
Yippelia: Triggering Deep Property Violations in
Hardware Designs through Symbolic Execution

By
Martin Meng

Senior Honors Thesis
Department of Computer Science

The University of North Carolina at Chapel Hill
Advisor: Cynthia Sturton

Second Reader: Parasara Sridhar Duggirala

Abstract—We in Yippelia attempt to automatically identify
deep bugs in hardware designs by symbolically exploring hard-
ware designs for one clock cycle and then stitching the generated
simple paths to form a multi-cycle path from the reset state to the
buggy state. Compared to a state-of-the-art symbolic execution
engine, Yippelia has an average speedup of at least four orders
of magnitude on finding deep bugs on the up-down counter
hardware design.

I. INTRODUCTION

This thesis presents Yippelia, a hardware-oriented sym-
bolic execution framework that automatically finds property-
violations in hardware designs. Given a hardware design and a
property, Yippelia can find a property-violation and generate a
sequence of instructions which triggers the property-violation
by taking the hardware design from the reset state to the
property-violated state.

Hardware is the fundamental trust of computer systems.
Recent attacks such as Spectre [1] and Meltdown attacks [2]
have demonstrated that attackers can utilize vulnerabilities in
hardware to compromise the security of the overall systems
even though softwares and systems are proven to be safe.
Attackers can exploit the hardware security vulnerabilities to
gain the credential information of the users and even threaten
people’s physical safety in the case of embedded and cyber-
physical systems. Moreover, while most software bugs can be
resolved by software patches or the release of a new version
of the software, fixing some hardware bugs requires recalling
and replacing all products, causing a great amount of loss of
money – the Pentium FDIV bug [3] which is rooted in the
floating-point unit of Intel’s Pentium processor caused Intel
half a billion dollars to recall and replace all shipped products.
Therefore, it is important to eliminate hardware bugs in the
early stages of the hardware development.

The research community responds to this challenge with
various approaches, one of which is assertion-based verifica-
tion. Assertion-based verifications formally prove that a design
satisfies some security-critical properties. In the hardware
security community, works have been done to automatically
generate security properties from design specifications [4], [5],
[6], [7]. However, state-of-the-art verifiers that are designed
to prove these properties are limited by their poor scalability

to large and complex real-world designs. We respond to this
challenge by presenting Yippelia, a light-weight verifier that
can evaluate complex hardware designs efficiently.

Yippelia uses symbolic execution to systematically explore
hardware designs and identify property violations. Compared
to model checking, symbolic execution sacrifices rigorousness
for scalability. Similar to other hardware-oriented symbolic
execution engines such as Coppelia [8], Yippelia is sound but
not complete. If Yippelia finds a property violation, then the vi-
olation indeed exists. On the other hand, Yippelia cannot give
any guarantee that the design is bug-free even if Yippelia does
not find any property violation. In other words, Yippelia can
trigger, but cannot prove the absence of, property violations
in hardware designs. The sacrifice in completeness provides,
with symbolic execution, good scalability on covering complex
designs in return.

Even though symbolic execution is one of the most scalable
formal methods, the application of symbolic execution is
still limited by the complexity of the hardware designs. This
limitation is due to the severe path explosion problem in
the context of hardware. Because a processor can run in an
infinite number of clock cycles, akin to an infinite while loop
in software, the number of paths grows exponentially as the
number of clock cycles increases towards infinity. Therefore,
the application range of normal symbolic execution engines is
limited to small-size hardware designs [9].

To handle symbolic execution’s scalability problem in hard-
ware, Zhang et al. presented Coppelia [8], an end-to-end tool
that automatically generates exploit programs for processor
designs utilizing a backward search strategy that was proposed
in [10]. However, Coppelia performs symbolic execution on
every clock cycle, so Coppelia’s scalability is still limited
by the number of clock cycles a trigger program consists
of. We in Yippelia attempt to improve the scalability of
hardware-oriented symbolic execution engines by performing
symbolic execution on hardware designs only once and for one
clock cycle. Then, Yippelia reuses the results of the symbolic
execution to build a path from a reset state to a property-
violation state in the hardware design. The key contributions
of this thesis are as follows:

• We propose a framework to apply symbolic execution

to hardware designs. This framework saves execution
time on finding deep property violations in hardware by
running symbolic execution only once on the design for
one clock cycle. The framework incorporates techniques
from the AI community to stitch a multi-cycle path from
the reset state of the hardware design to a property-
violated state. Combining these two aspects, our frame-
work can increase the efficacy and scalability of finding
deep property-violations in hardware.

• We develop Yippelia, a hardware-oriented symbolic ex-
ecution tool that implements the framework described
above. Compared to KLEE [11], a state-of-the-art sym-
bolic execution engine, Yippelia has an average speedup
of at least four orders of magnitude on finding deep
property-violations on an up-down counter design.

The rest of this thesis is organized as follows: we first
introduce an up-down counter design as the motivating ex-
ample in Section II. Section III presents Yippelia’s design.
Section IV describes Yippelia’s implementation. We evaluate
Yippelia’s performance in Section V. We then discuss threats
to Yippelia’s validity as well as the future work from Yippelia
in Section VI. Section VII presents a review of research
topics that are relevant to Yippelia in Section VII. Finally,
Section VIII concludes the thesis.

II. EXAMPLE

In this section, we introduce the up-down counter, a type
of hardware designs that can either counts up or counts down
in one clock cycle. Throughout this paper, we use the up-
down counter as an example to demonstrate the key ideas of
Yippelia.

An up-down counter is a type of counter in which a register
called value either increments or decrements based on an input
signal called inst. The range of the register value is between 0
and a pre-defined maximum value. When the counter reaches
the maximum value and still counts up, it overflows to 0;
similarly, when the counter reaches 0 and still counts down,
it overflows to the maximum value.

Figure 1 shows the schematic design of the up-down counter
and Figure 2 shows the corresponding RTL design imple-
mented in SystemVerilog [12]. The up-down counter takes
as inputs a clock signal, a reset signal, and an inst signal.
It displays a 32-bit value signal as the output. Internally,
the counter maintains a 32-bit register called internalvalue.
Whenever reset is 1, internalvalue is reset to be 0. Otherwise,
at each clock cycle, internalvalue increments if inst is 0 and
decrements if inst is 1. The output value always displays the
current value of internalvalue.

We use the up-down counter as the example to showcase
our ideas because the design is both simple and nontrivial. The
design is simple in that it only has two program paths within
one clock cycle: the counter either increments or decrements.
On the other hand, the design is nontrivial because 1) the
design consists of sequential logic in that the register value
does not only depends on the current input but also depends on
its value in the previous clock cycle, and 2) the design consists

Fig. 1. up-down Counter’s Schematic Design

Fig. 2. up-down Counter’s RTL Design

of more than one path in one clock cycle, so the number of
program paths grows exponentially with respect to the number
of clock cycles. The fact that the design has a stateful register,
i.e. the register value, enables us to use symbolic execution to
check properties across multiple clock cycles. The exponential
grow of the program paths with respect to the number of
clock cycles reveals the main challenge for symbolic execution
in both hardware and software domain, the path explosion
problem [13]. Therefore, the simplicity and the non-trivialness
of the up-down counter allows us to highlight the key ideas
in Yippelia.

III. DESIGN

A. Overview

Yippelia takes an input a hardware design at the regis-
ter transfer level (RTL) and a set of assertions represent-
ing security-critical properties. If Yippelia does not find a
property-violation in the design, Yippelia issues a certificate.
Otherwise, Yippelia outputs a sequence of instructions that
trigger the assertion violations in the hardware design. Figure 3
shows Yippelia’s high-level input-output workflow.

Yippelia consists of a 4-stage pipeline: preprocessing, sym-
bolic execution, optimization, and search, as shown in Fig-
ure 4. Yippelia first translates the RTL hardware designs to
C++ in the preprocessing stage. Then, Yippelia performs a
one-cycle symbolic exploration to gather all possible atomic

Fig. 3. The Input-output Workflow of Yippelia

Fig. 4. The Architecture of Yippelia

paths of the designs within one clock cycle in the symbolic
execution stage. To handle the case in which the symbolic
paths are too long for SMT solvers to handle efficiently, we
in the optimization stage constructs a compiler called KPiler to
shorten the symbolic paths with equivalent semantic meanings.
Lastly, Yippelia formulates the problem of finding a multi-
cycle property violation as a search problem and uses our
search engine to solve it in the search stage. In the following
sections, we describe each stage of the pipeline in detail.

B. Preprocessing

To begin with, Yippelia translates the RTL hardware design
implemented in SystemVerilog [12] to a piece of code in
C++ [14] that is semantically equivalent to the RTL hardware
design. The reason to translate the hardware design to C++ is
that we can utilize KLEE [11], a popular software symbolic
execution engine, to run symbolic simulation on the C++ code
(Section III-C).

To translate the hardware design to C++, we utilize Veri-
lator [15], an open-source, matured hardware simulator that
translate hardware designs specified in hardware description
language (HDL) such as Verilog and SystemVerilog to C++
or SystemC. However, Verilator does not perform a direct
translation because of the intrinsic difference of hardware
and software: while the hardware is parallel, the software is

sequential by default. Because blocking statements in HDL
are originally sequential, Verilator is able to perform a di-
rect translation. However, for non-blocking statements which
perform parallel assignments, because instructions in C++
have a temporal order, Verilator needs to introduce temporary
variables in C++ so that assignments in the same clock cycle
will not influence one another. Algorithm 1 illustrates this
strategy. Verilator also performs other optimizations such as
eliminating dead codes and matching width lengths during the
translation.

Algorithm 1 Parallel assignments
1: procedure PARALLEL-ASSIGN(x, y)
2: temp x← y + 10 . assign temporary variables
3: temp y ← x+ 10
4: x← temp x . load the new values back to x, y
5: y ← temp y
6: return x, y

The resulting C++ code consists of one C++ class for each
module in the RTL design. In addition, Verilator requires users
to attach a C++ wrapper file to instantiate the top level module
of the design during the simulation. This wrapper file supports
linking to external libraries, so we use this file as a chance
to run symbolic execution engine and perform a symbolic
simulation on the design (Section III-C). In the wrapper file,
we interact with the top level module via a function eval

(). eval() propagates inputs and calls necessary functions to
simulation the clock transition at the boundary. Therefore, two
calls to eval() with opposite clock values correspond to the
simulation of the design for one clock cycle.

Threats to Validity. Although Yippelia is sound, Yip-
pelia is not complete with respect to finding vulnerability by
adopting this preprocessing scheme. As indicated by Zhang et
al. [10], Verilator may eliminate bugs during the compilation
of the hardware design, because the compilation is not always
faithful due to compiler optimization. As a result, even though
Yippelia is sound in that every bug that is found by Yippelia
is a true property violation, Yippelia is incomplete in that it
may miss some bugs in the hardware designs. To mitigate
this threat, our group is developing native symbolic execution
methods on hardware that apply symbolic execution directly
to the RTL hardware designs. We encourage the community to
further explore this direction to circumvent the incompleteness
problem.

C. Symbolic Execution

In the symbolic execution stage, Yippelia takes the output
code from Verilator and performs symbolic execution on the
hardware design for one clock cycle. We use KLEE [11],
a matured symbolic execution engine that is widely used
in the software domain, to perform the one-cycle symbolic
exploration of the hardware design. Prior to running symbolic
simulation, Yippelia concretely simulates the hardware design
in reset state for one cycle to obtain the root state of the
hardware design. Running the hardware code in reset state also

ensures that the symbolic execution starts with all registers
initialized to their default values. In the case of the up-down
counter, Yippelia sets the reset input to be 1 and simulates the
design for one clock cycle.

With all registers initialized to their reset values, Yippelia
runs KLEE to perform a one-cycle symbolic execution on the
hardware design. After finishing each path during the symbolic
executions, Yippelia asks KLEE to print out the symbolic
expressions of a set of predefined signals that includes all
register signals in the target property. Each set of symbolic
expressions represents one symbolic atomic path from one
symbolic state of the hardware design to another in one
clock cycle. In the case of the up-down counter, KLEE first
makes the register value in the parent state symbolic, e.g.
value = α. Then, after KLEE finishes the one-cycle symbolic
execution, Yippelia gathers one symbolic expression for each
path: value = α+ 1 for the path where value increments and
value = α− 1 for the path where value decrements. Figure 5
shows the symbolic tree representing the one-cycle symbolic
exploration on the up-down counter. Table I shows the two
symbolic expressions representing two symbolic atomic paths
of the up-down counter. The symbolic atomic paths, which
are represented by the sets of symbolic expressions, are the
building blocks for all longer paths spanning multiple clock
cycles. We describe how Yippelia utilizes these building blocks
to form a path from the reset state to the property-violated state
of a hardware design in Section III-E.

Within the symbolic execution stage, Yippelia performs a
sub-stage called fast validation to make sure that property is
not violated within one clock cycle. If the property is violated,
then Yippelia will terminate and return as result the single
instruction corresponding to the atomic path that leads to the
assertion violation. Otherwise, Yippelia continues by sending
the collection of symbolic atomic paths to the optimization
stage (Section III-D) and then to the search engine that is
described in Section III-E to form a path that spans several
clock cycles and ends at an assertion-violated state. The reason
behind this sanity check is that one-cycle symbolic execution
is able to find those one-cycle property violations, so Yippelia
does not need to spend time on the later stages. Also, the
sanity check ensures that the search engine (Section III-E)
only searches for multi-cycle property-violations, so our search
engine does not need to handle corner cases caused by one-
cycle property violation.

Threats to Validity: Yippelia relies on KLEE to perform the
symbolic exploration of hardware designs within one clock
cycle. Although KLEE is a matured, well-maintained sym-
bolic execution engine on the software domain, the symbolic
expressions that are printed out by KLEE are lengthy. As a
result, the query formed by the symbolic expressions often
require a nontrivial amount of time to be solved by an SMT
solver. To mitigate this threat, we performed optimizations to
shorten the symbolic expressions (Section III-D). We leave as
future work to explore other open-source symbolic execution
frameworks such as angr [16], [17], [18].

Fig. 5. Symbolic Tree for the Up-down Counter in One Cycle

TABLE I
TWO SYMBOLIC EXPRESSIONS REPRESENTING TWO ATOMIC PATHS OF

THE UP-DOWN COUNTER.

Instr Atomic path Symbolic expression
0 value = α+ 1 (Eq leaf value

(Add w32 1
(ReadLSB w32 0 value)))

1 value = α− 1 (Eq leaf value
(Add w32 4294967295

(ReadLSB w32 0 value)))

D. Optimization

In this section, we describe our optimization methods to
shorten the length of symbolic expressions that are produced
by the symbolic execution stage (Section III-C). While the
symbolic expressions produced by KLEE for the up-down
counter example has reasonable sizes (231 bytes on average),
the symbolic expressions for the complex real-world hardware
designs are significantly large: for a single-cycle MIPS pro-
cessor, the average size of a set of symbolic expressions is
14187 bytes. After we formed queries based on the symbolic
expressions (see Section III-E3 for the details of forming
queries), the longest query takes up to 48 minutes to be solved
by the query solver (Table X).

The aim of this stage is to shorten the length of the
symbolic expressions produced by the previous stage so that
Yippelia can scale to larger hardware designs. We perform two
optimizations to achieve this goal.

1) Optimization 1: The first optimization is on the query
level: we delete unused symbolic expressions in a query to
make the query shorter. We observed that over all sets of
symbolic expressions, the expressions of the input signals
do not change semantically. The reason is that the symbolic
execution stage (Section III-C) only runs symbolic execution
for one clock cycle, and the input signals stay stable within
one clock cycle. Because the input signals do not change, the
symbolic expressions corresponding to the input signals do not
semantically impose any additional constraints on the query.
Therefore, we can safely delete in each query the symbolic
expressions corresponding to the input signals. The new query
without the symbolic expressions with respect to the input

signals is semantically equivalent to the original query, i.e.
the new query is valid if and only if the original query is
valid.

2) Optimization 2: While the first optimization (Sec-
tion III-D1) is on the query level to delete unused symbolic
expressions, the second optimization is on the expression level:
it aims to shorten a single symbolic expression by deleting
unused parts of a symbolic expression.

This optimization is based on a common pattern in the
symbolic expressions: a significantly large portion of array
updates are unused. For example, let us consider the follow-
ing symbolic expression: (Read w8 10 [10=0, 5=0, 0=0]@
const arr7). Because the expression only reads the element at
index 10 of the updated version of a constant array, we can
safely delete the updates to index 5 and index 0. In practice,
these unused updated statements are often very lengthy, so
the query can be shortened significantly if all unused update
statements are removed. As a result, the execution time to
solve these optimized queries can be significantly reduced.

To automate the step of removing unused update statements
for symbolic expressions, we construct a compiler called
KPiler for expressions in the KQuery language, a language
that is used by KLEE to represent constraint expressions [19].
KPiler takes in a query in the format of KQuery language and
produces an optimized query that is semantically equivalent
to the original query. The optimized query is equivalent to the
original query in that the optimized query is valid if and only if
the original query is valid. The length of the optimized query
is the same or shorter than the original query so the time for
the query solver to solve the optimized query is expected to
be shorter.

The workflow of KPiler is shown in Figure 6. KPiler
consists of three parts: the front-end, the analyzer, and the
back-end.

a) Front-end: In the front-end, we first developed a
program called KLexer to tokenize the expressions. Then,
we collected the grammar of KQuery both from the partial
specification in [19] and from the symbolic expressions that
are generated by KLEE. Figure 7 summarizes the grammar for
KQuery. Based on this grammar, we created a parser called
KParser. KParser generates an abstract-syntax tree (AST) for
each expression in the query. Figure 8 shows our design of
the AST for KQuery. In addition, KParser also generates a set
of ASTs for declarations that are appeared in the expression.
With this set of declaration nodes, we are free to delete any
unused update statements without worrying about deleting any
declaration within the unused update statements.

b) Analyzer: In the analyzer part, we developed three
analysis tools for the purposes of debugging and exper-
imenting: KAST Display, KAST Depth, and KAST Size.
KAST Display visualizes an AST node by printing out the
current node and recursively printing out its children nodes
with proper indentations. KAST Depth and KAST Size cal-
culates the depth and the number of nodes of the AST,
respectively. All three analysis tools implement a common
interface called KVisitor. KVisitor systematically visits the

Fig. 6. The architecture of KPiler, a compiler for KQuery that is used in
KLEE

whole AST through a visiting method for each type of the
AST node.

c) Back-end: In the back-end, we developed a program
called KTransformer which performs the actual optimization
step of deleting unused update statements. KTransformer takes
as inputs an AST node corresponding to the target symbolic
expression and a set of AST nodes corresponding to the dec-
larations that are appeared in the target symbolic expression.
KTransformer recursively analyzes each AST node (the AST
node for the symbolic expression and the AST nodes for
the declarations) and deletes the unused update statements
within them. KTransformer also transforms the modified AST
nodes for the declarations (i.e. DeclExpr in Figure 8) to
comparison AST nodes (i.e. CompExpr in Figure 8) so that
these declarations can be included in the optimized query.

Lastly, we developed a program called KGenerator which
takes as input an AST node and generates the corresponding
symbolic expressions in the format of KQuery. KGenerator
follows the grammar of KQuery (Figure 7) strictly to faithfully
translate the AST nodes to expressions in KQuery. Same as the
analysis tools in Section III-D2b, KTransformer and KGen-
erator also implement the interface KVisitor to recursively,
systematically visit all parts of an AST node.

3) Threats to Validity: We consider potential threats to
the validity for our optimization methods. First, our modified
version of KQuery grammar is complete but not sound. We
sacrifice soundness for the ease of implementation. As a result,
our KPiler tool can accept all correct KQuery expressions, but
it may also accept some incorrect expressions. We mitigate this
threat by assuming that the symbolic expressions produced by
KLEE are correct with respect to the grammar. Within each
step of KPiler’s workflow, we do not perform any operation
that makes a correct expression to be incorrect. Therefore, the
output of KPiler should still be correct KQuery expressions
even though our grammar is not sound. Second, our KPiler tool
may consist of implementation bugs. We mitigated this threat
by testing our tool against 162 long queries with an average
query size of 14187 bytes. We also performed thorough code
review for our tool.

Fig. 7. The modified grammar of KQuery

Fig. 8. The inherence hierarchy of AST classes. An arrow from class A to
class B indicates that class A is the parent class of class B; i.e. class B inherits
from class A.

Fig. 9. The Workflow of the Search Engine.

E. Search

1) Overview: In the search stage, we use the symbolic
atomic paths as the building blocks to form a multi-cycle path
that brings the hardware design from a reset state to a property-
violated state. The symbolic atomic paths are represented by
queries that are formed by the symbolic expressions which are
produced in the symbolic execution stage (Section III-C) and
then optimized in the optimization stage (Section III-E3 for
details in query formulation).

To form a path from the reset state to the property-violated
state, we explore various techniques from the artificial intelli-
gence research community. We first formulate the problem as
a search problem. We then explore various search algorithms
to solve this search problem: Depth-first Search (DFS), Depth-
limited Search (DLS), Iterative Deepening Search (IDS), and
Greedy Search (see Chapter 3 in [20]). We also formulate
this problem as a Constraint Satisfaction Problem (CSP, see
Chapter 4 in [20]), but this formulation is not yet scalable for
complex hardware designs. Figure 9 presents the high-level
overview of the search engine.

2) Search Problem Formulation: We formulate the problem
of finding a property violation in a hardware design as a search
problem. In our formulation, the states are the sets of values
that are assigned to the registers in the processor design. The
initial state of the search problem is the set of register values
in the reset state of the processor design. We retrieve the initial
state by setting the reset signal to be 1 and concretely simulates
the hardware design for one clock cycle. The initial state of
the up-down counter is the state such that the register value
= 0. The goal state of the search problem is a state in which
a property that is provided by the user is violated. If there
is a property for the up-down counter saying that the register
value 6= 10, then the state in which value = 10 is the goal
state. In more complex hardware designs, we state the goal
state implicitly with a goal test which checks if the current
state satisfies the property.

The operators in our search problem formulation are the
atomic paths that brings the design from one state to another
immediate state, i.e., another state that is reachable from the
original state within one clock cycle. Each atomic path cor-

TABLE II
SEARCH PROBLEM FORMULATION

States Sets of register values
Initial states Reset states of the hardware designs
Goal states Property-violated states
Operators Atomic paths

Path cost function 1 (uniform cost function)
Solutions Multi-cycle paths from reset states

to property-violated states
Search space ∞

responds to a set of instructions that satisfy a path constraint.
We obtain these atomic paths from the symbolic execution
stage (Section III-C) by combining the current states, the
symbolic expressions, and the path constraints to form queries
in the KQuery language [19]. We solve these queries by
Kleaver [21], a query solver that is used by KLEE [11]. We
also use Z3 [22] as the back-end SMT solver of Kleaver. The
solution of the query is a new state that is the result of applying
the atomic path to the current state.

We also consider a path cost function for each path. Cur-
rently, we assign a uniform path cost for each atomic path
because we do not want to have preference over each atomic
path, but in the future we will assign the path cost of each
atomic path to be proportional to the time an SMT solver
takes to solve the query corresponding to the atomic path. In
this way, our search engine will prefer to explore paths with
shorter query.

Moreover, the solution of our search problem is a multiple-
clock-cycle path from one of the reset states of the hardware
designs to a property-violated state. We don’t consider single-
clock-cycle paths (i.e. the atomic paths) as our solutions
because they are handled by KLEE [11] in the symbolic
execution stage (Section III-C). Lastly, the state space of our
search problem is infinite because hardware designs can run
an infinite number of clock cycles. Table II summarizes our
search problem formulation.

3) Query Formulation: After describing our search problem
formulation, we describe how to transit from one state to
another state in one clock cycle. To perform the transition, the
search engine first forms a query in the format of KQuery [19].

The query consists of constraints over a concrete state, a set
of symbolic expressions produced and optimized by previous
stages, and the path constraints corresponding to the set of
symbolic expressions. The symbolic expressions and the path
constraints correspond to the same atomic path, which is the
operator in our search problem formulation. The solution of
this query is a new state that is the result of applying the
atomic path to the original state.

Let us consider an example query on the up-down counter.
Suppose the search engine starts with the reset state where
the register value is 0. Moreover, the search engine follows
the atomic path in which value is incremented, i.e. the input
signal inst is 0. The query has two parts: the query constraints
and the query body. The query solver checks whether the
query body is valid or not assuming the query constraints. The

TABLE III
QUERY CONSTRAINTS

Description Constraint
Current State (Eq w32 0

(ReadLSB w32 0 value))
Symbolic Expression (Eq w32

(ReadLSB w32 0 leaf value)
(Add w32 1

(ReadLSB w32 0 value)))
Path Constraint (Eq 0 (ReadLSB w32 0 inst)

query constraints consist of a KQuery expression regarding the
current state (value = 0), and symbolic expressions as well
as path constraints regarding the symbolic atomic path. We
set the query body to be false. Therefore, by the principle
of explosion (ex falso quodlibet: from falsehood anything
follows), the query is valid if and only if the query constraints
are unsatisfiable. On the other hand, if the query is invalid, then
the query constraints are satisfiable. Then, the query solver
will provide a counterexample as a reason to the invalidity of
the query; this counterexample is a satisfying assignments to
the query constraints. In this case, the query solver will give
a counterexample indicating that the value register will be 1
in the next clock cycle. Table III shows the constraints in the
query that is described in the scenario above. Listing 1 shows
the complete query.

1 array inst[4] : w32 -> w8 = symbolic
2 array value[4] : w32 -> w8 = symbolic
3 array leaf_value[4] : w32 -> w8 = symbolic
4

5 (query [
6 (Eq w32 0
7 (ReadLSB w32 0 value))
8

9 (Eq w32
10 (ReadLSB w32 0 leaf_value)
11 (Add w32 1 (ReadLSB w32 0 value)))
12

13 (Eq 0
14 (ReadLSB w32 0 inst))
15] false [] [leaf_value])

Listing 1. A query that applies an atomic path the reset state of the up-down
counter

The reason for us to form our queries in the format
of KQuery instead of an SMT interface format (such as
SMTLIB2) is that the symbolic expressions and the path
constraints are in the KQuery format. Instead of translating
the expressions to an SMT interface format, we formed the
query in a way such that the query is invalid if and only if the
constraints in the query is satisfiable. We used Kleaver [21],
the built-in query solver for KLEE, to solve the query. Since
we use Z3 [22] as the back-end SMT solver for Kleaver, the
speed of Kleaver is comparable to the state-of-the-art SMT
solver.

4) Backward Recursive Search: Having described how to
transit from one state to another through query formulation
(Section III-E3), we now propose solutions to the search
problem that is formulated in Section III-E2.

We begin with a backward recursive search strategy that
is proposed by Zhang et al. (see Algorithm 1 in [10]). This
strategy starts with the property-violated state, i.e. the goal
state in our problem formulation, and attempts to search for
the reset state, i.e. our initial state. Figure 10 shows a symbolic
execution tree in which the root node is the reset stare and one
of the leaf node is the property-violation state.

From the concrete property-violated state, We find the par-
ent node of the current node by solving the query representing
an atomic path. Which atomic path to choose depends on the
heuristic search policy we use (Section III-E8). We iterate this
process to find the parent node of each current node until we
reach the root node representing the reset state of the hardware
design.

5) Depth-first Search: Under the Backward Recursive
Search strategy, we adopted the Depth-first Search (DFS)
algorithm (see Section 22.3 in [23]). In the symbolic execution
tree (Figure 10), a general DFS starts with the root node and
recursively explores each child node in sequence. Only when
DFS fully explores the subtree rooted at the first child node
will it move to the second child node. Therefore, DFS always
explores the deepest nodes first whenever possible. Under
the Backward Recursive Search strategy (Section III-E4), we
started with the property-violated node instead of the root
node. We recursively explored the neighbor nodes until we
reached the root node.

Let us consider the time complexity of DFS. Let b be the
number of branches and m be the maximal depth. Then the
time complexity of DFS is 1 + b+ b2 + b3 + b4 + ...+ bm =
O(bm). Because hardware can run an infinite number of clock
cycles, the depth is unbounded, i.e. m =∞. As a result, DFS
may get stuck in a subtree and never terminate if the target
node is in another subtree.

6) Depth-limited Search: While DFS can explore a sym-
bolic execution tree deeply, the drawback of DFS is that it
will not stop and backtrack until it reaches a leaf node. Since
in theory hardware designs can run an infinite number of clock
cycles, DFS will never reaches a leaf node. As a result, DFS
will never find a bug in the subtree rooted at the second child
node because it will spend all time exploring the subtree rooted
at the first child node. To overcome this drawback, we adopted
Depth-limited Search (DLS) which allows the user to set a
maximal depth limit for DFS to explore in any subtree. The
condition for DLS to stop exploring and start to backtrack is
that DLS reaches a leaf node or it exceeds the maximal depth.

In the search engine, we implemented DLS under the strat-
egy of the Backward Recursive Search strategy. The drawback
of DLS is that it requires the user to provide a maximal
depth limit which is based on the user’s empirical knowledge.
While it is easy to obtain a reasonable maximal depth for
simple hardware designs such as the up-down counter, it is
difficult if not impossible to figure out the maximal depth
for a complex property in a complex, real-world, open-source
hardware designs.

7) Iterative Deepening Search algorithm: DLS’s need for
empirical experience to set a good depth limit can be satisfied

by the Iterative Deepening Search algorithm (IDS). IDS sets
the depth limit from 0 to ∞ and runs DLS in sequence. We
leave as future work to include IDS into Yippelia’s search
engine.

8) Greedy Search: Greedy Search (GS) is a heuristic search
algorithm that chooses to first explore the node that appears
to be closest to the target node (see Chapter 16 in [23] for
details). Specifically, GS uses a heuristic function h that takes
as input a node n and outputs h(n), the estimated cost from
n to the goal node. Then, GS chooses the node n with the
smallest h(n) to explore first. As a result, GS always chooses
the node that appears to be the closest to the goal node.

Yippelia’s search engine implemented GS along with DLS
and the Backward Recursive Search strategy. Our heuristic
function is the sum of normalized differences between registers
in the current state and those in the reset state. Equation 1 is
the formal definition of our heuristic function:

h(n) =

k∑
i=0

|registeri(n)− registeri(reset state)|
size(registeri)

(1)

In Equation 1, n is an arbitrary state, k is the number of
registers in the concerning hardware design. registeri(n)
gives the value of the ith register in the state n. size(registeri)
gives the size of the ith register in the hardware design.

The reason behind Equation 1 is our observation that in
practice, two states with similar register values are more likely
to reach one another. Equation 1 is by no means the only
heuristic. For example, we can use Hamming distance, which
calculates the number of different bits in two registers, to
replace the subtraction in Equation 1. We leave as future work
to explore different heuristic functions.

9) Constraint Satisfaction Problem Formulation: Instead of
using various search algorithms to solve the search problem,
we formulated the problem as a Constraint Satisfaction Prob-
lem (CSP) and then used an industrial CSP solver in a push-
button manner to find a solution to the search problem. A CSP
consists of a set of variables X, a set of Domains D such that:

D = {Di = domain(Xi)|Xi ∈ X}

and a set of constraints C. A problem is solved if for each
variable Xi, there exists a value from the corresponding
domain Di such that all constraints in C are satisfied (see
Chapter 6 in [20] for further details).

Let us consider the up-down counter example.The set of
variables, X, consists of signals inst and value, each of which
is represented by an array of variables whose element is the
value of the signal at the clock cycle indicated by the index of
the element. For instance, inst[i] represents the value of the
signal inst at the ith clock cycle. Table IV presents the set of
domains D for X the variable set. Table V presents the set of
constraints C.

10) Threats to Validity: The search engine may not be
efficient because it spends the majority of the time on solving
SMT queries. Although the queries are optimized by the opti-
mization stage, the queries for complex, real-world processor

TABLE IV
CSP DOMAIN

Variable Xi Domain Di

insts[i] [0,1]
values[i] [-clock cycle number, clock cycle number]

TABLE V
CSP CONSTRAINTS

Constraints Reasons
values[0] == 0 In the reset state,

the initial value for register value is 0.
¬ insts[i] → When inst is 0,

values[i+1] == values[i] + 1 the counter counts up.
insts[i] → When inst is 1,

values[i+1] == values[i] - 1 the counter counts down.
values[last] == assert value This constraint represents the assertion.

design may still be lengthy and SMT solvers may still take
a long time to solve them. To mitigate this threat, we use
as our SMT solver Z3 [22] that is one of the state-of-the-
art SMT solver. To further reduce the size of queries, we
leave as future work to explore other symbolic execution in
the software domain that can produce more compact symbolic
expressions than KLEE.

Our current formulation of the CSP is not scalable to
complex hardware designs because our formulation requires to
abstractly implement the control flow of the hardware design
in the CSP solver. We attempted to mitigate this threat by
utilizing properties of hardware-oriented symbolic execution
that are formulated by Zhang et al. (see Section 4.1 in [10] for
details). However, the formulation of these properties require
more powerful problem formulation such as Constraint Logic
Programming. We leave as future work to explore general
Constraint Logic Programming. formulation that does not
depend on the knowledge of the design.

Fig. 10. The Symbolic Execution Tree as a result of the Backward Recursive
Search Algorithm

TABLE VI
TIMES FOR Z3 TO SOLVE 162 YIPPELIA’S QUERIES.

time (minutes) [45,∞) [10, 45) [1, 10) [0, 1)
number of queries 2 4 7 149

percentages 1.2% 2.5% 4.3% 92.0%

IV. IMPLEMENTATION

A. Overview

Yippelia is implemented in Python [24], [25] and C++ [14].
We consider RTL hardware designs in SystemVerilog [12].
We used Verilator [15] to translate the RTL hardware designs
to C++. We also wrote C++ script to symbolically simulate
the hardware designs for one clock cycle by KLEE [11]. The
KPiler tool in the optimization stage and the search engine are
implemented in Python.

B. Preprocessing

In the preprocessing stage, we used Verilator [15] to trans-
late RTL hardware designs in SystemVerilog [12] to C++ [14].
Verilator has different levels of compiler optimizations. Ver-
ilator’s optimization trades completeness for efficiency. Ver-
ilator’s optimization simplifies the control logic, flattens the
designs, and eliminates some signals. As a result, Verilator’s
optimization is possible to eliminate bugs in the RTL designs,
making the symbolic execution more incomplete. On the other
hand, the compiler optimization can shorten the length of the
design in C++, so KLEE can finish the one-cycle symbolic
execution in a shorter time. Zhang et al. used Verilator’s
compiler optimization in [8] because their tool requires to run
symbolic execution multiple times, one time for each clock
cycle. In Yippelia, we only run symbolic execution one time
for one clock cycle, so Yippelia can afford a more expensive
but more complete symbolic execution. We leave as a user
input to let the users decide whether they would like to enable
Verilator’s compiler optimizations when running Yippelia.

C. Symbolic Execution

Yippelia uses KLEE [11] as the symbolic execution engine
to symbolically explore a hardware design for one clock
cycle. KLEE has four search modes: Depth-First Search
(DFS), Random State Search, Random Path Selection, and
Non Uniform Random Search (NURS). Yippelia uses the
DFS heuristic, and the reasons are twofold. First, because
we need to fully explore a hardware design for one clock
cycle, in which order to explore the states will not make a
difference in execution time; no matter which heuristic we
use, the total number of states KLEE needs to visit is the
same. Moreover, we prefer KLEE’s exploration to be in-order
and deterministic because this provides convenience for us to
match the symbolic expressions with the path constraints. As
a result, Yippelia uses DFS as KLEE’s search mode.

D. Optimization

1) Optimization 1: In Yippelia’s implementation, we
moved the first optimization to the symbolic execution stage.

Before symbolic execution, we filtered out the input signals
from the set of signals that is pre-calculated for KLEE to
produce their symbolic expressions. By filtering out the input
signals early, Yippelia saves time by not printing out the
symbolic expressions for inputs signals which eventually will
not be used to form the queries.

2) Optimization 2: KPiler is implemented in Python. Our
implementation strictly follows the compiler workflow that is
described in Chapter 4 (Syntactic Analysis) and Chapter 7
(Code Generation) in [26]. We skipped the Contextual Anal-
ysis section because we assume that KLEE produces correct
KQuery expressions. The front-end part of KPiler implements
the Syntactic Analysis part. It utilizes a Python package
called ply which implements the lex and yacc parsing tool in
Python [27]. The back-end part of KPiler implements the Code
Generation part. Both tools in the back-end (KTransformer and
KGenerator) implements a visitor interface that systematically
and recursively explores each node in the AST. The analyzer
of KPiler also implements the visitor interface to visualize and
analyze the AST. We have not finished the implementation of
KPiler since KTransformer has an unresolved implementation
bug. We leave as future work to fix the bug.

E. Search Engine

The search engine, including the search algorithms and the
constraint satisfaction problem formulation, is implemented in
Python.

1) Query Formulation: We describe in Section III-E3 how
we combine symbolic expressions to form queries. In this
section, we describe our solution to a technical challenge
in combining the symbolic expressions. The challenge is,
two symbolic expressions may contain the same identifier
name but they refer to two different identifier declarations.
Therefore, when we put the two expressions into the same
query, the query will have a duplicate declarations bug. We
overcame this challenge by renaming the identifiers in each
symbolic expression. Our solution is based on an observation
that identifiers names in the symbolic expressions produced
by KLEE are in sequence. For example, if an expression
contains 10 identifiers, the identifiers are named by N1, N2,
N3, ..., N10. We also utilized the idea of segmentation in
the operating system community which translates a virtual
address to a physical address by adding a base register to the
virtual address. We implemented a similar translation process
for identifier names in a Python script. We have a base register
that is initialized to be 0. Every time we add a new symbolic
expression to the query, we first add the base register to all
occurrences of identifier names; we then increment the base
register by the number of identifier declarations. As a result,
within one query, there does not exist two expressions with
the same identifier.

2) CSP Formulation: To formulate the search problem as
a CSP and solve it, we utilized Google OR-Tools, an open
source package for combinatorial optimization [28]. We used
the interface in Python as a third-party library. We added our
constraints (Table V) to the Constraint Programming Solver,

and asked the solver to return a satisfying solution in a push-
button manner.

V. EVALUATION

A. Research Questions

In this section, we answer the following research ques-
tion: How much time can Yippelia save in finding property-
violations in hardware designs compared to the state-of-the-art
symbolic execution engines?

B. Experimental Setup

Before we answer the research questions, we first describe
our experimental setup.

1) Hardware Designs: We evaluated Yippelia on two hard-
ware designs. The first design is the up-down counter that is
detailedly described in Section II. The design of the up-down
counter is simple in that it only has two program paths in one
clock cycle, but the design is nontrivial in that it is stateful.
Therefore, we used the up-down counter as a playground to
explore and demonstrate the workflow of Yippelia.

The second design is our own implementation of a single-
cycle processor which implements the MIPS architecture de-
scribed in [29]. The design complexity of the MIPS processor
is at the same level as other open-source processor designs
such as the RISC-V processors and the OR1200 processor
which implements the OpenRISC 1000 architecture. The MIPS
processor is a single-cycle design in that all instructions are
finished within one clock cycle. We leave as future work to
perform experiments on a larger range of open-source proces-
sor designs that include multi-cycle and pipelined designs.

2) Properties: The properties we considered for the up-
down counter simply assert that the register value does not
equal to certain value X. The absolute value of X also deter-
mines the optimal number of clock cycles the search engine
requires to find a property-violation. For example, the property
¬reset → value 6= −10 asserts that the register value does
not equal to −10. The violation to this property can be found
within 10 clock cycles. Table VII presents example properties
for deep bugs and shallow bugs for the up-down counter.

For the MIPS processor, we infer from the MIPS In-
struction Set [30] a property about the store-word instruc-
tion. store-word stores a register’s value to the memory.
Because this instruction does not write to the register file,
the signal werf, which indicates whether the register file is
write-enabled, should be set to 0. Formally, the property is:
(¬((instr & ‘hFC000000) >> 26) == 43) || (werf ==
0) || (reset == 1). This property says that when the processor
is not in the reset state, if the instruction is store-word, then the
signal werf is 0. We inserted a bug to the MIPS processor that
violates this property whenever the processor runs a store-word
instruction. Since the property violation can be found within
one clock cycle, we disabled the fast validation sub-stage
in the symbolic execution stage (Section III-C). As a result,
Yippelia needs to find the property violation in the search
engine instead of finding it early in the symbolic execution

TABLE VII
EXAMPLE SHALLOW AND DEEP PROPERTIES FOR THE UP-DOWN COUNTER

Shallow Property ¬reset→ value 6= −2
Deep Property ¬reset→ value 6= 980

TABLE VIII
COMPARISON ON EXECUTION TIME FOR YIPPELIA AND KLEE IN FINDING

SHALLOW AND DEEP BUGS

Shallow bugs Deep bugs
Yippelia 6.74 seconds 18.31 seconds
KLEE 4.16 seconds didn’t finish after 121 hours

stage, so we are able to test the optimization stage and the
search engine using this property.

3) Running Experiments: We wrote scripts to automatically
run tests on both hardware designs and collect data that
measure execution time. We performed the experiments on a
machine with Intel Core i5-3337U 4-core 1.80GHz CPU and
3G available RAM.

C. Up-down Counter

We evaluated Yippelia on the up-down counter design
(Section II) against KLEE [11], a matured, open source, and
well-maintained symbolic execution engine in the software
domain that represents the state-of-the-art symbolic execution
engines. In our experiments, KLEE uses the default search
heuristic which is the Random Path Selection interleaved with
Non Uniform Random Search (NURS) with Coverage-New
heuristic (see Section 3.4 in [11]). Same as Yippelia, KLEE
uses Z3 [22] as its back-end SMT solver.

Table VIII presents a comparison on Yippelia and KLEE
on finding shallow bugs and deep bugs. In Table VIII, we
define the shallow bugs to be property-violations that can be
found within 10 clock cycles, and deep bugs to be those that
can be found from 980 to 990 clock cycles. Table VIII shows
that while KLEE has comparable timing performance with
Yippelia on shallow bugs, Yippelia has an average speedup of
at least four orders of magnitude on deep bugs.

Figure 11 presents a comparison on execution time between
Yippelia and KLEE on finding property violations from 1 to
1000 clock cycles. Figure 11 shows that while KLEE’s exe-
cution time grows exponentially, the growth rate of Yippelia’s
execution time is close to linear with respect to the number of
clock cycles. Figure 12 and Figure 13 are parts of Figure 11
in that Figure 12 focuses on Yippelia’s graph while Figure 13
focuses on KLEE’s graph.

D. MIPS processor

While Yippelia has efficient performance on the up-down
counter design, Yippelia took a significantly large amount of
time to finish execution when we evaluated Yippelia on the
MIPS processor without the optimization stage (Section III-D).
While Yippelia can find the property-violation, Yippelia took
198.9 minutes to finish the process. The reason for Yippelia
to take such a long time is that, for a complex, industrial-level

Fig. 11. Execution time comparison between Yippelia and KLEE

Fig. 12. Execution time comparison focusing on Yippelia

Fig. 13. Execution time comparison focusing on KLEE

processor design such as the MIPS processor, the symbolic
expressions generated from KLEE are too lengthy. As a result,
Yippelia’s back-end SMT solver is not able to efficiently solve
queries made up of these lengthy symbolic expressions. To
provide a sense of the execution time for solving the queries,
we performed experiments on using Z3 [22] to solve 162
queries formed by the symbolic expressions from the MIPS
processor. The results are presented in Table X. Specifically,
3.7% of the queries take more than 10 minutes. Within
them, 2 queries in particular need more than 45 minutes.
This performance makes Yippelia without the optimization
stage not practical in finding property-violations on the MIPS
processor.

E. Optimizations

To reduce the execution time for our SMT solver to solve
the queries for the MIPS processor, Yippelia performs 2
optimizations in the optimization stage (Section III-D). The
first optimization removes from the queries the symbolic
expressions constraining the input signals. Table IX shows
that the first optimization reduces the overall execution time
by 70%. In comparison with Table X, Table XI also shows
the time for Z3 [22] to solve the 162 queries formed by
the symbolic expressions from the MIPS processor, but with
Optimization 1 enabled. Table XI shows that the percentage
of the 162 queries which take more than 10 minutes shrinks
from 3.7% to 0.6%. Moreover, the execution for the longest
query (the bottleneck) shrinks by 61.3%. Therefore, the first
optimization greatly improves the scalability of Yippelia on
complex hardware designs. Because the implementation of the
second optimization is still in progress, we leave as future
work to evaluate the speedup of the second optimization.

TABLE IX
TIME COMPARISON FOR YIPPELIA WITH AND WITHOUT OPTIMIZATION 1

TO FIND THE PROPERTY-VIOLATION REGARDING THE STORE-WORD
INSTRUCTION

no Optimization 1 with Optimization 1
Time (min) 198.9 60.2

% regarding Yippelia 100% 30%
without Optimization 1

TABLE X
TIMES FOR Z3 TO SOLVE 162 QUERIES FOR THE MIPS PROCESSOR WITH

THE OPTIMIZATION STAGE DISABLED

time (minutes) [45,∞) [10, 45) [1, 10) [0, 1)
number of queries 2 4 7 149

percentages 1.2% 2.5% 4.3% 92.0%

VI. DISCUSSION

A. Threats to Validity

1) Incompleteness: With respect to finding property viola-
tions, though Yippelia is sound in that every bug it reports is
a true property violation, Yippelia is incomplete in that there

TABLE XI
TIMES FOR Z3 TO SOLVE 162 QUERIES FOR THE MIPS PROCESSOR WITH

OPTIMIZATION 1 ENABLED

time (minutes) [10, 18) [5, 10) [1, 15) [0, 1)
number of queries 1 2 8 151

percentages 0.6% 1.2% 5.0% 93.2%

may exist a property violation which Yippelia cannot find.
The source of Yippelia’s incompleteness is threefold. First,
the number of clock cycles that is required to reach certain
property violation is significantly large. In the case of the up-
down counter, this type of property would be asserting that
the register value equals to 21000. Yippelia will time-out in
this case. The second type of incompleteness rises from the
preprocessing stage (Section III-B). As indicated by Zhang et
al. [10], Verilator may eliminate bugs during the compilation
of the hardware design, because the compilation is not always
faithful due to compiler optimization. To mitigate this threat,
our research group is developing so called the native symbolic
execution approach on hardware which runs symbolic execu-
tion directly on the RTL hardware designs (Section VI-B3).
Lastly, Yippelia may miss a bug because our search heuristics
(Section III-E) do not explore the correct path. We leave as
future work to develop better search heuristics.

2) Symbolic Expressions: As described in Section III-C,
Yippelia relies on KLEE to perform the symbolic exploration
of hardware designs within one clock cycle. Although KLEE
is a matured, well-maintained symbolic execution engine on
the software domain, the symbolic expressions that are printed
out by KLEE are lengthy. As a result, the query formed by
the symbolic expressions often require a nontrivial amount
of time to be solved by an SMT solver. As a result, the
query formed by the symbolic expressions often require a
nontrivial amount of time to be solved by an SMT solver. To
mitigate this threat, we performed optimizations to shorten the
symbolic expressions (Section III-D). We leave as future work
to explore other open-source symbolic execution frameworks
such as angr [16], [17], [18].

3) KPiler: We consider potential threats to the validity for
our query optimization tool, KPiler (Section III-D2). First,
our modified version of KQuery grammar is complete but
not sound: our KPiler tool can accept all correct KQuery
expressions, but it may also accept some incorrect expressions.
We sacrifice soundness for the ease of implementation. We
mitigate this threat by assuming that the symbolic expressions
produced by KLEE are correct with respect to the grammar.
Within each step of KPiler’s workflow, we do not perform
any operation that makes a correct expression to be incorrect.
Therefore, the output of KPiler should still be correct KQuery
expressions even though our grammar is not sound. Second,
our KPiler tool may consist of implementation bugs. We
mitigated this threat by testing our tool against 162 long
queries with an average query size of 14187 bytes. We also
performed thorough code review for our tool.

4) Search Engine: The search engine may not be efficient
because it spends the majority of the time on solving SMT
queries. Although the queries are optimized by the opti-
mization stage, the queries for complex, real-world processor
design may still be lengthy and SMT solvers may still take
a long time to solve them. To mitigate this threat, we use
Z3 [22], one of the state-of-the-art SMT solver, as Yippelia’s
back-end SMT solver. To further reduce the size of the queries,
we leave as future work to explore other symbolic execution in
the software domain that can produce more compact symbolic
expressions than KLEE.

5) Constraint Satisfaction Problem: Our current formula-
tion of the Constraint Satisfaction Problem is not scalable to
complex hardware designs because our formulation requires
to abstractly implement the control flow of the hardware
design in the CSP solver. We attempted to mitigate this
threat by utilizing properties of hardware-oriented symbolic
execution that are formulated by Zhang et al. (see Section 4.1
in [10] for details). These three properties define a sequence
of path constraints which takes the hardware design from
a reset state to a property-violated state. Therefore, we can
replace the constraints in our CSP formulation with these
three properties. However, the properties involve set operations
such as set membership, intersection, and sub-set relations.
As a result, we cannot express the properties as constraints in
CSP. Constraint Logic Programming (CLP) [31], [32], which
combines logic programming with CSP, can represent the
set relations with the knowledge representation in the logic
programming. Therefore, CLP has the potential to express
the three properties in logic programming, incorporate them
as constraints, and solve the problem in a similar manner as
CSP. Once we finish the problem formulation, we can utilize
the industrial CLP solvers such as SAS-OR tool to solve the
problem in a push-button manner. We leave as future work
to explore general Constraint Logic Programming formulation
that does not depend on the knowledge of the design.

6) Implementation: The search engine (Section III-E) will
encounter a stack-overflow error after 1000 clock cycles for
the up-down counter design. The reason is that the search
algorithms in the search engine are implemented in a re-
cursive manner. This problem can be solved by translating
the recursive implementation to an iterative implementation.
The translation is achievable because a recursive algorithm
can always be represented by an iterative algorithm. However,
because of the tremendous engineering work to perform the
translation, we decided to leave it as a future work.

7) Evaluation: Our evaluation of Yippelia is not thorough.
We attempted to evaluate Yippelia on the up-down counter
(Section II) and the MIPS processor [29]. Because we did
not finish the implementation of KPiler (Section III-D2),
we were not able to complete the evaluation on the MIPS
processor, so the efficacy of Yippelia on complex hardware
designs is still doubtable. Because the MIPS processor follows
the single-cycle architecture, we cannot evaluate Yippelia
against complex properties whose violations cross multiple
clock cycles. We leave as future work to evaluate Yippelia on

designs with multi-cycle and pipeline architecture. Moreover,
Yippelia is compared with KLEE [11]. Although KLEE is
a state-of-the-art symbolic execution engine on the software
domain, KLEE is not designed for hardware. In the future, we
plan to compare Yippelia with the state-of-the-art hardware-
oriented symbolic execution engine such as Coppelia [8].
We also plan to compare Yippelia’s performance with other
formal verification techniques such as model checking [9] and
concolic execution [33].

B. Future Work

1) Massive-Properties Symbolic Execution on Hardware:
In the real world, hardware designers often need to check
multiple properties on a hardware design simultaneously. The
current workflow of Yippelia only checks one property at
a time, but Yippelia can be fine-tuned to efficiently check
multiple properties. When checking multiple properties, Yip-
pelia needs to run the preprocessing stage (Section III-B), the
symbolic execution stage (Section III-C), and the optimization
stage (Section III-D) only once. The set of registers that
Yippelia uses in the symbolic execution stage is the union of
the sets of registers for all properties. Although Yippelia needs
to run the search engine (Section III-E) once for each property,
Yippelia can save time on verifying massive properties by
running the previous stages only once.

2) Evolutionary Hardware-oriented Symbolic Execution:
Similar to regression testing in the software domain, hardware
designers often need to run tests and check properties on
multiple versions of a design. Inspired by the Evolutionary
Runtime Verification approach proposed by Lengunsen et
al. [34], we propose the Evolutionary Hardware-oriented
Symbolic Execution technique. This technique reduces the
runtime overhead of using symbolic execution to verify differ-
ent versions of hardware designs by first finding the property-
violations that are rooted in the change of the design. We
propose a three-stage pipeline for the approach. First, the
approach performs a change-of-impact analysis to determine
which part of the hardware design is changed. Second, the
approach performs a mapping from the change of the design
to the program paths produced by the symbolic execution
stage (Section III-C) in Yippelia. Lastly, we add as a heuristic
to Yippelia’s search engine III-E to prioritize exploring the
paths corresponding to the change of the design. Therefore,
instead of spending time finding the old bugs, the Evolutionary
Hardware-oriented Symbolic Execution approach prioritizes
finding the new property-violations which are caused by the
change of the design. This approach increases the scalability
of symbolic execution in the real-world hardware development
cycle, not by finding a single property-violation faster, but by
reducing the search space of the property-violations to the
new property-violations which are rooted in the change of the
hardware design.

3) Native Symbolic Execution on Hardware: To mitigate
the threat of incompleteness (Section VI-A1) which arises
from the compiler optimization in the preprocessing stage
(Section III-B), our research group is developing an approach

called the Native Symbolic Execution on Hardware. To cir-
cumvents the incompleteness problem caused by Verilator, the
native symbolic execution approach directly builds a symbolic
execution engine for the RTL hardware designs. Although this
approach cannot fully mitigate the incompleteness problem as
the incompleteness is rooted in the general symbolic execution,
this approach eliminates the part of the incompleteness that is
caused by Verilator’s compiler optimization.

VII. RELATED WORK

A. Overview

The recent emergences of the Spectre [1] and Meltdown
attacks [2] have emphasized the importance of security ver-
ification at the design phase of hardware. Assertion based
verification is one of the most popular techniques to verify the
security of hardware designs. To perform the verification, one
needs to answer two questions: 1) how to generate assertions
encoding security critical properties of hardware designs, and
2) how to verify that assertions are not violated in hardware
designs. Recently, several answers to the first question has
been proposed in [4], [5], [7], [6], and we will review these
answers in Section VII-B.

We in Yippelia propose a partial answer to the second
question by triggering an assertion violation in hardware
designs. Although we cannot prove the absence of assertion
violation, we can in the most time trigger the assertion
violation if the assertion is indeed violated by the designs.
To automate the process of triggering assertion violations, we
propose a strategy to perform symbolic execution techniques
on hardware designs. Recent works on applying symbolic
execution to hardware designs are reviewed in Section VII-B.

Although software symbolic execution techniques only ex-
plore a hardware design for one cycle, a processor can run
for an infinite number of clock cycles, resulting a severe path
explosion problem [13]. Therefore, heuristic search algorithms
toward the assertion violation are needed in the symbolic
execution process. Section VII-D reviews several search al-
gorithms and their applications to solving problems in various
research areas.

B. Hardware Symbolic Execution

First purposed as a software technique in [35], symbolic
execution has been widely applied to hardware recently in [9],
[36], [10], [8], [37], [38], [39], etc.

Path explosion [13] is a prevalent problem in the field of
applying symbolic execution to hardware. This problem is
severe in the context of hardware symbolic execution because
of the intrinsic properties of hardware designs. Mukherjee
et al. [9] made the first attempt to apply forward symbolic
execution to hardware verification, but this method is limited
to small-size hardware designs because of the path explosion
problem. Spectector [36], a countermeasure for the Spectre
attack [1], can detect speculative leaks or prove their absence.
However, Spectector [36] is not scalable for verifying large,
complex designs because it limits the number and the lengths

of symbolic paths it can explore in order to circumvent the
path explosion problem.

Zhang et al. tackled the path explosion problem [13]
by proposing a recursive, backward search algorithm for
hardware-oriented symbolic simulation [10], [8]. In a symbolic
tree as shown in Figure 10 representing all symbolic paths of
a design, to find a path from the root node to the error node,
the algorithm starts with the error node and recursively finds
the parent node until it reaches the root node. The algorithm
counters the path explosion problem [13] by utilizing an
intrinsic property of the tree structure: any node has at most
one parent node while it can have a much larger number of
child nodes. Zhang et al. implemented this recursive symbolic
simulation strategy in Coppelia [8] for automated exploit
generation. However, Coppelia [8] runs symbolic simulation
on the same processor design once for every clock cycle, thus
performing redundant work. Moreover, Coppelia has only been
evaluated on processors but not general hardware designs.
Meng et al. recently extended the verification scope from
the processor core to a whole System-on-Chip (SoC) design.
Meng et al proposed RTL-ConTest [33], a framework that first
extracts the process flows of the designs as control flow graphs
(CFGs) and then performs concolic execution on the CFGs.

Symbolic simulation is often combined with concrete sim-
ulation to generate functional tests. Lyu et la. [39] automated
the generation of directed tests with a combination of symbolic
simulation and concrete simulation. They showed that their
approach is more scalable than the state-of-the-art model
checking technique [9] because of its lower requirement on
memory resource. STAR [37] uses a hybrid approach between
symbolic simulation and concrete simulation in RTL level
as well to generate functional input vector. However, its
performance is limited by the number of unrolling cycles.
PACOST [38] also combines symbolic simulation and concrete
simulation to generate functional input vectors that specifically
covering hard-to-reach states. PACOST [38] handles the prob-
lem of unrolling cycles in STAR [37] by using the abstract
distance to the target state to approximate the optimal number
of unrolling cycles.

C. Security Property Generation

Historically, security properties have been manually gener-
ated [40], [41], [42], [43]. These manually-developed prop-
erties are then used as an initial set of properties for
SCIFinder [4] to semi-automatically find security properties
utilizing statistical learning techniques. In addition to proposi-
tional properties generated by SCIFinder [4], UNDINE [5]
can find properties in the form of linear temporal logic.
However, the property generation process is not still semi-
automated because both SCIFinder and UNDINE require an
initial set of manually-developed properties.

Deutschbein et al. fully automated the property generation
process in Astarte [7]. Astarte infers security properties from
their relevance with safety-critical control signals, instead of
using an initial set of manually-written security properties in
previous works [4], [5], so that it can eliminate human efforts

in the process. However, the scope of Astarte is limited to
closed-source, CISC designs (such as x86 processor designs).
To handle this problem, Zhang et al. presented Transys [6], a
tool that can automatically translate security properties on one
design to equivalent properties on another design. Therefore,
properties on CISC designs generated by Astarte [5] can be
translated to other processor designs as well. However, the
semantic equivalence rate of the translation is low (less than
50%) for assertions related to information flow tracking and
processor cores.

The generated security properties are useful for light-weight
verification of existing designs, as well as for guiding new
secure designs. In this work, we use the security properties
to generate exploits for existing designs. Farzana et al. [44]
showed an approach to use the security properties to guide the
new, secure designs of system-on-chips.

D. Search Algorithms

Dijkstra’s [45] and A-star [46] are among the most popular
shortest path algorithms. Dijkstra’s finds the optimal solution
but takes a longer time, while A-star can find a solution in
optimal time but the solution is not always optimal [47].
In practice, heuristic search algorithms are used in various
areas including motion planning [48], [49], constraint opti-
mization [50], [51], and computational biology [52], [53], [54].
In this work, we utilize various heuristic search algorithms to
find a path from the root node to the error node in the symbolic
tree.

VIII. CONCLUSION

This thesis presents Yippelia, a hardware-oriented symbolic
execution tool that automatically triggers property-violations
in hardware designs. Starting with a RTL hardware design
and a property, Yippelia first translates the RTL design to
the semantically equivalent software code. Yippelia then runs
symbolic execution on the software code for one clock cycle to
produce a set of symbolic expressions for each program path.
Next, Yippelia optimizes the symbolic expressions and uses
them to form a search problem and a Constraint Satisfaction
Problem (CSP). Lastly, Yippelia solves the search problem
through various heuristic search algorithms and the CSP
through the industrial CSP solver.

The secret sauce of Yippelia is twofold. First, Yippelia
only runs the expensive symbolic execution on the hardware
design only one time for one clock cycle. So, compared to
Coppelia [8] which runs symbolic execution for each clock
cycle, Yippelia can save execution time on running symbolic
execution especially when finding deep bugs. This feature not
only makes Yippelia efficient to verify a single property, but
also enables Yippelia to verify a massive amount of properties
simultaneously (Section VI-B1). Second, by running the one-
clock-cycle symbolic execution, Yippelia obtains all possible
atomic paths which consist of one clock cycle. With all
the building blocks in hand, Yippelia can easily utilize the
techniques from the Artificial Intelligence community, such as
the heuristic search algorithms and the Constraint Satisfaction

Programming, to form the target multi-cycle path. Having
all atomic paths in hands, Yippelia also has the potential
to borrow ideas from the software engineering community
to perform evolutionary verification which prioritizes finding
new property-violations in a new version of the design (Sec-
tion VI-B2).

We evaluated Yippelia on two hardware designs – the up-
down counter (Section II) and the MIPS processor [29]. For
the up-down counter design, Yippelia has an average speedup
of at least four orders of magnitude on finding deep bugs
compared with KLEE [11]. Because we have not finished
the implementation of the KPiler (Section III-D2), we did not
complete the experiments on the MIPS processor yet.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my appreciation
to my advisor, Professor Cynthia Sturton, for her guidance
and constant support during my undergraduate study. Professor
Cynthia kindly accepted me as her undergraduate student,
guided me step-by-step to perform Computer Science research,
and patiently helped me practice my writing and presentation
skills. I would have not stepped into the research world and
completed this thesis without her mentorship and continuous
encouragement.

I would also like to extend my sincere gratitude to other
professors at the Department of Computer Science at the
University of North Carolina at Chapel Hill, especially Pro-
fessors Parasara Sridhar Duggirala, Samarjit Chakraborty, and
David Plaisted. Professor Sridhar kindly agreed to be the
second reader for this thesis, provided very valuable advice
before, during, and after the thesis defense, and guided me
through my study and my graduate school application and
decision. Professor Samarjit provided me with invaluable help
and guidance on my study, my graduate school application and
decision, and life in general. Professor Plaisted kindly accepted
me as his undergraduate TA for three years and provided me
with opportunities to guest lecture.

I would also like to thank members at the UNC Hardware
Security group for their mentorship, helps, and friendship: Dr.
Rui Zhang, Calvin Deutschbein, Alyssa Byrnes, Yufeng Gong,
and Kaki Ryan. Lastly, special thanks to my family and friends
for their emotional supports and love.

REFERENCES

[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading kernel
memory from user space,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 973–990.

[3] D. Price, “Pentium fdiv flaw-lessons learned,” IEEE Micro, vol. 15,
no. 2, pp. 86–88, 1995.

[4] R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton, “Identifying
security critical properties for the dynamic verification of a processor,”
in Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 541–554. [Online]. Available:
https://doi.org/10.1145/3037697.3037734

https://doi.org/10.1145/3037697.3037734

[5] C. Deutschbein and C. Sturton, “Mining security critical linear temporal
logic specifications for processors,” in 2018 19th International Workshop
on Microprocessor and SOC Test and Verification (MTV), 2018, pp. 18–
23.

[6] R. Zhang and C. Sturton, “Transys: Leveraging common security prop-
erties across hardware designs,” in Proceedings of the Symposium on
Security and Privacy (S&P). IEEE, 2020.

[7] C. Deutschbein and C. Sturton, “Evaluating security specification mining
for a cisc architecture,” in Proceedings of the International Symposium
on Hardware Oriented Security and Trust (HOST). IEEE, 2020.

[8] R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-to-end
automated exploit generation for validating the security of processor
designs,” in Proceedings of the International Symposium on Microar-
chitecture (MICRO). IEEE/ACM, 2018.

[9] R. Mukherjee, D. Kroening, and T. Melham, “Hardware verification
using software analyzers,” in 2015 IEEE Computer Society Annual
Symposium on VLSI, 2015, pp. 7–12.

[10] R. Zhang and C. Sturton, “A recursive strategy for symbolic execution
to find exploits in hardware designs,” in Proceedings of the International
Workshop on Formal Methods and Security (FMS). ACM, 2018.

[11] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

[12] “Ieee standard for systemverilog–unified hardware design, specification,
and verification language,” IEEE Std 1800-2017 (Revision of IEEE Std
1800-2012), pp. 1–1315, 2018.

[13] S. Krishnamoorthy, M. S. Hsiao, and L. Lingappan, “Tackling the
path explosion problem in symbolic execution-driven test generation for
programs,” in 2010 19th IEEE Asian Test Symposium, 2010, pp. 59–64.

[14] C. S. Committee et al., “Iso international standard iso/iec 14882: 2014,
programming language c++,” Technical report, Geneva, Switzerland:
International Organization for . . . , Tech. Rep., 2014.

[15] “Verilator.” [Online]. Available: https://www.veripool.org/wiki/verilator
[16] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,

A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
2016.

[17] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” 2016.

[18] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” 2015.

[19] “Kquery · klee.” [Online]. Available: https://klee.github.io/docs/kquery/
[20] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,”

2002.
[21] “Kleaver’s options · klee.” [Online]. Available: https://klee.github.io/

docs/kleaver-options/
[22] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-

national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[24] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

[25] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

[26] D. A. Watt, D. F. Brown, and D. Brown, Programming language
processors in Java: compilers and interpreters. Pearson Education,
2000.

[27] “python lex-yacc.” [Online]. Available: https://www.dabeaz.com/ply/
[28] “About or-tools.” [Online]. Available: https://developers.google.com/

optimization/introduction/overview
[29] D. A. Patterson and J. L. Hennessy, Computer Organization and Design

MIPS Edition: The. San Francisco: Morgan Kaufmann Publishers Inc,
2013.

[30] J. Heinrich et al., MIPS R4000 Microprocessor User’s Manual. MIPS
technologies, 1994.

[31] J. Jaffar and J.-L. Lassez, “Constraint logic programming,” in Proceed-
ings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, 1987, pp. 111–119.

[32] J. Jaffar and M. J. Maher, “Constraint logic programming: A survey,”
The journal of logic programming, vol. 19, pp. 503–581, 1994.

[33] X. Meng, S. Kundu, A. K. Kanuparthi, and K. Basu, “Rtl-contest:
Concolic testing on rtl for detecting security vulnerabilities,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2021.

[34] O. Legunsen, “Evolution-aware runtime verification,” Ph.D. dissertation,
University of Illinois at Urbana-Champaign, 2019.

[35] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, p. 385–394, Jul. 1976. [Online]. Available:
https://doi.org/10.1145/360248.360252

[36] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,” in
2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 1–19.

[37] L. Liu and S. Vasudevan, “Star: Generating input vectors for design
validation by static analysis of rtl,” in 2009 IEEE International High
Level Design Validation and Test Workshop, 2009, pp. 32–37.

[38] Y. Zhou, T. Wang, H. Li, T. Lv, and X. Li, “Functional test generation for
hard-to-reach states using path constraint solving,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 6, pp. 999–1011, 2016.

[39] Y. Lyu and P. Mishra, “Automated test generation for activation of
assertions in rtl models,” in 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2020, pp. 223–228.

[40] M. Abramovici and P. Bradley, “Integrated circuit security: New threats
and solutions,” in Proceedings of the 5th Annual Workshop on Cyber
Security and Information Intelligence Research: Cyber Security and
Information Intelligence Challenges and Strategies, ser. CSIIRW ’09.
New York, NY, USA: Association for Computing Machinery, 2009.
[Online]. Available: https://doi.org/10.1145/1558607.1558671

[41] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security checkers:
Detecting processor malicious inclusions at runtime,” in 2011 IEEE
International Symposium on Hardware-Oriented Security and Trust,
2011, pp. 34–39.

[42] ——, “Evaluating security requirements in a general-purpose processor
by combining assertion checkers with code coverage,” in 2012 IEEE
International Symposium on Hardware-Oriented Security and Trust,
2012, pp. 49–54.

[43] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “Specs: A
lightweight runtime mechanism for protecting software from security-
critical processor bugs,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 517–529. [Online].
Available: https://doi.org/10.1145/2694344.2694366

[44] N. Farzana, F. Rahman, M. Tehranipoor, and F. Farahmandi, “Soc secu-
rity verification using property checking,” in 2019 IEEE International
Test Conference (ITC), 2019, pp. 1–10.

[45] E. DIJKSTRA, “A note on two problems in connexion with graphs.”
Numerische Mathematik, vol. 1, pp. 269–271, 1959. [Online]. Available:
http://eudml.org/doc/131436

[46] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. SSC-4(2), pp. 100–107, 1968.

[47] A. Candra, M. A. Budiman, and K. Hartanto, “Dijkstra’s and a-star in
finding the shortest path: a tutorial,” in 2020 International Conference on
Data Science, Artificial Intelligence, and Business Analytics (DATABIA),
2020, pp. 28–32.

[48] B. Bonet and H. Geffner, “Planning as heuristic search,” Artificial
Intelligence. 2001 Jun; 129 (1-2): 5-33., 2001.

[49] D. Youakim, P. Cieslak, A. Dornbush, A. Palomer, P. Ridao, and
M. Likhachev, “Multirepresentation, multiheuristic a* search-based mo-
tion planning for a free-floating underwater vehicle-manipulator system
in unknown environment,” Journal of Field Robotics, 2020.

[50] P. Dasgupta, P. Chakrabarti, A. Dey, S. Ghose, and W. Bibel, “Solving
constraint optimization problems from clp-style specifications using
heuristic search techniques,” IEEE Transactions on Knowledge and Data
Engineering, vol. 14, no. 2, pp. 353–368, 2002.

[51] M. Braik, A. Sheta, and H. Al-Hiary, “A novel meta-heuristic search al-
gorithm for solving optimization problems: capuchin search algorithm,”
Neural Computing and Applications, pp. 1–33, 2020.

[52] R. M. Karp, “Heuristic algorithms in computational molecular biology,”
Journal of Computer and System Sciences, vol. 77, no. 1, pp. 122–128,
2011.

https://www.veripool.org/wiki/verilator
https://klee.github.io/docs/kquery/
https://klee.github.io/docs/kleaver-options/
https://klee.github.io/docs/kleaver-options/
https://www.dabeaz.com/ply/
https://developers.google.com/optimization/introduction/overview
https://developers.google.com/optimization/introduction/overview
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/1558607.1558671
https://doi.org/10.1145/2694344.2694366
http://eudml.org/doc/131436

[53] S. Shatabda, M. H. Newton, and A. Sattar, “Mixed heuristic local search
for protein structure prediction,” in Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, 2013, pp. 876–882.

[54] H. MotieGhader, Y. Masoudi-Sobhanzadeh, S. H. Ashtiani, and
A. Masoudi-Nejad, “mrna and microrna selection for breast cancer
molecular subtype stratification using meta-heuristic based algorithms,”
Genomics, 2020.

	Introduction
	Example
	Design
	Overview
	Preprocessing
	Symbolic Execution
	Optimization
	Optimization 1
	Optimization 2
	Threats to Validity

	Search
	Overview
	Search Problem Formulation
	Query Formulation
	Backward Recursive Search
	Depth-first Search
	Depth-limited Search
	Iterative Deepening Search algorithm
	Greedy Search
	Constraint Satisfaction Problem Formulation
	Threats to Validity

	Implementation
	Overview
	Preprocessing
	Symbolic Execution
	Optimization
	Optimization 1
	Optimization 2

	Search Engine
	Query Formulation
	CSP Formulation

	Evaluation
	Research Questions
	Experimental Setup
	Hardware Designs
	Properties
	Running Experiments

	Up-down Counter
	MIPS processor
	Optimizations

	Discussion
	Threats to Validity
	Incompleteness
	Symbolic Expressions
	KPiler
	Search Engine
	Constraint Satisfaction Problem
	Implementation
	Evaluation

	Future Work
	Massive-Properties Symbolic Execution on Hardware
	Evolutionary Hardware-oriented Symbolic Execution
	Native Symbolic Execution on Hardware

	Related Work
	Overview
	Hardware Symbolic Execution
	Security Property Generation
	Search Algorithms

	Conclusion
	References

