
Abstract—Cardiometabolic diseases are the leading cause of death worldwide and are strongly linked to both genetic 
and nutritional factors. The field of nutrigenomics encompasses multiple approaches aimed at understanding the 
effects of diet on health or disease development, including nutrigenetic studies investigating the relationship between 
genetic variants and diet in modulating cardiometabolic risk, as well as the effects of dietary components on multiple 
“omic” measures, including transcriptomics, metabolomics, proteomics, lipidomics, epigenetic modifications, and the 
microbiome. Here, we describe the current state of the field of nutrigenomics with respect to cardiometabolic disease 
research and outline a direction for the integration of multiple omics techniques in future nutrigenomic studies aimed at 
understanding mechanisms and developing new therapeutic options for cardiometabolic disease treatment and prevention. 
(Circ Cardiovasc Genet. 2016;9:291–313. DOI: 10.1161/HCG.0000000000000030.)
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Nutrigenomics is a growing field that has received 
increased attention over the past decade.1–5 The inter-

pretation and scope of nutrigenomics may vary, but it can be 
thought to encompass the spectrum of nutritional genomics 
research, including classic nutrigenetics studies of gene-diet 
interactions and molecular nutrition, in vitro and in vivo 
models, human nutrition studies, and the application of large-
scale, unbiased studies using high-throughput “omics” tech-
niques to study the effects of nutrients on the body.6 As the 
Figure shows, diet and the genome may influence cardiometa-
bolic health through a variety of interconnected intermediates, 

perturbations in which can be measured through omics tech-
nologies, including RNA expression (transcriptome), epigen-
etic modifications (epigenome), metabolites (metabolome), 
lipids (lipidome), proteins (proteome), and resident microbial 
communities (microbiome). Although it is clear that both 
nutrients and genes play a distinct role in determining health, 
the complex interactions among genes, diet, and downstream 
networks are not well understood. The application of nutrige-
nomics approaches to questions of human health and disease is 
an important component in understanding the complexities of 
the interplay between basic metabolic processes and external 
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influences in disease processes and has important implications 
for the development of more targeted strategies in disease 
prevention and treatment. Analogous to pharmacogenomics, 
nutrigenomics has the potential to identify genetic predic-
tors of disease-relevant responses to diet, and this potential 
and its applicability in the context of personalized nutrition 
have popular appeal. However, nutrigenomics has also been 
the subject of much hyperbole and has been ascribed much 
promise, particularly in the arenas of personalized nutrition, 
functional foods, and nutraceuticals. Unfortunately, the sci-
ence has not yet fully delivered on this unrealized potential. 
More than a third of the searchable articles in PubMed on 
nutrigenomics are review articles, and despite enthusiasm 
about possible clinical applications, the evidence base remains 
limited. In this American Heart Association scientific state-
ment, we consider the state of the field of nutrigenomics with 
respect to cardiometabolic disease, highlight what we know 
and what is lacking, and propose future directions required to 
advance the field.

Nutritional Epidemiology
The study of nutrition and cardiometabolic diseases began 
in the 1950s with the classic diet-heart hypothesis based on 
ecological studies linking saturated fat and cardiovascular dis-
ease (CVD) mortality.7 These conclusions were supported by 
small short-term human feeding studies designed to show that 
replacement of carbohydrate or polyunsaturated fatty acids 
(PUFAs) with saturated fatty acids (SFAs) increased total cho-
lesterol.8 A growing evidence base that includes millions of 
participants who have provided detailed dietary and lifestyle 
data and biological specimens has shaped our understanding 
of biological pathways for micronutrient and macronutrient 

metabolism and their effects on disease. Findings from these 
efforts serve as the foundation for the evolution of contempo-
rary dietary guidelines,9 which are refined as new technologies 
and methods permit ever more rigorous standards for defin-
ing optimal nutritional guidelines. For example, the earlier 
Dietary Guidelines for Americans (2000)10 recommended 
a low-fat diet by replacing dietary SFAs with carbohydrate. 
However, on the basis of hundreds of metabolic intervention 
studies, cohort studies, and long-term, large, clinical trials of 
moderate– to high–monounsaturated fatty acid and moder-
ate- to high-PUFA diets, updated guidelines do not emphasize 
total fat but instead advise replacing foods high in SFAs with 
food sources of unsaturated fatty acids.

The inclusion of biospecimens in observational and inter-
vention studies enhances the potential to apply nutrigenomics 
within large-scale human studies, but with the knowledge that 
nutrition assessment is not without limitations. The limitations 
of observational cohort studies and of randomized, clinical tri-
als have been discussed at length and are beyond the scope of 
this review,11 but we highlight important aspects to provide 
context about why additional insights can be gained through 
incorporation of measures of the genome, epigenome, metab-
olome, proteome, microbiome, and other relevant factors.

Observational epidemiological studies have been instrumen-
tal in our understanding of nutrition and CVD because many 
have been ongoing for decades and include hundreds of thou-
sands of participants, as reviewed elsewhere.12,13 Importantly, 
they capture intake of foods and nutrients as customarily con-
sumed rather than as a supplement or from controlled diets pre-
pared for experimental purposes, but they generally do not have 
repeated measures of diet over the life course and may be con-
founded by changes in the food supply, limiting inferences that 

Figure. Potential molecular mechanisms for nutrigenomic/nutrigenetic interactions in cardiovascular disease (CVD) risk. Specific food 
consumption alters CVD risk through multiple distinct and interrelated mechanisms: (1) differential intestinal metabolism and uptake of 
nutrients, depending on gut microbiome composition; (2) differential absorption and nutrient binding, depending on individual genotype; 
(3) modulation of gene expression through specific transcription factor binding; (4) specific effects on methylation and epigenetic
modification; and (5) modulation of metabolic signaling through lipids, metabolites, and proteins. SNP indicates single-nucleotide
polymorphism.
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can be made. The inability to account for other diet, lifestyle, 
and health characteristics of participants is potentially confound-
ing, but this can be addressed directly through randomization in 
intervention trials. However, unlike randomized trials of phar-
maceutical interventions, trials of nutrients or dietary patterns 
can give biased or uninformative results when secular trends in 
the background diet or fortification dilute or mask the effect of 
the intervention. For example, in the 1990s, many trials were 
initiated to study folate supplementation on the effects of CVD, 
but by the mid-1990s, >50 countries worldwide initiated folate 
fortification, adding 200 to 400 μg/d to the average diet, which 
ultimately may have been enough to increase folate status in 
trial participants at highest risk for CVD. Trials are also limited, 
especially those with clinical end points, because such stud-
ies typically test only a single dose, are limited in duration by 
cost and adherence, and create an artificial environment to test 
a nutrient or food pattern. Most midlength dietary pattern trials 
of 1 to 4 years must either provide all foods for consumption 
(which is simple for the participant but not feasible as a long-
term solution) or use weekly or monthly training sessions with 
dietitians, health coaches, and wellness programs, all of which 
may be cost-prohibitive. Even trials with the most intensive sup-
port systems can experience poor adherence as participants 
grow weary of the prescribed dietary pattern and either revert 
to previous dietary habits or adhere to the experimental diets 
only before clinical examination assessments.

Studies of nutrition and cardiometabolic disease have 
taught us much over the past half-century, but most important, 
they have taught us that conclusions are most sound when sup-
ported by short-term dietary intervention studies to understand 
plausible biological mechanisms and long-term observational 
epidemiological studies to understand the impact of decades of 
exposure. In some unique situations in which results from both 
study types are consistent, large, long-term trials are initiated. 
The most conclusive trials for cardiometabolic disease have 
been based on dietary pattern such as the Dietary Approaches to 
Stop Hypertension (DASH) dietary patterns trials,14 the Diabetes 
Prevention Program,15 the Dietary Intervention Randomized 
Controlled Trial for weight loss,16 and the Lyon Diet Heart study,17 
as well as the Prevención con Dieta Mediterránea (PREDIMED) 
trial for CVD reduction.18 In PREDIMED, the reduction in 
CVD among individuals randomized to a Mediterranean diet 
plus extravirgin olive oil or mixed nuts corroborates decades-
long cohort studies and short-term trials reporting benefits of the 
Mediterranean diet and its components, including olive oil, nuts, 
fruits and vegetables, whole grains, and wine.19 These highly 
successful initiatives have greatly enhanced our knowledge of 
diet at a population level, and the incorporation of omics into 
future nutrition studies will help us understand the mecha-
nisms of action underlying a healthy diet.

Nutritional Assessment
The importance of using appropriate nutrition assessment 
tools should not be underestimated, and a combination of 
diet and biochemical measures may be required to provide a 
comprehensive assessment of short-term and long-term expo-
sure. The best tools provide an integrated measure of exposure 
because, for nutrition (except for mega-dose supplements or 
accidental contamination or poisoning), variation in exposure 

is modest and complex metabolic systems buffer extreme 
exposures. The major dietary tools that have been incorpo-
rated into large observational studies include 24-hour recalls, 
diet records, and food frequency questionnaires. Each of these 
has strengths and weaknesses, but each also provides insights 
and a foundation of research methods applicable to studies.

The 24-hour recall and single-day diet record are the best 
methods to assess a 1-day intake. They allow direct quanti-
fication of specific foods and thus limit error resulting from 
estimation of intake. The 24-hour recall may be more suscep-
tible to error because of memory recall or modifications in 
responses to be more socially acceptable to the interviewer, 
but careful scripting of a well-trained interviewer can mini-
mize this problem, and online methods that are computer 
assisted with multistep quality control have reduced errors.20,21 
Diet records, in which the participant weighs and records 
everything consumed in a day as it is eaten, generally are 
considered the gold standard for assessing short-term intake22 
because they do not rely on memory or estimation of portion 
size, but with multiday assessments, they can be burdensome 
on study subjects, thus leading to underassessment or changes 
in diet to reduce the burden of recording.

A single 24-hour recall or diet record is not a representative 
measure of average intake because of the great fluctuations in 
nutrient estimates caused by consumption of a single nutrient-
dense food, for example, carrots and liver, fish, and berries and 
tea, which could lead to substantial misclassification of aver-
age intake of vitamin A, omega-3 fatty acids, or polyphenols, 
respectively. Recalls or records are frequently spread out over 
several months or even a year to better estimate fluctuations in 
intake. For large studies, multiple assessments can be burden-
some or cost-prohibitive, which has led many studies to shift 
these measures to computerized protocols.23–25 Alternatively, 
the semiquantitative food frequency questionnaire (SFFQ) 
can be used as the primary method for estimating nutrient 
intake over a longer period of time. Participants are provided 
with a list of 100 to 150 commonly consumed foods and por-
tion sizes and are usually asked to estimate intake over a 3- to 
12-month period, individually incorporating fluctuations in
weekly or seasonal patterns into their grid of fixed response
categories. The SFFQ can be developed to be culturally spe-
cific, readily computerized and inexpensive, anonymizable,
and less burdensome to study subjects than other dietary
methods. The quality of the assessment tool is determined by
the comprehensiveness of the food list provided, the clarity of
provided instructions, and the ability of subjects to recall and
properly estimate average intake of listed foods. The SFFQ is
best used to rank individuals in a population by their intake
of a nutrient or food item because of systematic underesti-
mation or overestimation. When SFFQs are validated against
gold standards such as multiple days of diet records or bio-
chemical markers in blood, adipose tissue, or hair, some foods
and nutrients are better estimated than others. The SFFQ has
been well validated for assessing micronutrients, fatty acids,
and many other important nutritional determinants of disease.
However, the SFFQ is not good at estimating sodium intake
because of great fluctuations in similar foods (homemade food 
versus highly processed store-bought version) or trace metals
such as selenium that are dependent on soil composition. This



limitation in the granularity of dietary studies highlights the 
need for additional methods of characterizing nutrients that are 
not well characterized by current dietary tools. As discussed 
in the following sections, there is great promise in omics pro-
filing for better assessing risk of CVD and related traits and 
advancing our understanding of how genetic variation affects 
diet response and potentially the underlying mechanisms, thus 
improving our ability to design better targeted interventions. 
New omics platforms integrated with dietary measures can 
better quantify biological systems by incorporating not only 
a single circulating vitamin but also a family of downstream 
metabolites and other metabolically relevant nutritional fac-
tors. Collectively, advances in these areas will bring us closer 
to individualized lifestyle and pharmacotherapy interventions 
that are more effective for preventing and treating CVD.

Genetic Variation
Studies that have focused on identifying the genes and genetic 
variants associated with the different types of intermediate 
and CVD phenotypes in humans have been more consistent 
and successful than studies undertaken to identify genetic 
variants associated with other complex traits. What may have 
contributed to this greater success is that the cardiovascular 
phenotypes studied, both intermediate (plasma lipid concen-
trations, blood pressure, etc) and CVD end points (myocardial 
infarction [MI], stroke, and other CVD), have a standardized 
clinical definition and are easier to measure than other com-
plex phenotypes.

A 2013 American Heart Association statement26 supports 
the notion that for rare and familial forms of CVD, we are 
identifying single-gene mutations that impart relatively large 
effects on individual phenotype. For these cases, progress has 
led to several clinically useful diagnostic tests. However, the 
prevalence of monogenic disorders typically accounts for only 
a small proportion of the total CVD observed in the popula-
tion. There has been less progress in developing genetic test-
ing for complex CVD because individual common variants 
usually have only a modest impact on risk. Exome sequencing 
approaches may begin to address this; rare coding mutations 
in LDLR and APOA5 were found to affect MI risk in the gen-
eral population through modulation of low-density lipoprotein 
(LDL) and triglyceride metabolism.27,28 However, the study of 
the genomics of complex CVD is further challenged by the 
influence of environmental variables, phenotypic heterogene-
ity, and pathogenic complexity.29

Gene-Diet Interactions in Determining CVD  
Risk in Humans
Multiple gene-environment interactions (GxEs) exist in 
determining risk of CVD in humans, including factors such 
as smoking, physical activity, drugs, diet, and social con-
text. An outstanding initiative to unravel this complexity 
is the Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE) Consortium, which was formed to 
facilitate meta-analyses of genome-wide association studies 
(GWAS) and replication opportunities among multiple large, 
population-based cohort studies.30 While acknowledging the 
importance of other environmental factors, we focus here on 

gene-diet interactions because diet is one of the most impor-
tant exogenous factors that humans are exposed to every day.31 
Gene-diet interactions in CVD have been analyzed for many 
years, with many reports demonstrating that those interactions 
have an impact on determining both intermediate and final 
CVD phenotypes,32–67 as cataloged in detail.68 Some of these 
genetic variants have been highlighted through GWAS. For 
example, variation in the TCF7L2 gene, previously implicated 
in type 2 diabetes mellitus,69 was shown to interact with diet 
through intervention with the Mediterranean diet and played a 
role in determining stroke risk.34 The effects of other loci such 
as 9p21 and FTO, which are robustly associated with CVD 
and obesity, respectively, have also been reported to modulate 
CVD risk through interaction with diet.44,70 Gene-diet relation-
ships are complex, with multiple dietary components poten-
tially interacting with genotype to determine CVD risk. For 
example, elevated total homocysteine, a marker of CVD risk,71 
is modulated by dietary folate and alcohol consumption72,73 
and interaction with MTHFR genotype.74 Thus, a better under-
standing of these gene-nutrient interactions with information 
on both folate and alcohol intake is essential to understand 
why total homocysteine levels are elevated (and the underly-
ing reason why CVD risk is elevated).

A comprehensive review of cardiometabolic GxEs from 
386 publications,68 including blood lipids, glycemic traits, 
obesity anthropometrics, vascular measures, inflammation, 
and metabolic syndrome, allowed the following conclusions. 
First, the GxE single-nucleotide polymorphisms (SNPs) 
showed little overlap with variants identified by a main-effect 
GWAS, indicating the importance of environmental interac-
tions with genetic factors on cardiometabolic traits. Second, 
these GxE SNPs were enriched in adaptation to climatic and 
geographical features, with implications for energy homeosta-
sis and response to physical activity. Third, a comparison with 
gene networks responding to plasma cholesterol lowering or 
regression of atherosclerotic plaques showed that GxE genes 
have a greater role in those responses, particularly through 
high-energy diets and fat intake, than do GWAS-identified 
genes for the same traits. Collectively, these studies dem-
onstrate that SNPs supporting cardiometabolic GxEs often 
exhibit transcriptional effects or are under positive selection. 
However, not all SNPs can be assigned potential functional 
or regulatory roles because data are often lacking in specific 
cell types.

One limitation in the study of gene-diet interactions is 
that most of the studies are observational, so they provide a 
lower level of evidence than experimental studies. In addi-
tion, those experimental studies have often had an inadequate 
sample size. Therefore, it is necessary to increase the level 
of evidence in support of the gene-diet interactions in CVD. 
Furthermore, relatively few studies have focused on CVD end 
points, an area of investigation where future efforts should be 
focused.34,57

Clinical Application of the Gene-Diet Interactions
Research into gene-diet interactions is crucial to obtain infor-
mation that will allow us to undertake clinical applications 
of early genetic diagnosis. If a genetic variant is associated 
with CVD or an intermediate phenotype (eg, greater risk of 



hypertension, dyslipidemias, or diabetes mellitus) and it is 
known that a certain diet can counteract that genetic risk, then 
one can reason that disease risk could be reduced through pre-
scription of a personalized diet. To date, most studies have 
focused on primary prevention, but there is also great interest 
in discovering gene-diet interactions in secondary CVD pre-
vention to provide appropriate dietary recommendations for 
individuals who have already had a nonfatal CVD event. As 
next-generation sequencing technologies continue to improve, 
they will contribute to advancing gene-diet interaction studies 
in particular and GxE studies in general. The results of these 
efforts can then provide us with new knowledge to be applied 
in achieving more efficacious prevention of CVD.

Nutrient Effects on RNA Expression
We expect that many of the biological effects of diet on car-
diovascular risk and outcomes are mediated by changes in 
gene expression, whether as a result of genetic variation or 
environmental influences. In this regard, the use of global 
transcriptional profiling is a powerful tool in nutrigenomic 
studies. For example, measuring dynamic changes in gene 
expression before and after a short-term dietary challenge can 
highlight novel nutrient-responsive genes, and profiling gene 
expression after a diet intervention can identify genes respon-
sive to the intervention. The overall goal of these studies is to 
identify novel candidates for cardiometabolic risk.

Candidate Gene Studies
Some of the best evidence for direct effects of specific nutri-
ents on gene expression comes from studies of orphan nuclear 
receptors.75 Of these nutrient-responsive transcription factors, 
the peroxisome proliferator-activated receptor (PPAR) fam-
ily has been particularly well studied.76,77 As lipid-responsive 
genes, with effects on lipoprotein metabolisms and inflam-
mation, the PPARs have been recognized and extensively 
studied for their relevance to cardiometabolic disease. SNPs 
in PPAR genes have been implicated in cardiometabolic 
risk in gene-diet interaction studies.78,79 The PPAR family 
members α, δ, and γ are responsive to specific dietary fatty 
acids (PUFAs, monounsaturated fatty acids, and SFAs)76,80 
and fatty acid–derived eicosanoids, as well as to physiologi-
cal states induced by nutrient status (eg, fasting). PPARs are 
also responsive to a number of synthetic ligands, including 
fibrates and thiazolidinediones, and thus are attractive drug 
targets. PPAR agonism is responsible for activating and inhib-
iting a number of downstream genes, which remain to be fully 
characterized,81–83 and may act as a key regulator of hepatic 
fatty acid metabolism, response to fasting, and inflammatory 
responses.84–86 Although PPARα agonism through fenofibrate 
does not appear to have effects on systemic inflammatory 
responses in healthy humans,87 agonism of PPARγ and other 
targets by n-3 PUFA supplementation has an effect on sys-
temic inflammatory response.88 PPARγ is crucial for adipose 
tissue development and adipocyte differentiation and poten-
tially increasing browning of adipose tissue.89 Thus, PPARγ 
agonism can increase the lipid storage capacity of adipose 
tissue while increasing fatty acid oxidation capacity, leading 
to improvements in insulin sensitivity and cardiometabolic 

risk. Thiazolidinediones have been used extensively as insu-
lin-sensitizing agents through PPARγ agonism to treat type 
2 diabetes mellitus, although concerns have arisen about the 
safety of this class of drugs, with potential for increased MI 
and exacerbation of heart failure.90,91 Given the importance of 
diet-derived ligands in PPAR agonism, differences in nutrient 
status may be important in mediating drug effects, with poten-
tial differences in the effects of PPAR agonism, through physi-
ological versus pharmacological ligands. These genes thus 
remain interesting targets for further nutrigenomics study.

In addition to PPARs, there are other clear examples of 
gene-diet interaction, and similarly, several additional nuclear 
receptors have been shown to be important nutrient regula-
tors, including the bile acid–responsive farnesoid X receptor 
(FXR or NR1H4), which may influence fatty acid and glucose 
homeostasis92; the retinoic acid–responsive retinoid X recep-
tor (RXR)93; and the oxysterol-responsive liver X receptor 
(LXRα/β, NR1H3/2), which may alter atherosclerosis and 
diabetes mellitus risk.94 The nuclear receptor superfamily 
members form both homodimers and heterodimers and likely 
act cooperatively to regulate nutrient metabolism and cardio-
metabolic risk.95 Each of these highly specific receptors has 
diet-derived ligands; however, how seemingly divergent sig-
nals from each of these receptors respond to a meal remains 
unclear.

Unbiased Transcriptomics
Although studying candidate gene expression has utility 
in confirming hypotheses and defining mechanisms, large-
scale, unbiased techniques are required to further advance our 
knowledge. Unbiased approaches to assessing transcriptional 
changes in response to dietary intervention have used micro-
array and RNASeq approaches. These technologies and their 
application to CVD have been reviewed elsewhere.96,97 We 
focus here on how these technologies can be applied to the 
field of nutrigenomics.

In understanding the interaction between nutritional com-
ponents and gene expression changes, selecting the relevant 
cell type is of great importance. The majority of studies in 
humans have focused on blood-derived samples, for example, 
whole blood or peripheral blood mononuclear cells (PBMCs), 
or on adipose tissue, with a smaller number in skeletal mus-
cle. These represent relatively accessible and relevant tissues 
and give important, albeit incomplete, insight, which leaves 
other disease-relevant tissues to be studied in animal mod-
els. Transcriptomic studies of nutrition have to date mainly 
focused broadly on dietary patterns such as Mediterranean 
diets, on macronutrients, or on specific dietary components, 
primarily fish oil–derived fatty acids and some phytonutrients. 
These studies are further categorized into those implement-
ing a dietary intervention versus those examining habitual 
dietary status. Associations between PBMC gene expres-
sion patterns and habitual consumption of a prudent versus 
Western diet were reported in healthy subjects participating in 
the PREDIMED study (n=30).98 A Mediterranean diet inter-
vention was also found to alter PBMC expression of genes 
in cardiovascular pathways.99 Changes in gene expression 
in blood and adipose tissue from the same individuals (n=3) 
were reported after an intervention to alter macronutrient 



content,100 with divergent transcriptomic responses in the 2 tis-
sues. Adipose tissue gene expression changes were character-
ized in response to both overfeeding in healthy subjects (n=6) 
and caloric restriction in obese subjects (n=18),101 with >100 
genes identified as responding to caloric intake. Several stud-
ies have profiled PBMC expression before and after interven-
tion with n-3 PUFA,102–104 and the adipose tissue transcriptome 
by n-3 PUFA status has also been studied.105 Furthermore, the 
response to an 8-week high-fat diet intervention of SFAs or 
monounsaturated fatty acids was characterized in adipose tis-
sue from overweight subjects (n=20).106 Other studies have 
included additional short-term interventions, which increase 
the power to detect dynamic metabolically relevant changes. 
For example, skeletal muscle was profiled in obese subjects 
with insulin resistance (n=15) at 4 time points after supple-
mentation with n-3 PUFA or n-3 PUFA with fish gelatin, in 
both cases before and after a euglycemic-hyperinsulinemic 
clamp.107 This approach allowed identification of genes that 
were robustly altered by the clamp and by supplementation 
itself. This group has also used response to intervention as 
a tool to understand genetic differences in transcriptomic 
responses. High and low responders to n-3 PUFA supplemen-
tation as defined by change in triglycerides were identified and 
shown to differ in their transcriptomic responses.108

Despite increasing availability of transcriptomic data, 
many limitations still apply. We expect the transcriptome to 
vary, depending on time of day; cell type composition; age, 
race, and sex of the individual; and the health or disease sta-
tus and habitual diet. Given these many confounders, extract-
ing biologically meaningful data is a challenge. In general, 
the majority of transcriptomic studies will find statistically 
significant changes in the expression of some genes or tran-
scripts, even in relatively small numbers, but it is difficult to 
decipher which of these are truly meaningful and functional. 
A key constraint is the need to collapse data into intelligible 
results. To reduce the long lists of genes identified in tran-
scriptomics experiments, common approaches include some 
sort of pathway analysis and functional clustering. Although 
this approach is certainly valid, it is biased toward genes with 
known functions, meaning that many interesting but unstudied 
candidates will likely be missed among the vast amount of 
available data. The use of unbiased methods to construct inter-
action networks may overcome these limitations.109 The first 
step to understanding the health implications of diet-related 
gene expression patterns on a global scale is to characterize 
the transcriptome of multiple tissues under different diet and 
temporal conditions. However, at present, the field is still in 
a developmental stage in which we are generating data but 
struggling to obtain meaningful insight. Many studies remain 
underpowered with small numbers of subjects and many con-
founders. With decreasing costs, analyzing the transcriptomes 
of larger numbers of individuals over multiple time points 
is now feasible. Furthermore, public data repositories and 
large-scale collaborations are allowing the meta-analysis of 
multiple data sets,81 increasing the value of the information 
that can be extracted from existing data. Thus, the next step 
for the field will be broad integration of available transcrip-
tomic information with in-depth functional and mechanistic 
interrogation of novel candidates, as well as increased use 

of repeated-measures and acute “evoked phenotype” study 
design interventions. Beyond this, integration of transcrip-
tomic data with other information, both in the reverse direc-
tion of genomic and expression quantitative trait locus analysis 
and in the forward direction toward proteins and metabolites, 
is crucial to obtain a cohesive view of the metabolic response 
to nutrients.

Noncoding RNA
As next-generation sequencing has become increasingly 
affordable and feasible, our knowledge of noncoding RNA 
(ncRNA) has improved.110–113 A large proportion of the tran-
scriptome is not translated into protein yet is functional, with 
both long ncRNA and small RNAs exhibiting specific func-
tionality.114 Of particular relevance to nutrigenomics, microR-
NAs and other classes of small RNA have received particular 
attention for their possible ability to signal not just across spe-
cies but across kingdoms. Plant-derived dietary microRNAs 
may potentially cross the intestinal barrier and not only remain 
intact as they enter the bloodstream but also retain function-
ality and regulate host gene expression.115,116 Although this 
remains highly controversial,117–119 host-derived small RNAs 
are known to regulate many processes of relevance to car-
diometabolic risk120 and to be altered in response to dietary 
intervention and specific nutrients.121,122 For example, several 
microRNAs were reported to be changed in the PBMC tran-
scriptome after 1 year of supplementation with resveratrol-
containing grapeseed extract in subjects with type 2 diabetes 
mellitus.123 Thus, the potential functional role of diet acting 
directly or indirectly through small RNA is intriguing.

Epigenetics
As discussed above, dietary components can directly mod-
ify gene expression. However, many of the effects of diet 
and nutritional status on gene expression and regulation are 
mediated through epigenetic mechanisms. Dysregulation 
of epigenetic states plays a major role in disease, including 
CVD.96,124 Although our awareness of this role is expanding 
rapidly as we learn more about the nature of the endogenous 
epigenetic regulatory machinery and the ways in which it can 
be perturbed, much remains to be elucidated. Importantly, 
the reversible nature of epigenetic mechanisms provides a 
unique opportunity for the development of treatment mea-
sures targeting the perturbed marks or pathways. Although the 
list of epigenetic mechanisms and their functions continues 
to grow, those with roles in disease include DNA methyla-
tion, the addition of a methyl group (CH

3
) to the cytosine of 

a CpG dinucleotide; DNA hydroxymethylation, the presence 
of a hydroxymethyl group (CH

2
OH) at the cytosine of a CpG 

dinucleotide; and posttranslational modifications to histone 
tails of nucleosomes such as methylation, acetylation, ubiq-
uitination, phosphorylation, sumoylation, and biotinylation. 
However, our understanding of how these epigenetic mecha-
nisms regulate gene expression and how disruption leads to 
disease remains incomplete. Major functions include recruit-
ment and accessibility of transcriptional machinery to target 
genes and in stability and cellular localization of RNA and 
proteins. Furthermore, studies show an additional role for 



epigenetic mechanisms in determining genomic stability.125,126 
Although there are seemingly distinct roles for each of these 
mechanisms acting individually, we more often observe redun-
dant and cooperative functions for which several mechanisms 
must work together for normal cellular function and develop-
ment.127,128 Likewise, multiple mechanisms are simultaneously 
perturbed in disease states.

Role of Nutrition in Epigenetic Perturbation
There is some evidence relating diet, including micronutri-
ents and macronutrients and diet composition, to epigenetic 
changes that may alter cardiometabolic risk. A classic example 
of a seemingly direct role of nutrients in determining epigen-
etic states is the role of “methyl-donor” nutrients such as cho-
line, methionine, betaine, folate, vitamin B

12
, and zinc. These 

dietary components promote the formation of S-adenosyl 
methionine, a metabolite of the 1-carbon pathway,129–131 which 
contributes the methyl group required for methylation of DNA 
and histones. Bioavailability of these nutrients is a limiting fac-
tor in the proper establishment and maintenance of these epi-
genetic marks. Indeed, in vivo studies show that deficiency in 
or oversupplementation of these nutrients can result in altered 
epigenetic states, including changes in DNA methylation, 
histone modifications, and ncRNA.132–134 In addition, acetyl-
CoA, a byproduct of fatty acid metabolism, acts as a cofactor 
for histone acetylation carried out by members of the histone 
acetyltransferase gene family.135,136 High-fat diet–induced obe-
sity in mice leads to distinct changes in promoter methylation, 
potentially linked to the downstream health consequences 
associated with obesity.137 Similarly, research in nonhuman 
primates has highlighted a link between diet-induced obesity 
and epigenetic changes.138 Such diets have long been linked to 
CVD, but the finding that they act via epigenetic mechanisms 
is intriguing and represents an area for future investigation. 
Several studies have found evidence of epigenetic changes 
that alter cardiometabolic disease risk,139–141 including defects 
in endothelial cell function, abnormal blood flow, inflamma-
tion, and plaque formation.142–147 Identification and charac-
terization of common epigenetic outcomes linked to disease 
manifestations and their interaction with nutrient status may 
allow the development of specific treatment and intervention 
measures.148–151

Interestingly, the effect of limited or oversaturated nutrient 
bioavailability on epigenetic states is complex and not neces-
sarily direct. For example, deficiency of methyl donors results 
in hypermethylation at some loci and hypomethylation at oth-
ers. Furthermore, the contribution of oversupplementation to 
epigenetic perturbation remains largely unexplained. To fully 
understand the mechanism(s) of nutrient involvement in epi-
genetic states, we must take into account the complexity of 
metabolic pathways that involve nutrients and their metabo-
lites, which often act simultaneously in multiple divergent 
pathways. Different metabolic pathways playing roles in dif-
ferent cellular functions often use common genetic pathways 
(eg, metabolic enzymes). These effects highlight the impor-
tance of distinguishing the difference between epigenetic 
responses that result from defective gene expression regula-
tion in the cell and lead to disease phenotypes and epigenetic 
changes that reflect an adaptive response to insult and are not 

directly causal. Controlled studies are thus required to eluci-
date the directionality of effects and to distinguish between 
causal and reactive changes. Finally, we must also consider 
the demonstrated role of other environmental influences in 
epigenetic perturbation and the potential for aggregate effects 
involving nutrition.152 These include well-studied epigenetic 
effects caused by environmental toxicants and less elucidated 
environmental stimuli such as stress and general socioeco-
nomic factors, which have been shown to influence the risk of 
CVD.153 Future research will clarify the overlapping roles that 
nutrition and other environmental factors play in modulating 
CVD risk.

Timing of Epigenetic Perturbation: Developmental, 
Postnatal, and Transgenerational Origins
Maternal nutritional status has important and direct effects on 
the offspring in utero. Paternal diet has also been shown to play 
an important role in epigenetic status of the offspring, although 
specific links to CVD risk have not yet been determined.154 
Furthermore, grandmaternal nutritional status may also affect 
subsequent generations of offspring through epigenetic modi-
fication of fetal germ cells.155 Epigenetic programs are espe-
cially susceptible to change during fetal development because 
patterns of epigenetic states required for future development 
are established during early embryogenesis.152 Although some 
epigenetic states change throughout fetal development and 
during postnatal development and aging, epigenetic states that 
are programmed during embryonic development set the stage 
for future epigenetic outcomes.156,157 Maternal dietary defi-
ciency altering epigenetic programming can result in severe 
fetal and infant outcomes such as neural tube defects caused 
by a folic acid deficiency.158 However, maternal diet may 
also affect long-term risk of chronic disease development. 
Notable examples demonstrating maternal undernutrition and 
disease-relevant epigenetic changes in the resulting offspring 
include the Dutch Hunger Winter studies.159 People conceived 
or born in the Netherlands during the World War II Dutch 
Hunger Winter (1944–1945) were at increased risk of dis-
eases, including diabetes mellitus and CVD.160 These diseases 
were linked to epigenetic changes, supporting the notion that 
diet-induced epigenetic defects occurring during fetal devel-
opment or even before conception161 can alter cardiometabolic 
disease risk and progression throughout life. Epigenetic per-
turbation occurring before or during gestation coincides with 
developmental origins of CVD.162 Investigators cleverly took 
advantage of seasonal nutritional changes among pregnant 
women in The Gambia to demonstrate an association between 
naturally occurring maternal nutrient metabolite levels and 
DNA methylation patterns.163

Postnatal diet may compensate for some effects occur-
ring in utero. For example, post-weaning supplementation 
with folate and selenium after a maternal high-fat diet leads to 
alterations in hepatic methylation.164 These and other studies 
demonstrate that postnatal nutrition also plays a critical role 
in maintaining epigenetic programs and that perturbation of 
these systems after birth contributes to disease; postnatal sup-
plementation may be used to alleviate these incurred effects.

Because of the development of both somatic and germ-
line epigenetic programs during embryonic development, 



diet-induced epigenetic perturbations occurring in utero are 
also implicated in the transmission of disease to successive 
generations in a multigenerational or transgenerational man-
ner.165 Although multigenerational transmission of disease is 
not a novel concept, it has previously been studied mostly 
with respect to genetic changes in DNA sequence, leaving the 
role of epigenetic causes largely unexplored. Thus, this major 
breakthrough unveiled the involvement of nongenetic changes 
that by definition occur in the absence of changes in DNA 
sequence, are susceptible to environmental/exogenous pertur-
bation, may increase in severity with age, may be transmitted 
to successive generations, and may play a significant role in 
disease. Animal models make up the majority of the body of 
work demonstrating these changes, but some human studies 
also support these findings.124 Little is known about the poten-
tial for repeated insult and how that would affect heritable 
outcomes, and even less is understood about the contributions 
of effects that are transmitted paternally. It remains difficult 
to determine causality among nutrition, epigenetic changes, 
and disease in human studies, given the presence of multiple 
confounding factors. Thus, animal and cell-based models will 
play critical roles in identifying the causal mechanisms and 
characterizing the pathways involved.

Epigenetic Biomarkers
Epigenetic biomarkers allow the determination of risk of CVD 
and the diagnostic and treatment purposes. However, accu-
rately characterizing epigenetic biomarkers for any disease 
requires careful measurements and an acknowledgement of 
the limitations of their use. One major challenge in human 
studies is the limited sources of biological materials. Most in 
vivo human studies are limited to blood or plasma collection, 
the latter of which is lacking cells and thus is not an option for 
accurately measuring epigenetic states. Because epigenetic 
states vary between cell types, without cell sorting, mixed cell 
types present in the blood may create difficulties in accurately 
measuring epigenetic changes between individuals. To fill in 
the gaps in disease pathogenesis in humans, human cell lines or 
animal models are often substituted to identify tissue-relevant 
biomarkers of change. In addition, because epigenetic states 
often retain some level of plasticity within a lineage of cells, 
studies must measure states along a time course sufficient for 
determining whether a change is stable or transient, a distinc-
tion that is necessary for determining the therapeutic use of 
the biomarker. Furthermore, it is important to note the distinc-
tion between epigenetic biomarkers that are causal to the dis-
ease mechanism, epigenetic biomarkers that are byproducts 
of the disease state itself and thus not causal, and epigenetic 
biomarkers that are initially byproducts of the disease state 
but contribute to later stage effects as the disease progresses 
or even to other unrelated diseases/symptoms. Distinguishing 
these classes of biomarkers is critical to their accurate use in 
disease diagnoses and prevention or treatment of CVD. Many 
of the epigenetic biomarkers currently identified are epigen-
etic changes in genes known to play a role in the initiation or 
progression of CVD, many of which were already identified 
as mRNA or protein biomarkers.120,166,167 Alternatively, other 
biomarkers that are indicative of epigenetic changes may be 
used as a proxy for changed epigenetic states.168

Therapeutics
Identification of epigenetic perturbations that contribute to 
CVD provides the potential for gene therapeutic approaches 
that take advantage of the potentially reversible nature of 
epigenetic mechanisms. Current studies are investigating 
the use of therapeutic agents that target histone deacetylases 
and ncRNA via chemical inhibitors and molecular interfer-
ence.169–171 However, given the wide-ranging effects of epigen-
etic modifications, the potential for off-target effects remains 
an important concern. Understanding the links between these 
epigenetic mechanisms and nutrition may allow more effective 
dietary interventions to address the development and progres-
sion of CVD. Although there is excitement about the potential 
for clinical applications of therapeutic epigenetic remodeling, 
much research remains to be done before this could realisti-
cally be implemented.172

Metabolomics, Lipidomics, and Proteomics
Metabolomics
Because metabolites and proteins are downstream of genetic 
variation and transcriptional changes, they are attractive 
“proximal” reporters of a given metabolic phenotype, par-
ticularly because they directly integrate the breakdown prod-
ucts of our dietary intake. Metabolomics offers significant 
potential to better understand how different dietary patterns 
or specific foods affect metabolic pathways.173 Specifically, 
metabolomics provides important information on perturba-
tions in metabolic pathways that affect disease onset and 
treatment. In addition, metabolomics may soon be used to 
identify biomarkers of dietary intake in a way that over-
comes some of the shortcomings of diet assessment tools.173 
Although there is significant circadian and day-to-day varia-
tion in metabolite profiles, in a reproducibility study from 
a single blood collection, 90% of 257 metabolites were at 
least moderately reproducible 1 year later,174 much better than 
for nutrients assessed from 2 single days of dietary assess-
ment repeated 1 year apart.22 Importantly, metabolomics 
can be used to identify patterns of metabolic profiles among 
individuals that reflect differences in dietary intake or indi-
vidual metabolic activity that could explain variation in diet 
response. Aggregating individuals by differences in their 
metabolome provides a strategy for evaluating the effects of 
diet. Metabolites span a variety of compound classes, with 
significant differences in size and polarity across a wide 
range of concentrations. As a consequence, no single analyti-
cal method is able to accommodate the chemical diversity of 
the entire metabolome. Although various methodologies have 
been used, 2 core technologies have prevailed as the work-
horses of metabolite profiling: nuclear magnetic resonance 
spectroscopy and mass spectrometry, the latter coupled to 
an array of separation techniques, including gas and liquid 
chromatography. However, with an estimated 5000 currently 
detectable human serum metabolites (a number likely to 
increase with advancement in technology), a comprehensive 
map of the entire metabolome remains an unattained goal. 
However, by using a combined analytical approach, one can 
build a more inclusive picture of the metabolome by over-
coming the limitations of individual techniques.



With improved throughput, an increasing number of stud-
ies have begun to apply these technologies to large population-
based studies to identify novel predictors of cardiometabolic 
disease. For instance, studies in epidemiological cohorts 
have demonstrated that selected amino acids and amino acid 
derivatives are elevated more than a decade before the onset 
of type 2 diabetes mellitus.175,176 Some of these metabolites 
such as 2-aminoadipic acid may directly modulate glucose 
homeostasis. Furthermore, the experimental demonstration 
that 2-aminoadipic acid is influenced by both diet and genetic 
background highlights the potential role for nutrigenomic 
interventions.177 It is anticipated that as sufficiently large 
human data sets are acquired, investigators will begin to be 
able to parse the relative contributions of diet and genes in this 
pathway and others in disease development.

Given the possibility of nutritional manipulation of circu-
lating metabolites, it is important to understand which ones 
have direct causal roles in disease protection or susceptibility 
rather than simply serving as markers. Mendelian random-
ization studies offer one approach to investigating causality. 
Given the independent assortment of alleles, individuals are 
randomized to carrying the major or minor allele at polymor-
phic sites. Metabolite concentrations can have a strong heri-
table component, and it has been shown that common genetic 
variants explain part of this heritability.178 If a SNP is associ-
ated with levels of a metabolite, then examining the association 
of this SNP with a downstream clinical trait may be informa-
tive in terms of the causal role of the metabolite. For instance, 
it is known that elevated LDL cholesterol is associated with 
increased risk of MI. LDL is also a heritable trait with a num-
ber of rare and common genetic determinants. Variants that 
determine LDL would also be expected to relate to MI risk 
(which they do) if LDL is causal (which it is). Studies testing 
the causal links of novel metabolites with cardiometabolic dis-
eases are underway but require very large sample sizes given 
the complex genetic determination of such traits.

Lipidomics
Lipidomics, closely linked to metabolomics, uses mass spec-
trometry–based profiling to evaluate the comprehensive lipid 
profile in a sample179,180 and is increasingly being applied to 
cardiometabolic disease studies.181 Circulating lipids can 
have complex structures, with multiple different classes, and 
specific composition. For example, triacylglycerols are com-
posed of a glycerol backbone attached to 3 acyl chains, all 
of which can vary in length and saturation, making measure-
ment of specific species challenging.182 Despite the impor-
tance of circulating lipids and lipoproteins in cardiometabolic 
disease, well-known lipid species such as LDL, high-density 
lipoprotein (HDL), and total cholesterol explain only a small 
portion of atherogenic risk. The relationship among intake of 
dietary fat, circulating lipids, and cardiometabolic outcomes 
is influenced not only by genetically determined host metabo-
lism but also by metabolic action of intestinal microbiota and 
interaction with other dietary and metabolic components. We 
have a good understanding of the scientific evidence inform-
ing specific dietary guidelines on SFA, monounsaturated fatty 
acid, and PUFA intake,9,183 but questions remain about the 
functions and interactions of lipid subspecies and metabolites. 

Thus, whereas triacylglycerols with certain SFAs may be 
pathogenic in cardiometabolic disease, triacylglycerols with 
long-chain PUFAs are thought to be protective.182 However, 
chain length and saturation may also affect the bioavailabil-
ity of other nutrients, with SFAs generating smaller micelles 
with greater bioaccessibility.184 Profiling the many structurally 
similar yet biologically distinct lipid subspecies is challeng-
ing but is becoming possible through improved lipidomics 
approaches.185,186 These newly developed methods facilitate 
the application of functional lipidomics to fully profile and 
understand the specific role of each unique lipid subspecies.187 
Application of lipidomics to human plasma has direct utility, 
with potential to identify novel and predictive biomarkers of 
disease,188–191 including coronary disease progression,192,193 as 
well as biomarkers of responsiveness to therapeutic interven-
tion.194,195 As many specific lipid species are being generated 
in vivo from dietary precursors, lipidomics is a promising 
avenue for understanding the complex relationship between 
dietary lipids and cardiometabolic risk and identifying lipid 
biomarkers of dietary intake.

Proteomics
Given the complexity of specific dimensional configuration 
and posttranslational modifications of proteins, accurately 
profiling the proteome is particularly challenging. Several 
methods exist for proteomic characterization, including gel 
based,196 liquid chromatography–coupled mass spectrom-
etry based,197 and aptamer based,198 with broad applicability 
to a wide variety of sample types, disease states, and desired 
biomarkers. However, the complexity of data obtained from 
proteomic studies makes translation of putative biomarkers 
into clinically useful prognostic tools difficult. As has been 
reviewed extensively elsewhere, proteomics has been suc-
cessfully applied as a discovery tool to CVD in plasma, urine, 
and tissue199–202 in the context of both animal models aimed 
at understanding cardiac function and development203 and 
human biomarkers of atherosclerosis,204 dyslipidemia,205 and 
cardiometabolic disease.206 Proteomics has also been applied 
in the context of nutritional studies to identify biomarkers of 
diet and nutritional status.207–209 Although the proteome may 
be the most complex entity to assay accurately, the ultimate 
application is similar to other omics. As with metabolomics 
and lipidomics, increased application of proteomics method-
ologies will be required to fully understand the relationships 
between dietary and genetic factors in determining the unique 
cell, tissue, and circulating profile that results in health or dis-
ease. With some reduction in costs and increases in the resolu-
tion of instrumentation and methods allowing the increased 
use of proteomics, perhaps the greatest hurdle remaining will 
be the informatic integration and analysis of vast amounts of 
data into intelligible results.

Limitations of Disease Biomarkers
The measurement of intermediate biomarkers, including 
metabolites, proteins, and lipids, is a powerful approach both 
to understand intermediate signaling processes and to esti-
mate cardiovascular risk in the absence of clinical end points. 
However, the use of biomarkers as surrogates for clinical 



outcomes is not without limitations. Dissecting causal and 
bystander effects is particularly challenging, and current mea-
surement approaches may be misleading. For example, HDL 
cholesterol, originally considered a causal marker of CVD, is 
now understood to have a far more complex role in disease 
pathogenesis.210 Thus, although HDL function may be a causal 
mediator of disease risk, measurement of HDL concentration 
may not be an ideal risk predictor, and interventions aimed 
specifically at reducing HDL cholesterol concentrations have 
proven ineffective at reducing cardiovascular risk. Large, 
long-term, randomized, controlled trials; mendelian random-
ization approaches; and greater inclusion of both biomarkers 
and clinical end points may be required to establish the utility 
of many putative disease biomarkers.

The Microbiome
The microbiome, in particular the gut microbiome, has been 
identified as a potential risk factor for susceptibility to sev-
eral chronic metabolic diseases, including diabetes mellitus,211 
obesity,212 and CVD.213,214 Initial studies have focused primar-
ily on inflammation, and a developing body of literature indi-
cates that microbial dysbiosis215–217 in the digestive tract may 
also influence systemic inflammation by altering gut permea-
bility and thus increasing circulating lipopolysaccharide,218–220 
a powerful trigger of the immune response. An alternative line 
of literature is developing that views the microbiome as a met-
abolically active, complex organ, producing many metabolites 
that can directly influence host phenotype.

Inflammation and the Microbiome
Inflammation plays a unifying role in cardiometabolic dis-
ease,221 with inflammatory elements being observed in ath-
erosclerosis,222 insulin resistance,223,224 and obesity. Obesity, 
in turn, is characterized by chronic, low-grade systemic 
inflammation, with adipocytes serving as key mediators for 
metabolic and cardiovascular sequelae. In addition, there is 
growing recognition of the importance of the gut in immune 
system regulation, with subsequent metabolic effects. A large 
proportion of quantitative trait locus regions reported to regu-
late microbial abundance contain genes related to immunity 
and maintenance of barrier function.225–227 The influence of 
immune-related genes is further evidenced by the dramatic 
effects on microbial community structure caused by mutations 
in single genes related to host immunity.228,229 As an example, 
mice genetically deficient in the gut mucosal expression of 
innate immune system modulators (Toll-like receptor 5) 
developed insulin resistance even in the absence of increased 
obesity,217 and high fecal calprotectin levels have been found 
to be indicative of an inflammatory colonic environment.230 
Several taxa such as members of the Clostridiales order are 
known to be decreased in intestinal inflammatory environ-
ments,231 suggesting that differences in immune response and 
chronic inflammatory disease susceptibility may result from 
differences in microbiota composition.

Host Genetics and Microbial Composition
Considering the interindividual variability at the level of the 
microbiome,232,233 detailed studies integrating the intestinal 

microbiome with disease risk complement current GWAS 
approaches and other efforts seeking to understand hetero-
geneity in health and disease status. Importantly, understand-
ing how microbial diversity and specific microbial species 
affect clinical phenotypes and risk of CVD will be beneficial 
as we begin to focus on personalized approaches to nutrition 
and medicine. As our interest in the role of the microbiome 
role in chronic disease has expanded, so has interest in how 
host genetics influences microbial diversity. Several groups 
have reported that enteric microbial composition is a herita-
ble trait,234,235 although results from twin studies have shown 
discordant evidence of heritability.236 However, studies using 
naturally occurring genetic variation among panels of inbred 
mouse strains and single gene mutations in genetically modi-
fied mice have consistently shown an effect of host genetics 
on intestinal microbial community structure225,226,237–240 and 
may have increased power to detect genotype-driven micro-
bial differences. This is especially relevant because murine 
studies allow tight control over environmental factors, includ-
ing diet.226 For example, numerous genetic studies in mice, 
including those with using genetic reference panels,225,226,230,241 
have demonstrated an effect of genetic background on micro-
bial diversity. Interestingly, Benson and coworkers226 demon-
strated that multiple taxa can colocalize to a single genetic 
locus, suggesting that a single genetic locus may regulate the 
abundance of several taxa. Inbred strain surveys in mice also 
demonstrate a significant effect of host genetic makeup on 
microbial diversity,241 and some of these differences have been 
linked to cardiometabolic phenotypes.242

However, the relative strength of environmental versus 
genetic signals on microbial regulation is unclear. Much of 
our knowledge of the environmental effects on the micro-
biome has been derived from studies in mice.239 Several 
studies have shown how the maternal environment, litter 
effects, cage mates, the location that the mice are housed, 
and the commercial vendor can influence microbial popu-
lations.226,230,241,243,244 Uterine implantation studies have also 
shown that mice of different genetic backgrounds have simi-
lar microbial composition when reared by the same foster 
mother, indicating that, in certain circumstances, environ-
mental drivers can overpower genetic influences at least for 
nonadherent bacterial populations.243 These studies are fur-
ther supported by studies that have demonstrated that bacte-
ria from diverse sources can colonize the gut of gnotobiotic 
mice and compete with “normal” microbiota.245 Clearly, 
more work is needed to understand the interactions between 
host genetics and microbial diversity.

Effect of Diet
The human microbiome uses both dietary and host-derived 
nutrients for survival. Thus, changes in diet have a pro-
found impact on the microbiome,239,246 including altering 
the overall bacterial composition. Host dietary factors can 
alter the intestinal environment, promoting a bloom or inhi-
bition of certain taxa, as evident by the dynamic changes in 
both mouse and human microbial populations in response 
to dietary intervention.239 Interestingly, alterations early in 
life may have long-lasting effects on multiple phenotypes,247 
but it is unclear how these effects influence the regulation 



of microbial diversity by GxE interactions237 and subsequent 
risk of disease.227,237

Although the study of GxE interactions influencing the 
microbiome is relatively new,248 studies using mouse genetic 
reference populations237 or single gene knockout models249 
have demonstrated an interaction between microbiota and diet 
that is influenced by host genotype. These effects are less clear 
in humans, and a clinical study reported that, despite retained 
variation in taxonomy after dietary intervention, microbial 
gene expression, as assessed by RNASeq, clustered by diet 
group and exhibited less between-subject variation than at 
baseline.250

Reports have highlighted interactions between the micro-
biome and metabolism of dietary components such as phos-
phatidylcholine and carnitine on modulating CVD risk251–253 
through the metabolite trimethylamine N-oxide (TMAO). 
Collectively, these studies demonstrated that increased 
plasma TMAO levels were positively associated with aortic 
lesion formation in mice and with increased risk of preva-
lent CVD and incident adverse cardiac events and mortal-
ity in humans in the setting of heart failure,254,255 diabetes 
mellitus,256 and chronic kidney disease.257 TMAO is formed 
from trimethylamine via hepatic flavin mono-oxygenase 3.258 
Mechanistic studies in mice have identified that modulation 
of flavin mono-oxygenase 3 levels affect TMAO levels and 
glucose and lipid metabolism,259,260 further complicating the 
identification of the precise mechanism by which TMAO 
affects CVD. The microbiome plays an obligate role in the 
formation of trimethylamine (from the trimethylamine-con-
taining nutrients choline and carnitine), and antibiotic knock-
down studies clearly show that TMAO is not formed in the 
absence of the microbiome.253 Bacterial species harboring 
putative choline utilization gene clusters (cut-c) have been 
suggested to play a central role in enteric trimethylamine 
formation261 (and therefore downstream TMAO production). 
The specific microbiota capable of generating trimethylamine 
have not been fully identified, but previous reports have indi-
cated a relationship between plasma TMAO and members 
of the Tenericutes phylum,242,253 whereas species within the 
Desulfovibrio genus have also been demonstrated to degrade 
choline to trimethylamine.261

Despite the compelling evidence of the microbiome as 
a critical mediator of CVD risk, we still do not understand 
the factors responsible. For example, a comparative GWAS 
approach to discover loci for plasma TMAO levels identi-
fied a locus for TMAO levels on mouse chromosome 3 har-
boring Slc30a7, a gene that encodes a zinc transporter.262 In 
comparison, no significant loci were identified in a GWAS 
of ≈2000 subjects undergoing elective cardiac evaluation at 
the Cleveland Clinic.262 Notably, similar results were also 
reported in the population-based Framingham Heart Study.178 
The relatively limited genetic signals observed for TMAO lev-
els, at least in humans, thus far is consistent with the concept 
that interpersonal differences in diet and the repertoire of gut 
microbial species, more so than host genetic variants, likely 
serve as the primary determinants of plasma TMAO levels. 
Studies in mice have supported that both TMAO levels and 
atherosclerosis susceptibility are transmittable via the micro-
biome.263 Future studies are critical to better understand the 

relationship among diet, genetics, the microbiome, and ulti-
mately cardiovascular risk.

Evoked Phenotypes
There are important physiological differences between indi-
viduals in the fasted state compared with a prandial or post-
prandial state or in response to pharmacological or pathogenic 
challenge. The functional changes that occur in response to a 
meal or other challenge may be more relevant to disease pro-
cesses than resting metabolism,264,265 highlighting the degree 
of metabolic and phenotypic flexibility of an individual.266 
Thus, although studying individuals in a rested fasting state 
has important utility in minimizing noise and improving 
reproducibility, resting biomarkers may not accurately reflect 
the physiological milieu of the more relevant dynamic and 
potentially disease-promoting state. The use of evoked phe-
notypes as a research tool for understanding dynamic physiol-
ogy has considerable utility in cardiometabolic disease and is 
particularly applicable to nutrigenomic studies.

Dietary intervention to evoke phenotypes acutely has long 
been used in nutrition research, principally in the form of car-
bohydrate challenge (oral glucose tolerance test, frequently 
sampled intravenous glucose tolerance test), or fat challenge 
(oral lipid tolerance test), sometimes in combination with 
longer-term dietary interventions such as modification of 
dietary fat intake267,268 or sodium restriction.269 The addition 
of genetic or genomic information such as SNP genotype270–273 
can further increase the utility of these evoked challenge 
studies by highlighting subgroups of individuals with dif-
fering responses. Relatively few studies to date have used 
other omics approaches in combination with evoked dietary 
challenge, although the efficacy of the approach has been 
demonstrated, with examples of transcriptomic,5,274 metabolo-
mic,275,276 proteomic,277 and lipidomic278 studies highlighting 
the many powerful potential applications of these approaches.

The effects of longer-term dietary interventions or of 
habitual dietary patterns are often extremely difficult to detect, 
with only very subtle changes in resting biomarkers expected 
from a dietary intervention or supplementation. Thus, even 
for substances such as n-3 PUFA that are well studied with 
multiple lines of evidence supporting health effects, detecting 
biological changes after intervention is difficult. In such stud-
ies, additional pharmacological challenges may be required to 
evoke a measurable and disease-relevant phenotype. The use 
of evoked endotoxemia (low-dose lipopolysaccharide) as a 
model of cardiometabolic disease is well documented279–282 and 
has shown great utility as a discovery tool both in omic283,284 
and nutritional contexts.88,285,286 The combination of nutri-
tional and omic profiling in the context of evoked endotox-
emia has great promise for understanding nutritional effects 
on inflammatory responses. Other challenges have also been 
successfully used in an integrative omic context, for example, 
the use of vaccination as a model for activation of immune 
response by Franco et al,287 which revealed novel genes acting 
in response to immune activation. Although this study did not 
include dietary analysis, the design has obvious utility for a 
nutrigenomic context. As an alternative to a direct pharma-
cological or acute dietary challenge, the use of repeated mea-
sures in longitudinal studies allows natural interventions to 



provoke phenotypes, including naturally occurring infection. 
This was highlighted in a single individual in a personalized 
omic profiling approach by Chen et al,288 which established a 
proof of principle that would be extremely valuable to apply 
to larger numbers of individuals.

Although the use of human evoked phenotypes as models 
of cardiometabolic disease is still in its infancy, the potential 
benefits, particularly in the nutritional context, are consider-
able. Evoked phenotypes not only are more biologically relevant 
to disease processes but also reveal a greater dynamic range, 
allowing statistical power for discovery with smaller numbers 
of individuals. Controlling the provocation can reduce or elimi-
nate the issues of confounding and reverse causation inherent 
to observational studies. Increased use of phenotype challenges 
in combination with nutrigenomic approaches is a powerful and 
pragmatic approach that can yield disease-relevant data from 
smaller numbers of individuals. Given the historical difficulties 
in establishing dietary links with disease processes, in-depth 
phenotyping of dynamic nutrient-responsive physiology and 
integration with omics-scale data will likely yield significant 
advances in cardiometabolic disease research.

Personalized Nutrition
The ability to use evidence-based personalized or precision 
medicine through dietary intervention is a worthy healthcare 
goal with significant potential. Some examples of routine 
genetics-based dietary modification with large effects exist, 
for example, in inborn errors of metabolism such as phenylke-
tonuria,289 mutations in human leukocyte antigen complex and 
other genes leading to celiac disease or gluten sensitivity,290 
or variants in the LCT gene affecting lactase persistence.291 
However, such clear examples do not yet exist for complex car-
diometabolic disease. We caution that this area in particular is 
subject to popular claims that reach beyond the evidence base, 
with several companies offering direct-to-consumer genetic 
testing promising nutrigenetics-guided personalized dietary 
advice. The genetics-based ABO blood group diet292 became 
highly popular after its publication in 1996 and claimed to 
cure or prevent many chronic diseases, but it was not based on 
scientific evidence.293 Although the prescribed dietary patterns 
may be associated with health benefits, these occur indepen-
dently of ABO blood group status.294 Although the scientific 
evidence to make personalized dietary recommendations is 
not yet convincingly established, there is evidence that con-
sumers are receptive to personalized dietary advice. In a ran-
domized trial of genetic-based personalized nutrition advice, 
individuals receiving personalized advice were more likely to 
understand the advice given and to judge it as useful.295 In 
this study, with the exception of sodium intake, participants 
were no more likely to adhere to the advice given compared 
with general dietary advice, but this was attributable to the 
fact that participants were already broadly adhering to dietary 
guidelines at baseline.296 An intervention to improve diet qual-
ity based on personalized advice for genotype at APOE found 
that high-risk individuals who received personalized dietary 
advice were more likely to make short-term dietary improve-
ments compared with low-risk or control subjects.297 Although 
consumers are more engaged when receiving personalized 
dietary advice, the higher initial motivation may not lead 

to sustained long-term implementation of dietary changes. 
However, even if the hurdles of implementation and long-
term patient motivation are overcome, the main obstacle to 
personalized nutrition lies in establishing sufficient scientific 
evidence to make informed and efficacious recommendations.

Pharmacogenomics trials are starting to study the impact 
and implementation of personalized drug treatment recom-
mendations based on genotype at known functional vari-
ants.298,299 This approach would also be beneficial to advance 
the field of nutrigenetics. As discussed earlier, there are pub-
lished reports of genetic variants that interact with dietary 
composition to modulate biomarkers and health outcomes, 
including within the context of randomized trials.57,300 
However, most have not been validated through prospective, 
genotype-guided, randomized, controlled dietary intervention 
trials. Historical limitations in nutrition research limited the 
ability to develop clear evidence-based guidelines; personal-
ized nutrition presents an opportunity to greatly improve on 
these recommendations using current standards and tech-
nologies. Although some gene-nutrient interaction variants 
with large effects exist, many of the reported gene-nutrient 
interaction variants have relatively small individual effects. 
Genetic risk scores may represent an alternative to single-
variant analysis. Such scores have been applied in a predictive 
capacity to assess disease risk301–303 and could be useful within 
the context of a gene-nutrient risk score. In a study assess-
ing the effect on weight loss of genotype-guided nutrigenet-
ics intervention using genotype information from 7 published 
SNPs,304 there was no difference in weight loss between the 
group assigned to personalized diet and the group assigned to 
a standard balanced diet, although adherence to diet correlated 
with weight loss in the nutrigenetics-diet group. Although per-
sonalized nutrition may prove to become an effective tool in 
disease prevention and management, current evidence does 
not yet demonstrate that personalized nutritional advice leads 
to improved health outcomes compared with following cur-
rent dietary guidelines. However, the evidence that individu-
als are both receptive to personalized dietary advice and more 
motivated to implement personalized recommendations is 
very encouraging. Many of our existing nutritional guidelines 
were introduced before stringent standards for level of evi-
dence; personalized nutrition research using optimal current 
methods allows considerable improvement and refinement of 
nutritional guidelines on both a personalized and a population 
level. Large, randomized, controlled trials guided by addi-
tional mechanistic research may allow personalized nutrition 
to become a realistic option for CVD management.

Limitations and Future Directions
Nutrition is a crucial component in the prevention of cardio-
metabolic disease, but dietary studies are limited by difficul-
ties in accurately assessing dietary intake in free-living subjects 
and heterogeneity in habitual diet. Furthermore, the richness 
of dietary options and vast numbers of possible interactions 
between dietary components make dissecting relative contri-
butions of various nutrients extremely difficult. Omic profil-
ing represents a feasible albeit challenging method to address 
these issues, with the potential to use biomarkers coupled with 
genomic knowledge to obtain accurate and comprehensive 



assessments of nutritional input. However, to relate nutrient 
intake to nutritional biomarkers, well-conducted studies are 
required that use currently available nutritional profiling meth-
ods coupled with comprehensive unbiased biomarker profiling 
to discover and validate markers of metabolically active dietary 
components. Currently, many human studies of biomarkers and 
disease do not collect dietary information, and many dietary 
studies do not have resources for omic profiling. Increased col-
laboration among researchers with nutritional and omics exper-
tise during planning and development stages would allow the 
efficient collection of the additional data and samples required 
to provide maximum benefit and allow nutrigenomics to be 
applied in human disease studies. An increased awareness of 
nutrition among cardiometabolic disease researchers would be 
beneficial to the field. Moreover, the collection of dietary infor-
mation and additional samples for nutritional profiling does 
not add substantially to the cost of a human trial. Similarly, 
increased awareness of important dietary distinctions would 
be beneficial in rodent models of cardiometabolic disease, in 
which researchers often disregard the complexity of diet, for 
example, attributing differences in a Western diet and chow 
solely to the higher fat content despite many other differences in 
nutrient composition, including sucrose and micronutrients.305

Limitations in computational approaches remain a major 
bottleneck in nutrigenomics studies. As data collection becomes 
less arduous and less expensive, a limitation is the ability to 
analyze and make sense of the resulting data. Development 
of improved methods and standardized approaches for data 
reduction and integrative data analysis is crucial.

Although omics profiling methods will allow efficient 
discovery of new biomarkers, this approach is biased toward 
hypothesis generation. Even when biomarkers have direct 
clinical application, in most cases, focused functional and 
mechanistic interrogation will be required to fully under-
stand the mechanisms of action. Thus, to avoid a glut of 

underinterpreted data, the research climate and standards in 
the field should encourage omics researchers to follow up find-
ings with attempts at functional interrogation and translation.

Despite many challenges and limitations, the applica-
tion of nutrigenomics approaches should be promoted and 
encouraged, given the potential for discovery and progress, 
with direct application to human health. Cooperation among 
researchers from many different disciplines combining diverse 
expertise will be required to move toward the common goal of 
an integrated omics approach to nutrition in cardiometabolic 
disease.

Summary and Conclusions
Despite the known importance of genetics in cardiometa-
bolic disease, environment plays a large role in determining 
to what extent a genetic predisposition to disease will mani-
fest. Although multiple environmental exposures are known 
to modify risk, diet is one of the most important. Smoking, 
another key modifiable risk factor, has already demonstrated 
improvements, with a marked reduction in smoking rates in 
the United States since the 1960s that has been accompanied 
by a reduction in cardiovascular events.306 However, as smok-
ing rates have declined, diet-related obesity has increased. 
Diet is both essential and directly modifiable, meaning that 
improved knowledge of optimal nutrition has the potential to 
improve quality of life and to reduce global disease morbid-
ity and mortality. The use of integrated omics approaches, 
together with nutritional information, will improve the abil-
ity to identify relationships between diet and health, includ-
ing the interactions among diet, genetic background, and the 
microbiome that modify these relationships. This will allow 
the development of new therapeutic approaches, including tar-
geted modification of dietary intake, pharmacotherapies, and 
new strategies in modulating the microbiome, aimed at the 
prevention and treatment of cardiometabolic disease.
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