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Abstract

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation
products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol
(SOA) through the formation of organosulfur compounds. The extent and implications of
inorganic-to-organic sulfate conversion, however, are unknown. In this report, we demonstrate that
extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic
sulfate concentration ratio (IEPOX:Sulfinorg), as determined by laboratory measurements.
Characterization of total sulfur aerosol observed at Look Rock, Tennessee, from 2007—-2016 shows
that organosulfur mass fractions will likely continue to increase with ongoing declines in
anthropogenic Sulfinerg, consistent with our laboratory findings. We further demonstrate that
organosulfur compounds greatly modifies critical aerosol properties, such as acidity, morphology,
viscosity, and phase state. These new mechanistic insights demonstrate that changes in SO,
emissions, especially in isoprene-dominated environments, will significantly alter biogenic SOA
physicochemical properties. Consequently, IEPOX:Sulfinorg Will play an important role in
understanding historical climate and determining future impacts of biogenic SOA on global
climate and air quality.

Graphical Abstract
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Introduction

Secondary organic aerosol (SOA) formed through the oxidation of volatile organic
compounds is a major and globally ubiquitous component of atmospheric fine particulate
matter (PM,, 5; aerosol particles < 2.5 pm in aerodynamic diameter).} Chemical composition
of fine particles determines aerosol physicochemical properties, such as viscosity and phase
state, and plays a central role in the effects of SOA on air quality and climate.23
Understanding how SOA forms and interacts with other gas- and particle-phase species is
crucial to accurately evaluating its importance in the Earth’s climate system and adverse
effects on public health.

Inorganic sulfate species (e.g., SO42~, HSO4™) are also a significant PM, 5 component with
the capacity to impact atmospheric composition and climate, in part, because of its predicted
impact on aerosol acidity, hygroscopicity, visibility and cloud nucleation.2:4 The oxidation of
sulfur dioxide (SO») to sulfuric acid (H,SO,4) increases aerosol acidity, which enhances SOA
formation.4=8 Sulfur in the form S(VI) in aerosols was generally assumed to be primarily
present as inorganic sulfate (30,42~ and HSO,") ions until more recent studies revealed the
presence of organosulfur components in PM 5.%-13 Despite observations that organosulfur
compounds are important contributors to SOA mass in a range of environments globally,
14-20 estimations of aerosol acidity and liquid water content typically assume that only
inorganic sulfate plays a role.2 Correctly identifying the chemical form of sulfur (i.e.,
inorganic vs. organic), and representing it accurately in atmospheric models is essential as
the different forms lead to different aerosol physicochemical properties that will have
different predicted impacts on air quality and climate.3

Laboratory studies have demonstrated that acid-driven multiphase chemistry (reactive
uptake) of isoprene epoxydiols (IEPOX) is key to explaining the chemical form and extent
of SOA formation from photochemical oxidation of isoprene 22-25 and field measurements
have confirmed this is the predominant pathway.26-31 While chamber studies have shown

Environ Sci Technol. Author manuscript; available in PMC 2020 August 06.



1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Rivaet al.

Page 4

that organosulfur compounds, specifically organosulfates (OS) 32 formed by the reactive
uptake of IEPOX with particulate inorganic sulfate (Sulfinorg), contribute significantly to
IEPOX-SOA,33:34 the extent and implications of sulfate conversion to organic forms have
remained unknown.

Combined laboratory, field, and modeling studies described in this study reveal the hitherto
unrecognized effect that acid-driven multiphase chemistry of IEPOX may result in
substantial conversion of Sulfjorg to organosulfur compounds. Laboratory experiments
reveal that the extent of Sulfi,org conversion is greater for high IEPOX:Sulfinqrg ratios (such
as observed in the Amazon) than for lower ratios (such as observed in the Southeastern
United States (SE U.S.)). Assuming IEPOX concentration remains constant, continuing
Sulfinorg reductions in the Northern Hemisphere as a consequence of SO, emission controls
are thus expected to greatly increase the fraction of Sulfinorg converted in the future. High
IEPOX:Sulfinorg scenario also likely characterized pre-industrial atmospheric conditions.
Changes in the ratio over time and the consequent changes in SOA chemical composition
and physicochemical properties will increase understanding of the evolution of climate
change and inform projections for the future.

Experimental Methods

Smog Chamber Experiments.

Experiments were performed in the indoor environmental chamber facility at the University
of North Carolina. The experimental setup and analytical techniques used in this work have
been described in detail elsewhere 33:35, Briefly, experiments were carried out under dark
and wet conditions (50 + 4 %, relative humidity (RH)) at 296 + 1 K in a 10-m?3 Teflon
chamber. A summary of the experimental conditions is provided in Table S1. Prior to each
experiment, the chamber was flushed continuously with clean air for ~ 24 hours
corresponding to a minimum of seven chamber volumes until the particle mass
concentration was < 0.01 ug m~3. Chamber flushing also reduced VOC concentrations
below the detection limit (i.e., ~ 75 ppt for IEPOX). Temperature and RH in the chamber
were continuously monitored using a dew point meter (Omega Engineering Inc.). Acidified
ammonium sulfate seed aerosols were injected into the pre-humidified chamber using a
custom-built atomizer with an aqueous solution of 0.06 M (NH4),SO4 (ag) and 0.06 M
H,SO4 (aqg) until the desired total aerosol mass concentration was achieved. After seed
injection, the chamber was left static for at least 30 min to ensure that the seed aerosol
stability and uniform mixing. The IEPOX vapor was generated by using a high-purity N, (g)
flow of 2 L min~2 for 10 min and then 4 L min~1 for 50 min through a heated manifold
(60°C) containing a known amount of pure trans-B-IEPOX (synthesized in house36)
dissolved in ethyl acetate. This approach to introduce IEPOX has been used in previous
studies.33: 37, 38

Aerosol size distributions were continuously measured using a differential mobility analyzer
(DMA, BMI model 2002) coupled to a mixing condensation particle counter (MCPC, BMI
model 1710) in order to monitor aerosol number, surface area, and volume concentration
within the chamber. SOA generated from the reactive uptake of IEPOX was collected using
a particle-into-liquid sampler (PILS, BMI model 4001) throughout each experiment. PILS
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samples were collected at 5 min intervals for offline chemical analysis by ion
chromatography (IC) and ultra-performance liquid chromatography interfaced to
electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/
ESI-HR-Q-TOFMS). The PILS vials were stored in the dark at 2°C immediately after
collection and analyzed within 24 h without further pretreatment. PILS operating conditions
and dilution correction are described in the SI.

Flow Tube Experiments.

The reactive uptake coefficient of IEPOX (v gpox) is an important model-relevant parameter
that characterizes the heterogenous chemistry of IEPOX.24 36 Direct measurement of
YIEPOX ONto aqueous ammonium bisulfate (ABS) particles was conducted at the University
of Washington in an aerosol flow tube coupled to an iodide-adduct chemical ionization mass

spectrometry (CIMS); operating conditions have been described elsewhere and in the SI.
37,38

Collection of PM5 5 samples.

Ambient SOA (PM, 5) samples from two isoprene-dominated environments (SE-U.S. and
Amazon forest) were collected onto quartz filters during three field campaigns: (i) during the
2013 Southern Oxidant and Aerosol Study (SOAS) campaign from 1 June to 15 July 2013 at
the Centerville, AL (CTR, AL) ground site; (ii) from 18 July through 1 August 2016 from
downtown Manaus, Brazil and (iii) during the Green Ocean Amazon (GoAmazon2014/5)
field campaign3? during intensive operating period 2 (IOP2). Additional information
regarding filter collection is provided in SI.

Aerosol Chemical Characterization.

Chemical characterization of PM 5 and PILS samples was performed by UPLC/ESI-HR-Q-
TOFMS (6520 Series, Agilent) operated in the negative ion mode.*%:41 Total water-soluble
organosulfur compound mass was determined from the difference between total water-
soluble sulfur measured by isotope ratio inductively coupled plasma mass spectrometry (IR-
ICP-MS) and sulfate-sulfur (sulfur in the form of inorganic sulfate/Sulfinorg) measured by IC
on the same sample aliquot. Sample extractions, operating conditions, standard preparation,
and uncertainty estimates are described in detail in SI. The National Park Service Improve
database*? was used to evaluate the inorganic sulfate and organosulfur mass concentrations
in the SE-U.S from 2007 to 2016.

Microscopy Imaging.

Morphology of aerosol particles collected before, during, and after IEPOX reactive uptake
from smog chamber experiments was characterized by atomic force microscopy (AFM) and
scanning electron microscopy (SEM). Additional information regarding operating conditions
is provided in Sl and prior publications.43-45

Biphasic Microfluidics.

Surface and interfacial tensions inform solute surface-bulk partitioning and, therefore, the
availability of compounds for interactions with the ambient gaseous phase, such as
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heterogenous chemistry and water uptake. Lower interfacial tensions due to organic
partitioning affect both particle growth and structure. We measured liquid-liquid interfacial
tensions of IEPOX SOA tracer 2-methyltetrols (2-MT) and its OS derivative (3-methyltetrol
sulfate, IEPOX-0OS) using a biphasic microfluidic platform. Droplet microfluidics as a
method to measure interfacial tension for aerosol science applications was first introduced
for studying the aging of SOA aerosols,*6 using a microtensiometry technique described in
detail in several studies and in the SI.47-51 The microfluidic chip is fabricated using standard
soft-lithography techniques 52-54 and mounted on an inverted microscope. Two immiscible
liquid phases separately enter the device by pressure-driven flow, >1 and droplet breakup is
induced by a flow-focusing geometry 35-57 Aqueous solutions containing the SOA are the
dispersed (droplet) phase, and silicone oil is the carrier (continuous) phase. The droplets of
aqueous SOA then enter a contraction geometry in the microfluidic channel, which induces
deformation of the liquid-liquid interface. This deformation, is imaged at high speed, and
related to material and flow-field properties 48:49.58-61 tq calculate the interfacial tension
between silicone oil and aqueous SOA solutions. The equation governing droplet
deformation is:

7€) — ux)

oD D
(x)) o2 )

217 +3 ag
In the above equation, a is a function of the viscosity ratio 7, which is a ratio of the
dispersed phase viscosity (here, the aqueous phase viscosity is close to that of pure water — 1
mPa s — near 100% RH for aerosol droplets), to the continuous phase viscosity 7. (here, the
viscosity of silicone oil — 50 mPa s). For solutions containing 1.55 M ammonium sulfate
(AS), the viscosity is 1.215 mPa 5.52 é(x) is the extensional strain rate in the contraction, u(x)
is the velocity of the droplet centroid, D(x) is the deformation, apis the un-deformed
diameter of the spherical droplet, and o is the interfacial tension between the aqueous and oil

d . —d .
major "~ minor

phase. D(x) is defined by Taylor 5860 as D(x) = -

) Where dmajor and dmina,‘ are
major ' “minor

the major and minor diameters of the deformed droplet respectively, measured using image
analysis. A plot of the left side of the equation of motion versus 2% s linear in the small-
4

deformation regime 5860, A straight line is fit to the linear portion of the curve, known as a
“Taylor plot”, and the slope of the line is equal to the interfacial tension.

Each microfluidic measurement consumes 250-300 pL of aqueous solution, yielding 20-30
droplets. The IEPOX-OS droplet interfacial tensions reported in this work were statistically
averaged. All interfacial tension values reported in this work are then normalized by the
interfacial tension of pure water with silicone oil measured with microfluidics (30 mN/m).
Figures S1 and S2 show Taylor plots and interfacial tensions for 2-MT and IEPOX-0S
samples. The surface partitioning of SOA is analogous to that expected to occur in aerosol
droplets in the atmosphere, as discussed in Metcalf et al.>1 Techniques for measurement of
interfacial tension using biphasic microfluidics are outlined in prior work.51.63
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Viscosity Model.

The viscosity of IEPOX-derived OS is calculated based on a modified version of the Vogel-
Tammann-Fulcher (VTF) equation (Egs. 2 & 3) by Angell et al 6465

TOD

T-T, @)
n(RH) =1 e

where 7)o is Viscosity at infinite temperature and assumed to be 107 Pa's; Ty is the Vogel
temperature; 7is the ambient temperature; and D is the fagility parameter, which controls
how closely a material follows the Arrhenius law.54 When 7 reaches glass transition
temperature 7y, nreaches 102 Pas. Then Eq. 2 becomes

Tg/TO — 140.0255D @)

Both Dand 7 are required to calculate 7 for SOA-water mixtures at a given temperature.
The 7,4 0f each SOA compound comprising the SOA under dry conditions was estimated
based on the improved paramterizaiton described in DeRieux et al.56 Then Gordan-Taylor
mix rule (Eq. 8 in the SI) was applied to calculate the 7, 0f SOA mixtures. A detailed
description of the workflow and choices of parameters used in calculating the viscosity of
IEPOX-derived OS is given in the SI.

Thermodynamic Model of Aerosol pH.

The pH of aerosol particles during the heterogenous reaction processes of IEPOX is
calculated with smog chamber data using a thermodynamic model employing two methods.
Briefly, the first method uses measured Sulfinorg concentration as well as the NH4*
concentration at the beginning of the experiment as the input variables. The concentrations
of IEPOX-OS and oligomeric OS are not considered. While retaining the inorganic cations
and anions considered in the first scenario, the second method takes the anions of IEPOX-
OS monomer as well as its dimers and trimers into consideration. The proton balance
equation together with the mass balance equations for NH4*, SO42~, HSO,4~, and IEPOX-0S
monomers, dimers, and trimers were built to solve the H* ion concentration. The gas-particle
equilibrium of NH3 and NH,* was considered using a Henry’s law constant of 0.0161 atm
M1, A growth factor of 1.3 was used to calculate the liquid water content of the particles.
Similar to the ISORROPIA-II model 87 the activity coefficients for all ions were assumed to
be 1 in this case. The uncertainties in the growth factor of the particle, the activity coefficient
of each ion, and the pKa values of organosulfur species contribute to the overall uncertainty
of this model. These factors may affect the exact values of the pH calculated; however, the
drastic difference of the pH values between considering and not considering the organosulfur
species remains roughly the same. A detailed description of the thermodynamic model is
given in the SI.

Global Modeling.

The IEPOX:Sulfinerg mass ratio has been computed based on numerical simulations
performed with the LMDz-OR-INCA global climate-chemistry model. The description of
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the model representation for sulfate as well as the general features of the LMDz-OR-INCA
model can be found in Szopa et al. 68 The reaction mechanism of IEPOX is based on St
Clair et al.%9 and considers three different isomers of IEPOX produced by three different
geometrical configurations of the isoprene hydroxyperoxide (ISOPOOH) precursor
produced through the isoprene oxidation.

The LMDz-OR-INCA model is used with a 3.8° lat x 1.87° lon horizontal resolution and 39
vertical levels. The wind fields are nudged on the ECMWF (European Centre for Medium-
Range Weather Forecasts) reanalysis for the year of 2010 (considering first a one-year spin-
up). The anthropogenic emissions are those from the Representative Concentration Pathways
(RCP) considering the year 2010 in the 8.5 trajectory (compatible with the evolution of
radiative forcing equivalent in 2100 to 8.5 W.m=2)70. The biomass burning emissions
correspond to the GFED-v4 inventory for the year of 2010. The anthropogenic, ship and fire
emissions of SO, are respectively 40.5, 5.9 and 1.1 TgS yr~L. The biogenic emissions are
computed by the ORCHIDEE vegetation model as described elsewhere 71, They lead to a
global annual isoprene emission of 466 TgC yr~! inducing a production of IEPOX of 115
TgC yr~1, which is consistent with the one found by St Clair et al. 69

Results and Discussion

IEPOX conversion of Sulfj,org to organosulfur.

Despite the wealth of studies on the reactive uptake of IEPOX, its reactivity remains poorly
constrained.24:25.28,33.40.72 \\je performed controlled chamber experiments in the presence of
ABS seed particles (pH = 1.5) at ~50 % RH using atmospherically-relevant ratios of
IEPOX:Sulfinorg (SI Table S1). Figure 1 shows that immediately following IEPOX addition,
rapid conversion of Sulfinorg is observed under all conditions measured by the PILS coupled
to an IC system operated with 5-minute resolution. The rate of Sulfinorg depletion correlates
with the formation of IEPOX-OS and oligomeric-OS (quantified by UPLC/ESI-HR-Q-
TOFMS for the same PILS samples), which is further supported by computational chemistry
modeling by Piletic et al. that suggests IEPOX would readily produce OSs in acidic aerosols.
73 |[EPOX-0S accounts for most (90-100%) of the Sulfinorg converted within the first 40-60
min under conditions that mimic IEPOX:Sulfinerg ratios relevant to both the SE-U.S. (Figure
1A) and the Amazon (Figure 1B). As shown in Figures 1A and B, ~40% of Sulfiyorg injected
into the chamber is converted to organosulfur under laboratory conditions that mimic the
SE-U.S. conditions, while up to 90% is converted to organosulfur under laboratory
conditions that mimic the Amazon. During the next hour following the termination of
IEPOX injection, Sulfinerg as well as total organic sulfate has stabilized, indicating inhibition
of IEPOX uptake (discussed below), then a decrease of concentrations of IEPOX-0S
commences. A net reduction (up to 30% in one hour) of the three quantified OS species
indicates that IEPOX-OS are not stable and react to yield as yet uncharacterized
organosulfur compounds. One potential class of species, sulfur-containing oligomers, were
observed below quantifiable levels in the positive ion mode.

Our results demonstrate the conversion of inorganic-to-organic sulfate is driven primarily by
the IEPOX:Sulfinorg ratio as illustrated in Figure 1C. From our laboratory experiments, the
IEPOX:Sulfinorg ratio appears to be a critical, previously unrecognized factor in the
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conversion of inorganic-to-organic sulfate. By extrapolating our laboratory findings to
ambient conditions, high IEPOX:Sulfjnorg ratios (>2) are common globally, as shown in
Figure 1D, especially in equatorial regions and the Southern Hemisphere, and might be
important in the formation of organic sulfate 9in such areas. Based on our experimental
results, we infer that a higher S(V1) fraction is likely in organic forms in those regions,
which are under-sampled relative to the Northern Hemisphere.

Concentration of ambient organosulfur compounds.

Over the past 30 years, air pollution regulations in the Northern Hemisphere have led to
decreases in SO, concentration of 5.7 % yr~ in the U.S. and 5.1 % yr~1 in Europe.” Recent
studies project a reduction of SO~ of ~4.5% yr~1 based on current efforts.”®76 Figure 2A
illustrates this trend and presents the SO42~ concentration over the last 10 years measured at
the Great Smoky Mountain Site (Look Rock, TN) through the IMPROVE monitoring
program, 2 which is strongly influenced by isoprene chemistry.2” A decrease of Sulfingrg by
a factor of 6 is correlated with a subsequent rise in organosulfur as a fraction of total sulfur
by a factor of 5. In addition, events with high organosulfur fractions tend to correlate with
low Sulfinorg concentrations (Figure 2B), consistent with a previous analysis!? and
corroborating our laboratory findings. Assuming a constant IEPOX concentration and a
reduction of SO,42~ of ~4.5% yr~1, the increase in the IEPOX:Sulfjnorg ratios within the next
decades is expected to significantly shift the distribution of S(VI) towards organosulfur
(Figure 1C). Since industrialization, Sulfinorg has significantly increased’”:"8 while the
concentration of isoprene has remained constant.”® This trend indicates that IEPOX:Sulfinorg
was likely much higher during the pre-industrial period than currently, and possibly had a
major role in SOA physicochemical properties in isoprene-dominated areas. While the
estimated conversion extrapolated from our chamber experiments is likely an upper limit as
the reactive uptake of IEPOX is sensitive to aerosol acidity and other factors in the ambient
environments (e.g. NOy, organic coating, RH, etc.), the trend identified in this study is
central to understanding future air quality and radiative forcing.

Molecular characterization of SOA samples collected in isoprene-rich areas show that OS
alone contribute a substantial mass fraction of S(VI) in PM: from 8 to 25% in the SE-U.S.
and from 20 to 45% in downwind Manaus (Figure 2C and Sl Figure S1). From direct
comparison between ICP-MS and AMS sulfate data (Figure S3), we applied a correction
factor (i.e., 1.28) in order to account for the subset of organosulfur compounds present
within the size range of 1 to 2.5 microns. OS mass ranges from 400-1500 ng m~3, at the
high end of previous studies (S| Tables $2-54).26.27.32.80.81 \Whjle the sum of OS in the SE-
U.S. is significantly different from that of downwind Manaus, isoprene-OS nevertheless
represents the predominant OS in both areas. During the 2013 SOAS campaign, total mass
concentrations of organosulfur compounds were also determined by IR-ICP-MS (SI Figure
S4). The average total sulfur mass multiplied by three (3 x S) and the total Sulfiorg
measured by IR-ICP-MS and IC, respectively, differs by 300 + 200 ngSO4 m=3. The
difference represents an estimate of total organosulfur compounds and provides an
organosulfur/total sulfur ratio similar to that previously observed.12:13.82 Although total OS
+ MSA exhibits a strong correlation (/2= 0.78) with the total mass concentration of
organosulfur compounds (Sl Figure S5), the identified products explain only 50-60% of the
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total mass of organosulfur quantified in PM, 5 during the 2013 SOAS field campaign.
Assuming similar C:S ratios for identified and unidentified compounds, 16% of the Sulfiorg
is converted into organosulfur compounds (SI Figure S5). In fact, using the fit obtained from
all chamber experiments (Figure 1C) and an IEPOX:Sulfinorq ratio of 0.24 estimated based
on collocated measurements during the 2013 SOAS campaign,83 Sulfinorg conversion to
organosulfur is estimated to be ~15%. This is in excellent agreement with the
characterizations of field SOA samples presented above.

Atmospheric impact of the acid-driven reactive uptake of IEPOX.

In the following section, we show significant alterations of aerosol physicochemical
properties due to high levels of inorganic-to-organic sulfate conversion in the chamber
experiments. Explored properties include aerosol acidity, morphology, surface tension,
viscosity, and reactivity.

Because acidity is one of the governing factors of atmospheric multiphase chemistry,® the
response of condensed-phase acidity to inorganic-to-organic sulfate conversion was further
investigated. The widely used thermodynamic models treat sulfate as inorganic S(V1),
leading to inconsistencies in charge balance in the condensed phase.84:85 While organic
compounds can reduce the rate of ammonia gas-to-particle partitioning, exclusion of
organosulfur compounds such as OSs from thermodynamic models may outweigh this effect
and contribute to an even larger discrepancy in acidity. Hence a thermodynamic model was
constructed to estimate the acidity of the aerosols from these experiments with and without
organosulfur compounds. The model assumes all the components reach thermodynamic
equilibrium with the hydrogen ion, while maintaining charge balance and mass balance,
similar to previous publications.67:86.87 The detailed parameterization of the thermodynamic
model is described in the SI. As an example, Figure S6 shows the pH of aerosols when not
considering the contributions of IEPOX-OS to acidity from the chamber experiments,
compared to a thermodynamic box model constructed to take IEPOX-OS into consideration.
Aerosol compositions measured at the end of the chamber experiments were used as input to
calculate aerosol pH as shown in Figure S6. If the contributions of IEPOX-OS to acidity
were not considered, the aerosol pH would have been overestimated by 3.5 and 9.5 units in
the laboratory mimic of SE U.S. and Amazon, respectively. The pK, values of IEPOX-0OS
remain uncertain. By varying the pK, values of IEPOX-OS in the range of 04, the aerosol
acidity changes up to 6 times (0.8 pH units), suggesting the importance of further research
on determining the pK, values of IEPOX-OS and their roles in governing the aerosol acidity.

Acid-driven multiphase chemistry of IEPOX also leads to a modification of the aerosol
morphology from a well-mixed sphere to a core-shell structure, shown by height images
obtained by AFM at ambient temperature and pressure (Figures 3A-C), as well as AFM
amplitude images, AFM phase images and SEM images (Figure S7) of SOA collected from
the chamber experiments. It is noted that the AFM images of the laboratory-derived SOA
were collected at ambient pressure and RHs close to chamber conditions (30-40%). SEM
data were collected after equilibration under vacuum (1073 to 107> Pa). RH was not cycled
for these specific particles to check morphology, but has been either cycled or tested at
multiple RH values in a recent study.88 This study demonstrated that the core-shell structure
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was not substantially altered by the RH cycling beyond efflorescence and deliquescence of
the ammonium sulfate core. Additionally, SEM and AFM images were collected under
different conditions, but showed similar morphology, supporting the hypothesis that for the
more viscous particles in this study, temperature and RH differences during imaging had
minimal effect on the particle morphology. These results are consistent with previous
theoretical and semi-empirical studies predicting frequent phase separation for particles in
the SE-U.S.8990 Larger IEPOX:Sulfinorg ratios lead to thicker organic shells (e.g., laboratory
mimic of Amazon) and can be correlated with the relatively larger amounts of particulate
IEPOX-OS and corresponding oligomers (sum of OS corresponds to 27% of Sulfiyerg in
Figure 1A and 69% in Figure 1B). Hence, OS and oligomeric-OS may lead to a net
modification of the morphology of the OA formed in the atmosphere.

As Sulfinorg is consumed and OSs are formed, the aerosol phase becomes more viscous and
aerosol particle heights increase (Figure 3D). Height images and profiles from AFM were
used as a proxy for liquid, semi-solid, or solid phase of the SOA, which is composed largely
of an inorganic sulfate seed and organosulfur coating. The observation of more viscous
aerosol is supported by the simulated viscosities of molecular tracers based on recent
studies, 368 which suggest that IEPOX-derived OS has viscosity values 1-4 orders of
magnitude higher than a.-pinene SOA when the RH levels are below 70% (Figure 3D).
Hence, IEPOX-derived OS can significantly increase the viscosity of aerosol particles,
compared to isoprene-SOA compounds generated through self-nucleation in atmospheric
simulation chambers under high concentrations without the addition of acidic sulfate
particles.%1

IEPOX-SOA volatility is significantly lower than structure-based vapor pressures of polyols
predict,92 which is consistent with the large inorganic-to-organic sulfate conversion reported
here. Given the high modelled viscosity of IEPOX-OS and likely higher viscosity values of
oligomeric-OS, the OS coating induced inhibition of multiphase chemistry would be larger
than coatings of a-pinene SOA.93 In the Amazon rainforest where average RH was higher
than 80%, SOA particles were liquid, suggesting limited diffusion will not inhibit
multiphase chemistry if RH>80%.%4 Even though the average RH is close to 80% for both
the Amazon and SE-U.S., SI Figure S8 and previous measurements show that the median
daytime RH in those regions is consistently below 70% (40-50% during the dry season in
the Amazon) during the period of maximum diurnal IEPOX-SOA production.93:95 Hence,
diffusion of gaseous molecules limited by the formation of an OS coating will be more
likely to affect multiphase chemistry during daytime in isoprene-rich environments, reducing
heterogeneous SOA formation from compounds that are generated by photooxidation
reactions.

Change in morphology is further supported by measuring the interfacial tension (IFT)
depression of the major IEPOX-SOA products in microfluidic platform experiments. Surface
tension and IFT are proxy measures of surface concentrations, as tensions will decrease with
increased bulk-to-surface partitioning of surface-active components in the aqueous droplets.
Each microfluidic measurement consumes 250-300 pL of aqueous solution, yielding 20-30
droplets. The IEPOX-OS droplet interfacial tensions reported in this work were statistically
averaged and reported as the circle markers in Figure 4A. Additionally, Figures S2 and S9
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show 2-methyltetrols and IEPOX-OS in methanol aqueous solution and 2-methyltetrols in
pure water, respectively. IFT depression was observed in all cases (Figure 4A, Figure S2 and
Figure S9), and IFT was lower when AS was present. In fact, lowering of the IFT in salty
solutions indicates potential salting out 96:97 of the organics due to an enhancement of
organic activity, driving more organic molecules to the surface. The salting out effect
subsequently alters the SOA physicochemical properties by changing morphology to a core-
shell structure rather than a homogeneously mixed sphere.93 Salting out effects are
quantified by combining the Setschenow equation and a two parameter surface and IFT
model.?8 The Setschenow constant (Kj) indicates salting out when positive for organic-
inorganic aqueous systems. The curves in Figure 4A shows model treatment for IEPOX-0S
in pure water and in salty water and predicts that IEPOX-OS has a propensity for salting out
in the presence of AS, which helps to explain the dependence of shell thickness on the ratio
of IEPOX:Sulfinorg. IEPOX-SOA may alter the climate properties of aerosols, for example,
enhancing CCN activity by suppressing the surface tension to enhance cloud droplet
formation from aerosols in organosulfur-rich particles, causing larger droplets to form before
and during cloud activation.%®

Figure 4B illustrates the limiting effects of IEPOX-SOA products on reactive uptake by
aerosol which can most likely be ascribed to a slight decrease in acidity and transformation
to a core-shell morphology as a result of the salting out effect induced by organosulfur
compounds. The dramatic decrease of -yjgpox With increasing atmospheric-equivalent
exposure time, highlights the profound modification of IEPOX-SOA on aerosol reactivity,
explains the presence of residual IEPOX in the gas phase measured by CIMS (SI Figure
S10), and the stabilization of Sulfjyorg (Figures 1A and B) in our laboratory experiments.
While previous studies have shown that other organic coatings tend to reduce multiphase
chemical processes,2°:34:93 the results presented in Figure 4B provide direct evidence that
uptake of IEPOX by sulfate aerosols has a self-limiting effect and indicate that the formation
of a viscous IEPOX-SOA coating likely prevents further SOA formation in the ambient
environment, primarily during daytime when RH is lower than 80%.

In sum, this study demonstrates that acid-driven multiphase chemistry of IEPOX converts a
significant fraction of Sulfinorg to organosulfur within a range of IEPOX:Sulfjnerq ratios
relevant to most isoprene-dominated environments. We further demonstrate through
laboratory and field measurements, the substantial conversion of sulfate, underlining the
major role of IEPOX in controlling the chemical form of S(VI). Retrospective examination
of field data in the SE-U.S. consistently shows that the contribution of organosulfur to S(V1)
has been increasing with declining Sulfi,org. The measured filter-based organosulfur fraction
for Amazon, however, is not as much as that determined by the laboratory experiments
conducted at the relevant ratios. There are two possible reasons. First, we conducted
experiments mimicking both regions under the same initial condition of aerosol acidity and
therefore the observed extent of conversion (up to ~90%) for Amazon relevant ratios likely
represents the upper bound in the atmosphere. Second, collocated measurements of gas-
phase IEPOX have rarely been reported for this area. The actual IEPOX:Sulfjnorg could have
been lower than the ratios tested in the laboratory mimic of Amazon. This also calls for the
need to enrich the inventory of gas-phase IEPOX measurements to better constrain
IEPOX:Sulfinorg in regions such as Amazon. From chamber experiments, the organosulfur
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compounds are shown to impact aerosol acidity (up to 9 pH unit increase compared to the
conventional case, where organosulfur compounds are not considered) by our
thermodynamic model under assumptions similar to those widely used in models. A similar
approach could be adopted in updating current thermodynamic models to assess this impact
on predicting pH of ambient SOA. IEPOX reactive uptake results in a core-shell morphology
supported by microscopic imaging and biphasic microfluidics. Through non-oxidative
chemical processes, IEPOX-OS undergoes transformation to as yet uncharacterized
organosulfur compounds, together with highly viscous IEPOX-OS, impeding further reactive
uptake of IEPOX. Not examined in this work, though, is how the core-shell morphology
may affect the prediction of aerosol acidity. It is obvious that the core and shell need to be
treated separately in pH calculations. This warrants a systematic investigation in a future
study. Worth noting is that the findings regarding IEPOX-OS and its implications for aerosol
physicochemical properties have not been included in the presented global model for
calculating the global IEPOX:Sulfinerg. Overall the shift in sulfate distribution within
aerosols, changing physicochemical properties, and decreasing multiphase reactivity caused
by IEPOX multiphase chemistry have yet to be updated in the regional- and global-scale
models to properly predict IEPOX-SOA formation and its impact on air quality and climate.
In isoprene-dominated areas, IEPOX-OS, and potentially other biogenic/anthropogenic OS,
likely govern the physicochemical properties of aerosol as well as the distribution of
inorganic species such as sulfate or ammonium. Consequently, aerosol growth, multiphase
reactions, including aging and reactive uptake of other species, and CCN activity change as
surface tension, acidity, hygroscopicity and viscosity are modified. These changes could
greatly impact atmospheric composition of biogenic SOA formed over isoprene-dominated
areas. Hence, changes in SO, emissions at different locations around the world over time
may have implications for the physicochemical properties of biogenic-derived SOA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figurel.

Laboratory conversion (RH=50%) of Sulfi,org to organic sulfate during the reactive uptake
of IEPOX at IEPOX (ug m‘3):Squin0rg (g m3) ratios atmospherically relevant to (A) a
laboratory mimic of the SE-U.S. (ratio=1.5) and (B) a laboratory mimic of the Amazon
(ratio=17.1). IEPOX is injected into the chamber at t = 0 and stopped at t = 60. IEPOX-OS
dimer and trimer concentrations are shown on and expanded scale for clarity. (C) Filled
triangular markers indicate the conversion of Sulfjnorg to organic sulfate as a function of
IEPOX:Sulfinorg in chamber experiments at RH~50%. Colors correspond to those in Figure
1D. Red open circles correspond to projected IEPOX:Sulfj,org Over the next 50 years, based
on Sulfinerg reduction rates from Attwood et al.” and Hand et al.”®, and assuming constant
IEPOX. (D) Yearly average IEPOX:Sulfjnorg across the world for present-day conditions
using the LMDz-OR-INCA global climate-chemistry model. White color indicates no
sulfate (non-sea salt) or IEPOX concentration.
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Figure2.
(A) Correlation between total sulfate and organosulfur fraction and (B) Evolution of

organosulfur fraction as a function of Sulfiyorg at the Great Smoky Mountain Site (Look
Rock, TN) during summer (May — September) from 2007-2016, using the National Park
Service IMPROVE PMj, 5 database. If particulate organosulfur compounds are not present,
the sulfate (S0427) mass measured by IC should equal three times the sulfur mass
concentration measured by X-ray fluorescence (XRF), since the molar mass of sulfur and
sulfate are 32 and 96 g/mol, respectively. A value of 3xS/ SO,2~ lower than 1 is caused by
the limitation of the analytical techniques to differentiate 3xsulfur from SO,42~.42 (C)
Average mass concentration of the identified organosulfates + methane sulfonic acid (OS +
MSA) and total organosulfur compounds (Org-S) in the PM, 5 samples collected during the
2013 SOAS campaign as well as the average mass concentrations of the sum of OS + MSA
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quantified in downwind Manaus and Manaus. AMS data from SE-U.S. and downwind
Manaus are also presented.
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Figure 3.
Left Column (A), (B), and (C). Atomic force microscopy (AFM) height images of

ammonium bisulfate seed (ABS), IEPOX-SOA generated from the reactive uptake of IEPOX
in the presence of wet acidic aerosol at RH~50% and IEPOX:Sulfjnorg ratios atmospherically
relevant to laboratory mimic of SE-U.S. and Amazon, respectively. Middle column (A), (B),
and (C). Height maps of impacted particles. (D) Comparison of the measured and predicted
viscosity of a-pinene SOA (purple), predicted IEPOX-OS (red) and IEPOX-OS mixtures at
298 K as a function of RH. The data points represent measured viscosity values of a-pinene
SOA. The solid lines represent estimated viscosity of a-pinene SOA,®8 IEPOX-0S, and
IEPOX-OS mixtures (IEPOX-OS + Oligomeric-OS). The shaded areas represent the upper
and lower bounds of the viscosity estimation for each type of SOA. Model parameters are:
glass transition temperature of dry SOA (7 org); hygroscopicity (x), fragility (D), and
Gordon-Taylor constant (kgT). Solid line for - pinene SOA at 278.5K: 7g org = 0.1, x = 10,
ket = 2.5. Solid line for 2-methyltetrol sulfate at 298K; 7gorg = 0.12, x = 13, kg1 = 2.5;
Solid line for IEPOX-derived OS mixture at 313 K, 7 org = 0.12, x = 13, kg1 = 2.5. For
upper (lower) bounds (shaded regions): a-pinene SOA; 7g org = 300 K (268.5 K), x =0.1
(0.1), D =20 (10), kgt = 2.5 (3.0). 2-Methyltetrol sulfate; 74 org = 320 K (288 K), x =0.10
(0.15), D =20 (10), kgt = 2.5 (3.0). OS mixture; 7 org = 330 K (303 K), x =0.10 (0.15), D
=20 (10), kgt = 2.5 (3.0).
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Figure 4.

(A) Measured and modeled interfacial tension (IFT) of IEPOX-OS. Microfluidic
measurements of IFT (circles); two parameter model treatment of SOA in pure water (solid
line), using a binary model 63100 ; and model treatment of SOA in ammonium sulfate (AS)
solution (dashed line), using an adapted form of the binary model adapted for salt-containing
organic aqueous solutions that includes known organic model parameters from the solid line
and the Setschenow constant as the single adjustable model parameter (dashed line). (B)
IEPOX reactive uptake coefficient (-yjepox), obtained from flow tube experiments
performed at the University of Washington, on aqueous ammonium bisulfate particles as a
function of atmospheric equivalent exposure time defined as the length of the time that an
aerosol is exposed to IEPOX gases, assuming gas-phase IEPOX concentration of 1 ppb and
an aerosol surface area density of 300 um? cm~3. The atmospheric equivalent exposure time
is obtained from the experimental reaction time by multiplying the ratio of experimental-to-
ambient concentration of IEPOX (=75) represents an upper limit.
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