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ABSTRACT

Yiyan Shou: Bow Varieties—Geometry, Combinatorics, Characteristic
Classes

(Under the direction of Richárd Rimányi)

Motivated by the study of 3d mirror symmetry from the perspective of characteristic classes,

we develop a combinatorial framework for the study of Cherkis Bow Varieties. Bow varieties are

believed to be a natural setting where 3d mirror symmetry for characteristic classes can be observed.

We take the first steps toward a general theory of mirror symmetry by describing the geometry of

bow varieties in terms of brane diagrams, binary contingency tables, and various combinatorial

operations on these objects. We then give a conjectural formula for the cohomological stable

envelope of a bow variety. An overview of 3d mirror symmetry for characteristic classes in Schubert

calculus is also provided.
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CHAPTER 1

Introduction

This thesis is an expansion of the work done in [RS]. The motivation of this work is the study

of enumerative geometry through characteristic classes in cohomology associated to subvarieties

of interest within a smooth ambient variety. An example of this approach is the assignment of

characteristic classes to Schubert varieties. This makes up an important part of Schubert calculus.

Classically, one might consider fundamental classes of closed subvarieties, which encode information

about intersection multiplicites. The fundamental classes of Schubert varieties in (equivariant)

cohomology or K-theory are well-studied objects called “Schubert classes”. These classes can be used

to solve certain enumerative Schubert problems, but are also intersting in their own right, connecting

with various areas of combinatorics, geometry, and representation theory. The fundamental class

can be generalized in many ways. In the case of smooth closed subvarieties, one could consider the

pushforward of the total Chern class of the tangent bundle of the subvariety. This is generalized to

constructible subsets by the Chern-Schwartz-MacPherson class in (equivariant) cohomology and

the Motivic Chern class in (equivariant) K-theory. These classes can be applied to either Schubert

varieties or Schubert cells giving rise to ~-deformed Schubert calculus [Ri].

Recently, motivated by relations with quantum integrable systems, Okounkov and his coauthors

introduced torus equivariant characteristic classes assigned to the torus fixed points of a torus

equivariant symplectic resolution. These classes are called the “stable envelope” [AO, O, MO]. They

depend on other parameters, and varying those parameters gives a geometric quantum group action

on cohomology, K-theory, and elliptic cohomology. In certain settings where both the aformentioned

Chern classes and stable envelopes are defined, they can be shown to agree. This coincidence not

only made the study of the classical characteristic classes even more interesting than before, but

also brought fresh ideas and new ways of calculating them [RV, FRW1, FRW2, AMSS1, AMSS2,

RW1, KRW]. Rather than generalizing the class, one could also generalize the cohomology theory.

Passing to elliptic cohomology reveals a hidden structure.
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Elliptic stable envelopes depend on two sets of parameters. There are the usual equivariant

parameters coming from the torus action. There is also a new set of “Kähler” or “dynamical”

parameters. For certain pairs of equivariant symplectic resolutions, the elliptic stable envelopes

of the two spaces “match”. This “matching” is explained in detail in Section 4.1.6, but its key

feature is interchanging the two sets of parameters. Motivated by ideas from physics [BFN, BDGH,

GW, GMMS, IS], we call this phenomenon “3d mirror symmetry for characteristic classes”. Some

instances of 3d mirror symmetry for characteristic classes are proven in [RSVZ1, RSVZ2, RW2, SZ]

using ad hoc methods, but a general theory is not yet known.

There are indications that the right collection of spaces for the study of 3d mirror symmetry for

characteristic classes is the collection of Cherkis bow varieties. For bow varieties, the equivariant

and Kähler parameters appear on equal footing, corresponding to two “dual” combinatorial objects

called “5-branes”. There is a duality operation that interchanges the 5-branes, paralleling the

interchange of equivariant and Kähler parameters in 3d mirror symmetry for characterstic classes.

Moreover, the collection of bow varieties is closed under this operation. The goal of the work in

this thesis and [RS] is to introduce Cherkis bow varieties to enumerative geometry and work out

the necessary combinatorial structures for their enumerative analysis and the study of 3d mirror

symmetry for characteristic classes.

This thesis is organized into three main chapters on combinatorics, geometry, and characteristic

classes. In Chapter 2, we define the basic combinatorial objects of our framework, “brane diagrams”,

and explore their properties. Important combinatorial operations—brane duality and Hanany-Witten

transition—on brane diagrams are also studied. These objects can be connected to binary contingency

tables from statistics and combinatorics, giving us an alternative combinatorial perspective, which

has certain advantages. Brane diagrams and related constructions, while interesting in their own

right, encode the geometry of bow varieties, our principle objects of study.

In Chapter 3, we review the “quiver” construction of bow varieties [NT]—as well as the

construction of quiver varieties [N1], which arise as a special case of bow varieties. We then connect

the combinatorial objects of Chapter 2 to the geometry of bow varieties. To each brane diagram we

will associate a bow variety: a holomorophic symplectic torus equivariant manifold, which possesses

a distinguished family of “tautological” vector bundles. Certain properties of this manifold can be

read from the combinatorics of the brane diagram. The main result of this chapter establishes a

2



bijection between certain configurations of “ties” on a brane diagram—or binary contingency tables

with certain margin vectors—and the torus fixed points of the corresponding bow variety. We also

give a combinatorial formula for the weights of fixed point restrictions of tautological bundles and

the K-theory class of the tangent bundle. Finally, we construct certain torus invariant curves using

combinatorial “surgery” operations. Fixed points, fixed point restrictions of tautological bundles,

and invariant curves are key to the study of characteristic classes.

Chapter 4 is devoted to initiating the study of characteristic classes on bow varieties. Here, we

give an overview of characteristictic classes in Schubert calculus, and especially 3d mirror symmetry.

This notion of 3d mirror symmetry is an important motivator for the study of characteristic classes on

bow varieties, as it connects very naturally with the combinatorics of bow varieties. We then discuss

the equivariant cohomology and K-theory of bow varieties, and introduce a notion of cohomological

stable envelope class adapted to bow varieties. Several examples of these classes are shown, and we

give a conjectural formula for calculating their fixed point restrictions.

The bow varieties considered in this work are special cases of the more general construction of

[NT]. Appendix A shows how to translate between our bow varieties and those of [NT]. Finally,

we have included the appendix in [RS] on Maya diagrams [N3] as Appendix B, for the sake of

completeness.
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CHAPTER 2

Combinatorics

This chapter establishes a combinatorial framework for the study of Cherkis bow varieties.

This framework includes brane diagrams, binary contingency tables, and the related combinatorial

operations of brane duality and Hanany-Witten transition.

2.1 Brane Configurations and Diagrams

In this section we will construct the primary combinatorial objects of our framework, brane

diagrams, and explore their basic combinatorial properties. We begin with a 3-dimensional view.

Consider a configuration of distinct lines in R3 parallel to the y- and z-axis. Call those lines parallel

to the y-axis NS5 branes and those parallel to the z-axis D5 branes. Collectively, D5 and NS5 branes

are referred to as 5-branes. Insert distinct line segments parallel to the x-axis with endpoints on the

5-branes. Call these line segments D3 branes. NS5, D5, and D3 branes are collectively referred to

as branes. Thinking of the 5-branes as being fixed in place and the D3 branes as rigid but able to

slide along their endpoints, a configuration of branes is completely fixed in place if and only if the

endpoints of each D3 brane are on 5-branes of opposite type. Note that only one D3 brane may

connect a pair of 5-branes of opposite type.

x

y
z

Figure 2.1: A fixed (left) and nonfixed (right) brane configuration. NS5 branes are red, D5 branes
are blue, and D3 branes are black.
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V1

2 2

V2

2 4 3 3 4
U3

3
U4 U5

2 2

NS5 branes

D5 branessegments/D3 branes

. . .

Figure 2.2: A typical brane diagram.

Given a configuration of branes, we may project onto the x-axis, retaining the x-coordinates

of the 5-branes and the number of D3 branes spanning the space between the 5-branes. We lose

the endpoints of the D3 branes. This projection is called a brane diagram. Graphically, we draw

the x-axis horizontally, and represent the projected NS5 branes by lines with positive slope and

D5 branes by lines with negative slope. These lines subdivide the x-axis into segments, which we

label with the number of D3 branes spanning the space between the bounding 5-branes. Note that

there are two infinite segments on the far left and right of the diagram with label 0. We will not

draw these segments, but they are necessary in what follows. Drawing the brane diagrams can be

cumbersome, so we will often condense them. For example, we can represent the brane diagram in

Figure 2.2 more compactly by /2\2/2\4/3/3/4\3/2\2\.

If we wish to retain the endpoints of the D3 branes, we may represent the D3 branes with

dashed lines, which we call ties. Such a diagram is called a tie diagram. The numerical labels of

the segments record the number of ties that “cover” that segment. Once the ties are drawn, these

labels become redundant, and we will often ommit them.

From now on, we will be concerned only with fixed brane configurations. For instance, tie

diagrams like the one on the right of Figure 2.3 will no longer be considered.

Assumption 2.1.1. All tie diagrams correspond to fixed configurations of branes. In other words,

5



1 2 2 2 2 1 2 2 2 2

Figure 2.3: The tie diagrams corresponding to the brane configurations in Figure 2.1.

1 2 2 3 4 1 1

Figure 2.4: Brane diagrams that cannot be extended to a tie diagram.

each tie joins 5-branes of opposite type, and no two ties join the same pair of 5-branes.

Under this assumption, it may not be possible to add ties to a brane diagram to obtain a valid

tie diagram (see Figure 2.4 for simple examples). When we draw ties between a pair of 5-branes of

opposite type, we place them above the diagram if the NS5 brane is left of the D5 brane and below

the diagram if the D5 brane is left of the NS5 brane (see the left tie diagram of Figure 2.3). This

convention has both aesthetic and combinatorial advantages.

We will also adopt the convention that NS5 branes are denoted V , D5 branes are denoted U ,

and segments in the brane diagram are denoted X. Given a 5-brane/segment B, let B− and B+

denote the segment/5-brane immediately to the left and right, respectively, of B. Let B= and B‡

denote the 5-brane/segment two positions to the left and right, respectively, of B. Given a segment

X, call its integer label the multiplicity of X and denote it by dX . The two hidden segments at the

far ends of the diagram have multiplicity 0. When speaking of brane diagrams, the terms “segment”

and “D3 brane” will be used interchangeably. By convention, branes will always be listed from

left to right. Brane and tie diagrams can be augmented with additional combinatorial structures

and possess alternative combinatorial descriptions, which will be explored in the remainder of this

chapter. This section concludes with an example.

Example 2.1.2. Consider the underlying brane diagram of Figure 2.3

1

X1

2

X2

2

X3

2

X4

2

X5

U1 U2 U3 U4V1 V2

.
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Let us enumerate all of the tie diagrams that can be obtained from this brane diagram. Since U1 is

the leftmost 5-brane and dU+
1

= dX1 = 1, there must be a tie between U1 and V1 or V2. Either way,

this tie covers X2. Since dX2 = 2, there must be one additional tie covering X2. This additional tie

cannot cover X1, so it must join U2 with V1 or V2.

First, consider the case where there is a tie between U1 and V1. If the additional tie joins U2

with V1, there must be two ties starting at V1 going to the right. This is because dV +
1

= dX3 = 2,

and no more ties can cover X1 and X2. There are only two D5 branes to the right of V1, so these

two ties must end at U3 and U4. The mutliplicities of X4 and X5 force us to place ties between U3,

U4, and V2. We obtain the tie diagram

(1)
1 2 2 2 2

.

If on the other hand the additional tie joins U2 with V2, then X3, X4, X5 must each be covered

by one more tie. There must be one tie starting at V1 and going to the right. This tie can end

either at U3 or U4. Regardless of the endpoint, we are forced to place a tie between it and V2. The

two tie diagrams obtained this way are

(2)
1 2 2 2 2

(3)
1 2 2 2 2

.

Second, consider the case where there is a tie between U1 and V2. If the additional tie is placed

between U2 and V1, then X3, X4, X5 must each be covered by one more tie. The reasoning above

gives us two possible tie diagrams

(4)
1 2 2 2 2

(5)
1 2 2 2 2

.

Finally, if the additional tie is placed between U2 and V2, then all segments are covered by the

requisite number of ties. We immediately obtain

7



(6)
1 2 2 2 2

.

We have now listed all six tie diagrams with the given underlying brane diagram.

Enumerating tie diagrams with a given underlying brane diagram is an important problem.

While the argument given here is ad hoc, the general line of reasoning can be applied to arbitrary

brane diagrams. More sophisticated techniques will be discussed in Section 2.2.

2.2 Brane Charge and Binary Contingency Tables

Motivated by ideas from physics, we introduce a notion of “charge” for each 5-brane in a brane

diagram. This gives rise to an alternate description of tie diagrams in terms of binary contingency

tables (BCTs).

2.2.1 The Charge of a 5-Brane and Margin Vectors

To every 5-brane will be associated an integer called the brane charge.

Definition 2.2.1. 1. For an NS5 brane V , let

charge(V ) = dV + − dV − + #{D5 branes left of V }.

2. For a D5 brane U , let

charge(U) = dU− − dU+ + #{NS5 branes right of U}.

Remark 2.2.2. In string theory, the brane charge is defined as an integral, and is calculated to be

(dB+ − dB−) + #{opposite type 5-branes left of B} for both types of 5-branes. Hence, for D5 branes

our definition is not identical with the physics definition, rather it is a simple linear function of it.

In physics this can be interpreted as integrating on a different cycle.

In general, the charge may be negative. However, brane configurations with 5-branes of negative

charge cannot be fixed. In other words, they do not admit tie diagrams.

Proposition 2.2.3. If a brane configuration is fixed, all brane charges are nonnegative.

8



Proof. Suppose we have a tie diagram for a fixed brane configuration. Let V be an NS5 brane.

Denote the number of ties with an endpoint on V extending to the right (respectively left) by t+

(respectively t−). We have

charge(V ) = dV + − dV − + #{D5 branes left of V } = t+ − t− + #{D5 branes left of V }.

Since each tie has endpoints on 5-branes of opposite type, there are at least t− D5 branes to the left

of V . It follows that charge(V ) ≥ t+ ≥ 0. A similar argument applies to D5 branes.

Let m be the number of NS5 branes and n be the number of D5 branes in a brane diagram.

Denote the NS5 branes by V1, ..., Vm and the D5 branes by U1, ..., Un (indexed from left to right).

Let r ∈ Zm and c ∈ Zn be the vectors of charges of NS5 branes and D5 branes respectively. These

vectors are the margin vectors of the brane diagram.

Example 2.2.4. Consider the brane diagram in Figure 2.2. The charges of V1, V3, U3 are calculated

as

charge(V1) = 2− 0 + 0 = 2 , charge(V3) = 3− 4 + 2 = 1 , charge(U3) = 4− 3 + 1 = 2.

The margin vectors are

r = (2, 1, 1, 2, 3, 2) , c = (5, 2, 2, 0, 2).

Lemma 2.2.5. For any brane diagram,
∑
ri =

∑
ci.

Proof. Consider the expression
∑
ri−
∑
ci. Collecting the dX terms yields a telescoping sum that sim-

plifies to the difference of the multiplicities of the infinite leftmost and rightmost segments. These mul-

tiplicites are 0. The remaining terms are
∑

i #{D5 branes left of Vi}−
∑

j #{NS5 branes right of Uj}.

Fix i. Then, each D5 brane to the left of Vi contributes 1 to the sum. However, Vi will be right of

each of these D5 branes, so Vi contributes -1 to the sum for each D5 brane to the left of Vi. All

terms cancel, and we get
∑
ri −

∑
ci = 0.

2.2.2 Tables-with-Margins

The separating line of the brane diagram is a lattice path in {0, ..., n} × {0, ...,m} that encodes

the order of the 5-branes. So that our conventions match the conventions for matrices, draw the
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y-axis pointing downwards. The separating line is uniquely defined by the following properties:

1. starts at (0, 0) and ends at (n,m),

2. only moves down or right (monotonicity),

3. passes through the segment from (x− 1, y) to (x, y) if and only if V1, ..., Vy are to the left of

Ux and Vy+1, ..., Vm are to the right.

The separating line is well defined, since as j increases, the highest index i for which Vi is to the left

of Uj increases. Hence, the horizontal segments of the path are moving downward as we move to

the right.

Alternatively, we may define the separating line in a step-by-step fashion. Start at (0, 0), and

read the 5-branes from left to right. Each time you encounter an NS5 brane, move one step down.

Each time you encounter a D5 brane, move one step to the right. The number of downward steps is

m, the number of NS5 branes, and the number of rightward steps is n, the number of D5 branes.

Therefore, this path ends at (n,m). It is easy to see that these two definitions of the separating line

agree.

(0,0)

(5,6)

(0,0)

(4,2)

(0,0)

(3,3)

Figure 2.5: The separating line of the brane diagram in Figure 2.2, Example 2.1.2, and the right of
Figure 2.4.

The margin vectors along with the separating line uniquely determine the brane diagram. Define

MVm,n to be the set of pairs of integer vectors r ∈ Zm, c ∈ Zn satisfying
∑
ri =

∑
ci. Let Sepm,n

be the set of lattice paths satisfying properties 1 and 2 above.

Lemma 2.2.6. There is a bijective correspondence

{brane diagrams with m NS5 branes and n D5 branes} ←→MVm,n × Sepm,n.
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Proof. We will construct the inverse. To a pair of vectors (r, c) ∈MVm,n and a path in Sepm,n, we

must associate a brane diagram. The number of NS5 and D5 branes can be recovered from m and

n respectively. The path determines the order of the 5-branes, as described by the step-by-step

description above: each downward step gives an NS5 brane and each rightward step gives a D5

brane. We must now use the charges r, c to recover the multiplicites dX .

Assign a multiplicity of 0 to the leftmost segment. Assume that the leftmost 5-brane is the NS5

brane V1. Then,

charge(V1) = dV +
1
− dV −1 + #{D5 branes to the left of V1} = dV +

1
.

If the leftmost 5-brane is the D5 brane U1, then

charge(U1) = dU−1
− dU+

1
+ #{NS5 branes to the right of U1} = m− dU+

1
.

Now we induct. Let V be an NS5 brane and assume dV − is known. We can read charge(V ) from the

vector r, and we know the ordering of the 5-branes. Therefore, the multiplicity dV + can be deduced

from the formula charge(V ) = dV + − dV − + #{D5 branes to the left of V }. The same procedure

applies to D5 branes U .

It remains to show that the rightmost segment is assigned a multiplicty of 0. By assumption,

we have 0 =
∑

i charge(Vi)−
∑

j charge(Uj). The proof of Lemma 2.2.5 shows that our inductive

procedure assigns the same multiplicity to the leftmost and rightmost segment. The leftmost segment

is assigned a multiplicty of 0, so the rightmost is also assigned a multiplicty of 0.

Create an m by n table. Label the rows by the entries of r from top to bottom. Label the

columns by the entries of c from left to right. Superimpose the separating line with the table, so

that it runs in between the entries, separating the table into upper and lower parts. This collection

of combinatorial data is the table-with-margins code of the brane diagram. Lemma 2.2.6 says that

brane diagrams are in bijective correspondence with table-with-margins.

2.2.3 Binary Contingency Tables

As one might expect, ties can be encoded by filling in the entries of the table-with-margins.

Definition 2.2.7. For given r ∈ Zm, c ∈ Zn, an m × n matrix M is called a binary contingency
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5

U1

2

U2

2

U3

0

U4

2

U5

2V1

1V2

1V3

2V4

3V5

2V6

1

U1

1

U2

1

U3

1

U4

2V1

2V2

1

U1

4

U2

1

U3

2V1

2V2

2V3

Figure 2.6: The table-with-margins of the brane diagram in Figure 2.2, Example 2.1.2, and the right
of Figure 2.4.

table (BCT) with margins r, c if

Mij ∈ {0, 1},
∑
j

Mij = ri, and
∑
i

Mij = cj .

Given a tie diagram, define a binary matrix Mij as follows. If Vi is left of Uj (i.e. if a tie

connecting Vi to Uj would be drawn above the diagram), let

Mij =


1 if Vi, Uj are connected by a tie,

0 if Vi, Uj are not connected by a tie.

If Vi is to the right of Uj (i.e. if a tie connecting Vi to Uj would be drawn below the diagram), let

Mij =


0 if Vi, Uj are connected by a tie,

1 if Vi, Uj are not connected by a tie.

The matrix M will be a BCT for all tie diagrams. Thus, we have

Proposition 2.2.8. There is a bijective correspondence between BCTs of tables-with-margins and

tie diagrams.

Proof. We begin by proving that the matrix M is a BCT by inducting on the number of ties. The

base case is when there are no ties. All multiplicities are 0, so

ri = charge(Vi) = #{D5 branes left of Vi} , cj = charge(Uj) = #{NS5 branes right of Uj}.
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5

U1

2

U2

2

U3

0

U4

2

U5

2V1

1V2

1V3

2V4

3V5

2V6

1 1 0 0 0

1 0 0 0 0

0 0 1 0 0

1 0 1 0 0

1 1 0 0 1

1 0 0 0 1

Figure 2.7: A tie diagram with the underlying brane diagram of Figure 2.2 and its BCT.

All entries of M above the separating line are 0 and all entries below the separating line are 1. It

follows immediately from the description of the separating line that
∑

jMij = ri and
∑

iMij = cj .

If Vi is left of Uj , then adding a tie between Vi and Uj increases ri = charge(Vi) by 1 and also

switches a 0 in row i of M to a 1. On the other hand, if Vi is right of Uj , then adding a tie decreases

ri by 1 and switches a 1 in row i of M to a 0. By induction, it follows that
∑

jMij = ri. A similar

argument shows that
∑

iMij = cj .

There is an obvious way to invert the construction of M . We must show that the ties obtained

from a BCT cover each D3 brane the requisite number of times. Similarly to the above, induct

on the number of 1’s above the separating line and 0’s below the separating line. The base case,

where all entries above the separating line are 0 and all entries below the separating line are 1, is

addressed above. For the inductive step, suppose we take an entry Mij = 0 above the separating

line and change it to 1. Then ri = charge(Vi) and cj = charge(Uj) increase by 1, but no other

charges change. Since the entry is above the separating line, Vi is to the left of Uj . It follows from

the definition of charge and the fact that the leftmost and rightmost segments have multiplicity 0

that the multiplicities of all segments between Vi and Uj increase by 1, while all other multiplicities

remain the same. We have, however, added a tie between Vi and Uj , so each segment is still covered

by the correct number of ties by induction. A similar argument applies below the separating line.

13



(1)

1

U1

1

U2

1

U3

1

U4

2V1

2V2

0 0 1 1

1 1 0 0
(2)

1 1 1 1

2

2

0 1 1 0

1 0 0 1
(3)

1 1 1 1

2

2

0 1 1 0

1 0 0 1

(4)

1 1 1 1

2

2

1 0 1 0

0 1 0 1
(5)

1 1 1 1

2

2

1 0 0 1

0 1 1 0
(6)

1 1 1 1

2

2

1 1 0 0

0 0 1 1

Figure 2.8: BCTs for the six tie diagrams of Example 2.1.2.

Applying Lemma 2.2.6 completes the proof.

Remark 2.2.9. The set BCT(r, c) of BCTs with margins r, c is studied in combinatorics and statistics.

Here is a list of some relations between BCTs and other algebraic combinatorial notions. Clearly

m∏
i=1

n∏
j=1

(1 + xiyj) =
∑
r,c

#BCT(r, c) · xr11 x
r2
2 . . . xrmm yc11 y

c2
2 . . . ycnn .

The number #BCT(r, c) can be evaluated in terms of the Kostka numbers associated with Young

tableaux. The Gale-Ryser theorem is a simple numerical criterion on r, c determining whether

BCT(r, c) is empty. The Robinson-Schensted-Knuth correspondence establishes a bijection between

BCT(r, c) and pairs of certain Young tableaux. For exact statements and more on the relevance of

BCTs see e.g. [Br, B] and references therein. Enumerating BCTs will be important in later sections.

Proposition 2.2.8 gives another proof of Proposition 2.2.3. If a BCT exists, then it also gives

an alternative proof of Lemma 2.2.5. Given a table-with-margins with nonnegative margin vectors

whose sums of entries are equal, there may not be a BCT associated with it. For instance, it is easy

to see that the table-with-margins on the right in Figure 2.6 does not admit a BCT, consistent with

the fact that the brane diagrams in Figure 2.4 do not admit tie diagrams. From now on, we restrict

our attention to those that do possess BCTs.

Assumption 2.2.10. All tables-with-margins admit a BCT. Equivalently, all brane diagrams can

be extended to a tie diagram.

With this assumption in place, there is an easy way to read off the D3 multiplicities from a BCT,

forgoing the inductive procedure of Lemma 2.2.6. The step-by-step definition of the separating line
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gives us a natural correspondence between integer points P = (x, y) on the separating line and

segments XP of the brane diagram:

1. if the next integer point on the separating line is (x, y + 1), then XP is the segment bounded

on the right by Vy+1,

2. if the next integer point on the separating line is (x+ 1, y), then XP is the segment bounded

on the right by Ux+1,

3. if P is the last integer point on the separating line, XP is the infinite segment on the right of

the brane diagram.

We claim that the number of ties covering XP is given by #{1’s NE of P} + #{0’s SW of P}.

Indeed, for each 1 NE of P , we have a tie between a 5-brane to the left of XP and a 5-brane to the

right of XP . The same is true for each 0 SW of P .

Proposition 2.2.11. Fix a BCT. Let P be an integer point on the separating line, and let XP be

the corresponding D3 brane. Then, we have

dXP
= #{1’s NE of P}+ #{0’s SW of P}.

2.3 Brane Duality

A natural combinatorial operation on brane/tie diagrams is to change the NS5 branes to D5

branes and vice versa. This operation is referred to as duality. Let D be a brane diagram with

margin vectors r ∈ Zm, c ∈ Zn. Denote the dual brane diagram by D′ and its margin vectors by

r′ ∈ Zn, c′ ∈ Zm. From the definition of charge (Definition 2.2.1), we have

r′i = m− ci , c′j = n− rj . (2.1)

Indeed, switching the type of a 5-brane negates the contribution of the D3 multiplicities to the

charge, and instead of adding the number of branes of opposite type on the left/right, we add the

number of branes of opposite type on the right/left. It is also easy to see that the separating line is

transposed from the step-by-step description: every downward step becomes a rightward step and

vice versa. Finally, entries of a BCT above/below the separating line of D move below/above the
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separating line of D′ upon transposition. This is reflected in the fact that ties that are drawn above

D are drawn below D′. Hence, duality transposes BCTs and interchanges 0’s and 1’s. In summary,

we have

Proposition 2.3.1. Given a dual pair of brane/tie diagrams D,D′, their table-with-margins are

related by transposition and a renormalization (2.1) of the margin vectors. Their BCTs are related

by transposition and interchanging 0’s and 1’s.

5

U1

2

U2

2

U3

0

U4

2

U5

2V1

1V2

1V3

2V4

3V5

2V6

1 1 0 0 0

1 0 0 0 0

0 0 1 0 0

1 0 1 0 0

1 1 0 0 1

1 0 0 0 1

3

U ′1

4

U ′2

4

U ′3

3

U ′4

2

U ′5

3

U ′6

1V ′1
4V ′2
4V ′3
6V ′4
4V ′5

0 0 1 0 0 0

0 1 1 1 0 1

1 1 0 0 1 1

1 1 1 1 1 1

1 1 1 1 0 0

Figure 2.9: The tie diagram and BCT of Figure 2.7 (left) and their duals (right).

2.4 Hanany-Witten Transitions

We will now define a combinatorial operation on brane diagrams that changes the order of the

5-branes. These operations will be defined in such a way that the margin vectors are preserved.

Let B1 be a 5-brane and suppose B2 = B‡1 is a 5-brane of opposite type. Define d1 = dB−1
,

d2 = dB+1
, d3 = dB+2

. The operation of switching the positions of B1 and B2 and replacing d2 with

d̃2 = d1 + d3 − d2 + 1 is called a Hanany-Witten transition. We will use the abbreviation “HW” for

“Hanany-Witten”. The new multiplicty d̃2 is chosen precisely so that the charges of the 5-branes

are preserved. Moreover, applying a Hanany-Witten transition twice to the same pair of 5-branes

recovers the original brane diagram. Two brane diagrams related by a sequence of HW transitions

will be called Hanany-Witten equivalent.

Since the charges are preserved, the only change in the table-with-margins is the separating line.

If B1 = Vi and B2 = Uj , then the separating line contains the segments (i− 1, j) to (i, j) followed
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d1 d2 d3 HW d1 d̃2 d3

Figure 2.10: A local illustration of the Hanany-Witten transition.

by (i, j) to (i, j + 1). Upon performing the HW transition, these segments are replaced by (i− 1, j)

to (i− 1, j + 1) followed by (i− 1, j + 1) to (i, j + 1). In fact, all
(
m+n
m

)
possible separating lines are

related by HW transition. This immediately extends the HW transition to BCTs, and hence tie

diagrams. Since one of the entries of the BCT moves to the other side of the separating line, all

ties are preserved except those joining B1 and B2. If there was such a tie to begin with, then it is

removed. Otherwise, a new tie is created.

Mij
HW

Mij

Figure 2.11: A local illustration of the action of a Hanany-Witten transition on the separating line.

B

A D

C

E
HW

A

B C

D

¬E

Figure 2.12: A local illustration of the action of a Hanany-Witten transition on a tie diagram. The
symbols E,¬E mean that if tie E is part of the diagram, then tie ¬E is not and vice versa.

Remark 2.4.1. It is tempting to consider the analogous transitions interchanging two 5-branes of

the same type in such a way that their brane charges do not change, that is,

d1 d2 d3 d1 d̃2 d3

d1 d2 d3 d1 d̃2 d3

for d2 + d̃2 = d1 + d3.

In fact, these transitions make sense and are important in physics, but not for our purposes, until

Section 4.5.

17



Example 2.4.2. We will illustrate the HW transition by using them to transform the tie diagram of

Figure 2.1.2 (1) into two forms (the cobalanced and separated forms), which will be discussed in

Section 2.5, 2.6. We will begin by moving V1 to the far left. This is accomplished by a sequence of

two HW transitions

1 2 2 2 2 1 2 2 2 2 2 2 2 2 2

.

The resulting brane diagram has the property that for each D5 brane U , we have dU+ = dU− . Such

a brane diagram is called “cobalanced” (see Section 2.5).

Next, we will move V2 into the second position, so that both NS5 branes are on the far left.

Rather than performing the HW transitions on tie diagrams, we will manipulate BCTs and recover

the tie diagrams using Proposition 2.2.8, 2.2.11. Moving all NS5 branes to the left results in a

separating line that runs along the left and bottom side of the BCT. Hence, from the BCT in

Figure 2.8 (1), we obtain the HW equivalent BCT and tie diagram

1

U1

1

U2

1

U3

1

U4

2V1

2V2

0 0 1 1

1 1 0 0
2 4 3 2 1

.

Brane diagrams with all NS5 branes on the left side are called “separated” (see Section 2.6).

2.5 (Co)balanced Brane Diagrams

A brane diagram is called balanced if for all NS5 branes V , we have dV + = dV − . A brane

diagram is called cobalanced if for all D5 branes U we have dU+ = dU− . In other words, cobalanced

brane diagrams are those whose duals are balanced and vice versa. Cobalanced brane diagrams will

be of special importance (see Section 3.3). It is possible that a brane diagram that is not cobalanced

is HW equivalent to one that is. For instance, see Example 2.4.2. We will establish a numerical

criterion for a brane diagram being HW equivalent to a cobalanced one.

Theorem 2.5.1. A brane diagram is Hanany-Witten equivalent to a cobalanced brane diagram if

and only if the margin vector c is weakly decreasing.
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Proof. In a cobalanced brane diagram, for all D5 branes U , we have

charge(U) = dU+ − dU− + #{NS5 branes right of U} = #{NS5 branes right of U}.

It follows that c is weakly decreasing. Since c is preserved by HW transitions, all HW equivalent

brane diagrams have weakly decreasing c as well.

Conversely, if a brane diagram with weakly decreasing margin vector c is given, then we may

apply HW transitions to obtain the separating line illustrated by the picture

cj

cj

cj+1

cj+1

.

This separating line is well-defined by Lemma 2.2.5. Fix a BCT. By Proposition 2.2.11, it suffices

to show that for j = 1, ..., n,

#{1’s NE of P−j }+ #{0’s SW of P−j } = #{1’s NE of P+
j }+ #{0’s SW of P+

j }

where P−j is the left endpoint of the horizontal step of the separating line across column j and P+

is the right endpoint. From the shape of the separating line, we see that

#{1’s NE of P−j } −#{1’s NE of P+
j } = #{1’s in the first m− cj entries of column j},

#{0’s SW of P−j } −#{0’s SW of P+
j } = −#{0’s in the last cj entries of column j}

= #{1’s in the last cj entries of column j} − cj .

Adding these two expressions together yields #{1’s in column j} − cj = 0, as required.

By dualizing, we immediately obtain a numerical criterion for a brane diagram being HW

equivalent to a balanced brane diagram from Theorem 2.5.1 and Proposition 2.3.1.
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1 1 3 4 2

r = (1, 3, 2)

c = (2, 2, 2)

(a)

2 2 2 1 1

r = (1, 1, 2)

c = (1, 2, 1)

(b)

1 1 2 3 1

r = (1, 2, 2)

c = (2, 2, 1)

(c)

1 3 4 3 1

r = (1, 2, 1)

c = (1, 2, 1)

(d)

Figure 2.13: A brane diagram that is Hanany-Witten equivalent to (a) a cobalanced brane diagram
but not a balanced brane diagram, (b) a balanced brane diagram but not a cobalanced brane
diagram, (c) both a balanced brane diagram and a cobalanced brane diagram, and (d) neither a
balanced nor a cobalanced brane diagram.

Corollary 2.5.2. A brane diagram is balanced if and only if the margin vector r is weakly increasing.

It is possible for brane diagrams to be HW equivalent to cobalanced brane diagrams but not

balanced, balanced but not cobalanced, both balanced and cobalanced, or neither. Some simple

examples are given in Figure 2.13. Of course, the only brane diagrams which are simultaneously

balanced and cobalanced are those with all D3 multiplicities equal to 0.

2.6 Separated Brane Diagrams

A brane diagram is called separated if all NS5 branes are on the left and all D5 branes are on

the right. In terms of table-with-margins, the separating line runs along the left and bottom sides.

Separated brane diagrams offer some advantages when studying invariant curves and characteristic

classes, which will be discussed in Section 3.4, 4.4.3.

First, we note that all HW equivalence classes of brane diagrams have a unique separated

representative. Moreover, the D3 multiplicites can be related to the entries of the margin vectors

r, c as an immediate consequence of Proposition 2.2.11.

Proposition 2.6.1. The unique separated representative of the HW equivalence class of a brane
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r1 r2 rmcn c2 c1

Figure 2.14: The general form of a separated tie diagram.

diagram D with margin vectors r ∈ Zm, c ∈ Zn is

/r1/r1 + r2/ · · ·/r1 + · · ·+ rm = c1 + · · ·+ cn\c1 + · · ·+ cn−1\ · · ·\c1\.

Consider a tie diagram D with m NS5 branes and n D5 branes. Fix a D5 brane U . Since there

are no NS5 branes to the right of U , all ties attached to U must go to the left. It follows that

the dU+ ties covering U+ must also cover U−. Therefore, dU− ≥ dU+ and there are dU− − dU+

ties attached to U going to the left. A symmetric argument shows that dV + ≥ dV − and there are

dV + − dV − ties attached to V going to the right for all NS5 branes V .

Create a partite set of m vertices corresponding to the NS5 branes and a partite set of size

n vertices corresponding to the D5 branes. Then, each tie diagram can be realized as a bipartite

graph where r and c are the sequences of degrees for the partite sets. Studying bipartite graphs

with specified degree sequences is a useful approach to BCTs in general [G]. Given a bipartite graph

with partite sets of size m and n, the adjacency matrix has the block structure

 0m M

MT 0n

 ,

where M is a BCT with margins equal to the degree sequences of the partite sets. When the bipartite

graph comes from a separated brane diagram, this matrix M is precisely the matrix described in

Section 2.2.
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CHAPTER 3

Geometry

Cherkis bow varieties are torus equivariant holomorphic symplectic manifolds associated to brane

diagrams. This chapter connects the geometry of bow varieties with the combinatorics of Chapter 2.

In particular, we will see that tie diagrams correspond to torus fixed points and Hanany-Witten

transitions correspond to certain natural isomorphisms of bow varieties.

3.1 The Nakajima-Takayama Quiver Description of Bow Varieties

In this section, we recount the so called “quiver description” of bow varieties of [NT, Section 2.2].

For our purposes, we will only need a special case of the [NT] construction. The exposition in this

section is adapted to this special case. For comparisons between our special case and the more

general construction, see Appendix A.

Remark 3.1.1. Readers familiar with [NT] can use this picture

× × × × × ×

for comparison between diagrams of this paper (top) and diagrams of [NT] (bottom).

3.1.1 Bow Varieties

Fix a brane diagram D. The first step is to associate a vector space to each brane of D.

� For each segment X, let WX = CdX , and define

NX = End(WX), illustrated by WX◦ .
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� For each D5 brane U , let CU = C, and define the “triangle part”

MU =Hom(WU+ ,WU−)⊕Hom(WU+ ,CU )⊕Hom(CU ,WU−)

⊕ End(WU−)⊕ End(WU+),

whose elements will be denoted by (AU , BU , B
′
U , aU , bU ), as shown in the diagram

WU− WU+

CU .

BU ◦
◦
bU

AU

B′U

◦

aU

Moreover, define a space

NU = Hom(WU+ ,WU−), illustrated by WU− WU+ .◦

� For each NS5 brane, define the “two-way part”

MV = Hom(WV + ,WV −)⊕Hom(WV − ,WV +),

whose elements will be denoted by (CV , DV ), as shown in the diagram

WV − WV + .
DV

CV
◦

The significance of the circles in the diagrams will be explained in Section 3.1.2. Ignore them for

now. Finally, define

M =
⊕
U D5

MU ⊕
⊕
V NS5

MV , N =
⊕
U D5

NU ⊕
⊕
X D3

NX .

Next, we define the “moment map” µ : M→ N. The moment map will split as a sum of maps

µ = µ1 + µ2 where

µ1 : M→
⊕
U D5

NU , µ2 : M→
⊕
X D3

NX .
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The definition of µ1, µ2 is component-wise:

1. For each D5 brane U , the NU component of µ1 is BUAU −AUB′U + aUbU .

2. For each segment X, the NX component of µ2 is

� B′X− −BX+ if X is in between two D5 branes (\−X − \),

� CX+DX+ −DX−CX− if X is in between two NS5 branes (/−X − /),

� −DX−CX− −BX+ if X− is an NS5 brane and X+ is a D5 brane (/−X − \),

� CX+DX+ +B′X− if X− is a D5 brane and X+ is an NS5 brane (\−X − /).

Consider the 0-momentum set µ−1(0). Note that we do not need the full data of M to specify an

element of µ−1(0). Namely, the µ2 = 0 condition implies that if a D3 brane X is between two D5

branes, then B′X− = BX+ . By convention, we will associate the B maps to D3 branes X with a

neighboring D5 brane, so that BX ∈ End(WX), and only distinguish between BU and B′U when

necessary. If X has a neighboring NS5 brane, then the µ2 = 0 condition also allows us to rewrite

BX in terms of C and D maps.

Next, two “stability conditions”, (S1) and (S2), on µ−1(0) will be introduced.

(S1) For all D5 branes U , the only BU+-invariant subspace S ⊂WU+ with AU (S) = 0, bU (S) = 0

is S = 0.

(S2) For all D5 branes U , the only BU−-invariant subspace T ⊂WU− with im(AU ) + im(aU ) ⊂ T

is T = WU− .

Let M̃ be the open subset of µ−1(0) consisting of elements satisfying (S1) and (S2).

There is a natural action of G =
∏
X D3 GL(WX) on M and N by conjugation. Indeed, G acts on

Hom(WX ,WX′) by (gX)X .φ = gX′φg
−1
X , and M and N are direct sums of such spaces. It is clear

that the moment map µ is equivariant with respect to this action, and the (S1) and (S2) stability

conditions are invariant under this action, so there is an induced action of G on µ−1(0) and M̃.

Define a character

χ : G → C× , (gX)X 7→
∏
X′

det(gX′),
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where the product runs over all segments X ′ where X ′− is an NS5 brane. The bow variety

corresponding to D is the GIT quotient Mquiver = M̃ss//χ G. We will be interested in only the

smooth locus, which is identified with M̃s/G.

Definition 3.1.2. Given a brane diagram D, let

C(D) = M̃s/G.

Remark 3.1.3. From general GIT considerations, we know only that M̃s has finite stabilizers. Hence,

M̃s/G may have orbifold singularities. In the case of bow varieties, however, all stabilizers are

trivial, and M̃s/G is smooth [NT, Lemma 2.10].

As stated, the definition of C(D) is rather technical, due to the technical nature of GIT stability.

We will instead appeal to a much more natural notion of stability. Let W =
⊕

XWX and define the

(ν) stability condition:

(ν) The only subset T =
⊕

X TX ⊂W invariant under all A,B,C,D maps such that im(aU ) ⊂ T

and AU induces an isomorphism WU+/TU+ →WU−/TU− for all D5 branes U is T = W.

Lemma 3.1.4. The stable locus M̃s is the open subset of M̃ consisting of elements satisfying (ν).

Proof. This is a special case of [NT, Proposition 2.8].

Example 3.1.5 (an empty bow variety and a bow variety with a single point). Consider the brane

diagram \2/ from Figure 2.4. Note that Assumption 2.2.10 is not satisfied. The space µ−1(0) is

illustrated by the diagram

0 C2 0

C

B

A D

b

B′

C

a
.

Since B′ = CD, we have B′ = 0. It follows that all subspaces of C2 are B′-invariant. In particular,

ker(b) is B′-invariant, and A(ker(b)) = 0, b(ker(b)) = 0. In order for (S1) to hold, ker(b) must vanish.

This is impossible, so C(\2/) = ∅.
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Next, consider the brane diagram \1/. By the argument above, b must be an isomorphism in

order for (S1) to be satisfied. In this case, the (S2) and (ν) conditions are trivially satisfied. It

follows M̃s is obtained by taking b to be all possible isomorphisms and all other maps to be 0. All

such isomorphisms are related by the G-action, so C(\1/) = {pt}.

Example 3.1.6 (another degenerate example). In Example 3.1.5, we saw that a brane diagram not

satisfying Assumption 2.2.10 gave rise to an empty bow variety. This need not be the case. Consider

C(\1\). This bow variety is illustrated by the diagram

0 C 0

C C

AU1

bU1

BX1

AU2

bU2
aU1 aU2

.

The (S1) and (S2) conditions force aU2 and bU1 to be isomorphisms. In this case, the (ν) condition

is automatically satisfied. There are no additional constraints on BX1 , bU1 , aU2 . Hence, M̃s =

C× C× × C×, with G = C× acting by

g.(z1, z2, z3) = (z1, g
−1z2, gz3).

The quotient space is isomorphic to C × C× via (z1, z2, z3) 7→ (z1, z2z
−1
3 ). Therefore, we have

C(\1\) = C× C×. The action of T = C× × C× is given by

(u1, u2).(ζ1, ζ2) = (ζ1, u1u2ζ2).

Example 3.1.7 (T ∗P1). Consider the brane diagram D = /1\1\1/. The space µ−1(0) is illustrated

by the diagram

0 C C C 0

CU1 CU2

DV1

CV1

BX1

AU1

bU1

BX2

AU2

bU2

DV2

BX3

CV2

aU1
aU2

.
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Note that BX1 = 0, BX3 = 0. We would like to describe M̃. Suppose AU2 = 0. Then, the

0-momentum condition implies aU2bU2 = 0. It follows that aU2 = 0 or bU2 = 0. The former would

violate (S2), and the latter (S1). Therefore, AU2 is an isomorphism. The same argument can be used

to show that AU1 must be an isomorphism as well. We now know that aU1 and aU2 cannot both

vanish, for if they did, the 0 subspace would violate the (ν) condition. Finally, the 0-momentum

condition gives us the relation

A−1
U1
aU1bU1 = BX2 = −aU2bU2A

−1
U2
. (3.1)

By identifying WX1 and WX3 with WX2 via isomorphisms AU1 and AU2 , we may realize M̃ as the

space illustrated by the diagram

C

CU1 CU2

I1 I2

J1 J2

,

where I1 = bU1 , I2 = bU2A
−1
U2
, J1 = A−1

U1
aU1 , J2 = aU2 . The relation (3.1) can be rephrased as

J1I1 + J2I2 = 0. The (ν) condition is equivalent to im(J1) + im(J2) = C. The group G acts by

change of basis at C. Readers familiar with Nakajima quiver varieties [N1] will recognize the quotient

of this space by the action of G as the quiver variety description of T ∗P1. For completeness, we will

now show the explicit identification C(D) ∼= T ∗P1.

Let I : C→ CU1 ⊕ CU2 = C2, J : C2 = CU1 ⊕ CU2 → C be defined by I = I1 + I2, J = J1 + J2.

The space M̃ consists of pairs of maps I : C→ C2, J : C2 → C such that J is surjective and JI = 0.

Taking duals, this space is isomorphic to the space of pairs of maps I∨ : C2 → C, J∨ : C → C2

such that J∨ is injective and I∨J∨ = 0. It follows that I∨ induces a map C2/im(J∨)→ C. After

quotienting by the action of G, we obtain C(D) = Hom(Q,S), where S → P1 is the tautological

bundle and Q = (P1 × C2)/S is the quotient of the trivial rank 2 bundle by the tautological bundle.

This is precisely the classical description of T ∗P1.

All Nakajima quiver varieties appear as special cases of bow varieties. See Section 3.3 for details.

In Example 3.1.7, we showed that the A maps were isomorphisms. In general, we have

Lemma 3.1.8 ([T, Lemma 2.18]). For any element (A,B,B′, a, b, C,D) ∈ µ−1
1 (0) satisfying (S1)
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and (S2), AU has full rank for all D5 branes U .

3.1.2 Additional Structures

In this section, we will endow the bow variety C(D) with the following additional structures:

� a holomorphic symplectic form,

� tautological vector bundles ξX → C(D),

� a symplectic action of an n-dimensional torus A,

� an additional (non-symplectic) action of C×.

Let M̃sym denote the open subset of µ−1
1 (0) satisfying (S1) and (S2). This space can be thought

of as being similar to M̃ except we treat each triangle part and two-way part as being disjoint.

Namely, there is no identification of B maps coming from adjacent triangle parts, and the C,D

maps of two-way parts are uncoupled from the B maps of any adjacent triangle parts. The space

M̃sym is a holomorphic symplectic manifold, and µ2 is a moment map for the action of G [NT,

Section 3]. It follows that C(D) is a symplectic reduction, and hence carries a symplectic structure.

While it is important for theoretical reasons that C(D) carries a symplectic structure, the specifics

of this structure are not important for our purposes. We refer the reader to [NT, Section 3, 5] for

details.

The quotient map M̃s → M̃s/G = C(D) is a principle G-bundle. Hence, for each D3 brane X,

there is a vector bundle

ξX = M̃s ×G WX → C(D),

associated with the standard action of G on WX , given by (gX′)X′ .w = gXw. These bundles are

called the tautological bundles of C(D).

Define an n-dimensional torus A =
∏
U D5 C

×
U . Denote the coordinate of C×U by u. An element

(u′) ∈ A acts on M by sending

aU 7→ u′
−1
aU , bU 7→ u′bU for all D5 branes U

and leaving all other maps fixed. In other words, the action of T is the natural extension of the

G-action that involves the spaces CU as well. Let the 1-dimensional torus C×~ with coordinate h act

28



on M by sending

bU 7→ hbU , BU 7→ hBU , B′U 7→ hB′U , CV 7→ hCV for all D5 branes U, NS5 branes V

and leaving all other maps fixed. The circles in the diagrams of Section 3.1.1 denote the action of

C×~ . There is also an action of C×~ on N by scaling. Let T = A× C×~ .

Lemma 3.1.9. The map µ : M→ N is T-equivariant. The stability conditions (S1), (S2), (ν) are

preserved by the action of T on µ−1(0).

Proof. The only contribution of aU , bU to µ is the NU component BUAU − AUB′U + aUbU . The

action of A on aU cancels the action of A on bU , proving A-equivariance. For C×~ -equivariance, it

is easy to verify that the C×~ action scales each component of µ. For instance, acting on the NU

component yields

(hBU )AU −AU (hB′U ) + aU (hbU ) = h(BUAU −AUB′U + aUbU ).

It follows that µ is T -equivariant. The three stability conditions are clearly insensitive to scaling of

the maps.

The action of the torus T descends to the quotient C(D). The action of A preserves the symplectic

form, while the action of C×~ does not. There is also an induced action on the tautological bundles

ξX . We will denote the characters (multiplicative) of T by u,h, as above. The weights (additive)

will be denoted by u, ~ (i.e. u = exp(u),h = exp(~)).

Remark 3.1.10. This action of C×~ differs from that of [NT]. Our T-action, however, agrees with

that of [NT] up to a reparametrization of T. See Appendix A for details.

3.1.3 The Tangent Bundle

In this section, we will give a formula for the T-equivariant K-theory class of the tangent bundle

of a bow variety in terms of tautological bundles. Let h ∈ K0
T(C(D)) also denote the class of the

trivial line bundle on C(D) whose fibres are acted upon by T with character h. For a D5 brane

U , let u ∈ K0
T(C(D)) also denote the class of the trivial line bundle with fibre acted upon by u.

We will first find the tangent space TpM̃s at a point p ∈ M̃s by analyzing the differential of µ.
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Throughout this section, we will be identifying the tangent spaces of vector spaces with the vector

spaces themselves. For notational clarity, elements of the base vector space will be underlined.

Lemma 3.1.11 ([NT, Section 2.5]). Let p = (A,B,B′, a, b, C,D) ∈M, and consider the differentials

µ1∗,p : M→
⊕

U D5NU , µ2∗,p : M→
⊕

X D3NX . Then, we have

µ1∗,p(A,B,B
′, a, b, C,D) = BA+BA−AB′ −AB′ + ab+ ab,

µ2∗,p(A,B,B
′, a, b, C,D) =

∑
X D3

µ∗,p,X(A,B,B′, a, b, C,D),

where

µ∗,p,X(A,B,B′, a, b, C,D) =



B′X− −BX+ if D = · · ·\−X − \ · · · ,

CX+DX+ + CX+DX+

−DX−CX+ −DX−CX+

if D = · · ·/−X − / · · · ,

−DX−CX+ −DX−CX+ −BX+ if D = · · ·/−X − \ · · · ,

CX+DX+ + CX+DX+ +B′X− if D = · · ·\−X − / · · · .

Proof. The formulas are straightforward calculations of derivatives. For example,

µ1∗,p(A,B,B
′, a, b, C,D) =

d

dt
µ1(p+ t(A,B,B′, a, b, C,D))|t=0

=
d

dt
((B + tB)(A+ tA)− (A+ tA)(B + tB) + (a+ ta)(b+ tb)) |t=0

= BA+BA−AB′ −AB′ + ab+ ab,

where the last equality is obtained by expanding in powers of t and extracting the linear term.

The kernel of µ∗,p is precisely the tangent space Tpµ
−1(0) whenever p ∈ µ−1(0). Since the

stability conditions are open conditions, if additionally p ∈ M̃s, then TpM̃s = ker(µ∗,p) as well.

Next, we obtain TpC(D) by quotienting out those vectors in TpM̃s that are tangent to the

G-orbit through p. This can be accomplished by analyzing the infinitesimal vector field induced by

the action of G. Namely, given γ = (γX)X ∈ Lie(G) =
⊕

X D3 End(WX), the induced infinitesimal
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vector field γ] on M̃s is given by

γ]p =
d

dt
exp(tγ).p|t=0.

Lemma 3.1.12 ([NT, Section 2.5]). Let µ∗p :
⊕

X D3 End(WX)→ TpM̃s ⊂M be the “comoment”

map γ 7→ γ]p. Then, we have

µ∗p(γ) = ([γ,A], [γ,B], [γ,B′], [γ, a], [γ, b], [γ,C], [γ,D]),

where the commutator brackets [γ, ∗] are interpreted as γX ∗ − ∗ γX′ for suitable D3 branes X,X ′

depending on the map ∗ (e.g. [γ,DV ] = γV +DV −DV γV − and [γ,AU ] = γU−AU −AUγU+).

Proof. This is a straightforward calculation of derivatives. For instance, to find the AU component

of µ∗p(γ), we calculate

d

dt
exp(tγ).AU |t = 0 =

d

dt
exp(tγU−)AU exp(−tγU+)|t=0

=
d

dt
(1 + tγU− +O(t2))AU (1− tγU+ +O(t2))|t=0

= γU−AU −AUγU+ ,

where the last equality is obtained by expanding in powers of t and extracting the linear term.

Hence, the tangent space is given by TpC(D) = ker(µ∗,p)/im(µ∗p). The key properties of µ∗ and

µ∗ are summarized by

Proposition 3.1.13 ([NT, Proposition 2.12]). Let p ∈ M̃s. Then,

1. µ∗p is injective, and

2. µ∗,p is surjective.

Consider the short exact sequences

(1) 0
⊕

X D3 End(WX) ker(µ∗,p) TpC(D) 0
µ∗p

,

(2) 0 ker(µ∗,p) M N 0
µ∗,p

.

By varying p ∈ M̃s, we may interpret (1) and (2) as sequences of trivial bundles over M̃s
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(1) 0 M̃s ×
⊕

X D3 End(WX) ker(µ∗) T̃C(D) 0
µ∗

,

(2) 0 ker(µ∗) M̃s ×M M̃s × N 0
µ∗

.

Moreover, these sequences are G × T-equivariant. It follows that they descend to sequences of

T-equivariant bundles over C(D).

Definition 3.1.14. For each D5 brane U , define the bundle

TU = Hom(ξU+ , ξU−)⊕ hHom(ξU+ ,CU )⊕Hom(CU , ξU−)⊕ hEnd(ξU+)⊕ hEnd(ξU−),

and for each NS5 brane V , define the bundle

TV = hHom(ξV + , ξV −)⊕Hom(ξV − , ξV +).

We have the short exact sequences

(1) 0
⊕

X D3 End(ξX) ker(µ∗) TC(D) 0
µ∗

,

(2) 0 ker(µ∗)
⊕

U D5 TU ⊕
⊕

V NS5 TV⊕
U D5 hHom(ξU+ , ξU−)⊕

⊕
X D3 hEnd(ξX) 0

µ∗
,

of T-equivariant bundles over C(D). From (1) and (2), we obtain

Theorem 3.1.15. The bow variety C(D) is a smooth holomorphic symplectic manifold of dimension

dim(C(D)) =
∑
U D5

((dU− + 1)dU− + (dU+ + 1)dU+) + 2
∑
V NS5

dV +dV − − 2
∑
X D3

d2
X .

The tangent bundle of C(D) can be expressed as an element of K0
T(C(D)) in terms of the tautological

bundles as

TC(D) =
⊕
U D5

TU ⊕
⊕
V NS5

TV 	
⊕
U D5

hHom(ξU+ , ξU−)	
⊕
X D3

(1 + h)End(ξX).

Remark 3.1.16. The phenomenon of negative signs in the formula for the tangent bundle also occurs

in the formula TGr(k, n) = Hom(S,Q) for the Grassmannian. Here S is the rank k tautological
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bundle, and Q = (Gr(k, n)× Cn)/S is the quotient of the trivial rank n bundle by the tautological

bundle. If we wish to express the tangent bundle strictly in terms of the tautological and trivial

bundles, we must use negative signs: TGr(k, n) = Hom(S, (Gr(k, n)× Cn)	 S).

Example 3.1.17. In Example 3.1.5, we showed that C(\2/) = ∅. Theorem 3.1.15 does not apply

in this case, because the proof relies on the existence of a point f ∈ M̃s. If we naively apply the

dimension formula of Theorem 3.1.15 to this empty bow variety, we obtain

dim(C(\2/)) = (2 + 1) · 2− 2(22) = −2.

In fact, if this dimension formula returns a negative number, we know the bow variety must be

empty.

We also showed that C(\1/) = {pt}. Indeed, according to Theorem 3.1.15,

dim(C(\1/)) = (1 + 1) · 1− 2(12) = 0.

Example 3.1.18. In Example 3.1.6, we showed that C(\1\) = C× C×. Theorem 3.1.15 gives

dim(C(\1\)) = (1 + 1) · 1 + (1 + 1) · 1− 2(12 + 02 + 02) = 2,

as expected.

Example 3.1.19. Let D = /1\1\1/. In Example 3.1.7, we showed that C(D) = T ∗P1. From

Theorem 3.1.15, we have

TC(D) = (1− h)

(
ξX1

ξX2

+
ξX2

ξX3

)
+
ξX1

u1
+

hu1

ξX2

+
ξX2

u2
+

hu2

ξX3

+ h− 3.

Moreover, we have

dim(C(D)) = (1 + 1) · 1 + (1 + 1) · 1 + (1 + 1) · 1 + (1 + 1) · 1 + 2(1 · 0 + 0 · 1)− 2(12 + 12 + 12) = 2,

as expected.

Example 3.1.20. Let D be the brane diagram /2\2/2\4/3/3/4\3/2\2\ in Figure 2.2. Then, we
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W1 W2 W3

CU

BU

AU

bU

B′U

DV

CV

aU

W̃1 W̃2 W̃3

CŨ

DṼ

BŨ

CṼ

B′
Ũ

bŨ

AŨ

aŨ

Figure 3.1: A local illustration of M̃s(D) (left) and M̃s(D̃) (right).

have dim(C(D)) = 16.

3.1.4 Hanany-Witten Transitions

In [NT, Section 7], a T-equivariant isomorphism is constructed between the bow varieties

associated to Hanany-Witten equivalent brane diagrams. We will give the construction of this

isomorphism for completeness. Consider two brane diagrams D, D̃ that differ locally as shown in

the diagram

d1 d2 d3

U V
X

d1 d̃2 d3

ŨṼ
X̃

,

where d̃2 = d1 + d3 + 1− d2. Denote the tautological bundles over C(D) and C(D̃) corresponding to

the displayed segments by ξ1, ξ2, ξ3 and ξ̃1, ξ̃2, ξ̃3. Recall that the tori

T =
∏

U D5 in D
C×U and T̃ =

∏
Ũ D5 in D̃

C×
Ũ

act on C(D) and C(D̃) respectively. Define a homomorphism ρ : T→ T̃ by mapping

C×U × C×~ → C×
Ũ
× C×~ by (u,h) 7→ (uh,h),

and leaving all other components fixed. We will now construct a ρ-equivariant homomorphism

C(D)→ C(D̃).

Fix p = (A,B,B′, a, b, C,D) ∈ M̃s(D̃). Our goal is to specify an element p̃ ∈ M̃s(D̃) Let

W1 = WX= ,W2 = WX ,W3 = WX‡ , and define W̃1, W̃2, W̃3 analogously for D̃. Define a map
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α : W2 →W1 ⊕W3 ⊕ CU by

α =


AU

DV

bU

 .

Define a map β : W1 ⊕W3 ⊕ CU →W1 by

β = (BU , AUCV , aU ).

One can check that α is injective and βα = 0. Make identifications W̃1 = W1, W̃2 = coker(α), W̃3 =

W3,CU = CŨ , and define the maps

� AŨ and aŨ to be the composition of of the inclusion of W3 and CU , respectively, into

W1 ⊕W3 ⊕ CU followed by the quotient,

� DṼ to be the composition of the inclusion W1 → W1 ⊕W3 ⊕ CU followed by the quotient

multiplied by -1,

� CṼ to be the map induced by β,

� bŨ = bUCV .

The 0-momentum condition forces BŨ = −DṼ CṼ and also fixes the value of B′
Ũ

depending on Ũ ‡.

Theorem 3.1.21 ([NT, Proposition 7.1]). With ρ and p̃ as above, we have the following.

1. The map p 7→ p̃ is a ρ-equivariant isomorphism C(D)→ C(D̃).

2. There is a short exact sequence of bundles

0→ ξ2 → ξ3 ⊕ ξ1 ⊕ CU → ξ̃2 → 0.

Remark 3.1.22. In Remark 2.4.1, we discussed combinatorial operations that interchange 5-branes of

the same type while preserving charges. It is easy to see from the dimension formula of Theorem 3.1.15

that switching D5 branes can change the dimension. Therefore, there is no isomorphism between

bow varieties related by switching D5 branes in general. On the other hand, switching NS5 branes
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preserves the dimension. While we do not expect there to be an algebraic isomorphism between bow

varieties related by switching NS5 branes in general, in certain cases there are C∞ isomorphisms

(see Section 4.5).

3.2 Torus Fixed Points

In Section 3.1.1, we assigned a symplectic holomorphic T-manifold C(D) to each brane diagram

D. These manifolds have finitely many T-fixed points, which as one might expect, are in bijection

with tie diagrams. In this section, we will discuss three combinarial codes for the torus fixed points

of a bow variety: tie diagrams, BCTs, and butterfly diagrams.

3.2.1 Butterflies

The identification of tie diagrams and BCTs to torus fixed points will pass through intermediate

combinatorial objects called “butterflies”. Fix a brane diagram D. Let X0, ..., Xs+1 be the segments

of D including the infinite left and right segments.

Definition 3.2.1. Choose a D5 brane U . A vector dU = (dUX1
, ..., dUXs

) ∈ Ns is called a butterfly

dimension vector with center U if

1. dUX1
≤ · · · ≤ dUU− and dUU+ ≥ · · · ≥ dUXs

,

2. for all NS5 branes V , we have |dUV + − dUV − | ≤ 1, where dUX0
= dUXs+1

= 0,

3. for all D5 branes U ′ 6= U , we have dU
U ′+

= dU
U ′−

.

Fix a butterfly dimension vector dU with center U . The butterfly associated with dU is a

connected directed graph constructed through the following steps. First, we place the vertices of

the graph relative to the brane diagram D:

1. Place a vertex below U . This vertex will be called the framing vertex of the butterfly.

2. Create a column of dUX uniformly spaced vertices below segment X.

3. Align the columns below U− and U+ at the bottom, so that their lowest vertices are at the

same height.

4. Align columns to the right of U at the top, so that the highest vertices in each column are at

the same height.
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Figure 3.2: The butterfly with dimension vector (1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 6, 5, 4, 4, 4, 3, 3, 2, 2, 2, 1) and
center U4 with respect to the displayed brane diagram. Note that the D3 multiplicites do not play a
role in the construction of a butterfly.

5. Align the columns to the left of U , so that

� if U ′ is a D5 brane left of U , then the columns below U ′− and U ′+ are aligned at the

top, and

� if V is an NS5 brane left of U , the highest vertex below V − is at the same height as the

second highest vertex below V +.

Second, we create the directed edges:

1. Create an edge (green) from the framing vertex to the highest vertex below U−, if such a

vertex exists.

2. Create an edge (green) from the vertex below U+ one position up and right of the highest

vertex below U−, if such a vertex exists, to the framing vertex. If dUU− = 0, then create an

edge from the lowest vertex below U+ to the framing vertex.

3. For all D5 branes U ′, create downward edges (black) between all consecutive pairs of vertices

under U ′− and U ′+. Also add all possible leftward edges (blue) between vertices of U ′− and

U ′+ with the same height.
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2 2 2 4 3 3 4 3 2 3 1

Figure 3.3: A tie diagram and corresponding butterfly diagram.

4. For all NS5 branes V , add all possible rightward edges (red) between vertices under V − and

V + with the same height. Also add all possible edges (magenta, dotted) starting at a vertex

under V + and ending at the vertex one position left and down.

A butterfly diagram for D is a collection of butterflies, one centered on each D5 brane U , such

that the corresponding dimension vectors dU sum to d = (dX1 , ..., dXs). By convention, we think

of the butterflies as being stacked vertically, so that the centers of the butterflies go from left to

right as we go from the top of the butterfly diagram to the bottom. The condition on the sum of

dimension vectors may be rephrased as saying the total number of vertices under each segment X

is dX . Note that butterflies and butterfly diagrams are merely visual representations of butterfly

dimension vectors and collections of butterfly dimension vectors compatible with D, respectively.

They contain equivalent combinatorial information.

Lemma 3.2.2. Butterfly diagrams for D are in bijection with tie diagrams on D.

Proof. Let D be a tie diagram, and fix a D5 brane U . Let dUX be the number of ties attached to

U that cover X. Then, dU = (dUX1
, ..., dUXs

) is a butterfly dimension vector centered on U . Indeed,

condition 1 of Definition 3.2.1 follows from the fact that the entries of dU count ties that all emanate
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from U , condition 2 follows from the fact that no pair of 5-branes may be joined by multiple ties, and

condition 3 follows from the fact that U is the only D5 brane to which the ties under consideration

attach, and the endpoints of the ties determine where the entries of dU change. Repeating this

construction for each D5 brane of D yields a collection of butterfly dimension vectors summing to

d: every tie is attached to a unique D5 brane, and the entries of d count the total number of ties

covering each segment. This construction has an obvious inverse.

3.2.2 Combinatorial Codes for Fixed Points

We will now construct a bijection between butterfly diagrams for D and the fixed point locus

C(D)T. Fix a butterfly diagram for D. For each D5 brane U , choose a basis vector for CU , and

identify the framing vertex of the butterfly centered on U with this basis vector. For each segment

X, choose a basis for WX , and identify the basis vectors with the vertices of the butterfly diagram

below X. Interpret the edges as mappings to obtain an element of M̃s. Namely,

� the green edges represent a and −b,

� the blue edges represent A,

� the black edges represent −B,

� the red edges represent C,

� the dotted magenta edges represent D.

The 0-momentum condition is satisfied by construction, but we must check (S1), (S2), and (ν).

It is sufficient to check the conditions at each D5 brane U restricted to the butterfly centered on

U . This is because AU is an isomorphism outside of the butterfly centered on U . Consider the two

cases dUU− < dUU+ and dUU− ≥ d
U
U+ . The columns of the butterfly adjacent to the center are depicted

for both cases by

, ,
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respectively. In the first case, it is clear from the picture that im(aU ) generates WU− as a C[BU− ]-

module, so (S2) is satisfied. Any nonzero subspace contained in ker(AU ) ∩ ker(bU ) must spanned by

some of the basis vectors corresponding to the dots above the source of the green bU edge. However,

no such subspace is BU+-invariant, so (S1) is satisfied. In the second case, (S1) is trivially satisfied,

and (S2) is satisfied for the same reason as in case 1. To check the (ν) condition in both cases,

note that any A,B,C,D-invariant subspace im(aU ) ⊂ T ⊂W contains the span of the portion of

the butterfly left of the center. If we also insist that AU induces an isomorphism on W/T , then

the picture shows that T contains the span of the column to the right of the center. Since T is

A,B,C,D-invariant, T must contain the span of the portion of the butterfly to the right of the

center. It follows that T = W.

Our goal now is to show that the fixed points constructed from butterfly diagrams account for

all T-fixed points of C(D). Given a fixed point f ∈ C(D)T, we may identify each vector space WX

with the fibre ξX |f of the corresponding tautological bundle. This endows W with the structure

of a T-representation. The following lemma shows that the weight spaces of W are modeled by

butterflies.

Lemma 3.2.3. Let f ∈ C(D)T and consider the T-representation W. For each D5 brane U and

segment X, denote the u-weight space of the A-action on WX by WU
X . Let dUX = dim(WU

X ), and

WU =
⊕

X D3W
U
X . Then, we have the following.

1. All A,B,C,D maps send weight spaces to weight spaces. The C and B maps lower the ~

weight, while A and D maps are homomorphisms of T-representations.

2. All A-weights of W are of the form u, the weight corresponding to a D5 brane U . All T-weights

of W are of the form u+ k~, where k ∈ Z.

3. The image of aU is contained in the u-weight space of the T-action, and bU vanishes on all

weight spaces except the (u+ ~)-weight space.

4. Let U ′ 6= U be two distinct D5 branes. Then, AU ′ is an isomorphism outside of WU .

5. We have WU
U− 6= 0 if and only if aU 6= 0, and dUU− < dUU+ if and only if bU 6= 0.

6. The vector aU (1) is a vector of highest ~-weight and generates WU
U− as a C[BU− ]-module. The
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highest ~-weight of WU
U+ is dUU+ − dUU−, and any highest ~-weight vector generates WU

U+ as a

C[BU+ ]-module. All T-weight spaces of W are 1-dimensional.

Proof. Parts 1, 2, and 3 of the lemma follow immediately from the structure of M̃ and the T-action.

Fix a D5 brane U , and let U ′ 6= U be another D5 brane. From 3, we know that aU ′ , bU ′ = 0 on

WU . Hence, the 0-momentum condition reduces to BU ′−AU ′ −AU ′BU ′+ = 0 on this weight space.

It follows that the u-weight spaces of the A-action on both im(AU ′) and ker(AU ′) are B-invariant.

The (S1) and (S2) conditions imply part 4. To prove part 5, suppose aU = 0, and extend ker(AU ) to

an A,B,C,D-invariant subspace T0 ⊂W. Note that ker(AU ) is BU+-invariant by the 0-momentum

argument above. Hence, T0∩WU
U− = 0. Taking the direct sum of T0 with WU ′ for U ′ 6= U , we obtain

an A,B,C,D-invariant subspace T ⊂W containing im(aU ′) for all U ′ 6= U . The (ν) condition forces

T = W, proving the first statement of 5. If bU = 0, then the argument above implies ker(AU ) is

BU+-invariant. By (S1), ker(AU ) = 0, and AU is injective. It follows that dUU− ≥ d
U
U+ . The converse

will be proven in part 6.

Lastly, we prove part 6. Let T0 ⊂ WU− be spanned by vectors of the form Bk
U (aU (1)) for

k ≥ 0 and T ′0 = A−1
U (T0) ⊂ WU+ . From the 0-momentum condition, we have the relation

AUBU+ − aUbU = BU−AU . This relation implies that im(AU ) + T0 is BU−-invariant. The (S2)

condition implies that WU− = imAU +T0. Hence, AU induces an isomorphism WU+/T ′0 →WU−/T0.

Recall that if U ′ 6= U , then AU ′ is invertible on WU . We may extend T0 ⊕ T ′0 to an A,A−1, B,C,D-

invariant subspace T1 ⊂W by acting by all available maps. Let T =
⊕

U ′ 6=U WU ′ . The subspace T

satisfies the hypotheses of the (ν) condition, so W = T . This proves the first statement of part 6,

which will be used throughout the remainder of the proof.

To prove the second statement, first consider the case where dUU− ≥ d
U
U+ . By Lemma 3.1.8, AU is

injective. Since AU preserves weights, it follows that all T-weight spaces of WU
U+ are 1-dimensional.

Moreover, WU− does not have u+ ~ as a weight, so WU+ cannot have u+ ~ as a weight either. Part

4 implies that bU = 0. By the 0-momentum argument above, AU commutes with the B-maps. Since

B maps lower the ~-weight, the lowest ~-weight of WU
U− must be the same as the that of WU

U+ . The

0-momentum condition also implies that BU+ is nonzero on each T-weight space of WU
U+ except the

lowest. Hence, the highest ~-weight of WU
U+ is dUU+ − dUU− , and WU

U+ is generated by any highest

~-weight vector as a C[BU+ ]-module.

41



Next, we consider the case dUU− < dUU+ . In this case, AU is surjective. Let the subspace S0 ⊂WU+

be the portion of ker(AU ) with weight u + k~ for k ≤ 0. By part 3, bU (S0) = 0. Applying the

0-momentum argument above yields the BU+-invariance of S0. We have S0 = 0 by (S1), so AU

restricted to the (u+ k~) weight spaces for k ≤ 0 is an isomorphism onto WU
U− . It follows that all

such weight spaces are 1-dimensional. Denote the direct sum of these weight spaces by S. We will

now show that the (u+ k~)-weight space of WU+ is 1-dimensional for all k > 0, and that BU+ is

nonzero on each T-weight space of WU
U+ except the lowest one.

We have shown in part 5 that bU 6= 0. Let w1 ∈ WU+ be a vector of weight u + ~ such that

bU (w1) = 1. Suppose that w1 ∈ ker(BU+). Then, the 0-momentum condition implies a(1) = 0,

because AU vanishes on the (u + ~)-weight space. By part 5, dUU− = 0 and S = 0. Hence, BU+

vanishes on the (u + ~)-weight space. The (S1) condition implies that the (u + ~)-weight space

of WU+ is 1-dimensional, since otherwise, it would intersect the kernel of bU and BU+ . Suppose

w1 /∈ ker(BU+). If the (u + ~)-weight space of WU+ had dimension greater than 1, then there

would be a nonzero vector w′1 ∈ ker(bU ) of weight u+ ~. By the 0-momentum condition, we have

AUBU+(w′1) = 0. Since BU+(w′1) ∈ S, and AU is an isomorphism on S, w′1 ∈ ker(BU+). This

contradicts (S1), so again we have that the (u + ~)-weight space of WU+ is 1-dimensional. The

restriction of BU+ to the (u+ k~)-weight space for each k > 1 must have zero kernel, due to (S1).

It follows by induction on k that all such weight spaces are 1-dimensional and connected by BU+ .

The remainder of the proof is the same as in the previous case.

Finally, we show that all ~-weight spaces of W are 1-dimensional. Extend T0 = WU
U− ⊕W

U
U+

to a A,A−1, B,C-invariant subspace T1 ⊂ W. Let T = T0 ⊕
⊕

U ′ 6=U WU ′ . Due to (ν), W = T . It

follows that WU can be generated from T0 by acting by all available maps. Any two compositions of

maps starting and ending in the same weight spaces are equal up to sign, due to the 0-momentum

condition. Since the weight spaces of T0 are 1-dimensional, all weight spaces are 1-dimensional.

By representing CU and the T-weight spaces of WU by vertices and A,B, a, b,D,C maps by

directed edges, we obtain the butterfly centered on U with dimension vector dU = (dim(WU
X ))X D5.

The fact that dU is a butterfly dimension vector follows from the various steps of the proof of

Lemma 3.2.3. The shape of the butterfly and the signs on B and b follow from the 0-momentum

condition. Thus, we obtain
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Theorem 3.2.4. Let D be a brane diagram. There are natural bijections between the following

objects:

� T-fixed points of C(D),

� tie diagrams on D,

� BCTs with margins and separating line determined by D,

� butterfly diagrams on D.

3.2.3 Fixed Point Restrictions of Tautological Bundles

Recall that there is a tautological rank dX bundle ξX → C(D) associated to each segment X

of a brane diagram D. Let n be the number of D5 branes in D. In this section, we will study the

localization maps

LocK : K0
T(C(D))→

∏
f∈C(D)T

K0
T(f) =

∏
f∈C(D)T

C[u±1
1 , ...,u±1

n ,h±1],

Loc : H∗T(C(D))→
∏

f∈C(D)T

H∗T(f) =
∏

f∈C(D)T

C[u1, ..., un, ~].

These maps are defined component-wise by restriction homomorphisms

LocKf : K0
T(C(D))→ K0

T(f) = C[u±1
1 , ...,u±1

n ,h±1],

Locf : H∗T(C(D))→ H∗T(f) = C[u1, ..., un, ~],

induced by the inclusion of T-fixed points f into C(D). In other words, the K-theoretic restriction

homomorphisms applied to a bundle λ gives the sum of the characters of the T-representation λ|f ,

and the cohomological restriction homomorphism applied to eT(λ) gives the product of the weights

of λ|f . When λ = ξX , these characters and weights can be read from the butterfly diagram of f

(see Lemma 3.2.3).

For each butterfly, we introduce a notion of height for each nonframing vertex. Note that if both

aU , bU = 0, then dU = 0, and the butterfly centered on U has no nonframing vertices.

Definition 3.2.5. Let w be a nonframing vertex of the butterfly centered on U . Define the height

y(w) by taking the target of the aU edge to have height 0 if dUU− 6= 0 and the source of the bU edge
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Figure 3.4: The monomials associated to the nonframing vertices of the butterfly in Figure 3.2.

to have height 1 if dUU− = 0. The height of all other nonframing vertices is their vertical position

relative to these two vertices.

Theorem 3.2.6. Let f ∈ C(D)T and X be a segment in D. We have

LocKf (ξX) =
∑
U D5

∑
w

uhy(w),

Locf (ξX) =
∏
U D5

∏
w

(u+ y(w)~),

where w ranges over all nonframing vertices below X of the butterfly centered on U .

We may also think of decorating each nonframing vertex w of the butterfly centered on U with the

monomial uhy(w). Then the Grothendieck roots (K-theoretic Chern roots) of ξX |f are precisely the

monomials below X. See Figure 3.4 for an example. By taking “logarithms”, uhy(w) 7→ u+ y(w)~,

we obtain the (cohomological) Chern roots.

Example 3.2.7. Continuing Example 3.1.7, consider the two tie diagrams

1 1 1 1 1 1

.

The corresponding decorated butterfly diagrams are u1 u1 u1 and u2 u2 u2 . Therefore,

44



for the restriction maps in K theory we have

ξX1 7→ u1, ξX2 7→ u1, ξX3 7→ u1, and ξX1 7→ u2, ξX2 7→ u2, ξX3 7→ u2.

Making these substitutions into the formula for T (C(D)) (see Example 3.1.19) we find the tangent

spaces at the two fixed points to be

u1

u2
+

u2

u1
h and

u2

u1
+

u1

u2
h.

Example 3.2.8. Consider the two HW equivalent cobalanced and separated tie diagrams of Exam-

ple 2.4.2. The decorated butterflies of the cobalanced form are

u3 u3 u3 u3 u3

u4 u4 u4 u4 u4 .

Note that all tautological bundles restrict to u3 + u4 at this fixed point. Indeed, all A maps are

isomorphisms, so all tautological bundles are isomorphic. The formula for the tangent bundle is

h(Hom(ξ,u1)⊕Hom(ξ,u2)⊕Hom(ξ,u3)⊕Hom(ξ,u4)	 End(ξ))

⊕Hom(u1, ξ)⊕Hom(u2, ξ)⊕Hom(u3, ξ)⊕Hom(u4, ξ)	 End(ξ),

where we have identified all tautological bundles with ξ. Its image under the restriction homomor-

phism is

h

(
u1

u3
+

u2

u3
+

u1

u4
+

u2

u4

)
+

u3

u1
+

u3

u2
+

u4

u1
+

u4

u2
.

In Section 3.3, we will see that this bow variety is T ∗Gr(2, 4), and this fixed point is given by the

span of the 3rd and 4th standard basis vectors in C4. The bundle ξ is, in fact, the pull-back of

the rank 2 tautological bundle on Gr(2, 4) under the canonical projection of the cotangent bundle.

Note that C4 = u1 ⊕ u2 ⊕ u3 ⊕ u4 as equivariant bundles (C4 denotes the trivial rank 4 bundle over
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T ∗Gr(2, 4)). Hence, the tangent bundle can be rewritten as

h(Hom(ξ,C4)	Hom(ξ, ξ))⊕Hom(C4, ξ)	Hom(ξ, ξ) = hHom(ξ,C4 	 ξ)⊕Hom(C4 	 ξ, ξ).

Ignoring the ~-action, this is the classical description of the tangent bundle of T ∗Gr(2, 4).

The decorated butterflies of the separated form are

u1

u2 u2

hu3 u3 u3 u3

hu4 u4 u4 u4 u4 .

The fact that all A maps are injective is reflected in the nesting of the sets of Grothendieck roots

in the last three columns. The restriction of the tangent bundle to this fixed point is the same as

before, consistent with the fact that HW transitions are equivariant isomorphisms with respect to

the reparametrizations of the torus described in Section 3.1.4.

Remark 3.2.9. Note that while the formulas for the tangent bundle in Example 3.2.7 and Exam-

ple 3.2.8 contain negative signs, the fixed point restrictions do not. Indeed, the tangent bundle is an

honest (rather than virtual) bundle, so its fixed point restrictions are honest T-representations. The

phenomenon that the fixed point restrictions of the tangent bundle are Laurent polynomials with

positive coefficients is general, and a good sanity check for calculations.

3.2.4 Fixed Points Under Hanany-Witten Transition

In Section 2.4, we defined a natural action of Hanany-Witten transitions on tie diagrams and

BCTs. In this section, we will show that this action is consistent with the action of HW transitions

on the corresponding T-fixed points. The first step is to describe the HW transition on butterflies.

Let D be a tie diagram, and let f ∈ C(D)T. Fix an NS5 brane U such that V = U ‡ is an

NS5 brane. Adopt the notation of Section 3.1.4. Namely, let D̃ be the tie diagram obtained by

switching U and V by HW transition, and denote U and V in their new positions by Ũ and Ṽ .

Let X1 = U−, X2 = U+, X3 = V + and X̃1 = Ṽ −, X̃2 = Ṽ +, X̃3 = Ũ+. Geometrically, the HW

transition gives an isomorphism C(D) → C(D̃) (Section 3.1.4). Let f̃ ∈ C(D̃)T be the image of f
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HW

L

R

¬E

Figure 3.5: Change in the ties attached to U under Hanany-Witten transition. The notation ¬E
means that if tie E is in D, then tie ¬E is not in D̃ and vice-versa.

under the HW transition. We will now examine the relationship between the butterfly centered on

U in the butterfly diagram for f and the butterfly centered on Ũ in the butterfly diagram for f̃ .

Let L be the number of ties attached to U extending to the left and R be the number of ties

attached to U extending to the right past V . Let E denote a tie between U and V or between Ũ

and Ṽ . See Figure 3.5 for an illustration of how these ties are changed by the HW transition. Let

δ(E) =


1 if E is in D,

0 otherwise.

Then, we have

dUX1
= L , dUX2

= R+ δ(E)

dŨ
X̃2

= L+ (1− δ(E)) , dŨ
X̃3

= R.

If dUX1
< dUX2

, then it is easy to see that dŨ
X̃2
≤ dŨ

X̃3
. On the other hand, if dUX1

≥ dUX2
, then

dŨ
X̃2
≥ dŨ

X̃3
.
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Consider the case where dUX1
< dUX2

. The butterfly centered on U has the form

wU

w−j

w′1

w′2

w′L−1

w′L

w−1

w0

w1

w2

wL−1

(1− δ(E))wL

below X1, X2, X3, where j = R − L + δ(E) − 1. By (1 − δ(E))wL, we mean the vertex wL

(and any incident edges) is present if and only if δ(E) = 0. The effect of the HW transition

on this butterfly is constrained to the A,B, a, b, C,D maps in this picture. From Section 3.1.4,

we have W Ũ
X̃2

= coker(αU ), where αU : WU
X2
→ WU

X1
⊕WU

X3
⊕ CU is defined by (AU , DU , bU )t,

and the superscript U denotes restriction to the A-weight space WU of W. In W Ũ
X̃2

, we have the

identifications

w′L = (δ(E)− 1)wL , w′i = −wi for 0 < i < L , w0 = wU , wi = 0 for i < 0.

Hence, W Ũ
X̃2

may be identified with the span of {wi | 0 ≤ i ≤ L − δ(E)}. We also have W Ũ
X̃1

=

WU
X1

= C{w′i | 1 ≤ i ≤ L} and W Ũ
X̃3

= WU
X3

= C{wi | − j ≤ i ≤ L− δ(E)}. The maps AŨ and aŨ

are induced by inclusion. Therefore, we have

AŨ (wi) =


wi if i ≥ 0,

0 if i < 0,

and aU (wŨ ) = wU = w0, where wŨ is a basis vector for CŨ . The map DṼ is the negative of the

map induced by inclusion. Therefore, DṼ (w′i) = −w′i = wi for i ≥ 1. The map CṼ is induced by
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(BX1 , AUCV , aU ). Hence, we have

CṼ (wi) =


w′i+1 if i ≥ 0,

0 if i < 0.

Finally, bŨ = bUCV . If j = 0, then bŨ = 0. Otherwise, bŨ maps w−1 to −wŨ and vanishes on wi for

i 6= −1. The BX̃2
, BX̃3

maps are determined by the other maps and the 0-momentum condition.

Diagramatically, these new maps can be represented by

wŨ

w′1

w′2

w′L−1

w′L

w0

w1

w2

wL−1

(1− δ(E))wL

w−j

w−1

w0

w1

w2

wL−1

(1− δ(E))wL

,

where a negative sign is attached to the black downward edges and the green upward edge. This

is precisely the butterfly with dimension vector dŨ . A similar argument applies in the case where

dUX1
≥ dUX2

.

Now we examine the action of the HW transition on the butterfly centered on U ′ for U ′ 6= U .

Suppose there are no ties joining U ′ with V . Then, the HW transition does not change any ties

attached to U ′, so dU
′

= dŨ
′
. Moreover, dU

′
X1

= dU
′

X2
= dU

′
X3

=: k. The HW transition acting on the

relevant maps is depicted by

w′1

w′2

w′3

w′k

w1

w2

w3

wk

w′1

w′2

w′3

w′k

w1

w2

w3

wk

w1

w2

w3

wk

,
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as can be verified using the reasoning above. This is consistent with the combinatorics of the HW

transition.

Assuming there is a tie joining U ′ with V , and U ′ is left of U , we know that dU
′

X2
− dU ′X3

= 1.

After interchanging U and V , the tie joining U ′ with V no longer covers X̃2, so dU
′

X̃2
= dU

′
X3

=: k.

Acting on the relavant maps by the HW transition, we have

w′1

w′2

w′k

w′k+1

w1

w2

wk

w′1

w′2

w′k

w′k+1

w1

w2

wk

w1

w2

wk

,

as desired. The case where U ′ is right of U is similar.

Theorem 3.2.10. The action of Hanany-Witten transitions on tie diagrams and BCTs is consistent

with the action of Hanany-Witten transitions on T-fixed points with respect to the bijection of

Theorem 3.2.4.

3.3 Cobalanced Bow Varieties and Nakajima Quiver Varieties

When D is (co)balanced, we call C(D) a (co)balanced bow variety. In [NT, Section 2.6], it is

shown that all cobalanced bow varieties are naturally isomorphic to a type A quiver variety. The

construction of the isomorphism is an extrapolation of the argument in Example 3.1.7. We will

begin by recalling the definition of quiver varieties, and then we will construct this isomorphism

explicitly. Finally, the relationship between torus fixed points, butterfly diagrams, and partitions

will be analyzed.

3.3.1 Quiver Varieties

A (framed) type A quiver is a graph with two kinds of vertices, circular “non-framing” vertices

and square “framing” vertices, of the shape

· · ·
v1 v2 v3 vn−2 vn−1 vn

w1 w2 w3 wn−2 wn−1 wn ,
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where the non-framing and framing vertices are decorated with numbers vi ∈ N and wi ∈ N,

respectively. The corresponding vectors v, w ∈ Nn are called the “dimension vectors” of the quiver.

Denote this quiver by Q = Q(v, w). These are the combinatorial objects parametrizing type A

quiver varieties [N1]. Define

R =
n−1⊕
i=1

Hom(Cvi ,Cvi+1)⊕
n⊕
i=1

Hom(Cvi ,Cwi).

Denote elements of T ∗R = R⊕R∨ by (D, b, C, a), where

Di ∈ Hom(Cvi ,Cvi+1), bi = Hom(Cvi ,Cwi), Ci = Hom(Cvi+1,Cvi), ai = Hom(Cwi ,Cvi).

Let Gv =
∏n
i=1 GL(Cvi) act on M by conjugation. The cotangent bundle possesses a canonical

symplectic form and Hamiltonian action of Gv. The moment map

µ : T ∗R→
n⊕
i=1

End(Cvi)

is given by µ = [D,C]− ab. The quiver variety N (Q) = N (Q(v, w)) = N (v, w) is defined to be

µ−1(0)s
/ n∏
i=1

GL(Cvi),

where an element (D, b, C, a) is stable if im(a) generates
⊕n

i=1 Cvi as a C[C,D]-module, under our

choice of GIT stability condition. Define a symplectic torus action of

A =

n∏
i=1

(C×)wi by u.(D, b, C, a) = (D,ub, C, au−1).

Define an additional C×~ -action by scaling R∨. This action scales the symplectic form. Quiver

varieties are smooth with the following additional structures:

� holomorphic symplectic structure,

� tautological bundle ξi → N (Q) associated with Cvi ,

� action of the torus T = A× C×~ .
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vi vi vi vi

wi

vi

wi

Figure 3.6: Local illustration of D and Q(D).

Remark 3.3.1. Several similar definitions of quiver varieties exist that differ only by a reparametriza-

tion of T and the symplectic form, e.g. the definition of [RSVZ1]. The various parametrizations

of the torus and symplectic forms can be encoded by giving Q an orientation. Implicitly, we have

oriented all horizontal edges right and all vertical edges down.

3.3.2 Isomorphism Between Cobalanced Bow Varieties and Quiver Varieties

Let D be a cobalaned brane diagram, and consider the intervals between consecutive NS5 branes.

All segments appearing in an interval I have the same multiplicty, say dI . Listing the intervals

I1, ..., In from left to right, define dimension vectors

vi = dIi , wi = #{D5 branes in Ii}.

Let Q(D) = Q(v, w), and N (D) = N (Q(D)). We will now define a map C(D)→ N (D).

Let p = (A,B, a, b, C,D) ∈ M̃s. Since D is cobalanced, the A maps are isomorphisms by

Lemma 3.1.8. Given 1 ≤ i ≤ n, let Ui,1, ..., Ui,wi be the D5 branes in Ii, Xi,1, ..., Xi,wi+1 be the

segments in Ii, and let I− and I+ be the NS5 branes on the left and right ends, respectively, of I.

Define vector spaces

Vi = WXi,1 , Wi =

wi⊕
j=1

CUi,j ,

and make identifications Cvi = Vi and Cwi =Wi. Define pN = (C, a,D, b) ∈ T ∗R by

ai =

wi∑
j=1

ai,j , where ai,j = AUi,1 · · ·AUi,j−1aUi,j ,

bi = −
wi∑
j=1

bi,j , where bi,j = bUi,jA
−1
Ui,j
· · ·A−1

Ui,1
,

Ci = AUi,1 · · ·AUi,wi
CI+ ,

Di = −DI+A
−1
Ui,wi

· · ·A−1
Ui,1

.
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One can check that µ(p) = 0 implies µ(pN ) = 0, and that the GIT stability of p implies the GIT

stability of pN . There is a natural identification of the torus acting on C(D) with the torus acting

on N (D) coming from the splitting of the framing spaces Wi into CU spaces.

Theorem 3.3.2 ([NT, Theorem 2.15]). The map p 7→ pN induces a T-equivariant symplectomor-

phism C(D)→ N (D). This map induces an equivariant isomorphism of tautological bundles up to a

reparametrization of T.

Proof. First, we show that pN ∈ µ−1(0)s. It is easy to see that the (ν) condition implies the stability

of pN . Repeatedly applying the 0-momentum condition on p yields the sequence of equalities

BU+
i,wi

= −CI+i DI+i

BU−i,wi

= −AUi,wi
CI+i

DI+i
A−1
Ui,wi

− aUi,wi
bUi,wi

A−1
Ui,wi

BU−i,wi−1
= −AUi,wi−1AUi,wi

CI+i
DI+i

A−1
Ui,wi

A−1
Ui,wi−1

−AUi,wi−1aUi,wi
bUi,wi

A−1
Ui,wi

A−1
Ui,wi−1

−aUi,wi−1bUi,wi−1A
−1
Ui,wi−1

...

BU−i,1
= −AUi,1 · · ·AUi,wi

CI+i
DI+i

A−1
Ui,wi

· · ·A−1
Ui,1
−AUi,1 · · ·AUi,wi−1aUi,wi

bUi,wi
A−1
Ui,wi

· · ·A−1
Ui,1

−AUi,1 · · ·AUi,wi−2aUi,w2
bUi,w2

A−1
Ui,wi−1

· · ·A−1
Ui,1

− · · · − aUi,1bUi,1A
−1
Ui,1

BU−i,1
= −DI−i

CI−i
,

Combining the last two equalities gives µ(pN ) = 0. Second, define a map ρ : G → Gv by projecting

onto the factors corresponding to the leftmost segments of each interval. The defining equations

of pN are visibly ρ-equivariant and T-equivariant up to the reparametrization u 7→ hu of the

torus acting on N (D), so we get an induced T-equivariant map C(D)→ N (D). The fact that the

symplectic form is preserved can be verified using the formulas of [NT, Section 3] and [N1, Section 2].

Finally, we construct an inverse map.

Identify the jth coordinate subspace of Cwi with CUi,j . Identify WX with Cvi for all segments
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X in Ii. Let pN ∈ N (D) and define p ∈ C(D) by

AUi,j = idCvi , for j = 1, ..., wi,

aUi,j = ai|CUi,j
,

bUi,j = −bji , where bji is the projection of bi onto the jth coordinate,

CI+ = Ci,

DI+ = −Di,

and defining B maps according to the sequence of equalities above. The map pN 7→ p induces a

map N (D)→ C(D). Given p = (A,B, a, b, C,D) ∈ M̃s, it is always possible to change the A maps

to identity maps through the action of ker(ρ). It follows that C(D)→ N (D) and N (D)→ C(D) are

inverses.

Remark 3.3.3. The reparametrization of the torus described in the proof of Theorem 3.3.2 can be

absorbed into the Gv-action. Hence, it does not change the action of T on N (D). It does, however,

change the action of T on the tautological bundles.

Example 3.3.4.

N
( 3 2 5

4 2

)
= C(/3/2\2\2\2\2/5\5\5/).

Let D be the brane diagram such that C(D) = N (v, w). The margin vectors of D are

r =

vi − vi−1 +

i−1∑
j=1

wj


i=1,...,n+1

, c = (nw1 , (n− 1)w2 , (n− 2)w3 , ..., 1wn), (3.2)

where v0 = vn+1 = 0 by convention, and the notation ab means b copies of a. Since the Euler

characteristic of a quiver variety is the number of T-fixed points, we may calculate χ(N (v, w)) by

counting BCTs.

Corollary 3.3.5. For v, w ∈ Nn, we have

χ(N (v, w)) = #BCT

vi − vi−1 +

i−1∑
j=1

wj


i=1,...,n+1

, (nw1 , (n− 1)w2 , (n− 2)w3 , . . . , 1wn)

 .
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0 0 1 1 2 3 2 2 1

n = 9

i = 6

Figure 3.7: An illustration of the bijection between partition dimension vectors and Young diagrams.

Formulas and various generating functions are known for some special cases of r, c. For example,

according to Corollary 3.3.5 and [St, Corollary 5.5.11] we have

∞∑
n=0

χ

(
N

(
· · ·2 4 6 2n−2 n−1

n+1

))
xn

(n!)2
=
∞∑
n=0

#BCT((2n), (2n))
xn

(n!)2
=

e−
x
2

√
1− x

.

3.3.3 Fixed Points, Butterfly Diagrams, and Partitions

In the cobalanced case, butterflies collapse into Young diagrams, recovering classical results for

the torus fixed points of a Nakajima quiver variety. To make this phenomenon explicit, we will

describe partitions by integer vectors.

Definition 3.3.6. Given n ∈ N and 1 ≤ i ≤ n, a vector di = (di1, ..., d
i
n) ∈ Nn is called a partition

dimension vector with mode i if

1. di1 ≤ · · · ≤ dii ≥ · · · ≥ din (i.e. di is unimodal with mode i),

2. ∀0 ≤ j ≤ n |dij+1 − dij | ≤ 1, where di0 = din+1 = 0 by convention.

Classically, partition dimension vectors are put in bijection with Young diagrams by tilting

the Young diagram 45◦ and counting the number of boxes appearing in each vertical column. See

Figure 3.7 for an illustrative example.

Proposition 3.3.7. For fixed n ∈ N and index 1 ≤ i ≤ n. Partition dimension vectors di ∈ Nn

with mode i are in bijection with Young diagrams fitting within a (n− i+ 1)× i rectangle.

Let D be a cobalanced tie diagram, and let U be a D5 brane in the ith interval Ii of D. Since D

is cobalanced, dUU− = dUU+ . Indeed, we have dU− = dU+ , and any tie not connected to U , i.e. any tie

not counted by dU , must cover both U− and U+ or neither. For all D5 branes U ′ 6= U , we have
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Figure 3.8: The combinatorial code for two of the 3,150 fixed points of the quiver variety
N ((2, 4, 5, 6, 5, 4, 3, 2, 1), (0, 1, 0, 2, 0, 0, 0, 0, 0, 0)), with partitions ordered from top to bottom.

dU
′

U ′−
= dU

′

U ′+
by Definition 3.2.1. It follows that dUX takes a common value for all segments X in an

interval I. Thus, we may collapse the butterfly dimension vector dU to obtain a partition dimension

vector di, where the common value of dUX for X in the jth interval Ij is dij . The fact that di is a

partition dimension vector with mode i follows immediately by comparing Definition 3.2.1 with

Definition 3.3.6. This collapsing has a geometric significance as well.

When collapsing a butterfly dimension vector, one may also think about collapsing the columns of

the corresponding butterfly that are separated by a D5 brane. Geometrically speaking, this collapsing

is the action of the isomorphism C(D) → N (D) of Theorem 3.3.2 on the fixed point represented

by the butterfly diagram. Since the A maps in a cobalanced bow variety are isomorphisms, the

tautological bundles ξX for all X in Ij are isomorphic. Indeed, they are isomorphic to the tautological

bundle ξj on N (D). It follows that we may also collapse the butterfly decorated with fixed point

restrictions of the tautological bundles, yielding a (skewed) Young diagram filled with Grothendieck

roots of the fixed point restrictions of the tautological bundles on N (D). See Figure 3.9 for an
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Figure 3.9: Cobalanced butterflies are collapsed along blue edges by the isomorphism C(D)→ N (D).
Butterflies decorated with fixed point restrictions collapse to filled Young diagrams.
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illustration of this collapsing procedure. This recovers the well known characterization of the T-fixed

points of a quiver variety in terms of tuples of partitions, and the fixed point restrictions of the

tautological bundles as fillings of the Young diagrams by monomials in the equivariant parameters.

Let v, w ∈ Nn. Then, the T-fixed points of N (v, w) are in bijection with tuples (di,j) where

1. di,j ∈ Nn is a partition dimension vector with mode i for all 1 ≤ i ≤ n, 1 ≤ j ≤ wi,

2.
∑

i,j d
i,j = v.

Alternatively, one can think of a tuple of wi Young diagrams “growing” out of the ith vertex of

Q(v, w) at a 45◦ degree angle (as in Figure 3.8) for each 1 ≤ i ≤ n, such that the total number of

boxes among all Young diagrams above the ith vertex is vi for each 1 ≤ i ≤ n. Filling each Young

diagram as shown in Figure 3.8, 3.9, the Grothendieck roots of ξi are precisely the monomials that

appear above the ith vertex. See Section 4.2.1 for additional examples.

Remark 3.3.8. The isomorphism of Theorem 3.3.2 involves a reparametrization of the torus that

changes the ~-action on the tautological bundles. Hence, our Young diagram fillings may differ

slightly from other conventions.

Example 3.3.9. The quiver variety of Example 3.3.4 has no fixed points. Indeed, any fixed point

corresponds to a tuple of Young diagrams over the 2nd and 3rd vertices with 3 boxes over the 1st

vertex, 2 boxes over the 2nd, and 5 boxes over the 3rd. This is impossible, since having 3 boxes over

the 1st vertex forces at least 3 boxes over the 2nd. This can also be verified by a similar argument

using tie diagrams.

3.4 Invariant Curves

Invariant curves play an important role in the study of equivariant characteristic classes. By an

invariant curve, we mean an embedding of P1 into C(D) with T-invariant image. We will construct

such curves by constructing embeddings γ : C→ M̃s with the property that limt→∞ γ(t) converges

to an element of M̃s. These embeddings are associated with combinatorial operations on pairs

of butterflies called butterfly surgeries. The invariant curves contructed this way will always have

T-fixed points at t = 0 and t =∞. We call these fixed points the poles of the invariant curve—we

can think of P1 as a sphere and the fixed points as the north and south poles. Note that there may

not be a unique curve with specified poles; no such curve may exist, or there might be a pencil of

curves joining the fixed points.
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Figure 3.10: Fixed point with the site of a butterfly surgery outlined.

3.4.1 Butterfly Surgery

A fixed point f1 ∈ C(D)T corresponds to a butterfly diagram (Theorem 3.2.4), that is, a collection

of butterflies, one centered on each D5 brane. We stack the butterflies on top of each other, so that

the centers of the butterflies listed from top to bottom go from left to right in D. Fix two butterflies

b1 and b′1 with centers U and U ′, respectively. Suppose that there is a (possibly disconnected)

subgraph s of b1, such that stacking s below b′1 and creating new edges between b′1 and s according

to the rules of Section 3.2.1 results in a butterfly b′2. The subgraph s, called the site of the

surgery, must be translated vertically without any lateral movement, rotation, or deformation,

and we no not create new edges within s. The 0-momentum condition forces such an s is to be

A,A−1, B,C,D-invariant. In other words, all edges in b1 adjacent to s are directed into s, and s

contains all adjacent blue A edges. Let b2 be obtained by deleting s and all adjacent edges from

b1, and assume that b2 is also a butterfly. The operation of replacing b1 with b2 and b′1 with b′2 is
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Figure 3.11: New fixed point resulting from butterfly surgery.

called a butterfly surgery. It transforms the butterfly diagram for f1 into the butterfly diagram for

another fixed point f2 ∈ C(D)T

We can construct an invariant curve as follows. Consider the newly created edges, i.e. b′2 \ b′1,

in the butterfly diagram for f2. Each edge starts in b′1 and ends in the translated copy of s,

which we will call s′. Create the corresponding edges starting in b′1 and ending in s ⊂ b1 in the

butterfly diagram for f1 with weighting t ∈ C. Interpreting these new edges as multiplication by

t, the resulting graph gives an element γ(t) ∈ M̃s. The 0-momentum condition can be verified

pictorially (see Figure 3.12). Adding new edges expands im(A), im(B), im(a), im(C), im(D) and

shrinks ker(A), ker(b). Moreover, adding edges does not result in new invariant subspaces of W. In

fact, some invariant subspaces may lose their invariance. Thus, (S1),(S2),(ν) for γ(t) follows for all

t from (S1),(S2),(ν) for f1.

By compactifying γ, we obtain a T-invariant curve with poles f1 and f2. Clearly, γ(0) = f1. To
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Figure 3.12: Explicit invariant curve corresponding to butterfly surgery. The dashed lines represent
multiplication by t. The curve has tangent weight ±(u1 − u2 + ~) at its poles.

take the t→∞ limit, act on each vertex of s by 1/t. Since all adjacent edges to s in b1 \ s point

into s, these edges are acted upon by 1/t. The new edges from b′1 to s, which originally represented

multiplication by t, become multiplication by 1. Since s is A,B,C,D-invariant, all other edges

remain fixed. Taking the limit as t→∞ kills the edges in b1 \ s adjacent to s, so limt→∞ γ(t) = f2.

The T-invariance of this curve can be verified pictorially (see Figure 3.12).

The tangent weight of this curve at f1 can be read from any of the edges weighted by t. If the

edge represents a C or B map, it is the weight of the target minus the weight of the source plus ~.

If the edge represents an A or D map, it is simply the weight of the target minus the weight of the

source. The tangent weight of the curve at f2 is the negation of the tangent weight at f1. In other
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s1 · t

s2 · t

Figure 3.13: Explicit 2-dimensional pencil of invariant curves with tangent weight ±(u1 − u2) at its
poles.

words, we have

eT(Tf1γ) = −eT(Tf2γ) = u− u′ + ~y(s)−y(s′) ∈ H∗T(pt),

where y(s) is the maximum height (Definition 3.2.5) of the vertices of s measured in b1, and y(s′)

is the maximum height of the vertices of s′ measured in b′2. The tangent weight encodes which

butterflies are involved in the butterfly surgery and the displacement in the position of the surgery

site within each of these butterflies.

Suppose s has r > 1 connected components. By replacing the curve parameter t in the ith

component by si · t, where si ∈ C×, we obtain an r-parameter family of T-invariant curves with

poles f1 and f2. We may projectivize to obtain an r-dimensional pencil (C×)r−1 × P1 → C(D) of

T-invariant curves with poles f1, f2. Consider partial butterfly surgeries obtained by restricting the

surgery to a subset of the r connected components of s. There is a natural poset structure on the

set of fixed points arising from these partial surgeries.
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Definition 3.4.1. Let f1, f2 ∈ C(D)T. If there is no butterfly surgery relating f1 and f2, then

define S(f1, f2) = ∅. Otherwise, let s be the site of the unique butterfly surgery relating f1 to f2.

Let S(f1, f2) ⊂ C(D)T consist of the fixed points f̃ obtained from f1 by restricting the butterfly

surgery to some of the connected components of s. For f̃ ∈ S(f1, f2), let s̃ be the site of the surgery

relating f1 to f̃ . Define a partial order on S(f1, f2) by

f̃1 ≤ f̃2 ⇔ s̃1 ⊂ s̃2.

It is easy to verify that this relation is a partial order with smallest element f1 and largest

element f2. Suppose we have f̃1 ≤ f̃2 ∈ S(f1, f2). Fix t ∈ C×, and take the limit as the si’s

associated with s \ s̃2 approach 0, and the si’s associated with s̃1 approach ∞. This limit converges

to the pencil of invariant curves with poles f̃1, f̃2 obtained from butterfly surgery. The results of

this section are summarized by

Theorem 3.4.2. Let f1, f2 ∈ C(D)T.

1. If S(f1, f2) 6= ∅, then |S(f1, f2)| = 2r for some r ∈ N, and there is an r-dimensional pencil of

invariant curves with poles f1, f2. The tangent weights of each curve γ in this pencil are given

by

eT(Tf1γ) = −eT(Tf2γ) = u− u′ + (y(s)− y(s′))~ ∈ H∗T(pt),

where s is the site of the butterfly surgery sending f1 to f2, and U is the D5 brane whose

butterfly contains s.

2. For each f̃1, f̃2 ∈ S(f1, f2), we have S(f̃1, f̃2) = [f̃1, f̃2] ⊂ S(f1, f2). Moreover, the pencil of

invariant curves associated with S(f̃1, f̃2) (if there is one) is in the closure of the pencil of

invariant curves associated with S(f1, f2).

Remark 3.4.3. One may also consider pencils of curves arising from disjoint independent butterfly

surgeries on the same pair of butterflies. The curves in such pencils will be A-invariant but not

T-invariant. Generalizing further to disjoint independent butterfly surgeries on different pairs of

butterflies, we obtain T-invariant pencils of curves. However, the individual curves in these pencils

are not invariant with respect to A or T.
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Bow varieties are noncompact in general. Thus, there may be noncompact T-invariant curves.

By this, we mean an embedding γ : C→ C(D) such that γ(0) ∈ C(D)T and limt→∞ γ(t) diverges.

Such curves are not captured by butterfly surgery. We suspect, however, that butterfly surgery does

capture all compact invariant curves, that is, those that join pairs of fixed points.

Conjecture 3.4.4. All pencils of T-invariant curves joining pairs of T-fixed points of C(D) can be

obtained from butterfly surgery.

Example 3.4.5. In Section 4.2.1, we will show that C(/2\2\2\2\2/) ∼= T ∗Gr(2, 4). The butterfly

diagrams and butterfly surgeries relating them are indicated in Figure 3.14. Ignoring the framing

vertex and green edges, each butterfly diagram has 2 butteflies of the form and

2 empty butterflies. Suppose that the two nonempty butterflies have centers Ui, Uj . Then, the

corresponding fixed point is given by the span of {εi, εj} in C4, where εi is the ith standard basis

vector. A butterfly surgery simply exchanges one of the nonempty butterflies with one of the empty

ones. These surgeries give an invariant curve between C{εi, εj} and C{εi, εk} whenever k 6= i, j,

with tangent weight ±(uj − uk). This accounts for all compact invariant curves and recovers the

well known moment graph of Gr(2, 4). Coordinate lines in the cotangent fibres over fixed points

give noncompact invariant curves in T ∗Gr(2, 4), which are not obtained through butterfly surgery.

Note that there are no higher dimensional pencils of invariant curves. In fact, T ∗Gr(2, 4) is a GKM

variety [GKM].

Example 3.4.6. Consider the variety C(\2/2/2/2/2\) corresponding to the dual brane diagram

(Section 2.3) to Example 3.4.5. It is HW equivalent to a cobalanced bow variety, and from Section 3.3

we see that it is isomorphic to the Nakajima quiver variety N

 1 2 1

2

. The butterfly diagrams

and butterfly surgeries relating them are indicated in Figure 3.15. There is a natural bijection

between the fixed points of this dual variety and those of T ∗Gr(2, 4) given by dualizing tie diagrams.

The fixed point of a butterfly diagram in Figure 3.15 corresponds to the fixed point of the butterfly

diagram in the same position in Figure 3.14 under this bijection. Note that while there were no

higher dimensional pencils of invariant curves in T ∗Gr(2, 4), there is a 2-dimensional pencil in the

dual.
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Figure 3.14: Butterfly diagrams for C(/2\2\2\2\2/) ∼= T ∗Gr(2, 4) with T-invariant curves arising
from butterfly surgery.

3.4.2 Tie Diagram Surgery for Separated Bow Varieties

In general, the combinatorics of butterfly surgeries is quite subtle. In this section, we will analyze

butterfly surgeries in the special case where D is separated. Let m be the number of NS5 branes

and n be the number of D5 branes in D. Then, the number of segments is s = m+ n− 1. From the

structure of D (see Figure 2.14), we see that the site of any butterfly surgery cannot cross below

the segments Xm, ..., Xm+n−1 on the right. Hence, the action of any butterfly butterfly surgery

is constrained to below the segments X1, ..., Xm−1 on the left. This and the fact that butterfly

surgeries only affect two butterflies at a time, allow us to assume without loss of generality that

n = 2. We denote the two D5 branes by U,U ′. Consider a tie diagram on D. Draw the ties as

semicircular arcs. Then, the longer ties attached to a D5 brane enclose the smaller ones. Abusing
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Figure 3.15: Butterfly diagrams for C(\2/2/2/2/2\) with T-invariant curves arising from butterfly
surgery. The dashed curves are in the closure of the dashed pencil.

notation, let s be a subset of the NS5 branes attached to U by a tie and s′ be a subset of the NS5

branes attached to U ′. There is at most one tie joining each pair of 5-branes, so we may equivalently

think of s, s′ as sets of ties.

Definition 3.4.7. Assume |s| = |s′|. Consider the operation of

� severing the ties of s at the NS5 branes and reattaching them to the NS5 branes of s′, so that

no ties attached to U pass through each other and

� severing the ties of s′ at the NS5 branes and reattaching them to the NS5 branes of s, so that

no ties attached to U ′ pass through each other.

We further require that all ties of s are reattached to NS5 branes either all to the left or all to the
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Figure 3.16: An example of an indecomposable tie diagram surgery involving all ties. Such surgeries
give rise to invariant curves with tangent weights ±(u− u′).

right of their original NS5 branes. This operation is a tie diagram surgery if it results in another tie

diagram for D. We refer to s as the site of the surgery.

It follows from the conditions of Definition 3.4.7 that s determines s′ up to whether the surgery

reattaches ties to the left or the right. If for instance, s is on the left, then s′ must contain the first

|s| NS5 branes attached to U ′ that are to the right of (or equal to) the leftmost NS5 brane in s.

Theorem 3.4.8. When D is separated, tie diagram surgeries correspond to butterfly surgeries. The

tangent weights of the corresponding invariant curves are

±(u− u′ − (y − y′)~), (3.3)

where y is the number of ties attached to U enclosing s ∪ s′, and y′ is number of ties attached to U ′

enclosing s∪ s′. If s is left of s′, then the sign in (3.3) is positive,and it is negative otherwise. If the

tie diagram surgery can be decomposed into r independent surgeries with the same tangent weight,

then it corresponds to a butterfly surgery on a site with r connected components.

Proof. We will show that any tie diagram surgery gives rise to a butterfly surgery. One can obtain an

inverse using similar reasoning. Fix a tie diagram surgery with site s that transforms the fixed point

f1 to f2. Assume that s is left of s′. Without loss of generality, we may assume that no ties attach to

the left of s. Such ties simply add higher layers to the butterflies that play no role in any potential

butterfly surgeries sending f1 to f2. Similarly, we may assume that there are no ties attaching to

the right of s′. We will make a final simplification by assuming that the tie diagram surgery cannot

be decomposed into independent surgeries on smaller sites. Such indecomposable surgeries will give

rise to connected butterfly surgeries. Performing independent tie diagram surgeries simultaneously

gives rise to pencils of invariant curves.
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Figure 3.17: Performing surgery on all ties in this diagram gives rise to a 3-dimensional pencil of
invariant curves with tangent weights ±(u− u′).

From our simplifying assumptions, we may conclude that s contains all ties attached to U , and

consequently s′ contains all ties attached to U ′. Indeed, suppose there is a tie attached to U not in

s. We assumed that it does not attach to the left of s or the right of s′, so it must attach somewhere

in between. It obviously cannot attach to any NS5 brane in s, since all NS5 branes of s are attached

to U as well. Similarly, if it attaches to an NS5 brane in s′, then the surgery does not result in a tie

diagram. Since ties attached to U and U ′ cannot pass through each other during surgery, this tie

would split the surgery into two independent surgeries. We also assumed that this does not happen.

It follows that the desired butterfly surgery moves the bottom dUX − dU
′

X vertices below X of

the butterfly centered on U to the butterfly centered on U ′. Removing these vertices from the U

butterfly leaves dU
′

X vertices below X. However, dU
′

is a butterfly dimension vector. Therefore, the

remaining vertices form a butterfly. In particular, they form the portion of the butterfly centered

on U ′ to the left of U . It follows that the deleted portion of the U butterfly has the correct shape

to fit below the U ′ butterfly. Hence, we have obtained a butterfly surgery. Moreover, the tangent

weight of the resulting invariant curve at f1 is u − u′. Enclosing s ∪ s′ with ties adds horizontal

layers to the butterflies, causing a shift in weights.

Example 3.4.9. We will use tie diagram surgeries to recover a part of Figure 4.5. Consider the tie

diagram

35
.
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Two independent surgeries can be performed. Taking the convention that s is left of s′, these two

surgeries have sites s1 = {V2}, s2 = {V4}. Performing partial surgery on s1 and s2 yields

25
,

34

respectively. Performing the full surgery on s1 ∪ s2 yields

24
.

There is one enclosing tie, which is attached to U1, so the resulting 2-dimensional pencil of curves

has tangent weight u1 − u2 − ~ at 35. The poset S(35, 24) (and corresponding invariant curves) is

illustrated in Figure 4.5 along with the other sugery posets for this brane diagram.
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CHAPTER 4

Characteristic Classes

In this chapter, we will begin with an overview of characteristic classes for partial flag varieties

in (equivariant) cohomology, K-theory, and elliptic cohomology. Elliptic characteristic classes lead

to a notion of 3d (N=4) mirror symmetry for partial flag varieties. Existing results for full flag

varieties [RSVZ2, RW2] and Grassmannians [RSVZ1] will be summarized. Finally, we will take the

first steps toward generalizing such results to bow varieties by creating and analyzing conjectural

formulas for cohomological stable envelopes for bow varieties.

4.1 Partial Flag Varieties and Schubert Calculus

Important motivating ideas for the study of the bow varieties in this work come from the study

of characteristic classes in the cohomology, K-theory, and elliptic cohomology of partial flag varieties.

This section aims to give a brief overview of this area of mathematics, and show why it naturally

leads to the study of bow varieties.

4.1.1 Partial Flag Varieties

Given v1, ..., vn ∈ N, let M = Fv1,...,vn+1 be the partial flag variety parametrizing nested sequences

of subspaces

0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ Cvn+1 ,

where dim(Vi) = vi. Partial flag varieties are smooth with a natural action of the torus A = (C×)vn+1 .

Let vi = vi − vi−1 for 1 ≤ i ≤ n + 1, where v0 = 0 by convention. Denote a partition of the set

{1, ..., vn+1} into a tuple of sets I1, ..., In+1 of size v1, ..., vn+1 by

I = {I1| · · · |In} = {i1,1, ..., i1,v1 |i2,1, ..., i2,v2 | · · · |in,1, ..., in,vn},

where the set of size vn+1 is not listed (it is just the complement of the listed sets). Let I be the

set of all such partitions. These tuples are in bijection with the A-fixed points of M . Namely, I

corresponds to the flag fI given by Vj = C{εi | i ∈ I1 ∪ · · · ∪ Ij}, where εj is the jth standard
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basis vector in Cvn+1 . Partial flag varieties admit a canonical CW structure called the “Bruhat

decomposition”. The cells of the Bruhat decomposition are called “Schubert cells”, and the cell

closures are called “Schubert varieties”. There is one such cell associated to each fixed point. The

Schubert cell ΩI is the Borel (upper triangular invertible matrices) orbit of the fixed point fI . There

is an induced partial order on MA, the “Bruhat order”, given by

fI ≤ fJ ⇔ ΩI ⊂ ΩJ .

The Bruhat order can also be described combinatorially as a partial order on I. For I =

{I1| · · · |In}, J = {J1| · · · |Jn} ∈ I, let

I1 ∪ · · · ∪ Ik = {ik1, ..., ikvk} , J1 ∪ · · · ∪ Jk = {jk1 , ..., jkvk},

where ik1 < · · · < ikvk and jk1 < · · · < jkvk for all 1 ≤ k ≤ n. The Bruhat order is given by

I ≤ J ⇔ ikl ≤ jkl for all 1 ≤ k ≤ n and 1 ≤ l ≤ vk.

An important area of mathematics involves associating characteristic classes to Schubert cells and

varieties.

4.1.2 Schubert Calculus

The study of (A-equivariant) characteristic classes of flag varieties falls under the umbrella of

“Schubert calculus”. Classically, the cohomological and K-theoretic fundamental classes [ΩI ] of

Schubert varieties were studied. These form bases for the cohomology and K-theory rings of the

variety, and questions of change of basis (e.g. Schubert/Grothendieck polynomials), and structure

constants (e.g. Schubert problems and Littlewood-Richardson numbers) were explored. More

recently, deformations of the fundamental class—the Chern-Schwarz-MacPherson class [M, Oh1,

Oh2, Sch, W1] in cohomology and motivic Chern class [BSY, FRW1] in K-theory— gave rise to

~-deformed Schubert calculus. See [Ri] for a summary and [AMSS1, AMSS2, FR, RTV1, RTV2]

for results.

Let M be a smooth complex algebraic variety. Both the Chern-Schwarz-MacPherson (CSM) and

motivic Chern (mC) class can be defined axiomatically as the unique characteristic class associating
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an element of H∗M or K0M [y±1], respectively, to each constructible subset Z ⊂M satisfying

1. additivity: if Y,Z ⊂M are disjoint, then the class of Y ∪ Z is the sum of the class of Y and

the class of Z,

2. functoriality: if Y is smooth and φ : M → N is a proper morphism, then the pushforward of

the class of Z ⊂ X is the class of φ(Z) ⊂ Y ,

3. normalization: the class of M itself is the total Chern class of TM .

We adopt the convention of using

Λy(η) =
∑
i

yi
∧i

η∨

as the K-theoretic total Chern class of a vector bundle ξ. Such characteristic classes are referred to as

“motivic”. There is, for instance, a motivic version of the Hirzebruch class [BSY, W2], where in the

normalization axiom, the total Chern class is replaced by the Hirzebruch class. Equivariant versions

of these characteristic classes exist and are defined the same way. Note that while a fundamental

class is associated to all closed subvarieties of M , the CSM and mC classes are defined for all

subvarieties of M . Moreover, it is easy to see from the axioms that for any subvariety Z ⊂M , the

lowest degree term of the CSM class of Z is the fundamental class of Z. A similar property holds

for the mC class with y = 0. Hence, these classes deform the fundamental class.

When M = Fv1,...,vn+1 , the deformation property implies that the CSM classes and mC classes of

both Schubert cells and Schubert varieties form bases for H∗M and K0M [y±1], respectively. Hence,

both give reasonable notions of deformed Schubert classes. For our purposes, the classes associated

to Schubert cells will be more natural. The CSM and mC classes

csm(ΩI) ∈ H∗M , mC(ΩI) ∈ K0M [y±1],

are called “deformed Schubert classes”. The change of basis relating the classical Schubert classes

to the deformed Schubert classes is studied in [AM1, AM2, AMSS1, AMSS2].

Example 4.1.1. The simplest nontrivial example is M = F1,2 = P1. The two Schubert cells are

Ω{1} = {[1 : 0]} , Ω{2} = {[z : 1] | z ∈ C} = P1 \ Ω{1}.
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It follows immediately from the defining axioms that

csm(Ω{1}) = [Ω{1}] , mC(Ω{1}) = [Ω{1}] ,

csm(Ω{2}) = c∗(TP1)− [Ω{1}] , mC(Ω{2}) = Λy(TP1)− [Ω{1}] .

Remark 4.1.2. The simplicity of Example 4.1.1 is due to the fact that all Schubert varieties in P1 are

smooth. Hence, we may compute the CSM and mC class of a Schubert variety by pushing forward

the total Chern classes of its tangent bundle through the inclusion map. The deformed Schubert

classes can then be obtained by subtracting the class of its boundary, which is another Schubert

variety. In all partial flag varieties that are not projective spaces, there will be singular Schubert

varieties. However, the same approach can be carried out replacing inclusion maps of Schubert

varieties with Bott-Samuelson resolutions and using inclusion-exclusion to delete the boundaries of

the Schubert varieties.

4.1.3 Stable Envelopes

The previous approach applies to both the equivariant and nonequivariant settings. In the

A-equivariant setting, there is an alternative approach to deformed Schubert classes called “stable

envelopes” [MO, O]. Instead of the partial flag variety Fv1,...,vn+1 , we consider the cotangent bundle

M = T ∗Fv1,...,vn+1 , with additional C×~ -action given by scaling the fibres by h−1, where h is the

coordinate of C×~ . Let T = A × C×~ . Cotangent bundles of partial flag varieties are examples of

GKM varieties [GKM]. Hence, the cohomological and K-theoretic localization maps

LocK : K0
T(M)→

⊕
I∈I

K0
T(fI) , Loc : H∗T(M)→

⊕
I∈I

H∗T(fI),

defined component-wise by fixed point restrictions, as in Section 3.2.3, are injective with image

determined by GKM conditions. The GKM conditions are related to T-invariant curves in M

(see Section 3.4). GKM varieties have no higher dimensional pencils of invariant curves, and each

invariant curve places a condition on its poles. Namely, the difference of the fixed point restrictions

at the poles fI , fJ of each invariant curve γ must be divisible by eT(Tγ)|fI (or equivalently by

eT(Tγ)|fJ ). The stable envelope classes

Stab(f) ∈ H∗T(M) , StabK(f) ∈ K0
T(M),
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are axiomatically defined characteristic classes associated with the T-fixed points f of T ∗M . These

fixed points are precisely the image of the A-fixed points of Fv1,...,vn+1 under the 0-section. Before

listing the axioms, we need a few preliminary constructions.

We begin by describing T-equivariant virtual bundles over M and each fixed point f ∈MT. The

canonical polarization bundle of M is

T 1/2M = π∗(TFv1,...,vn+1),

where π : M = T ∗Fv1,...,vn+1 → Fv1,...,vn+1 is the cotangent bundle projection. Observe that

T 1/2M ⊕ h−1(T 1/2M)∨ = TM.

Denote the coordinates of A by u1, ...,uvn+1 and the coordinate of C×~ by h. For each f ∈MT, the

T-representation TfM can expressed as a sum of Grothendieck roots of the form hkui/uj , where

k ∈ Z. Define T−f M to be the sum of all Grothendieck roots with i > j, and T+
f M to be the sum of

all Grothendieck roots with i < j. We have

T−f M ⊕ T
+
f M = TfM.

This definition extends to any equivariant subbundle of TfM . Next, we recall the definition of

Newton polytope.

Definition 4.1.3. Given a Laurent polynomial ρ ∈ Z[h±][u±1 , ...,u
±
vn+1

], its Newton polytope

∆(ρ) ⊂ Rvn+1 is the convex hull of all points (k1, ..., kvn+1) ∈ Zvn+1 for which the coefficient of

uk11 · · ·u
kvn+1
vn+1 in ρ is nonzero.

We are now ready to state the stable envelope axioms.

Definition 4.1.4. For each f ∈MT, the cohomological stable envelope class Stab(f) is the unique

homogeneous degree dimC(M)/2 element of H∗T(M) satisfying

� (support-1) Stab(fI)|fJ = 0 unless J ≤ I,

� (support-2) Stab(fI)|fJ is divisible by eT(T−fJπ
−1(fJ)),
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� (normalization) Stab(f)|f = PfeT(T−f M), where Pf =
eA(T

1/2
f M)

eA(T−f M)
,

� (boundary) Stab(fI)|fJ is divisible by ~ whenever I 6= J .

Definition 4.1.5. For each f ∈MT, the K-theoretic stable envelope class StabK(f) is the unique

element of K0
T(M) satisfying

� (support-1) StabK(fI)|fJ = 0 unless J ≤ I,

� (support-2) StabK(fI)|fJ is divisible by eT(T−fJπ
−1(fJ)),

� (normalization) StabK(f)|f = PfeT(T−f M), where Pf =
eA(T

1/2
f M)

eA(T−f M)
,

� (boundary) ∆(StabK(fI)|fJ ) ⊂ ∆(StabK(fI)|fI ) \ {0} whenever I 6= J .

We use e(η) = Λ−1(η) as the K-theoretic Euler class of a vector bundle η.

Remark 4.1.6. The support-1 axiom follows from the rest, but it is an important feature of stable

envelopes, so we list it anyways. Support-2 is a local version of the global support axiom in [MO].

Consider conormal bundles CΩI ⊂ M of Schubert cells in the partial flag variety, and define

Slope(fI) =
⋃
J≤I CΩJ . The global support condition may be phrased as Stab(fI) and StabK(fI)

being in the kernel of the map in cohomology or K-theory, respectively, induced by the inclusion

M \ Slope(fI) ↪→ M . The fact that the global and local conditions are equivalent can be proven

using the Gysin sequence and a Meyer-Vietoris induction [RTV2, Section 5.25].

By extending the Bruhat order on MT to a linear order f1 ≤ · · · ≤ fr, we may list the fixed

point restrictions of the stable envelope classes in an r × r matrix. Define

Stab = (Stab(fi)|fj )1≤i,j≤r and StabK = (StabK(fi)|fj )1≤i,j≤r.

Each column corresponds to a fixed point and each row contains the fixed point restrictions of a

stable envelope class. The stable envelope axioms may be rephrased in terms of these matrices. The

normalization axiom fixes the diagonal, and the support-1 axiom translates to lower triangularity.

In cohomology, support-2 translates to each entry below a diagonal entry being divisible by the

terms of the diagonal entry with ~. The boundary axiom can also be phrased as a relationship

between a diagonal entry the terms below it. In the cohomology case, the entries below a diagonal
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entry must be divisible by ~. In the K-theory case, the Newton polytope of each entry below a

diagonal entry must be contained in the Newton polytope of the diagonal entry minus the origin.

Let us consider an example.

Example 4.1.7. The simplest nontrivial example is M = T ∗P1 = T ∗F1,2. There are two fixed points

{1} = [1 : 0] ≤ {2} = [0 : 1]. Consider the matrices of fixed point restrictions

H∗TM {1} {2}

Stab(f{1}) u2 − u1 0

Stab(f{2}) ~ u1 − u2 + ~ ,

K0
TM {1} {2}

Stab(f{1}) 1− u1
u2

0

Stab(f{2}) (h− 1)u1
u2

h− u2
u1

.

The stable envelope axioms are easy to verify. However, we must also check that these restrictions

are in the image of the localization maps, i.e. the restrictions come from an element of H∗TM or

K0
TM . Let S → M be the pull-back of the tautological line bundle on P1 under the cotangent

bundle projection. The fixed point restrictions of S are

S|f{1} = u1 , S|f{2} = u2.

Hence, we see that

Stab(f{1}) = eT(u2/S) , StabK(f{1}) = eT(u2/S) ,

Stab(f{2}) = eT(hu1/S) , StabK(f{2}) = (hS/u2) · eT(hu1/S) .

Alternatively, one can check the GKM conditions. There is an invariant curve, the 0-section,

joining the two fixed points, with tangent weights ±(u1−u2) at its poles. Thus, the GKM conditions

state that the two columns in each table agree upon setting u1 = u2 and u1 = u2.

Various approaches exist for computing the matrices of fixed point restrictions for stable envelopes.

The conjectural formulas of Section 4.3.6 are generalizations of the weight functions of [RTV1, RTV2].

Note that the conventions of [RTV1, RTV2] differ slightly from our conventions, so the fixed point

restrictions may differ slightly.
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Table 4.1: Comparison of deformed Schubert classes with stable envelope classes.

Equivariant CSM and mC classes Stable envelopes

Fv1,...,vn+1 T ∗Fv1,...,vn+1

Permutation in Svn+1/Schubert frame Chamber in Lie(T)

Schubert cell ΩI Attracting set of fI
csm(ΩI) and mC(ΩI) Stab(fI) and StabK(fI)

4.1.4 Relating Deformed Schubert Classes to Stable Envelopes

Performing the calculation of Example 4.1.1 equivariantly, we obtain the following fixed point

restrictions:

H∗TM {1} {2}

csm(Ω{1}) u2 − u1 0

csm(Ω{2}) 1 u1 − u2 + 1 ,

K0
TM {1} {2}

mC(Ω{1}) 1− u1
u2

0

mC(Ω{2}) (1 + y)u1
u2

1 + yu2
u1

.

Indeed, the first row of each matrix gives the fixed point restrictions of the fundamental class of the

point [1 : 0], and adding the two rows yields the fixed point restrictions of the total Chern class of

TP1. Observe that the CSM classes agree with the cohomological stable envelope classes computed

in Example 4.1.7 after setting ~ 7→ 1. Moreover, the mC classes agree with the K-theoretic stable

envelope classes after setting y 7→ −h−1 and multiplying the second row by h = hdim(Ω{2}). These

relationships hold in general. Those familiar with the generalities of CSM and mC classes and stable

envelopes for partial flag varieties may use Table 4.1 for comparisons (see [FRW2] for details).

4.1.5 Elliptic Schubert Classes

The two approaches to deformed Schubert classes in Section 4.1.2, 4.1.3 can be lifted to elliptic

cohomology. Since we do not study elliptic characteristic classes for bow varieties in this work, we

will not give any precise definitions. Instead, we will highlight key features of elliptic characteristic

classes related to 3d mirror symmetry.

In this section, we will work with extended equivariant elliptic cohomology only. Like in

cohomology and K-theory, every elliptic cohomology class is determined by its fixed point restrictions.

Rather than explain what the extended equivariant elliptic cohomology is in general, we will only

explain how to construct the extended equivariant elliptic cohomology of a point.

The extended A-equivariant elliptic cohomology of a point f ∈ FA
v1,...,vn+1

is the space of sections
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of certain line bundles over the abelian variety Evn+1+(n+1), where E = C×/〈q〉, 0 < |q| < 1 is

a fixed elliptic curve. Here many different choices involving which line bundles we consider and

what kind of sections we consider can be made. We will not go into details regarding these choices.

Denoting the coordinates of this abelian variety by u1, ...,uvn+1 ,v1, ...,vn+1, such sections can be

described by quasiperiodic meromorphic functions in u1, ...,uvn+1 ,v1, ...,vn+1. The quasiperiod

in each coordinate determines which line bundle the section belongs to. We call u1, ...,uvn+1 the

equivariant parameters and v1, ...,vn+1 the Kähler or dynamical parameters. The new Kähler

parameters are an important aspect of this theory. As we did for mC classes, we adjoin a formal

parameter y as well. In this context, this means adding another factor of E with coordinate y to

the Cartesian product. In terms of quasiperiodic functions, we allow for quasiperiodic meromorphic

depence on y. Denote the extended elliptic cohomology with formal parameter by EllA.

The CSM and mC classes are lifted to EllA by the Borisov-Libgober elliptic class E`` of [BL].

The additivity axiom no longer holds in the elliptic setting, but there is a normalization and

functoriality property. BGG style recursions for the fixed point restrictions of E``(ΩI) are obtained

from Bott-Samuelson resolutions in [RW1, KRW]. Stable envelopes can also be lifted to elliptic

cohomology.

Like before, in order to define stable envelopes, we pass to the cotangent bundle with additional

C×~ -action on the fibres. The extended T = A × C×~ -equivariant cohomology of a point f ∈

T ∗FT
v1,...,vn+1

is the space of sections of certain line bundles over the abelian variety Evn+1+(n+1)+1.

Denote the coordinates of this abelian variety by u1, ...,uvn+1 ,v1, ...,vn+1,h. Like before, u1, ...,uvn+1

are the equivariant parameters, and v1, ...,vn+1 are the Kähler or dynamical parameters. Sections

can be described as quasiperiodic meromorphic functions in these parameters. Denote the extended

T-equivariant elliptic cohomology by EllT.

Elliptic stable envelope classes StabEll(f) ∈ EllT(T ∗Fv1,...,vn) are defined axiomatically in [AO].

They are related to E`` by the substitution y 7→ h−1 and a renormalization. The fixed point

restrictions can be expressed in terms of Jacobi theta functions

θ(x) = θ(x, q) = x1/2(1− x−1)
∏
j≥1

(1− qjx)(1− qj/x).

Weight function formulas for the elliptic stable envelope are given in [RTV3]. See Table 4.2 for the
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Table 4.2: The restriction matrices of the elliptic stable envelope of T ∗P1 with respect to the Bruhat
order and reverse Bruhat order.

EllT(T ∗P1) {1} {2}
StabEll(f{1}) θ(u2

u1
)θ(hv2

v1
) 0

StabEll(f{2}) θ(h)θ(u2v2
u1v1

) θ(hu1
u2

)θ(v2
v1

)

EllT(T ∗P1) {2} {1}
StabEll(f{2}) θ(hu1

u2
)θ(v2

v1
) θ(h)θ(u2v2

u1v1
)

StabEll(f{1}) 0 θ(u2
u1

)θ(hv2
v1

)

elliptic stable envelope of T ∗P1.

Remark 4.1.8. The Borisov-Libgober class and elliptic stable envelope are elliptic versions of the

deformed Schubert classes in cohomology and K-theory. However, it is incorrect to say that they

are themselves deformations. For technical reasons, there is no well-defined notion of elliptic

fundamental class. Indeed, twisting by the Kähler and y = h−1 parameters is essential for defining

elliptic characteristic classes of singular subvarieties. See [Ri] for an intuitive introduction to elliptic

cohomology and the necessity of extending by additional parameters.

4.1.6 3d Mirror Symmetry for Full Flag Varieties

Compare the two matrices in Table 4.2. The matrix on the left is the restriction matrix for the

elliptic stable envelope of T ∗P1. The matrix on the right is the same matrix with the order of the

rows and columns reversed. Using the fact that θ(x−1) = −θ(x), we find that the first matrix is

related to the second by

1. transposing,

2. switching equivariant and Kähler paramenters, ui 7→ vi,

3. substituting h 7→ h−1,

4. and multiplying by -1.

This is an incarnation of the phenomenon of 3d mirror symmetry.

Motivated by ideas from physics [BFN, BDGH, GW, GMMS, IS], we expect certain holomorphic

symplectic T-manifolds (with some additional structures) to come in dual pairs (M,M ′). One aspect

of this notion of duality is a relationship between the elliptic stable envelopes of M and M ′. Namely,

we want a natural bijection MT ↔M ′T between the torus fixed points under which the restriction
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matrices of the elliptic stable envelopes “match”. This “matching” is given by transposition, followed

by interchanging equivariant and Kähler parameters, substituting h↔ h−1, and inserting signs.

Definition 4.1.9. Let M be a holomorphic symplectic T-manifold and M ′ be a holomorphic

symplectic T′-manifold (with some additional requirements). Let u1, ...,un and v1, ...,vm be

the equivariant and Kähler parameters, respectively, on M . Let u′1, ...,u
′
m and v′1, ...,v

′
n be the

equivariant and Kähler parameters, respectively, on M ′. The pair (M,M ′) are said to exhibit 3d

mirror symmetry for characteristic classes if there is a bijection bj : MT →M ′T
′

such that for all

f1, f2 ∈MT,

StabEll(f1)|f2 = ±StabEll(bj(f2))|bj(f1) with substitutions ui ↔ v′i,vi ↔ u′i,h↔ h−1. (4.1)

In the case of full flag varieties, it is shown in [RSVZ1, RW2] that the self-dual pair

M = T ∗F1,2,...,n+1 = M ′

exhibits 3d mirror symmetry for characteristic classes. The torus fixed points of M are in bijection

with permutations of {1, ..., n+ 1}, and there is a natural automorphism of the fixed point locus

given by reversing the permutation. Under this automorphism the restriction matrix matches with

itself. The matching shown for T ∗P1 above is a special case of this result. This notion of duality

gives a geometric meaning to the seemingly artificial Kähler parameters in elliptic Schubert calculus:

they are the equivariant parameters on the dual.

Remark 4.1.10. In [RW2, Section 5], it is shown that a full flag variety of any simply connected

semisimple linear group is 3d mirror dual to the full flag variety of the Langlands dual group. The

self-duality of the type A full flag varieties considered in this work follows from this more general

result.

An important part of the elliptic Schubert calculus program is extending 3d mirror symmetry

for characteristic classes to all partial flag varieties. However, one encounters an immediate problem.

The dual of a partial flag variety need not be a partial flag variety. It is believed that they will in

fact be bow varieties of the type considered in this work. Further evidence for this belief may be

found in [RSVZ2], where it is shown that the dual to T ∗Gr(k, n) where n ≥ 2k is a Nakajima quiver
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variety (cobalanced bow variety). Moreover, as we will show in the following sections, there is reason

to believe that bow varieties are the most natural setting for the study of 3d mirror symmetry.

Remark 4.1.11. Known results on elliptic stable envelopes and 3d mirror symmetry include the

following:

� elliptic stable envelopes are defined for Nakajima quiver varieties and hypertoric varieties, and

so-called abelianization formulas are known for them [AO], [RSVZ1, Section 5], [RTV3], [Sm];

� using those abelianization formulas, 3d mirror symmetry is proven for T ∗Gr(k, n) and its dual

for n ≥ 2k [RSVZ1];

� 3d mirror symmetry is proven for the full flag variety and its 3d dual (which is the Langland

dual full flag variety) in [RSVZ2, RW2].

� 3d mirror symmetry is proven for hypertoric varieties in [SZ] and also [KS].

4.2 3d Mirror Symmetry for Partial Flag Varieties

As shown in Example 3.1.7, there is an ismorphism M = T ∗P1 ∼= C(D) where D = /1\1\1/.

Taking the dual of D yields D′ = \1/1/1\. This dual brane diagram is HW equivalent to D, and

the HW equivalence interchanges the two fixed points. Hence, we see that the self-duality of M

in the sense of 3d mirror symmetry for characteristic classes (Definition 4.1.9) is reflected in the

self-duality of its brane diagram up to HW transition. Motivated by such results and ideas from

physics, we define bow varieties with dual brane diagrams to be 3d mirror dual.

Definition 4.2.1. Two bow varieties C(D), C(D′) are called 3d mirror dual if D is dual to D′ in

the sense of Section 2.3.

In this section, we will analyze the 3d mirror duals to cotangent bundles of partial flag varieties.

The first step will be to realize T ∗Fv as a bow variety.

4.2.1 Cotangent Bundle of a Partial Flag Variety as a Bow Variety

One approach to Schubert calculus is to realize M = T ∗Fv1,...,vn+1 as a quiver variety, and then

take advantage of the abelianization formulas that exist for the stable envelopes of quiver varieties

[AO, RSVZ1]. Let v = (v1, ..., vn), w = (0, ..., 0, vn+1), and consider the quiver Q = Q(v, w). Using

a similar argument to Example 3.1.7, one can show
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· · ·
v1 v2 vn−2 vn−1 vn

vn+1

Figure 4.1: The quiver Q with N (Q) ∼= T ∗Fv1,...,vn+1 .

Proposition 4.2.2. With M and Q as above, we have N (Q) ∼= M .

Proof. Take a point (D, b, C, a) ∈ N (Q). The stability condition implies that im(bn) generates V as

a C[C,D]-module. From the 0-momentum condition, we have DiCi = Ci+1Di+1 for 1 ≤ i ≤ n− 2,

Dn−1Cn−1 = anbn, and C1D1 = 0. It follows from the stability condition that all C maps and an

are surjective. Taking duals, we obtain injections C∨i for 1 ≤ i ≤ n− 1 and a∨n . This gives a flag

0 ⊂ im(C∨1 · · ·C∨n−1a
∨
n) ⊂ im(C∨2 · · ·C∨n−1a

∨
n) ⊂ · · · ⊂ im(a∨n) ⊂ Cvn+1.

Moreover, the 0-momentum condition implies that the D and b∨n maps can be pulled back to a

well-defined endomorphism Cvn+1 → Cvn+1 that sends each step of the flag into the next lower step.

This is precisely the classical description of M .

Remark 4.2.3. Since the isomorphism in Proposition 4.2.2 involves dualizing, the torus action is

inverted. Moreover, the ~-action on the tautological bundles is nonstandard. This explains the

discrepancies in Example 3.1.19, 3.2.8.

Recall that vi = vi − vi−1 for 1 ≤ i ≤ n + 1, where v0 = 0 by convention. As an immediate

corollary of Proposition 4.2.2 and Theorem 3.3.2, we have

Corollary 4.2.4. For all v1, ..., vn+1 ∈ N, we have T ∗Fv1,...,vn+1
∼= C(D), where

D = /v1/v2/ · · ·/vn \vn\ · · ·\︸ ︷︷ ︸
n+1

vn/.

The margin vectors are r = v and c = (1, ..., 1).
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Example 4.2.5.

T ∗Gr(2, 5) = N
(

2

5

)
= C(/2\2\2\2\2\2/),

T ∗F1,2,4,6 = N
( 1 2 4

6

)
= C(/1/2/4\4\4\4\4\4\4/).

As a consequence of Corollary 4.2.4 and Corollary 3.3.5 we recover the trivial equality

χ(T ∗Fv) = #BCT(v, (1n+1)) = |I| =
(

vn+1

v1, v2, ..., vn+1

)
.

Moreover, from Corollary 2.5.2 we have

Corollary 4.2.6. The 3d mirror dual of T ∗Fv is HW equivalent to a quiver variety if and only if v

is weakly increasing.

4.2.2 3d Mirror Symmetry for Quiver Varieties

Consider a quiver variety (i.e. cobalanced bow variety) and its brane diagram D. The dual

brane diagram D′′ is generally not cobalanced, so a priori, the associated bow variety is not a quiver

variety. However, D′ may be HW equivalent to a cobalanced brane diagram (see Corollary 4.2.6).

In this case, we have found two quiver varieties that are 3d mirror dual to each other up to HW

equivalence.

For example, let M = T ∗Gr(2, 5) = C(/2\2\2\2\2\2/), and let M ′′ = C(\2/2/2/2/2/2\) be

the 3d mirror dual variety. Carrying out the sequence of HW transitions

/2\2\2\2\2\2/↔ \1/2\2\2\2\2/↔ \1\2/2\2\2\2/↔ \1\2/2\2\2/1\↔ \1\2/2\2/2\1\,

we obtain a cobalanced bow variety M ′ = C(\1\2/2\2/2\1\) isomorphic to M ′′. Namely, we have

N
(

2

5

)
is 3d mirror dual to N

( 1 2 2 1

1 1

)

up to HW transition.

More generally for Grassmannians, take the 3d mirror dual M ′′ = C(\k /k · · · k/︸ ︷︷ ︸
n

k\) to M =

T ∗Gr(k, n), where 2k ≤ n. Using HW transitions to move U1 to the right k times and U2 to the left k
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times yields C(/1/2 · · ·/k\k /k · · · k/︸ ︷︷ ︸
n−2k

k\k/k− 1 · · · 1/). Hence, we have that T ∗Gr(k, n) = N
(

k

n

)
is 3d mirror dual—up to HW isomorphism—to M ′ = N (v, w), where

v = (1, 2, . . . , k − 1, kn−2k+1, k − 1, . . . , 2, 1), w = εk + εn−k.

Here εi is the ith standard basis vector in Nn−1 and ab means a repeated b times. This pair of 3d

mirror symmetric varieties is explored in terms of elliptic stable envelopes in [RSVZ1]. We restate

one of the main results in bow variety language.

Theorem 4.2.7 ([RSVZ1, Corollary 2]). There is a bijection bj : MT →M ′T
′

given by dualizing

and performing HW transitions on tie diagrams. The pair (M,M ′) exhibits 3d mirror symmetry for

characteristic classes (Definition 4.1.9) with respect to bj.

Example 4.2.8 (3d mirror symmetry for T ∗P2). Let M = T ∗P2. The restriction matrices for M and

M ′ are given in Table 4.3. Here we set fi = f{i} and f ′i = bj(fi). Using the relation θ(x−1) = −θ(x),

it is straightforward to verify

Stabkl (−1)k+l+1Stab′lk.

h↔h−1

ui↔v′i

vj↔u′j

Table 4.3: The elliptic stable envelopes of T ∗P2 and its 3d mirror dual.

f1 f2 f3

f1 θ(u1
u2

)θ(u1
u3

)θ(v2
v1

h4) 0 0

f2 θ(h)θ(u1
u3

)θ(u2v2
u1v1

h3) θ(u1
u2

h)θ(u2
u3

)θ(v2
v1

h3) 0

f3 θ(h)θ(u2
u1

h)θ(u3v2
u1v1

h2) θ(h)θ(u1
u2

h)θ(u3v2
u2v1

h2) θ(u2
u3

h)θ(u1
u3

h)θ(v2
v1

h2)

f ′1 f ′2 f ′3

f ′1 θ(
u′1
u′2

h4)θ(
v′2
v′1

)θ(
v′3
v′1

) θ(h)θ(
v′3
v′1

)θ(
v′2u

′
2

v′1u
′
1
h−3) θ(h)θ(

v′2
v′1

h−1)θ(
v′3u

′
2

v′1u
′
1
h−2)

f ′2 0 θ(
u′1
u′2

h3)θ(
v′2
v′1

h)θ(
v′3
v′2

) θ(h)θ(
v′2
v′1

h)θ(
v′3u

′
2

v′2u
′
1
h−2)

f ′3 0 0 θ(
u′1
u′2

h2)θ(
v′3
v′2

h)θ(
v′3
v′1

h)

Now, consider M = T ∗Fv1,...,vn+1 where v is weakly increasing. In order to formulate a version
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of Theorem 4.2.7 for M , we must find the cobalanced form M ′ of the 3d mirror dual M ′′ and the

bijection bj : MT →M ′T given by dualizing and appyling HW transitions to tie diagrams. We will

formulate these in quiver variety language. Define

µ = (nv1 , (n− 1)v2−v1 , (n− 2)v3−v2 , . . . , 1vn−vn−1 , 0vn+1−vn , (−1)k−1)

where k =
∑n+1

j=1 (vj − vj−1)(n − j + 1) (that is, the sum of the first vn+1 entries of µ). Define

v′, w′ ∈ Nvn+1−1 by

v′i =
i∑

j=1

µj , w′ = εv1 + εv2 + . . .+ εvn+1
, (4.2)

and M ′ = N (v′, w′). The fixed points of quiver varieties can be described in terms of tuples of

partitions “growing” from the framing vertices (see Section 3.3.3). A fixed point f of M corresponds

to a tuple of vn+1 partitions consisting of vj copies of (1n−j+1) for 1 ≤ j ≤ n + 1. For λ = (1j)

where j ∈ N, let pos(λ) ∈ Nvn−j+1 record the positions of the copies of (1j) in the tuple for f (see

Figure 4.2). The fixed points of M ′ correspond to tuples of w′i partitions with mode i for each

1 ≤ i ≤ vn+1 − 1 such that the sum of their dimension vectors is v′.

Theorem 4.2.9. The pair of quiver varieties M,M ′ are 3d mirror dual up to HW transition. Let

1 ≤ i ≤ vn+1 − 1, and let j1 < · · · < jw′i be the indices for which vj = i. Then, bj(f) corresponds to

the tuple of partitions (pos((1n−jk+1))− (1, 2, ..., vi))
w′i
k=1 with mode i for each i.

Proof. The cobalanced brane diagram D corresponding to M is

v1 v2 vn−1 vn vn vn vn

vn+1 .

We begin by finding a sequence of Hanany-Witten transitions that turns the dual brane diagram,

D′′,

v1 v2 vn−1 vn vn vn vn

vn+1
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into a cobalanced brane diagram D′. The first step is to move the group of n D5 branes on the left

past the NS5 branes until each D5 brane U in this group reaches the “cobalanced state” dU− = dU+ .

We will rely on the relation

d0 d1 dr−1 dr dr

HW

d0 d0 + r d1 + (r − 1) dr−1 + 1 dr

.

According to the relation, whenever the group of D5 branes is moved past an NS5 brane, the

difference dU+ − dU− in D3 multiplicites to the right and left of each D5 brane U decreases by 1.

This along with the fact that v is weakly increasing guarantees that the leftmost D5 brane will reach

a cobalanced state after moving the group past sufficiently many NS5 branes. Namely, we have

v
(1)
0 v

(v1−1)
0 v

(v1)
0 v

(v1)
1 v

(v1)
n−1 vn vn vn vn

vn+1 − v1

where v
(j)
i = vi + j(n− i). Note that v

(v1)
0 = v

(v1)
1 , and more generally v

(vi+1)

i = v
(vi+1)

i+1 . Also, we

have v
(j)
n = vn. Continue moving the remaining non-cobalanced D5 branes to the right to bring

the next into a cobalanced state, and so on. Repeating until all blue D5 branes reach a cobalanced

state yields

v
(1)
0 v

(v1)
0 v

(v1)
1 v

(v2)
1 v

(v2)
2 v

(vn)
n−1 vn vn

v1 v2 − v1 vn − vn−1 vn+1 − vn .

The second step is to move the lone D5 brane on the far right past the NS5 branes until it
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becomes cobalanced. From vn+1 ≥ vn it follows that vn+1−vn ≥ vn. Moreover, we have the relation

d1 d1 d2 HW d1 d2 + 1 d2

.

It follows that the D5 brane will become cobalanced after passing through vn many of the NS5

branes. Hence, the dual M ′′ is related by Hanany-Witten moves to the quiver variety M ′ given by

the cobalanced brane diagram

v
(v1)
0 v

(v1)
1 v

(vn)
n−1 vn vn vn vn−1 1

v1 vn − vn−1 vn+1 − vn .

The dimension vectors of the corresponding quiver variety are precisely the v′, w′ vectors in (4.2).

Next, we will trace a fixed point through this sequence of Hanany-Witten transitions. Let U ′i,k be

the kth D5 brane in the ith interval of D′. From the structure of D′, we see that i = vj1 = · · · = vjw′
i

for some consecutive j1 < · · · < jw′i . Apply the inverse sequence of HW transitions and follow this

D5 brane. We get U ′′jk in D′′. Dualizing, we get Vjk in D. Suppose jk < n + 1, and consider all

ties attached to Vjk . Let those ties be attached to the D5 branes Upl for 1 ≤ l ≤ vjk . Note that

p is precisely pos((1n−jk+1)). In D′′, the ties attaching to U ′′jk attach to V ′′pl at the other end for

1 ≤ l ≤ vjk . The sequence of HW transitions moves U ′′jk past the NS5 branes V ′′l for 1 ≤ l ≤ vjk .

Thus, the ties in D′ attached to U ′i,k attach to the NS5 branes V ′l for l ∈ p′, where

p′ = ([1, i] \ (p ∩ [1, i])) ∪ (p ∩ [i+ 1, vn+1]).

Consider the corresponding partition dimension vector di,k. The entries of di,k change precisely

where the ties starting at U i,k end. Hence,

1. for each l ∈ p ∩ [1, i], we have di,kl − d
i,k
l−1 = 0, and

2. for each l ∈ p ∩ [i+ 1, vn+1], we have di,kl−1 − d
i,k
l = 1,

where di,k0 = di,kn+1 = 0 by convention. The indices l in 1 are the horizontal coordinates of the right

side of each part of the partition that is contained to the left of the mode. The indices l in 2 are
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the horizontal coordinates of the right side of each part of the partition that crosses over the mode.

Hence, p = pos((1n−jk+1)) records the horizontal coordinates of the right end of each part of the

partition. The left ends of the parts of the partition have horizontal coordinates 1, 2, ..., vi, so the

length of each part of the partition is given by pos((1n−jk+1))− (1, 2, ..., vi).

Similarly, consider the case jk = n + 1, i.e. U ′ = U ′i,k is the rightmost D5 brane in D′, and

i = vn+1. Applying the inverse sequence of HW transitions and dualizing sends U ′ to the rightmost

NS5 brane V in D. Because D is cobalanced, we have dUU− = dUU+ for all D5 branes U . Since for

each D5 brane in D, V is the only NS5 brane to the right, the ties attached to V attach at the

other end to all D5 branes except those that have no attached ties whatsoever. These are precisely

the D5 branes whose butterflies collapse to the empty partition. Let these D5 branes be Upl for

1 ≤ l ≤ vn+1. After dualizing and applying HW transitions,

1. the NS5 branes to the left of U ′ not joined to U ′ by a tie are precisely V ′l for l ∈ p ∩ [1, vn+1],

and

2. the NS5 branes to the right of U ′ joined to U ′ by a tie are V ′l for l ∈ p ∩ [vn+1 + 1, vn+1].

Repeating the above argument finishes the proof.

Alternatively, one can use the margin vector criterion (2.1) from Section 2.3. For v, w ∈ Nn

define

r(v, w) = (vi − vi−1 +
i−1∑
j=1

wj)i=1,...,n+1, c(v, w) = (nw1 , (n− 1)w2 , . . . , 2wn−1 , 1wn)

where we set v0 = vn+1 = 0. These are the margin vectors of N (Q(v, w)) as a bow variety.

Theorem 4.2.10. Suppose v, w ∈ Na−1, v′, w′ ∈ Nb−1 with
∑
wi = b,

∑
w′i = a. The quiver

varieties N (Q(v, w)) and N (Q(v′, w′)) are 3d mirror duals—up to HW isomorphism—if and only if

r(v, w) + c(v′, w′) = (ba), c(v, w) + r(v′, w′) = (ab).

The first statement of Theorem 4.2.9 is a special case of Theorem 4.2.10. The second statement

requires translating between BCTs and tuples of partitions. We do not carry out this translation in

this work.
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2 6

10

positions: (2, 6, 8, 9)

subtract (1, 2, 3, 4)

→ (1, 4, 5, 5)

→ λ = (5, 5, 4, 1)

positions: (1, 4, 5, 10)

subtract (1, 2, 3, 4)

→ (0, 2, 2, 6)

→ λ = (6, 2, 2, 0)

positions: (3, 7)

subtract (1, 2)

→ (2, 5)

→ λ = (5, 2)

3d mirror
123456542

21

Figure 4.2: Combinatorial description of the bijection between the torus fixed points of T ∗F2,4,4

and its 3d mirror dual. The tuples of partitions are ordered from bottom to top.

In the special case of full flag varieties, we find that the pair of quivers

· · ·1 2 n−2 n−1 n

n+1

· · ·n n−1 3 2 1

n+1

are 3d mirror dual. The corresponding quiver varieties are both isomorphic to T ∗F1,2,...,n+1, but

the action on the tautological bundles is different. This self-duality is explored in [RSVZ2, RW2].

4.2.3 3d Mirror Symmetry for Bow Varieties

In the case of T ∗Fv where v is not weakly increasing, Corollary 4.2.6 implies that the 3d mirror

dual is not a quiver variety. Hence, existing formulas for quiver varieties no longer apply. In the

Grassmannian case, Gr(k, n) is isomorphic to Gr(n− k, n) via taking complements with respect to
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T ∗Fv
N (Q)

C(D)

3d mirror dual

H
W

HWHW

Figure 4.3: An illustration of the relationship between partial flag varieties, quiver varieties, and
bow varieties. The dashed HW transition only exists when v is weakly increasing.

the standard dot product. Hence, the issue of nonincreasing v can be avoided. In general, however,

the obvious approach of taking complements fails. One requires a Hermitian inner product, which is

not complex algebraic (see Section 4.5 for further discussion).

The study of 3d mirror symmetry for general bow varieties is also interesting in its own right.

Bow varieties possess features that make them a very natural setting for the study of 3d mirror

symmetry for characteristic classes. The equivariant parameters are associated to D5 branes and

the Kähler parameters are associated to NS5 branes. Dualizing the brane diagram corresponds

to interchanging equivariant and Kähler parameters, as desired. Moreover, the sophisticated and

technical proof in [RSVZ1] does not do justice to the simple elegance of the statement. The reason

seems to be that in [RSVZ1] two quiver varieties are considered which are not 3d mirror duals

of each other on the nose, but rather one is Hanany-Witten equivalent to the mirror dual of the

other one. Relating characteristic class formulas for Hanany-Witten equivalent varieties is not

expected to be simple, because HW equivalence involves difference bundles of tautological bundles

(see part 2 of Theorem 3.1.21). Once elliptic stable envelopes are defined for bow varieties, and (say

abelianization) formulas are know for them, the comparison between elliptic stable envelopes of 3d

mirror dual varieties should be combinatorial, and the comparison between elliptic stable envelopes

on the two sides of a single Hanany-Witten transition should be a theta-function identity. We plan

to pursue this project in the future.

4.3 Characteristic Classes of Bow Varieties

Motivated by Section 4.1, we wish to associate characteristic classes to subvarieties of bow

varieties. These characteristic classes can be considered in various extraordinary cohomology

theories, typically (equivariant) cohomology, K-theory, or elliptic cohomology. While equivariant
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elliptic cohomology is important to the study of 3d mirror symmetry, we will only consider ordinary

equivariant cohomology in this work.

4.3.1 Cohomology, K-theory, and Localization

An effective method for studying equivariant cohomology and K-theory is equivariant localization.

This tool usually has three steps of arguments (here we phrase them for H∗T):

1. Optimally, the (equivariant) characteristic classes of the tautological bundles over the space

M generate H∗T(M).

2. Optimally, the localization (restriction to the fixed points) map Loc : H∗T(M)→ H∗T(MT) is

injective.

3. Optimally, the image of the localization map is described by “simple” relations among its

components H∗T(MT) = ⊕H∗T(connected components of MT).

The first step, under the name of “Kirwan surjectivity”, is studied extensively: it generally holds

for GIT quotients (and more), but may or may not hold for hyperkähler quotients. We do not know

if it holds for our class of bow varieties or not, cf. [JKK, MG1, MG2].

The second step holds in very general topological circumstances, but only up to H∗T(pt)-torsion,

and only under some (generalized, equivariant) compactness (or properness) assumptions, see e.g.

[HHH, Thm 2.3]. Further studies are needed to verify whether bow varieties are covered.

The third step holds for so-called GKM spaces [GKM]. The assumptions that make a space

a GKM space include that there is at most one torus invariant curve on M joining a given pair

of fixed points. For GKM spaces, the image of the localization map is described by relations of

the following flavor: pairs of components corresponding to poles of an invariant curve agree under

some substitutions of variables. For non-GKM spaces these coincidences must hold not only for

the components themselves, but also for some of their higher derivatives as well. Bow varieties are

typically not GKM spaces (an example is in Figure 4.5), hence GKM theory does not apply. To

circumvent some of the aforementioned obstacles, we make the following definitions.

Definition 4.3.1. In the algebra H∗T(C(D)) (over H∗T(pt) = C[u1, . . . , un, ~]) consider the subalgebra

generated by the Chern classes of the tautological bundles. Define HT(C(D)) to be the Loc-image of

this subalgebra in H∗T(C(D)T) = C[u1, . . . , un, ~]N , where N is the number of fixed points.
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Figure 4.4: Illustration of T fixed points, invariant curves, poset structure, Leafs, Slopes, and N+
f

spaces on C(/1\1/2\2\2/) = N ((1, 2), (1, 2)). See Section 4.3.3.

Definition 4.3.2. In the algebra K0
T(C(D)) (over K0

T(pt) = C[u±1
1 , . . . ,u±1

n ,h±1]) consider the

subalgebra generated by the classes of the tautological bundles. Define KT(C(D)) to be the Loc-image

of this subalgebra in K∗T(C(D)T) = C[u±1
1 , . . . ,u±1

n ,h±1]N , where N is the number of fixed points.

The algebras HT(C(D)) and KT(C(D)) will be the home of our characteristic classes. If the

first and second steps above hold, then these algebras are isomorphic to H∗T(C(D)) and K0
T(C(D)),

respectively.

4.3.2 Cohomological Stable Envelopes

Our goal is to associate a characteristic class to every fixed point on C(D), which generalizes the

notion of stable envelope for quiver varieties, and in turn, the Chern-Schwartz-MacPherson class of

Schubert varieties in partial flag varieties (which itself is a generalization of the Schubert class). Let

σ : C× → T = A× C×~ be the one-parameter subgroup

σ(z) = (z, z2, z3, . . . , zn, 1). (4.3)
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Definition 4.3.3. � For a fixed point f ∈ C(D)T, define

Leaf(f) = {x ∈ C(D) : lim
z→0

σ(z).x = f}.

� Define the partial order on C(D)T by

f ′ ≤ f if f ′ ∈ Leaf(f).

� Define the slope (alternatively, “stable leaf” or “full attracting set”) of a fixed point f by

Slope(f) =
⋃
f ′≤f

Leaf(f ′).

� Let N+
f ⊕ N

−
f denote the T invariant decomposition of TfC(D) to positive and negative σ

weight spaces.

In simpler terms, TfC(D) decomposes as a sum of Grothendieck roots of the form hkui/uj ,

where 1 ≤ i, j ≤ n and k ∈ Z. The T-representation N−f is the sum of Grothendieck roots for which

i < j, and N+
f is the sum of Grothendieck roots for which i > j. Each Leaf is a cell, and it follows

that TfLeaf(f) = N+
f .

At this point it is worth looking at examples, that is, Figures 4.4–4.6. In these figures the

vertices represent fixed points. The edges represent (possibly noncompact) T-invariant curves, and

the decoration on an edge at a vertex is the T-character on the tangent line of the curve at that fixed

point. The compact invariant curves can be constructed using butterfly surgery (see Section 3.4.1).

The tangent space of the Leaf at its own fixed point is indicated in the figures by the pink shading.

The fixed points are positioned in such a way that the poset structure is illustrated the usual way:

in the figures the vertexes are ≤-growing from bottom up. At each fixed point f , the characters of

N+
f (respectively N−f ) are the labels on the edges in the pink (respectively non-pink) region.

First let us recall the general axiomatic definition of cohomological stable envelopes of Maulik-

Okounkov. Let the T-manifold M be a symplectic resolution. Fix a cocharacter σ : C× → A

and a virtual polarization bundle T 1/2M such that TM = T 1/2M + h(T 1/2M)∨. For f ∈ M , let

TfM = N−f ⊕N
+
f be the decomposition into positive and negative weight spaces of σ.
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Definition 4.3.4 ([MO]). Let f ∈MT. The cohomology class Stab(f) ∈ H∗T(M) of homogeneous

degree dimCM/2 is called the stable envelope of f , if it satisfies the axioms:

� (support) it is supported on Slope(f),

� (normalization) Stab(f)|f = PfeT(N−f ), where Pf =
eA(T

1/2
f M)

eA(N−f )

� (boundary) Stab(f)|f ′ is divisible by ~, for f ′ 6= f .

Since we are working with HT instead of H∗T, we need a local reformulation of the support

condition. See Remark 4.1.6 for a discussion of local versus global support conditions in the context

of partial flag varieties. For that, we need the notion of normal bundle of Slope(f) at f ′.

Definition 4.3.5. We say that a T-invariant line bundle ` “belongs to Tf ′(Slope(f))” either if it is

tangent to an invariant curve connecting f ′ with f ′′, for an f ′′ satisfying f ′ < f ′′ ≤ f , or, if ` ⊂ N+
f ′ .

The span of these line bundles is called Tf ′(Slope(f)). A T invariant complement of Tf ′(Slope(f))

in Tf ′C(D) is called Nf ′(Slope(f)).

Example 4.3.6. In Figure 4.4 let f be the fixed point denoted by 5. Then for f ′ = 4 we have

that Nf ′(Slope(f)) is one-dimensional, with T-weight u1 − u2 + 2~. For f ′ = 3 we have that

Nf ′(Slope(f)) is zero-dimensional. For f ′ = 2 we have that Nf ′(Slope(f)) is one-dimensional, with

weight u2 − u3 + ~. For f ′ = 1 we have that Nf ′(Slope(f)) is zero dimensional.

We will now define a version of the stable envelope that lives in HT. In our version, we will ignore

the polarization entirely and consider only the cocharacter (4.3) given above. The polarization is

relatively unimportant; it has the effect of multiplying certain stable envelope classes by -1. The

choice of cocharacter, however, is important. In particular, the comparison of stable envelopes

for different cocharacters endows H∗T with the structure of a quantum group representation. See

[AO, MO, O] for details.

Definition 4.3.7. Let f ∈ C(D)T. The cohomology class Stab(f) ∈ HT(C(D)) of homogeneous

degree dimC C(D)/2 is called the stable envelope of f , if it satisfies the axioms:

� (support-1) Stab(f)|f ′ = 0 if f ′ 6∈ Slope(f);

� (support-2) Stab(f)|f ′ is divisible by eT(Nf ′(Slope(f))).
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� (normalization) Stab(f)|f = eT(N−f );

� (boundary) Stab(f)|f ′ is divisible by ~, for f ′ 6= f .

The relation between the global support condition in Definition 4.3.4 and the local support-2

condition is the well known argument combining the Gysin sequence argument and a Mayer-Vietoris

induction, see eg. [RTV3, Section 5.25]. The local support-1 condition is in fact a corollary of the

rest of the axioms. Nonetheless, we listed it for clarity. If a stable envelope exists, then it is unique,

as the original proof [MO, Section 3.3.4] carries over to this case (see also [RTV2, Section 3.1],

[RTV3, Section 7.8]). In the next three sections, we show examples of stable envelopes.

4.3.3 Stable envelopes for C(/1\1/2\2\2/) = N ((1, 2), (1, 2)).

The “skeleton” of the dimC = 4 bow variety C(/1\1/2\2\2/) is in Figure 4.4, where the fixed

points named 1, 2, 3, 4, 5 are

respectively. The stable envelopes are in the table (*)

1 2 3 4 5

1 (u1−u3)(u2−u3) 0 0 0 0

2 (u1−u3)~ (u1−u2)(u2−u3+~) 0 0 0

3 (u3−u2+~)~ (u2−u3+~)~ (u1−u3+~)(u1−u2+~) 0 0

4 ~2 (u2−u3+~)~ (u1−u3+~)~ (u2−u3)(u1−u2+2~) 0

5 (u2−u3)~ 0 (u2−u1)~ (u1−u2+2~)~ (u1−u3+2~)(u2−u3+~)

.

In this, and similar tables in the whole paper, each row contains the fixed point restrictions of the

stable envelope of the corresponding fixed point.

To verify that this table is correct we need to verify that
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(i) each row (as a five-tuple) is an element of HT(C(D)); and that

(ii) the axioms of Definition 4.3.7 are satisfied.

Property (i) is proved by applying the five fixed point restriction homomorphisms Loc1, . . . ,Loc5

(as described in Section 3.2.3)

x11 7→ u1 x21 7→ u1 x31 7→ u1 x32 7→ u2 x41 7→ u1 x42 7→ u2 x51 7→ u1 x52 7→ u2,

x11 7→ u1 x21 7→ u1 x31 7→ u1 x32 7→ u3 x41 7→ u1 x42 7→ u3 x51 7→ u1 x52 7→ u3,

x11 7→ u1 x21 7→ u1 x31 7→ u2 x32 7→ u3 x41 7→ u2 x42 7→ u3 x51 7→ u2 x52 7→ u3,

x11 7→ u2 − ~ x21 7→ u2 − ~ x31 7→ u2 x32 7→ u3 x41 7→ u2 x42 7→ u3 x51 7→ u2 x52 7→ u3,

x11 7→ u3 − ~ x21 7→ u3 − ~ x31 7→ u2 x32 7→ u3 x41 7→ u2 x42 7→ u3 x51 7→ u2 x52 7→ u3

to the concrete formulas

F1 =(x31 − u3)(x32 − u3),

F2 =(x31 + x32 − u2 − u3)(u1 + u2 − x31 − x32 + ~),

F3 =(x11 − x31 − x32 + u3 + ~)(x11 − x31 − x32 + u2 + ~),

F4 =(u1 − x11 + ~)(x11 − x31 − x32 + u2 + ~),

F5 =(u1 − x11 + ~)(−x11 + x31 + x32 − u3),

(4.4)

where xi1, xi2, . . . , xi,dXi
are the Chern roots of the i’th tautological bundle.

Remark 4.3.8. The polynomials in (4.4) are not unique, they are only defined up to ∩i ker(Loci).

We chose ‘nice’ representatives Fj , which in this case factor to linear factors. The existence of such

nice representatives is not expected for more complicated brane diagrams. If C(D) is the cotangent

bundle of a partial flag variety, then there are reasonably nice representatives of stable envelopes

called “weight functions,” see [RTV1, RTV2, RTV3, RV].

Remark 4.3.9. In fact we could argue differently to prove (i)—because this particular C(D)

shares properties with GKM spaces. Namely, the five-tuple (p1, p2, p3, p4, p5) of polynomials in

C[u1, u2, u3, ~] is the (Loc1, . . . ,Loc5)-image of a polynomial

F ∈ C[u1, u2, u3, ~][x11, x21, x31, x32, x41, x42, x51, x52]S1×S1×S1×S2×S2×S2 ,
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if and only if

(p1 − p2)|u2=u3 = 0, (p1 − p3)|u1=u3 = 0, (p2 − p3)|u1=u2 = 0,

(p3 − p4)|u2=u1+~ = 0, (p3 − p5)|u3=u1+~ = 0, (p4 − p5)|u2=u3 = 0
(4.5)

(these equations are read from the edges of the graph in Figure 4.4). To prove this statement

consider a linear space C12 with coordinates

u1, u2, u3, ~, x11, x21, x31 + x32, x31x32, x41 + x42, x41x42, x51 + x52, x51x52

and in it the five subvarieties Hi defined by

x11 = Loci(x11), . . . , x51 + x52 = Loci(x51 + x52), x51x52 = Loci(x51x52)

for i = 1, . . . , 5. The polynomials pi can be considered to be polynomials on the Hi’s, and the

existence of F is rephrased as the existence of a polynomial on C12 that restricts to the given

five-tuple. A necessary condition is, of course, that the pi’s agree on their pairwise intersections.

These conditions are exactly (4.5). It can be shown that our varieties Hi intersect in such a general

way that guarantees that the named necessary conditions are also sufficient. (For more sophisticated

intersections of varieties such a statement does not hold, for example consider the polynomials cjx

on the lines y = jx for j = 1, 2, 3, in the x, y-plane. They agree on their intersection, but they only

extend to a polynomial in x, y if c1 + c3 = 2c2.) In fact the point of view of this remark is used in

the definition of equivariant elliptic cohomology. Namely the elliptic counterpart of ∪Hi is called

the “elliptic cohomology scheme” (cf. [AO, Section 2.25-2.3], [FRV, Section 4], [RTV3, Section 7],

[RSVZ1, Section 2]).

Now that (i) is verified for the table (*) above, it is worth verifying property (ii), that is the

axioms of stable envelopes.

The normalization axiom is about the diagonal entries: for each vertex on the graph the directions

of N− are those that are not covered by the pink shading in the figure. Hence the diagonal entries

need to be the products of their weights.

The boundary axiom holds because all below-diagonal entries are divisible by ~.
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Figure 4.5: Illustration of T-fixed points, invariant curves, poset structure, Leafs, Slopes, and N+
f

spaces on C(/1/2/3/4/5\2\), which is the 3d mirror dual of T ∗Gr(2, 5). See Section 4.3.4.

The support-1 axiom holds because the above-diagonal entries are all 0.

The support-2 axiom is a divisibility requirement for below-diagonal entries. Continuing Exam-

ple 4.3.6 we see that the axiom requires that the (5,4), (5,3), (5,2), (5,1) entries of the table (*) are

divisible by u1 − u2 + 2~, 1, u2 − u3 + ~, 1, respectively.

4.3.4 Stable Envelope for C(/1/2/3/4/5\2\)

Consider D = /1/2/3/4/5\2\. The corresponding bow variety is (Hanany-Witten equivalent

to) the 3d mirror dual of T ∗Gr(2, 5). Its T fixed points are in bijection with the 2-element subsets of

{1, . . . , 5}. The tie diagram corresponding to {k, l} consists of 5 ties: U2 is connected with Vk and

Vl, and U1 is connected with Vi for i 6= k, l. We denote this fixed point by kl. Figure 4.5 illustrates

relevant information on the fixed point data.

In the table below we name the stable envelopes in the same manner as in Section 4.3.3. We

used the following conventions: both horizontally and vertically we used the 45, 35, 34, 25, 24, 23,
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15, 14, 13, 12 order of the vertices, and for brevity we write u
(k)
ij for (ui − uj + k~).

45 35 34 25 24 23 15 14 13 12

u
(−1)
12 u

(−2)
12 0 0 0 0 0 0 0 0 0

u
(−1)
12 ~ u

(−1)
12 u

(−1)
12 0 0 0 0 0 0 0 0

u
(−1)
12 ~ u

(−1)
12 ~ u

(0)
12 u

(−1)
12 0 0 0 0 0 0 0

u
(−1)
12 ~ u

(−1)
12 ~ 0 u

(0)
12 u

(−1)
12 0 0 0 0 0 0

u
(−1)
12 ~ ~2 u

(0)
12 ~ u

(0)
12 ~ u

(0)
12 u

(0)
12 0 0 0 0 0

2~2 u
(0)
12 ~ u

(0)
12 ~ u

(0)
12 ~ u

(0)
12 ~ u

(0)
12 u

(1)
12 0 0 0 0

u
(−1)
12 ~ u

(−1)
12 ~ 0 u

(−1)
12 ~ 0 0 u

(−1)
12 u

(1)
12 0 0 0

u
(−1)
12 ~ ~2 u

(0)
12 ~ ~2 u

(0)
12 ~ 0 u

(1)
12 ~ u

(0)
12 u

(1)
12 0 0

2~2 u
(0)
12 ~ u

(0)
12 ~ ~2 ~2 u

(1)
12 ~ u

(1)
12 ~ u

(1)
12 ~ u

(1)
12 u

(1)
12 0

2~2 2~2 2~2 u
(1)
12 ~ u

(1)
12 ~ u

(1)
12 ~ u

(1)
12 ~ u

(1)
12 ~ u

(1)
12 ~ u

(1)
12 u

(2)
12

To prove that the values of this table are correct we need to prove the properties (i) and (ii) as

in Section 4.3.3. Property (ii) is done by observation. Property (i) is more sophisticated: either we

use a computer to find representatives of the rows as polynomials in the xij , ui, ~ variables, or one

can use a formula presented in [RSVZ1, Section 5] specifically for stable envelopes on 3d mirror

duals of T ∗Gr spaces.

Remark 4.3.10. Note that property (i) can not be concluded by checking that neighboring components

agree up to a substitution. This bow variety has infinitely many invariant curves, so it is not a GKM

space. The subvarieties analogous to those called Hi in Section 4.3.3 do not intersect transversally.

Hence, the GKM conditions on the components of an element in the image of Loc must be generalized

to some coincidences of higher derivatives.

4.3.5 Stable Envelope for C(\1/2/2\2\1/).

Since the examples of Sections 4.3.3, 4.3.4 were both quiver varieties, we present one more

example, for which neither C(D) nor its 3d mirror dual are Hanany-Witten equivalent to a quiver

variety: D = \1/2/2\2\1/. Calculation shows that its fixed point data relevant for stable envelopes
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Figure 4.6: Illustration of T-fixed points, invariant curves, poset structure, Leafs, Slopes, and N+
f

spaces on C(\1/2/2\2\1/). See Section 4.3.5.

is in Figure 4.6, where the five fixed points denoted by 1, 2, 3, 4, 5 are

.

By methods similar to those in Section 4.3.4, it can be verified that the stable envelopes are

1 2 3 4 5

1 u
(0)
23 u

(2)
13 u

(1)
23 0 0 0 0

2 0 u
(2)
13 u

(1)
12 u

(1)
23 0 0 0

3 u
(2)
13 u

(1)
23 ~ u

(2)
13 u

(1)
23 ~ u

(2)
12 u

(1)
23 u

(1)
23 0 0

4 u
(1)
32 u

(1)
23 ~ u

(2)
13 u

(1)
23 ~ u

(1)
23 u

(1)
23 ~ u

(3)
13 u

(3)
12 u

(1)
23 0

5 u
(2)
13 u

(1)
23 ~ u

(0)
21 u

(1)
23 ~ u

(2)
12 u

(1)
23 ~ 0 u

(3)
13 u

(1)
23 u

(2)
23

.
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It is instructive to verify the axioms from Definition 4.3.7 just by checking the entries against the

structure of Figure 4.6. The fact that each line is in fact an element of HT(C(D)) is verified by

computer calculation.

4.3.6 Conjectural Formula for Cohomological Stable Envelopes

In the last three sections we presented formulas for stable envelopes that can be verified. The

question remains how we came up with these formulas. We used the conjecture we present now.

Let us fix a brane diagram D, and a fixed point f ∈ C(D)T. Recall that

LocKf : KT(C(D))→ KT(f) = C[u±1
1 ,u±1

2 , . . . ,u±1
n ,h±1]

is the restriction map in K-theory that we calculated explicitly in Section 3.2.3. The formula for

TC(D) from Section 3.1.3 has the form

TC(D) =
∑
x,y,k

αx,y,k
x

y
hk

where x and y are one of the Grothendieck roots of one of the tautological bundles or one of the

ui’s, and αx,y,k ∈ Z.

Definition 4.3.11. A term αx,y,k
x
yhk is f -small, if LocKf (xy ) = ui

uj
with i < j.

Let W̃ be the Euler class of the f -small part of TC(D):

W̃f = eT

 ∑
f -small

αx,y,k
x

y
hk

 . (4.6)

In other words, W̃ is the part of TC(D) that restricts to N−f at fixed point f . Now, W̃f is a rational

expression in the Chern roots xij of the tautological bundles as well as ui and ~. Let s be the

number of segments in D. We define

Wf =
1

nf
Sym

(
W̃f

)
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where Sym is the symmetrizing operator Sym1Sym2 · · · Syms and

Symi(ρ(xi1, . . . , xi,dXi
)) =

∑
σ∈SdXi

ρ(xi,σ(1), xi,σ(2), . . . , xi,σ(dXi
)).

The normalizing factor df is defined by

nf =
∏
U D5

s∏
i=1

dUi !.

Conjecture 4.3.12. Cohomological stable envelopes exist for bow varieties. The stable envelope for

the fixed point f is represented by Wf .

We need to explain what “represented” means. The formula Wf is a rational function in the

Chern roots of the tautological bundles as well as ui, ~. The cohomological restriction map

Locf ′ : H∗T(C(D))→ H∗T(f ′) = C[u1, u2, . . . , un, ~],

is a “substitution” map: we substitute certain u, ~ polynomials into the Chern roots. Hence, it can

be applied to Wf . However, the result might have 0/0 terms. The first part of the conjecture is

that the limit of this substitution map exists and is a polynomial, i.e. that Wf defines an element

in
⊕

f ′ H
∗
T(f ′). The second part is that this element is in HT(C(D)), and the third part is that it

satisfies the axioms of Definition 4.3.7.

Remark 4.3.13. The phenomenon of naming a rational function whose fixed point restrictions

are polynomials is not new in the theory of stable envelopes: the so-called “weight functions” of

[RTV1, Ri] are also examples for that. The phenomenon that we need to take limits to restrict to

fixed points is new.

Remark 4.3.14. Although the definition of Wf may sound technical, in plain language, it is just

the natural formula we obtain if we want an expression symmetric in the Grothendieck roots that

satisfies the normalization axiom of Definition 4.3.7. Remarkably, all our computations support the

conjecture that the rest of the axioms also hold.

Remark 4.3.15. Hanany-Witten equivalent brane diagrams have tautological bundles of different

ranks. Hence, the symmetrization part of the definition of Wf may be computationally much easier
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for certain representatives in the HW equivalence class than for others. Our choice in Section 4.3.4,

for instance, was made for this reason.

Example 4.3.16. Consider the brane diagram D = \1/2/2\2\1/ of Section 4.3.5 (see Figure 4.6).

In this section we show how Conjecture 4.3.12 produces some of the entries in the second line of the

stable envelope table of Section 4.3.5.

According to Section 3.1.3, the first few terms of the tangent bundle TC(D) expressed in

Grothendieck roots are

u1

ξ1
h +

ξ1

ξ
(1)
2

h +
ξ1

ξ
(2)
2

h +
ξ

(1)
2

ξ1
+
ξ

(2)
2

ξ1
− 1− (1 + h)

(
ξ

(1)
2

ξ
(2)
2

+
ξ

(2)
2

ξ
(1)
2

+ 2

)
+ . . . , (4.7)

where ξ1 is the first tautological bundle, and ξ
(1)
2 , ξ

(2)
2 are the Grothendieck roots of the second

tautological bundle, etc. According to Section 3.2.3, the localization map to the second fixed

point maps ξ1 7→ u1h, ξ
(1)
2 7→ u1h, ξ

(2)
2 7→ u3h

−1. Under this substitution only a few terms from

(4.7) will be f -small: from the displayed ones, only ξ1/ξ
(2)
2 h and −(1 + h)ξ

(1)
2 /ξ

(2)
2 . For the sum∑

f -small αx,y,kh
kx/y in equation (4.6), we obtain

ξ1

ξ
(2)
2

h− ξ
(1)
2

ξ
(2)
2

− ξ
(1)
2

ξ
(2)
2

h− ξ
(1)
3

ξ
(2)
3

+
ξ

(1)
3

u2
+
ξ

(1)
4

u3
+
ξ

(1)
2

ξ
(2)
3

h− ξ
(1)
4

ξ
(2)
4

+
ξ

(1)
3

ξ
(2)
4

− ξ
(1)
3

ξ
(2)
4

h +
u2

ξ
(2)
4

h +
ξ

(1)
3

ξ
(2)
2

+
ξ

(1)
4

ξ
(2)
4

h.

Hence, we have

W̃2 = (x11−x22+~)(x31−u2)(x41−u3)(x21−x32+~)(x31−x42)(u2−x42+~)(x31−x22)(x41−x42+~)
(x21−x22)(x21−x22+~)(x31−x32)(x41−x42)(x31−x42+~) ,

and W2 is its S2 × S2 × S2 symmetrization with respect to (x2,1, x2,2), (x3,1, x3,2), (x4,1, x4,2). For

example, the (2,3) entry of the stable envelope table of Section 4.3.5 is the

x11 7→ u1 + ~ x21 7→ u1 + ~ x31 7→ u2 x41 7→ u2 x51 7→ u2

x22 7→ u3 − ~ x32 7→ u3 x42 7→ u3

substitution into this symmetrized 8-term rational function (the substitutions are determined in

Section 3.2.3). We get termwise 0, so the (2,3) entry is 0.

The (2,2) entry in the table is the

x11 7→ u1 + ~ x21 7→ u1 + ~ x31 7→ u1 + ~ x41 7→ u1 + ~ x51 7→ u1 + ~

x22 7→ u3 − ~ x32 7→ u3 x42 7→ u3
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substitution into the 8-term rational expression. The first term maps to (u1 − u3 + 2~)(u1 − u2 +

~)(u2 − u3 + ~) (a polynomial!) and all the other terms map to 0.

The (2,5) entry in the table is the

x11 7→ u1 + ~ x21 7→ u1 + ~ x31 7→ u3 x41 7→ u3 x51 7→ u3 − ~

x22 7→ u3 − ~ x32 7→ u3 − ~ x42 7→ u3 − ~
substitution into the 8-term rational expression. Six of those terms map to 0. However, the

substitution does not make sense for the remaining two terms, because of the presence of the

(x32 − x41 + ~) factor in the denominator of these two terms. Yet, the sum of the terms has a limit,

and it is 0. Thus we obtain that the (2,5) entry of the table is 0. The other entries follow similarly.

This example illustrates that Conjecture 4.3.12 typically does not provide the simplest represen-

tatives for the stable envelope classes. The Fj functions of (4.4) are, for example, much simpler

representatives (they are polynomials to start with, not rational functions) than the formula of

Conjecture 4.3.12.

4.4 Characteristic Classes of Separated Bow Varieties

The combinatorics of Wf and Conjecture 4.3.12 are subtle, especially due to the symmetrizations

in the definition of Wf . Some of the difficulties are alleviated in the case of separated bow varieties.

In this section, we analyze Wf for separated bow varieties, and discuss a possible approach for

proving Conjecture 4.3.12 in this setting. Throughout this section, D will be a separated brane

diagram with m NS5 branes, n D5 branes, and s = m+ n− 1 segments. As usual, we denote the

margin vectors by r, c and the Grothendieck roots of a bundle η by η(1), ..., η(rank(ξ)).

4.4.1 Bundles on Separated Bow Varieties

We begin by analyzing the tautological bundles ξ1, ..., ξm+n−1 on C(D). Let f ∈ C(D)T. From

Section 2.6, it follows that the fixed point restriction ξi|f for m ≤ i ≤ m+ n− 1 does not depend on

f . This fixed point restriction is a Laurent polynomial in u,h variables, which we may interpret as

global bundles to obtain bundles ξ̂1, ..., ξ̂n over C(D). For 1 ≤ j ≤ n, define the bundle ξ̂i,j → C(D)

by

ξ̂i,j =


∑cn−j+1

k=1 h1−kuj if i ≤ j,

0 if i > j.
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From Section 3.2.3, we then have

ξ̂i =
∑
j

ξ̂i,j .

Given any virtual bundle η expressed in terms of tautological bundles, let η̂ denote the bundle

resulting from the substitution ξm+i−1 7→ ξ̂i. Note that if LocK is injective (see Section 4.3.1), then

η̂ = η in K0
T(C(D)). By Lemma 3.1.8, the A maps induce injections ξm+i → ξm+i−1 for 1 ≤ i ≤ n−1,

and hence injections ξ̂i+1 → ξ̂i.

Next, we analyze T̂C(D). The formula of Theorem 3.1.15 gives the diagram

ξ1

1 **

−1−h

��
· · ·

h

ii
1 ,,
ξm−1

1
))

−1−h

��

h

jj ξ̂1

h
ll

−1−h

��

h

��
ξ̂2

1−hoo

−1+h

��

h
��

ξ̂3
1−hoo

−1+h

��
1−hoo

h
��

· · ·1−hoo ξ̂n
1−hoo

−1+h

��

h
��

Cu1

1

ZZ

Cu2

1

ZZ

· · · Cun−1

1

\\

Cun

1

ZZ

The multiplicity −1 of End(ξ̂1) is written as (−1− h) + h for reasons that will become clear in the

Section 4.4.2. For now, just observe that we can split the diagram into two parts,

TW : ξ1

1 **

−1−h

��
· · ·

h

ii
1 ,,

ξm−1

1
**

−1−h

��

h

jj ξ̂1

h
ll

−1−h
��
,

TR : ξ̂1

h

��
ξ̂2

1−hoo

−1+h

��

h
��

ξ̂3
1−hoo

−1+h

��
1−hoo

h
��

· · ·1−hoo ξ̂n
1−hoo

−1+h

��

h
��

Cu1

1

ZZ

Cu2

1

ZZ

· · · Cun−1

1

\\

Cun

1

ZZ .

We will refer to these parts as TW and TR for “two-way” and “triangle”, respectively.

4.4.2 Polarization

Though we do not incorporate the polarization in our definition of cohomological stable envelope

(Definition 4.3.7), we will define a canonical choice of polarization for future reference. By polarization,

we mean a virtual bundle T 1/2C(D) satisfying

T̂C(D) = T 1/2C(D)⊕ h(T 1/2C(D))∨.
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Theorem 4.4.1. Let P = T̂C(D)|h=0, and P ′ =
∑n

i=1 ρci, where ρj =
∑j

i=1(i − 1)hi−j. Then,

T 1/2C(D) = P + P ′ is a polarization for C(D).

Proof. In order to construct a polarization, we will construct virtual bundles TW 1/2 and TR1/2

such that

TW = TW 1/2 + h(TW 1/2)∨, and TR = TR1/2 + h(TR1/2)∨.

Then, TW 1/2X + TR1/2X is a polarization. A natural choice for TW 1/2X is to take TW |h=0.

Diagramatically, this is represented by

TW 1/2 : ξ1

1 **

−1

��
· · ·

1 ,,
ξm−1

1
**

−1

��
ξ̂1

−1

��
.

We would like to make the same choice for TR1/2. Unfortunately, this is does not possess the

necessary property.

Let TR1 = TR|h=0 and TR2 be the complement in TR. In other words, TR1 is the part of TR

with multiplicity ±1, while TR2 is the part with multiplicity ±h. Diagramatically, we have

TR1 : ξ̂1

h

��
ξ̂2

1oo

−1

��
ξ̂3

1oo

−1

��
1oo · · ·1oo ξ̂n

1oo

−1

��

Cu1

1

ZZ

Cu2

1

ZZ

· · · Cun

1

ZZ

TR2 : ξ̂1

h

��
ξ̂2

−hoo

h

��

h
��

ξ̂3
−hoo

h

��
−hoo

h
��

· · ·−hoo ξ̂n
−hoo

h

��

h
��

Cu1 Cu2 · · · Cun−1

.
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Of course, TR = TR1 + TR2. Embedding all ξ̂i into ξ̂1, we have

TR1 = Hom(ξ̂1,2 + · · ·+ ξ̂1,n, ξ̂1,1 + · · ·+ ξ̂1,n) + Hom(ξ̂1,3 + · · ·+ ξ̂1,n, ξ̂1,2 + · · ·+ ξ̂1,n) + · · ·

+ Hom(ξ̂1,n, ξ̂1,n−1 + ξ̂1,n)

− End(ξ̂1,2 + · · ·+ ξ̂1,n)− End(ξ̂1,3 + · · ·+ ξ̂1,n)− · · · − End(ξ̂1,n)

+ Hom(ξ̂1,1, ξ̂1,1 + · · ·+ ξ̂1,n) + Hom(ξ̂1,2, ξ̂1,2 + · · ·+ ξ̂1,n) + · · ·+ Hom(ξ̂1,n, ξ̂1,n)

= Hom(ξ̂1,2 + · · ·+ ξ̂1,n, ξ̂1,1) + Hom(ξ̂1,3 + · · ·+ ξ̂1,n, ξ̂1,2) + · · ·+ Hom(ξ̂1,n, ξ̂1,n−1)

+ Hom(ξ̂1,1, ξ̂1,1 + · · ·+ ξ̂1,n) + Hom(ξ̂1,2, ξ̂1,2 + · · ·+ ξ̂1,n) + · · ·+ Hom(ξ̂1,n, ξ̂1,n),

and also

h−1TR2 = End(ξ̂1,1 + · · ·+ ξ̂1,n) + End(ξ̂1,2 + · · ·+ ξ̂1,n) + · · ·+ End(ξ̂1,n)

−Hom(ξ̂1,2 + · · ·+ ξ̂1,n, ξ̂1,1 + · · ·+ ξ̂1,n)−Hom(ξ̂1,3 + · · ·+ ξ̂1,n, ξ̂1,2 + · · ·+ ξ̂1,n)− · · ·

−Hom(ξ̂1,n, ξ̂1,n−1 + ξ̂1,n)

+ Hom(ξ̂1,2 + · · ·+ ξ̂1,n, ξ̂1,1) + Hom(ξ̂1,3 + · · ·+ ξ̂1,n, ξ̂1,2) + · · ·+ Hom(ξ̂1,n, ξ̂1,n−1)

= Hom(ξ̂1,1, ξ̂1,1 + · · ·+ ξ̂1,n) + Hom(ξ̂1,2, ξ̂1,2 + · · ·+ ξ̂1,n) + · · ·+ Hom(ξ̂1,n, ξ̂1,n)

+ Hom(ξ̂1,2 + · · ·+ ξ̂1,n, ξ̂1,1) + Hom(ξ̂1,3 + · · ·+ ξ̂1,n, ξ̂1,2) + · · ·+ Hom(ξ̂1,n, ξ̂1,n−1).

It follows that

h−1(TR−(TR1 + hTR∨1 ))

= h−1TR2 − TR∨1

= Hom(ξ̂1,1, ξ̂1,1 + · · ·+ ξ̂1,n) + Hom(ξ̂1,2, ξ̂1,2 + · · ·+ ξ̂1,n) + · · ·+ Hom(ξ̂1,n, ξ̂1,n)

+ Hom(ξ̂1,2 + · · ·+ ξ̂1,n, ξ̂1,1) + Hom(ξ̂1,3 + · · ·+ ξ̂1,n, ξ̂1,2) + · · ·+ Hom(ξ̂1,n, ξ̂1,n−1)

−Hom(ξ̂1,1, ξ̂1,2 + · · ·+ ξ̂1,n)−Hom(ξ̂1,2, ξ̂1,3 + · · ·+ ξ̂1,n)− · · · −Hom(ξ̂1,n−1, ξ̂1,n)

−Hom(ξ̂1,1 + · · ·+ ξ̂1,n, ξ̂1,1)−Hom(ξ̂1,2 + · · ·+ ξ̂1,n, ξ̂1,2)− · · · −Hom(ξ̂1,n, ξ̂1,n)

= End(ξ̂1,1) + · · ·+ End(ξ̂1,n)−Hom(ξ̂1,1,u1)− · · · −Hom(ξ̂1,n,un).
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Hence, we see that TR1 is almost a polarization, but it is off by a Laurent polynomial in h:

TR− (TR1 + hTR∨1 ) = ρ ∈ Z[h±1],

where

ρ(h) = h(End(ξ̂1,1) + · · ·+ End(ξ̂1,n)−Hom(ξ̂1,1,u1)− · · · −Hom(ξ̂1,n,un)).

If the ξ̂1,i’s are rank 1 bundles, then ρ(h) = 0, and we can take TR1/2 = TR1. This is the case for

partial flag varieties. In general, we must polarize ρ. The terms of ρ of degree at most 0 form a

polarization P ′.

4.4.3 Cohomological Stable Envelope for Separated Bow Varieties

We will consider a special version of Conjecture 4.3.12, adapted to separated bow varieties. To

obtain this special version, define

Ŵf =
1

n̂f
Sym1, ...,Symm−1W̃f ,

where

n̂f =
∏
U D5

m−1∏
i=1

dUi !.

Conjecture 4.4.2. For D separated and f ∈ C(D)T, the stable envelope class of f is represented by

Ŵf .

Refer to Section 4.3.6 for the meaning of “represented”. Alternatively, one may obtain Conjec-

ture 4.4.2 by repeating the constructions of Section 4.3.6 with T̂C(D) instead of TC(D).

Remark 4.4.3. In the general case, there may be tautological bundles ξX whose fixed point restrictions

are all equal. One may modify the formula for Wf by not symmetrizing over the Chern roots of ξX

to obtain a simpler formula Ŵf . In all examples we calculated, the fixed point restrictions of Wf

and Ŵf agree up to modifying the normalization factor nf appropriately. Conceptually, assuming

injectivity of Loc, these bundles split into honest line bundles. Hence, there is no need to symmetrize

over their Chern roots. The combinatorics of which tautological bundles have this property is subtle

in general, but simple in the separated case.
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To illustrate the advantages of Ŵf , we will prove the normalization axiom for stable envelopes

(Definition 4.3.7). Here, we assume that the limit of the fixed point restrictions of Ŵf exist.

Lemma 4.4.4. The fixed point restrictions of Ŵf satsify the normalization axiom for stable

envelopes.

Proof. Let ~σ ∈ SdX1
× · · · × SdXm−1

. Given an expression ρ(xi,1, ..., xi,dXi
)m−1
i=1 , define

~σ(ρ) = ρ(xi,σi(1), ..., xi,σi(dXi
))
m−1
i=1 .

Note that Sym(ρ̂) =
∑

~σ ~σ(ρ). We may extend this definition to K-theory by replacing Chern roots

with Grothendieck roots. Clearly, we have ~σ(eT(η)) = eT(~σ(η)).

Consider the f -small (Definition 4.3.11) terms of Hom(ξi−1, ξi)⊕hHom(ξi, ξi−1)⊕(−1−h)End(ξi),

the part of T̂C(D) pictured by

Si : ξi−1

1
))
ξi

~
kk

−1−~

��
.

Denote the sum of these terms by Si. Note that Si and Si′ share no Chern roots if i 6= i′. For

1 ≤ i ≤ m and 1 ≤ k ≤ n, define ξ
(1)
i,k , ..., ξ

(d
Uk
i )

i,k to be the Grothendieck roots of ξi that restrict to

hluk at f for some l ∈ Z. Section 3.2.3 gives the explicit formula

ξ
(j)
i,k |f =

uk
hm+j−i−1

.

Let ξi,k =
∑

j ξ
(j)
i,k . Finally, define S to be the f -small part of T̂C(D). We have Ŵf = 1

n̂f
Sym(S).

The only source of −1 terms in ~σ(S)|f is ~σ((−1− h)End(ξi)), where 1 ≤ i ≤ m− 1. Namely,

each -1 term comes from a pair ξ
(j)
i,k , ξ

(j+1)
i,k such that ~σ−1(ξ

(j)
i,k ) is a Grothendieck root of ξi,a and

~σ−1(ξ
(j+1)
i,k ) is a root of ξi,b, where b > a. In this case, −hξ

(j+1)
i,k /ξ

(j)
i,k is a root of −hEnd(ξi) that

appears in ~σ(Si), and

−
hξ

(j+1)
i,k

ξ
(j)
i,k

∣∣∣∣∣∣
f

= −h
uk/h

(m+j−i)

uk/h(m+j−i−1)
= −1.

We have 0 ≤ dUk
Xi
− dUk

Xi−1
≤ 1. Hence, j ≤ dUk

Xi−1
, and ξ

(j)
i−1,k|f = ξ

(j)
i,k |f/h. Assume ~σ−1(ξ

(k)
i−1,j) is a

root of ξi−1,c. There are two cases. First, if c ≤ a, then ξ
(j+1)
i,k /ξ

(j)
i−1,k is a root of Hom(ξi−1, ξi) that
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appears in ~σ(Si). We have

ξ
(j+1)
i,k

ξ
(j)
i−1,k

∣∣∣∣∣∣
f

=
ξ

(j+1)
i,k |f
ξ

(j)
i,k |f/h

= 1.

Second, if c > a, then hξ
(j)
i−1,k/ξ

(j)
i,k is a root of ~Hom(ξi, ξi−1) that appears in ~σ(Si). We have

h
ξ

(j)
i−1,k

ξ
(j)
i,k

∣∣∣∣∣∣
f

= h
ξ

(j)
i,k |f/h

ξ
(j)
i,k |f

= 1.

In either case, the -1 is cancelled out. Repeating this argument for all such pairs shows that all -1

roots of ~σ(Si)|f are cancelled out. Since we do not permute the Chern roots of ξi for i ≥ m, and

dUk
X1
≤ 1 for all 1 ≤ k ≤ m, varying i from 2 to m− 1 accounts for all possible sources of -1 terms in

~σ(S)|f . We can therefore conclude that all -1 roots of ~σ(S)|f are cancelled out. Thus, the virtual

Euler class eT(~σ(S)|f ) is defined. As a consequence of an elementary analytic argument, if the limit

Ŵf |f converges, then it must converge to
∑

~σ eT(~σ(S)|f ).

We want to show that eT(~σ(S)|f ) = 0 if ~σ does not fix ξi,k for all i ≤ m − 1 and k. Suppose

~σ does not fix ξm−1,k for all k. Then, there must exist a root ξ
(j)
m−1,k such that ~σ−1(ξ

(j)
m−1,k) is

a root of ξm−1,k′ , where k′ > k. It follows that hξ
(j)
m−1,k/ξ

(j)
m,k is a root of hHom(ξm, ξm−1) that

appears in ~σ(S). Note that this root is not present in the Si bundles we considered before. We have

dUk
Xm
≥ dUk

Xm−1
, and ξ

(j)
m−1,k|f = ξ

(j)
m,k/h|f . Therefore, hξ

(j)
m−1,k/ξ

(j)
m,k|f = 1. This results in a factor of

0 in ~σ(e(S))|f . We conclude that the only ~σ giving nonzero ~σ(e(S))|f are those which fix ξm−1,k

for all k. We can now take ~σ fixing ξm−1,k for all k and apply the same argument to conclude that

~σ must fix ξm−2,k for all k in order to get a nonzero value of eT(~σ(S)|f ). Our claim follows from

induction.

Due the natural symmetry present in S, ~σ(S) = S if ~σ fixes ξi,k for all i ≤ m− 1 and k. The

number of such ~σ is precisely n̂f , and eT(S)|f = N−f by construction. The normalization axiom

follows.

In the proof of Lemma 4.4.4, we see that passing from Wf to Ŵf causes terms of the symmetriza-

tion to vanish upon restriction. In the diagonal restrictions, all nonvanishing terms are equal to

the restriction of the unsymmetrized expression W̃f . In the off-diagonal restrictions, more kinds

of terms will appear. In Section 4.3.6, we identify three precise statements (“parts”) that need to
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be proven in order to prove Conjecture 4.3.12. The first part is that the limits in the fixed point

restrictions exist and are polynomials, the second is that the restrictions lie in HT(C(D)), and the

third is that they satisfy the stable envelope axioms. For Conjecture 4.4.2, we expect the third part

to follow from similar arguments to that of Lemma 4.4.4. Some of the ideas of this argument also

pertain to the first part. The second part is a difficult interpolation problem, which likely requires

more sophisticated techniques.

Remark 4.4.5. In our example computations, the fixed point restrictions of each term of the

symmetrization in the formula for Ŵf converge. They do not, in general, converge to polynomials,

however. Polynomials are only realized after cancellations with other terms of the symmetrization.

We have also found that Ŵf |f ′ =
∑

~σ eT(~σ(S)|f ′). The latter is much faster to compute than the

limits in the former.

4.5 Switching Consecutive 5-Branes of the Same Type

Consider the combinatorial transition of brane diagrams from Remark 2.4.1, that is, for d1 +d3 =

d2 + d̃2 the local changes

d1 d2 d3
(TU) d1 d̃2 d3 d1 d2 d3

(TV ) d1 d̃2 d3

Under these transitions the charges of the branes do not change, but the branes themselves switch

places. Hence, the table-with-margins code for the diagram changes by switching two consecutive

components either in c (for (TU) transition) or in r (for (TV ) transition). Hence, permitting (TU)

transition we may achieve that c is weakly decreasing, and permitting (TV ) transition we may

achieve that r is weakly increasing. Comparing with Theorem 2.5.1 and Corollary 2.5.2 we obtain

Proposition 4.5.1. Any brane diagram is equivalent to a balanced one using Hanany-Witten and

(TV ) transitions. Any brane diagram is equivalent to a co-balanced one (ie. whose associated variety

is a quiver variety) using Hanany-Witten and (TU) transitions.

By permitting (TV ) transitions (as well as HW transitions) cotangent bundles of different partial

flag varieties become equivalent—which are C∞ but not algebraically isomorphic. Namely, let

λ1, λ2, . . . , λN and µ1, µ2, . . . , µN be sequences of non-negative integers that are permutations of

each other. Then as bow varieties T ∗Fλ1,λ1+λ2,...,λ1+λ2+...+λN and T ∗Fµ1,µ1+µ2,...,µ1+µ2+...+µN are
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Figure 4.7: Bijection between fixed point codes for brane diagrams related by a (TU) transition.

equivalent using HW and (TV ) transitions (their tables-with-margins only differ by permuting r).

Figure 4.7 illustrates a natural bijection between torus fixed points of C(D) and torus fixed

points of C(D̃) for a (TU) transition. It is worth verifying the d1 +d3 = d2 + d̃2 relation in the figure.

An analogous picture (in fact, this one upside down) provides the bijection for a (TV ) transition.

Theorem 4.5.2. Let D and D̃ be related by (TU) transition. We have

KT(C(D)) ∼= KT(C(D̃)), HT(C(D)) ∼= HT(C(D̃)).

Proof. The proof depends on the combinatorics of fixed point restrictions, namely the structure of

the butterfly diagrams of Section 3.2.3. Let Uk and Uk+1 be the two consecutive D5 branes switched

at the (TU) transition, and let X1, X2, X3 be the D3 branes adjacent to these 5-branes, in this

order. We define a map

s :
⊕

f∈C(D)T

C[u±1
1 , . . . ,u±1

n ,h±1]→
⊕

f̃∈C(D̃)T

C[ũ±1
1 , . . . , ũ±1

n ,h±1]

as follows. The f -component maps to the f̃ -component where f and f̃ are related as in Figure 4.7.

The map between these components is ui 7→ ũi for i 6= k, k + 1, and uk 7→ ũk+1, uk+1 7→ ũk. This

map restricts to a map s′ : KT(C(D))→ KT(C(D̃)) because we claim that

s (Locf (ξX2)) = Locf̃ (ξX1 ⊕ ξX3 	 ξX2). (4.8)

holds for corresponding fixed points f and f̃ . Indeed, according to Section 3.2.3, LocKf maps the
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relevant Grothendieck roots of ξ1, ξ2, ξ3 to

{uk,ukh−1, . . . ,ukh
1−b, uk+1,uk+1h

−1, . . . ,uk+1h
1−a}

{ukhd−b, . . . ,ukh1−b, uk+1,uk+1h
−1, . . . ,uk+1h

1−a}

{ukhd−b, . . . ,ukh1−b, uk+1h
c−a, . . . ,uk+1h

1−a}

respectively, where a, b, c, d are the number of ties in A,B,C,D in the figure. Similarly LocK
f̃

maps

the relevant Grothendieck roots of ξ1, ξ̃2, ξ3 to

{ũk, ũkh−1, . . . , ũkh
1−a, ũk+1, ũk+1h

−1, . . . , ũk+1h
1−b}

{ũkhc−a, . . . , ũkh1−a, ũk+1, ũk+1h
−1, . . . , ũk+1h

1−b}

{ũkhc−a, . . . , ũkh1−a, ũk+1h
d−b, . . . , ũk+1h

1−b},

and (4.8) indeed holds. The map s′ is clearly invertible hence the isomorphism in K theory is proved.

The isomorphism in cohomology is proved similarly.

For (TV ) transition the counterpart of Theorem 4.5.2 does not hold; it holds only after substi-

tuting h = 1 (~ = 0), that is, turning off the C×~ action.
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APPENDIX A

COMPARISON WITH THE BOW VARIETIES OF [NT]

In this appendix, we show how to obtain our special bow varieties from the more general

construction of [NT]. First, we take stability conditions νR = −1 and νC = 0. In this case, the

semi-stable and stable locus agree, giving a smooth variety. The (ν1) condition of [NT, Section 2.4.2]

is automatically satisfied, and our (ν) condition (Lemma 3.1.4) is (ν2) from [NT, Section 2.4.2].

We also consider only finite type A bow varieties, while [NT] defines affine type A bow varieties.

To pass from affine to finite, simply set one of the vector spaces Vζ = 0. This is consistent with

the 0 multiplicity of the infinite left and right segments in Section 2.1. One can think of the more

general affine construction as taking both of these multiplicities to be nonzero, but equal and taking

the one-point compactification. With the exception of brane charge and BCTs, we believe our

constructions generalize easily to affine type A. Finally, we explain how our torus action relates to

that of [NT, Section 6.9.3].

Assume that the generator of K0
C×~

(pt), denoted by h, has a formal square root and denote it by

h1/2. Let kX be the number of NS5 branes left of the D3 brane X. If we reparameterized

� WX by hkX/2 (X is a D3 brane), and

� CU by h(−1+dU−−dU++kU+ )/2 (U is a D5 brane),

then the C×~ -degrees would change from

degh(A) = 0, degh(B) = 1, degh(B′) = 1, degh(C) = 1, degh(D) = 0,

degh(a) = 0, degh(b) = 1 (the values of this paper)

to the values

degh1/2(A) = 0, degh1/2(B) = 2, degh1/2(B′) = 2, degh1/2(C) = 1, degh1/2(D) = 1,

degh1/2(aU ) = 1 + dU+ − dU− , degh1/2(bU ) = 1 + dU− − dU+ ,

that agree with the degrees in [NT, Section 6.9.3]. Although the [NT] convention has conceptual
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advantages, in this paper we will stick with our convention.
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APPENDIX B

MAYA DIAGRAMS

In this appendix we describe the relation between our combinatorial codes and the ones called

Maya diagrams in [N3, Appendix A].

Let us consider an affine type A brane diagram, that is, let the 5-branes be arranged around

a cycle. Instead of drawing the diagram on the cycle, we draw it on the universal cover, that is,

a periodic brane diagram on an infinite line, see Figure B.1. By applying some Hanany-Witten

transitions we may assume that the NS5 branes and the D5 branes are separated on the cycle—we

call this brane diagram separated. In our figure then the D5 branes come in groups, say, around

integer positions, and the NS5 branes come in groups positioned at half-integer positions.

Tie diagrams of fixed point codes for such a brane diagram continue to make sense. However,

the notion of brane charge is not defined; hence the table-with-margin code does not make sense.

Instead, the analogous code is described in [N3], that we sketch now, together with the corresponding

tie diagram.

Consider a representative of a tie diagram of a fixed point where all the ties are attached to the

D5 branes in the group at position 0. Then the ties come in blocks corresponding to half integers,

according to the position of the other end of the tie—see the figure. Consider the “BCTs” of the

ties in block k
2 as follows:

� for k > 0, the (U, V ) entry is 0 if there is a U -V tie, otherwise 1;

� for k < 0, the (U, V ) entry is 1 if there is a U -V tie, otherwise 0.

Then glue these “BCTs” together to form an n×∞ table, called Maya diagram, see the bottom

table in Figure B.1. By abuse of language, the ‘BCT’ corresponding to block k
2 will also be called

“block k
2 ”.

The following properties of the obtained Maya diagram can be read from the corresponding tie

diagram.

1. For large enough k all entries of block k
2 are 1, and all entries of block −k2 are 0.
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Figure B.1: Top: a tie diagram of a fixed point in C(D) where D is a separated brane diagram of
affine type A. Bottom: the corresponding Maya diagram of [N3, Appendix A].

2. For 1 ≤ i ≤ n we have that dU+
i
− dU−i =

#{0s in row i of positive blocks} −#{1s in row i of negative blocks}.

3. For 1 ≤ j ≤ m we have that dV +
j
− dV −j =

#{1s in a Vj column of negative blocks} −#{0s in a Vj column of negative blocks}.

4. Let X be the D3 brane for which X+ is a D5 brane and X− is an NS5 brane. Then

dX =#{1s in block
−1

2
}+ 2#{1s in block

−3

2
}+ 3#{1s in block

−5

2
}+ . . .

+ #{0s in block
3

2
}+ 2#{0s in block

5

2
}+ 3#{0s in block

7

2
}+ . . . .

It is proved in [N3] that Maya diagrams (ie. n×∞ tables that come as a union of ∞ many n×m

tables called blocks, that have properties (1)–(4)) are in bijection with the torus fixed points of a
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bow variety associated with a separated affine type A brane diagram.

Since Figure 2.12 still holds as a proof of bijection between torus fixed points of HW equivalent

brane diagrams, this statement describes the fixed points of all affine type A bow varieties.
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