
Evaluating and Optimizing

Real-Time Software Transactional Memory

by Shai Caspin

Honors Thesis

Department of Computer Science

University of North Carolina at Chapel Hill

April 2021

Approved by:

Thesis advisor: James H. Anderson

Second reader: F. Donelson Smith

Coordinator: Donald E. Porter

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/475608741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Software transactional memory (STM) is a proposed solution to the challenge

of developing correct concurrent code. STM allows programmers to annotate

sections of their code that need to be synchronized, and the STM implementa-

tion resolves synchronization issues behind the scenes. One application domain

where STM can be particularly useful is real-time systems, where schedula-

bility is a crucial metric is system certification. However, STM usually relies

on retries to resolve contention, which makes theoretical worst-case behavior,

and thus schedulability, highly pessimistic and therefore impractical in the real-

time application domain. Previous work on real-time STM has failed to give

both theoretical and practical solutions to this problem. Work in this thesis

is part of a large effort to present real-time STM that is both schedulable and

high-performing, achieved using a retry-free, and thus entirely lock-based, STM

implementation. This work details multiple metrics for evaluating retry-free

STM compared to a known retry-based lock-based solution, as well as presents

optimizations to a locking protocol for increased performance in this context.

Evaluations show a retry-free STM implementation with optimized locking pro-

tocols is significantly more schedulable and higher performing on single-socket

machines than other lock-based STM.

2

Acknowledgements

Thank you to all my friends, collaborators, and mentors on this project and

during my time as an undergraduate. Your guidance and advice has been in-

valuable. Thank you to my advisor Jim Anderson, mentors Catherine Nemitz

and Bryan Ward, and collaborators Claire Nord and Nathan Burow, for making

this project a joy to work on while allowing me to grow and challenge myself

as a researcher. Thank you to Don Smith and Don Porter for helping me get

into research and advising me along the way. Additional thanks to my parents,

sisters, and friends for their never ending support.

3

Contents

1 Introduction 5
1.1 Organization . 6
1.2 Contributions . 6

2 Background 7
2.1 Transactional Locking II . 7
2.2 Implementation . 10
2.3 Phase-Fair Reader/Writer Locks 11

3 Schedulability 13

4 PF R/W Lock with Light Reading 18
4.1 Design . 19
4.2 Evaluation . 19

5 Throughput 23
5.1 Branching Benchmarks . 23
5.2 Object Grouping Exploration . 26

6 Conclusion 29

References 31

4

1 Introduction

Multiprocessor shared-memory systems are now commonly used, allowing greater

opportunities for concurrency. Concurrent code requires synchronization mech-

anisms to coordinate access to shared memory. Proper synchronization can be

tricky to achieve, and synchronization bugs can lead to system failures. Software

Transactional Memory (STM) is a high-level concept for handling concurrent

code where synchronization mechanisms are hidden from the programmer. Code

that has to be synchronized is annotated as a transaction by the programmer,

and the STM implementation handles synchronization internally, usually at a

library or compiler level. STM has been well-studied for throughput-oriented

systems, with multiple designs and implementations across different program-

ming languages.

STM traditionally relies on speculative transaction execution with aborts

and retries to resolve contention. This also introduces greater chance for con-

currency. However, retries introduce additional uncertainty in reporting timing

guarantees, which are crucial for certifying real-time systems. One such as-

pect for certification is schedulability, which details whether a system can be

scheduled without missing any deadlines. Retries can cause increased overheads

and worse overall schedulability. No previous exploration of real-time STM has

detailed the benefits of a retry-free approach to STM. Retry-free STM can be

achieved using entirely lock-based synchronization providing well-studied timing

guarantees. Questions then arise of how to precisely evaluate STM performance

outside of just traditional throughput, and how to optimize a retry-free imple-

mentation to match retry-based performance in the common case.

5

1.1 Organization

This thesis explores multiple metrics for evaluating lock-based STM using schedu-

lability analysis and throughput benchmarks with a focus on predicting worst-

case behavior. First, I will provide necessary details on the theory behind retries

and locks, as well as the actual STM designs compared in this work. Then, I will

detail the schedulability gains of an entirely retry-free STM, discuss and evalu-

ate how a locking protocol can be tailored for performance, and finally compare

two lock-based STM implementations, one of which is entirely retry-free. These

efforts are all towards showing that a more predictable retry-free STM imple-

mentation can achieve comparable performance to more traditionally designed

retry-dependant STM.

1.2 Contributions

The work detailed in this thesis is part of a large effort to create and promote

real-time STM that is both predictable (and thus certifiable) and performant.

The retry-free STM implementation evaluated in this thesis was designed by

Claire Nord, and detailed in her Master’s Thesis [16]. Much of the theoretical

work was done in collaboration with Catherine Nemitz, and the locking-protocol

design was done in collaboration with both Catherine Nemitz and Bryan Ward.

My contributions are mainly in designing all the tests, throughput benchmarks,

and overhead experiments, implementing various locking mechanisms and state

structures in both Rust and C, and aiding with the design of the new locking

protocol presented.

6

2 Background

Transactional Memory (TM) was first proposed by Knight [12] and then further

popularized by Herlihy and Moss [11] as a hardware-supported mechanism for

synchronization. Shavit and Touitou then proposed a software-only solution

[22, 23], branded Software Transactional Memory, using non-blocking synchro-

nization. Dice, Shalev, and Shavit presented Transactional Locking II (TL2)

as a lock-based solution that relied on retries to prevent deadlock [10]. In

retry-based STM, synchronization is handled by contention managers, which

are mechanisms applied to ensure progress when transactions conflict.

Prior work on real-time TM focused on developing more predictable con-

tention managers. Several previous STM systems (e.g. [1, 24]) are designed

for real-time systems, but lack any formal analysis for worst-case behavior. In-

stead, such systems have been empirically evaluated based on average-case re-

sponsiveness, deadline-miss ratios, and/or synchronization overheads. Sarni et

al. [17] presented the first real-time contention manager with associated schedu-

lability analysis. Other real-time contention managers were presented by El-

Shambakey [21], who found real-time locking protocols yield overall better av-

erage deadline-miss rations than any retry-based contention manager. Schoe-

berl et al. [19, 20] presented real-time TM with static program-analysis to de-

termine retry bounds. Belwal and Cheng [2] investigated the effect of eager vs.

lazy conflict detection on real-time schedulability.

2.1 Transactional Locking II

To show gains and losses of a completely retry-free approach, the retry-free

implementation is compared against the Transactional Locking II (TL2) algo-

rithm [10, 7, 9] presented by Dice, Shalev, and Shavit. TL2 was chosen for four

main reasons: (i) like our retry-free approach, TL2 is mostly lock-based, though

7

it does allow for retries; (ii) TL2 is a well-established algorithm (over 1,000 cita-

tions); (iii) it has an open-source Rust-based implementation [13], allowing us to

conduct performance comparisons without the confounding variable of language

choice as our implementation is in Rust, a choice that will be explained later;

and (iv) measurement-based studies of some prior real-time STM approaches

have been shown inferior to lock-based synchronization [21].

In TL2 transactions are pre-executed to determine which objects they ac-

cess. This simulation requires additional overhead yet enables greater runtime

concurrency. After the simulation phase, locks are acquired for each of the writ-

ten objects so that results can be committed. In the interest of average-case

performance, such locks are acquired in an arbitrary order, potentially leading

to deadlock, which causes a transaction to abort and retry. A transaction is

forced to retry if an object it accesses is updated (or locked) after its simula-

tion, thus invalidating the simulation’s results. Transactions may conflict and

force retries at runtime if they access common objects.

The TL2 algorithm differentiates between read and write transactions, with

certain optimizations for high performance. A write transaction will perform

the following steps:

1. Sample global version-clock

2. Perform speculative execution

3. Lock write-set

4. Increment global version-clock

5. Validate read-set

6. Commit changes and release locks

A read transaction will perform the following steps:

8

1. Sample global version-clock

2. Perform speculative execution

A read-only transaction is designed to incur lower overheads. Dice, Shalev,

and Shavit purposely presented TL2 with low-cost read-only transactions claim-

ing read-dominant workloads dominate usage patterns in applications [10]. They

proceeded to show certain design aspects of TL2 outperformed previous STM

implementations on a red-black tree, in particular due to ”improved locality in

accessing the locks and the data” provided by one of their implementations [10].

Both read and write transactions incur significant overhead in preserving trans-

action state so that the speculative execution can be reversed if a transaction is

forced to abort and retry. Retrying and aborting is also costly in terms of time

spent performing unused computations or rolling them back. A transaction can

be forced to abort and retry at both steps 2 and 5 of write transactions, and

step 2 of read transactions.

TL2’s approach is deadlock-free since in the case of deadlock all transactions

will retry. Additional measures to prevent deadlock can be added on top of the

basic TL2 algorithm to ensure that two transactions do not continuously cause

deadlock. Dice, Shalev, and Shavit note that locks are not ordered when ac-

quired in step 3 of a write transaction, which increased the frequency of deadlock

but is overall more efficient in the read-dominant workload case [10].

9

2.2 Implementation

A retry-free STM implementation must provide the same basic correctness guar-

antee of progress. This can be achieved using real-time locking protocols with

the same guarantees. Nord’s TORTIS [16] is a compiler-level Rust implemen-

tation of lock-based retry-free STM, which motivated the work in this thesis.

TORTIS stands for try-once real-time STM. TORTIS leverages Rust’s inherent

thread-safety properties and strong type system to identify resources requiring

synchronization and assign locks properly within the Rust compiler.

TORTIS’s compiler extension includes wrappers for data objects that must

be synchronized. Rust’s type system allows the compiler to then identify all

wrapped object and include them in the contention-management scheme. TOR-

TIS generates a graph where each data object represents a node. If two objects

are accessed within a single transaction, an edge connects them. TORTIS then

groups each connected portion of the graph to be locked by a single lock. The

locking mechanism used can be interchanged based on user-space definitions,

and replaces the transaction keyword during compilation. The compiler identi-

fies objects that must be synchronized, assigns a lock to each group of objects

with inter-dependencies, and substitutes a user-space-defined lock as the lock

for said group.

TORTIS also distinguishes between read and write transactions. Rust’s

thread-safety primitives dictate how shared objects are accessed within threads,

and allows TORTIS to distinguish between a read (borrow) and a write (borrow

mutable). A borrow operation does not demand exclusive access while borrow

mutable does, distinguishing between read and write object accesses. A trans-

action is only marked a read transaction if all borrow accesses are non-mutable,

i.e., all accesses are reads. A system with only read transactions can run with no

synchronization. Note read-only transactions still need to be labeled to ensure

10

linearizability of reads and writes, which guarantees a read issued after a write

will read the new value written.

2.3 Phase-Fair Reader/Writer Locks

Synchronization mechanisms that differentiate between read and write oper-

ations have been studied widely, one variant of which is reader/writer (RW)

locking protocols. Some approaches to RW locking can starve one type of re-

quest over the other by giving one type preference [8, 15]. Phase-fair (PF)

reader/writer locks were proposed for lower overall blocking bounds in real-time

systems and for eliminating preferences [6]. Blocking bounds are theoretical

bounds for worst-case blocking, i.e., how much time a process attempting to

lock a resource can spend waiting for other processes to finish. PF locks alter-

nate read and write phases to ensure the order in which read or write requests

are made is preserved, i.e., no read that arrived after a write will execute before

that write and vice versa.

Brandenburg and Anderson presented several PF implementations, including

a ticket-lock-based implementation (PF-T), a more compact version for embed-

ded systems (PF-C), and a queue-based implementation (PF-Q) [5]. The PF-T

and PF-C exhibit O(n) remote memory reference (RMR) time complexity and

PF-Q exhibits O(1) RMR time complexity. The RMR measure accounts for

the number of interconnect traversals to memory for any operation, and is the

metric for evaluating the time complexity of spin-based concurrent algorithms.

Constant RMR is generally associated with lower lock overheads since memory

references are costly. Brandenburg showed PF-T exhibits lower overheads in

comparison to PF-Q for systems with high contention [4].

11

Listing 1 Original PF-T Implementation

1: type res state: record
2: rin, rout : unsigned integer, initially 0
3: win, wout : unsigned integer, initially 0

4: constant
5: RINC 0x100 // reader increment value
6: WBITS 0x03 // writer bits in rin
7: PRES 0x02 // writer present bit
8: PHID 0x01 // writer phase ID bits

9: procedure Read Lock(`: ptr to res state)
10: var w: unsigned int
11: w := fetch&add(`�rin, RINC)& WBITS . In read queue
12: await (w = 0) or (w 6= (`�rin & WBITS)) . Satisfied

13: procedure Read Unlock(`: ptr to res state)
14: atomic add(`�rout, RINC)

15: procedure Write Lock(`: ptr to res state)
16: var w, wticket, rticket : unsigned int
17: wticket := fetch&add(`�win, 1) . In write queue
18: await (wticket = `�wout) . Head of write queue
19: w := PRES | (wticket & PHID)
20: rticket := fetch&add(`�rin, w) . Marked all reads to see
21: await (rticket = `�rout) . Satisfied

22: procedure Write Unlock(`: ptr to res state)
23: fetch&and(`�rin, 0xFFFFFF00) . Clear WBITS

24: `�wout := `�wout + 1

Brandenburg and Anderson’s phase-fair reader/writer ticket lock is presented

in Listing 1. It is important to note the variables in the res state, specifically

rin, which is the location on which reads spin. In line 12 of Listing 1, the

read lock procedure continuously checks the value of rin, potentially causing

remote memory references if that value is overwritten and needs to be updated

in cache. Another cause for remote memory references is atomic operations such

as fetch&..., which force remote memory references by updating the value in

memory atomically. Overheads are measured to find worst-case execution time,

done so by testing systems with high contention and frequent RMR.

12

3 Schedulability

An important aspect of real-time systems is schedulability. Schedulability as-

sessed whether a given protocol, alongside a scheduler, can ensure a collection

of tasks is scheduled without any tasks missing their deadlines. Schedulability

hinges on whether the worst possible execution order still meets all deadlines.

Since TL2 and other STM algorithms are retry-based, schedulability must ac-

count for any possible interaction between transactions that may force aborts

and retries. If a system is schedulable, the transactions within the system can

be scheduled under any interleaving of events of execution. The purpose of this

section is to highlight schedulability differences between a retry-free approach

(TORTIS STM with a phase-fair reader/writer lock) and a lock-based approach

that is not retry-free (TL2).

Schedulability studies are conducted by generating a scenario of a system

with certain parameters, each scenario has many randomly generated task sys-

tems which model possible execution behavior. Each task is then analyzed by a

schedulability test, that determines whether the random task set is schedulable.

For each scenario, the reported schedulability ratio indicates how many of the

randomly generated task systems were schedulable under the given protocol.

When analyzing an individual transaction, each object that may be accessed

must be considered. While at runtime separate transactions could access differ-

ent data objects concurrently, when determining schedulability, we must account

for any possible conflict. Thus, the analysis assumes each access to a data object

may conflict with any other access to it. Different object groupings depend on

how well the STM implementation can detect resource groups. If a system ”col-

lapses” and treats multiple objects as one, the resulting schedulability differs

from that of a system in which every object is in its own resource group.

To determine schedulability, we used SchedCAT’s inflation-free framework

13

provided by Biondi and Brandenburg [18, 3] . Schedulability is analyzed for of

task systems under a partitioned earliest-deadline-first scheduler on an eight-

processor platform. (This mirrors the upper end of platform size evaluated

with the inflation-free framework.) The inflation free framework utilizes lin-

ear programming techniques to bound blocking that can occur for all types of

transaction interactions. For example, a write may cause another one to block,

a write may block multiple reads, etc., and the linear program must account for

all these scenarios for each transaction.

The experimental scope generated includes task systems for scenarios catego-

rized by task periods, task utilizations, number of shared objects, object-access

durations, the probability that a task contains any transactions for a given ob-

ject, the number of transactions that task issues for that object, and the proba-

bility that a transaction will be a read or a write transaction. These parameters

vary to represent systems similar to those studied in prior work [3] on schedu-

lability. A scenario is defined by a particular selection of these parameters.

Task periods were selected from a log-uniform distribution in [10ms, 100ms] or

[1ms, 1, 000ms]. Each task’s utilization was selected from an exponential dis-

tribution with a mean of 0.1. The number of data objects was chosen from

{4, 8, 16}. For each task, the probability that a transaction accesses a given

data object was chosen from {0.1, 0.25, 0.5}. If a task accesses a given data ob-

ject, it either contains one transaction for that object or it contains a number of

transactions for that object selected from {1, . . . , 5}. (Each transaction accesses

only one data object.) Each access was set to be a write transaction with a

probability chosen from {0.1, 0.25, 0.5, 1.0}. Transaction lengths for both TL2

and TORTIS , as well as in the case of a read or a write, were selected uniformly

from either [1µs, 25µs] (short) or [25µs, 100µs] (medium).

Considering all possible combinations of task-set parameters results in 288

14

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

no synchronization
PF-RW Inflation
TORTIS
TORTIS-Collapse
TL2
TL2-Collapse

(a) 8 objects, access probability of 0.10, medium transaction length,
1 transaction, write probability of 0.10, task period chosen from
[1ms, 1000ms].

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

no synchronization
PF-RW Inflation
TORTIS
TORTIS-Collapse
TL2
TL2-Collapse

(b) 16 objects, access probability of 0.10, medium transaction length,
number of transactions chosen from {1 . . . 5}, write probability of 1.0,
task period chosen from [10ms, 100ms]

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

no synchronization
PF-RW Inflation
TORTIS
TORTIS-Collapse
TL2
TL2-Collapse

(c) 4 objects, access probability of 0.25, short transaction length,
1 transaction, write probability of 1.0, task period chosen from
[1ms, 1000ms]

Figure 1: Schedulability results for scenarios with near the (a) minimum, (b) median,
and (c) maximum improvement ratio.

15

scenarios. For each one, task systems with a number of tasks between {8, 12, .., 80}

was generated. For each number of tasks, 1,000 independent task systems were

generated. Then, the schedulability ratio was computed by taking the ratio of

tasks systems that were schedulable by each approach out of the 1,000 systems

generated. For the curves labeled as ”collapse” in Fig. 1 each system of tasks is

modified to direct all resource accesses to a single “collapsed” resource.

To summarize the relative performance of approaches under a given scenario

the task schedulable area (TSA) was computed, which is the area under its

schedulability curve as computed with a midpoint sum. A higher TSA indicates

that more task sets can be schedulable. We report the TSA ratio showing the

improvement of TORTIS over TL2, and highlight relevant examples.

Schedulability results drive a few key observations that make the case for

retry-free STM.

Obs. 1 TORTIS dominates TL2 with respect to schedulability in most cases.

This observation is shown in Fig. 1. For 86.4% of scenarios, the TSA of

TORTIS was higher than that of TL2. While the TL2 schedulability analysis

was our own, we used a recent schedulabilty analysis framework and did not

charge overheads for retries (other than accounting for actually re-running the

transaction). In roughly half of the scenarios in which TL2 resulted in a higher

TSA than TORTIS , schedulability was poor for both approaches (TSA less

than 10.0 for both).

Obs. 2 In higher-contention scenarios, TORTIS results in higher schedulabil-

ity than TL2.

This is observed in Fig. 1(b) and (c), with write-access probability of 1.0 in

both. (With tasks more likely to access each resource and a higher probability of

accesses being writes, transactions are more likely to conflict with each other.)

16

For example, in 92% of scenarios with write probability of 0.5 or 1.0, TORTIS

results in higher TSA than TL2. Recall that in the analysis of a system, a

transaction can only be considered to be a read transaction if all resources will

only be read—if this guarantee cannot be made, the transaction must be con-

sidered a write for schedulability analysis. Thus, while reads may be common

at runtime, considering writes may be required for analysis. Additionally, TL2

is designed for the common case where contention is rare, but when contention

is high TORTIS provides substantially higher performance (Obs. 2). Schedu-

lability analysis is based on bounding the worst-case contention, so retry-free,

deterministic synchronization as used in TORTIS provides improved schedula-

bility.

Obs. 3 The accuracy of resource groupings affect TORTIS and TL2 similarly,

and thus TORTIS dominates in most cases.

TORTIS leverages a context-sensitive flow-insensitive data-flow analysis to

determine resource groups. This is the same type of data-flow analysis that

is used to determine retry bounds [19]. Therefore, if conservative data-flow-

analysis collapses all resources into a single group, it will also cause significantly

more transactions to conflict in TL2. Across all considered scenarios, compar-

ing the original and “collapsed” configurations for both TORTIS and TL2,

TORTIS has a higher TSA in 86.4% and 75% scenarios, respectively.

17

Listing 2 PF-L Implementation

1: type res state: record // all aligned on different cache lines
2: read status: array of unsigned integer, each initially COMPLETED . Cache aligned
3: win, wout : unsigned integer, initially 0

4: constant
5: WINC 0x100 // writer increment value
6: WBITS 0x3 // writer bits in win
7: PRES 0x2 // writer present bit
8: PHID 0x1 // writer phase ID bits
9: PRESENT 0x3 // reader present indicator

10: COMPLETED 0x4 // reader completed indicator

11: procedure Read Lock(`: ptr to res state, k: core index)
12: var w: unsigned int
13: ` �read status[k] := PRESENT

14: w := `�win & WBITS

15: ` �read status[k] := w & PHID . To wait on write phase (w & PHID), if active
16: await (w & PRES = 0) or (w 6= (`�win & WBITS)) . Satisfied

17: procedure Read Unlock(`: ptr to res state, k: core index)
18: ` �read status[k] := COMPLETED

19: procedure Write Lock(`: ptr to res state)
20: var wticket, read waiting: unsigned int
21: wticket := fetch&add(`�win, WINC) and ¬WBITS . In write queue
22: await (wticket = `�wout) . Head of write queue
23: fetch&xor(`�win, 0x3) . Marked present and new phase for reads to see
24: read waiting := `�win & PHID

25: for k in core numbers do
26: await (read status[k] = read waiting) or (read status[k] = COMPLETED)

27: procedure Write Unlock(`: ptr to res state)
28: fetch&and(`�win, 0xFFFFFF01) . Clear PRES, but keep PHID

29: `�wout := `�wout + WINC

4 PF R/W Lock with Light Reading

Schedulability experiments indicate retry-free STM provides stronger theoretical

timing guarantees than a retry-based approach such as TL2. The schedulability

analysis is universal to any phase-fair reader writer lock as bounds are derived

from inherent protocol attributes. However, multiple implementations of such

a lock can lead to drastically different overheads. We found that the PF-T as

presented by Brandenburg and Anderson (and detailed in Listing 1) did not

perform well for read-dominant (sparse writes) workloads. A new goal then

18

arises to present a new variant of phase-fair reader/writer locking that has light

read overheads to match the inherent design aspect present in TL2. This section

provides details for such a locking protocol, named the PF-L that preserves the

same schedulability guarantees but provides lower overheads for read locking.

4.1 Design

To provide lower read overheads, the spin locations for reads, rin and rout

in the PF-T (shown in Listing 1), must be modified to allow per-core spin-

locations. The solution for this problem requires multiple modifications to the

algorithm, the most important of which is allowing each core to have its own

read status space in an array that can be written by only readers on that core.

This modification also allows correctness of the read lock procedure without any

atomic primitives. The pseudocode for the PF-L is presented in Listing 2.

Much of the overheads attributed with lock calls depend on whether the val-

ues accessed are cache-hot. In the PF-L implementation all lock-status variables

are cached on different lines. This allows each read status variable to exist in a

core-local L1 cache, and never be invalidated by readers on other cores. Bran-

denburg’s the PF-T variables are all packed into a single cache line by design

to minimize cache-line reloading costs [4]. Both the PF-L and the PF-T have

cache-line aligned res state types so that unrelated execution cannot interfere

with lock performance.

4.2 Evaluation

We empirically compared the PF-L to the PF-T implementation [4] on the basis

of overheads. In measuring overheads, it is necessary to distinguish time spent

in operations inherent to the algorithm (overheads) from those incurred while

spinning (blocking). For overhead-measurement purposes only, we instrumented

19

(a) All reads

(b) 5% writes

(c) 50% writes

Figure 2: Total overheads for lock and unlock operations.

20

both the PF-T and the PF-L to measure overheads and blocking separately. We

recorded blocking and overhead times for 100,000 lock and unlock calls across an

increasing number of cores. To simulate high contention and record worst-case

overheads, critical sections were empty. All figures present the 99th percentile

observed overheads to filter outliers due to interrupts and other jitter due to

userspace timing.

We conducted all experiments on a two-socket, 18-cores-per-socket x86 ma-

chine running the Linux 4.9.30 LITMUSRT kernel [14], with two Intel Xeon

E5-2699 v3 CPUs @ 2.30 GHz, 128 GB of RAM, and three levels of cache:

per-core 32 KB L1 data and instruction caches, 256 KB L2 caches shared by

pairs of cores, and 46,080 KB L3 caches shared by all cores on the same socket.

We performed each evaluation on m ∈ {2, . . . , 36} cores and two sockets. For

m ≤ 18, only one socket is used. Fig. 2 shows overhead trends for several differ-

ent workloads. Overheads were measured separately for reads and writes, each

including both lock and unlock costs.

Obs. 4 The PF-L exhibited constant overheads for an all-read workload.

Fig. 2a shows that the PF-L exhibits constant lock and unlock overheads of

about 0.1µs across both sockets, while the PF-T overheads are on average 0.4µs

on one socket, and up to 1.3µs on two sockets. This is attributable to the fact

that in the PF-L, read lock and unlock operations only modify a single core-local

variable. The PF-T read lock atomically increments a shared variable, which in

turn invalidates other caches and bounces the variable across cores and sockets,

yielding increased overhead.

As write percentages increase, reads become more costly as read status vari-

ables are read by writers on other cores and the write-related variables are

constantly updated on all cores with read requests. This behavior also causes

an increase in write overheads. The PF-T experiences higher overheads for read-

21

Figure 3: Total read overheads for lock and unlock operations.

dominant (Fig. 2b) and evenly distributed (Fig. 2c) workloads. Since all PF-T

variables are on a single cache line, each update invalidates cache-line values for

all other cores, resulting in an RMR for every entry and exit section.

Obs. 5 For all workloads with some writes, overheads increased by up to 3× on

two sockets.

All insets in Fig. 2 show higher overheads on two sockets other than the PF-L for

an all-read workload. This is attributable to higher cross-socket RMR latencies

for both the PF-T and the PF-L for mixed workloads. Fig. 2a highlights the

case in which reads in the PF-L generate no RMRs (by design) and does not

exhibit increased overheads when executing on two sockets. This claim is fur-

ther supported by throughput results in Fig. 4, where execution on two sockets

consistently yields lower throughput.

Obs. 6 Reading under the PF-L incurred less overhead than reading under the

PF-T.

For all tested scenarios across varying write percentages and core counts,

read operations under the PF-L yielded lower overheads than the PF-T. Fig. 3

shows trends in read overheads with varying write percentages. Beyond 50%

writes, overheads are consistent for all read operations and at most 0.7µs. The

22

PF-L overheads for write-dominant workloads do not appreciably increase be-

yond 50% writes. With more writes, cache-line invalidations become frequent

and cause higher overheads.

5 Throughput

STM is most commonly evaluated based on observed average-case throughput.

All experiments are run on the same machine as detailed for the overhead evalu-

ation in Sec. 4. Remember, overheads for the locking protocol increased drasti-

cally when execution occurred on more than one socket. The machine architec-

ture has a significant impact on the results presented. TORTIS with phase-fair

reader/writer locking and optimized light reads (PF-L) is compared against an

open-source implementation of TL2, which includes additional optimizations

beyond the basic algorithm [13].

All throughput experiments were conducted in Rust, although the locking

protocol is implemented in C and ported. Because of Rust’s limitations on shar-

ing data among threads, a Rust implementation of the PF-L required multiple

additional atomic operations and overall performed significantly worse than a

ported C version of the PF-L.

5.1 Branching Benchmarks

For a branching data structure, TORTIS and TL2 are evaluated on a large red-

black tree with time measurements for how operations (some mix of inserts and

lookups) per second scale with thread count. For TORTIS , a standard Rust-

based red-black-tree implementation is used, with the entire tree, not individual

nodes, defined as one shared object. So instead of wrapping individual nodes,

the entire tree is wrapped and synchronized as one object. For TL2, we use a

red-black-tree implementation given with the Rust TL2 implementation [13].

23

(a) All reads (b) 5% writes

(c) 50% writes (d) 95% writes

Figure 4: Average throughput for varying access patterns in a red-black tree.

Obs. 7 For an all-read workload, TORTIS outperforms TL2.

For inserts, we create an array of 100k integers, shuffle the array, and then

insert each value as a node, measuring the time it takes for all inserts to succeed.

For lookups, we first create a random tree, and then time how long it takes to

find every element in the tree in random order. We also evaluate a third case –

using half inserts and half lookups. For this 50% writes case, an array of 100k

randomly shuffled boolean values (half true, half false) is used to determine

whether a transaction is a lookup or an insert. A third of the tree is pre-built so

that lookups would be timed correctly from the start. On this partially pre-built

tree, we time 50k lookups and 50k inserts.

All work across the insert, lookup, and mixed workloads experiments is parti-

tioned evenly over the number of cores, each thread performing an equal fraction

of the work. For each experiment, we averaged the throughput for ten unique

random trees and lookup orders to account for possible impact of insert order.

24

The results are shown in Fig. 4, note the scale for each plot is different.

As highlighted by Sec. 4, for an all-read workload phase-fair reader/writer

locks can achieve constant overheads. The NO-SYNC line shown in insert Fig. 4a

of Fig. 4 shows the throughput for the same red-black tree set-up but with

no attempt at synchronization, and highlights system limitations beyond one

socket. Insert Fig. 4a highlights the direct impact of overheads on throughput

between retry-free and a retry-based STM locking approaches.

Obs. 8 TORTIS provides near-constant throughput on the red-black-tree bench-

mark, outperforming TL2 on one socket.

The performance of TORTIS is highly influenced by locking overheads. The

trends for throughput closely mirror those seen in Sec. 4, where overheads were

relatively constant on one socket, and increased greatly on two sockets. This

increase in overheads lowers overall throughput of the system. In comparison,

TL2 allows linear scaling with increasing core counts regardless of the workloads.

However, the extra overhead of maintaining transactional state to enable retries

significantly reduces throughput for smaller core counts, enabling the lock-based

in-place approach in TORTIS to provide increased throughput.

Obs. 9 TORTIS does not scale with increasing core counts but TL2 does.

Fig. 4 highlights the pitfalls for a solely lock-based approach. For any mixed

workload, throughput is bounded above by throughput on two cores. This is in

part due to the design of the TORTIS red-black tree. Since the entire red-black

tree is locked using a single lock, parallelism for writes is impossible to achieve

with increasing core counts. This problem does not exist for TL2, where write-

parallelization can occur. The benefits of TL2’s retry-based approach can be

seen in cases of high-contention on a large number of core counts.

25

Figure 5: Overview of two mover types

5.2 Object Grouping Exploration

As seen by the schedulability studies presented in Sec. 3, the granularity of syn-

chronization of objects can affect schedulability. Granularity of synchronization

is not left entirely to the compiler, but can also be manipulated by the user.

For example, transaction keyword placement can prevent any attempt at con-

currency. To demonstrate that TORTIS ’s object-grouping implementation can

recognize different resource groups based on programmer choice, presented here

is a producer/consumer case study used in prior work [19]. This case study does

not only highlight TORTIS ’s ability to identify distinct objects, but shows the

impacts of object grouping or “collapse” on throughput. In this study, there

is a producer and a consumer queue, with a “mover” task that pops from one

queue and pushes to the other, as shown in Fig. 5. Manipulating the placement

of sets of transactions over the producer, mover, and consumer allows a study of

TORTIS’s object grouping and its impact on throughput. Note the same study

was not duplicated for TL2 since the data structures associated with the open-

source STM implementation do not allow the programmer to choose if multiple

objects should be synchronized as one.

There are three sets of transactions in the experiment: a production transac-

tion that pushes to the producer queue, an analogous transaction that pops from

26

the consumer queue, and a mover transaction that transfers elements between

the queues. We investigate two different designs for the mover transaction, as

shown in Fig. 5: (i) an atomic mover that uses a single transaction for both the

push and the pop, and (ii) a non-atomic mover that uses a separate transac-

tion for each of the push and the pop. If implemented correctly, the TORTIS

analysis should ascertain that the atomic mover causes a transitive conflict be-

tween the produce and consumer transactions through the mover transaction.

Consequently, the atomic mover design should generate one resource group. In

contrast, the non-atomic mover does not generate this transitive conflict, and

should lead to two resource groups: one for the transactions on the producer

queue, and another for the transactions on the consumer queue.

We divide the workload across multiple threads spanning {3,..,36} cores in

multiples of three, allowing a third of threads to be producers, a third to be

movers, and a third to be consumers. The same machine as the overheads and

throughput experiments is used. Regardless of the number of threads, only one

producer and one consumer queue are used. To measure the throughput of the

queue system as a whole, we count the number of dequeues performed on the

consumer queue. This gives a holistic view to the system’s throughput at all

levels, as it counts the number of elements that were produced, moved, and then

consumed within the given time frame.

The transactions run on a fixed queue of 1,024 elements, and let the system

run for three seconds with one second of warm-up time. Note all transactions

are classified as write transactions by design. The results are presented in Fig. 6.

We demonstrated the correctness of TORTIS ’s compiler analysis in two

ways: by using a debug version of our library to output the group number for

each lock call, and by an analysis of the throughput with the normal runtime

library. The debug version of the runtime library verified that the atomic mover

27

Figure 6: 1024 element queues, 3 seconds, 1 second warm-up

results in one resource group, while the non-atomic mover results in two. Conse-

quently, this case study shows that the TORTIS can indeed distinguish between

object groups.

The throughput results for the case study, depicted in Fig. 6, show the

performance impact of having two different locks. In particular, the noticeably

different behaviour of the atomic and non-atomic cases shows that grouping

does impact throughput, and in ways that can be counter intuitive.

Obs. 10 In a two-queue system, throughput is higher when both queues are

protected by only one lock.

Fig. 6 shows that in a system with one lock protecting both queues, the

throughput is significantly higher than in a system with two locks, by an av-

erage increase of 1.5× transactions per second. This implies that fine-grained

locking may not always yield the best throughput; though using two separate

locks allows the producer and consumer to modify their respective queues con-

currently, forcing the mover to acquire two locks instead of one doubles the

blocking it may incur, and increases the influence of locking overheads.

28

6 Conclusion

This thesis highlights the schedulability and throughput gains of a retry-free

lock-based STM, as well as lock optimizations for increased throughput. Schedu-

lability studies showed that in most cases, phase-fair locks were more schedulable

than TL2. Then, a new algorithm for phase-fair reader/writer locking was pre-

sented to match light reading behavior in TL2. When the new locking protocol

was used in TORTIS, it produced higher throughput than TL2 for all systems

running on a single socket. The collection of experiments presented show that

retry-free STM is not only better from a schedulability perspective, but can also

have significant throughput gains. In addition, the object grouping exploration

highlights that locking overheads are a crucial part of understanding throughput

trends.

Future work can explore multiple aspects mentioned in this thesis. The

overhead measurements for the PF-L and the PF-T show that cache-line align-

ment can impact performance drastically when locks are stressed for worst-case

performance. Variants of the PF-T can be implemented with better cache-line

alignment schemes to see whether the performance of the the PF-L can be

matched for non-read-dominant workloads. Future work can also explore how

locking granularity and lock grouping affect performance for larger systems. One

of TORTIS ’s limitations is that it groups objects pessimistically by design (read

Nord’s thesis [16] for more details), but perhaps this limitation allows greater

performance by minimizing locking overheads. The trade-offs between locking

granularity and performance can be further studied to optimize TORTIS. In

addition, the new locking protocol for the PF-L was specifically designed with

read-dominant workloads in mind; it can be interesting to explore what locking

protocols allow greater performance for different workloads, and whether the

compiler or lock itself can optimize this behind the scenes.

29

Retry-free real-time STM can be both practical and high-performing. STM

is not widely used out of practical concerns, but perhaps with modifications an

entirely lock-based STM can ease concurrent programming efforts on a larger

scale.

30

References

[1] A. Barros, L. Pinho, and P. Yomsi. “Non-preemptive and SRP-based fully-
preemptive scheduling of real-time Software Transactional Memory”. In:
Journal of Systems Architecture 61.10 (2015), pp. 553–566.

[2] C. Belwal and A. Cheng. “Lazy versus eager conflict detection in soft-
ware transactional memory: A real-time schedulability perspective”. In:
Embedded Systems Letters 3.1 (Mar. 2011), pp. 37–41.

[3] A. Biondi and B. Brandenburg. “Lightweight real-time synchronization
under P-EDF on symmetric and asymmetric multiprocessors”. In: 2016
28th Euromicro Conference on Real-Time Systems. IEEE. 2016, pp. 39–
49.

[4] B. Brandenburg. “Scheduling and Locking in Multiprocessor Real-Time
Operating Systems”. PhD thesis. Chapel Hill, NC: University of North
Carolina, 2011.

[5] B. Brandenburg and J. Anderson. “Real-Time Resource-Sharing under
Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks”. In:
Proceedings of the ACM International Conference on Embedded Software.
ACM. Oct. 2011, pp. 69–78.

[6] B. Brandenburg and J. Anderson. “Spin-based reader-writer synchroniza-
tion for multiprocessor real-time systems”. In: Real-Time Systems 46.1
(2010).

[7] V. Chaudhary et al. “Starvation Freedom in Multi-Version Transactional
Memory Systems”. In: (Sept. 2017).

[8] P. Courtois, F. Heymans, and D. Parnas. “Concurrent Control with Read-
ers and Writers”. In: Communications of the ACM 14.10 (1971), pp. 667–
668.

[9] G. Cunha. “Consistent state software transactional memory”. PhD thesis.
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2007.

[10] D. Dice, O. Shalev, and N. Shavit. “Transactional locking II”. In: Inter-
national Symposium on Distributed Computing. Springer. 2006, pp. 194–
208.

[11] M. Herlihy and J.E.B. Moss. “Transactional Memory: Architectural Sup-
port for Lock-free Data Structures”. In: Proceedings of the 20th Annual
International Symposium on Computer Architecture. ACM, 1993, pp. 289–
300.

[12] T. Knight. “An architecture for mostly functional languages”. In: Proceed-
ings of the 1986 ACM conference on LISP and functional programming.
1986, pp. 105–112.

[13] T. Kopf. swym. https://github.com/mtak- /swym. commit f7b635d.
2019.

[14] LITMUSRT Home Page. http://www.litmus-rt.org/.

31

[15] J. Mellor-Crummey and M. Scott. “Scalable Reader-Writer Synchroniza-
tion for Shared-Memory Multiprocessors”. In: Proceedings of the Third
ACM Symposium on Principles and Practice of Parallel Programming.
ACM. Apr. 1991, pp. 106–113.

[16] C. Nord. “Retry-free software transactional memory for rust”. MA thesis.
Cambridge, Massachusetts: Massachusetts Institute of Technology. De-
partment of Electrical Engineering and Computer Science, 2020.

[17] T. Sarni, A. Queudet, and P. Valduriez. “Real-Time Support for Software
Transactional Memory”. In: 15th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications. Aug. 2009,
pp. 477–485.

[18] SchedCAT: Schedulability test collection and toolkit. https://github.
com/brandenburg/schedcat. Accessed: 2020-06-21. 2019.

[19] M. Schoeberl, F. Brander, and J. Vitek. “RTTM: Real-time transactional
memory”. In: Proceedings of the 25th ACM Symposium on Applied Com-
puting. 2010, pp. 326–333.

[20] M. Schoeberl and P. Hilber. “Design and implementation of real-time
transactional memory”. In: Proceedings of the 2010 International Con-
ference on Field Programmable Logic and Applications. 2010, pp. 279–
284.

[21] M. El-Shambakey. “Real-Time Software Transactional Memory: Contention
Managers, Time Bounds, and Implementations”. PhD thesis. Blacksburg,
VA: Virginia Polytechnic Institute, 2013.

[22] N. Shavit and D. Touitou. “Software Transactional Memory”. In: Pro-
ceedings of the 14th Annual ACM Symposium on Principles of Distributed
Computing. ACM. Aug. 1995, pp. 204–213.

[23] N. Shavit and D. Touitou. “Software Transactional Memory”. In: Dis-
tributed Computing 10.2 (Feb. 1997), pp. 99–116.

[24] R. Yoo and H.-H. Lee. “Adaptive Transaction Scheduling for Transactional
Memory Systems”. In: Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures. 2008, pp. 169–178.

32

