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ABSTRACT

Sheng Liu: Efficient and Safe Migration of Network Functions Using
Software-Defined Networking

(Under the direction of Michael K. Reiter)

Network function (NF) migration alongside (and possibly because of) routing policy

updates is a delicate task, making it difficult to ensure that all traffic is processed by its

required network functions, in order. Achieving traffic redistribution while ensuring correct

processing of all packets requires an efficient network forwarding-state update and careful co-

ordination between routing-policy change and NF migration. To achieve consistent network

updates, in this dissertation, we propose a new method that is inspired by causal consistency,

a consistency model for shared-memory systems. We propose and analyze a property called

suffix causal consistency (SCC) as an interpretation of causal consistency for rule updates

in an SDN network. We design an algorithm implementing this property and formally verify

the correctness of this algorithm using model checking. Our evaluation results show that

SCC provides greater efficiency than competing consistent-update alternatives while offering

consistency that is strong enough to ensure high-level routing properties (e.g., black-hole

freedom).

To coordinate routing-policy updates with NF migration, we propose a design called Nim-

ble for interleaving these tasks to achieve more efficient completion of both while ensuring

complete processing of traffic by the required sequences of NFs. Our technique works with

any route-update protocol that implements a property we call relaxed waypoint correctness,

which includes our SCC algorithm and many consistent-update protocols. We also provide

a route-update protocol that is customized to achieve relaxed waypoint correctness without

conforming to conventional “consistent update” semantics, as typically defined for such pro-
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tocols. We confirm the sufficiency of relaxed waypoint correctness using model checking, and

the implementation demonstrates the efficiency and efficacy of Nimble.
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CHAPTER 1: INTRODUCTION

Network functions (NFs), or middleboxes, are a staple of modern network infrastruc-

tures. These middleboxes play a critical role in the network and can perform a variety of

functions on packets, such as access control, load balancing, and intrusion detection. For ex-

ample, network intrusion detection/prevention systems (NIDS/NIPS) enjoy widespread use

and are central to supporting secure and efficient operations of the network. Network service

providers traditionally deploy these NFs using proprietary physical devices and maintain

strict chaining or orders that must be reflected in the position of NFs. As modern net-

works require ever-increasing flexibility and scalability for network function deployment, the

traditional dedicated hardware equipment suffers from significant reconfiguration overhead

and lacks the elasticity for service providers to provide dynamic and high-quality services.

To meet the required elasticity, network function virtualization (NFV) has emerged to re-

place traditional dedicated hardware devices with software applications running in virtual

machines (e.g., VMware workstation) or containers (e.g., docker).

The main idea of NFV is decoupling of the physical network device from the network

services that run on it, such that these services can be realized on commodity hardware using

virtualization. This enables a specific chain of services to be decomposed into multiple virtual

network functions, which can be packaged as software running on one or more industry-

standard servers located in data centers or at the network edge. As a result, service providers

can deliver these services on demand without purchasing new hardware. As the progression

of server virtualization and network virtualization, NFV is rapidly emerging and creating a

brand new market. The global network function virtualization market size is forecasted to

grow from 12.9 billion dollars in 2019 to 36.3 billion dollars by 2024 [74]. Many companies

have launched their products to provide NFV services (e.g., VMware vCloud NFV [97],
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Cisco NFVI [14]) or leverage NFV techniques on their platforms (e.g., Microsoft Azure [67],

Amazon AWS [4]).

A significant benefit of NFV is that it can dynamically scale-out a particular virtualized

network function by increasing the number of VM/container instances in response to the real-

time traffic load. Realizing such elasticity requires moving the network function to a new

position with corresponding states and redistributing traffic among multiple NF instances.

The speed of network update and NF migration is crucial because it determines the agility of

the network control. If the network adapts to traffic volume changes, a slow update can result

in a long period during which network functions are overloaded or underutilized. It further

leads to degraded network performance or resource waste. Therefore, the effectiveness of

NFV depends on how fast the traffic redistribution and NF migration can be achieved.

Efficient traffic reassignment needs rapidly determining new routing policies based on

network topology and updating forwarding rules on switches to route traffic through the

desired sequence of network functions correctly. However, achieving fast network updates

is challenging in the traditional network. First, it is complicated and hard to reconfigure

network devices to enforce new routing policies because network operators have to leverage

vendor-specific low-level commands manually. This operation is performed separately on each

device and thus can be very time-consuming and error-prone. Second, network environments

have to endure frequent changes in both traffic volume and topology. Traditional network

lacks the elasticity and programmability to adapt to network changes.

Software-defined networking (SDN) provides a promising alternative for deploying net-

work updates with improved network management and network programmability. Specif-

ically, SDN separates the network into an “intelligent” control plane and a “dumb” data

plane that implements a standardized interface for the controller to change the network for-

warding functions. The control plane, typically a logically centralized controller, stores a

global view of network topology information and is responsible for configuring switches in

the data plane. Each switch forwards packets based on the instructions sent by the controller
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using a standard configuration protocol, e.g., OpenFlow [77]. Such a decoupled architecture

provides fine-grained network control and a high degree of network programmability.

Although SDN started as an academic proposal, due to its benefits, it has drawn lots

of attention in the industry over the past few years. Many vendors (e.g., Cisco, Bare-

foot) support OpenFlow on their commercial switches. For example, Pica8 [81] is the first

hardware-independent switch to support the OpenFlow standard. Moreover, a lot of large

companies have leveraged SDN in their core network. Google, for instance, has deployed

an SDN-driven WAN to connect its data centers across the planet. This network has been

in production for many years and helps the company serve more traffic and save costs [37].

AT&T announced in 2019 that 75% of the traffic traversing their MPLS tunnels is now under

the control of SDN, and the number will hit 100% soon [6]. In conclusion, SDN is promising

from the perspective of both industry and academia.

Though SDN offers a cost-effective way to configure network devices, an inconsistent

network update will result in packet loss or, worse, violations of network policies. For

example, due to the varying delays between the controller and switches, switches cannot be

updated atomically, which may cause traffic to sidestep intended NFs. This issue becomes

even challenging when packets need to traverse a sequence of NFs, and traffic is redistributed

among NF instances. The traditional approach to update consistency [86], on which most

other update mechanisms [32, 39, 80, 54, 44, 71] build, is atomic in nature — packets either

traverse the old path or the new path, but never both. Some improvements in this vein

focus on reducing overheads [75, 44, 93] or congestion [54, 32]; others focus on finding better

update orderings [80, 52, 39, 59, 60, 21, 22]. Despite these improvements, enforcing atomicity

places a fundamental limit on the speed with which the network can be updated by forcing

packets (or flows) to wait until the new path is completely updated before it can be used.

Additionally, this requirement forces rules for both the new and old paths to co-exist, costing

efficiency. Inefficiency is not the only reason why these approaches is not a good fit for NFV.

Most prior works on SDN routing-policy updates that ensure packets traverse intended NFs
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assume that NFs remain at fixed locations of the network during the routing-policy update,

and thus they cannot be naively used in scenarios where NFs can move from one position to

another.

To ensure complete and correct processing of packets by intended NFs, the controller

requires more than a consistent and efficient routing-policy update algorithm. For example,

suppose the routing-update algorithm guarantees that all packets traverse the old or new

position of each NF by ensuring each packet is sent through either its old or new path in

its entirety. In that case, some NF packets may still not be processed if they arrive at the

new position before NF migration is completed or if they arrive at the old location after NF

migration begins. Therefore, ensuring that all packets get processed by their intended NFs

needs additional coordination between migrating NFs to their new locations and adjusting

traffic routing policies. To our knowledge, all works proposed to do so (e.g., [24, 85, 23, 61])

coordinate these actions by performing network forwarding-state update strictly after NF

migration is finished. While these techniques are capable of being used with arbitrary route-

update protocols, their generality slows down the process of flow redistribution longer than

necessary, possibly delaying rectification of the issue that required the routing-policy update

in the first place.

This dissertation aims at providing solutions to these challenges and contains three com-

ponents.

• To achieve efficient network update, in Chapter 3 we propose an alternative consistent

update abstraction in which packets are allowed to traverse a combination of both

old and new path, thus relaxing the consistency model and speeding up the update

times. Our approach is inspired by causal consistency [1], a consistency model for

shared-memory systems that guarantees that processes (in our case, packets) observe

operations (in our case, rules) in a causal order. Applied to SDNs, causal consistency

would imply that once a packet is matched to (“reads”) a forwarding rule in a switch,

it can be matched in downstream switches only to rules that are equally or more
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up-to-date. We propose and analyze a relaxed version of this property called suffix

causal consistency (SCC). We present an algorithm that implements this property

without updating switches unnecessarily, and show that SCC provides greater efficiency

than competing consistent-update alternatives while offering consistency that is strong

enough to ensure high-level routing properties (black-hole freedom, bounded looping,

waypoint enforcement).

• To ensure correct processing of packets, in Chapter 4, we propose a design called Nim-

ble for interleaving routing-policy update and NF migration using software-defined

networking (SDN), in a way that significantly reduces the latency to achieve both

and without permitting packets to evade processing by NFs. Our technique works

with any route-update protocol that implements a property we call relaxed waypoint

correctness, which includes consistent-update protocols like CU [86] and our proposed

algorithm SCC. However, we provide a route-update protocol that is customized to

achieve relaxed waypoint correctness without conforming to conventional “consistent

update” semantics, as typically defined for such protocols. The benefits of Nimble are

myriad, including lower latency for completion of both tasks and, depending on the

routing-update protocol with which NF migration is being deployed and the circum-

stances requiring their update, reduced packet loss and/or reduced rule overhead in

switches.

• It is difficult to verify the correctness of our algorithm considering the complex net-

work setting with all possible switch states and varying delays between the controller

and switches. In Chapter 5, we construct a model using Z3 solver [72] and verify the

correctness of both SCC and Nimble. Specifically, we verify the enforcement of suffix

causal consistency, as well as other high-level routing properties (black-hole freedom,

etc.) for the SCC algorithm by exploring all possible switch configurations and arbi-

trary latencies for switch updates to occur. Also, we verify the correctness of Nimble by
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exploring all possible delays between the controller and switches with any route-update

protocol satisfying the property of relaxed waypoint correctness.

Together, SCC and Nimble support the following thesis statement: Consistent network-

forwarding state update can be achieved efficiently through an appropriate adaptation of

causal consistency for the network setting. Interleaving this network-update method and

NF migration can significantly speed up the completion of both tasks while ensuring correct

processing of traffic.
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CHAPTER 2: BACKGROUND AND RELATED WORK

In this chapter, we describe background on software-defined networking and network

function migration – two fields included by this dissertation. We also summarize closely

related works on consistent network updates, causal consistency, and model checking.

2.1 Software-Defined Networking

Software-defined networking emerged to facilitate network management by centralizing

and simplifying network control. It provides a new network paradigm by decoupling the

network’s control plane and the data plane. Specifically, SDN uses a logically centralized

controller to maintain the network information base and manage underlying routers and

switches. Routers and switches provide the controller a well-defined programming interface

(e.g. OpenFlow [77]) to manipulate packet-forwarding logic. Each switch maintains one or

more flow-entry tables which store packet-handling rules matching specific traffic and per-

forming certain actions (e.g., dropping, forwarding). These rules can be updated by the

controller such that switches can perform certain network functions (e.g., routing, load bal-

ancing, filtering traffic). The separation between the specification of network policies and

their implementation in hardware devices offers flexibility and programmability for simpli-

fying network management. Therefore, SDN significantly saves time and effort for network

operators to reconfigure network equipment. Besides, it also shortens the development cycle

to implement novel network management protocols.

2.1.1 SDN Applications

SDN has been widely used to implement network applications and optimize resource

utilization. The flexibility of SDN facilitates the deployment of a variety of applications

for traffic routing [96, 98], network measurement [56, 99] and middlebox deployment [84, 5].

Fibbing [96] offers central control over distributed routing protocols, such as OSPF, by in-
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troducing fake links and nodes. Google uses Espresso [98], an Internet peering edge routing

infrastructure using SDN, to achieve fine-grained BGP-compliant bandwidth management.

Besides the routing control, SDN can also be used to facilitate network measurement. OpenS-

ketch [99] separates the control plane from the measurement data plane to efficiently support

a wide variety of measurement tasks. UnivMon [56] offers both high accuracy and general-

ity for flow monitoring. Moreover, SDN provides an alternative way to enforce middlebox

deployment. Simple [84] uses SDN to steer traffic through a sequence of middleboxes while

balancing the load across middleboxes. Slick [5] handles both the placement of network

functions and traffic routing through the elements.

SDN can also be leveraged for network resource management since it simplifies the net-

work control. Google uses SDN to deploy its backbone WAN named B4 [37] so that it can

leverage centralized traffic engineering to maximize link utilization. ElasticTree [90] utilizes

a centralized power manager to handle traffic loads and save up energy cost dynamically.

SWAN [32] achieves high bandwidth by applying frequent congestion-free network updates.

A more comprehensive survey on SDN can be found in this paper [50].

2.1.2 Programmable Switches

In recent years, a new high-level packet-processing language called P4 [9] has been devel-

oped to offer flexibility for programmable switches in the SDN data plane. Specifically, pro-

grammers can customize the forwarding logic of switch hardware by extracting specific packet

headers, defining match and action formats for tables, and specifying the order in which these

tables process packets. Programmable switches offer high programmability as well as high

packet processing rates. A wide interest has arisen, and much effort has been made in both

industries (e.g., Barefoot Networks’ Tofino [94]) and academia (e.g., PISCES [89]). Barefoot

Networks’ hardware switch Tofino supports P4 language and can achieve up to 12.8 Tb/s

throughput. PISCES is a software switch derived from OpenvSwitch [78], that is customized

for the P4 language.

The flexibility and programmability of P4 significantly speed up the implementation and
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deployment of new protocols and algorithms. Hula [43] uses programmable switches to im-

plement a load balancing mechanism. Contra [34] achieves performance-aware routing based

on real-time link conditions and allows network operators to specify user-defined perfor-

mance objectives. NetCache [38] leverages switches to cache frequently-accessed items and

balance loads across key-value stores. Since it is convenient to define new packet headers

with P4 language, in this dissertation, we use P4 language to implement our SCC algorithm

in Chapter 3.

2.2 Consistent Network Updates

Networks require fast and efficient updates for various reasons, ranging from planned

maintenance to unexpected failures. Meanwhile, network operators need to establish certain

correctness conditions, such as black hole freedom or enforcing complex security policies, to

achieve successful and safe network operation. As modern networks are changing continually,

it is critical to maintaining these conditions even during transitions. Therefore, network sys-

tems require consistent updates that preserve certain properties during transitions between

two operator-specified configurations. Consistent network update in SDN networks has re-

cently received considerable attention (e.g., [86, 39, 59, 66, 70, 71, 44, 75, 62, 103]). Most

approaches provide either strong consistency in the sense that packets traverse either the

old path or the new path (but not a mix) [86, 71, 44] or ensure specific properties (e.g., loop

freedom, congestion freedom) via weaker, transient consistency [59, 60, 39, 21, 93, 22, 32, 54].

The earliest work of the former class is Consistent Update (CU) [86], which uses a two-

phase commit to apply rule updates atomically across the network and requires each switch

to temporally maintain both old rules and new rules during the update. In addition, a

new rule configuration cannot be applied to packets until it is confirmed as having reached

all switches. Tal et al. [71] leverage synchronized clocks among the controller and switches

to implement time-triggered Consistent Update and thus speeding up the process. These

approaches can guarantee that traffic is processed by either an old or a new configuration, but

not a mix of the two. However, though CU is capable of being used with any configuration, it
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has significant rule-space overhead by storing both old and new rules at switches. To reduce

memory overhead, Naga et al. [44] propose performing a two-phase commit in multiple steps

to update the network incrementally.

Another class of solutions performs network updates incrementally and focuses on spe-

cific properties via weaker consistency. An example is Transiently Secure Network Updates

(TSU) [59], which provides loop freedom and waypoint enforcement properties, implemented

by scheduling updates to the network in multiple steps. Only a subset of switches are up-

dated in each step, and the next step must wait for the completion of the previous one.

Specifically, TSU computes the optimal update schedules using mixed-integer programming.

Klaus-Tycho et al. [21] propose an algorithm to perform network updates in minimal steps

and meanwhile achieving loop-freedom property. zUpdate [54] and SWAN [32] perform

congestion-free network updates to maximize link utilization. Klaus-Tycho et al. [22] discuss

the tradeoff between various consistency properties and the speed to update the network.

Also, some works [39, 103] allow network operators to customize correctness properties that

should be satisfied during the transitions. Dionysus [39] proposes an algorithm to generate

a dependency graph among updates for a specific property and compute an update schedule

to increase the update speed. Similar to Dionysus, CCG [103] supports general network

properties and can be applied to applications with wildcarded rules.

We compare our proposed network-update algorithm SCC empirically to CU and TSU

in Sec. 3.5, but the lessons we draw from that comparison, we believe, apply more broadly

to the classes of solutions they represent: approaches (like CU) that ensure that packets

traverse either the old path or the new path (but not a mix) come at a significantly greater

network update delay and transient rule-storage overhead than our approach, and those

that ensure specific network properties via weaker transient consistency (like TSU) tend to

scope their targeted properties narrowly and still may incur significantly greater network

update delay than our approach, due to their multi-stage strategies. As we will show, our

approach incurs low delay by avoiding multi-step deployment strategies and implements a
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property, namely suffix causal consistency, that implies a broad range of useful properties

during routing changes.

2.3 Causal Consistency

Suffix causal consistency is inspired by causal consistency [1], a consistency model for

shared-memory systems. Informally, a system is causally consistent if reads return values con-

sistent with any reads and writes that could have influenced them (in the sense of Lamport’s

potential causality relation [51]). Causal consistency is widely used to ensure consistency and

high availability of data objects with minimal delay across a wide-area network [57, 58, 7].

For example, COPS [57] implements a scalable distributed key-value wide-area system that

performs read and write operations in a local data center in a linearizable way and replicates

data among datacenters satisfying causal consistency. Specifically, COPS explicitly tracks

the causal dependencies among keys and checks whether these dependencies are satisfied

before executing the write operation to a local datacenter. Similar to COPS, Eiger [58]

also uses causal consistency to provide a scalable, consistent geo-replicated storage system.

However, different from COPS that tracks the dependencies on versions of keys, Eiger main-

tains dependencies on operations. Peter et al. [7] develop a bolt-on framework to achieve

causal consistency based on eventually consistent stores such that safety and liveness con-

cerns can be separated. Our work adapts the causal consistency property to network routing,

introducing improvements to reduce the extent and hence delays associated with network

updates.

Due to its shared basis in causal consistency, in Sec. 3.5 we will also empirically compare

our SCC algorithm to COCONUT [25], which seeks to enable seamless scaling of logical

network elements to multiple physical replicas. The core technical problem that COCONUT

tackles are that naive replication can result in incorrect behavior by a logical component

during routing updates if one physical replica applies an old policy to packets that depend

causally on packets to which another replica applied a new policy. COCONUT thus leverages

(compressed) vector timestamps [20, 64] in packets, with one component per logical rule
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undergoing an update, to signal to physical replicas the rule version that other replicas

previously applied to flows on which this packet causally depends, enabling them to apply

an equally current version. COCONUT thus ensures that each replicated logical element

respects causal relationships between flows (though not across distinct logical elements).

In contrast, our SCC algorithm does not focus on causal relationships between flows, but

instead ensures that each flow “reads” (is matched to) rules in causal order across the network

elements, seamlessly transitioning it from old routing policy to new. Despite the somewhat

different goals of COCONUT, we will coerce it to implement our goals in Sec. 3.5 and

compare SCC to it empirically, as another point in the design space.

2.4 Network Functions Migration

Stateful network functions are widely used in modern networks for network monitoring

(e.g., PRADS [82]), intrusion detection (e.g., Snort [91]) and load balancing (e.g., HAProxy

[30]). These NFs maintain state for ongoing connections, e.g., TCP connection state or num-

ber of transmitted bytes per host, and update the state when processing packets. Network

function virtualization (NFV) [73] enables a network controller to spin up middleboxes in

virtual machines/containers in response to real-time traffic volume and place these VMs/con-

tainers at arbitrary positions in the network. Due to its high flexibility and elasticity, many

companies have embraced network function virtualization. Microsoft Azure [67] and Ama-

zon AWS [4] support NFV on their platform to minimize operational complexity. VMware

vCloud NFV [97] and Cisco NFVI [14] provide NFV service to customers and help them

deploy new services faster.

Though NFV offers elasticity for middlebox deployment, ensuring the correct state for

NFs collectively is difficult. Specifically, it requires identifying the states that should be

migrated, migrating network function to a new location along with related states, and redis-

tributing affected traffic.

A lot of works [40, 61, 53] have been done to identify states using program analysis

automatically. stateAlyzr [40] leverages data and control-flow analysis to identify states
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that need to be migrated to ensure consistency when scaling network functions. vNIDS [53]

uses static program analysis for identification of shared states to achieve safe virtualization

of Network Intrusion Detection Systems. SwingState [61] analyzes the P4 program that

implements specific network functions in the SDN data plane and figures out the states that

require migration. It then modifies the P4 code to enable the live migration of these states.

In this dissertation, we focus on how to migrate network functions and how to coordinate

NF migration with traffic redistribution.

Network function (NF) migration using software-defined networking (SDN) requires care-

ful coordination between efficient routing-policy updates and NF migration. To ensure that

all packets are processed correctly during NF migration, all existing works [61, 24, 85, 23]

update network forwarding state strictly after NF migration is done. While some ap-

proaches [85, 24] use a centralized controller to reroute affected traffic from the old to new

NF position, other works [61, 23] tunnel traffic directly to the new NF position to reduce

latency. Examples of the former class are OpenNF [24] and Split/Merge [85]. OpenNF uses

a centralized SDN controller to coordinate NF migration with packet redistribution. The

affected incoming packets arriving at old NF positions are buffered at the controller dur-

ing NF migration to avoid packet loss. Split/Merge leverages SDN to split per-flow states

among VM replicas and redistribute traffic among them. An example of the latter class is

SwingState [61]. SwingState creates a tunnel between the old position and the new position

of each NF. NF states are prepended to packets arriving at the old location and are then for-

warded to the new location. Asron et al. [23] leverage virtual Ethernet interfaces to bridge

old NF instance and new instance for packet redistribution. To reduce service downtime,

they do not halt the operation of an old instance during migration. Old instance mirrors

packets to the new instance such that the new instance maintains up-to-date states. All of

these works change network routing policy after NF migration is finished, which slows down

traffic redistribution.

Numerous works focus on virtual machine (VM) migration [15, 26, 19, 65]. Some works [15,
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19] clone VM instances in their entirety. Live migration [15] copies a snapshot of VM memory

to the new location. To minimize the VM downtime, write operations at the old position

are intercepted and copied to the new location. Remus [19] clones memory and disk states

across multiple VM replicas and uses checkpointing to provide fault tolerance. These works

do not coordinate VM migration with the change of routing policies. Other works [26, 65]

propose to migrate VMs along with the underlying virtual network. XenFlow [65] migrates

Xen VMs and the virtual network using OpenFlow switches to minimize performance disrup-

tion. LIME [26] migrates a collection of VMs and virtual switches as an ensemble to provide

transparency to the applications, though with the risk of packet loss while VMs or switches

are temporarily frozen.

In this dissertation, NFs move along with their states. Some works [47, 41, 90], which

are orthogonal to ours, maintain an external data store such that states do not need to

migrate during NF migration. Some papers [41] propose systems that keep all NF states in

a standalone centralized store, while other works [47, 90] maintain states both locally and

remotely for performance. StatelessNF [41] breaks the tight coupling between the processing

of network functions and state management by placing all states in a remote data store.

However, customized techniques, e.g., RAMcloud [76] and Infiniband [36], need to be used

to improve database and network performance. StreamNF [47] provides state management

among chain-wide NFs by classifying states into per-flow state and cross-flow state. A per-

flow state can only be updated by a single instance, and cross-flow state objects are shared

among multiple instances. Cross-flow state objects can be cached locally for performance

improvement but require synchronization with remote data store upon local write operations.

S6 [90] leverages distributed shared object (DSO) to distribute and share states among all

NFs.

2.5 Correctness Checking

A lot of works [45, 46, 69, 63, 102, 48] utilize automatic techniques, such as model checking,

to find bugs in network applications, detect network anomaly or verify the correctness of
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network property. These works can be classified into two kinds, online and offline checking.

The difference is that online checking trouble-shoots the network system at runtime by

observing the change of network state when packets traverse the network. Examples of

offline checking SDN are SDNRacer [69] and HSA [46]. SDNRacer detects concurrency

issues in the data plane by defining the happens-before relation for network events. HSA

developes a framework, called header space analysis, to statically check the correctness of

network configurations in the data plane. These works either use a simplified switch model for

efficiency or can only be used for small-scale network settings. Examples of online checking

SDN are NetPlumber [45], VeriFlow [48] and ATPG [102]. NetPlumber and VeriFlow verify

the network-wide invariants in SDN at runtime by observing OpenFlow messages. ATPG

injects test packets into the data plane to monitor the router configurations. None of these

verification tools can be directly used to verify the correctness of our algorithm since modeling

our algorithm needs to take into account additional factors such as unknown delays for switch

updates to occur and diverse behavior of network protocols. In this dissertation, we use model

checking to model these factors and verify the correctness of our algorithms.

Model checking [16] emerged in the early 1980s to prove concurrent system correctness.

A model-checking tool allows users to describe a system (called model) and a property

(called specification) this system is expected to satisfy. The tool automatically verifies if this

property is satisfied by searching for a counterexample that violates the property. To reduce

state space that the model checking tools need to explore, techniques, such as symbolic

execution [49], are used. Recently, model checking has been utilized to verify network-

wide properties for SDN. NICE [63] uses model checking in combination with symbolic

execution to find bugs in OpenFlow controller applications. FLOVER [92] model checks if

the rules generated by an SDN app satisfy specific security policies. FlowChecker [3] checks

misconfigurations for scenarios where multiple users share the same network and deploy their

rules separately. In Chapter 5, we elaborate on how to model our system and demonstrate

the correctness of our algorithms using model checking.
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CHAPTER 3: EFFICIENT AND SAFE NETWORK UPDATES WITH
SUFFIX CAUSAL CONSISTENCY1

In this chapter, we propose a new method to achieve efficient and safe network forwarding-

state update using an alternative consistent update abstraction that we call suffix causal

consistency. Unlike existing mechanisms [32, 39, 80, 54, 44, 71] which enforce atomicity, this

approach allows packets to traverse a combination of both old and new paths, thus relaxing

the consistency model and speeding up update times. Our work builds on the following

insights: (1) for most network policies, the network paths are designed to control routes to

a destination (or a suffix), and (2) a packet (or a flow) traversing a mixture of old and new

paths can retain correctness provided it traverses the old policy and then the new. These

insights are a natural fit for causal consistency [1], a shared memory consistency model that

guarantees that processes (in our case packets) observe operations (in our case rules) in

a causal order. To this end, we propose suffix causal consistency (SCC), a practical and

efficient networking domain-specific realization of causal consistency.

There are several challenges in practically realizing causal consistency within the network

of distributed devices. The first is designing update algorithms that provide causal consis-

tency while simultaneously preserving a broad range of network invariants, e.g., black-hole

freedom. We tackle this challenge by tagging each packet with a Lamport timestamp [51];

each switch then updates this timestamp to reflect the rule matched to the packet. Naively,

this approach would then require that downstream switches match this packet only to a rule

with a timestamp at least as large, but doing so requires that any network update affect

all of these downstream switches (to increase their rule timestamps, even if their rules need

1This chapter is excerpted from previously published work [55].
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not change). We thus propose a novel method of managing these timestamps to limit the

number of switches that each network update must involve, thereby accelerating the update

process. A second challenge is developing network primitives to efficiently support causal

consistency on commodity switches in the face of practical switch constraints and dynamic

switch behavior. Despite the development of highly programmable switches [9] that unlock

flexible functionality, support for causal consistency poses several challenges. Specifically,

supporting causal consistency requires switches to detour packets and temporarily buffer

packets.

To demonstrate the effectiveness and efficiency of suffix causal consistency, we developed

prototypes for both Open vSwitch (OVS) and P4 [9]. We evaluate our prototypes against

realistic workloads and topologies. Our analyses show that SCC deploys updates faster than

state-of-the-art alternatives (COCONUT [25], TSU [59] and CU [86]) while simultaneously

providing for less packet loss and less rule overhead during updates. We also show that our

rule-generation algorithm scales well to topologies of considerable size.

Results of our evaluation show that: 1. SCC outperforms COCONUT [25] and the original,

uncoordinated approach to rule updates in terms of the packets dropped during an update,

and outperforms COCONUT, CU [86], and TSU [59] in terms of the packets dropped due

to link failures. 2. SCC deploys rules more efficiently than CU, COCONUT, or TSU and

imposes less rule storage overhead in amount and/or duration than these alternatives. 3. The

rule generation time of our algorithm scales across a range of both fat-tree and ISP topologies.

3.1 Network Model and Goals

In this section, we detail our model of the network, which is general enough to include

SDN setups and some others (Sec. 3.1.1). We then motivate and define our main goal in this

dissertation, a property that we call suffix causal consistency (Sec. 3.1.2).

3.1.1 Network Model

Controller The network has a logically centralized controller that is responsible for con-

figuring the switches. To do so, the controller stores network topology information, the rules
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deployed on each switch (i.e., flow table snapshot) as discussed below, and switch configura-

tions. It makes network information available to one or more applications that make routing

decisions. The controller produces a new routing policy as needed, based on input from

applications. We refer to the emission of a new policy as a new epoch. We assume that the

routing policy of each new epoch is deployed to the network (in the form of rules described

below) before the next epoch begins. Epochs are thus totally ordered by time, and we use

an epoch counter epochCtr = 1, 2, . . . to index a particular epoch.

Routing policies A routing policy specifies how to route flows through the network. A

flow consists of packets with the same addressing information (IP 5-tuple). We assume that

the packets of any flow enter the network at a single ingress point that remains constant

across epochs (as is commonly assumed, e.g., [86]).

Rules The instructions for how a switch should treat certain packets are specified by rules.

Each rule R includes (at least) the following fields, all of which are immutable:

• R.cover specifies the set of flows to which this rule pertains (i.e., that can be matched

to this rule);

• R.priority specifies the priority of this rule, with higher priorities indicated by larger

numbers and with a special priority ∞ to represent the maximum priority, which can

be used only by our algorithm;

• R.sendTo specifies the switch identifier (in practice, an outbound port) to which packets

matched to this rule should be forwarded, or drop if the packets should be dropped;

• R.switch specifies the unique switch S into which R can be installed; and

• R.epochCtr records the index epochCtr of the epoch that produced this rule.

Each epoch yields a collection of rules for switches in the network to implement the

routing policy for this epoch. That said, not all such rules will necessarily be installed at
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(i.e., deployed to) switches, since they may be redundant with rules already installed in some

of the switches.

Switches Each switch maintains a flow entry table which stores a set of rules for flow

management. We denote the set of rules in the flow table of switch S as S.ruleSet; e.g.,

S.ruleSet = {R1, R6, R10} means that switch S includes rules R1, R6 and R10. The controller

modifies this set by invoking the following interface, which is similar to that provided by

OpenFlow:

• S.flowadd(Rj) inserts rule Rj into S.ruleSet. This command fails with no effect if

Rj .switch 6= S or if S.ruleSet already contains a rule Rj′ such that Rj′.priority =

Rj .priority and Rj .cover ∩Rj′.cover 6= ∅.

• S.flowdel(Rj) removes rule Rj from S.ruleSet.

Due to the communication delay between the controller and each switch, invoking these

switch commands on multiple switches simultaneously cannot ensure that the switches reflect

these changes at the same time, which may cause inconsistent states across the switches. For

example, if one switch has already deleted a stale rule, but its upstream switch still keeps

sending packets to it, this switch may not find a matching rule or leverage the default rule

(which may drop the packets and create a black hole).

An example Consider a packet pkt that traverses a sequence of switches Sj → . . .→ Sj′,

as directed by the rules on these switches, written Rj → . . .→ Rj′. For example, in Fig. 3.1,

the rules applied to packet pkt on path S1 → S2 → S4 → S5 are R1 → R2 → R3 → R4, where

rule R1 directs switch S1 to send the packet pkt to switch S2, and so on. If the application

wants to change the path of packet pkt from S1 → S2 → S4 → S5 (the dashed line in

Fig. 3.1, denoted pathold
pkt ) to S1 → S3 → S4 → S5 (the solid line, denoted pathnew

pkt ), then the

application conveys this to the controller, and the controller generates several commands to

update the switch states (resulting in a new epoch). The commands include:
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S1 S4Src Dst

pkt ∈ R1.cover
↓

pkt ∈ R11.cover

pkt ∈ R3.cover

S5

pkt ∈ R4.cover

pkt ∈ R2.cover −→ flowdel(R2)

⊥ −→ pkt ∈ R5.cover

pathold
pkt

pathnew
pkt

S3

S2

Figure 3.1: Example of route change.

• S1.flowdel(R1) and S1.flowadd(R11) where

R11.sendTo = S3 and pkt ∈ R11.cover;

• S2.flowdel(R2) to delete rule R2 from S2; and

• S3.flowadd(R5) to instruct S3 to send pkt to S4 (i.e., R5.sendTo = S4 and pkt ∈

R5.cover).

Rule R3 instructing S4 to send pkt to S5 need not be changed (assuming R3.cover does

not specify the inbound port on S4). Nor does rule R4 instructing S5 to send pkt to the

destination node.

3.1.2 Goals

In the example of Fig. 3.1, if S1 is updated prior to the addition of R5 to S3, then pkt

might be directed to S3 before S3 has a rule to handle it. Similarly, if switch S1 is not yet

updated but switch S2 has already deleted the rule R2, then switch S2 would not have a rule

to match pkt upon its arrival. Our central goal in this dissertation is to develop a rule-update

framework that avoids such inconsistencies.

More specifically, the property we seek to implement in this dissertation, namely suffix

causal consistency (SCC), prevents such inconsistencies from occurring. At a high level, SCC

ensures that a packet traverses a suffix of the most recent path specified for it and for which
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it encounters rules. If the path routes the packet to a desirable egress point from the network,

then any suffix of that path also delivers the packet to that egress point.

Suffix causal consistency (SCC): Let pkt .epochCtr denote the largest value of R.epochCtr

among all rules R to which a packet pkt is matched between its entry to and departure

from the network. Let path be the path specified for pkt in epoch pkt .epochCtr. Then,

the sequence of switches traversed by pkt ends in a suffix of path .

It is instructive to put this definition to work using the example in Fig. 3.1, discussed

above. In the first source of inconsistency considered there, S1 is updated with rule R11

before R5 is added to S3, causing pkt to be directed to S3 before S3 has a rule to handle

it. Since pkt .epochCtr = R11.epochCtr (i.e., assuming pkt does not encounter a more recent

update later), SCC ensures that pkt is routed along the new path; in this case, the suffix

along which pkt is routed is all of pathnew
pkt . To do so, our framework ensures that S3 can

detect that it needs to buffer pkt and await the arrival of R5.

The second potential source of inconsistency in the discussion above was that S2 already

deleted R2 but S1, having not yet been updated, still forwards pkt to S2. Since R2 is gone

from S2, there is no hope of forwarding pkt further along the old path, pathold
pkt . So, if the

system deleted R2, SCC also obligates the system to match pkt to some rule, say R6 (not

shown in Fig. 3.1), with R6.epochCtr reflecting the existence of a new path pathnew
pkt and, in

fact, that forwards pkt in the direction of that new path. (Additional rules will need to

ensure it gets there.) As we will see, in our framework, R6 is deployed to S2 alongside the

deletion of R2, expressly for the purpose of forwarding pkt back toward the switch at which

pathnew
pkt departed from pathold

pkt (which is S1 in this example). The pkt will then pick up the

new path at that departure point, traveling the suffix of pathnew
pkt beginning there. R6 will

need to remain in S2 only temporarily.

As we will discuss in Sec. 3.3.2, SCC is a strong property, in that it facilitates a number

of other, more familiar properties such as black-hole freedom and bounded looping during

updates, as well as various forms of waypoint enforcement.
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Of course, we seek to implement SCC as efficiently as possible. Our primary efficiency

concerns include the speed of an epoch taking effect, the update of as few switches as is

necessary to do so, and minimizing the additional rules that switches must (even temporarily)

maintain during an update.

3.2 Components

To support the SCC primitive, we augment both the controllers and the switches with

modules to support operations for managing and maintaining the timestamps and epochs.

We summarize these components here.

Controller Module Operations In our system, the SDN applications (SDNApps) remain

unmodified. Instead, the SDN controller intercepts rules and introduces the timestamps and

epoch counters into the rules. To do this, the controller module maintains all information

required to efficiently manage the different epochs and timestamps. Additionally, the con-

troller coordinates with the network edge to ensure that appropriate timestamps are added

into the different packets.

Switch Module Operations We modify the switches to provide operations required to

maintain and support timestamps. Specifically, upon the arrival of the packet pkt , the

switch will first search for the highest-priority rule R covering the packet. If R.epochCtr ≥

pkt .tstamp, then the switch tags the packet with the rule’s tagging timestamp R.tstamp (i.e.,

pkt .tstamp ← R.tstamp; see Sec. 3.3) and forwards pkt to R.sendTo. Otherwise, the packet

is buffered by the switch and until its highest-priority rule R covering the packet satisfies

R.epochCtr ≥ pkt .tstamp.

The initial insertion and the final removal of the packet timestamp pkt .tstamp can be

accomplished by the source and destination endhosts themselves, by appliances between the

endhosts and switches, or by the ingress and egress switches. If switches are in charge of

inserting and removing timestamps, the ingress switch should insert R.tstamp for the rule

R to which it matches the packet. For example, when packet pkt1 first arrives at switch S1
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in Fig. 3.1, the switch tags the packet according to the rule R1 to which it is matched (i.e.,

pkt1.tstamp ← R1.tstamp). Then switch S5 can remove the tag from the packets by setting

the corresponding header field to a default value (e.g., pkt1.tstamp← ⊥).

We require switches to support bundled operations. A bundle is a sequence of multiple

flow table modifications from the controller (i.e., S.flowadd and S.flowdel operations) to the

same switch that the switch should apply atomically. (Bundled operations are supported in

the OpenFlow specification starting with version 1.4.) In each epoch, the controller submits

all changes to each switch in one bundle.

3.3 Algorithm Description

In this section we provide an algorithm for preventing inconsistencies during path updates

such as those described in Sec. 3.1, and specifically to implement SCC. In our framework,

we add to each rule a tagging timestamp R.tstamp (an integer) with which a switch tags

packets matched to that rule before forwarding them. Each packet thus includes a new

field pkt .tstamp to hold this timestamp. This timestamp plays a role similar to a Lamport

timestamp [51], in that it indicates to the switch at which a packet arrives the recency of

the previous rules applied to that packet. The switch is then required to match this packet

to a rule at least this recent. However, in the event that the controller recognizes that a

rule already deployed to a switch is just as good for a packet pkt as the most recent rule

R for that packet, then it can forego installing R at that switch. Instead, it backdates the

timestamp on the packet, by deploying a rule Rj to the immediately upstream switch (if it

had to do so anyway) with a tagging timestamp Rj .tstamp that, when carried forward by

the packet (in pkt .tstamp), will not induce downstream switches to await a new rule from

the controller. In the remainder of this section we detail this algorithm.

3.3.1 Controller Operation

Upon computing a new routing policy, the controller computes the rules currently de-

ployed that must be changed in this epoch. The controller does this by first computing

forwarding rules based on the new epoch’s routing policy; here we simply borrow an existing
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algorithm (in our implementation, we use the algorithm of Kang et al. [42]). This algorithm

outputs a rule set Rnew, and let Rold denote the rules already deployed to the network.

To define the controller’s algorithm for generating the rules Radd ⊆ Rnew to add to the

network and the rules Rdel ⊆ Rold to delete, we first define some additional notation. First,

we say that R1 ∈ R
new and R2 ∈ R

old are copies of one another if R1 and R2 are identical

except for their epochCtr and tstamp fields. Second, for any set R of rules, any R1 ∈ R, and

any packet pkt , the predicate match(R, R1, pkt ) is true if and only if pkt ∈ R1.cover and

there is no higher priority rule R2 ∈ R such that pkt ∈ R2.cover and R2.switch = R1.switch.

Then, the controller computes Radd and Rdel using an algorithm consisting of five steps,

executed in order:

1. Initialization

2. Backward closure

3. Forward closure

4. Set tagging timestamps

5. Send-back rules

We first describe the goals of these steps and then elaborate on them in detail below.

The “initialization” step simply sets Radd, Rdel, and Rkeep to initial values. The “backward

closure” step updates Radd to include rules from Rnew that precede (on routing paths) those

already in Radd in certain circumstances, thereby propagating the installation of new rules

“backward” along routing paths. The “forward closure” step then updates Radd to include

rules from Rnew that follow (on routing paths) those already in Radd in other circumstances,

thus propagating the installation of new rules “forward” along routing paths. The “set

tagging timestamps” step sets the R.tstamp field of rules R ∈ Radd that have not been set in

the preceding steps. Finally, the “send-back rules” step adds new rules to Radd to account

for the possibility that a packet traveling its old path encounters a switch at which the rule
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it would have matched in the old configuration has already been deleted and no new rule

has been added to instead match this packet (e.g., since the new path does not traverse this

switch). To avoid dropping the packet, this step adds a temporary rule on the switch to send

the packet back to the upstream switch from which it came, eventually allowing the packet

to pick up the new path toward its destination.

Initialization The controller initializes sets Rkeep, Radd, and Rdel that it will then update

throughout the remainder of the algorithm. By the end of the algorithm, Radd will contain

those rules that the controller will install via S.flowadd invocations, andRdel rules will contain

those rules that controller will remove via S.flowdel invocations. (As we will discuss below,

some of the added rules will also be deleted afterwards.) The rules in Rkeep at the end of the

algorithm will be those that the controller leaves in place.

Initialization: Initialize sets Rkeep, Radd, andRdel as follows. Initialize Rkeep to contain

each R ∈ Rold for which there is a copy in Rnew. Initialize Rdel to Rold \ Rkeep, and

initialize Radd to include any R ∈ Rnew for which there is no copy in Rkeep. Note

that each R ∈ Radd has R.epochCtr = epochCtr and R.tstamp = ⊥ (undefined) since

Radd ⊆ Rnew.

Taking the backward closure of Radd The next stage of the algorithm is motivated by

situations like that shown in Fig. 3.2, where pathold
pkt = (S1 → S2 → S5) is the path taken by

pkt under the previous routing policy and the new path pathnew
pkt = (S1 → S3 → S4 → S5) is

the path it will take under the new routing policy. At this stage of the algorithm, R1 ∈ R
keep

and R2 ∈ R
add. If we keep R1 unchanged and if the packet pkt arrives at S3 on the new path,

it will be tagged using the old timestamp (e.g., pkt .tstamp ← R1.tstamp = 8). Therefore,

upon the arrival of the packet at S4, if S4 has not been updated, the stale rule R0 will be

applied on the packet. This rule may send the packet to a switch that belongs to neither

the old path nor the new path (e.g., S6) or to a switch (e.g., S1) that the packet has already

passed, potentially creating a black-hole or loop. So we need to add a copy R3 of R1 to R
add,
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epochCtr

pathnew
pktpathold

pkt

a
b

S2 Dst

S3

R.sendTo

S6

S5Src S1

S4

R0 8 8tstampRj R1 8 8

R3 10 10 R2 10 7

Figure 3.2: Example motivating backward closure.

so that upon passing S3, the packet will carry a new timestamp pkt .tstamp← R3.tstamp = 10,

ensuring that new rule R2 will be applied to it at switch S4.

Backward closure: Repeat this step until no more rules can be added to Radd. If for

any R1 ∈ R
keep, there is a pkt where

• match(Radd ∪ Rkeep, R1, pkt ),

• there is a R2 ∈ R
add with R2.switch = R1.sendTo such that match(Radd ∪ Rkeep,

R2, pkt ),

• if pathnew
pkt is the path that pkt would travel if routed by Rnew, and if pathold

pkt is the

path that pkt would travel if routed with Rold, then either R1.switch 6∈ pathold
pkt or

the prefixes of pathnew
pkt and pathold

pkt ending at R1.switch are not the same,

then add to Radd the rule R3 ∈ R
new that is a copy of R1, and move R1 from Rkeep to

Rdel. Set R3.tstamp← epochCtr .

As such, the next step of the algorithm identifies any rule R2 to be added but for which

some packet that will be matched to it could be matched at the immediately upstream switch

to a rule R1 that is currently slated to be kept. If R1 is not replaced by its copy R3 that will

timestamp the packet to force it to await the arrival of R2, then the packet could be routed

incorrectly or routed along the old path indefinitely. The latter case cannot be allowed (and
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achieve SCC) if the packet could have been previously routed differently by new rules, i.e.,

if the prefixes of the old and new paths ending at R1.switch differ, or if R1.switch isn’t even

on the old path.

S5

pkt1, pkt2 ∈ R1.cover

pkt1 ∈ R2.cover

pkt2 ∈ R3.cover

S1Src

pathold
pkt

pathnew
pkt

S4S3

S2

R1 10 10

Dst

R2 10 10

8 8R3

10 8R4

epochCtr tstampRj

Figure 3.3: Example motivating forward closure.

Taking the forward closure of Radd To understand the need for the next stage of our

algorithm, consider Fig. 3.3, where there is a rule R1 ∈ R
add at S3 matching two packets pkt1

and pkt2, another rule R2 ∈ R
add at S4 matching pkt1, and another rule R3 ∈ R

keep at S4

matching packet pkt2. Because R2.epochCtr = 10, the pkt1.tstamp should equal 10 to ensure

that R2 matches pkt1. To ensure this, R1.tstamp = 10, meaning that pkt2.tstamp will also

be assigned 10. So, the old R3 with R3.epochCtr = 8 must be replaced, to ensure that pkt2

will be not buffered indefinitely at S4.

So, the next step of the algorithm identifies cases in which some packets handled by a

rule R1 ∈ R
add will be handled at the downstream switch by another rule R2 ∈ R

add, while

others handled by R1 will be handled at the downstream switch by a rule R3 ∈ R
keep. In this

case, packets of the first type handled by R1 must be timestamped to force their handling

by R2 (see the “Tagging timestamps” step below), but then packets of the second type will
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be stuck waiting indefinitely for a new rule to replace R3 that will never arrive. As such, we

schedule R3 to be replaced, as well.

Forward closure: Repeat this step until no more rules can be added to Radd. If for

any R1 ∈ R
add, there are

• a rule R2 ∈ R
add where R2.switch = R1.sendTo,

• a rule R3 ∈ R
keep where R3.switch = R1.sendTo,

• a packet pkt2 such that match(Radd ∪ Rkeep, R1, pkt2) and match(Radd ∪ Rkeep,

R2, pkt2), and

• a packet pkt3 such that match(Radd ∪ Rkeep, R1, pkt3) and match(Radd ∪ Rkeep,

R3, pkt3),

then add to Radd the rule R4 ∈ R
new that is a copy of R3, and move R3 from Rkeep to

Rdel. Set R4.tstamp← R3.tstamp.

Src S1 DstS2

pkt1, pkt2
∈ R1.cover

pkt1 ∈ R2.cover

pkt2 ∈ R3.cover

R1 10 ⊥

R1 10 8

R2 8 7

R3 9 7
(a)

Src S1 DstS2

pkt1 ∈ R1.cover pkt1 ∈ R2.coverR1 12 ⊥

R1 12 12

R2 12 11

(b)

Figure 3.4: Example of tagging timestamps.
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Setting tagging timestamps So far, only rules added to Radd in the preceding “closure”

steps had their tstamp fields initialized. The purpose of this step is to set the tstamp fields

for the other rules in Radd. In brief, the tstamp field for a rule R in Radd needs to be set

to the minimum of the epochCtr field values for the rules at the immediately downstream

switch that will handle the same packets. In this way, none of the packets forwarded by R

will be needlessly buffered at the downstream switch.

Examples can be found in Fig. 3.4. In Fig. 3.4(a), assume we have R1 ∈ R
add at S1

matching two packets, pkt1 and pkt2; R2 ∈ R
keep at S2 matching pkt1; and R3 ∈ R

keep

at S2 matching packet pkt2. To ensure that pkt1 and pkt2 are matched to R2 and R3,

respectively, and not needlessly buffered, these packets need to carry timestamps that are at

most R2.epochCtr and R3.epochCtr, respectively. Therefore, we set R1.tstamp← 8.

In Fig. 3.4(b), assume R1 ∈ R
add at S1 matches a packet pkt1 and R2 ∈ R

add at S2

matches pkt1. According to forward closure, any R3 at S2 matching packet pkt2 which

is also matched by R1 should have R3.epochCtr = epochCtr where epochCtr is the latest

epoch counter. Therefore, we set the tagging timestamp of R1.tstamp ← epochCtr , i.e.,

R1.tstamp← 12.

Tagging timestamps: For each R1 ∈ R
add with R1.tstamp = ⊥ and each packet

pkt such that match(Radd ∪ Rkeep, R1, pkt ), let Rpkt be the rule with Rpkt .switch =

R1.sendTo such that match(Radd ∪ Rkeep, Rpkt , pkt ). Then, set R1.tstamp ←

minpkt {Rpkt .epochCtr}, where the min is taken over all such packets pkt .

Creating send-back rules The last step of the controller’s algorithm is to create rules

that cause a packet to backtrack if, while traveling its old path, it encounters a switch S2 at

which the rule it would have matched in the old configuration has already been deleted and

no new rule has been added to instead match this packet (e.g., since the new path doesn’t

traverse this switch). Rather than just drop the packet, the switch will send the packet back

to the switch S1 from which it came. This time, however, the send-back rule R at S2 will

tag the packet with pkt .tstamp = R.tstamp = epochCtr , causing the packet to be buffered at
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S1 until a new rule arrives. This rule might, in fact, be another send-back rule. The detail

of this step is shown in the next page.

S4S3S2

S6

S1

S5
Dst

epochCtr tstampRj R1 8 8

R4 9 9 R3 9 9

R2 8 8

R0 8 8

pathold
pkt

pathnew
pkt R.sendTo

Src

Figure 3.5: Example of send-back rules.

An example is shown in Fig. 3.5, where a packet pkt travels along an old path until it

reaches switch S3, which is not on pkt ’s new path. Rather than drop the packet, the send-

back rule R3 is added to S3 when the old rule R2 matching pkt in the old configuration is

deleted, to direct pkt back to S2. Because R3.tstamp = epochCtr = 9, pkt .tstamp = 9 when

it arrives back at S2, where it is buffered until the rule R4 with R4.epochCtr = 9 is installed.

R4 is also a send-back rule, causing pkt to be forwarded back to S1, where it will await the

installation of a rule that will forward the packet on its new path.
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Send-back rules: Repeat this step until no more rules can be added to Radd. If for

any rule R1 ∈ R
old, there is a rule R2 ∈ R

old with R2.switch = R1.sendTo such that for

some packet pkt ,

• match(Rold, R1, pkt ),

• match(Rold, R2, pkt ), and

• if pathold
pkt is the path that pkt would travel if routed with Rold and if pathnew

pkt is

the path that pkt would travel if routed with Rnew, then R1.switch ∈ pathold
pkt and

R2.switch 6∈ pathnew
pkt ,

then add a new rule R3 to Radd where

R3.switch← R2.switch

R3.sendTo← R1.switch

R3.priority ←∞

R3.cover←
⋃

{pkt} (3.1)

R3.epochCtr ← epochCtr

R3.tstamp← epochCtr

where the union in (3.1) is taken over all such packets pkt . The rule R3 is called a

“send-back rule.”

Deployment At this point, the controller deploys Radd using flowadd commands and re-

moves Rdel using flowdel commands on the switches. Recall that all such commands are

applied atomically at a single switch, but different switches can execute these command

bundles at different times (e.g., due to differing delays between the controller and those

switches). Our management of timestamps on packets and rules ensures that SCC is never-

theless achieved. Once the controller receives confirmation that all rules have been deployed
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and sufficient time has passed since that confirmation that packets should no longer encounter

send-back rules2, the controller can delete the send-back rules from switches.

Algorithm efficiency Several stages of our algorithm are described inductively, which

breaks the algorithm down into (hopefully) understandable steps but somewhat clouds the

overall efficiency of the algorithm. Consider for each epoch the equivalence classes of flows

that the rules for that epoch route identically. So, the “old” equivalence classes each con-

sists of all flows that each match to the same sequence of rules in Rold, and similarly the

“new” equivalence classes each consists of all flows that each match to the same sequence of

rules in Rnew. Of the five stages of our algorithm, only “Backward closure” and “Send-back

rules” are a function of the paths taken by flows (i.e., refer to pathold
pkt and pathnew

pkt ), and

so only these stages need consider flows at the granularity of the old and new equivalence

classes. Letting cold and cnew be the number of old and new equivalence classes, respec-

tively, each iteration of “Backward closure” examines pairs of rules on adjacent switches

(R1 ∈ R
old and R2 ∈ R

new where R2.switch = R1.sendTo) and old and new paths of

flows they cover (at most cold × cnew pairs), and so very coarsely, “Backward closure” costs

O
(

coldcnew ×
∣

∣Rold
∣

∣× |Rnew|
)

time. Similarly, “Send-back rules” considers pairs of adjacent,

old rules (R1 ∈ R
old and R2 ∈ R

old such that R2.switch = R1.sendTo) and so incurs cost of

O
(

coldcnew ×
∣

∣Rold
∣

∣

2
)

time. So, the running time of our algorithm is theoretically dominated

by steps of O
(

coldcnew ×
(

∣

∣Rold
∣

∣× |Rnew|+
∣

∣Rold
∣

∣

2
))

cost.

In practice, we believe this estimate to be wildly pessimistic, since considering rules on

adjacent switches dramatically reduces the number of switch pairs to consider, and because

presumably only a small fraction of the network traffic (rules and flow equivalence classes)

changes from one epoch to the next. As such, in Sec. 3.5 we will empirically demonstrate

2A delay of linkLatency × diameter should suffice, where diameter is the length of the longest routing path
in the network.

32



the scalability of our algorithm.

3.3.2 Properties

Proposition 1. The protocol of Sec. 3.3.1 implements suffix causal consistency.

Proof. (Sketch) Let R1 be the first rule R matched to a packet pkt with R.epochCtr =

pkt .epochCtr. If R1 is a send-back rule, then pkt will follow a chain of send-back rules R,

each requiring pkt to be buffered awaiting the next by setting pkt .tstamp ← R.epochCtr.

This chain delivers pkt back to a switch on the new path for pkt in the epoch with index

pkt .epochCtr. If R1 is not a send-back rule, then this rule is already on a switch that is on

this new path.

Let R2 be the last rule R matched to a packet pkt with R.epochCtr = pkt .epochCtr. Then,

each ruleR3 to which pkt is matched at downstream switches hasR3.epochCtr < pkt .epochCtr

(as otherwise, R2 would not be the last such rule). Note that R2 can therefore not be a

send-back rule — each send-back rule has a tstamp field equal to pkt .epochCtr, which would

preclude the next rule R to match pkt having R.epochCtr < pkt .epochCtr. Now suppose for a

contradiction that R3 is the first downstream rule (possibly equal to R2) matched to pkt that

directs pkt differently than the rule R4 ∈ R
new would have (i.e., for which match(Rnew, R4,

pkt ) is true), where Rnew refers to that set of rules as generated in epoch pkt .epochCtr. Then,

R3 ∈ R
del and R4 ∈ R

add in that invocation. By inductive application of the “backward

closure” rule, R2.tstamp = pkt .epochCtr, contradicting the assumption that R2 is the last

rule R matched to pkt with R.epochCtr = pkt .epochCtr.

Higher-level properties One strength of SCC is that it implies a number of other de-

sirable properties for routing. Among them is black-hole freedom [62], i.e., the property

that packets are not dropped during the transition from an old routing configuration to a

new configuration. This property is, of course, contingent on no packet being black-holed

intentionally, i.e., that the routing policy in each epoch provides a viable path for every

packet. Assuming this, then, the guarantee that each packet will traverse a suffix of the path
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prescribed for it in the most recent epoch for which it encounters a rule will guarantee that

the packet is not dropped.

A second property implied by SCC is bounded looping (cf., [101]). More specifically, since

SCC ensures that each packet exits the network on a suffix of the most recently specified

covering path for which it encounters a rule, the packet will not loop unless the packet forever

encounters a rule created due to another, more recently specified path. In other words, once

the network stabilizes and no more paths are specified for long enough, the packet will exit

the network and cannot loop indefinitely.

A final property that we discuss is relaxed waypoint correctness (we adjust the definition

of waypoint property in [84, 5, 24]), of which we consider two varieties. The first requires

that certain flows be routed through a series of middleboxes (the “waypoints”) that remain

fixed, even though the paths between the waypoints are adjusted over time. In this case,

each path segment between consecutive waypoints can be treated as an individual path in

the routing policy of an epoch, i.e., treating each waypoint as the egress node for one “path”

and the subsequent ingress node on another “path” to re-enter the network on its way to

the next waypoint. SCC then guarantees that every packet reaches waypoints in order.

The second variant of relaxed waypoint correctness allows waypoints to change, in addi-

tion to the paths between them. In this case, we cannot treat each path segment between

consecutive waypoints individually for the sake of routing. However, we can accommodate

this version of the problem by modifying the order in which the controller deploys new rules

to the network, to ensure that the ingress switch of the waypoint-bound packets in each

epoch will be updated before any other switch is. In this way, SCC’s promise that packets

will be routed along a suffix of the most recently specified path for which they encounter

rules equates to these packets being routed along the entire path. Implicit in this statement

is the requirement that a subsequent epoch cannot “catch up to” a packet routed at its

ingress switch using the previous epoch’s rules. To ensure this, after the controller installs

new rules at the ingress switch, it must wait to install new rules at subsequent switches until
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all packets routed at the ingress using old rules would have had time to exit the network.

We use this variant of SCC algorithm for implementation in Chapter 4. We also discuss the

difference between relaxed waypoint correctness and waypoint correctness in Chapter 4.

3.3.3 Timestamp Reset

Since the number of bits in each packet header to maintain the timestamp pkt .tstamp

is limited, the packet timestamps will eventually approach their maximum value. It is thus

necessary for the controller to periodically reset the timestamps in rules in the network

which, in turn, will reduce the values of timestamps carried in packets. Specifically, the

controller executes the following steps periodically, during which time new epochs are not

initiated. First, the controller issues commands to all the switches concurrently to reset

the tagging timestamp R.tstamp of each deployed rule R to R.tstamp ← 0 and awaits an

acknowledgment from each switch. Second, after a delay of sufficiently long to ensure that

packets pkt remaining in the network have pkt .tstamp = 0, the controller issues commands

to update the R.epochCtr fields of all deployed rules R to R.epochCtr ← 0. Since each packet

pkt traveling the network has pkt .tstamp = 0, resetting R.epochCtr ← 0 for all rules does

not result in packet drops or delays.

3.4 Implementation

We implemented our algorithm in both the P4 switch [9] and Open vSwitch [78]. To issue

updates to the switches, we utilized P4 Runtime [79] and the Ryu controller [87], respectively.

3.4.1 P4

We used the BMv2 switch target (i.e., behavioral-model [8]) as our switch model and

the P4 language, which is a declarative language to express how packets are processed by

the pipeline of switches. Specifically, we defined a packet header field to store a timestamp,

i.e., pkt .tstamp. Upon packet arrival, the parser of the switch extracts pkt .tstamp along with

other header fields, and passes the packet to the ingress pipeline. Once the ingress pipeline

determines the rule R matching pkt using the standard packet-matching logic, it records the

values R.epochCtr and R.tstamp as metadata for this packet. If R.epochCtr ≥ pkt .tstamp,
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then the ingress pipeline forwards the packet to the egress pipeline with instructions to tag

the packet with pkt .tstamp← R.tstamp and forward the packet to the outbound port defined

by R.sendTo. Otherwise (i.e. pkt .tstamp > R.epochCtr), the ingress pipeline resubmits the

packet to the parser (even though pkt has not been changed) to go through the table again

to see if the rules have been updated. R.epochCtr is provided as a parameter to the action

field of R rather than as a match field, so that it can be incorporated into the logic of the

rule’s action.

We made several modifications to the BMv2 switch model to reduce performance overhead

and achieve atomic rule updates. Specifically, to reduce the cost caused by resubmitting a

packet too frequently, we used two input queues. The packets received by the switch are

pushed to the first queue, while the resubmitted packets are buffered in the second one.

The ingress pipeline then pops packets from the second queue much less frequently than it

does from the first, to reduce the cost of resubmitting packets while waiting for new rules.

Moreover, to achieve atomic rule updates (i.e., operation bundling, see Sec. 3.2), we used

the approach proposed by Han et al. [29]. Specifically, when receiving multiple rule updates

from the controller, the switch (i) makes a copy of the currently active rule table, (ii) applies

the updates to the copy, (iii) atomically updates an active-table pointer to point to the (now

updated) copy, and (iv) frees the original table. Although this approach requires double the

memory space, it does not disrupt traffic during the update.

3.4.2 Open vSwitch

In contrast to the P4 implementation above, which uses a new header field to store

pkt .tstamp, our Open vSwitch (OVS) implementation leverages unused header bits to store

pkt .tstamp in each packet. These header bits, which are the same as those used by CO-

CONUT [25], include 12 bits of the VLAN tag (also used by CU [86]) and 19 bits of the

MPLS label. We modified OVS to extract these bits from the packet header and to set these

bits during forwarding, according to the rule to which it was matched. The R.epochCtr value

for each rule R is embedded into the matching field of the rule to avoid modifying to the
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OpenFlow specification, but this value is not used for matching; instead, it is extracted from

the rule during rule installation (and masked during matching). If for the rule R to which

pkt is matched, pkt .tstamp > R.epochCtr, then the thread handling this packet pauses for

1ms and resubmits the packet for matching to the rule table again.

Since OVS allows a rule to direct packets back to the port on which it arrived only by

specifying the directive “in port” as the outbound port, it was necessary to implement

each send-back rule (as described in Sec. 3.3) using two separate rules. One rule handles a

packet arriving from the upstream switch on an old path and so that must be forwarded to

the same port on which it arrived, using the in port directive. The second rule handles a

packet arriving from the downstream switch on the old path and so that must be forwarded

to the upstream switch on that path.

For atomic rule updates, we leveraged OVS’ bundle operation, which buffers packets

while applying changes. Compared with our P4 implementation, this method increases

packet latencies, but does not require extra memory resources.

3.4.3 Controller

The controller provides an interface to the applications and transforms a new routing

policy into multiple rule modification commands. The controller does this by first computing

forwarding rules based on the new epoch’s routing policy, using the algorithm of Kang et

al. [42]. The output rules (Rnew) and the rules already deployed to the network (Rold) are

the inputs to our algorithm described in Sec. 3.3.

Our P4 implementation uses the P4 runtime, which is a protocol-independent API using

Protobuf [83] and gRPC [27] to issue rule updates to the P4 switches. For our OVS im-

plementation, we leveraged the Ryu controller with the OpenFlow protocol [77]. The main

difference between these options is that, while OpenFlow only gives us a way to populate

switch tables, the P4 runtime can also push a new P4 program to reconfigure the forwarding

behavior of the switches.

For our P4 implementation, we utilized gRPC in Python to issue rule modification com-
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mands, while the Ryu controller uses a REST API to update rules in OVS. gRPC allows

multiple table-entry updates to be included in one message. In contrast, the Ryu controller

uses a bundle operation to issue a sequence of rule modifications. Specifically, the Ryu

controller issues a bundle-control message to open a bundle for each switch and then one

or more bundle-add messages to indicate which rules need to be modified, followed by a

bundle-control message to commit and close the bundle. The flag OFPBF ORDERED and

OFPBF ATOMIC are specified to ensure that updates are applied in the order sent and

atomically. After committing the rule updates, the switch sends a confirmation message to

the controller to allow the controller to update its records of switch states.

3.5 Evaluation

In this section we evaluate our design, specifically to show the following benefits of SCC:

• SCC compares favorably to COCONUT [25] and to the original, uncoordinated ap-

proach to rule updates in terms of the packets dropped during an update (Sec. 3.5.2),

and favorably to COCONUT, CU [86], and TSU [59] in terms of the packets dropped

due to link failures (Sec. 3.5.3).

• SCC deploys rules more quickly than CU, COCONUT, or TSU (Sec. 3.5.4) and im-

poses less rule storage overhead in amount and/or duration than these alternatives

(Sec. 3.5.5).

• The rule generation time of our algorithm scales across a range of both fat-tree and

ISP topologies (Sec. 3.5.6).

• The buffering overhead imposed by our algorithm is manageable for today’s switches

(Sec. 3.5.7).

3.5.1 Setup

For the tests in Secs. 3.5.2–3.5.5 and 3.5.7, our experiments were conducted on topologies

emulated in Mininet [68] on a 2.1GHz quad-core CPU with 8GB of memory. We used a fat-

tree topology with K = 8 ports per switch, and one ISP topology (DFN from Topology
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Zoo [95]) for these tests. The K = 8 fat-tree contained 80 switches, and IP addresses were

assigned as prescribed by Al-Fares et al. [2]. The DFN topology contained 58 switches and

87 links. To simulate the delay between the controller and switches, we randomly sampled

values from a normal distribution measured by Huang et al. [35], specifically with mean

150ms and standard deviation of 7.1ms. To create realistic path changes on the fat-tree

networks, we replayed a log of route changes collected from Facebook’s network [12]. For

the ISP topologies, we used shortest-path routing and induced route changes by breaking

links. We used Hping [33] to craft packets in our Open vSwitch tests. We used Scapy [88]

in our P4 tests, as this tool enabled us to craft custom packet headers. In our tests, there

was one flow per source-switch/destination-switch pair, and we parameterized many of our

tests by the packet-sending rate per flow. So, for example, a rate of 1000 packets per second

indicates that 1000 packets flowed from each source switch to each other destination switch

per second.

The tests in Sec. 3.5.6 focused on rule generation times and so did not require a network

emulator. These tests used fat-tree topologies (K = 8 andK = 6) with routing changes again

taken from the Facebook dataset, as well as multiple ISP topologies taken from Topology

Zoo. These tests were executed on a 32-core, 2.1GHz computer with 256GB of memory,

though did not require such a heavily resourced machine.

In our evaluations in Secs. 3.5.2–3.5.5, we primarily compare our algorithm (SCC) to

COCONUT [25], CU [86], TSU [59] and “original” deployment, based on our own implemen-

tation of each. To interpret the results we report, it is therefore useful to briefly recall how

these designs update routing policies. We use an example in Fig. 3.6 to show how each algo-

rithm works. In the example, flow f changes its path from S1 → S2 → S3 → S4 → S5 → S6

(i.e., the dashed line) to S1 → S2 → S7 → S8 → S5 → S6 (the solid line).

CU Consistent Updates (CU) uses a two-phase commit to apply rule updates atomically

throughout a network. Each ingress switch timestamps each inbound packet with a times-
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Figure 3.6: Example of CU, TSU, and COCONUT. The dashed line is the old path, and the
solid line is the new path.

tamp indicating the current epoch, and each downstream switch uses rules with the same

epoch timestamp to match the packet. In Fig. 3.6, S1 tags packets of f with a timestamp 5

initially and the rule at each downstream switch (e.g., S2) uses the timestamp 5 to match the

packets. The timestamp carried by the packet will not be changed as it traverses the network.

Therefore, packets carry the timestamp 5 all the way to S6. S6 removes the timestamp from

the packets and forwards them to the destination. The update phase deploys—but does not

yet enable—rules for the new epoch (with a new timestamp) at all switches. The controller

installs a new rule with the timestamp 6 on S2, S7, S8, S5, and S6 separately. After all the new

rules have been installed, the controller updates the ingress switch (i.e., S1) to start tagging

packets with the new epoch timestamp (6), resulting in the new epoch’s rules being applied

to any packet carrying the new epoch timestamp. Packets are thus forwarded through the

new path. This atomic update will make each packet traverse either its old or new path in

its entirety. After the controller learns that all ingress switches are now timestamping with

the new epoch timestamp, and after waiting sufficient time for any packets timestamped for

the old epoch to have departed the network, the controller instructs all switches to delete

the old epoch rules. In Fig. 3.6, S2, S3, S4, S5, and S6 remove old rules with the timestamp

5.

COCONUT As discussed in Sec. 2.3, COCONUT has somewhat different goals than SCC.

However, by treating the entire network as a “logical device” and each epoch as a “logical

rule” (in their terminology), we can adapt the COCONUT design to implement properties

similar (though not identical) to ours. If interpreted this way, COCONUT behaves similarly
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to CU by operating in phases: the controller deploys (but not yet enables) a new epoch’s

rules to switches in a first phase, then enables the new rules in a second, and then deletes

the old rules in a third. The controller begins each phase after the previous completes.

In Fig. 3.6, the controller first installs rules for the new routing policy in S1, S2, S7, S8,

S5, and S6, but not yet enables the switches to use these rules. Second, the controller

sends commands simultaneously to these switches to enable the new routing policy. Third,

the controller removes rules for the old routing policy in S1, S2, S3, S4, S5, and S6. One

difference from CU is that, during the second step, a packet previously routed by old rules

can transition to being routed by new rules, at which point it will continue to be routed by

new rules (since it carries a vector timestamp with a single component or, in other words,

a traditional Lamport timestamp for the new epoch). For this reason, the controller need

not delay between the second and third phases to give packets routed by old rules time to

depart the network. There is a fourth stage in COCONUT that adjusts new rules’ priorities,

due to its implementation strategy to leverage priorities to ensure that a packet matches a

new rule even when both old and new rules covering it are still installed in the switch.

TSU Transiently secure network updates (TSU) commits network updates incrementally

and so in multiple steps. In each step, the controller sends updates to a subset of switches,

and waits for their installation before the next step. Therefore, during the update, old

rules may be used by some switches, while other switches may forward packets according to

the new policy. However, this scheme uses mixed-integer programs to compute an update

schedule that minimizes the update steps while still guaranteeing some desirable properties

(e.g., loop freedom and waypoint enforcement). Consider a loop-freedom update for the

example in Fig. 3.6. S7 and S8 are first updated to install rules for the new routing policy.

Then S2 is changed to forward packets to the new path. Finally, rules for the old routing

policy in S3 and S4 are deleted. Although there may not always be a feasible update schedule

that achieves these properties, TSU does not require packet tagging and does not need extra
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rules on the switches.

Original “Original” deployment commits network updates in only one step. Specifically,

the controller sends updates to switches (Fig. 3.6, S2, S3, S4, S7, and S8) without using

any synchronization algorithm. Since messages from the controller to switches may suffer

different delays, this deployment does not enforce any consistency.

0

20

40

60

80

600 700 800 900 1000N
u
m
b
er

of
lo
st

p
ac
ke
ts

Packets per second

Original
SCC

CU
COCONUT

TSU

(a) P4 and fat-tree (K = 8)

0

20

40

60

600 700 800 900 1000N
u
m
b
er

of
lo
st

p
ac
ke
ts

Packets per second

Original
SCC

CU
COCONUT

TSU

(b) OVS and fat-tree (K = 8)

Figure 3.7: Packet loss during normal update. Each data point is an average of 100 runs.
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3.5.2 Packet Loss During Regular Update

We measured the number of lost packets based on different packet sending rates when

pushing updates to the switches concurrently to change the paths of packets in the fat-tree

topology (K = 8). As shown in Fig. 3.7, our protocol (SCC), TSU, and CU incur no packet

loss because these two mechanisms maintain black-hole freedom. In addition, we set the TTL

of each packet to be twice its old path length plus its new path length. So no packet loss

also indicates bounded looping, since the packet will be dropped if its TTL reaches zero. In

contrast, the normal deployment without any consistent update mechanism and COCONUT

dropped packets because they do not prevent the case where a switch forwards packets using

an old rule to a switch that is not on the new path for this packet and that has already

deleted (or deprecated) its old rule. The “original” deployment approach also drops packets

in other cases that COCONUT addresses (and that CU, TSU, and SCC also address).

3.5.3 Packet Loss During Link Failure

In the tests reported in this section, we broke one randomly chosen link of some existing

path, forcing a new epoch with new paths for the flows traversing that link. During the delay

to update the network with the new paths, packets on those flows were lost. For the K = 8

fat-tree topology (Figs. 3.8(a)–3.8(b)), the response time included rule generation (i.e., the

delay for executing our algorithm), while we pre-computed the rules for the DFN topology

(Fig. 3.8(c)). The DFN results for Open vSwitch are similar to those for P4 and so are

omitted for brevity. As we can see in Fig. 3.8, SCC dropped fewer packets than COCONUT,

TSU, and CU because our protocol has smaller delay to put the new configuration in place.

Specifically, in SCC, new rules can be applied as soon as they are installed in the switch.

However, CU and COCONUT require that updated rules reach all switches on the new paths

before any of them can start to be used to route packets, and TSU deploys new rules over

multiple steps. Also, SCC outperforms the “original” deployment due to the consistency

that SCC offers; e.g., SCC prevents packets forwarded using a new rule from then being

matched to an old rule or otherwise dropped.

43



0

100

200

300

400

500

600 700 800 900 1000N
u
m
b
er

of
lo
st

p
ac
ke
ts

Packets per second

Original
SCC

CU
COCONUT

TSU

(a) P4 and fat-tree (K = 8)

0

100

200

300

400

600 700 800 900 1000N
u
m
b
er

of
lo
st

p
ac
ke
ts

Packets per second

Original
SCC

CU
COCONUT

TSU

(b) OVS and fat-tree (K = 8)

0

100

200

300

400

500

600 700 800 900 1000N
u
m
b
er

of
lo
st

p
ac
ke
ts

Packets per second

Original
SCC

CU
COCONUT

TSU

(c) P4 and DFN topology

Figure 3.8: Packet loss during link failure. Each data point is an average of 100 runs.
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3.5.4 Rule Deployment Time
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Figure 3.9: CDF of rule deployment times over 100 epochs.

In the tests reported in this section, we measured the deployment time of rule updates,

including both the new rule installation and old rule cleanup (and, in our case, send-back

rule cleanup). Each epoch in these tests involved one path change, and Fig. 3.9 shows the

distribution of rule deployment times for 100 such epochs for the fat-tree topology (K = 8).

SCC rule deployment is considerably faster than TSU, CU and COCONUT, with the vast

majority of the 100 SCC deployments completing before even a minority of the TSU and CU
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deployments and well before any COCONUT deployments. Total completion time of SCC

is only slightly larger than for the “original” protocol, owing to extra rule cleanup.

SCC outperforms CU and COCONUT during rule deployment for two reasons. First,

SCC simply deploys rules to fewer switches, since it attempts to minimize the number of

switches to which it must do so. Second, SCC involves fewer phases of communication

between the controller and switches. Here, COCONUT is worse than CU because it requires

more time to clean up old rules. TSU is better than CU because CU needs to update more

switches.

3.5.5 Memory Overhead in Switches

To evaluate the number of rules imposed on the switches by each algorithm, we examined

the per-switch logs of rule installations and deletions over 100 consecutive path changes in

the fat-tree topology (K = 8). We computed a time series of the total number of rules

installed across all switches in the network, if all 100 path changes were included in one

epoch. This time series for each of SCC, CU, and COCONUT is shown in Fig. 3.10(a).

We repeated this evaluation on the DFN topology, but by breaking the “busiest” link; see

Fig. 3.10(b). Here, the “busiest” link is the link that causes the most path changes when

the link fails, which was 306 path changes in this case. As these figures show, SCC induced

a rule overhead of significantly fewer rules than CU and COCONUT, because SCC installs

extra, send-back rules only on selected switches on old paths. In particular, SCC does not

temporarily retain old rules along with new rules, like CU and COCONUT do. Though

TSU does not add extra rules on switches, old rules are kept longer because TSU executes

in multiple steps.
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Figure 3.10: Rules in the network during epoch installation.

3.5.6 Rule Generation Time

Rule generation times for SCC are shown in Fig. 3.11. There are two groups of box-

plots shown in Fig. 3.11: one for fat-tree topologies, and one for ISP topologies. Of the

listed ISP topologies, the two numbers following each topology name (e.g., “40” and “61”

in “Geant2012(40,61)”) are the number of switches and links in the topology, respectively.

The numbers in Fig. 3.11 for the fat-tree topologies are rule-generation times where the new

epoch differs from the old epoch by a sequence of 100 route changes present in the Facebook
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Figure 3.11: Distributions of SCC rule-generation times (100 path updates in fat-tree topolo-
gies; random link failure in ISP topologies).

data (as in Fig. 3.10). The experiments with ISP topologies reflect the cost of rule generation

when a random link fails, causing all routes traversing it to change.

Fig. 3.11 shows distributions of rule-generation times as box-plots. Each box shows the

first, second (median), and third quartiles, and whiskers extend to cover points that fall

within 1.5× the interquartile range. Outliers are shown as dots.

Rule-generation times were minimal for the fat-tree topologies, even for epochs modifying

100 routing paths. Rule generation times for ISP topologies were more substantial, but

typically completed in under 1s for all but one topology (DFN). Rule generation for DFN

rarely exceeded 3s, but in these cases, the link failure induced changes in over 250 routes.

While we are encouraged by these results, there are numerous opportunities for optimization

in our current codebase (e.g., parallelization).

3.5.7 Buffer Overhead

In the tests reported in this section, we measured the peak number of buffered packets on

any switch, for different packet sending rates. Each epoch in these tests involved ten path

changes, and Fig. 3.12 shows the distribution of the maximum number of simultaneously

buffered packets at any switch for 100 such epochs for the fat-tree topology (K = 8). As

shown in the figure, the number of buffered packets per switch rarely exceeded 200 and
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the buffering grew linearly as a function of packet sending rate. Buffer sizes of commodity

switches are usually in the MB or even GB range [10], and so these buffering obligations

should not be problematic.
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CHAPTER 4: NIMBLE: FAST AND SAFE MIGRATION OF NETWORK
FUNCTIONS

Stateful network functions (NFs) are a staple of modern network infrastructures. For

example, network intrusion detection/prevention systems (NIDS/NIPS) is critical to en-

sure network security. However, the consequences of missing packets can be significant,

and methods to sneak attacks past NIDS/NIPS to destination targets have a long history

(e.g., [11, 13, 17]). The risk of traffic sidestepping intended NFs is particularly acute during

routing-policy updates. Even if NFs remain in the same place during the update, packets

that transition from a point upstream of the NF on the old routing path to a point down-

stream from the NF on the new routing path can result in an NF missing these packets.

Routing-policy update algorithms that ensure consistent update (e.g., [86, 59]) can guaran-

tee that all traffic gets processed (again, when the NF doesn’t itself move), for example by

ensuring that each packet traverses either its old path in its entirety or its new path in its

entirety.

In this chapter, we provide a method and accompanying implementation, called Nimble,

for interleaving routing-policy update and NF migration in a software-defined network (SDN),

in a way that significantly reduces the latency to achieve both and without permitting

packets to evade processing by NFs. Our technique works with any route-update protocol

that implements a property we call relaxed waypoint correctness, which includes consistent-

update protocols like CU [86] and our SCC algorithm. However, we provide a route-update

protocol that is customized to achieve relaxed waypoint correctness without conforming to

conventional “consistent update” semantics, as typically defined for such protocols.

As we will show, permitting both routing updates and NF migrations to proceed concur-

rently is a delicate endeavor that is fraught with corner cases. To holistically address these
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cases while synchronizing these tasks as little as possible, Nimble leverages targeted buffer-

ing and packet marking in the network to coordinate packet processing with NF migration.

The benefits to this approach are myriad, however, including lower latency for completion of

both tasks and, depending on the routing-update protocol with which NF migration is being

deployed and the circumstances requiring their update, reduced packet loss and/or reduced

rule overhead in switches.

We have implemented Nimble on Open vSwitch [78] and the Ryu controller [87]. We eval-

uate implementations of Nimble building on both CU [86] and SCC, as well as a route-update

protocol of our own design to satisfy specifically the relaxed waypoint correctness property

that we define. We empirically compare our implementations of Nimble to OpenNF [24]

and SwingState [61], and demonstrate the benefits of our design in both FatTree and ISP

topologies.

4.1 Framework and Goals

4.1.1 SDN Model

We adopt an SDN model, in which a controller deploys rules to distributed switches to

implement routing policy.

Flows As is standard, we define a flow to consist of packets with the same addressing

information, i.e., IP 5-tuple. The space of all possible such 5-tuples, and so the space of

all flows, is denoted F. We denote by F
∗ ⊂ F the space of possible flows between switches

or between a switch and the controller. When convenient, we treat a flow f as a set of all

possible packets with addressing information defined by f and use pkt ∈ f to denote a packet

pkt with the addressing information of f.

Controller The network has a logically centralized controller that is responsible for con-

figuring the switches to update the route of each flow. The controller executes an SDN

application consisting of a route generator and an update scheduler. The route generator
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decides whether to change the routes of flows by monitoring the network conditions and

topology changes. The output of the route generator is the routing path of each flow f.

The SDN update scheduler produces rules (defined below) to be deployed on each switch,

and to schedule these switch updates to preserve certain network routing properties when

transitioning from the old routing policies to the new. Specifically, the update scheduler

outputs a schedule of rule deployment in ℓ steps, denoted as U1,U2, ...,Uℓ. Each Ur includes

a set of flowadd and flowdel commands to add or remove rules on switches; we discuss these

commands and the structure of rules below. The commands in Ur are issued simultaneously

to switches in the network, and updates of Ur are finished before Ur+1 begins.

We refer to an invocation of the SDN application to reconfigure routing policy as a new

epoch. We assume that each routing policy change completes—i.e., its rules are deployed

throughout the network—before the next epoch begins.

Switches Similiar to the switch model for SCC algorithm in Chapter 3, each switch main-

tains a flow entry table which stores a set of rules (see below) for flow management. We

denote the set of rules in the flow table of switch S as S.ruleSet; e.g., S.ruleSet = {R1, R6, R10}

means that switch S includes rules R1, R6 and R10. The controller modifies this set by in-

voking the following interface, which is similar to that provided by OpenFlow:

• S.flowadd(Rj) inserts rule Rj into S.ruleSet. This command fails with no effect if Rj .switch

6= S (i.e., Rj should not be installed at S) or if S.ruleSet already contains a rule Rj′ such

that Rj′.priority = Rj .priority, Rj′.cover ∩Rj .cover 6= ∅ (i.e., some packets can be matched

by both Rj and Rj′). The meanings of these rule fields are described below.

• S.flowdel(Rj) removes rule Rj from S.ruleSet.

We assume that switches support bundling, i.e., that a set of invocations from the controller

will collectively be performed as a single atomic transaction with respect to packet processing

by the switch.

52



Rules The instructions for how a switch should treat packets are specified by rules. When

a packet arrives at a switch, it can be matched to at most one rule installed on the switch,

which determines what happens to the packet. Similiar to the definition of rules in Chapter 3,

each rule R includes (at least) the following fields, all of which are immutable:

• R.switch specifies the unique switch S into which R can be installed.

• R.priority specifies the priority of this rule, with higher priorities indicated by larger num-

bers, and with a special priority∞ to represent the maximum priority, which can be used

only by our algorithm;

• R.cover ⊆ F specifies the flows to which this rule can be matched, i.e., a packet pkt can

be matched to R only if f ∈ R.cover for the flow f containing pkt .

• R.sendTo specifies the switch identifier (in practice, an outbound port) to which packets

matched to this rule should be forwarded. If R.sendTo is switch Sj, then there must be a

link between R.switch and Sj.

4.1.2 Network Functions

Our goal is to extend the SDN model described above to support network functions.

Below we describe the form of these network functions and the basic correctness requirement

we have for their traversal.

Network functions A network function NF i is an object with an immutable field

NF i.flowSpec ⊆ F and a method NF i.processPkt that takes as input a packet pkt in some

f ∈ NF i.flowSpec and outputs a (possibly empty) set of packets P , also in f. If pkt is part

of a flow f 6∈ NF i.flowSpec, then NF i.processPkt(pkt ) has no effect. Correctness of NF i is

defined by a sequential specification that specifies its correct behavior when NF i.processPkt is

invoked sequentially, i.e., so that each method invocation returns before the next invocation

begins, and that execution of NF i.processPkt is linearizable [31]. Let n be the number of

network functions; i.e., the network functions are NF 1, . . ., NF n.
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Waypoint correctness Let [w] = {1, . . . , w}. For each flow f, there is a specified injective

function wpf : [nf ] → [n] where nf is the number of network functions that should process

packets of f sequentially on the entire path (nf ≥ 0) and wpf(k) is the k-th network function

that packets in f must traverse. We require that if wpf(k) = i, then f ∈ NF i.flowSpec. Our

correctness condition is that the network enforce the waypoint property, i.e., for any f and

any packet pkt in f that enters the network,

• if nf > 0, then NF i.processPkt(pkt ) is invoked for i = wpf(1);

• for each k, 1 ≤ k < nf , if NF i.processPkt(pkt
′) is invoked for i = wpf(k), outputting P ,

then NF i′ .processPkt(pkt
′′) is invoked for i′ = wpf(k + 1) and for every pkt ′′ ∈ P ;

• no other invocations of any network function occur except by the above two rules; and

• if NF i.processPkt(pkt
′) is invoked for i = wpf(nf), producing output P , then every pkt ′′

∈ P is forwarded to its destination.

The first condition guarantees that if packets of f need to be processed by at least one network

function, they must be processed by the first NF wpf(1). Together with the first condition,

the second condition ensures that packets of f are processed by network functions sequentially.

The third condition prevents packets from being processed by network functions that are not

specified. We use the last condition to guarantee the delivery of packets to the destination.

Let nmax = maxf nf , i.e., nmax is the maximum number of waypoints that any flow can be

required to traverse.

4.2 Migratable Network Functions

Our framework uses an existing SDN route-update algorithm to generate rules and sched-

ules to update routing policy. Specifically, with new routing policies as input, the route-

update algorithm generates a schedule of rule deployment to update switches. Most prior

works on SDN routing-policy updates that achieve waypoint enforcement (e.g., [86, 59, 60])

do so assuming that NFs remain at fixed locations of the network during the routing-policy

update. On the contrary, here we allow NF locations to change from one epoch to the next,

and our contribution lies in ensuring that waypoint enforcement continues to hold.
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Figure 4.1: Example of NF migration

Several works (e.g., [85, 23, 61]) have explored the possibility of migrating network func-

tions in concert with routing-policy updates. A strength of these approaches is that they

make no assumptions regarding properties of the underlying route-update algorithm, except

that it eventually deploys the rules to faithfully implement routing policies. However, be-

cause these NF-migration algorithms must tolerate any transitory behavior of the underlying

route-update algorithm, they necessarily must be conservative in how they migrate NFs, to

ensure that no packets bypass their NF waypoints while the routing policy is updated. In

fact, for this reason, all of them permit routing-policy updates to proceed only after all NF

migrations have completed.

To understand the challenges in permitting migration alongside route updates, consider

a network function NF i that migrates from the old position S old
i to the new position S new

i ,

shown in Fig. 4.1. The flow f, which should be processed by NF i, also needs its path to be

updated from S1 → S old
i → S2 to S1 → S new

i → S2. The path change can be accomplished

by updating the rule matched to f at S1. Migrating NF i and updating the path of f without

coordination can be harmful, however. For example, if the controller sends commands to

migrate NF i and updates S1 simultaneously, S1 might be updated before NF i migrates to

S new
i . Then, packets of f might start to arrive at S new

i before NF i can process packets there,

which may cause problems since packets can bypass NF i. Also, if S1 has not been updated

by the time NF i leaves S
old
i , packets may arrive at S old

i with NF i no longer there; depending

on how S old
i handles these packets, this could result in packet loss or packets bypassing NF i.
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Our goal is to migrate NFs and update routing-policies efficiently while ensuring packets

are processed by NFs correctly. Specifically, our contribution here is an algorithm that lever-

ages consistency properties of underlying routing-update algorithms to permit NFs to be

migrated alongside rule deployment for new routing policies, more efficiently than simply se-

rializing routing-policy update after NF migration. In particular, our approach demonstrates

that by leveraging an SDN routing-policy update algorithm that provides a property that

we call relaxed waypoint correctness (see Sec. 4.3.1), we can implement waypoint correctness

when NFs are allowed to change locations much more efficiently than known approaches to

achieving both.

4.2.1 Component Changes

To support NF migration, we require that the controller, switches, and rules be function-

ally enhanced in the following ways. Below we refer to each NF being hosted at a switch; this

hosting could be implemented on the switch for a simple NF or at an attached middlebox

for a more complex one.

Controller The output from the route generator is also provided to an NF application (see

Fig. 4.2), to determine for each flow f the switch at which f will be processed by each of its

waypoint NFs; each NF will need to be migrated to its corresponding switch as determined

by the NF application. It is necessary to assume that there is at least one switch S such

that for every f ∈ NF i.flowSpec, S is included in the path of f, as else there is no switch to

where NF i can be migrated to process every flow in NF i.flowSpec.

Switches We add three new switch interfaces to perform NF migration.

• S.export(i, j) marshals NF i into a set P of packets with source address (the IP address)

of S and destination address of Sj, and outputs P . S.export(i, j) executes only while no

NF i.processPkt invocations are underway at S, and S no longer permits invocations of

NF i.processPkt once S.export(i, j) completes.

• S.import(i, j) instructs switch S to await the arrival of packets P from Sj , from which to
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Figure 4.2: Typical components of a network controller

reconstitute function NF i locally. This invocation causes Sj to allocate two buffers, an

inbound buffer to hold packets to be processed in NF i.processPkt invocations once NF i is

reconstituted locally, and an outbound buffer to hold packets output from NF i.processPkt

invocations. Starting from this invocation and until NF i is reconstituted locally, packets

matched to any R ∈ S.ruleSet for which R.sendTo = NF i (see below) are buffered in the

inbound buffer for NF i. Packets output from NF i.processPkt invocations are buffered in

the outbound buffer for NF i, until a S.release(i) invocation.

• S.release(i) releases the packets buffered in the outbound buffer for NF i to be matched

against S.ruleSet, and disables buffering so that packets inbound to or outbound from NF i

are no longer buffered.

S.import, S.export, and S.release can be invoked by the controller, just like S.flowadd and

S.flowdel.
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Waypoint counters We add to each packet a field, called its waypoint counter, that can

hold any value in [nmax + 1] = {1, . . . , nmax + 1}. Upon arrival in the network, a packet’s

ingress switch initializes the packet’s waypoint counter to 1. In brief, this counter is incre-

mented in the packet as it is submitted to each of its waypoints for processing (see below).

In this way, rules can treat a packet differently depending on how many of its waypoints it

has already traversed.

Rules We extend rules to include a new field R.wpCtr that takes on a value in [nmax]∪{∗},

and stipulate that a packet can be matched to this rule only if R.wpCtr = ∗ or the packet’s

waypoint counter equals R.wpCtr. As such, when packet pkt in flow f arrives at switch

S, pkt is matched to the highest priority rule R ∈ S.ruleSet for which f ∈ R.cover and

either R.wpCtr = ∗ or the packet’s waypoint counter equals R.wpCtr; we denote this rule as

matchRule(S, pkt ). If there is no R ∈ S.ruleSet to which pkt can be matched, then pkt is

dropped.

We also extend rules to accommodate additional functionality related to the R.sendTo

field.

• R.sendTo can be a network function NF i, in which case for any packet pkt it matches

to R, S = R.switch increments the pkt ’s waypoint counter and then submits pkt to NF i

in an NF i.processPkt(pkt ) invocation. If NF i is not hosted locally at R.switch, then the

packet must be buffered (in the inbound buffer for NF i, see above) until it is. Any packets

returned from the NF i.processPkt(pkt ) invocation are matched again to S.ruleSet. We do

not require NF i to process packets’ waypoint counters, but we do require that any packets

NF i.processPkt(pkt ) emits bear the same waypoint counter as pkt .

• R.sendTo can take on two more possible values, namely functions encap[f] and decap. If

a switch S matches packet pkt to rule R ∈ S.ruleSet where R.sendTo = encap[f], then the

packet is encapsulated into a packet for flow f, which is then resubmitted for matching

against S.ruleSet at this switch S. A packet matched to a rule R ∈ S.ruleSet where
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Figure 4.3: Conceptual additions by our algorithm

R.sendTo = decap is decapsulated (i.e., the existing packet header is removed) and the

packet contained therein is then resubmitted for matching against S.ruleSet.

As before, all rule fields remain immutable.

4.2.2 Algorithm

Our algorithm augments the SDN framework outlined in Sec. 4.1 with two conceptual

steps (see Fig. 4.3). The first instantiates routing policy for tunnels to migrate NFs from

their old locations to their new locations and to relocate traffic that arrives at an NF’s old

location to its new location. Once these routes have been determined, the full routing policy

(including these new routes) is then submitted to the routing-policy update scheduler, which

produces the schedule for deploying rules to switches. The second phase of our algorithm

then augments this update schedule with commands to bridge traffic on/off of tunnels as

needed, to invoke each NF with packets destined for it at its new location, and to initiate

migration of NFs. A later phase of our algorithm (not shown in Fig. 4.3) cleans up the

bridging rules once they are no longer needed.

The first of these steps is implemented as follows, per NF i that migrates from S old
i to

S new
i in this epoch.

Migration routes: The controller constructs a route from S old
i to S new

i to carry flows

f mig
i , f tuni with source S old

i and destination S new
i . f mig

i , f tuni and their associated route are

added to the routing policy that is input to the update scheduler.

f mig
i will be used to migrate NF i from S old

i to S new
i , and f tuni will be used to tunnel
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Figure 4.4: Example for algorithm description

packets from S old
i to S new

i that should be processed by NF i. Because we assume that the IP

addresses of S old
i and S new

i are distinct from the source and destination addresses of flows

routed according to the policies output from the route generator, the routes chosen to carry

f mig
i , f tuni cannot contradict the routes output from the route generator.

Fig. 4.4 shows an example for this step. Suppose a flow f which is processed by NF 1

and NF 2 needs to be rerouted from the path S1 → S2 → S3 → S4 → S5 → S6 (solid line)

to the path S1 → S7 → S4 → S8 → S9 → S6 (the dashed line). And consequently, the

controller decides to migrate NF 1 from S2 (= S old
1 ) to S7 (= S new

1 ) and NF 2 from S3 (= S old
2 )

to S9 (= S new
2 ). S2 → S1 → S7 can be selected for migration route between S old

1 and S new
1 .

S3 → S4 → S8 → S9 can be selected for migration route between S old
2 and S new

2 .

Recall that the update generator now outputs a schedule for rule deployment in ℓ steps

U1,U2, . . . ,Uℓ, where each Ur includes a set of flowadd and flowdel commands. Continuing

with the example of Fig. 4.4, to ensure that packets cannot bypass waypoints, the update

scheduler might formulate the following three-step schedule. In the first step, S7, S8, and

S9 install new rules; i.e., U1 should include the flow modification commands for these three

switches. In the second step (U2), S4 is updated to send packets to S8. In the third step

(U3), S1 is modified and packets are sent through the new path. Recall that these update

steps include commands output by the update scheduler to install rules to route the tunnels

generated in the previous step of our algorithm.

Continuing our algorithm, it first sets R.wpCtr ← ∗ for any rule R in any flowadd or

flowdel command in any step of the given update schedule U1, . . . ,Uℓ. Then, for each NF i to
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be hosted at a switch S new
i in this epoch different from the switch S old

i where it was hosted

in the last, the controller performs the following steps.

Rules for routing to NF i: The controller constructs nmax + 2 rules as follows. First,

the controller constructs a rule Renc
i with the following fields:

• Renc
i .switch← S old

i

• Renc
i .cover←
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• Renc
i .wpCtr ← ∗

• Renc
i .priority ←∞

• Renc
i .sendTo← encap[f tuni ]

In addition, the controller constructs the rule Rdec with the following fields:

• Rdec
i .switch← S new

i

• Rdec
i .cover← {f tuni }

• Rdec
i .wpCtr ← ∗

• Rdec
i .priority ←∞

• Rdec
i .sendTo← decap

Finally, for each k ∈ [nmax], the controller constructs a rule Rinv
i,k with the following fields:

• Rinv
i,k .switch← S new

i

• Rinv
i,k .cover ← {f | wpf(k) = i}

• Rinv
i,k .wpCtr ← k

• Rinv
i,k .priority ←∞

• Rinv
i,k .sendTo← NF i

In the example of Fig. 4.4, S2 and S3 should install rule Renc
1 and Renc

2 , respectively, to

encapsulate packets of f onto f tuni . In this way, packets arriving at S2 or S3 can be relocated

to new positions S7 and S9, respectively, during NF migration. Packets relocated through

these tunnels to the new NF locations should be decapsulated back to the original flow f
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such that they can traverse the remainder of the new path after being processed by the

appropriate NF. Therefore, S7 and S9 need rules Rdec
1 and Rdec

2 , respectively.

Rinv
i,k has two functions. First, it sends packets that need to be processed (i.e., with

waypoint counter k where wpf(k) = i) to NF i. Note that packets on f output from NF i

will have a waypoint counter of k + 1 and thus will not be matched to Rinv
i,k again. Second,

Rinv
i,k prevents packets from being processed twice by NF i. Continuing with the example of

Fig. 4.4, since at the beginning of U3, S4 has been updated (in U2) but S1 has not yet been

changed, packets on f traversing a part of old path (S1 → S2 → S3 → S4) and a part of new

path (S4 → S8 → S9 → S6) encounter both the old (S3) and new position (S9) of NF 2. R
inv
2,2

at S9 ensures packets carrying waypoint counter 2 can be processed by NF 2, but packets

with waypoint counter 3 (NF 2 already processed these packets at S3) are forwarded to next

switch S6 immediately.

Now that these rules have been generated, we need to integrate them into the update

schedule. To do so, the algorithm initializes Uℓ+1 to be empty, i.e., Uℓ+1 ← {}. Then, for

each migrating network function NF i, the controller performs the following.

Update schedule: To deploy Renc
i , Rdec

i , {Rinv
i,k}k∈[nmax] in the update schedule U1, U2,

. . ., Uℓ+1, the controller performs the following steps.

• The controller adds S new
i .flowadd(Rdec

i ), S new
i .import(i, j), and S new

i .flowadd(Rinv
i,k) for

each k ∈ [nmax] to U1, where S old
i = Sj .

• The controller searches for the last step Ur in which rules to route f mig
i , f tuni are

deployed. It adds S old
i .flowadd(Renc

i ) and S old
i .export(i, j) to Ur+1 where S new

i = Sj .

• The controller adds S new
i .release(i) to Uℓ+1.

The first bullet incorporates commands to prepare switches at new positions for NF

migration. In the example of Fig. 4.4, the controller issues commands S7.import(1, 2),

S7.flowadd(R
dec
1 ) and S7.flowadd(R

inv
1,1) to S7. So S7 waits for messages from S2 and prepares

to reconstruct NF 1 locally. The controller also performs similar operations on S9.

The second bullet incorporates commands to migrate NF i from its old to its new position.

62



This should be done after the rules implementing the migration route have been deployed

(i.e., after step Ur). In the example of Fig. 4.4, assume the controller deploys rules to create

a tunnel S2 → S1 → S7 to migrate NF 1 from S2 to S7 in step U1. Then, in step U2, the

controller can use the interface S2.export(1, 7) to instruct S2 to create a set of packets to

marshal NF 1 and send these packets to S7. Upon receiving packets from S2, S7 reconstructs

NF 1 and starts to perform NF 1.processPkt invocations. Meanwhile, S2 uses the rule Renc
1 to

encapsulate the packets of f to packets of f tun1 . Packets of f tun1 are then forwarded to S7 and

S7 uses the rule R
dec
1 to decapsulate these packets back to packets of f. The packets have not

been processed by S2 and therefore should carry the waypoint counter 1. Thus, S7 uses the

rule Rinv
1,1 to forward packets to NF 1. After processed by NF 1, these packets are buffered at

S7 with the waypoint counter 2.

The last bullet ensures that packets released from switches at new positions can be

matched to rules implementing new routing policy at all downstream switches. In the ex-

ample of Fig. 4.4, the controller sends S7.release(1) in step U4. S7 then releases the buffered

packets to the network since S4, S8 and S9 have installed rules to forward packets to the

destination.

The last step of our algorithm cleans up migration-related rules once they will no longer

be used. Specifically, for each migrated NF i, the following is performed:

Bridging rules cleanup: After sufficient time passes to ensure that f mig
i and f tuni will

contain no more packets, the controller issues S old
i .flowdel(Renc

i ) and S new
i .flowdel(Rdec

i )

commands.
In Fig. 4.4, this step causes the deletion of Renc

1 and Rdec
1 from S2 and S7, respectively,

and the deletion of Renc
2 and Rdec

2 from S3 and S9, respectively. The rules to implement the

migration routes S2 → S1 → S7 and S3 → S4 → S8 → S9 can also be removed, if doing so

does not disrupt other routing policy.

4.3 Update Scheduling

The algorithm described in the previous section adapts a given update schedule with

additional flowdel, flowadd, export, import, and release commands to migrate NFs during
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path updates. In this section, we explore the requirements for the given update schedule

that, when combined with the algorithm of the previous section, ensures waypoint correctness

as defined in Sec. 4.1.2. We define a sufficient condition in Sec. 4.3.1. Finally, in Sec. 4.3.2

we provide an update scheduling algorithm that is tailored to implement specifically this

condition.

4.3.1 A Sufficient Condition for Waypoint Correctness

In this section we give a sufficient condition for the NF-migration algorithm of Sec. 4.2

to ensure the waypoint correctness property defined in Sec. 4.1.2. Recall that during a route

change, each NF i is migrated from its old location S old
i to its new location S new

i , while traffic

to be processed by NF i that arrives at S
old
i and matched to a rule R with R.sendTo = NF i

is transported from S old
i to S new

i to be processed once NF i is reconstituted there. Whether

traffic reaches S new
i via this mechanism or by the new routing policy does not matter. Rather,

all that really matters is that a packet on flow f with waypoint counter k reaches either S old
wpf(k)

or S new
wpf(k)

. We call this property relaxed waypoint correctness :

Relaxed waypoint correctness An update scheduling algorithm satisfies relaxed way-

point correctness if during any route update, it ensures that for each flow f and each k ∈ [nf ],

each packet on flow f with waypoint counter k reaches S old
wpf (k)

or S new
wpf (k)

.1

Our NF-migration algorithm in Sec. 4.2 guarantees the waypoint correctness property

defined in Sec. 4.1.2, if the underlying update scheduling algorithm (used by the update

scheduler in the controller) satisfies the relaxed waypoint correctness. An example of an

update scheduling algorithm that implements this property is CU [86], which on its own

ensures that each packet traverses either the old path in its entirety or the new path in its

1Strictly speaking, since a packet on flow f has its waypoint counter incremented to k + 1 right before

processing by NF i for i = wpf(k), it is possible that this property will fail for a packet that is not then
output from NF i (e.g., because NF i drops it). We require this property for every packet on f output from
NF i, however.
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entirety. When conjoined with our NF migration algorithm, a packet that is being routed

along its old path might be tunneled from S old
i to S new

i for processing by NF i, after which

it will be buffered until the route update is complete. From that point forward, it will be

routed along its new path. A natural question is whether there are route update algorithms

that satisfy relaxed waypoint correctness without enforcing a packet to traverse only the

path of its old flow or of its new one. In the next section we answer this question in the

affirmative.

4.3.2 Update Scheduling for Relaxed Waypoint Correctness

In this section we provide an update scheduling algorithm, which we call RWC (for

“relaxed waypoint correctness”), that is specifically designed to satisfy relaxed waypoint

correctness, no more, no less, whenever it is possible to achieve this property while updating

each switch only once during an epoch change. The algorithm is inspired by the TSU [59]

routing update algorithm, though we have adapted it to accommodate NF migration and

waypoint ordering.

The algorithm computes the update schedule U1, U2, . . ., Uℓ using an optimization ex-

pressed as a 0-1 integer linear program, which can be solved (if it has a solution) using

solvers like CPLEX [18] or Gurobi [28]. This algorithm assumes that the old and new rout-

ing policies differ only in a single path; i.e., a flow f (or set of flows) transitions from the same

old path to the same new path. (Multiple path changes can be implemented one-by-one in

multiple updates.) Moreover, this algorithm assumes that both the old and new path are

loop-free.

4.3.2(a) Integer program Let Sold be the set of switches that appear on the old path;

S
new the set of switches that appear on the new path; S = S

old ∪ S
new; Pold ⊆ S

old × S
old the

links comprising the old path; and P
new ⊆ S

new × S
new the links comprising the new path.

Therefore, Pold \ Pnew is the set of links that will be disabled by the path change (i.e., that

will no longer be traversed by the rerouted flow f), and P
new \Pold is the set of links that will
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Minimize ℓ′ subject to: (4.1)

ℓ′ ≥ r · xr
j ∀r ∈ [m], Sj ∈ S

± (4.2)

1 =
∑

r∈[m]

xr
j ∀Sj ∈ S

± (4.3)

yrj,j′ = 1−
∑

r ′≤r

xr ′

j ∀r ∈ [m], (Sj, Sj′) ∈ L
− (4.4)

yrj,j′ =
∑

r ′≤r

xr ′

j ∀r ∈ [m], (Sj, Sj′) ∈ L
+ (4.5)

yrj,j′ = 1 ∀r ∈ [m], (Sj, Sj′) ∈ (Pold ∪ P
new) \ (L+ ∪ L

−) (4.6)

zr ,kj′ ≥ zr ,kj + yr−1
j,j′ − 1 ∀r ∈ [m], k ∈ [nf ], Sj′ ∈ S, Sj ∈ S \ {S old

wpf(k)
, S new

wpf (k)
} (4.7)

zr ,kj′ ≥ zr ,kj + yrj,j′ − 1 ∀r ∈ [m], k ∈ [nf ], Sj′ ∈ S, Sj ∈ S \ {S old
wpf(k)

, S new
wpf (k)

} (4.8)

zr ,kj = 1 ∀r ∈ [m], k ∈ [nf ], Sj ∈ {in(f)} (4.9)

zr ,kj = 0 ∀r ∈ [m], k ∈ [nf ], Sj ∈ {out(f)} (4.10)

zr ,k+1
j ≥ zr ,kj ∀r ∈ [m], k ∈ [nf − 1], Sj ∈ S (4.11)

Figure 4.5: RWC integer program for generating update schedule

be enabled by the path change. Let S± ⊆ S
old ∩ S

new contain the switches at which links to

carry f must be both enabled and disabled, i.e., Sj ∈ S
± iff Sj ∈ S

old ∩ Snew and for some Sj′,

(Sj, Sj′) ∈ (Pold \Pnew)∪ (Pnew \Pold). Let L+ be the new links enabled at the switches in S
±,

and let L
− bet the old links disabled at the switches in S

±; i.e., (Sj, Sj′) ∈ L
+ iff Sj ∈ S

±

and (Sj, Sj′) ∈ P
new \ Pold, and (Sj, Sj′) ∈ L

− iff Sj ∈ S
± and (Sj, Sj′) ∈ P

old \ Pnew. For a

natural number w, let [w] = {1, . . . , w}.

The optimization, shown in Fig. 4.5, minimizes the number ℓ′ of update steps subject to

constraints (4.2)–(4.11). xr
j is a binary indicator variable signaling whether switch Sj ∈ S

± is

updated in step r ; i.e., if the solution to the integer program has xr
j = 1, then the controller

will include its updates to Sj in Ur . Constraint (4.3) ensures that each switch in S
± is

updated exactly once.

The binary variable yrj,j′ for each (Sj, Sj′) ∈ P
old ∪ P

new indicates whether the rerouted

flows will be forwarded directly from Sj to Sj′ as of the end of update Ur . Constraint (4.4)

ensures that yrj,j′ = 0 once link (Sj, Sj′) ∈ L
− has been disabled, and constraint (4.5) ensures
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that yrj,j′ = 1 once link (Sj, Sj′) ∈ L
+ has been enabled. Constraint (4.6) ensures that

yrj,j′ = 1 for any other link in P
old ∪ P

new.

The binary variable zr ,kj indicates whether a packet on the rerouted flow f, upon reaching

switch j after the end of update r−1 and before the end of update r , has yet to be processed

by NF i where i = wpf(k). Constraints (4.7) and (4.8) ensure that if yr−1
j,j′ = yrj,j′ = 1 and

so the packet is forwarded directly from Sj to Sj′, and if the packet was not yet processed

by NF i upon reaching Sj (i.e., z
r ,k
j = 1), then it still remains to be processed upon reaching

Sj′ (i.e., z
r ,k
j′ = 1). Of course, this reasoning is valid only if Sj 6∈ {S

old
i , S new

i }; if Sj = S old
i

then the packet will be processed by NF i there, and if Sj = S new
i then the packet will be

buffered at Sj awaiting NF i. Therefore, constraints (4.7) and (4.8) are included only for

Sj 6∈ {S
old
i , S new

i }. Constraints (4.9) and (4.10) indicate that the packets on flow f have yet to

be processed by NF i upon their arrival at their ingress in(f) and must be processed by NF i

upon departing the network at their egress out(f). Finally, constraint (4.11) ensures that if

a packet has yet to be processed by NF i for i = wpf(k), then it also has yet to be processed

by NF i′ for i
′ = wpf(k + 1).

4.3.2(b) Generating the update schedule Given a solution to the integer program

of Fig. 4.5, the update scheduler generates the update schedule as follows. We assume that

S \ ((Sold ∩ S
new) \ S±) is the set of switches at which the new rules Rnew to implement the

new routing policy differ from the rules Rold already deployed to the network to implement

the old routing policy.

• For each Sj ∈ S
new \ Sold, the update scheduler adds Sj.flowadd(R) to U1 for each

R ∈ Rnew \ Rold for which R.switch = Sj.

• For Sj ∈ S
± for which xr

j = 1, the update scheduler adds Sj .flowadd(R) to Ur+1 for each

R ∈ Rnew \ Rold for which R.switch = Sj, and S.flowdel(R) to Ur+1 for each

R ∈ Rold \ Rnew for which R.switch = Sj.

• For Sj ∈ S
old \ Snew, the scheduler adds Sj.flowdel(R) to Uℓ′+2 and for each

67



R ∈ Rold \ Rnew for which R.switch = Sj.

After we obtain the update schedule U1, U2, . . ., Uℓ (ℓ = ℓ′ + 2), it can then be turned over

to the algorithm of Sec. 4.2.2 for adaptation as prescribed there.

4.4 Implementation

We implemented our NF migration algorithm (Sec. 4.2) using Open vSwitch [78] and

the Ryu controller [87]. Packets’ waypoint counters were stored in six bits of the VLAN

tag, permitting up to nmax = 26 − 2 waypoints per flow. PRADS [82] was used to instan-

tiate network functions and was modified to provide APIs for migration. We used and

implemented three underlying route-update algorithms, namely SCC, CU [86], and RWC to

generate rule-deployment schedules to transition to a new routing policy. We incorporated

our state migration algorithm into the rule-update schedule as described in Sec. 4.2 to achieve

waypoint correctness. The RWC integer program in Fig. 4.5 was solved using Gurobi [28].

4.4.1 Route-Update Algorithms

SCC We optimized the implementation of our SCC algorithm described in Chapter 3. Our

implementation leverages unused header bits, namely six bits of the VLAN tag, to store the

timestamp in each packet. (The remaining six bits of the VLAN tag was used to record

the packet’s waypoint counter, as already mentioned.) We modified Open vSwitch(OVS) to

extract these bits from each packet and to set these bits based on the action of the rule to

which it is matched. The SCC rule timestamp value for each rule R is embedded into the

corresponding field of the rule to avoid changing the OpenFlow protocol used between OVS

and the controller. However, this value is not used for rule matching. Rather, it is extracted

from the rule upon rule installation and masked during matching. If the timestamp of the

rule to which the packet is matched is smaller than the packet timestamp, then this packet

is buffered awaiting more up-to-date rules.

Since OVS does not provide packet buffering anymore, we connected each OVS with a

local Ryu controller. Instead of buffering packets itself, OVS forwards packets to the local

controller. The local controller is in charge of buffering packets and updating rules for this
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switch. A globally centralized controller running our algorithm uses a RESTful API to issue

rule modification commands to the local controller. Then the local controller updates OVS

using OpenFlow and also sends buffered packets back to the switch when appropriate.

CU Like in SCC, our implementation leverages six bits of the VLAN tag to store the CU

timestamp in each packet. However, unlike SCC, the value of the rule timestamp is used to

match packets; i.e., the value of the rule timestamp must be equal to the value of timestamp

carried by the packet in order to match to this packet. Also, since CU does not need to

buffer packets, local controllers are not required. A centralized controller running the CU

algorithm used OpenFlow to directly issue rule modification commands to OVS.

RWC We used Gurobi to solve the optimization formulated in Fig. 4.5. The centralized

controller runs RWC and deploys updates in multiple steps. RWC does not use any times-

tamp to ensure consistency.

4.4.2 NF Migration

The centralized controller runs SCC, CU, or RWC to generate a rule-update schedule and

incorporates our state migration rules into the update deployment as described in Sec. 4.2.

We used the IP addresses of S new
i and S old

i to create rules to forward flows f mig
i , f tuni . In our

experiments, we used the Passive Real-time Assets Detection Systems (PRADS) to instanti-

ate network functions. PRADS passively listens to network packets and collects information

about hosts and services sending packets. We modified PRADS to permit import/export of

portions of its state, such as per flow statistics. After receiving the S old
i .export command, S old

i

exported the relevant PRADS state and crafted packets on f mig
i . Each PRADS instance exe-

cuted on a host directly connected to S old
i or S new

i . S old
i and S new

i were in charge of forwarding

packets to the PRADS instance. To implement encapsulation and decapsulation, we used

the IP tunnel command to configure Generic Routing Encapsulation (GRE) tunnel on each

host. Moreover, to guarantee that packets carrying NF state are delivered to destination NF

instances, a TCP connection was used. S new
i used the local controller to buffer packets until
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Figure 4.6: Example of SwingState and OpenNF. The solid line is the old path, and the
dashed line is the new path.

receiving a S.release(i) invocation.

For comparison purposes in our empirical evaluations, we also leveraged implementations

of SwingState [61] and OpenNF [24]. We use an example in Fig. 4.6 to describe them. Assume

a flow f that is processed by NF 1 needs to change its path from S1 → S2 → S3 → S4 (i.e.,

the solid line) to S1 → S5 → S6 → S4 (the dashed line). So, NF 1 migrates from S2 to S6.

SwingState SwingState migrates an NF over a tunnel between its old and new locations.

First, a GRE tunnel is built between S old
i and S new

i . Any route-update algorithm can be

leveraged to deploy forwarding rules on switches. In Fig. 4.6, a tunnel S2 → S1 → S5 → S6

is created to connect S old
1 and S new

1 . Then, S old
i (i.e., S2) starts to migrate the NF by

prepending its state to the clone of incoming packets and forwarding those packets to S new
i

(S6). Meanwhile, S old
i (S2) still forwards incoming packets to the destination through the

old path (the solid line). When S new
i (S6) receives packets with NF state piggybacked on

them, it instantiates the NF before processing these packets. After states are synchronized

between S old
i and S new

i , S old
i (S2) forwards packets normally and meanwhile tunnels a copy

of each incoming packet to S new
i (S6). Finally, the path change is performed. In Fig. 4.6,

switches are updated to change the path of f from the solid line to the dashed line. Different

from our algorithm, SwingState has to transfer NF states before path changes can begin.
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OpenNF OpenNF utilizes the centralized controller as a relay node to transfer NF states

and redistribute incoming packets. Specifically, before the Ryu controller issues a command

to S old
i (i.e., S2) to export state for NF i (NF 1), it deploys a rule for an OpenFlow packet-in

event to S old
i to redistribute affected packets to the controller. Then, the Ryu controller

transfers the NF states to S new
i (S6). Next, incoming packets buffered on the controller are

delivered to S new
i (S6) using OpenFlow packet-out messages. Finally, the path change is per-

formed using some route-update algorithm. Similar to SwingState, OpenNF also separates

state migration from path change.

4.5 Evaluation

In this section we evaluate our design and demonstrate our algorithm outperforms

SwingState and OpenNF.

4.5.1 Setup

Our experiments were conducted on topologies emulated in Mininet [68] on a 32-core,

2.1GHz computer with 256GB of memory. We used a fat-tree topology with K = 8 ports

per switch, and one ISP topology (Forthnet from Topology Zoo [95]) for these tests. The

K = 8 fat-tree contained 80 switches, and IP addresses were assigned as prescribed by Al-

Fares et al. [2]. The Forthnet topology contained 62 switches and 62 links. To simulate the

delay between the controller and switches, we randomly chose the position of the controller

and computed the path from the controller to each switch using a Spanning Tree Protocol.

The delay for each hop was measured using a simple topology with one OVS switch and two

hosts sending ping packets. Specifically, the delay between each switch and the controller

was computed as db + dh × h where db is the control path delay measured by Huang et

al. [35] for a setting similar to ours and dh × h is the delay for one extra hop multiplied

by the number of hops. db was sampled from a normal distribution with mean 32ms and

standard deviation 5.1ms and dh from normal distribution with mean 3ms and standard

deviation 0.3ms.

To create realistic path changes on the fat-tree networks, we replayed a log of route
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changes collected from Facebook’s network [12]. For the ISP topologies, we used shortest-

path routing and induced route changes by breaking links. In each case, NFs were reassigned

from the old path to the new path randomly but constrained to appear on the new path in

waypoint order.

In our evaluations, we primarily compare our state migration algorithm with OpenNF [24]

and SwingState [61] when applied with three route-update algorithms, namely SCC, CU [86]

and RWC [59], based on our own implementation of each.

4.5.2 NF Migration and Path Change Time
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Figure 4.7: NF migration and path change times

We measured the performance of our algorithm for NF migration and path change, in

comparison to other algorithms. Each evaluation involved 100 runs, in which hosts sent 100

packets per second for each flow. Fig. 4.7 demonstrates the times required to finish both
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NF migration and path changes; Fig. 4.7(a) shows times for 100 path changes with two NF

migrations per path change in a fat-tree topology (K = 8), and Fig. 4.7(b) shows times

for 178 path changes with three NF migrations per path change in the Forthnet topology

induced by breaking its “busiest” link carrying the most flows. Each boxplot in these figures

represents 100 points, one per run; the box marks the first, second (median), and third

quartiles, and whiskers extend to cover points within 1.5× the interquartile range. Outliers

are shown as dots.

As can be seen in these figures, Nimble performed much faster than SwingState and

OpenNF, since NF migration and path change were executed simultaneously. OpenNF re-

quired much more time to perform the updates because it uses a single controller to buffer

and redistribute packets. Upon receiving a large number of incoming packets, the controller

consumed a lot of resources to process these packets, which significantly slowed down the

rule-update process.

4.5.3 Memory Overhead in Switches

To evaluate the number of rules (including rules to build tunnels) imposed on the switches

by each algorithm, we examined the per-switch logs of rule installations and deletions over 100

consecutive path changes in the fat-tree topology (K = 8). We computed a time series of the

total number of rules installed across all switches in the network, including the time cleaning

up tunnels used to migrate NFs and to tunnel traffic. This time series for a representative run

of each of SCC, CU, and RWC using Nimble, SwingState and OpenNF is shown in Fig. 4.8.

We repeated this evaluation on the Forthnet topology, but by breaking the busiest link; see

Fig. 4.9. Each curve is marked with the time when NF migration for all flows was done and

the time when all path changes were completed. All three algorithms require installing rules

on S old
i and S new

i to deal with incoming packets and also to clean up these rules. Different

from OpenNF, Nimble and SwingState need to build tunnels to migrate NFs and to tunnel

traffic. As these figures show, Nimble requires less time to finish NF migrations and path

changes, because it performs both operations simultaneously. OpenNF needs more time to
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finish path changes than SwingState since OpenNF buffers and redistributes all incoming

packets in the controller, which induces a large delay before path change can be executed.
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Figure 4.8: Rules in the network during 100 path changes and accompanying NF migrations
for fat-tree topology; markers show completion of path changes (×) and NF migrations (◦)
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Figure 4.9: Rules in the network during 178 path changes and accompanying NF migrations
for Forthnet topology; markers show completion of path changes (×) and NF migrations (◦)

4.5.4 Packet Latency During Link Failure

To evaluate the latency imposed on each flow upon link failure by each algorithm, we

measured the time required for a destination host to receive 10MB from a source host through

a TCP connection. We broke one random link and selected 10 flows to update their routing
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Figure 4.10: Times for receiving 10MB upon link failure

polices. The source host of each flow started to send a stream of packets at speed 100Mb/ sec

to the destination host upon link failure. The time shown in Fig. 4.10 shows the times for

the destination to receive 10MB using each algorithm. Nimble outperforms SwingState and

OpenNF because Nimble recovers the new path more efficiently by performing NF migration

and path update simultaneously. Though SwingState also uses tunnels to migrate NFs, it

mirrors packets but still delivers packets through the old path during NF migration. Plus,

OpenNF uses a single controller to redistribute incoming packets, which significantly slows

down the speed.
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CHAPTER 5: MODEL CHECKING1

It is important to prove the correctness of our algorithms. Specifically, we need to

verify the suffix causal consistency property for SCC and the waypoint enforcement property

for Nimble. In this chapter, we describe how to use model checking to demonstrate the

correctness of SCC and Nimble, respectively. Model-checking tools have long been used to

check for violations of network properties and automatically find bugs in network applications.

Recent works [92, 3, 63] use model checking to verify network-wide properties for SDN. It

is not easy to do so since these methods need to consider the ample space of switch states

and the large space of input packets. An SDN switch maintains a flow table that may

store a large number of rules and that processes a packet based on the matching rule of

the highest priority. Also, the OpenFlow specification allows switches to match packets

to rules based on multiple packet header fields, e.g., source IP address and destination IP

address. Though prior works try to address these issues by using symbolic execution [49]

or simplified switch and packet models, there are additional challenges that prevent existing

tools [92, 3, 45, 46, 69, 63, 102, 48] from being directly applied to our algorithms.

First, we need to model unknown delays for each switch update to occur since updates are

pushed to switches simultaneously (within a single update step for Nimble). This indicates

that each switch can possibly have an old state or a new state, depending on the delay

during the update. It is not efficient to naively leverage the model checking tool to explore

all possibilities for switch states. So we use the property of our SCC algorithm to reduce

the searching state space. Remember our SCC algorithm guarantees that, once a packet is

1This chapter is excerpted from previously published work [55].
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matched to a forwarding rule in a switch (i.e., reads a switch state), it can be matched in

downstream switches only to rules that are equally or more up-to-date (i.e., it cannot read

a stale state for downstream switches). Therefore, we explicitly formulate these constraints

to model our algorithms.

Second, our SCC algorithm operates differently from the OpenFlow since SCC needs to

compare an extra header field pkt .tstamp of a packet with R.epochCtr when searching for a

matching rule on a switch. This field pkt .tstamp may be updated by any switch depending on

the value of R.tstamp. Also, some rules remain unchanged during the previous configurations

and thus pkt .tstamp can be any value from the range of [1, epochCtr]. To tackle this, our

model adds two fields R.epochCtr, R.tstamp for each rule R and a field pkt .tstamp for each

packet pkt . The model checking tool explores all possibilies for pkt .tstamp as long as the

constraints defined for SCC protocol are satisfied.

Third, Nimble can work with any routing-update algorithm that guarantees relaxed way-

point correctness. The update of switches may be executed in multiple steps and in any

order. Therefore, the model checking tool cannot focus on only a specific protocol but needs

to model diverse protocol behaviors. Our model should also take into account the behavior

of the tunnel protocol since Nimble uses tunnels to redistribute packets from old to new

positions of network functions. We formulate the definition of relaxed waypoint correctness,

simplify the behavior of tunnels and let the model checking tool explore all possible rule-

update schedules. Next, we elaborate on how we formulate our models using Z3Py [100],

a Python API for the Z3 solver [72], and how we use the Z3 solver to verify the desired

property.

5.1 Model Checking for SCC

We subjected SCC to model checking to verify its enforcement of suffix causal consistency,

as well as black-hole freedom and bounded looping. We constructed our model with ten

switches in a mesh topology and with three flows. The maximum length of each routing

path was six switches. Each switch was allowed ten rules (|Sj .ruleSet| ≤ 10), which was
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adequate to accommodate the rules deployed by our algorithm for any well-formed routing

policy for a system of this size. Deployed rules satisfied the constraints of Sec. 3.1.1; e.g., if

Rj , Rj′ ∈ Sj.ruleSet then Rj.priority 6= Rj′.priority or Rj .cover ∩ Rj′.cover = ∅. The fields of

each rule were unspecified and so explored by the model checker; in particular, each rule could

cover any number of flows. Each flow was routed from its ingress to its egress using normal

switch behavior (e.g., a switch matches a packet to the highest priority rule that covers

it). For each initial rule R, R.epochCtr and R.tstamp were allowed to range over {1, 2, 3}

(explored by the model checker). We modeled the effects of one new epoch2 (epochCtr = 4)

that implemented some different routing policy (i.e., at least one flow traveled a different

path to its egress) using rules for which R.epochCtr and R.tstamp were set according to our

algorithm.

Z3 explored all possibilities for each new rule and, so, for the new path traversed by each

flow, constrained only so that each flow’s ingress was unchanged. To model unknown delays

for switch updates to occur, each switch that had not yet applied a new rule to a packet could

apply either an old rule R1 or new rule R2 to match the current packet pkt , according to

pkt .tstamp. Specifically, if pkt .tstamp ≤ R1.epochCtr and pkt .tstamp ≤ R2.epochCtr, either

rule could be applied to the packet, creating two branches. If pkt .tstamp > R1.epochCtr and

pkt .tstamp ≤ R2.epochCtr, then only the new rule R2 could be used to match the packet.

To test black-hole freedom, we set a condition that the trace of each packet should end

with the egress node for the packet. The bounded looping property was defined to require

that any unordered pair of switches cannot occur in the trace more than twice. The suffix

causal consistency property was modeled to require that, once a packet arrives at a switch

belonging to its new path but not its old path, it stays on the new path. We let the Z3

solver explore all possible switch configurations to check for violations of these properties.

2This is reasonable since we require that one epoch’s rule changes are deployed to the network prior to
starting the next.
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In previous, incomplete versions of our algorithm, this model checking revealed corner cases

that we had failed to consider and that resulted in property violations; several of these corner

cases were used in the examples given in Sec. 3.3.1 to motivate the algorithm stages. For the

algorithm presented in Sec. 3.3.1, however, after running about 6 days, the model checker

successfully terminated and found no violations.

5.2 Model Checking for Nimble

We subjected our algorithm of Sec. 4.2 to model checking to verify its enforcement of

waypoint correctness described in Sec. 4.1.2. We constructed our model with fifteen switches

in a mesh topology and with three flows. Each routing path was eight switches and each

path contained three NFs. We modeled the effects of one new epoch that implemented a

routing policy with NF migration (i.e., each network function for each flow was moved to a

different position) using rules in the old and new configuration.

The underlying route-update algorithm deployed rule updates on switches (i.e., deleting

unused rules and installing new rules) in at most ℓ = 15 steps, with each switch being updated

at most once. Each switch utilized either old or new rules to process packets based on the

step during which it received those packets. For example, if S1 was scheduled to be updated

in step U3, S1 used an old rule R1 to match f1 before U3 began and a new rule R2 after U3

completed. During U3, to model unknown delays for switch updates to occur, either R1 or R2

was used to match f1 nondeterministically. The step at which packets were received by each

switch through the network was non-decreasing. Moreover, the update schedule generated

by the underlying route-update algorithm ensured relaxed waypoint correctness. Z3 explored

all possible rule-update schedules constrained by the above conditions to enforce new routing

policy of each flow. As such, the model checked was not dependent on any specific route-

update protocol, but rather permitted any route-update strategy as long as it satisfied these

properties.

Our algorithm incorporated NF migration into the rule-update schedule generated by

the underlying route-update algorithm and used tunnels to redistribute packets from old NF
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locations to new ones. For simplicity, the correctness of tunnels was assumed, and tunnels

were not modeled explicitly. Specifically, when a packet on flow f arrived at S old
i and was

matched to rule Renc
i , the packet was delivered to S new

i , as if through the tunnel.

To model the delay caused by buffering packets at new NF locations, the specific step

at which S new
i forwarded packets using its new rule should not be earlier than the step at

which S new
i .release(i) is invoked. For example, if a packet arrived at S old

i for NF i at step

U3 and then was forwarded through the tunnel to S new
i , S new

i could not release packets until

S new
i .release(i) was deployed at step U5. We let the Z3 solver explore all possible delays

before the S new
i released packets and check for violations of waypoint correctness as defined

in Sec. 4.1.2. In previous, incorrect versions of our algorithm, this model checking revealed

corner cases that we had failed to consider and that resulted in property violations. For the

algorithm presented in the previous sections, however, after running about one day on a 32-

core, 2.1GHz computer with 256GB of memory, the model checker successfully terminated

and found no violations.
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CHAPTER 6: CONCLUSION

Rapid NF migration and accompanying path changes can be critical for alleviating prob-

lems in a network, and doing so in a way that ensures that all traffic is processed by its

required waypoints is important to avoid violations of network policy. Realizing this requires

both efficient network forwarding-state update and safe NF migration. In this dissertation,

we have proposed suffix causal consistency (SCC) as an interpretation of causal consistency

for network forwarding-state updates in an SDN network. SCC ensures that a packet will

be matched only to rules at least as recent as those to which it has been matched previously,

thus ensuring that a packet will exit the network on a suffix of the most recent path’s rules to

which it was matched. Our algorithm implements this property without updating switches

unnecessarily. We showed that SCC implements bounded looping and black-hole freedom

during updates and formally verified that our algorithm achieves SCC as well as these addi-

tional properties. Through empirical tests with implementations in P4 and Open vSwitch,

and using real traffic traces from Facebook, we showed that our algorithm supports faster

rule deployment than CU, TSU and COCONUT, leading to fewer dropped packets during

updates. SCC also requires the retention of fewer additional rules during the update, and

its rule generation scales across a wide range of topologies.

To coordinate NF migration with the routing policy update, we have presented an algo-

rithm that accelerates the deployment of these changes in SDN networks over current best

solutions. Our design accomplishes this through a careful interleaving of NF migrations with

path changes, and ensures the correctness of traffic processing provided that the route-update

protocol on which we build ensures a property that we call relaxed waypoint correctness. We

provided a route-update protocol designed to achieve this property, without enforcing other

properties typically associated with consistent-update protocols. We showed the sufficiency
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of this property through model checking, and then demonstrated the performance improve-

ments achieved by our algorithm in empirical comparisons to state-of-the-art.

We believe our work paves the way for future research in SDN and network function

migration. For example, is it feasible to balance the workload of each network function

by choosing where NFs should be migrated to and which path traffic should be rerouted

through? Is it possible to design a one big switch framework that can automatically and

consistently manage state for programmable switches? We leave these open issues for future

work.
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