In our experiment, the prediction �̂�!# is set as: 

 

User-based:   

 

Item-based:  

 

3.2.3.2.2 kNN with Z-Score 

kNN with Z-Score is an improved kNN algorithm, considering the Z-Score normalization of 

each user or item. The Z-Score normalized each score to its number of standard deviations that 

it is distant from the mean score. While mean-centering eliminates the drift caused by the 

different perceptions of the average rating, Z-Score also takes into account the difference in 

each individual scales. In user-based CF, ℎ(𝑟!#) equals to mean-centered 𝑟!# divided by the 

standard deviation 𝜎!. In item-based, the ℎ(𝑟!#) is done in the similar manner. 

 

ℎ(𝑟!#) =
𝑟!# − 𝑟!?
𝜎!
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In our experiment, the prediction �̂�!#  is set as: 

 

User-based:   

 

Item-based:   

 

3.2.3.3 Similarity Metrics for kNN Models 

The similarity weights play an important role in neighborhood-based CF methods. They 

provide different methods to give these neighbors more or less weight in the prediction. 

For kNN Basic, kNN with Means, and kNN with Z-Score, we use the following three 

metrics in Table 3.5 to calculate their similarity for both user-based and item-based methods. 

 

Table 3.5 Similarity Metrics for kNN Models 

Cosine Similarity Calculate the Cosine Similarity for both user-

based and item-based kNN models. 

Mean Squared Difference (MSD) Calculate the Mean Squared Difference for both 

user-based and item-based kNN models. 

Pearson Correlation Coefficient Calculate the Pearson Correlation Coefficient for 

both user-based and item-based kNN models. 
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3.2.3.3.1 Cosine Similarity 

Cosine similarity is one of the most popular metrics used in Information Retrieval. It treats 

objects as vectors in an N-dimensional vector space. In the following equation, cosine similarity 

investigates the angle between two vectors, item i and item j. 𝑅!,# is the rating of item i given 

by user u. 𝑅!,* is the rating of item j by user u. n is the total number of all ratings to item i and 

item j (Billsus and Pazzani, 1998). 

 

𝑠𝑖𝑚(𝑖, 𝑗) = 𝑐𝑜𝑠(𝚤, 𝚥) 	= 	
𝚤 ⋅ 𝚥

‖𝚤‖+‖𝚥‖+ 	= 	
∑ 𝑅!,#𝑅!,*,
!-&

M∑ 𝑅!,#+,
!-& M∑ 𝑅!,*+,

!-&

 

 

Two vectors are considered similar if the angle between them is small. When the angle reaches 

0 digress, sim(i,j) = 1, indicating we can regard them as identical. When the angle reaches 180 

digress, sim(i,j) = -1, indicating we can regard them as opposite. If the angle is 90 degrees, 

sim(i,j) =  0, meaning the two vectors are irrelevant. In our cases, sim(i,j) ranges from 0 to 1. 

 

In our experiment, we calculate the cosine similarity between all pairs of users and items. The 

cosine similarity for users is defined as: 

 

 

 

 

uv

uv uv

ui vi
i I

2 2
ui vi

i I i I

r r
cosine_sim(u, v)=

r r
Î

Î Î

×

×

å

å å



 

38 

 

The cosine similarity for items is defined as: 

 

 

 

3.2.3.3.2 Mean Squared Difference 

Mean Squared Difference (MSD) evaluates the similarity between two users u and v as the 

inverse of the average squared difference between the rating given by u and v on the same 

items (Shardanand and Maes, 1995). 

 

 

We calculate the Mean Squared Difference similarity between all pairs of users or items. The 

MSD for users is defined as: 

 

 

The MSD for items is defined as: 
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3.2.3.3.3 Pearson Correlation Coefficient 

Pearson correlation coefficient is one popular method used in collaborative filtering 

tasks. It measures the tendency of two number series, paired up one-to-one and move together 

(Deshpande and Karypis, 2004). The Pearson correlation coefficient can be considered as an 

improved cosine similarity with mean-centered (Ricci and Shapira, 2015). As in the following 

equation, it measures the linear correlation between two vectors item i and item j. 

 

 

𝑠𝑖𝑚(𝑖, 𝑗) =
〈𝑅!,# − 𝐴# , 𝑅!,* − 𝐴*〉
Q𝑅!,# − 𝐴#QQ𝑅!,* − 𝐴*Q

	= 	
∑ (𝑅!,# − 𝐴#)(𝑅!,* − 𝐴*),
!-&

R∑ (𝑅!,# − 𝐴#)+,
!-& R∑ (𝑅!,* − 𝐴*)+,

!-&
 

 

 

n is the total number of all ratings given to i and j. 𝑅!,# is the rating of item i given by user u, 

𝑅!,* is the rating of item j given by user u. 𝐴# is the average rating of item i for all the co-rated 

users, and  𝐴* is the average rating of item j for all the co-rated users. When two the vectors are 

in a high level of similar tendency, sim(i,j) is close to 1; when two vectors are in a low level of 

similar tendency, sim(i,j) is close to 0. When two vectors have an opposite tendency, sim(i,j) is 

-1. In our cases, sim(i,j) ranges from 0 to 1. 
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In our experiment, we calculate the Pearson correlation between all pairs of users and items. 

The Pearson correlation for users is defined as: 

 

 

 

The Pearson correlation for items is defined as: 

 

 

 

 

3.2.4 Slope One 

Slope One algorithm is a linear and personalized algorithm based on the rating difference 

between different items to predict users' rating of items. Compared with other similar 

algorithms, it has several advantages: easy to implement, updateable on the fly, efficiency at 

query time, expect little information from users, and the relatively high accuracy of 

recommendation (Lemire and Maclachlan, 2005). 

The slope one method considers both information from all users rated the same item 

and from all items rated by the same user. It follows the intuitive principle of the “popularity 

differential” between items and users. The way it measures such popularity differential is by 

simply subtract the average rating of the two items. In turn, this difference could be used to 
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predict the rating by another user on the item. For example, given two user A and B, two item 

I and J in the following Figure 3.4. 

 

Figure 3.4 Logic flow for Slone One method 

 

User A gives item I a rating of 1, item J a rating of 1.5, while user B gave I a rating of 2. The 

rating difference between I and J gave by User A is 0.5, so we simply use this value difference 

to calculate that user B will give item J a rating of 2 + 0.5 = 2.5. 

 

Formulating this idea into equation, we first calculate the average deviation of item i relative 

to item j as: 

 

 

Note that those users not containing both 𝑢# and 𝑢* would not be included in the summation. 

Then according to the rating deviation between items and the user's historical rating, we predict 

the user's rating of unrated items. The prediction  is set as: 
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 is the set of relevant items, for example, the set of items j rated by u that also have at 

least one common user with i. 

 

3.2.5 Matrix Factorization Models 

Matrix Factorization methods consider both items and users as vectors of factors inferred from 

the rating patterns. Recommendations are made based on high correspondence between item 

and user. Matrix Factorization methods have become popular in recent years since they have 

good scalability and predictive accuracy. Also, they provide more flexibility for modeling 

various kinds of real-life situations. Matrix factorization models map users and items to an f-

dimensional joint latent factor spaces, in order to model user-item interactions as inner products 

in these spaces. The latent factor space attempts to explain ratings by characterizing both items 

and users through factors that are automatically inferred from users’ feedback (Koren et al., 

2009). 

3.2.5.1 SVD 

Singular Value Decomposition (SVD) methods can identify latent semantic factors. The key 

idea of SVD is to find lower-dimensional features space, where the new features can represent 

the “concepts” and the “strength” of each concept in the context of the collections (Wall et al., 

2003). SVD algorithms work in the following process (Figure 3.5): first decompose a given 

matrix A into 𝐴 = 𝑈𝜆𝑉(. By decomposing the 𝑛 × 𝑚 matrix A, we can obtain 𝑛 × 𝑟 matrix U 

((represent the concepts and items), 𝑟 × 𝑟 matrix 𝜆 (represent the strength of each concept), 

and 𝑚 × 𝑟 matrix 𝑉 (represent the features and concepts). 

( )iR u
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Figure 3.5 Logic flow for SVD method 

 

Converting the idea into algorithms, each item i is associated with a vector 𝑞# 	𝜖	𝑅', and each 

user u is associated with a vector 𝑝!	𝜖	𝑅'. For item i, the elements of 𝑞# measure the extent to 

which the item possesses those factors, positive or negative. For user u, the element  𝑝! 

measures the extent of interest the user has in items that are high on the corresponding factors, 

positive or negative. The resulting dot product, 𝑞#(𝑝!, captures the interaction between user u 

and item i, that is, the user’s overall interest in the item’s characteristics (Ricci and Shapira, 

2015).  Thus, a rating is predicted as: 

 

 

In order to estimate all the number unknown, the regularized squared error is minimized as the 

following equation: 

 

 

 

The constant 𝜆  that controls the degree of regularization is usually determined by cross-

validation. Minimization is usually performed by stochastic gradient descent or alternating least 

squares. In Surprise, the minimization is performed through the stochastic gradient descent as 

followings: 
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Sarwar et al. (2002) mentioned one of the advantages of SVD is that when calculating 

approximated decomposition, it is incremental so that new users and ratings can be accepted 

without having to recalculate the model that built from previous data. 

 

3.2.5.2 SVD++ 

Koren (2008) proposes SVD++, which improved SVD’ prediction accuracy by also considering 

users’ implicit feedback, thereby providing another indication of user preferences. This implicit 

feedback can stem from the user’s browsing history or from listening events and is expressed 

in binary form. 

SVD++ is especially helpful for cases when users provide more implicit feedback than 

explicit feedback. Even in cases where implicit feedback is absent, it can capture a significant 

amount of information by considering which items users have rated, regardless of their rating 

value (Ricci and Shapira, 2015). This led to a second latent factor, which optimized in 

conjunction with those latent factors that modeling the explicit ratings. Each item i to a factor 

vector 𝑦# 	𝜖	𝑅', those new latent factors are used to characterize users based on the set of items 

they have rated. The equation is shown as follows: 
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𝐼! is the set contains all items rated by user u, and 𝑦* is the new set of item factors that capture 

implicit ratings. The implicit rating describes the fact that the user u rated the item j, and has 

nothing to do with the actual rating value. The bias 𝑏! and factors 𝑝! are assumed to be zero if 

user u is unknown. The same rules applied for item i with 𝑏#, 𝑞#, and 𝑦#. 

 

In our experiment, for both SVD and SVD++, the learning rates 𝛾 are set to 0.005, and the 

regularization terms 𝜆 are set to 0.02. 
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3.3  Evaluations 

We use four evaluation metrics for comparing the performance of all algorithms discussed in 

section 3.2 on our dataset: MSE, RMSE, MAE, and FCP. 

 

3.3.1 Mean Squared Error (MSE) 

Mean Squared Error (MSE) is used to compare the predicted value with the real preference 

value a user has assigned to an item. 

 

 

 

Where 𝑅]  is the total number of ratings over all users, 𝑟!# is the predicted rating for user 𝑢 on 

item 𝑖, and �̂�!# is the actual rating. 

 

3.3.2 Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE) is one of the most popular metrics used in evaluating the 

accuracy of predicted ratings. It is becoming more popular since it is the metric used in the 

Netflix Prize [11] contest for movie recommendation performance. It equals to the square root 

of the MSE metric. 
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3.3.3 Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is another widely used metric in CF research, which measures the 

average of the absolute difference between the predicted value and the true value. 

 

 

 

Where 𝑅]  is the total number of ratings over all users, 𝑟!# is the predicted rating for user 𝑢 on 

item 𝑖, and �̂�!# is the actual rating. 

 

The difference between MAE and MSE/RMSE is that MSE/RMSE heavily emphasizes large 

errors. For example, given a test set with four hidden items, system A makes an error of 2 on 

three ratings and no error on the fourth, system B makes error of 3 on one rating and no error 

on all three others. In this scenario, MSE/RMSE would prefer system A and MAE would prefer 

system B. 

 

3.3.4 Fraction of Concordant Pairs (FCP) 

Concordant pairs and discordant pairs compare two pairs of data points and to describe their 

relationship. To calculate this, the data are processed in ordinal. The procedure in calculating 

concordant and discordant pairs compares the classifications of two variables (e.g., user 1 and 

user 2) on the same two items (item i and item j). If their direction of classifications is the same, 

the pairs are concordant. For example, both user 1 and user 2 rate item i higher than item j. If 

the direction of the classification is different, the pair is discordant (Koren and Sill, 2013). For 

example, user 1 rates item i higher than item j but user 2 rates item i lower than item j. 
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Given a test set 𝑅], we define the number of concordant pairs 𝑛.! for user u by counting those 

ranked correctly by rating predictor �̂�!. We count the discordant pairs 𝑛/! for user u in a similar 

way:  

 

 

 

 

Summing over all users we define 𝑛. =	∑ 𝑛.!!  and 𝑛/ =	∑ 𝑛/!! : 

 

 

 

 

The final fraction of concordant pairs denoted as following: 
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4. Results and Discussion 

We performed three baseline models (MinPredictor, MaxPredictor, and NormalPredictor), 

three Neighborhood-based models (kNN Basic, kNN with Means, and kNN with Z-Score) with 

three similarity metrics (Cosine, MSD, and Pearson), Slope One model, and two Matrix 

Factorization-based models (SVD and SVD++) on our dataset, and evaluated their performance 

by using four evaluation metrics (RMSE, MSE, MAE, and FCP). Their results are reported in 

Table 4.1, and graphs are Figure 4.1 - 4.4. 

 
 
 

Table 4.1 Experiment results for all models 

 RMSE MSE MAE FCP 

Min Predictor 0.7007 0.4909 0.4909 0.0000 

Max Predictor 0.7135 0.5091 0.5091 0.0000 

Normal Predictor 0.6137 0.3766 0.4980 0.4796 

KNN Basic-userBased-Cosine 0.5095 0.2596 0.3711 0.6361 

KNN with Means-userBased-Cosine 0.4142 0.1716 0.3047 0.6844 

KNN with ZScore-userBased-Cosine 0.4120 0.1698 0.3001 0.6843 

KNN Basic-itemBased-Cosine 0.4790 0.2294 0.3629 0.5863 

KNN with Means-itemBased-Cosine 0.4830 0.2333 0.3434 0.6687 

KNN with ZScore-itemBased-Cosine 0.4842 0.2345 0.3404 0.6675 

KNN Basic -userBased-MSD 0.5401 0.2917 0.4041 0.6261 

KNN with Means-userBased-MSD 0.4324 0.1870 0.3207 0.6640 

KNN with ZScore-userBased-MSD 0.4298 0.1847 0.3150 0.6639 

KNN Basic-itemBased-MSD 0.4935 0.2436 0.3652 0.6414 

KNN with Means-itemBased-MSD 0.4545 0.2066 0.3324 0.6824 

KNN with ZScore-itemBased-MSD 0.4514 0.2037 0.3256 0.6890 
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KNN Basic-userBased-Pearson 0.4946 0.2447 0.3941 0.5244 

KNN with Means-userBased-Pearson 0.4165 0.1735 0.3234 0.5607 

KNN with ZScore-userBased-Pearson 0.4153 0.1725 0.3210 0.5611 

KNN Basic-itemBased-Pearson 0.4890 0.2391 0.3619 0.5831 

KNN with Means-itemBased-Pearson 0.4811 0.2315 0.3422 0.6578 

KNN with ZScore-itemBased-Pearson 0.4791 0.2295 0.3401 0.6765 
SlopeOne 0.4674 0.2185 0.3569 0.6142 

SVD 0.3917 0.1534 0.3201 0.7002 
SVD++ 0.3859 0.1489 0.3104 0.6978 

 
 
 
 
 

 
Figure 4.1 Comparing all models on RMSE 
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Figure 4.2 Comparing all models on MSE 

 
Figure 4.3 Comparing all models on MAE 
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Figure 4.4 Comparing all models on FCP 

 
 
 

4.1 Baselines 

The results of RMSE, MSE, and MAE represent the gaps between the predicted values and the 

true values, the smaller their value, the better the predictions. While the result of FCP represent 

the fraction of correct predictions in total predictions, the higher this value, the better the 

predictions. 

The results of our three baseline predictors proved that all other CF algorithms we tested 

are all working on our Chinese music dataset. Our baseline predictor Min Predictor always 

predict 0, and Max Predictor always predict 1. For every prediction, it’s true value is either 1 

or 0, so Min Predictor and Max Predictor always have 50 percent chance to reach the correct 

predictions, which is equivalent to random guessing. The MSE, and MAE results of Min 
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Predictor and Max Predictor are around 0.5, which fit our expectation. The RMSE is just the 

square root of the MSE. Since all pairs of value in Min Predictor and Max Predictor are same 

and cannot be treated as ordinal, so their FCP are 0. Since our Normal predictor predicts a 

random rating based on the distribution of the training set using maximum likelihood estimation, 

which is a more supplicated baseline than Min Predictor and Max Predictor, it is not surprised 

to see it outperform the other two on RMSE, MSE, and FCP metrics. From the MAE indicator, 

all the three baselines are around 0.5. We can intuitively understand that whether it is 0 or 1, 

the baseline models predict 0.5 on average, which means none of the three baselines did any 

predictive jobs in the score predictions of 0 and 1.  

The MAE of all other recommendation algorithms is around 0.3 to 0.4. Take the best 

one, user-based kNN with Z-Score using Cosine similarity, as the example, an intuitive 

understanding is that, on average, the model prediction value is 0.3001 off from 0, and 0.6999 

off from 1. For all evolution metrics, whether the algorithm is based on kNN, slope one, or 

matrix factorization, they significantly outperform our baselines, which indicates that those 

models all work on our data set, showing their predictive ability on the music recommendation 

task.  

 

 
Figure 4.5 Comparing user-based kNN models on Cosine 
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Figure 4.6 Comparing item-based kNN models on Cosine 

 
Figure 4.7 Comparing user-based kNN models on MSD 

 
Figure 4.8 Comparing item-based kNN models on MSD 
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Figure 4.9 Comparing user-based kNN models on Pearson 

 

 
Figure 4.10 Comparing item-based kNN models on Pearson 

 

 

4.2  kNN-based Algorithms 

In the kNN-based recommendation algorithm, we chose three different similarity metrics 

(Cosine, MSD, and Pearson) in their calculation. As we can see on Figure 4.5 - 4.10, although 

their final results have slight differences, the trends between different models are consistent, 

which shows the robustness of each model in our music dataset. 
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For the two normalization methods, we found that almost all the kNN algorithm 

considering Means or Z-Score got more or less improved in their accuracy. This shows the 

effectiveness of such simple step in CF models. Both Means and Z-Score use mean centering 

to eliminate deviations caused by the different perceptions of the average rating, and Z-Score 

also considers the spread in each individual scales by considering their standard deviation. By 

comparing the two methods, we did not see an obvious difference. Z-Score improved a slightly 

accuracy on these models, usually around 0.01 to 0.03. The most significant one is FCP of 

item-based kNN using Pearson metric, has an improvement of 0.0623. 

However, it can be seen from the charts that the user-based kNN algorithms experienced 

more influence than the item-based kNN by normalization. In all user-based kNN algorithms, 

kNN with normalization got significantly improve compare to kNN basic. This is because the 

ratings are highly influenced by the scale of individual users. Individuals have different 

standards and habits during rating. Some individuals are “kind-hearted” or have lower 

standards when rating and tend to rate high, while others may be “cold-hearted” or have higher 

standards and tend to give relatively low ratings. Normalization compensates for users' 

behavior by adjusting the rating scale to be comparable or on the same level as other users' 

ratings. This also shows that it is effective and necessary to do data normalization for user-

based kNN methods. 

To compare the results of user-based kNN and item-based kNN, with normalization, we 

can see user-based algorithms perform a bit better than item-based methods. The reason here 

may because we only took those playlists with more than one hundred subscribers. More 

subscribers may also indicate the playlist contain more popular songs. If a considerable number 

of songs in these playlists have overlap, those users are similar in the first place. So that user-

based model can perform better. 
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Another reason for this may derive from the ratio between the number of users and 

items in our dataset. User-based methods obtain k similar users by comparing the ratings made 

by users on same items. Item-based methods obtain k similar items by comparing ratings made 

by the same users on items. Since we have 1076 users and 49774 items, the number of items is 

much larger than that of users. So that each user could compare lots of items to find their precise 

neighbors, but each item has much smaller data to consider their neighbors. However, the 

ratings in real-life situations are normally skewed. The majority of ratings are given to a small 

amount of items by lots of users, which means the number of users is much larger than that of 

items, just like platforms such as Amazon and Netflix. We can generalize that in the cases 

where the number of users is much greater than the number of items, item-based methods could 

produce more accurate recommendations. In the contrary, when we want to build recommender 

systems for platforms where the number of users less than the number of items, the user-based 

methods might perform better. For example, in research paper platforms, it may have tons of 

papers but only thousands of scholar users. In this case, the user-based methods could be 

implemented. 

 
 
 
4.3  Slope One Algorithm 

In our experiment, Slope One algorithm reaches medium-level results. In RMSE and MSE 

metrics, Slope One did worse than user-based kNN with normalization and two matric 

factorization-based (SVD and SVD++) algorithms, but outperform item-based kNN methods 

(whether with normalization or not). In MAE and FCP metrics, Slope One only did better than 

basic kNN. In short, Slope One has reasonably accurate results on our data set, despite its nature 

of simplicity. It expects little information from users, and its process time is much shorter than 
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other sophisticated algorithms. It might be used as a supplement to other sophisticated 

algorithms. 

 
 
 
4.4  Matrix Factorization-based Algorithms 

SVD and SVD++ performed very well on our four similarity metrics. They outperform all other 

algorithms to a great extent. Especially for SVD++, it is overall the best algorithm on our 

dataset. SVD++ outperforms SVD on RMSE, MSE, and MAE, but a slightly worse than SVD 

on the FCP metric. Its MAE reached 0.3104, which means, on average, its predictions deviate 

31.04 % from the true value. The reason for SVD++ performs better than SVD, mainly because 

SVD++ takes users’ implicit feedback as a second latent factors into considerations. For our 

dataset, the rating information was generated from user’s collection behavior, and for their 

disliked songs, we artificially generate them by sampling the songs outside of the collection. 

All these ratings can be considered as their implicit feedback. So SVD++ is very helpful in our 

cases. 

Our results also show that matrix factorization-based methods in most cases have better 

predictive ability than kNN-based methods. Factorization-based and neighborhood-based 

methods developed upon different basic ideas and principles, which led to different prediction 

rules. kNN models try to connect users to new items by following the chains of user-item 

relationships. Such relationships represent their preference between the users and items. Both 

user-based and item-based models operate following the chains of user-item relationships, 

which can be seen as a local perspective. Factorization-based models try to observe ratings as 

the result of a number of latent factors of user characteristics (for our case, e.g., musical 

preference or taste, users' personality) and item characteristics (e.g., genre, instrumentation, 



 

59 

ect.). For each user, factorization-based models create a profile for them and make personalized 

recommendations, which can be regard as a global perspective. 

However, we can see on the MAE metric, all user-based kNN models with 

normalization reached comparable results with matrix factorization-based models. The best 

result is actually reached by user-based kNN models using cosine similarity with Z-Score, even 

1.03% better than SVD++. But on RMSE and MSE metrics, matrix factorization-based still 

way better than kNN models. The reason here is related to the difference between the evaluation 

principles of RMSE/MSE and MAE. Comparatively, (R)MSE penalizes large gaps more 

harshly than MAE. It shows that in our dataset, there are some data points that would easily 

make our algorithms’ prediction largely away from the real value. SVD and SVD++ have better 

performance when facing these outliers, so their (R)MSE results are better. However, the 

penalty for the outlier in MAE is smaller, so that the advantages of SVD and SVD++ are not 

reflected. Using the kNN algorithm with normalization, the rating scale can be well controlled 

in a smaller range, so their MAE can also get good results. At the same time, in the parameter 

estimation of SVD and SVD++, the loss function uses regularized squared error, so the model 

will update the parameters in the direction of decreasing squared error, so the model tends to 

eventually converge to a smaller (R)MSE. Thus, a better result also depends on the error 

measure we use. If we want an unbiased forecast, use the (R)MSE would be more suitable. If 

we want the median of the future distribution, use the MAE could get a better result. 

 
 
 
4.5  Limitations 

Our experiment has some limitations. The most obvious one is in the process we develop our 

dataset. We created the binary rating matrix by giving “1” (stands for “rated and like”) and “0” 

(stands for “dislike”) to the songs in the collection and outside the collection arbitrarily. We 
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assume users have listened to all the songs in our dataset, but this is ideal and may not be true. 

For the songs added to the collection, we gave them 1, which is not disputed. However, there 

are many reasons why a song is not added to the collection, including the user indeed dislike it, 

have not listened to it, or like it but forgot to add it to the collection, etc. For this part of user 

context information, there may be better ways to deal with it, but based on our knowledge, the 

best way we can do it is to dualize them. Fortunately, our data proved to be valid through 

experiments. If we take a smarter approach, we may get better results. 

Another limitation of the experiment is that we filtered out many playlists with data 

sparsity issues by only keeping playlists with the subscribedCount > 100. How to deal with this 

part of the user's information has always been a difficult problem in the CF algorithm, also 

known as the cold-start problem. When we have users who have little information to use, how 

do we recommend items to them? Our experiments choose to ignore this part of information, 

since these data will cause interference to other playlists that do not have data sparsity issues. 

We will further discuss this problem in future work. 

Another point we want to bring out is that, for the evolution metrics we use, they only 

show the overall quality of our algorithm in predictions. For the recommendations for a single 

user, we cannot see their quality through these metrics. Because each of our algorithms actually 

scores each item for each user, these ratings actually form a ranking, so we may be able to use 

the idea of discounted cumulative gain metric to make recommendations for each user. Since 

each of our ratings has different errors, we can give different errors a different relevance score. 

For example, we give those errors less than 0.1 a score of 4, error less than 0.2 a score of 3, and 

error less than 0.3 a score of 1, etc. We can also add normalization to make it a Normalized 

Discounted Cumulative Gain. In this way, we can get the recommendation quality of these 

algorithms for a single user. 
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5. Conclusion and Future Works 

In this thesis, we explored the recommendation task in Music Information Retrieval area. By 

reviewing the three state-of-the-art approaches (music content-based, music text-based, and 

user context-based) towards the task, we narrow down our focus to the user context-based 

direction. We found that there are few and old available datasets in this direction, and there is 

no public dataset specially developed for Chinese music. So, we developed a new dataset from 

the mainstream Chinese music streaming platform NetEase Cloud Music. Moreover, although 

various algorithms have been born in the research of recommendation systems, in the field of 

music recommendation, there is no systematic comparison of various collaborative filtering 

algorithms and testing their effectiveness. So, we compared the performance of a series of 

Memory-based and Model-based collaborative filtering algorithms on our dataset. Our 

experimental results prove that these CF algorithms aiming at users’ information are effective 

on our dataset, and they have the predictive ability of music recommendation task on Chinese 

music data. In general, model-based algorithms perform better than Neighborhood-based 

algorithms. Within them, the SVD++ from Matrix Factorization-based algorithms work best 

for this type of task. 

For future works, according to our experiments, we believe that the effectiveness of 

music recommendation task can be improved in terms of improving the reliability of the data 

source and improving the accuracy of the algorithm. In our experiment, the user rating data we 

use comes from their collection behavior, which is implicit feedbacks. The lack of obvious 

explicit feedback is due to the user's habit of listening to music. If the user does not like a piece 

of music, their usual behavior is to skip it, and this part of the data cannot be obtained by 

crawling. This is different from user ratings commonly used in movie recommendations. We 
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believe that in future works, for user ratings, we can consider the total playing times and 

playback times as an indicator to build their rating matrix, which may be a more reliable user 

behavior data source. 

Another takeaway is that the distinctions consider neighborhood models as “memory-

based”, while taking matrix factorization as “model-based” is not always appropriate. When 

we use sophisticated neighborhood models that take normalization methods into account, their 

presentations are delicate enough to be considered as a "model", and some of them performed 

as well as model-based methods, even outperform model-based in some evaluation metrics. 

Moreover, the opposite direction is also true. Those matrix factorization models with better 

performance also following memory-based idea, since they sum and calculate the overall 

memory stored when making predictions. Therefore, when we want to achieve higher accuracy, 

we do not have to be limited to which memory-based or model-based method, but combine 

their ideas to make a hybrid method. Memory-based model is like a local perspective, by 

considering their similar neighbors; while model-based is like a global perspective, by using 

the equation to go through all the data. Actually, our kNN models with normalization is just 

like add a global perspective by taking the mean and Z-Score of all rating to kNN’s local 

perspective. SVD++ is just like add a local perspective by taking a set of item rating as a new 

latent factor, in which the idea here is very similar to item-based kNN. A potential solution to 

achieve a higher accuracy is by applying a more limited and localized neighborhood models, 

where the number of k is small. The small k value might not be the best way to construct a 

neighborhood model alone, but it makes the neighborhood model possible to add a local 

perspective to the factorization model's global perspective. Generally, we can even think of 

combining the features of music content-based, music context-based and user context-based 

methods, to make a multimodal recommender system. Although the previous two methods are 
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not discovered in this thesis, I would explore them in my future research and trying to connect 

them. 

Lastly, when we think about what kind of music recommendations can satisfy users, 

music similarity will be the first indicator that pops out in our minds: users like the music they 

are familiar with. On our data set, our best algorithm yields about 30% error, which is a 

relatively satisfactory result in real-life situations. However, it seems not enough. As human 

beings, we also want to explore some new stuff that might interest us. If users always get similar 

music recommendations, they will eventually get bored. So, besides only concentrate on the 

errors in music similarities, we can add another consideration: freshness and novelty. We hope 

that through the behavior of users, we can also predict the types of fresh music that they might 

like and they have not been exposed to before, but it cannot be completely irrelevant. Maybe 

some new methods like SVD, considering those ratings in lower-dimensional latent space could 

be developed to describe these user preferences. By exploring more needs of users, we could 

achieve a higher level of music recommendation in the future. 
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Appendix 

Appendix A: A sample JSON format of each playlist 
 

 { 

   "result": { 

   "coverImgUrl": "http://p1.music.126.net/m9cBIL-D3or61yMh9OPdqg==/82463372088816.jpg
", 

   "ordered": true, 

   "anonimous": false, 

   "creator": { 

          "followed": false, 

          "remarkName": null, 

          "expertTags": null, 

          "userId": 16017674, 

          "authority": 0, 

          "userType": 0, 

          "gender": 1, 

          "backgroundImgId": 2002210674180202, 

          "city": 1004400, 

          "mutual": false, 

          "avatarUrl": "http://p1.music.126.net/n4CohDjvn9d8tEqjNY5vBQ==/79142846969353
66.jpg", 

          "avatarImgIdStr": "7914284696935366", 

          "detailDescription": "", 

          "province": 1000000, 

          "description": "", 

           "birthday": 631170000000, 

           "nickname": "Michaellincolic", 
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           "vipType": 10, 

           "avatarImgId": 7914284696935366, 

           "defaultAvatar": false, 

           "djStatus": 0, 

           "accountStatus": 0, 

           "backgroundImgIdStr": "2002210674180202", 

           "backgroundUrl": "http://p1.music.126.net/pmHS4fcQtcNEGewNb5HRhg==/200221067
4180202.jpg", 

           "signature": "乡愁是一枚小小的邮票，而我是乡愁。", 

           "authStatus": 0 

            }, 

      "trackUpdateTime": 1493994741396, 

      "updateTime": 1475209156574, 

      "commentCount": 2, 

      "artists": null, 

      "newImported": false, 

      "commentThreadId": "A_PL_0_58631200", 

      "subscribed": false, 

      "privacy": 0, 

      "id": 58631200, 

      "trackCount": 182, 

      "specialType": 0, 

      "status": 0, 

      "description": "在 80 后记忆里, 那时候的大街小巷, 还没有网络神曲, 那时候我们用随身听一个个传着听

的经典流行歌曲, 是时代的烙印", 

      "subscribedCount": 160, 

       "tags": [ 

              "怀旧", 

              "80 后", 

              "华语" 

           ], 



 

71 
       "coverImgId": 82463372088816, 

       "tracks": [{Track 1},{Track 2}, {Track 3},...], 

       "highQuality": false, 

       "subscribers": [], 

       "playCount": 5479, 

       "trackNumberUpdateTime": 1475209141421, 

       "createTime": 1426391701062, 

       "name": "音乐的黄金年代-流行歌曲的经典记忆", 

       "cloudTrackCount": 0, 

       "shareCount": 1, 

       "adType": 0, 

       "totalDuration": 0 

} 

} 
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Appendix B: A sample JSON format of each song 

{ 

   "bMusic": { 

              "name": null, 

              "extension": "mp3", 

              "volumeDelta": -0.31, 

              "sr": 44100, 

              "dfsId": 7959364674930721, 

              "playTime": 297000, 

              "bitrate": 96000, 

              "id": 98780031, 

              "size": 3571230 

              }, 

    "hearTime": 0, 

    "mvid": 509095, 

    "hMusic": { 

               "name": null, 

               "extension": "mp3", 

               "volumeDelta": -0.7, 

               "sr": 44100, 

               "dfsId": 7845015465254314, 

               "playTime": 297000, 

               "bitrate": 320000, 

               "id": 98780029, 

               "size": 11903663 

               }, 

     "disc": "", 

     "artists": [ 

                 { 
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                  "img1v1Url": "http://p1.music.126.net/6y-UleORITEDbvrOLV0Q8A==/563939
5138885805.jpg", 

                 "name": "周杰伦", 

                 "briefDesc": "", 

                 "albumSize": 0, 

                 "img1v1Id": 0, 

                 "musicSize": 0, 

                 "alias": [], 

                 "picId": 0, 

                 "picUrl": "http://p1.music.126.net/6y-UleORITEDbvrOLV0Q8A==/5639395138
885805.jpg", 

                 "trans": "", 

                 "id": 6452 

                  } 

                ], 

      "duration": 297000, 

      "id": 186011, 

      "album": { 

                  "status": 1, 

                  "blurPicUrl": "http://p1.music.126.net/fvq0SpfXzZKgo8drc2KjOw==/51677
046517811.jpg", 

                  "copyrightId": 1007, 

                  "name": "寻找周杰伦", 

                  "companyId": 0, 

                  "description": "", 

                  "pic": 51677046517811, 

                  "commentThreadId": "R_AL_3_18904", 

                  "publishTime": 1067616000000, 

                  "briefDesc": "", 

                  "company": "阿尔发音乐", 

                  "picId": 51677046517811, 

                  "alias": [], 
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                  "picUrl": "http://p1.music.126.net/fvq0SpfXzZKgo8drc2KjOw==/516770465
17811.jpg", 

       "artists": [ 

                    { 

                   "img1v1Url": "http://p1.music.126.net/6y-UleORITEDbvrOLV0Q8A==/56393
95138885805.jpg", 

                   "name": "周杰伦", 

                   "briefDesc": "", 

                   "albumSize": 0, 

                   "img1v1Id": 0, 

                   "musicSize": 0, 

                   "alias": [], 

                   "picId": 0, 

                   "picUrl": "http://p1.music.126.net/6y-UleORITEDbvrOLV0Q8A==/56393951
38885805.jpg", 

                   "trans": "", 

                   "id": 6452 

                    } 

                   ], 

                    "songs": [], 

                    "artist": { 

                        "img1v1Url": "http://p1.music.126.net/6y-UleORITEDbvrOLV0Q8A==/
5639395138885805.jpg", 

                        "name": "", 

                        "briefDesc": "", 

                        "albumSize": 0, 

                        "img1v1Id": 0, 

                        "musicSize": 0, 

                        "alias": [], 

                        "picId": 0, 

                        "picUrl": "http://p1.music.126.net/6y-UleORITEDbvrOLV0Q8A==/563
9395138885805.jpg", 

                        "trans": "", 
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                        "id": 0 

                    }, 

                    "type": "EP/Single", 

                    "id": 18904, 

                    "tags": "", 

                    "size": 4 

                }, 

                "fee": 8, 

                "no": 2, 

                "rtUrl": null, 

                "ringtone": "600902000006889324", 

                "rtUrls": [], 

                "score": 100, 

                "rurl": null, 

                "status": 0, 

                "ftype": 0, 

                "mp3Url": "http://m2.music.126.net/svF95I0Y5HQf0i9y5qiTBw==/79593646749
30721.mp3", 

                "audition": null, 

                "playedNum": 0, 

                "commentThreadId": "R_SO_4_186011", 

                "mMusic": { 

                 "name": null, 

                 "extension": "mp3", 

                 "volumeDelta": -0.28, 

                 "sr": 44100, 

                 "dfsId": 7979155884225087, 

                 "playTime": 297000, 

                 "bitrate": 160000, 

                 "id": 98780030, 

                 "size": 5951925 
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                }, 

                "lMusic": { 

                    "name": null, 

                    "extension": "mp3", 

                    "volumeDelta": -0.31, 

                    "sr": 44100, 

                    "dfsId": 7959364674930721, 

                    "playTime": 297000, 

                    "bitrate": 96000, 

                    "id": 98780031, 

                    "size": 3571230 

                }, 

                "copyrightId": 1007, 

                "name": "断了的弦", 

                "rtype": 0, 

                "crbt": "e93f07bd4132712eaeed426ef78e89ca", 

                "popularity": 93, 

                "dayPlays": 0, 

                "alias": [], 

                "copyFrom": "", 

                "position": 2, 

                "starred": false, 

                "starredNum": 0 

   } 


