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Abstract The placenta plays an important role in me-
diating the effect of maternal metal exposure on fetal
development, acting as both barrier and transporter.
Term-placenta metal levels serve as an informative
snapshot of maternal/fetal exposure during pregnancy
and could be used to predict offspring short- and long-
term health outcomes. Here, we measured term-placenta
metal levels of 11 metals in 42 placentas from the

Soweto First 1000 days cohort (S1000, Soweto-Johan-
nesburg, SA). We compared these placental metal con-
centrations with previously reported global cohort mea-
surements to determine whether this cohort is at in-
creased risk of exposure. Placental metals were tested
for correlations to understand potential interactions be-
tween metals. Since these samples are from a birth
cohort study, we also performed exploratory analyses
to determine whether metal levels were associated with
placenta and birth outcomes. Most S1000 placental
metal levels were similar to other cohorts; however,
cadmium (Cd) levels up to 50-fold lower, and essential
elements nickel (Ni) and chromium (Cr) level up to 6-
and 16-fold lower, respectively. Cd, Se, and Ni were
associated with placenta and birth outcomes. Studies are
ongoing to examine underlying mechanisms and how
these developmental differences affect long-term health.
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Introduction

Metals naturally occur in the environment but can act as
toxicants with adverse developmental effects, particu-
larly neurodevelopmental and birthweight outcomes
(Lawn et al. 2014; Wright and Baccarelli 2007;
Parajuli et al. 2013; Luo et al. 2017; Thomas et al.
2015). Vanadium, cadmium, and lead were shown to
be negatively associated with birthweight, while mercu-
ry and arsenic were associated with an increased risk for
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small for gestational age (SGA) (Bloom et al. 2014;
Shirai et al. 2010; Hu et al. 2017; Sun et al. 2014; Xie
et al. 2013). For some of these metals and others such as
manganese, zinc, chromium, copper, and nickel, global
industrialization in the last century has created an added
burden on the environment (Tchounwou et al. 2012;
Singh et al. 2011; He et al. 2005). However, even low
exposure to metals is linked to adverse effects. For
example, arsenic, lead, cadmium, and mercury can be
hazardous at low exposure levels particularly during
sensitive developmental windows or due to bioaccumu-
lation (Tchounwou et al. 2012; Jaishankar et al. 2014;
Wirth and Mijal 2010). Therefore, the role of metals as
pollutants and their impact on public health is a growing
concern.

Metal exposure is of particular concern during preg-
nancy, since maternal exposure to harmful levels is
linked to adverse fetal/birth outcomes (Luo et al. 2017;
Shirai et al. 2010; Arbuckle et al. 2016). On the other
hand, maternal deficiency of essential metals (e.g., zinc)
has also been linked to adverse pregnancy outcomes and
prenatal development resulting in SGA babies, intra-
uterine growth retardation, or reduced birth weight
(Shah and Sachdev 2006; Keen et al. 1998; Mariath
et al. 2011). However, a systematic review of the liter-
ature reported conflicting results between studies and
further analyses are required to elucidate the full impact
on human development (Chaffee and King 2012). The
placenta likely plays an important role in mediating the
effects of metals on fetal development since it serves as
the interface between mother and child, supplying es-
sential elements and acting as a barrier to harmful ele-
ments. Differences in harmful or essential metal levels
could alter the capacity of the placenta to be an effective
transporter and barrier through changes in placental
formation, function, and pathology (Donnelly and
Campling 2016; Saenz et al. 2013; Vaughan et al.
2011; Cooke 2014; Mattison 2010). Furthermore, dif-
ferences in transplacental transport of metals to expose
the fetus may directly impact fetal development. How-
ever, this remains poorly characterized for most metals
(Myllynen et al. 2005).

This is the first study to measure placental metal
levels in a South African population. Our samples are
from a cohort located in a region of South Africa with a
history of mining for gold, uranium, manganese, plati-
num, and copper (Statistics South Africa 2017). To
characterize the placental metal levels in these samples,
we investigated the risk of metal exposure and

interactions between metals, by comparing placental
metal levels with previous placental measurements and
testing for correlations between the metals. We assessed
eleven metals having differing levels of transport
through the placenta—cadmium (Cd), which can accu-
mulate in the placenta (Esteban-Vasallo et al. 2012),
while arsenic (As), chromium (Cr), copper (Cu), lead
(Pb), manganese (Mn), nickel (Ni), selenium (Se), and
zinc (Zn) are transferred to the fetus (Punshon et al.
2015; Ziaee et al. 2007; Hardman et al. 2007; Takser
et al. 2004; Gundacker and Hengstschläger 2012;
Odland et al. 1997; Shennan 1988; Ford 2004). We also
assessed palladium (Pd) and platinum (Pt) levels for
which placental transport has not been determined. Pre-
vious work in this population measured metal levels in
maternal and fetal blood. Lead, arsenic, and selenium
levels were found to be correlated between maternal and
fetal blood samples, suggesting that maternal exposure
is reflective of fetal exposure for certain metals (Rudge
et al. 2009). Due to the potential for metal exposure to
affect fetal development, we also assessed relationships
between the metal levels and placenta and birth
outcomes.

Although not the direct topic of this study, it is
important to note that S1000 samples assayed here are
enriched for pregnancies with gestational diabetes
mellitus (GDM), a metabolic disorder diagnosed during
pregnancy. GDM is linked to changes in placental phys-
iology such as altered maturity and branching of placen-
tal villi, which could explain the altered nutrient trans-
port seen in GDM placentas (Taricco et al. 2009;
Daskalakis et al. 2008; Cvitic et al. 2014; Schäfer-Graf
et al. 1998; Gauster et al. 2012; Castillo-Castrejon and
Powell 2017). GDM is also linked to increased placenta
size likely caused by longitudinal vascular growth and
enhanced branching angiogenesis (Taricco et al. 2009;
Gauster et al. 2012; Edu et al. 2016; Daskalakis et al.
2008), possibly in response to the increased oxygen
needs of the fetus in a hyperglycemic environment
(Babawale et al. 2000; Jirkovská et al. 2002; Leach
and Mayhew 2005).

Methods

Sample population

Forty-two de-identified placenta samples and matched
maternal, placental, and infant phenotype data were



obtained from the Soweto First 1000 Days Pregnancy
Cohort (S1000, MRC Developmental Pathways for
Health Research Unit at the University of Witwaters-
rand). S1000 is a pregnancy cohort consisting of women
of African descent located in Soweto, South Africa.
Soweto is a highly transitioned poor urban area south-
west of Johannesburg and is enclosed by dormant gold
mine dumps. S1000 participants with gestational diabe-
tes mellitus (GDM) had access to treatment at a tertiary
hospital. The 42 samples were selected to be HIV-neg-
ative, half GDM (n = 21) and half nonGDM (n = 21),
and equal proportions of non-obese and obese in each
disease group. For our sample group, 2 participants
reported smoking before or during pregnancy and 2
reported alcohol consumption during pregnancy.

Placenta sampling

Placentas were weighed at delivery and samples were
collected within 1 h of delivery. Tissue punches selected
from this study were taken from the fetal side of the
placenta disc, avoiding the umbilical cord and at least
3 cm from the edge of the placenta. Blood was not
removed from the tissue, but care was taken to avoid
any visible lesions as well as areas that look distinctly
abnormal. Tissue punches were stored at − 80 °C until
use (The INTERBIO-21st Consortium 2012).

Trace metal measurement

Placental trace metal analysis was performed by the
University of North Carolina Biomarker Mass Spec-
trometry Core Facility. In brief, placental samples were
digested with 70% nitric acid at room temperature for
5 h before incubation at 85 °C overnight. Samples were
cooled to room temperature and 30% hydrogen perox-
ide was added followed by an additional incubation at
85 °C for 24 h. Samples were then diluted to 4 mL with
deionized water and total concentrations of As, Cd, Cr,
Cu, Pb, Mn, Ni, Pd, Pt, Se, and Zn were measured using
Agilent Technologies 7500cx inductively coupled plas-
ma mass spectrometer (ICP-MS), (Santa Clara, CA
USA). External calibration and quality control standards
were prepared from National Institute Standards Tech-
nology (NIST) traceable solutions (High Purity Stan-
dards, Charleston, SC, USA) (Laine et al. 2015).

For placental metal levels comparisons with previous
cohorts, concentrations from previous studies that were
reported relative to dry weight of placenta were

converted to approximate wet weights by dividing dry
weight by a conversion factor of 6.285 representing the
average ratio of dry/wet weights, as previously reported
(Iyengar and Rapp 2001).

Data transformations and variable score calculations

To normalize distributions, Cd, Cr, Cu, Pb, Mn, Ni, Pd,
and Pt were log10 transformed before analyses. As, Se,
and Zn were normally distributed and therefore not log
transformed. Placenta weight Z-scores were calculated
using means and standard deviations of placenta weight
from pregnancies matched for gestational age (GA) and
offspring sex, as previously described (Almog et al.
2011). Birth weight and length Z-scores were calculated
using the Intergrowth 21st Neonatal Size Calculator for
newborn infants between 24 and 42 weeks gestation
(Intergrowth 21st 2017). The ratio of birthweight to
placenta weight [birthweight (g)/placenta weight (g)]
was calculated as an indicator of placenta efficiency
(Hayward et al. 2016). Ponderal index [weight (g) ×
100/[height (cm)] was calculated as an indicator of
newborn adiposity (Armangil et al. 2011). Socio-
economic status (SES) scores were created using a
principal component analysis on household access to
electricity, ownership of a television, refrigerator, per-
sonal computer, bicycle, vehicle, and the number of
household rooms following the International Wealth
Index (Smits and Steendijk 2015). From the principal
component analysis, the first component explained the
most variance in the sample population and was chosen
as the SES indicator (mean ± STD, − 1.17 × 10−8 ± 1.7;
median, 0.168; range, − 7.35–1.86).

Statistical analyses

A two-tailed t test or chi-square tests were used to test
for differences between GDM status for each outcome
and covariate. Multivariate regression was used to test
for associations between GDM status and metal levels.
Spearman’s correlation was used to assess correlations
between untransformed placental metal levels.

Linear regression models were run using STATA 15
(StataCorp, TX), to assess the association between pla-
cental metal levels and pregnancy outcomes: placenta
weight Z-score, placenta efficiency, birthweight Z-score,
ponderal index, and birth length Z-score. All models
were adjusted for GDM, maternal age, maternal BMI,
gestational age, parity, offspring sex, and socio-



economic status (SES). A significance threshold of p <
0.05 was used for all models

Sensitivity analyses were conducted to identify major
outliers in outcome variables, defined as individual data
points that alone substantially influenced the signifi-
cance of the results. As a result, we removed one outlier
from the ponderal index dataset reducing sample size for
ponderal index to 41. Sensitivity analyses were also
conducted for maternal smoking status and showed no
differential effect on the associations.

Results

Maternal and placenta clinical characteristics and birth
outcomes

Placentas from forty-two pregnancies were selected
from the S1000 cohort. Table 1 describes the maternal,
placental, and birth outcome characteristics from these
pregnancies. S1000 was enriched for gestational diabe-
tes mellitus (GDM) pregnancies; therefore, we selected
an equal number of GDM and nonGDM samples. GDM
samples were on average from pregnancies with slightly
higher maternal age (p = 0.002), maternal parity (p =

0.003), and proportion of male offspring (p = 0.0001)
but did not significantly differ for other maternal, pla-
cental, or birth outcomes.

Placental levels of Cd, Cr, and Ni are lower in S1000
compared with other cohorts

To infer potential risk of exposure to metals during
pregnancy in the S1000 pregnancy cohort, we compared
S1000 placental levels of eleven metals (As, Cd, Cr, Cu,
Pb, Mn, Ni, Pd, Pt, Se, and Zn) with previously de-
scribed cohorts from other geographical locations
(Table 2). This is necessary since reference doses and/
or recommended exposure limits for placental metal
levels have not yet been determined since the direct
health risk associated with different levels of placental
metals is unclear. Most of the metals exhibited similar or
lower levels in S1000 compared with other populations.
Cd, Cr, and Ni levels in S1000 were substantially lower
compared with other reports (Table 2). For similarly
measured wet weight concentrations, S1000 Cd levels
were ~ 50-fold lower than a Chinese cohort (Guo et al.
2010); Cr levels were ~ 8- and 16-fold lower than a
Turkish and Chinese cohorts, respectively (Guo et al.
2010; Arica et al. 2013); and Ni levels were ~ 6- and 2-
fold lower than a Turkish and Chinese cohorts, respec-
tively (Guo et al. 2010; Arica et al. 2013) (Table 2).
S1000 As, Cu, Pb, Mn, Se, and Zn levels were mostly
similar (less than 2-fold different) to other populations,
while no reported data could be found for Pd and Pt
(Table 2). The directionality of these comparative results
remained the same even when GDM samples were
excluded from the S1000 dataset.

S1000 placental metal levels show several strong
positive correlations between metals

To better understand the potential interactions between
metals, we assessed correlations between metal levels.
We detected strong positive correlations (r > 0.70) be-
tween Pd and Pt and Se and Zn (r = 0.836 and 0.908,
respectively) (Fig. 1). Moderate correlations (0.50 < r <
0.70) were detected between Cd and Zn, Cr and Ni, Cu
and Pb, Cu andMn, Pb and Pd, Mn and Pd, and Mn and
Se (r = 0.579, 0.652, 0.630, 0.672, 0.551, 0.575, and
0.509, respectively) (Fig. 1). All other significant corre-
lations found were considered weakly correlated (r <
0.5). No significant negative correlations were found.

Table 1 Characteristics of the 42 mother-infant dyads from the
S1000 Days cohort

Mean ± SD/(%)
of total

Range

Maternal characteristics (n=42)

Maternal BMI (first trimester,
kg/m2)

29.4 ± 6.8 18.2–48

Maternal age (years) 30.2 ± 5.6 19–43

Gestational age (weeks) 38.4 ± 2.0 33–41

Parity (no. of full-term pregnan-
cies)

1.2 ± 0.9 0–4

Mode of Delivery (% cesarean) 59% n.a.

Placenta outcomes (n=33)

Placenta weight (g) 478.7 ± 89.7 290–628

Placenta efficiency (grams
fetus/gram placenta)

6.5 ± 1.0 4.6–8.9

Birth outcomes (n=42)

Birth weight (kg) 3.1 ± 0.5 1.9–4.1

Birth length (cm) 48.4 ± 3.3 40.7–55.2

Ponderal index (g × 100/cm3) 2.7 ± 0.3 1.8–4.1

Sex (% female) 38% n.a.

n.a., not applicable



S1000 placental levels of Se, Cd, and Ni are associated
with placental and/or birth outcomes

To determine whether placental levels of the eleven
metals assessed in S1000 are associated with offspring
developmental outcomes, we used measurements of
placenta weight Z-score and placenta efficiency (defined
as the ratio of fetal to placental weight) as placental
outcomes; and birth weight Z-score, birth length Z-
score, and ponderal index as birth outcomes. For pla-
cental outcomes, Se was significantly negatively asso-
ciated with placenta weight Z-score (Table 3), such that
every 1-unit decrease of Se was associated with a 7.74 ×
103-unit increase in placenta weight Z-score. Cd was

significantly positively associated with placenta effi-
ciency (Table 3), such that every log transformed-unit
increase of Cd was associated with a 1.06 increase in
placenta efficiency (Table 3).

For birth outcomes, Ni placental levels were nega-
tively associated with ponderal index (Table 4), such
that every log transformed-unit decrease in Ni was as-
sociated with a 0.0995-unit (g × 100/cm3) increase in
ponderal index (Table 4). None of the metal levels were
associated with birth weight or birth length Z-score after
adjustments for covariates (Table 4).

All regression models were adjusted for GDM, which
would remove any effect of GDM on birth outcomes. To
test separately whether there could be a causal effect of

Table 2 Placental metal levels for 42 placental samples from S1000 Days South African cohort compared with previous studies

Trace metal N Arithmetic
mean ± SD

Median Range Reports from other cohorts (approximate values)

Location Mean Median Range Reference

Arsenic (ppt) 42 1685.7 ± 661.9 1662 537–3351 USA
Mexico
Multiple

NR
2600.0
6000.0

760.0
NR
NR

10.0–18,350.0
500.0–6000.0
3000.0–12,000.0

Punshon et al. (2015)1

Diaz-Barriga et al. (1995)1

Iyengar and Rapp (2001)2

Cadmium (ppb) 38 2.5 ± 1.5 2.1 0.5–6.9 Sweden
China
Italy

NR
NR
NR

5.2
104.2
5.1

1.1–19.1
2.3–393.5
2.1–28.6

Osman et al. (2000)1

Guo et al. (2010)1

Roverso et al. (2015)2

Chromium (ppb) 41 26 ± 36.2 14.6 3.9–159.7 Turkey
China
Italy

220.7
NR
NR

NR
228.4
20.7

NR
83.5–6,638.9
2.4–300.7

Arica et al. (2013)1

Guo et al. (2010)1

Roverso et al. (2015)2

Copper (ppb) 42 1318.1 ± 809.1 1107 363–5129 USA
Sweden
Italy

1598.0
NR
NR

NR
953.0
795.5

NR
635.5–1270.9
588.7–4932.4

Karp and Robertson (1977)1

Osman et al. (2000)1

Roverso et al. (2015)2

Lead (ppb) 42 21.5 ± 17.9 15.9 4.4–92.4 Sweden
China
Multiple

NR
NR
34.0

5.4
165.8
NR

0–130.5
4.5–3,176.1
5–60

Osman et al. (2000)1

Guo et al. (2010)1

Iyengar and Rapp (2001)2

Manganese (ppb) 42 110.6 ± 68.1 91.3 48–439.8 USA
Sweden
Italy

115.0
NR
NR

NR
65.9
52.5

NR
35.7–280.2
11.8–795.5

Karp and Robertson (1977)1

Osman et al. (2000)1

Roverso et al. (2015)2

Nickel (ppb) 40 20.3 ± 50.9 6.7 1.9–303.6 Turkey
China
Multiple

124.2
NR
36.0

NR
14.3
NR

NR
1.76–593.7
9–62

Arica et al. (2013)1

Guo et al. (2010)1

Iyengar and Rapp (2001)2

Palladium (ppb) 42 21.5 ± 11.9 17.9 7.0–55.4 NR NR NR NR NR

Platinum (ppt) 42 754.5 ± 743.2 521 174–4784 NR NR NR NR NR

Selenium (ppb) 42 147.7 ± 37.3 150.9 56–220.5 Sweden
Croatia
Italy

NR
NR
NR

189.0
150.0
100.2

157.9–260.6
100.0–240.0
55.7–151.2

Osman et al. (2000)1

Klapec et al. (2008)1

Roverso et al. (2015)2

Zinc (ppm) 42 7.8 ± 2.0 7.9 3.1–11.4 USA
Sweden
Italy

10.2
NR
NR

NR
10.5
8.1

NR
7.9–18.3
1.4–15.9

Karp and Robertson (1977)1

Osman et al. (2000)1

Roverso et al. (2015)2

Italics indicates lower levels and boldface indicates higher levels reported for other cohorts compared with S1000. Concentration relative to
wet weight1 or dry weight converted to wet weight2 using conversion factor of 6.285 as previously described (Iyengar and Rapp 2001).NR,
not reported



metal exposure onGDM,we used the placental metal levels
as a proxy for maternal exposure and tested the association
between metal levels as a predictor and GDM status as an
outcome. No significant associations were found.

Discussion

We have assessed the levels of eleven metals in a subset
of the S1000 pregnancy cohort of Soweto-Johannes-
burg, South Africa, compared the levels with previous
populations, and determined relationships with birth and
placental outcomes. To the best of our knowledge, none
of the previous populations used for comparison were
specifically reported to have known/suspected increased
risk of exposure or deficiency. Although we propose
that the placental metal levels reflect differences in
environmental exposure levels, unrelated differences in
intrinsic features of the population such as placental
metabolism or transport of metals, or technical differ-
ences in how the metals were measured, may also play a
role. Nonetheless, this comparison remains a valuable
assessment to infer high vs. low risk of metal exposure
vs. deficiency where limited data are available.

Cd is the only metal we measured known to accumu-
late in the placenta (Esteban-Vasallo et al. 2012). Our
samples had substantially lower levels of Cd in compar-
ison with previous populations and were moderately
correlated with Zn levels (r = 0.579, Fig. 1). This rela-
tionship between Cd and Zn in the placenta was previ-
ously reported in a Ukrainian population, although it
was a weak correlation (r = 0.26) (Zadorozhnaja et al.
2000). Cd is known to interact with essential metals, like
zinc, by competitively binding to metal-binding proteins
named metallothioneins (Brzóska and Moniuszko-
Jakoniuk 2001). Cd has been shown to accumulate in
the liver and kidneys leading to increased retention of
Zn in those same organs (Brzóska and Moniuszko-
Jakoniuk 2001). The positive correlation between Cd
and Zn in the placenta may be due to this interaction
previously seen in other organs and is particular cause
for concern during pregnancy. Zn supplementation in
mice was shown to cause a > 30% reduction of kidney
and liver Cd levels (Pabis et al. 2018), perhaps Cd
exposure during pregnancy could be mitigated by Zn
supplementation. Interestingly, S1000 samples exhibit-
ed a positive association with placenta efficiency. This
may be the result of more efficient placenta having
higher barrier function, such that more efficient

Fig. 1 Correlations between
placental metal levels. Spearman
correlation was used to assess the
correlation between
untransformed placental metal
levels. R values are shown in the
top-right portion of the graph. N =
38–42. Only the statistically sig-
nificant correlations are denoted
in the lower-left portion of the
graph (*p < 0.05, **p < 0.01,
***p < 0.001). All r values with
light blue colors had weak corre-
lations (− 0.2 < r < 0.2). The color
scheme denotes the strength of the
r values, with positive correla-
tions in blue and negative corre-
lations in red



placentas accumulate higher levels of Cd with increased
environmental exposure.

We found lower S1000 placental levels of essential
elements Cr, Ni, and Zn compared with other reports,
which may indicate that this population is at risk for
deficiency. Maternal deficiency of Se and Zn was previ-
ously shown to be associated with increased risk for pre-
term birth and SGA (Iyengar et al. 1978;Ward et al. 1987).
We could not test for these outcomes specifically here but
did show that Se was negatively associated with placenta
weight Z-score. Se and Cd were both associated with
placenta outcomes and significantly correlated (Fig. 1),
which may be reflective of the retention effects of Cd on
essential nutrients. Despite a strong correlation between Se
and Zn levels (Fig. 1), Zn was not associated with any
outcomes. Ni levels were positively correlated with Cr
levels (r = 0.652, Fig. 1). No current studies have shown
this interaction between Ni and Cr in the placenta; howev-
er, Cr was recently shown to be positively correlated to the

essential element Mn (Freire et al. 2019) but this correla-
tion was not significant in our study. In the case that our
findings reflect maternal deficiency in both Cr and Ni, this
population should be studied further as Ni deficiency in
animal models has also been shown to affect development
including reduced birth weight, decreasedweight gain, and
increased risk of preweaning mortality (Anke et al. 1978).
In S1000, Ni was negatively associated with ponderal
index. The relationships found here may reflect adverse
effects of inadequate levels of these metals on develop-
ment; however, further studies are required to fully eluci-
date these effects.

Conclusions

This study provides an important examination of placental
metal levels in a previously unassessedSouthAfrican cohort
and gives some preliminary evidence suggesting a link with

Table 3 Association between placental metal levels and placenta outcomes (n = 33)

Metal measured in placenta Placenta weight Z-score Placenta efficiency

Unadjusted
β (p value)

Adjusted
β (p value)

Unadjusted
β (p value)

Adjusted
β (p value)

Arsenic − 0.000219
(0.199)

− 0.000142
(0.475)

0.000168
(0.528)

0.000062
(0.846)

Cadmium1 − 0.328
(0.143)

− 0.464
(0.105)

0.842
(0.011*)

1.06
(0.011*)

Chromium1 0.0886
(0.602)

− 0.0757
(0.707)

0.125
(0.634)

0.234
(0.461)

Copper1 − 0.0773
(0.753)

− 0.182
(0.519)

− 0.0437
(0.908)

− 0.0755
(0.867)

Lead1 0.0702
(0.703)

0.109
(0.634)

− 0.315
(0.264)

− 0.569
(0.109)

Manganese1 − 0.152
(0.612)

− 0.0138
(0.968)

− 0.0774
(0.868)

− 0.38
(0.484)

Nickel1 − 0.0205
(0.898)

− 0.125
(0.474)

0.206
(0.416)

0.289
(0.334)

Palladium1 − 0.264
(0.194)

− 0.254
(0.259)

0.446
(0.154)

0.349
(0.331)

Platinum1 − 0.353
(0.040*)

− 0.306
(0.108)

0.489
(0.067)

0.376
(0.219)

Selenium − 0.00712
(0.023*)

− 0.00774
(0.044*)

0.00749
(0.129)

0.00838
(0.181)

Zinc − 0.000116
(0.051)

− 0.000108
(0.125)

0.000115
(0.220)

0.000104
(0.364)

1 log-transformed

Asterisks & Boldface indicate statistically significant associations (p<0.05)

Adjusted for GDM, maternal age, gestational age, maternal BMI, parity, offspring sex, and SES



birth outcomes. Comparisons with findings in other cohorts
suggest that S1000 may be potentially deficient for Cr, Ni,
and Zn. Further studies should investigate the roles of these
important metals in maternal and child health.
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Table 4 Association between placental metal levels and birth outcomes (n = 42)

Metal measured in
placenta

Birth weight Z-score Birth length Z-score Ponderal index (n = 41)

Unadjusted
β (p value)

Adjusted
β (p value)

Unadjusted
β (p value)

Adjusted
β (p value)

Unadjusted
β (p value)

Adjusted
β (p value)

Arsenic − 0.000289
(0.182)

− 0.000116
(0.569)

− 0.000018
(0.964)

0.00028 (0.521) − 0.0000487
(0.471)

− 0.0000759
(0.326)

Cadmium1 − 0.397
(0.110)

− 0.189 (0.459) − 0.734
(0.126)

− 0.588 (0.286) 0.0493
(0.554)

0.035
(0.720)

Chromium1 0.2151
(0.176)

0.166
(0.228)

0.458
(0.113)

0.397
(0.184)

− 0.106
(0.025*)

− 0.098
(0.056)

Copper1 − 0.229
(0.452)

− 0.484 (0.081) − 0.561
(0.311)

− 0.873 (0.146) 0.091
(0.314)

0.0905 (0.383)

Lead1 − 0.193
(0.385)

− 0.234 (0.234) − 0.161
(0.692)

− 0.265 (0.535) − 0.0371
(0.577)

− 0.0278 (0.703)

Manganese1 − 0.155
(0.639)

− 0.196 (0.516) − 0.230
(0.702)

− 0.411 (0.527) 0.0286
(0.771)

0.0409 (0.713)

Nickel1 0.203
(0.131)

0.196
(0.071)

0.456
(0.059)

0.423
(0.082)

− 0.114
(0.004*)

− 0.0995 (0.016*)

Palladium1 − 0.0196
(0.943)

− 0.0914 (0.703) − 0.182
(0.717)

− 0.300 (0.561) − 0.0835
(0.332)

− 0.0865 (0.351)

Platinum1 − 0.159
(0.481)

− 0.148 (0.456) − 0.349
(0.397)

− 0.388 (0.363) − 0.0381
(0.589)

− 0.0506 (0.517)

Selenium − 0.00728
(0.055)

− 0.00549 (0.156) − 0.0152
(0.026*)

− 0.0145 (0.080) 0.00165
(0.152)

0.0012 (0.412)

Zinc − 0.000147
(0.039*)

− 0.0000754
(0.290)

− 0.000309
(0.016*)

− 0.000272
(0.072)

0.0000323
(0.140)

0.0000276
(0.313)

1 log-transformed

Asterisks & Boldface indicate statistically significant associations (p<0.05)

Adjusted for GDM, maternal age, gestational age, maternal BMI, parity, offspring sex, and SES
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