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ABSTRACT

Md Tamzeed Islam: Robust Audio and WiFi Sensing via Domain
Adaptation and Knowledge Sharing From External Domains

(Under the direction of Shahriar Nirjon)

Recent advancements in machine learning have initiated a revolution in embedded sensing and

inference systems. Acoustic and WiFi-based sensing and inference systems have enabled a wide

variety of applications ranging from home activity detection to health vitals monitoring. While many

existing solutions paved the way for acoustic event recognition and WiFi-based activity detection,

the diverse characteristics in sensors, systems, and environments used for data capture cause a shift

in the distribution of data and thus results in sub-optimal classification performance when the sensor

and environment discrepancy occurs between training and inference stage. Moreover, large-scale

acoustic and WiFi data collection is non-trivial and cumbersome. Therefore, current acoustic and

WiFi-based sensing systems suffer when there is a lack of labeled samples as they only rely on the

provided training data.

In this thesis, we aim to address the performance loss of machine learning-based classifiers for

acoustic and WiFi-based sensing systems due to sensor and environment heterogeneity and lack of

labeled examples. We show that discovering latent domains (sensor type, environment, etc.) and

removing domain bias from machine learning classifiers make acoustic and WiFi-based sensing robust

and generalized. We also propose a few-shot domain adaptation method that requires only one

labeled sample for a new domain that relieves the users and developers from the painstaking task

of data collection at each new domain. Furthermore, to address the lack of labeled examples, we

propose to exploit the information or learned knowledge from sources where available data already

exists in volumes, such as textual descriptions and visual domain. We implemented our algorithms

in mobile and embedded platforms and collected data from participants to evaluate our proposed

algorithms and frameworks in an extensive manner.
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CHAPTER 1

Introduction

1.1 Overview

Having reached the milestone of human-level speech understanding by machines, continuous

listening devices are now becoming ubiquitous. Today, it is possible for an embedded device to

continuously capture, process, and interpret acoustic signals in real-time. Tech giants like Apple,

Microsoft, Google, and Amazon have their own versions of continuous audio sensing and interpretation

systems. Apple’s Siri [1] and Amazon’s Alexa [2] integrated home-hub devices– Google Home, Amazon

Echo, Apple Pod understand what we say, and act on them to fetch us a web page, schedule a

meeting, find the best sushi in town, or tell us a joke. These platforms are equipped with microphones

which enable many potential application of acoustic sensing such as speech recognition [3], speaker

identification [4], music recognition [5], sleep quality monitoring [6], intrusion detection [7], elderly

monitoring [8], activity recognition [9], and health vitals monitoring [10, 11].

With the ubiquity of acoustic sensing systems, the diversity in their sound types as well as their

intended purposes are evolving—making it hard for us to acquire a large corpus of labeled training

data for all possible types of acoustic events that an application wants to detect. For example, in

applications like sleep monitoring, home intrusion detection, and health monitoring, we may want

to collect multiple instances of rare, inconvenient, and unwanted acoustic events such as snoring,

breaking in, sneezing, and wheezing. Such requirements create challenges to developing personalized

and environment-specific acoustic event recognition systems which primarily rely on user-contributed

labeled data for training the classifier. Hence, the research community for long has sought after a

solution that can classify audio using few or no training examples. Moreover, recent studies [12, 13]

have shown that classifiers are influenced by subtle characteristics of the recording devices and their

performance drops unless the training and test scenarios are recorded with the same device. A shift

in the distribution of data due to device heterogeneity is known as the domain shift problem. It is

well-established [14, 12, 15] that machine learning classifiers perform sub-optimally when there are
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discrepancies in the distributions between the training and the testing data due to domain shift. An

audio classifier trained on a particular training dataset is biased by the recording device (i.e., the

source domain) that is used to collect the training samples. During inference, when this classifier is

applied to audio samples recorded by a different recording device (i.e., the target domain) a significant

accuracy loss (up to 20%) is observed [13]. Therefore, a mechanism is needed to mitigate the effect

of recording devices’ diversity on machine learning algorithms to enable large scale crowd-sourced

audio data collection.

The new generation of home-hub devices come with camera integrated in them, therefore opening

doors to user gesture and activity monitoring. This eventually leads to potential use-case of gesture

based media control, smart home appliances control, patient monitoring and so on. However, camera

based monitoring systems are privacy invasive, sensitive to light conditions and fails behind occlusions.

Current home-hub devices are also equipped with WiFi cards for communicating with server via

internet, which gives us an unique opportunity for non-intrusive sensing using the reflected WiFi

signals from the users. The accessibility of WiFi signal characteristics such as the signal strength

(RSSI) and channel state information (CSI) in commodity WiFi chipsets, make WiFi an attractive

technology for human activity monitoring. Alternate solutions that use wearables like smartwatches

and activity trackers are becoming less attractive due to their usage adherence issue, and systems

that use cameras to monitor home activities raise serious privacy concerns. WiFi sensing, on the

other hand, is device-free, non-intrusive, and less privacy-invasive. Hence, in recent years, we have

seen an increase in WiFi-based sensing and inference systems whose feasibility has been demonstrated

in application scenarios such as home activity monitoring [16], sleep monitoring [17], gesture-based

smart device interaction [18, 19], and health vitals tracking [20]. Existing machine learning algorithms

perform remarkably well in these applications, given that they enjoy the availability of labeled

training data that are involved in the application [21]. However, for WiFi sensing, machine learning

algorithms face major hurdles regarding lack of labeled and uniform data.

Due to the non-trivial nature of WiFi data collection and labelling segments of the signal as

particular gesture, there is a scarcity of datasets in the WiFi based activity monitoring community.

Moreover, collecting data for all possible type of daily activities is not feasible as well. Current

WiFi-based activity recognition systems employ either template matching algorithms or machine

learning classifiers — ranging from traditional classifiers like support vector machines [22] to advanced
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deep convolutional neural networks [23]. These algorithms require a decent number of training

examples for each class of activity in order for the system to accurately classify them. Furthermore,

the capability of these systems are fundamentally limited by the number of activity classes for which

the system has been trained for. When these systems are presented with a completely new type of

activity, there is no built-in mechanism to make an educated guess about the possible class label

for that unseen example. On the other hand, WiFi signals change due to change in environment.

Therefore, activity classification model trained in one environment performs sub-optimally with data

from another environment. Current systems require large scale labeled data collection across all

environments to perform classification which makes these algorithms hard to scale.

In this thesis, I propose to augment sensing ability of these home-hub devices in terms of robust

acoustic and WiFi sensing. By exploiting information or learned knowledge from sources where

available data already exists in volume, such as textual descriptions and visual domain I propose

to augment audio and WiFi based sensing to deal with a limited number of labeled dataset. On

the other hand, I also propose to remove the effect of sensor and environment heterogeneity from

the feature representation. To achieve this, I propose the first system capable of multi-source to

multi-target domain adaptation for acoustic event recognition tasks by discovering latent domains

from a dataset and removing their effect on machine learning based classifiers. Furthermore, I

propose a video and WiFi based joint feature extraction algorithm for WiFi sensing to adapt into a

new environment with minimum effort from the developer and user’s end.

1.2 The Proposed Robust Classification Framework

I propose a generic signal processing framework (Figure 1.1) for class label inference which can

be applied to any signal type. The first step of the proposed pipeline is a Personalized Filtering

module that isolates privacy-invasive signal from a mixture of signals. This step also enforces privacy

policies to restrict intrusive signals from going into untrusted systems to protect privacy of the user.

The second step is Domain Adaptation to remove heterogeneity cased due to sensor and environment

variance across data samples. This step nullifies bias due to any data collection related issue and

makes the classification model robust when they mismatch between training and testing phase. The

last step of the proposed unified framework is Knowledge Transfer and Classification. Through this

step, the proposed thesis leverages knowledge from external domain such as text to embed semantic

knowledge into signal features which makes the classifier robust to lack of labeled training examples.
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Figure 1.1: Overview of the proposed dissertation

1.3 Usage Scenario

I envision that with my contributions, the home-hub devices such as Amazon Echo will be

equipped with acoustic and RF sensing ability. In Figure 1.2 the final outcome of my proposed thesis

is depicted. As depicted in Figure 1.2, there are three Amazon echo and one Google home in the

Google-
Home: 

“Vacuum 
running!”

Alexa: 
“Your sink 

is 
running!”

Alexa: “You 
drank water 

4 hours ago!”

Alexa:
“Starting 
sleeping 
mode!”

Domain Adaptation

Knowledge Transfer

Knowledge Transfer

Personalized Filtering

Fusion-based 
Domain Adaptation

Figure 1.2: Use-case scenario of the proposed dissertation

four rooms of the house. In the left room on the bottom floor the Amazon echo detects that the sink

is running by using our proposed acoustic classifier which embeds semantic knowledge from large

scale text data such as Wikipedia. In the right room on the bottom floor the WiFi sensing activity

recognition detects that the user has not drank water for a long time using cross-modal embedding

of RF signal leveraging semantics from textual data. Moreover, the proposed privacy-preserving

acoustic sensing stops the sound of the baby from going in the Amazon echo device. On the top

floor there is a Google home in the left room that uses our proposed domain adaptation algorithm

to shift the data into a reference distribution to remove sensor heterogeneity from neural network
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model. On the right room of the top floor, the WiFi sensing based activity recognizer adapts its

model using proposed WiFi and video based joint representation.

1.4 Thesis Statement

Semantic knowledge transfer from external sources, along with domain adaptation to nullify

sensor and environment bias, yields robust and scalable signal classifiers than traditional supervised

models.

1.5 Contribution List

The following are the research contributions of my thesis:

• A multi-source to multi-target domain adaptation model by discovering latent domains in

unsupervised manner. Using the proposed algorithm, I remove domain-specific distribution

shifts from the activation outputs of the neural network classifier in order to improve the

accuracy and robustness. Moreover, a one shot domain adaptation technique is proposed to

adapt domain sensitive feature extraction for new domains.

• A method for semantic knowledge transfer for general purpose signal classification where

contextual information from text domain is embedded to signal feature. This cross-modal

knowledge transfer enhances classifiers by overcoming the lack of adequate training examples

per class.

• A privacy-preserving sensing framework by reducing contextual information leakage from

continuously observing systems. The proposed system is able to isolate signal sources, iden-

tify primary source, and post process the stream to remove residuals and perform signal

classification.

1.6 Thesis Organization

The remainder of the thesis is organized as follows:

• In Chapter 2 we present a background overview for the rest of the chapters. We start with

WiFi based sensing and multi-modal knowledge sources. Then we describe the algorithms

for source separation, acoustic residue quantification. Finally, we introduce the concept of

multi-head attention mechanism for sequence modeling.
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• In Chapter 3 we introduce Sound-Adapter- the first system to adapt acoustic classifier models

that are trained on data from more than one acoustic conditions (i.e., multi-source domain

adaptation). The proposed method does not assume availability of recording metadata (i.e.,

domain labels) in the training data—which makes the adaptation problem harder. To solve

this, we propose the first multi-task deep neural network architecture to cluster audio samples

according to their domain in an unsupervised way. Using the inferred domain information, we

perform domain adaptation to remove biases due to domain heterogeneity from the machine

learning model.

• In Chapter 4 we present WiDeo for one shot adaptation of WiFi based activity classifier

for new environment. We propose a novel representation extraction algorithm using the

supervision of visual data during training phase. Our proposed feature extraction explicitly

learns the corresponding relation between WiFi signal and movement of human body parts.

For environment adaptation we propose a framework that relies on only one labeled sample

per activity class in comparison with current state-of-the-art solutions which are not suitable

for few shot adaptation.

• In Chapter 5 Sound-Semantics is presented, which proposes a novel approach to acoustic event

classification that exploits knowledge from the textual domain to deal with a well-known pain

point in audio event classification—i.e., the lack of adequate training examples. We show that

by exploiting existing context-aware semantic representation of English words (e.g., Google’s

word-to-vector [24]) that is generated from a massive amount of English texts on the Internet,

it is possible to classify acoustic events even when there are a few or no training examples for

a wide variety of sounds.

• In Chapter 6 we focus on our proposed WiFi based activity classification system WiFringe,

which is a WiFi CSI-based device-free human gesture recognition system that recognizes named

gestures, i.e., activities and gestures that have a semantically meaningful name in English

language, as opposed to arbitrary free-form gestures. Given a list of activities (only their names

in English text), along with zero or more training examples (WiFi CSI values) per activity,

WiFringe is able to detect all activities at runtime. We show for the first time that by utilizing

the state-of-the-art semantic representation of English words, and verb attributes learned from
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how a word is defined (e.g, American Heritage Dictionary), we can enhance the capability of

WiFi-based named gesture recognition systems that lack adequate training examples per class.

• In Chapter 7 we study the overhearing problem of continuous acoustic sensing devices and

develop a system called SoundSifter that mitigates personal or contextual information leakage

due to the presence of unwanted sound sources in the acoustic environment. SoundSifter has

hardware and software to capture the audio, isolate signals from distinct sound sources, filter

out signals that are from unwanted sources, and process the signals to enforce policies such as

personalization before the signals enter into an voice controlled system like Amazon Echo or

Google Home.

• In Chapter 8, we conclude with the thesis. We present a summary of the proposed systems

and frameworks. We also provide some possible future directions for augmenting acoustic and

RF based sensing.
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CHAPTER 2

Background

2.1 Channel State Information (CSI)

In wireless communication, a transmitter and a receiver talk to each other using a certain

frequency or a range of frequencies, which is often called a channel. The Channel State Information

(CSI), as the name implies, describes the properties of a wireless channel. For example, when wireless

signals travel through the medium, they fade, they get reflected and scattered by obstacles on the

way, and their power decays with the distance traveled. The CSI is a measure of all these phenomena

of a wireless channel. Mathematically, using the frequency domain terms, we express the relationship

between the transmitted signal X(f, t), the channel frequency response (CFR) H(f, t), and the

received signal Y (f, t) as: Y (f, t) = H(f, t) ·X(f, t) +N(f, t), where N(f, t) denotes the noise. The

CSI comprises of the CFR values, i.e., {H(f, t)}.

Line of Sight

!"($) !"($ + 1)

Reflected by BodyReflected by Wall

((), $)

+(), $)

Figure 2.1: Multipaths caused by human movement

Data communication over a WiFi channel happens by sending the data bits simultaneously over
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64 distinct frequencies (called the sub-carriers) in parallel. From the WiFi Network Interface Card

(NIC) [25], it is possible to obtain the CSI values of these subcarriers. The frequency response,

H(f, t) of each sub-carrier is a complex number. For NTX transmitting antennas, NRX receiving

antennas, and NS sub-carriers, we get a CSI matrix of complex numbers having the dimensions of

NTX ×NRX ×Ns.

For a signal received through N paths, the CFR can be expressed as follows:

H(f, t) = e−j2π∆ft
N∑
k=1

ak(f, t)e
−j2πfτk(t)

where ak(f, t) denotes attenuation and initial phase offset of the kth path , e−j2πfτk(t) denotes

the phase shift on the kth path with a propagation delay of τk(t). If a person moves and the length

of the kth path changes by ∆lk = lk(t+ 1)− lk(t), then the propagation delay τk(t) is expressed as

τk(t) = ∆lk
c , where c is the speed of light . Due to the synchronization issue between the sender and

the receiver a phase shift of e−j2π∆ft is observed, where ∆f is the the carrier frequency difference

between the sender and the receiver.

2.2 Word Embedding

The process of Word Embedding [26] maps words in a natural language to vectors of real numbers

in a manner that words that are commonly used in the same textual context are positioned closely in

the vector space. Intuitively, word embedding expresses the distributional semantics of words with

the motto that “a word is characterized by the company it keeps” [27]. Word embedding extracts

distributional similarities among the words from a large scale text data, such as the Wikipedia,

by observing the words that appear with similar words which define their context. For example,

consider the words: love and adore. Syntactically these two words are quite different, but they often

appear in similar semantic contexts, i.e., with similar words. Hence, the word embedding process

would map these two words to two vectors whose distance is relatively closer than the embedding of

two random words.

In Figure 2.2(a), we plot the embedding of six English words. We only show the first two principal

components to be able to visualize the vector representation in 2D. We observe that words with

similar semantic meaning are closer in the word embedding space, e.g., {run, walk, move}, whereas

words having different semantic meaning are far, e.g., run and eat. In Natural Language Processing

9



run
walk

move

eat

taste
drink

(a) Word Embedding

0
1
0
0
0
0

Input 
Vector

Output
(Softmax)

Hidden
Layer Neurons

Σ
Σ
Σ

Σ
Σ
Σ

Σ
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Figure 2.2: (a) Semantically similar words appear close to each other in the word embedding space (b) A two
layer neural network is used for Word2Vec [24] word embedding

(NLP), researchers use techniques such as neural network [28] and co-occurrence matrix [29] to

project words onto a k-dimensional vector space, and words appearing in similar textual contexts get

closer embedding in the vector space. One of the most popular method to extract word embedding

from a large scale corpus is Word2Vec [24], which uses a two layer neural network to predict the

surrounding words of a target word.

Figure 2.2(b) shows a two-layer neural network, where a word, represented by its one-hot

encoding [30], is the input and the last layer of the network outputs the probability of other words’

being its neighbour. Word-pairs of the form {(word, neighbor)} are used to train this network,

which explicitly learns to predict neighbour words of a given word, and in the process, the network

implicitly learns the context of the words. After the training phase, the output of the hidden layer is

used as the embedding that projects an input word to a low-dimension vector space.

2.3 Attribute Embedding

While word embedding captures the co-occurrence information of words used in the same context,

it does not quite describe the attributes of a verb. Recently, natural language processing community

has proposed an effective method to learn the attributes of English verbs from their dictionary

definitions [31]. In this new method, verbs are expressed in terms of a set of attributes. Each verb is

expressed as a vector of real numbers where each element of the vector corresponds to an attribute.

Table 2.1 provides a simplified example. Three verbs: Drink, Sip, and Drool are expressed in

terms of four attributes: Motion, Social, Object, Head, where the attributes correspond to the degree

of motion, degree of social engagement, use of objects, and use of head, respectively. We intentionally

left the list of attributes open to emphasize that additional attributes are necessary to encode the

10



Table 2.1: Word definitions and attributes.

Word Representation
Drink Dictionary: “To take into the mouth and swallow a liquid.”

Attributes: (Motion, Social, Object, Head, . . . ) = (low, solitary, true, true, . . . )
Sip Dictionary: “To drink in small quantities.”

Attributes: (Motion, Social, Object, Head, . . . ) = (low, social, true, true, . . . )
Drool Dictionary: “To let run from the mouth.”

Attributes: (Motion, Social, Object, Head, . . . ) = (none, solitary, false, true, . . . )

dictionary definitions of a large number of English verbs.

2.4 Source Separation

The term ‘blind source separation’ [32] refers to the generic problem of retrieving N unobserved

sources only from the knowledge of P observed mixtures of these sources. The problem was first

formulated to model neural processing of human brains [33], and has later been extended and

studied in many other contexts such as biomedical applications [34, 35], communication [36, 37],

finance [38, 39], security [40, 41], and acoustics [42, 43, 44]. To the acoustic processing community,

this problem is popularly known as the ‘cocktail party problem,’ where sources represent human

voices.

A
(P x N)

s(t)
(N x 1) B

(P x N)

x(t)
(P x 1)

y(t)
(N x 1)

mixture separator

Figure 2.3: Generic model for source separation

Here, each microphone observes a weighted combination of N sound sources. Assuming

s(t) = (s1 (t), ..., sN (t))T ∈ RN denotes the sources, x(t) = (x1 (t), ..., xP (t))T ∈ RP denotes the ob-

served mixtures, (.)T stands for matrix transpose operation, and A denotes an unknown mapping

from RN to RP, we can write: ∀t ∈ Z x(t) = As(t).

The equation above is of a linear instantaneous model, which is the most commonly used model

for source separation. This does not explicitly model noise, as it can be implicitly modeled as an

additional source. In Figure 2.3, A is a mixing matrix that mixes N acoustic sources to produce P

output streams. Retrieving the sources is equivalent to finding B, the inverse or separator matrix.

The separated outputs are expressed as: ∀t ∈ Z y(t) = Bx(t). When N ≤ P, A is invertible. But
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for N > P, additional assumptions (e.g., sparsity [45]) may be required.

2.5 Fast ICA

There are many solutions to the source separation problem that make different assumptions

about sources and use different mixing systems [46, 39, 47]. Independent Component Analysis

(ICA) is one of the most popular solutions. This approach assumes that the acoustic sources are

statistically independent from each other – which is in general true for our application scenario. For

example, voice commands to an Amazon Echo device and unwanted background sounds are unlikely

to have any statistical correlations among themselves.

Fast ICA [48] is a popular, efficient independent component analysis-based source separation

algorithm. It isolates the sources by iteratively maximizing a measure of mutual independence

among the sources. In Fast ICA, non-Gaussianity [32] of the sources is taken as the measure.

Using matrix notation, x(t) is expressed as X ∈ RP×T. FastICA iteratively updates a weight

vector W ∈ RP to maximize non-Gaussianity of the projection WTX using the following two steps

in a loop:

W+ ← E{Xφ(WTX)} − E{φ′(WTX)}W

W←W+/ ||W+||
(2.1)

Here, φ(x) = tanh(x), φ′(x) is its derivative, and E{} is average over columns of a matrix. W is

initialized to a random vector, and the loop stops when there is no significant change in it. Note that,

for simplicity, we only show how to isolate one source in Equation 2.1; for multiple sources, this needs

to be repeated for each source. We also omit the preprocessing steps that involves prewhitening [32]

matrix X.

2.6 Measure of Residual Signals

Because no source separation is perfect, there are always residues of secondary sources within

the isolated stream of audio that is supposed to carry signals from the primary source only. We use

a metric to quantify this residual with the following equation:

ξi = ||xi(t)− yi(t)||2 (2.2)
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Here, ξi denotes the amount of residuals in the ith source after source separation, which is expressed

as the l2-norm of the difference between primary signals before and after source separation. We use

this metric in our evaluations to quantify the quality of source separation.

2.7 Multi-Head Attention

MatMul
K

MatMul

Scale SoftMax
Q

V

Attention 
Output

Figure 2.4: Self-attention block

Sequence modeling such as recurrent neural networks (RNN) [49] extracts the temporal infor-

mation from a timeseries data, by producing a hidden state for current timestep’s data, so that it

incorporates the contextual representation of neighboring timestep’s data. For any given instant

the generated representation from RNN only depends on its immediate past or future timestep’s

representation to gather the contextual information. Thus, RNNs lack the capability of capturing

information from input data that are distant in time. To address this, recent Transformer [50, 51]

architecture has been proposed, which is based on the method of self-attention mechanism. Self-

attention computes the contextual relevance of all timesteps data for a particular instant data’s

representation. The multi-head attention block is consisted of single self-attention function. To

calculate single self-attention for input vector at each timestep, three sets of vectors namely a Query

vector (Q), a Key vector (K), and a Value vector (V) are created by multiplying the input vectors by

three trainable matrices that are trained during the training phase. The final output attention is a

weighted sum of the values, where the weight assigned to each value is computed by a compatibility

function of the query with the corresponding key [51], which is defined as follows:

Attention(K,Q, V ) = softmax(
QKT

√
dk

)V (2.3)

Here, dk is used for scaling which is the dimension of key vector (K). For multi-headed attention,

there are multiple projected versions of queries, keys and values for which the attention function is

performed in parallel, yielding multiple output values that are concatenated into a final vector.
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CHAPTER 3

Domain Adaptation for Acoustic Event Recognition

3.1 Introduction

Recent advancements in embedded acoustic sensing and inference systems have enabled personal

voice assistants [52] like Siri, Alexa and Cortana, and computational ear-pieces aka hearables like

smart hearing aids, personalized amplifiers, and earbuds [53, 54, 55]. These platforms have opened

doors to many applications such as activity and event monitoring [56, 57], speech recognition [58,

3], music recognition [5], sleep quality monitoring [59], elderly monitoring [8], and health vitals

monitoring [10, 11]. These audio classifiers are trained on large and representative datasets. Typically,

a developer collects training data from as many sources as possible and trains the classifier with

labeled samples originating from multiple datasets—which are likely to be recorded in different

acoustic conditions, e.g., microphones and environments.

Recent studies [12, 13, ?] have shown that classifiers are influenced by subtle characteristics of

the recording device and the recording environment, and their accuracy drops unless the training

and test data are recorded in the same conditions. A shift in the distribution between training and

testing data is known as the domain shift problem. It is known that machine learning classifiers

perform sub-optimally when there are discrepancies in the distributions between the training and

the testing data due to domain shifts [14, 12, 15]. An audio classifier trained on a particular training

dataset is biased by the recording device and the acoustic environment (i.e., the source domain).

During inference, when this classifier is applied to audio samples recorded by a different recording

device or a different environment or a different combination of these (i.e., the target domain) up to

20% loss of accuracy is observed [13].

State-of-the-art works [13, 12] on domain shift problem in audio classification only addresses

the single source domain to single target domain scenario. These works assume only one source

domain (e.g., one recording device) in the training dataset and do not provide – nor they require –

any methods to identify the source domains. These solutions are hard to scale in practical scenarios
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Figure 3.1: The training dataset having two domains is passed through the Domain Discovery module to
infer the domain. Each domain has a different distribution, which is aligned by the Domain Alignment Layer.
The audio event classifier is trained on the aligned distribution of data.

where the training data are recorded with a wide variety of devices and in many environments, and

no meta-data about these recordings are available. Therefore, currently, there is no scalable solution

to the multi-source to target audio domain adaptation problem.

In this chapter, we propose Sound-Adapter — the first system capable of multi-source domain

adaptation for acoustic event recognition. Here, domains refer to conditions that alter the character-

istics of the data. As depicted by Figure 6.1, the central idea behind Sound-Adapter is to discover

domains from the input data in an unsupervised fashion, and then to align the input data from

each domain by normalizing them to match a reference distribution. In the training stage, this

domain discovery and alignment step does not require the domain labels (i.e., which microphone and

environment the audio sample came from), but it does require the class labels (i.e., what sound it

is). When a classifier is trained on the aligned distributions, it becomes unbiased to any particular

domain. During inference, the same alignment step is applied to the test data (from the target

domains) – which improves the accuracy and robustness of classification.

To the best of our knowledge, we propose the first deep neural network architecture for unsuper-

vised domain discovery to infer the domain information from audio samples containing only their

class labels and no domain labels. This is particularly challenging since the variation across different

domains is subtle and often gets masked by the variance caused by the traits of different semantic

classes. In most cases, samples tend to cluster according to their semantic category (i.e, class labels)

because of the dominant features of the classes. Therefore, the unsupervised domain discovery is not
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as straightforward as applying a standard clustering algorithm such as k-means [60] on the data

samples.

In Sound-Adapter, we propose a multi-task neural network architecture that uses a Gradient

Reversal Layer [61] to remove class-specific features from the audio representation along with a

structure-preserving auto-encoder branch to keep the domain specific traits intact. On top of

that, we use a deep embedding clustering branch to cluster audio samples based on the acquired

domain-dominant representation to get the desired domain membership information. Finally, for

acoustic event recognition, we propose a Domain-Adaptation layer to align distributions of different

domains for multi-source audio domain adaptation. We use the domain membership information

acquired from the domain discovery network to remove domain-specific distribution shifts from the

activation outputs of the acoustic event classifier in order to improve the accuracy and robustness of

the classifier.

To evaluate Sound-Adapter, we collect an empirical audio dataset in a testbed containing five

types of microphones and four different environments. We evaluate both Sound-Adapter’s individual

algorithms and end-to-end pipeline’s performance on the empirical dataset as well as a publicly

available dataset [62] under different scenarios. Results demonstrate that Sound-Adapter has a mean

accuracy of 87% for domain discovery in a five-domain scenario and improves the accuracy of the

audio classifier by up to 21% compared to the state-of-the-art.

The contributions of this chapter are the following:

• We present Sound-Adapter– the first system to address multi-source audio domain adaptation

for accurate and robust acoustic event classification.

• We propose a novel unsupervised neural network architecture to cluster audio samples according

to their recording devices to infer their domain information.

• We propose a domain-adaptation layer for multi-source to multi-target domain adaptation for

domain-invariant acoustic event classification.

• We collect an empirical audio dataset containing five types of microphones’ recordings and

2000 audio clips of total 2.8 hours. We will release the complete dataset to the public upon

publication.
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• We evaluate Sound-Adapter extensively both on the empirical and a publicly available dataset.

Sound-Adapter has almost 30% and 21% higher accuracy for domain discovery and acoustic

event classification compared to state of the art algorithms for a multi-source domain scenario.

3.2 Domain Shift in Acoustics

Domain shift refers to shifts in the data distribution between training and inference stages. In

this section, we describe the causes and effects of domain shifts in acoustics as well as the challenges

to address the issue.

3.2.1 Causes of Acoustic Domain Shifts

In acoustics, several factors contribute to domain shifts, e.g., heterogeneity of recording hardware,

diversity of sound sources, changes in acoustic environment, positioning of the recorder, software

encoding of audio files, and combination of two or more of these factors. We highlight two major

factors:

• Device Heterogeneity: An audio signal goes through multiple hardware and software components

and signal processing phases before getting recorded by the system. Each of these components may

alter the signal characteristics and introduce variability in the recorded signal. For instance, at

the microphone hardware, signals capture sensor-specific variability such as changes in chemical

compounds in the microphone chip and imperfection in the chip assembly line [63]. Then the DSP

chips perform noise filtering and audio enhancement – which add variability due to inconsistent

responses to different frequencies [64, 65]. Signals get perturbed further as they are processed by

the OS-dependent implementations of the system calls [13, 66]. Implementation differences in audio

processing algorithms such as microphone array processing and beam forming add an extra layer of

variability [13]. All these steps introduce variance in the recorded audio [13, 63].

• Acoustic Environment: Audio signals are also influenced by the environment where they are

recorded. Room parameters such as the shape, size, and the presence or absence of insulating

or reflective materials contribute to the amount of reverberation that gets added to the signal.

Additionally, the relative position between the sound source and the microphone influences the

acoustic characteristics as the attenuation of the signals depends on the distance. Moreover,

background noise present in ambient environment varies the signal-to-noise ratio (SNR) of the

captured signal. As the acoustic features are influenced by the environmental effects, the performance
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of machine learning-based audio classifiers are also influenced by it. Recent works [?, ?] report an

average classification accuracy drop of 22.5% when the classifier is employed in different reverberant

environments.

3.2.2 Domain Effect on Acoustic Feature

Although a sound recorded in different domains may sound similar to our ears, there are

subtle differences in their acoustic features that embed these device and environment dependent

variability. To demonstrate the effect of domain heterogeneity on acoustic features, we conduct an

experiment where we play audio clips from ESC-10 [67] dataset on a speaker and five different types

of microphones, equidistant from the speaker, record the audio simultaneously (Figure 3.2). We use

ESC-10 since it is commonly used in machine learning-based acoustic event recognition algorithm

evaluations [68]. The details of the experimental setup is described in Section 3.6.1.

Wireless Speaker

Device 1

Device 2

Device 3

Device 4

Device 5

Figure 3.2: Data collection with five types of microphones.

In Figure 3.3, we observe that for the same sound (a five second segment of sneezing), signals

recorded by different microphones have visible differences in their spectrogram [69]. Different

microphones and their positional differences (with respect to the room) cause variations in the

spectral representation. Thus, acoustic features computed from them are likely to be different.

3.2.3 Why Domain Inference is Hard?

Predicting the domain of a given sound clip is non-trivial since the perturbation in an audio

recording due to domain shifts is subtle, and the acoustic characteristics of a specific sound type is
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Figure 3.3: The same sound clip recorded by five different devices have significant variations in their
spectrograms.

generally dominated by the actual content of the audio. In other words, the same sound recorded by

two different devices is harder to distinguish than distinguishing two different sounds recorded by

the same device.

In an unsupervised scenario – where we do not have the domain information corresponding to

each audio clip – the problem is even harder to solve. Common clustering algorithms like k-means [60]

fail to cluster sounds based on their domain for the same reason discussed above.

More formally, we identify two types of information embedded into an audio clip – Domain

Descriptors that capture domain-specific information, and Event Descriptors that capture the

information corresponding to the actual content of a specific sound type. Of these two, event

descriptors are far more dominating than the domain descriptors. This becomes evident when we

cluster audio clips characterized by any feature representation that does not explicitly nullify the

effect of event descriptors. Due to the dominance of event descriptors, audio clips having the same

class-label cluster together – as opposed to forming domain-wise clusters.

Rain (Domain 2)
Rain (Domain 1)Dog (Domain 1)

PC
A 

2

PCA 1

PC
A 

2

PCA 1

k-means clustering Sound-Adapter

Dog (Domain 2)

Figure 3.4: k-Means produces event-wise clusters whereas Sound-Adapter produces domain-wise clusters.

Figure 3.4 (left) shows the result of k-means clustering on audio data from ESC-10 dataset

for two randomly picked sound types {Rain, Dog}. Both sounds are recorded using two different

microphones (i.e., there are two domains). The first two principle components are used to visualize

the data points. We observe that the audio clips get clustered according to their class types, i.e.,
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Rain and Dog – which is not what we want when our goal is to infer the domain. The Figure on the

right shows the expected plot where the audio clips are clustered according to their domains – which

is what Sound-Adapter achieves in this chapter.

3.3 Overview of Sound-Adapter

3.3.1 Sound-Adapter

Sound-Adapter is an acoustic event1 recognizer that infers the domain information of the training

audio samples without any supervision or prior knowledge of the source domains, and then uses the

inferred domain information to remove domain-specific distribution shifts from the acoustic event

classifier in order to achieve a highly accurate and robust audio classifier. Sound-Adapter is agnostic

to the cause of the domain shift — it removes domain shifts caused by any number and types of

causes and their combinations.

audio 
(u)

class label 
(l)

Unsupervised 
Domain Discovery

Domain Adaptive 
Audio Event 
Classification

domain 
(k)

Figure 3.5: Sound-Adapter’s training pipeline

Figure 6.3 shows Sound-Adapter’s two-step acoustic processing pipeline for training a domain-

adaptive audio classifier. The first step consists of a Unsupervised Domain Discovery module which

infers the source domains of the input samples. The second step consists of a Domain-Adaptive

Audio Event Classifier Model which takes the inferred domains along with the audio samples, and

outputs the audio event’s class label. Both of these modules are trained during the training phase.

However, the domain discovery module is not employed during the inference phase as the target

domain is often known (e.g., a developer often knows the device and/or the environment where the

1An acoustic event [70] is defined as any limited-duration sound clip that has a semantic name, e.g., laughter, lightening,
honks, and so forth.
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application will run). The details of these two modules are described in Section 6.10 and Section 4.6,

respectively.

3.3.2 Specialty of Sound-Adapter

Unlike previous works in audio domain adaptation [13, 12], Sound-Adapter is able to adapt

domains in multiple-source domain scenarios – which does not require domain labels during train-

ing. Furthermore, the proposed approach is scalable, i.e., it does not require us to learn domain

transformation for all pairs of source and target microphones.

Not requiring the domain labels during the training phase is particularly useful in creating

robust classifiers, when a developer has access to many audio clips and/or audio datasets (e.g.,

crowd-sourcing [71] scenarios) but the recording meta-data is not available. As there can be various

recording heterogeneity (e.g., microphones, acoustic processing software, and acoustic environments)

and they can create numerous domains separately or in combination – the total number of domains

can be very large. Hence, a scalable solution to domain adaptation is highly desirable.

During inference, Sound-Adapter receives audio data from the target domains. These target

domains may be completely different from the source domains. However, it is fair to assume that

the ground-truth target domain labels are available to the developer. In the inference step, the

test samples are passed through the Domain-Adaptive Audio Event Classifier (which has been

trained during the training phase). Finally, Sound-Adapter classifies the audio events from the target

domains.

3.4 Unsupervised Domain Discovery

Sound-Adapter’s domain discovery is an unsupervised process whose goal is to cluster audio

samples according to their domains – given only the audio clips and their class labels. Note that,

class labels are used only during the training. Once we get the cluster centroids we do not need the

class labels to infer source domain.

To address this, we propose a novel algorithm that systemically removes event descriptors from the

audio features and clusters them according to the domain descriptor. This is achieved by employing

a Multi-Task Neural Network [72] that breaks down the domain discovery problem into two steps,

i.e., Event-Agnostic Audio Representation and Domain-Wise Clustering, and simultaneously solves

them. Figure 3.6 shows the design of the neural network.
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Figure 3.6: The Domain Discovery Network.

3.4.1 Event-Agnostic Audio Representation

The goal of this step is to nullify the effect of event descriptors in order to obtain an event-agnostic

audio representation. This representation is used in the next step where we obtain the domain-wise

clusters of the audio clips.

• Baseline Audio Representation: Prior to describing the event descriptor removal operation, we

introduce the baseline audio representation upon which the removal operation is performed. For

this, we use a standard Auto-Encoder [73] to obtain a lower-dimensional feature representation of

the input audio. The benefit of this approach is that it does not require labeled data.

The auto-encoder is shown as the middle branch in Figure 3.6. It consists of an encoder

CNN (Gθf ) that encodes the input audio (frequency domain [74]) x of length N to obtain a lower

dimensional representation, Gθf (x); and a decoder CNN (G′θd) that tries to reconstruct the input

audio x. To train the auto-encoder, we use the Mean Squared Error (MSE) [75] between the actual

input (encoder’s input) and its reconstructed version (decoder’s output) as the loss function:

Lencoder =
1

N

N∑
i=1

(
xi −G′

θd

(
Gθf (xi)

))2
(3.1)

After the training, the audio representation we obtain is Gθf (x) – which is a lower-dimensional

representation of the input audio, but it still contains both the event descriptor as well as the domain

descriptor.

• Event Descriptor Removal: To remove the event descriptor from the feature representation

obtained in the previous step, we employ another branch (the bottom branch) in the multi-task
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neural network in Figure 3.6. The key idea behind the event descriptor removal process is to first,

train this branch of the network to learn to classify audio events like a regular audio classifier, and

then negatively feed this learned knowledge back to the encoder – so that the encoder learns to

forget or nullify event descriptors when it generates the audio representation.

In our implementation of this branch, we use three fully-connected layers – forming a multi-layer

perceptron network [76] – whose objective is to classify the audio events. To train this branch, we

utilize the class labels of the audio clips and use a Cross-Entropy loss function [76] which ensures

that the probability distribution of the output of our network branch matches with the ground-truth.

Levent = −
M∑
c=1

yc log
(
pc
)

(3.2)

where, M is the total number of audio events in the training dataset; yc is a binary indicator variable

denoting whether a sample belongs to a particular class c (which we get from the ground-truth class

labels); and pc is the probability of the sample belonging to class c that we obtain from this branch.

To enable the negative feedback, we use a Gradient Reversal Layer (GRL) [61] whose main

objective is to remove traits from feature representation which is responsible for loss minimization.

During back-propagation, it multiplies the gradient from its following layer with a negative scalar

value λ and then passes it to its preceding layer. During the forward pass, this layer acts as an

identity transformation, so that it does not affect the inference process.

• Why it Works? Back-propagation of the gradients through the network forces weight updates

that minimizes the loss function. In a general scenario, the network would update its weights such

that the event descriptors are dominant in the feature representation, and it achieves high accuracy in

the audio event classification task. Inserting a gradient reversal layer in between the fully-connected

network and the feature from the auto-encoder reverses the gradient during back-propagation. As a

result, we are able to form a mini-max situation where the fully-connected layers try to reduce the

loss function while the gradient reversal layer makes sure that the preceding layers do not succumb

to this. Hence, in effect, the fully-connected layers are extracting the event descriptors from the

feature representation while the gradient reversal layer is removing them.

3.4.2 Domain-Wise Clustering

With the removal of event descriptors, we obtain an audio representation that contains primarily

the domain descriptors. We perform clustering on these representations to get the desired domain-
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wise clusters of the input audio clips. In Sound-Adapter, we employ a Deep Embedding Clustering [77]

approach to perform the clustering – which requires the number of clusters as the input.

Existing domain discovery algorithms [14, 60] assume that the number of domains is known ahead

of time. While this simplifies the problem, this assumption is generally not true as a dataset may

contain audio samples from an unknown number of domains (i.e., environments and microphones).

Hence, prior to applying clustering operation, Sound-Adapter estimates the number of domains

present in the dataset.

• Determining the Number of Domains: To deduce the number of latent domains in our dataset,

we exploit the class labels in the training data. For each subset of audio samples belonging to the

same class, we perform k-means clustering and measure the quality of clustering using a metric

(i.e., a weighted sum of Silhouette Coefficient and Calinski-Harabasz Index [78, 79]). This process is

repeated for different values of 2 ≤ k ≤ kmax to search for the number of clusters k that results in

the best-quality clusters.

The above domain counting technique has two caveats: first, since we train the auto-encoder and

the clustering branch simultaneously, we cannot use the auto-encoder generated representation in

this clustering step while it is still in the making. Hence, we employ a traditional acoustic features,

i.e., MFCC [80], to represent audio for this step. Second, this technique yields the most accurate

result when we have data from all domains, for all audio events. When the number of domains vary

across different classes of audio, the above algorithm outputs the most prevalent number of domains

across all classes of audio.

• Clustering: In the multi-task neural network of Figure 3.6, a dedicated branch (the top branch)

is employed to perform the domain-wise clustering operation. This type of clustering algorithm is

known as Deep Embedding Clustering [77]. The clustering branch simultaneously updates the feature

space to form high-quality clusters and performs clustering on that feature space.

More specifically, this branch performs two main tasks: a) Updating the cluster assignment,

and b) Updating the feature space and cluster centroids. A brief description of these steps is the

following:

a) Update Cluster Assignment: Following [77], we use soft assignment (i.e., a probabilistic

assignment) to assign data samples to clusters. The assignment is expressed as probability distribu-

tions, i.e, the probability of a data point belonging to different clusters. This probability is derived
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Figure 3.7: Illustration of cluster update step.

using Student’s t-distribution [77] which measures the similarity between a sample Xi’s feature

representation, hXi = Gθf (Xi) and a cluster’s centroid, Mk:

qik =
(1 + ||hXi −Mk||2/α)−

α+1
2∑

k′(1 + ||hXi −Mk′ ||2/α)−
α+1
2

(3.3)

Here, qik is the probability of Xi belonging to cluster k, and α is the degrees of freedom of Student’s

t-distribution.

b) Update Feature and Cluster Centroids: Since each audio clip belongs to exactly one domain,

ideally, the probability distribution {qik} obtained via the cluster assignment step should have only

one peak, i.e., very high probability for one of the domains and near-zero probabilities for the rest.

However, due to weak audio representation (which is weak because it is still forming), the cluster

assignment step described above does not guarantee single-peaked distributions. To fix this problem,

we must update the audio representation and the cluster centroids to reshape the distributions

{qik} to its desired shape. Figure 3.7 illustrates how the clusters as well as the cluster assignment

(distributions) look before and after the update.

Because there is no ground-truth domain labels to update the feature and the cluster centroids,

following self-training techniques [81, 77], we use an update mechanism that relies on its own

high-confidence predictions. Specifically, we match the soft assignments, {qik}, with an auxiliary

target distribution, {pik}, where the target distribution puts more emphasis on data points assigned

to clusters with high confidence. Furthermore, it balances the cluster sizes by normalizing the loss
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contribution of each cluster:

pik =
q2ik/

∑
i qik∑

k′

(
q2ik′/

∑
i qik′

) (3.4)

To match this target distribution, we use KullbackâLeibler divergence [77] as the loss function –

which minimizes the difference between qi and pi:

Lcluster = KL(P ||Q) =
∑
i

∑
k

pik log
pik
qik

(3.5)

Once the network reaches saturation in terms of minimizing the clustering loss (Lcluster) function,

we stop the network updating phase and we have our cluster assignments, i.e., the domain labels for

the audio samples. For discovering domains for each dataset, the network has to be trained to reach

the optimal state.

3.4.3 Putting it All Together

Using the three loss functions corresponding to the three branches of the multi-task neural

network of Figure 3.6, i.e., Lencoder, Lcluster, and Levent, we train the parameters of the neural

network using back-propagation. The trainable parameters for encoder, decoder and event descriptor

removal, i.e., θf , θd, and θe, are updated as follows:

θf ← θf − Λ
(∂Lencoder

∂θf
+
∂Lcluster
∂θf

− λ∂Levent
∂θf

)
(3.6)

θd ← θd − Λ
∂Lencoder
∂θd

(3.7)

θe ← θe − Λ
∂Levent
∂θe

(3.8)

Here, Λ is the learning rate. Notice that, during updating θf , the gradient of Levent is reversed

due to the gradient reversal layer. For updating θe, the gradient sign of Levent is kept intact.
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3.5 Domain Adaptive Classification

Using the domain labels2 from our proposed domain discovery model, we design a domain-

adaptive audio event classifier that fixes the domain shifting problem by normalizing the domain

shifts prior to classifying.

Audio

Cross-
Entropy 

Loss

Convolutional
Neural 

Network

FC
Layer

DADA

Domain Label

Figure 3.8: Retrofitting an existing audio classifier by inserting domain adaptation layers.

3.5.1 Domain Adaptation Layer

Instead of proposing a completely new network architecture for audio classification, we propose a

modular Domain Adaptation Layer – which can be used to retrofit popular neural network architec-

tures for audio classification tasks such as VGG [82], Inception [82], AlexNet [83], MobileNet [84]

and Resnet [82]. These layers are similar to network adaptation layers recently proposed in computer

vision literature [15], however, a major difference is that Sound-Adapter uses the domain labels

inferred by the domain-discovery step as opposed to weighted average of all domains to collect more

accurate statistics of the neural network layers caused by domain shifts for more effective domain

adaptation. Besides, [15]’s domain inference algorithm is semi-supervised, thus relies on training

data for inferring domains. On the other hand, Sound-Adapter’s domain discovery algorithm avails

the domain adaptation layer to adapt model to different domains without any ground truth domain

labels for domain discovery.

Figure 3.8 shows an example of a domain-adaptive audio classifier where we insert two domain

adaptation (DA) layers to retrofit a neural network architecture having a CNN, a fully-connected

layer, and a softmax layer.

2The unsupervised domain discovery module (Section 6.10) provides us generated domain labels such as “D1”, “D2”,
. . . “Dk”.
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3.5.2 Domain Adaptation Process

The goal of domain adaptation layers is to reverse the effect of domain-shift. Inside a neural

network, the effect of domain shift is observed at the activations (i.e., output values) of each layer.

Input data from different domains cause different amounts of shifts in the activations of the same

layer of the neural network. In order to normalize these shifts, for each input domain, we collect

the running means and variances of the activations. These statistics are used to shift and scale the

activations to match with a reference distribution having a zero mean and unit standard deviation.

Figure 3.9 illustrates the domain adaptation process where activations of a particular layer of a neural

network results in two distinct distributions having different means and standard deviations. After

applying the domain adaptation layer, both distributions are normalized to a reference distribution

having µ = 0 and σ = 1.

-1   0     2     4 -1   0     2     4     6 -1   0     2     4 -1   0     2     4

Domain 1 Domain 2 Domain 1 Domain 2
(a) (b)

𝜇1 = 2.73, 𝜎 = 1.3 𝜇2 = 3.88, 𝜎 = 1.8 𝜇1 = 0 , 𝜎 = 1 𝜇2 = 0 , 𝜎 = 1

Figure 3.9: Distribution of neural network activations (a) before and (b) after domain adaptation.

3.5.3 Mathematical Formulation

For each batch of input data, at first, the domain membership is inferred using the domain

discovery module. Then, for each domain, the neural network activations are normalized by shifting

the distribution to the reference distribution with zero mean and unit standard deviation.

Let us assume that for a domain Di, a hidden layer’s activation, Ai follows a distribution, SAi .

To shift this distribution towards the reference distribution, the domain adaptation layer normalizes

it as follows:

DA (Ai;µi, σi) =
Ai − µi√
σ2
i + ε

(3.9)

Here, µi and σ2
i are the mean and variance of the distribution SAi ; and ε > 0 is a small constant

that helps avoid divide-by-zero error. The value of µi and σ2
i are estimated for each batch. During

back-propagation, gradient passes through the domain adaptation layers to their corresponding
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predecessor layer without any altercation.

3.5.4 Neural Network Architecture

Recent works [74, 83] have shown CNN based neural network’s efficiency for acoustic event

recognition. Following these earlier works, Sound-Adapter employs a neural network by incorporating

CNN and fully connected layers. Each layer of the CNN extracts a feature map from the input data.

We empirically determine that three layers of convolutional operations extract adequate information

for the later steps of Sound-Adapter. The filters have a size of 3X3 and we increase the depth from

16 to 64 channels for the three layers. We use Rectified Linear Units (ReLu), σ(a) = max{a, 0}

as the non-linear activation function. The output of the third convolutional layer is fed into two

dense layers [85] with a ReLu activation layer in-between them. Note that, the proposed domain

adaptation layers are placed following the CNN layers and each of fully connected layers.

3.6 Evaluation

We conduct a number of experiments to evaluate Sound-Adapter with collected as well as public

datasets. In this section, we describe the datasets, followed by component-wise and end-to-end

evaluation of Sound-Adapter.

3.6.1 Datasets

• Empirical Dataset: To construct a multi-domain dataset, we record audio clips using five types

of microphones listed in Table 3.1. The microphones are interfaced with a Raspberry Pi [86], a

Laptop [87], and a Desktop Machine to further introduce system induced variability in the data.

We play all sound clips from the ESC-10 dataset [67] on an omni-directional speaker, keeping all

five microphones equidistant from the speaker. The ESC-10 contains 10 types of acoustic events:

sneezing, clock , dog, crying, rooster, rain, waves, fire, helicopter, chainsaw. Each audio event has 40

samples of 5 seconds duration. The data collection is demonstrated in Figure 3.2. The microphones

are synchronized to record the audio simultaneously. While the synchronous recording minimizes the

environment-induced variability, the recorded audio clips are still affected by different multi-paths

due to the relative positions of the microphones with respect to the room. In our experiments, we

consider a combination of both the device and multipath-induced heterogeneity as domains.

We also collect a dataset containing audio clips recorded with the same device from different

environments. We use this dataset to evaluate Sound-Adapter’s ability to discover and adapt
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Table 3.1: Device List

Microphone Interfacing Device
JOUNIVO USB Mic [88] Raspberry Pi
TONOR USB Mic [89] Raspberry Pi
eBerry USB Mic [90] Lenovo Laptop
Connectland 3.5mm Mic [91] Desktop machine
Matrix Voice [92] Raspberry Pi

domain shifts due to environmental heterogeneity. We record the ESC-10 dataset in four different

environments. A brief description with the environments are presented in Table 3.2. We use a

Nexus 5 phone to record data from all four environments, and thus the recorded data is affected by

environment-indueced heterogeneity.

Table 3.2: Environment Description

Environment Description

Office room 1
A small office room with only a chair and
a table present.

Office Room 2
A mid sized office room with 2 sets of chairs
and tables along with a cabinet present.

Bedroom
A mid sized bedroom with one bed, one chair,
one table and one bookshelf present.

Lab
A large lab with 3D printer, 4 tables and 4 chairs
present.

• DCASE Dataset: To complement empirical dataset-driven experiments and to confirm our

results further, we use DCASE-2018 (Task 1B) [62] audio dataset that has synchronous recordings

from three different microphones. The dataset contains recordings of 10 different types of acoustic

scenes such as: train station, public square, street, and shopping mall. In Table 3.3, we provide

statistics of both datasets.

Table 3.3: Dataset Statistics

Dataset # Domains # Classes # Samples
Empirical Dataset 5 10 2,000
DCASE 3 10 2,160

3.6.2 Performance of Domain Counting

We evaluate the performance of domain counting algorithm with the empirical dataset. To

evaluate the performance for different number of domains, we vary domain counts in the dataset by
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exhaustively selecting all-possible (i.e., 5C2 + 5C3 + 5C4 + 5C5 = 26) subsets of the five domains

and verify if Sound-Adapter predicts the number of domains correctly. In Figure 3.10 we report the

confusion matrix that compares the performance of the algorithm with the ground truth.
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Figure 3.10: Performance of domain counting

Considering the number of times Sound-Adapter predicts the exact number of domains as in the

ground truth, its accuracy is 88.46%. However, often in the domain discovery problems, two or more

domains (e.g., microphones with similar acoustic response) are so similar that practically they belong

to the same domain. Hence, a perfect count of the number of domains is not a strict requirement

for domain adaptation. As long as prominent domains are separated by the clustering algorithm

(i.e, microphones or acoustic environment with distinct characteristics), domain adaptation works as

expected. In Section 3.6.4, we report the end-to-end performance of Sound-Adapter where the effect

of domain counting on domain adaptation is reported.

3.6.3 Performance of Domain Discovery
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Figure 3.11: Sound-Adapter has superior performance in domain discovery than the baselines for our empirical
dataset.

The goal of this experiment is to evaluate Sound-Adapter’s performance of domain discovery

under different scenarios and datasets. We use 3 baseline algorithms for comparison: (1) k-means
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clustering algorithm – which is popularly used as a baseline for many machine learning algorithm’s

evaluation [93], (2) the state-of-the-art Hoffman et al.’s algorithm [14] for domain discovery in image

datasets – which we re-purpose for audio datasets, and (3) the state-of-the-art Mancini et al.’s

algorithm [15] which is a semi-supervised deep neural network based domain inference algorithm

for images. Note that, [15] is not proposed for unsupervised scenario which is the target of our

system. We report its result to show that their proposed semi-supervised algorithm is not applicable

to unsupervised case .
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Figure 3.12: (a) Sound-Adapter’s domain discovery algorithm outperforms baselines in scenarios with equal
number of audio event and domain. (b) Sound-Adapter’s superior performance also retains for cases with
mutually exclusive audio samples across domains. (c) Sound-Adapter beats the baseline algorithms for unseen
events. (d) Sound-Adapter’s domain discovery has better performance on DCASE than the baselines.

Varying the Number of Domains Increasing the number of domains makes it harder for an

unsupervised algorithm to discover latent domains. We vary the number of domains from two to five

by randomly selecting subsets of domains and report the mean accuracy and standard deviation of

the accuracy of domain discovery. We use the empirical dataset in this experiment.

In Figure 3.11, we observe that Sound-Adapter shows the best performance among all the

approaches. For two domains, Sound-Adapter achieves an accuracy of 96% while Hoffman, K-means

and Mancini have 77%, 70% and 50% accuracy, respectively. As the number of domains increases,

Sound-Adapter outperforms the baselines by larger margins. For three domains, Sound-Adapter

discovers domain with 91% accuracy, whereas Hoffman, k-means and Mancini have a maximum

accuracy of 56%. Sound-Adapter’s performance drops to 76% for 5 domains – which is still more

than 30% higher than the best of the three baselines’ performance. A random algorithm’s accuracy

for 5 domains is 1/5 ∗ 100 = 20%.

Overall, Sound-Adapter has a mean accuracy of 87% across all cases. On the other hand, the

best of the baselines (i.e., Hoffman) has a mean accuracy of 58% – which is about 30% lower than

Sound-Adapter, and the performances of the baselines diminish more drastically than Sound-Adapter
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as the number of domains increases. The algorithm proposed by Hoffman relies on handcrafted

feature ( for audio: MFCC, Spectrogram) to form global cluster among local clusters of domains.

However, as the result shows for acoustic data, their algorithm is not well suited, as the domain

variance is very subtle in acoustic feature and leads to poor clustering performance. Semi-supervised

algorithm proposed by Mancini has almost random accuracy for all cases as their algorithm relies on

labeled domains which is unavailable in our case.

Performance with Equal Number of Class and Domains For unsupervised domain discovery,

the problem becomes harder when number of domains and events are equal as the clustering algorithm

tends to group the data according to the events as opposed to the domains. To show Sound-Adapter’s

performance in such cases, we randomly select a subset of events to match the number with domains.

For example, when we select 2 domains, we randomly pick 2 audio events for these domains, and

perform domain discovery. We vary the number of domains and events from two to five and report

the mean accuracy of all possible combinations. In Figure 3.12a, we observe that the mean accuracy

of Sound-Adapter for equal number of domains and events is 82%. Hence, the accuracy drop for

Sound-Adapter is only around 5% with respect to previous experiment in Section 3.6.3. On the other

hand, the performance of Hoffman is particularly worse in this scenario with only 40% accuracy,

whereas k-means and Mancini have an accuracy of 51% and 41%, respectively. Hence, unlike the

baselines, Sound-Adapter is robust to scenarios where the number of domains and audio events are

equal.

Performance with Mutually Exclusive Audio Samples across Domains Our dataset is

collected in a way that all the devices record the same audio without any temporal variance. To

see the performance in a scenario where the domains have mutually exclusive audio samples, we

randomly select subset of samples from each domain such that the domains do not share the samples

among them. For this experiment, we also vary number of domains from 2 to 5 to see its effect

and report the mean accuracy over all possible combinations. In Figure 3.12b, we observe that

Sound-Adapter has a mean accuracy of 84%, whereas Hoffman and k-means show an accuracy of

around 50%. Mancini’s accuracy drops to 36% for this case. Thus, Sound-Adapter outperforms the

baseline algorithms by atleast 34% for the scenario where the domains have mutually exclusive audio
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samples.

Performance with Samples from Unseen Audio Events Although our problem formulation

requires audio event labels during training of domain discovery stage, Sound-Adapter’s clustering

process is generalizable to samples beyond the audio events that it sees during training (unseen

event). Once the domain discovery network is trained, Sound-Adapter is capable of domain inference

for samples from unseen audio events using Equation 3.3 which requires only the cluster centroids

achieved from the training stage. To test Sound-Adapter’s generalizable performance beyond the

audio events it is trained with we undergo an experiment where we train the domain discovery

network with samples from a subset of ESC-10 audio events. Then, during inference stage we use

samples from the audio events that are not present during the training stage i.e., unseen class. We

randomly select audio events for training and exclude the rest of them for testing. We vary the

unseen classes from 1 to 5 out of the 10 classes of ESC-10 i.e., there are upto 50% audio events not

present in the training stage. Following the earlier experiments we also vary number of domains from

2 to 5 and report the mean accuracy here. From Figure 3.12c, we see that Sound-Adapter has almost

79% accuracy for the unseen case which is only a drop of 8% than the seen case. Whereas, Hoffman,

k-means and Mancini have accuracy of 44%, 56% and 32%, respectively. Thus, Sound-Adapter is

capable of inferring domains for classes for which it does not have training data during domain

discovery.

Performance on Public Dataset There are three domains in the DCASE dataset. We conduct

experiments with all 3C2 + 3C3 = 4 combinations of these domains and report the mean accuracy

of domain discovery for all the algorithms. In Figure 3.12d, we observe that Sound-Adapter has

an accuracy of 81%, whereas Hoffman, k-means and Mancini show 75%, 73% and 42% accuracy,

respectively. As the maximum number of domains is 3 in this case, the difference in performance is not

as significant as we have seen for the empirical dataset. However, Sound-Adapter still demonstrates

superior performance with 6% higher accuracy than the baselines.

Performance on Different Environment In this experiment, we evaluate Sound-Adapter’s

domain discovery algorithm’s performance when the cause of domain shift is environmental het-

erogeneity. The environments are described in Table 3.2. From Figure 3.13, we observe that
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Figure 3.13: Sound-Adapter’s domain discovery algorithm is extendable to domains caused by environment
effect.

Sound-Adapter has an average accuracy of around 82%, whereas Hoffman, k-means and Mancini

achieves an average accuracy of 64%, 49% and 43%, respectively. This reflects the strength of

Sound-Adapter in discovering domains caused by environmental changes during recording.

3.6.4 Performance of Domain Adaptation

In this section, we evaluate Sound-Adapter’s Domain Adaptation (DA) layer’s performance in

acoustic event recognition. Here, the audio classifier is trained to classify the acoustic events.

All accuracy numbers for Sound-Adapter, reported in this section refer to the end-to-end

performance of Sound-Adapter. To evaluate Sound-Adapter in an end-to-end manner, we execute

each step of the system. Sound-Adapter’s domain counting and domain discovery steps are performed

in this experiment to infer domain labels of the audio samples. Then the domain adaptation layers

are applied to remove the domain bias from the classifier. Therefore, the reported accuracy reflects

the performance of Sound-Adapter’s complete audio processing pipeline where an error in the domain

discovery step is propagated through the pipeline. Moreover, for Sound-Adapter, we keep the source

and the target domains mutually exclusive, i.e., the source and the target domains are different,

which is the desired application scenario for our system.

Sound-Adapter is compared with an audio classifier that has the same network architecture with

the exception of Sound-Adapter’s domain adaptation layers (i.e., Standard Conv Net). Note that,

this system is trained with all of the source domain’s data. This performance signifies the accuracy

drop of traditional classifiers when the source and target domains are different.

Here, we also report a system’s performance where the ground truth domain label for each audio

sample is known and refer it as Oracle. The only difference between Sound-Adapter and this oracle

system is the oracle uses the ground truth domain labels for the domain adaptation layers. This

system’s accuracy signifies the performance of Sound-Adapter’s domain adaptation layers for domain

adaptation. Moreover, the overall impact of domain counting and domain discovery is reflected with
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the comparison between Sound-Adapter and oracle.

We also compare with the scenario where the training and testing samples are from same domain

(i.e., Same Source - Same Target). This scenario is reported as an ideal result which enjoys the

opportunity of the source and the target domains being same. This scenario signifies the performance

recovery achieved through the proposed Sound-Adapter.

To compare with current state of the art systems, following Mic2Mic, we train a Cycle-GAN [94]

to translate the target domains into source domains. Then we use a standard convolutional neural

network with same architecture as Sound-Adapter excluding the DA layer. Note that, we use

ground-truth domain labels for Cycle-GAN as it does not have any domain discovery step in its

pipeline. We do not include past baseline [12] which relies on data augmentation technique as [13]

reports Cycle-GAN’s significant improvement over them.

The source and target domains are picked randomly, and we divide the training and the testing

data in five folds as in the ESC-10 dataset. Each experiment is repeated for five iterations for five

different combinations of the source and the target domains.
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Figure 3.14: (a) Sound-Adapter’s domain adaptation has more than 20% accuracy in average than the
same neural network without domain adaptation layer. (b) Sound-Adapter’s domain adaptation is able to
improve the accuracy in multi-target domain scenario. (c) Sound-Adapter recovers maximum accuracy drop
in comparison with the state of the arts

Performance with Different Number of Source Domains. In this experiment, we vary the

number of source domains and evaluate the audio event recognition accuracy of Sound-Adapter for a

different target domain. For each of the five domains, we make it a target domain and make 2–4

of the remaining domains the source domains. In Figure 3.14a, we observe that the Same Source -

Same Target yields the highest accuracy in all cases as the domains are the same (i.e., no adaptation

is required). For two source domains, Sound-Adapter and the Oracle have almost identical accuracy

of 75%, which is only 3% lower than the Same Source- Same Target scenario. This is consistent
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with our domain discovery algorithm’s accuracy for two domains, which is very high (96%). For

Cycle-GAN the accuracy is 65%, which is lower than Sound-Adapter. Without domain adaptation,

the performance of a standard convolutional network (Standard Conv Net) is only 45%.

As the number of source domains increases to three and four, we see that the gap between

Sound-Adapter and Oracle’s performance increases by 4%. This is due to incorrect predictions of

domain membership by Sound-Adapter. However, the performance does not degrade drastically

(∼ 72%) as Sound-Adapter has satisfactory performance in domain discovery for all cases. With

increased number of source domains, Cycle-GAN and Standard conv net has a maximum of 63%

accuracy. Therefore, Sound-Adapter’s accuracy is higher on average due to the use of domain

adaptation layers.

Performance with Multiple Target Domains. In Figure 3.14b, we report Sound-Adapter’s

performance for multi target scenario, i.e., data from multiple target domains are present during

the inference phase. Note that, we assume that the target domain labels are available to us, since

typically a developer knows where their application will be deployed (e.g., the device and the

environment). We vary the number of target domains from 2 to 3 and report the mean accuracy of

acoustic event recognition. We do not use more than three target domains as we have to have at

least two source domains to create scenarios having multiple source domains.

As expected, the Same Source- Same Target case has the maximum accuracy of 82%. The oracle

and Sound-Adapter achieve 80% and 78% accuracy, respectively. On the other hand, Cycle-GAN

and Standard Conv Net (without any domain adaptation layer) achieves a mean accuracy of 63%

and 57%, respectively. Therefore, it is evident that even in multi-source multi-target scenarios,

Sound-Adapter sacrifices only 2%− 4% accuracy when compared to the Same Source - Same Target

and the Oracle. Moreover, Sound-Adapter improves the accuracy of a traditional convolutional

neural network by more than 20%. In case of Cycle-GAN, the performance drops than a single target

scenario as multiple target domains being translated to source domains cause additional error. The

slight improvement in Sound-Adapter’s accuracy compared to the previous experiment (Figure 3.14a)

is due to random domain partitions for source and target.
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Overall Accuracy Gain. In Figure 3.14c, we report the loss of accuracy of Sound-Adapter and

the three baseline algorithms with respect to the Same Source - Same Target scenario. A lower

accuracy drop indicates a better domain adaptation capability. In Figure 3.14c, we observe that the

Oracle has an accuracy drop of 3.7% and 1.3% for the empirical and the DCASE dataset, respectively.

For Sound-Adapter, we observe a drop of 6.7% and 4.1% for these datasets. On the other hand,

Cycle-GAN has 15% and 12% accuracy drop. The standard convolutional neural network has an

accuracy drop of over 28% and 16% for the two datasets. Therefore, it is evident that Sound-Adapter

recovers 12.6%− 21.7% loss of accuracy through its domain adaptation capability.

3.6.5 Beyond Acoustics

Sound-Adapter’s domain discovery algorithm does not rely on handcrafted features and thus

it can be applied to other sensing modality such as image data. Out of curiosity, we conduct an

additional experiment to evaluate Sound-Adapter’s domain discovery algorithm’s performance on

image datasets. We use two datasets: MNIST [75] and MNIST-M [61], which are standard datasets

for evaluating DNNs on image processing tasks. MNIST contains 55,000 examples of handwritten

digits. These samples are all in black and white format. MNIST-M consists of MNIST’s digits

blended with random color patches from the BSDS500 dataset [61]. Thus, these two datasets create

two image domains having a total of 10 classes and 110,000 samples.
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Figure 3.15: Sound-Adapter’s domain discovery algorithm is extendable to image modality.

In Figure 3.15 we observe that Sound-Adapter has an accuracy of 96%, which is 22%-23% higher

than the state-of-the-art Hoffman, standard k-means algorithms and Mancini. Hence, we conclude

that Sound-Adapter’s domain discovery algorithm is promising to other sensing modalities beyond

audio such as images. We leave an in-depth investigation of this as our future work.

3.7 Discussion

• Scalability of . An alternative to ’s way of multi-source domain adaptation would be to

first discover source domains using the proposed domain discovery algorithm in this chapter and
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then repeatedly apply existing single-source to single-domain adaptation algorithms. However, this

approach is not scalable and impractical since there are so many different devices, microphones, and

environments that obtaining pair-wise training examples for all possible pairs of source and target

domains is hard to collect as it calls for a large training dataset (O(k2) times larger for k domains).

Furthermore, even for a repeated application of single-source to single-domain adaptation, ’s domain

discovery algorithm is necessary to find the source domains.

We evaluate ’s unsupervised domain discovery algorithm’s performance for up to five domains.

To the best of our knowledge, has been evaluated for the highest number of domains in the literature

– including the computer vision literature. For instance, previous supervised and unsupervised

approaches [14, 15, 95, 96] to domain discovery in image datasets report results using only two

domains in the dataset. Note that, when the training set contains data from numerous sources

or domains, the model is not biased to any particular set of domains, rather it becomes more

generalized. Therefore, it is more imperative to find and remove the effect of domains when the

number of domains are limited.

• Portability of . To the best of our knowledge, the maximum classification accuracy of any

algorithm on ESC-10 dataset is 92% [97], which is higher than any of the classifiers presented in this

chapter. The reason behind this is that in [97], the model is trained and tested on the same original

dataset — without considering any environmental noise, and there is no domain shift between the

training and the testing data. On top of that, [97] uses transfer learning from visual data to train

the classifier. In our empirical dataset, the audio clips from ESC-10 are recorded with microphones –

which adds an extra layer of environmental noise to the data. Moreover, we do not perform transfer

learning. Therefore, even for the same-source same-target scenario, our result is not as high as [97].

However, ’s proposed domain adaptation layers are modular, and can be integrated to any network

architecture including [97].

• Need for Class Labels. ’s domain discovery algorithm requires class labels as the input during

the event descriptor removal step inside the domain discovery module. This requirement is, however,

only for the training phase. Once we train a domain adaptive model using our domain discovery and

adaptation algorithm, during inference we feed the ground truth domain labels into the proposed

domain adaptation layers for audio event classification.
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3.8 Related Work

• Domain Adaptation: Recent works have explored single source to single target domain adap-

tation for audio data. [12] proposes data augmentation for training machine learning models with

induced sensor heterogeneity effect. Their approach is limited to heterogeneity database which is

collected by recording synchronized audio with different microphones. There are hundreds of different

microphones available and gathering heterogeneity information in such precise synchronized way

for all possible sensors is not feasible. [13] explores cycle-consistent GAN architecture to translate

target domain data into source domain data. [?] proposes speech adaptation for cases where labels

mismatch between source and target domain. To this end, solves the problem of multi source

domain adaptation problem for audio for the first time by proposing unsupervised domain discovery

algorithm and domain-adaptation layers for multi-source domain.

For image data, there have been many works in single source to single target domain adaptation [98,

99]. Recent deep learning based approaches [100, 101] propose deep neural networks to extract

domain-invariant feature. All these works on image data work with single source to single target

domain adaptation. [15, 61] propose deep neural network based solution for multiple source domain

adaptation, but they assume to have access to partial or full domain labels as input. In we consider

a much difficult scenario for domain adaptation where domain information is not available to us.

• Domain Discovery: Device fingerprinting based on audio data has been explored in [63, 102].

These works are based on supervised model i.e., unlike they assume in the training data they

have access to device information as label. [14, 103] proposes unsupervised domain discovery

for image data with handcrafted feature. Their approach relies on handcrafted feature which is

not dominant by domains rather they are mostly embedded with semantic categorical information

(Figure 3.11). [15, 96] propose semi-supervised approach to discover domains for image data. However,

their approach requires at least partial domain labels from all the domains for domain prediction. In

we propose the first deep neural network architecture for unsupervised domain discovery that does

not rely on any handcrafted feature. Moreover, is the first system to find domains from audio data

in unsupervised manner.

3.9 Summary

This chapter presents Sound-Adapter– the first system for multi-source domain adaptation

model for acoustic data. We propose a novel multi-task neural network architecture for discovering

40



domain information in unsupervised manner. We propose a domain-adaptation layer to domain-wise

normalize the neural network activations to align them to match a reference distribution. We collect

data from multiple domains and evaluate Sound-Adapter with both collected and publicly available

datasets. We compare our system with the state-of-the-art algorithms for domain discovery and

domain adaptation by varying the number of source and target domains. We show that Sound-

Adapter’s domain discovery algorithm has a mean accuracy of 87% for up to five domains and its

domain adaptation step improves the classification accuracy by 21% from a traditional machine

learning model for scenarios having multiple source domains.
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CHAPTER 4

Domain Adaptation for WiFi-Based Activity Recognition

4.1 Introduction

With the increase in personal computer, smartphones and Internet of things (IOT), WiFi

has become a inseparable part of our daily life. Besides communication, the availability of signal

characteristics such as the channel state information (CSI) in commodity WiFi chipsets make WiFi an

attractive technology for pervasive human activity sensing. While camera-based pervasive monitoring

system can detect human activities reasonably well, they pose numerous privacy concerns [104]. On

the other hand, wearables such as smartwatches and activity trackers are less effective due to their

usage adherence issues and erroneous performance [105]. Therefore, WiFi-based sensing and inference

systems have become an alternate non-intrusive solution for activity monitoring, whose feasibility

has been demonstrated in applications such as home activity monitoring [16], sleep monitoring [17],

controlling devices using gestures [18, 19], and tracking health vitals [20].

Past works [106, 107, 108] on WiFi-based activity recognition assume there is no environment

change between training and inference stage i.e., the activity recognition model is train and tested on

data collected from the same environment. However, this assumption makes the proposed solutions

hard to scale for real life applications, where data from testing environment is not available during

training stage in most scenarios. For example, in a patient activity monitoring system, the developers

have to collect large volume of data from all the patients in their nursing homes to train the model

for reasonable performance, which is not feasible. Very recent works [109, 110] propose solutions

to build environment agnostic activity classifier from WiFi data. However, these solutions either

require considerable amount of labeled examples (≈ 50) of all the activities from large number of

domains (≈ 20) or require multiple WiFi access points (≈ 6).

To the best of our knowledge, we are the first to propose a WiFi-based activity recognition

system WiDeo, that is able to adapt to new environment (domain) with a minor calibration step

and is capable of working with only one WiFi access points. Our proposed system requires only one
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labeled example per activity in the new environment which relieves the developers and the users of

the system from painstaking task of collecting and labeling large scale training data for every new

environment. Moreover, our proposed system’s reliance on only one access point makes it an ideal

choice for existing infrastructure as most indoor environments are equipped with one WiFi access

point.

To achieve this, we propose a novel framework for extracting representation from raw WiFi

signal with the supervision of visual data to model the variance in the WiFi signal that correlates

with body part movements. In the training phase, it is fair to assume the developers have access to

camera to collect video data along with WiFi signal. However, during inference stage, the visual data

is not needed once the feature extraction network is trained and only WiFi signal is used for activity

classification. Moreover, our proposed framework is the first to apply transformer based self-attention

architecture in the context of WiFi signal. Then, we also propose a adaptation framework for

updating the representation learning network using only one labeled example for each activity. This

yields the first one-shot environment adaptation for WiFi-based activity recognition.

We develop WiDeo using Intel Network Interface Card (NIC) 5300 [25] which captures the WiFi

CSI data. To develop the machine learning models, we collect training and testing data from four

volunteers in five different environments. We show that, using the proposed domain adaptation

method WiDeo is able to recover 28% accuracy than state of the art algorithms when the training

and testing environment is different. Moreover, we show that the proposed RF-visual joint feature

improves general activity recognition’s performance.

The contributions of the chapter are the following:

• We propose a novel representation learning for WiFi signal using video supervision to create

a joint feature space, that maps the variance between WiFi signal and change in body part

locations.

• To the best of our knowledge, we are the first to propose an algorithm for environment adaptive

WiFi-based activity classifier that is able to adapt to new environment with only one labeled

examples per activity class.

• We collect data from five different environments from four volunteers for activity recognition

and report the performance of our proposed algorithm using the collected dataset.
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4.2 Preliminary Study

In this section, we undergo some preliminary studies to determine the effect of environment

change in WiFi signal and the overall effect on activity classifier.

4.2.1 Effect on CSI

In this experiment we perform experiments to find the effect of environment on WiFi signal.

More specifically, we present the difference in channel state information (CSI) signal for two different

rooms for the same activity (raise). We collect WiFi data while a participant performs the same

activity in two different room (an office room, a large lab). The details of the room dimensions are

presented in Section 7.7.
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Figure 4.1: Spectrogram of same activity in 2 different room

In Figure 4.1, we present the spectrogram of the CSI signal for the two environments. We see

that for the same activity performed by the same person in two different environments produce

different frequency response. This is due to the fact that different rooms have different dimensions

and furniture. Therefore, the multipaths received at the receiver change with different environments

and result in variance in the WiFi signal.

4.2.2 Effect on Activity Classifier

In this section, we show thee effect of the variance caused in WiFi signal due to environment

change. We train an activity recognition model [23] with training data collected from one environment

(office room) and tested it with inference data collected from a different environment (large lab).

From Figure 4.2, we find that when the trained model is tested with data collected from the

same environment the classifier’s accuracy is around 86%. However, the same model tested with

data collected from different environment results in a massive accuracy drop to around 27%. This is

due to the change in WiFi signal because of the environment change. In this figure, we also report
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Figure 4.2: WiFi-based classifier’s performance drops when environment changes between training and testing
phase

[109]’s performance of domain adaptation when it has only one training data from data collected

from lab, as our primary target is one-shot domain adaptation. We find that [109]’s performance

is also not satisfactory (37%) as the algorithm proposed in [109] requires large number of labeled

examples from the target domains.

4.3 WiDeo System Design
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Figure 4.3: (a) Training pipeline for source domain (b) Pipeline for domain adaptation (c) Pipeline for
inference

WiDeo is a WiFi-based activity classifier that is capable of adapting to new environment with

minimum supervision (one labeled example per class). We denote the environments used for

training data collection as Source domain and the environments used for inference stage as Target

domain. WiDeo takes a short-duration WiFi CSI stream as the input, and processes the CSI stream

through a signal processing pipeline to classify it as one of activity types present in training phase.

During training phase, the first step is to train a RF-visual joint feature extraction network for

generating representation from WiFI signal where we use both video and WiFi data as input for

source environment. The next step is to train a classifier for activity recognition using the extracted

representation from joint feature mapping step. These two steps are illustrated in Figure 6.15(a).

For target domain, we propose a domain adaptation step to update the parameters of the joint

feature extractor using training data from both source and target domain. In this step no visual
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data is needed. With the updated joint feature mapping we fine-tune the parameters of the classifier

for an improved performance. These steps are depicted in Figure 6.15(b).

During inference, WiDeo only requires WiFi data from the target environment to recognize the

activity. Using the domain adapted feature representation and classifier our proposed system is

able to infer activities with very few labeled examples from the target environment. The inference

pipeline is depicted in Figure 6.15(c).

4.4 Rf-Visual Joint Representation
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Figure 4.4: Joint Representation Learning using video and WiFi signal

WiFi signal gets reflected from the user’s body as well as from the objects present in the

environment while travelling from the transmitter to receiver. Therefore, a change in the environment

results variation in the received WiFi signal, which causes variance in the feature extracted from

the WiFi signal, even for the same movement performed by a user. Therefore, while modeling

human movement from WiFi signal it is difficult to capture the signal variance caused only by

user’s movement.Recent development in computer vision literature [111, 112, 113, 114] proposes

deep neural network model for extracting body key-points’ (wrist, hand, leg, ankle etc.) locations

from only RGB image. Using the models proposed in [113], we aim to extract feature from WiFi

data that effectively models the variation caused by human body parts only. The main idea of our

proposed representation is to project feature extracted from visual domain (RGB image) and WiFi

domain in a joint latent space. In this way, the feature extraction module learns representation for

the WiFi signal that correlates with the changes of body part locations during an activity from the
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visual domain. To achieve this goal, we propose the following steps:

4.4.1 Video Feature Extraction

The main objective of this step is to extract feature from video (RGB) frames that models

the change of body parts of the subject while performing any gesture or activity. To do this, we

need to find the locations of user’s body parts and then model the movement of body parts across

consecutive video frames. This step yields feature that captures the body movements that constitute

the activities. The two steps are described below:

Body Key-point Extraction For extracting co-ordinates of human body parts from RGB image

we use OpenPose [113] which is a realtime 2D pose estimator based on deep neural network. Using

OpenPose it is possible to jointly detect human body and as well as body part co-ordinates. For

our purpose, we extract 25 body key-points from each frame of the video that includes the 3D

co-ordinates of shoulder, wrist, hip, ankle, heels etc. This body key-point extraction is crucial for

environment invariant activity representation learning.

Activity Modeling Sequential position change of human body parts constitute different activities.

For example, to perform the activity of waving, a person has to raise his or her hand and then move

it sideways. On the contrary, for walking both hand and leg movement is required. Therefore, to

model different activities it is necessary to model the sequential nature of body part movements. For

that purpose, we use the time series of multi-dimensional co-ordinates of body key-points extracted in

the previous step. In this chapter, we propose to use self-attention module to encode the contextual

information from the time-series input signal. Recent works on natural language problems [115, 116]

showed the benefits of using self-attention based transformer [51] networks over other sequence

model such as recurrent neural networks and its variants (LSTM, GRU). Following their work

we use self-attention to extract contextual embedding for each input data at each timestep that

contains temporal information from all the timestep’s data. We use multi-headed attention which

improves over single-headed attention by focusing on different timesteps and generating multiple

representation subspaces. These contextual embeddings are passed through layer normalization [117]

layer to remove distribution shift. After that, we put a fully connected layer which is then fed into a

global average pooling layer [118] to extract a single vector of embedding from all the time steps.
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This vector contains contextual information from across the time dimension which is then fed into

another two layer of fully connected neural networks to further extract information that captures

the activity’s unique feature. The whole pipeline in depicted in Figure 4.4.

4.4.2 RF Feature Extraction

Similar to video feature extraction the RF (WiFi) feature extraction goes through two steps.

First, the raw CSI signal is converted into time-frequency domain and then a sequence modeling

step is proposed to extract the movement feature from the WiFi signal. The two steps are described

below:

Frequency Domain Representation The raw CSI data are not practical for direct use in the

training or in the classification steps, as CSI is usually sampled with high sampling frequency

(200Hz [119] to 2.5KHz [120]). Therefore, the dimension of the input vector becomes too large to

process efficiently. Moreover, raw CSI signals do not explicitly reflect the intrinsic characteristics

of the high-level activity. Hence, like most sensing and inference systems, we extract the time and

frequency domain properties of the signal based on spectrogram [121] to obtain S as follows:

S = |STFT(X)|2

where, STFT(.) denotes Short-Time Fourier Transform [121], which estimates the short-term,

time-localized frequency content of input CSI signal X.

Activity Modeling Following the video feature extraction module, we also use transformer

architecture inspired self-attention module to capture the temporal nature of CSI variance caused by

different movement pattern of human body for different activities. To the best of our knowledge,

we are the first to propose to use self-attention for representation learning for activity recognition

from WiFi signal. We follow the similar architecture to the video feature extraction with fine-tuned

hyper-parameters for WiFi-based activity modeling. The network components are illustrated in

Figure 4.4.

4.4.3 Joint Space Feature Mapping

In this step, we project the activity representation extracted from both the WiFi and the video

input onto the same feature space. The objective of this step is that, the feature extracted from
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WiFi and video for the same activity is projected together, whereas for different activity the feature

extracted from WiFi and video are projected far from each other by ensuring a certain margin

between them. This is achieved by using contrastive loss function during the training phase, which

is discussed later in Section 4.4.4.

We train the two feature extraction networks for video and WiFi by providing them with pairs

of video and WiFi data as the input and a binary target that denotes whether or not they belong to

the same class as the output. To sample pairs of data for training the joint space feature mapping

network, we randomly select a batch of WiFi signal from the training data. Then, to form the pair

we select a video data from the same activity or a different activity based on a uniform random

probability. More specifically, for a batch of size N we form N
2 positive pairs by selecting WiFi and

video from the same activity and N
2 negative pairs by mixing WiFi and video data from different

activities. During training, the joint feature mapping network learns parameters to project the

positive pairs in close proximity and to project the negative pairs far from each other in the feature

space.

Once the training finishes, we take the output vector from the last fully connected layer of the

WiFi feature extractor—which becomes the desired robust, inter-class similarity aware representation

of an activity.

4.4.4 Loss Function

We denote Gwθ (Xw) and Gvγ(Xv) as the projections from the video and WiFi feature extraction

networks where, Gwθ , G
v
γ are the feature extraction networks and Xw, Xv are the input WiFi and

video data, respectively. θ and γ denote the learnable weights of the networks. For a pair of wifi and

video data input, Xw and Xv, we set their distance score, Y = 0 when they belong to same class,

and Y = 1 when they belong to different classes. Finally, we define a contrastive [122] loss function

as follows:

L(θ) = (1− Y )
1

2

∣∣∣∣Gwθ (Xw)−Gvγ(Xv)

∣∣∣∣
+ Y

1

2

{
max

(
0,∆−

∣∣∣∣Gwθ (Xw)−Gvγ(Xv)

∣∣∣∣)} (4.1)

The first term in Equation 5.1 minimizes the distance between a pair of wifi and video from

same class whereas the second term maximizes the distance between a pair of wifi and video from
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different classes. The term ∆ represents the distance margin that the network maintains between

data from different classes.

4.5 Activity Classifier
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Extraction

FC Layer
(3)

Activity

Figure 4.5: WiFi-based activity classifier

We extract feature from WiFi data using the network Gwθ trained in the joint representation step.

To classify activity based on this representation we use a neural network consisted of 3 layers of fully

connected layer. The last layer outputs the probability of prediction for the sample belonging to

a particular activity class. Note that, during this step we freeze the feature extraction network’s

Gwθ parameters and only update the fully connected classifiers trainable parameters. To train this

classifier, we utilize the class labels of the WiFi data and use a Cross-Entropy loss function [76]

which ensures that the probability distribution of the output of our network branch matches with

the ground-truth.

Lclassifier = −
M∑
c=1

yc log
(
pc
)

(4.2)

where, M is the total number of activities in the training dataset; yc is a binary indicator variable

denoting whether a sample belongs to a particular class c (which we get from the ground-truth class

labels); and pc is the probability of the sample belonging to class c that we obtain from this branch.

4.6 Domain Adaptation

The steps described in Section 4.4 and Section 4.5 are executed during the training phase for

the source environment. For the target environment, we propose the domain adaptation step. The

goal of this step is to adapt the feature extraction network’s parameters to match the extracted

representation of target domain with source domain. Due to the change in environment, the CSI

value from the WiFi signal reflected from the user’s body exhibit variance even from the same

activity from another environment. Therefore, the feature extraction network does not produce the

same representation for the same activity performed in two different environments. To compensate
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Figure 4.6: Domain adaptation for WiFi-based representation extraction

for this factor, we fine-tune the parameters of the feature extraction network so that same activities

performed in different environments produce similar feature.

4.6.1 Update RF Representation

To update the parameters of the WiFi signal’s feature extractor, we propose to use siamese

architecture [74, 123]. A siamese network is a twin neural network architecture where two identical

deep neural networks share their weights. In our case, the siamese neural network takes two WiFi

CSI signal as the input and projects a representation based on their class similarity. We initialize

the shared weights from the parameters learned during the joint representation step described in

Section 4.4. The objective of this network is to learn a representation of the training data which

projects similar data points closer while ensuring a certain margin between data points from different

classes. This is achieved by using the same contrastive loss function during the training phase,

which is discussed in section 4.4.4. In the training stage, we have one labeled examples for each

activity from the target environment. To train the siamese network we form pairs of positive samples

by incorporating random samples of the same class from the source environment with the target

environment’s sample. We also generate pairs of negative samples by sampling mismatched pair

of samples from the source and the target environment. In this way, we are able to create batches

of training data with a few labeled examples from the target domain to fine-tune the RF feature

extraction network. The architecture is presented in Figure 4.6.

4.6.2 Update Activity Classifier

Once we update the RF feature extraction network in the previous step, we further fine-tune

the classifier’s parameters for the target environment using the labeled examples. More specifically,
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we train the classifier with the representation generated from the environment-adjusted RF feature

extractor network using cross-entropy loss function as described in Equation 4.2. The fully connected

layers in the classifier are initialized with the parameters trained for the source environment. This

step further adapts the end-to-end classifier pipeline for the target environment.

4.7 Experimental Setup

In this section, we describe our implementation steps and experimental setup details including

the environments we used for data collection.

(a) (b)

Figure 4.7: (a) Before denoising CSI stream has dominant noise. (b) After denoising all high frequency noise
components are removed.

4.7.1 WiFi CSI Collection

We implement WiDeo on an Intel NUC [124] mini PC. The mini PC is interfaced with an Intel

NIC 5300 [25] and three omni-directional antennas with 6 dBi gain. To extract CSI values from the

NIC card, we use the tool developed by Halperin et. al [125]. This tool provides a modified firmware

for NIC 5300 and an open source Linux driver with user space tools to collect CSI information of

the received packets. We use a Netlink router as an access point (AP). The mini PC pings the

AP periodically at a certain interval and the CSI is extracted from the packet that is received by

the mini PC as an echo from the AP. The sampling rate of ping is set at 100 sample per second.

Therefore, according to Nyquist theorem [2] our system detects activities with a maximum of 50 Hz,

which is sufficient for human activities [120].

We collect data from five different environments with different room size and furniture orientations.

Moreover, the position of the user in each room is different with respect to the transmitter and the

receiver. The data collection was done by four volunteers. The list of activities are presented in

Section 6.7.5. The list of activity classes are: hand raise, clap, swipe, wave, walk. The details of the

environments are presented in the Table 4.1. In Figure 6.15 we see different volunteers performing
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Figure 4.8: (a) Intel Nuc with antennas. Volunteers performing different activities at (b) Lab 1 (c) Lab 2 (d)
Lab 3 (e) Office (f) Lab 4.

activities at different data collection rooms.

Table 4.1: Data Collection Environment

Environment Dimension
Office Room 3.7m× 2.8m

Lab 1 5.5m× 5m

Lab 2 8.5m× 5.7m

Lab 3 6.5m× 3.3m

Lab 4 10.8m× 9m

4.7.2 Noise Reduction

CSI data extracted from the NIC card suffer from dominant noise, which makes gesture recognition

difficult. To remove noise, we follow [120]’s PCA-based denoising technique. Since the Channel

Frequency Response (CFR) for different subcarriers is a linear combinations of the same set of

waveforms with different initial phases, when a gesture is performed, the changes of CFR value in

different subcarriers are correlated. To extract the changes in CFR values caused by the movement

in different subcarriers, we apply PCA on the CSI stream collected from 30 subcarriers for each
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TX-RX antenna pair. The ordered principal components give us the most variances experienced

across all sub-carriers. We discard the first principal component stream as it contains dominant

effect of noise. The second and the third components contain clear effect of gestures and less effect

of noise. We choose the third stream as it has shown better noise immunity. Although the selected

stream is less prone to noise, it still contains some effect of unwanted high-frequency noise. Hence,

the stream is passed through a Butterworth filter [126] to remove static noise. We set a cut off

frequency of 50Hz as human activity is usually below 50Hz in frequency. Thus, we obtain a de-noised

CSI stream from all sub-carriers.

In Figure 4.7(a) we see the noisy raw CSI stream of a user performing a gesture repetitively.

After performing the denoising step we get a filtered CSI stream in Figure 4.7(b).

4.7.3 Gesture Segmentation

In order to detect the start and the end of a gesture, we instruct the volunteers to perform gestures

with a brief pause between them. As the peaks in a CSI stream depends on the initial position of

the user, which is variable for different gestures, we cannot segment gestures by directly applying

a threshold on the CSI values. Instead, we follow [119] and take the first order difference of the

stream which is stable during the pause and fluctuates during gestures. We apply a threshold-based

peak detection technique on the first order difference to detect gestures. The segments on the first

order difference that are above a predefined threshold are detected as gestures. We refer [119] to the

readers for more details on pre-processing of CSI stream.

4.8 Experimental Results

We conduct a number of experiments to evaluate WiDeo with the collected dataset.In this section

we present the experiments to report WiDeo’s performance.

4.8.1 Performance of RF-visual joint feature
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Figure 4.9: Performance of RF-visual joint feature
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In this section, we report the performance of our proposed joint feature mapping’s performance for

WiFi-based activity recognition. For this experiment, we show that for the same environment training

and testing scenario, our proposed video assisted feature extraction model outperforms state-of-the-art

WiFi-based activity recognition systems. In Figure 4.9 we report activity recognition’s performance

for the proposed joint feature mapping. For comparison, we report the performance of state of

the art [23]’s performance. As a baseline we also report non-deep neural network based classifier

SVM’s performance with STFT as input feature. From Figure 4.9, we find that WiDeo achieves an

accuracy of 93% for activity recognition. The baseline algorithms [23] and SVM achieves 86% and

47% accuracy, respectively. Therefore, it is evident that WiDeo’s RF-video joint feature mapping

outperforms the state of the art WiFi activity recognition systems by improving the accuracy with

7%. The joint feature mapping explicitly learns the relationship between movement of body parts

with WiFi CSI signal from the supervision of visual data. Moreover, our proposed transformer based

representation extraction network is able to extract contextual information from the whole temporal

sequence. Therefore, WiDeo is able to achieve higher accuracy than state-of-the-art baselines in

activity recognition for same environment training-testing scenario.

4.8.2 Performance of environment adaptation
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Figure 4.10: Performance of environment adaptation

In this section, we report WiDeo’s performance for environment adaptive WiFi-based activity

recognition. More specifically, here the source and target environments are not the same and we

have only one labeled samples per activity for the target environment. In Figure 4.10 we report

the average accuracy of activity recognition when source and target environments are different. As

a baseline, we report [109]’s performance, as to the best of our knowledge it is the only literature

for single access point environment adaptation method for WiFi-based activity recognition. We
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also report the classifier’s performance when no domain adaptation technique is applied. From the

Figure 4.10, we find that WiDeo is able to achieve an accuracy of around 70% in this case. On the

other hand [109]’s accuracy is around 42% as their proposed method is not suitable for the scenario

where only few labeled samples are present from the target environment. Therefore, it is evident

that WiDeo is able to recover almost 28% accuracy in comparison with current state of the art

solution for environment adaptive WiFi-based activity classifier. For the classifier without domain

adaptation the accuracy drops to around 28%. Thus WiDeo outperforms the classifier without

domain adaptation by a margin of 42%.

4.8.3 Performance of person-environment adaptation
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Figure 4.11: Performance of domain adaptation’s performance for mismatched person and environment

In this section, the performance of the proposed system is evaluated for a scenario where source

and target domains have different environment and person between them i.e., the participants and

environments used in the training and testing dataset are mutually exclusive. In Figure 4.11 we

report the average accuracy of WiDeo, [109] as state-of-the-art and a classifier without domain

adaptation. We find that WiDeo has an accuracy of around 65% whereas the accuracy of [109]

drops to 30%. Moreover, the classifier without domain adaptation achieves an accuracy of 23%.

Therefore, WiDeo has superior performance than other state-of-the-arts for the scenario where both

the subject and environment changes between training and testing scenario.

4.9 Related Work

• RSSI based : WiFi-based sensing have opened the doorway for device-free activity monitoring

in the last couple of years. Researchers have used wifi signal characteristics such as signal strength

(RSSI) and channel state information(CSI) for activity recognition [127]. RSSI based activity

recognitions have been proposed in [18, 128, 129, 130, 131]. However, RSSI based gesture recognition
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system have limitations in detecting fine-grained gestures. Moreover, all of these works require

training examples to detect a particular activity class. [18, 129] uses pattern matching algorithm to

find the best match between the target gesture with pre-defined gestures. Our target in this chapter,

is classifying activities and gestures without training examples and our framework can be ported to

RSSI based systems.

• Special Device based : There have been several works in gesture and activity recognition using

specialized devices and radars. [132, 23, 133] use FMCW [134, 135] radio to monitor user activity. [23]

trains a CNN classfier to detect human motion. [132] trains a hidden markov model using time-velocity

feature for activity recognition. [136] uses a 5-antenna receiver and a single-antenna transmitter

to perform gesture classification, in the presence of three other users performing random gestures.

They use doppler shifts to match with pre-defined gestures for an incoming test data. It is evident

that none of these specialized device based sensing system deals with ctivity recognition without

prior examples. They all require labelled training examples for activity recognition.

• CSI based : With the availability of CSI from network interface cards, multiple works [137,

138, 139, 140] have emerged which exploit CSI information for gesture and activity recognition. [16]

proposes a signal profile matching technique to detect loosely defined daily activities that involve

a series of body movements over a certain period of time. [120] proposes correlation between CSI

amplitude value and gesture speed to build model for gesture recognition. [141] uses variations

in the Channel State Information (CSI) to classify gaits of humans. [119] uses translation based

data augmentation technique to make gesture classification models robust to user orientation. [142]

proposed multi-person gesture recognition system by generating virtual gesture samples and combining

them to create an exhaustive template matching algorithm. Recent works such as [106, 107, 108]

use deep learning based techniques such Convolutional Neural Networks to recognize activities from

CSI. [143, 106] proposes recurrent neural network based activity classifier , however ours is the first

work to model the micro-activity or state transition which constitute an activity. [143] predicts label

for each segment of the CSI stream.

• Environment Aware: [109] proposed an adversarial network to learn environment independent

signal characteristics from gestures. Their work requires considerable amount of labeled examples

from multiple environments to adapt to new domain. Very recent work [110] proposed velocity

profiles as environment independent feature to solve the problem of environmental effect on CSI.
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However, their work relies on multiple WiFi access points to achieve this goal, which is not a feasible

solution in many real world scenarios. In WiDeo, we propose solution for a more difficult and

practical proeblem where there is only one access point available to collect the WiFi signal and only

one labeled example per activity for the target environment.

4.10 Summary

In this chapter, we propose a novel methodology to adapt WiFi-based activity recognition

classifier for new environment with only one labeled sample per activity. To this end, we propose for

the first time an algorithm to extract feature from WiFi signal that explicitly models the correlation

between the movement of body parts and WiFi signal. To evaluate our proposed method we collect

real data from four volunteers from five different environments and report that our proposed method

is able to adapt activity classifier to new environment with superior performance than current

state-of-the-arts through elaborate set of experiments.
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CHAPTER 5

Acoustic Event Recognition Through External Knowledge Transfer

5.1 Introduction

With the ubiquity of acoustic sensing systems, the diversity in their sound types as well as their

intended purposes are evolving—making it hard for us to acquire a large corpus of labeled training

data for all possible types of acoustic events that an application wants to detect. For example, in

applications like sleep monitoring, home intrusion detection, and health monitoring, we may want

to collect multiple instances of rare, inconvenient, and unwanted acoustic events such as snoring,

breaking in, sneezing, and wheezing. Such requirements create challenges to developing personalized

and environment-specific acoustic event recognition systems which primarily rely on user-contributed

labeled data for training the classifier. Hence, the research community for long has sought after a

solution that can classify audio using few or no training examples.

Audio classification has been a well-studied problem for decades. Dealing with the lack of training

data has remained an open and active research problem since then. Recent work [144, 145, 146] in the

audio recognition literature that address the problem of learning from limited training data mainly

apply data augmentation [147] and classifier fusion [148] techniques. However, these techniques

require a certain amount of representative training data to begin with. Furthermore, all existing

audio recognition algorithms limit themselves to a fixed set of sound types, and thus when an audio

clip from a completely new sound type is presented to them, they have no built-in mechanism to

guess the correct label for that unknown sound. For instance, if a classier learns only two classes

{microwave oven, vacuum cleaner} and is tested with a sound of a {blender}, it will never be able to

output anything other than {microwave oven, vacuum cleaner} or "sorry".

In this chapter, we study the problem of learning without examples in the context of audio

inference. The problem is popularly known as the zero-shot learning [149, 150], which is an active

area of research in computer vision and image classification. To the best of our knowledge, we are the

first to apply zero-shot learning to solve the general-purpose audio event classification problem. The
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central idea of zero-shot learning is to exploit information or learned knowledge from other sources

such as textual descriptions. For example, to describe a tiger to a person who knows cats, instead of

showing them a tiger, we can describe that ‘a tiger is just like a cat but 20 times bigger.’ In this work,

we exploit the context-aware representation of English words as an additional source of knowledge

when classifying audio clips. Through an advanced audio to text domain projection algorithm, we

blur the difference between an audio and its corresponding English word/phrase by representing

them in the exact same vector space. We exploit the semantic relationship between English words to

classify an audio clip that the system has never heard before. We combine these algorithmic steps to

develop an advanced acoustic event classification system that we name—Sound-Semantics.

Developing a system like Sound-Semantics that projects audio representation onto the space of

text representation is non trivial and poses several challenges that are addressed in this chapter.

First, we propose a new way to learn robust audio features by explicitly learning the similarity

(and dissimilarity) between different sound types. We show that such a representation is robust,

beneficial to later steps, and yields better features for acoustic data. Second, we propose a neural

network architecture to merge text and audio domain so that acoustic data is embedded with

the distributional characteristics of English words. This results in the first context-aware audio

embedding and paves a way for classification without training data for audio. Third, we propose a

two-way classifier that is capable of classifying audio clips from previously heard as well as unheard

sound types. This makes Sound-Semantics a generalized system for classifying all types of acoustic

events.

To demonstrate the performance of the proposed algorithms in real-world scenarios, we develop a

smartphone application that implements the end-to-end pipeline of Sound-Semantics. A user of the

application simply inputs a list of sound types along with zero or more training examples for each

type, and the system is capable of learning and accurately classifying all sound types in real-time. We

deploy the Sound-Semantics app in two real-world scenarios (kitchen and street sound recognition)

and show that the system is able to detect acoustic events with or without training samples with

an accuracy of up to 90%. We also evaluate Sound-Semantics’ performance on a popular empirical

dataset and report the performance of the proposed algorithms.

The contributions of this chapter are the following:
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• We describe Sound-Semantics, which is the first system that addresses the problem of learning

without examples for general-purpose acoustic event classification.

• We propose a new approach to learn robust audio representation to preserve better semantic

relationship between similar sounds. This representation by itself can be used in developing

robust acoustic event classifiers when we have training data for all the classes.

• We propose the first algorithm that exploits semantic knowledge in text to enable classification

of audio clips of sound types for which a classifier has never been trained for.

• We develop a light-weight mobile application that executes the audio classification algorithms

in real-time and conduct empirical and real world evaluations to test the algorithms as well as

the end-to-end performance of the mobile application.

5.2 Concept Applications

Sound-Semantics is an advanced acoustic event recognition system that beats the state-of-the-art

in scenarios where we want to recognize a wide variety of sounds, but collecting enough audio clips

for each type of sounds is not feasible. In the machine learning literature, this is known as the

class imbalance problem [151], where the number of training examples varies significantly from one

class to another. Especially, in rare event detection problems, such as anomaly detection, fraud

detection, and medical diagnosis, often we do not have enough training examples of the primary

event of interest. This results in classifiers that suffer from high false negative rates and misclassify

critical events. Sound-Semantics solves this problem in a unique way, and accurately classifies

acoustic events even if some of the sound types have a few or no training examples. This capability

of Sound-Semantics enables many indoor and outdoor applications that were not possible before.

5.2.1 Indoor Usage Scenarios

There are many indoor audio sensing and recognition scenarios such as sleep monitoring [6],

bathroom activity monitoring [9], home appliance monitoring [152], asthma severity detection [11],

music genre recognition [153], and context recognition for voice assistants [2], where using Sound-

Semantics can dramatically improve the performance as well as the intelligence of an application.

Because each indoor acoustic environment is different, these systems typically rely on user-contributed

audio clips to train the classifiers. However, collecting a large number of audio clips for each type
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of sound is an inconvenience to an end-user. In such cases, Sound-Semantics is able to recognize

sounds even if a user provides no sample audio for some of the sound types.

Possible Type Names:
Microwave, Vacuum, 

Washer, Blender

Audio Clips:
Microwave

Vacuum

Training Phase

Zwummm!

It’s the 
Blender! Sound

Semantics

Runtime Action

Figure 5.1: Kitchen activity monitoring application.

For instance, consider the simplified kitchen activity monitoring scenario in Figure 5.1 where

a user wants Sound-Semantics to monitor four types of kitchen appliances or activities such as

{microwave oven, vacuum cleaner, dish washer, blender}. The user provides Sound-Semantics the

names of these four types of sounds. Sound-Semantics asks the user to record one or more audio

clips for each sound type. However, the user only records and provides audio clips of two of these

types, i.e., {microwave oven, vacuum cleaner} and does not provide any audio clip for the other

two, i.e., {washer, blender} as collecting dish washer and blender’s sound requires more work from

our busy user. Despite the lack of sample audio clips, Sound-Semantics is able to recognize all four

types of sounds at runtime, including the blender—for which Sound-Semantics was not provided any

audio samples during the training phase.

5.2.2 Outdoor Usage Scenarios

Like indoors, Sound-Semantics has the potential to make outdoor sound recognition applica-

tions far more effective than they are today. There are many outdoor acoustic event recognition

applications, such as street activity monitoring [154], violence detection [155], and pedestrian safety

applications [80], where the number of sound types involved in the application is large, and the

quality of the sound varies due to distance, background noise, and acoustic environment. It is not

feasible to collect audio samples of all types of sounds under all possible combinations of distance,

background noise, and acoustic context. The use of Sound-Semantics simplifies the task of training

acoustic event classifiers as it only requires a list of possible sound types and example audio clips

of some. For instance, in a street monitoring application, it is relatively easier for a user to list a

possible set of sounds that he/she may encounter (e.g., car engine and tire noise, honks, sounds of
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buses and trucks, human chatter and footsteps) than to actually record audio clips of all these types

of sounds. Collecting training data for this application is not only cumbersome, but it may also raise

privacy concerns as audio recording in public places is, in general, illegal. Using Sound-Semantics, a

user can record as many audio clips of as many types of sounds as possible, and the system takes

care of learning the rest of the sound types automatically.

5.3 Overview of Sound-Semantics

Sound-Semantics is an advanced acoustic event recognition system that takes a short-duration

audio clip and a list of possible sound types (i.e., tag-list) as input and processes the audio through

an acoustic processing pipeline to classify the audio as one of those given sound types. The design of

Sound-Semantics is modular. Computationally expensive modules (e.g., one-time offline training of

the classifiers) are run on a server, while the end-to-end audio classification pipeline – from sensing to

classification – runs on embedded systems such as smartphones, tablets, and voice assistant devices

like Amazon Echo and Google Home.

audio (u)

tag-list {li}
Robust Audio 
Representation

Cross-Modal
Projection

Two-Level
Classifier

v p
lk

Figure 5.2: Sound-Semantics acoustic processing pipeline.

Figure 6.3 shows the pipeline diagram containing the three processing steps of Sound-Semantics:

Robust Audio Representation, Cross-Modal Projection, and Two-Level Classifier. This section provides

an overview of each of these steps and defers their algorithmic details to subsequent sections.

5.3.1 Robust Audio Representation

Audio signals from microphones are essentially a time series of numbers. Typically, the sampling

rate of a microphone lies between 8 KHz to 48 KHz. This results in 8,000 to 48,000 dimension

vectors every second, which is not practical for direct use in training or classification of audio

data—especially in CPU and memory constrained embedded systems. Hence, the first step in any

audio classification system is to map raw audio data to a lower dimensional vector, commonly known

as the feature vector, based on its time and frequency domain properties. A wide variety of audio

features have been proposed in the literature. The list includes classic time and frequency domain

features such as zero crossing rate, pitch, cepstral coefficients, spectral entropy, energy, flux, and

roll-off [21]; as well as recent practices where a layer of a pre-trained neural network is considered as
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the learned features [156]. A limitation of all these features is that although they can distinguish

examples from different classes, they do not preserve the inter-class relationship.

Representation 1 Representation 2

male

blender

female male female

blender

Figure 5.3: Preserving semantics in audio representation.

Figure 5.3 illustrates this concept using a simple three-class problem where two 2D feature

representations of examples from the classes {blender, male voice, female voice} are shown. Both

representations are able to distinguish examples from different classes. However, the left one does

not consider the fact that male voice and female voice are semantically similar, and thus, they should

be closer to each other. The representation on the right is a better representation in this regard as it

ensures class separability and preserves inter-class semantic relationship.

In Sound-Semantics, we employ a special type of neural network, namely the siamese network [123],

to learn a robust audio representation that positions similar types of audio signals closer to each

other and vis-à-vis. Such a representation helps Sound-Semantics in the next step down the audio

processing pipeline where we leverage semantic knowledge from English text to enable classification

of unknown sounds. The details of robust audio representation is described in Section 5.4.

5.3.2 Cross Modal Projection

(a) Existing Algorithms are unable to 
Project Audio into 

Word Embedding Space, ! ≠ #

Word2Vecblender
(text)

X (Word Embedding)

Traditional 
Feature

Y (Traditional 
Feature Representation)

blender
(audio)

Word2Vecblender
(text)

X (Word Embedding)

SoundSemantics
Cross-Modal 
Projection

Y (Cross-modal
Embedding)

blender
(audio)

(b) SoundSemantics Projects Audio into 
Word Embedding Space, ! = # + &

Figure 5.4: Cross-modal Projection maps audio to its corresponding label in word embedding space.

The secret recipe behind Sound-Semantics’ ability to classify completely unknown sounds is the

cross modal projection step. Through this step, we blur the difference between an audio clip and its

corresponding English word, and make them (almost) equal in their feature representation. In other
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words, if an English word (e.g., the word ‘blender’) has a known vector representation (e.g., obtained

using Google’s word-2-vec [24] on a large dataset like Wikipedia [157]), the goal of this step is to

generate the exact same vector when Sound-Semantics is presented with an audio clip of that word

(e.g., the sound of a blender). The benefit of this projection from audio to text representation is that

there are over 150 thousand English words for which researchers in the natural language processing

field have created semantically aware vector representations, called the word embedding. Such an

embedding preserves the contextual relationship among words and puts two words that are similar in

meaning or are often used in the same context closer in the representation space. By projecting the

audio representation to the word embedding space, Sound-Semantics is able to generate meaningful

and context-aware representation of any audio clip – irrespective of whether or not it has heard

example audio clips of the same class before.

In Figure 6.8, we illustrate cross-modal projection using the example of a blender, whose word

embedding is X. The audio representation of blender is passed through the cross-modal projection

to obtain Y . In Sound-Semantics, we make sure that X ≈ Y . In traditional acoustic feature

representation, however, the projection is different (X 6= Y), and hence unlike Sound-Semantics, its

not possible for traditional features to guess the word label of an unheard sound.

5.3.3 Two-Level Classifier

There are two classes of sound types that Sound-Semantics may encounter at runtime: heard

and unheard classes. The heard classes refer to those sound types for which Sound-Semantics has

audio clips for training. The unheard class, on the other hand, refers to sound types for which

Sound-Semantics does not have any training audio clip. For example, in the kitchen monitoring

scenario of Figure 5.1, {microwave, vacuum} are heard classes and {blender, washer} are unheard

classes. During the classification step, at first, Sound-Semantics employs a novelty detection algorithm

to determines whether the input audio belongs to a heard class or an unheard class. After this

determination, a nearest neighbor classifier is used to find the most probable sound type for the

input audio. The use of a two-level classifier significantly improves the accuracy of Sound-Semantics,

because we propose a holistic approach to classify both heard and unheard classes together. The

details of this two-level classifier is described in Section 6.6.
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5.4 Robust Audio Representation

The goal of this step it to obtain a robust feature representation of audio which explicitly learns

the similarity and dissimilarity of examples from different classes.

5.4.1 Basic Approach

We employ a Siamese neural network [123] that takes two audio clips as the input and determines

whether or not they are similar. A siamese network is a twin neural network architecture where

two identical deep neural networks share their weights. The objective of this network is to learn a

representation of the training data which projects similar data points closer while ensuring a certain

margin between data points from different classes. This is achieved by using an loss function during

the training phase, which is discussed later in this section.

We train the network by providing it with pairs of audio clips as the input and a binary target

that denotes whether or not these clips below to the same class as the output. Once the training

finishes, we take the output vector of one of the last few layers—which becomes the desired robust,

inter-class similarity aware representation of an input audio clip.

A siamese network has advantages over other types of commonly used neural networks such

as the convolutional neural networks (CNNs) as it learns the semantic representation better by

explicitly learning a similarity metric. Furthremore, siamese networks are less susceptible to class

imbalance [158, 123] problem, which is one of the main challenges that we address in this chapter.

5.4.2 Analytical Formulation

We denote Gθ(Xi) as the projection of an audio clip by one of the twin networks Gθ, where Xi is

a standard frequency domain representation (e.g., FFT or MFCC [21]) and θ denotes the learnable

weights of the network. For two audio clips, X1 and X2, we set their distance score, Y = 0 when

they belong to same class, and Y = 1 when they belong to different classes. Finally, we define a

contrastive [122] loss function as follows:

L(θ) = (1− Y )
1

2

∣∣∣∣Gθ(X1)−Gθ(X2)

∣∣∣∣
+ Y

1

2

{
max

(
0,∆−

∣∣∣∣Gθ(X1)−Gθ(X2)

∣∣∣∣)} (5.1)

The first term in Equation 5.1 minimizes the distance between a pair of audio from same class

whereas the second term maximizes the distance between a pair of audio from different classes. The
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term ∆ represents the distance margin that the network maintains between audio clips from different

classes.
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Figure 5.5: The architecture of the Siamese network used in robust audio representation. Here, f denotes the
size of the filters and s denotes the stride length of the convolutions. Two audio clips are given as input and
the last layer is fed into the contrastive function to learn the similarity between them.

5.4.3 Neural Network Architecture

As the architecture of Gθ, we use four layers of convolutional layers with max pooling and batch

normalization. Each layer extracts feature map from the input data and as we go deeper into network

more number of filters extract more information. We decided to go with four layers as we found that

these layers were able to get adequate informatin for the later steps. For nonlinear activation, we

use relu activation function. The output of the fourth convolutional layer is fed into two layers of

dense layers which have relu activation in between them. We keep the last dense layer with 1000

neurons which is our feature dimension.

In Figure 5.5, we start with a filter size of 20 × 20 for the first convolutional layer. We keep

the size slightly bigger to capture more information from both the time and frequency domain. We

have experimented with larger sized filters and find that they result in slower convergence. We use

pooling layers along with the conv layers with a stride of 2 and a kernel size of 2 × 2. This is a

common choice for pooling layer to sub-sample from layers to reduce the size as neighbor nodes are

usually highly correlated. We also find that batch normalization boosts the accuracy as it handles

different scaling factors of the input.

Using the trained siamese network, we obtain the robust audio representation of the audio sample

by forward propagation through any of the twin networks. Since the networks have identical weights,

choosing any of them yields the same representation.
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5.5 Cross Modal Projection

In the previous section, we proposed a feature learning algorithm that learns to map audio

data onto a feature space that projects similar data close and dissimilar data far. This gives us a

robust audio representation which by itself can directly be used to train robust audio classifiers.

However, that representation can not be used to perform zero-shot learning as it does not borrow

knowledge from an external source. To achieve this, we propose an algorithm that integrates semantic

knowledge from the text domain to the audio representation. This is done by projecting the audio

representation onto the word embedding space such that each audio representation is mapped to the

word embedding of its corresponding text.

The difficulty in this step, however, is that a word is spelled or written in exactly one way,

whereas, its corresponding audio clip may have a lot of variations. In Sound-Semantics, we solve

this problem using a neural network to learn the projection from audio to text.

5.5.1 Neural Network Architecture

We use a two-layer fully connected neural network for cross-modal projection between the two

data modality. The first layer has 500 neurons which are connected to the input layer with a

dimension of 1000. For the first layer, we apply tanh() to model the non-linearity in input data. The

output of the first layer is then fed into the last layer which outputs the projected embedding of the

audio onto the word space. The number of neurons in the output layer is the same as the dimension

of the word embedding we use. In this case, it is set to 50 to match with the dimensions of word

embedding of [157].

For an audio sample, A and its robust representation, Afeat, the final output of the neural

network is defined by the following equation:

Aout = θ2g(θ1Afeat) (5.2)

Here, θl denotes the layer of neurons and l denotes the number of layers. If Afeat has M = 1000

dimensions, the number of neurons in the first layer is h1, and the number of dimensions of word

embedding is d, then the layers have the following dimensions: θ1εh
1×M and θ2εd×h

1 . Note that, g

denotes the non-linear function tanh().
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Figure 5.6: (a) MSE Loss fails to separate the cross-modal embedding of adjacent audio class blender
and washer in word embedding space. (b) Neighbour-aware Loss projects the audio clips close to their
corresponding labels in word embedding space and also keeps separation from adjacent classes.

5.5.2 Loss Function

The target of cross-modal network is to project audio as close as possible to its corresponding

label’s word embedding. Therefore, when an audio sample’s robust representation passes through

the neural network, the target is to minimize the euclidean distance between the output of the neural

network and the audio’s class label’s word embedding.

•Mean Square Error (MSE) Loss: Mean Square Error(MSE) [159] is a good choice of loss function

for our network as we can use it to minimize the distance between projected audio embedding and its

label. Lets represent the pre-trained word embedding of a word W as E(W ). For an audio sample

A, and its class label y, following the MSE loss function we want to minimize:

L(Θ) = ‖E(y)−Aout‖ (5.3)

Here, ||.|| is the Euclidean norm and Θ = {θ1, θ2}. We have omitted the division with vector

size here for easy notation. One drawback of MSE loss is it does not consider its neighbour word

labels when minimizing the distance between the audio projection and word embedding. This may

lead to poor separability of embeddings between two audio classes which have close class label word

embedding. In Figure 5.6(a), we demonstrate this fact by projecting audio of blender and washer in

word space. We see from the figure that, MSE loss minimized the distance between the corresponding

projection of audio and their class labels. But MSE loss failed to get a fair separation between the

projected embedding of blender and washer audio clips.

• Neighbour-Aware Loss: To consider nearby labels, we propose a new loss function to project

audio into word embedding space. The proposed loss function has two objectives. First, it minimizes

the distance between the projected audio embedding and its corresponding audio class label. Second,
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it ensures that the distance between the projected audio embedding and its corresponding audio

class label is less than the distance between the projected audio embedding and other class labels by

a certain margin.

The second objective makes sure that the projected audio embedding of a class y is closer to

E(y) by a margin of α than other class labels y′ 6= y. To formally define, we want the following

condition to hold after projection:

‖E(y)−Aout‖+ α <= ‖E(y′)−Aout‖, y′ 6= y (5.4)

Hence, the objective function becomes:

minimize
Θ

‖E(y)−Aout‖

subject to ‖E(y)−Aout‖+ α <= ‖E(y′)−Aout‖, y′ 6= y

Using this optimization function, we propose our Neighbour-aware Loss function as following:

L(Θ) = ‖E(y)−Aout‖+
1

|adj|
×

∑
y′εadj(y)

(‖E(y)−Aout‖

+ α− ‖E(y′)−Aout‖)

(5.5)

Here, adj(y) denotes the neighbour or adjacent labels that our proposed loss consider. |adj| denotes

the number of classes in the adj(y) set. We experimented to set adj(y) in two ways: a) keeping all

other labels other than y in the set, b) keeping the nearest n neighbours of y in terms of euclidean

distance in embedding space. We find that the former gives a slight improvement over the later.

But the second option yields faster training when the number of classes are high. Both MSE and

the proposed neighbor-aware loss are convex functions. However, since the neural network itself is

non-convex, L(Θ) is non-convex.

In Figure 5.6(b), we show the effect of neighbour-aware loss with our previous example of blender

and washer. We see that, the proposed neighbour-aware loss is able to minimize the distance between

projected audio embedding and their corresponding class label’s embedding in word space and also

maintain a margin of distance with audio embedding of neighbour classes. Thus, we get adequate

separability between the projected embedding of blender and washer audio clips as desired.
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5.6 Two-Level Classifier

Sound-Semantics employs a two-level classifier to infer the most likely sound type for an input

audio clip. The first level classifier determines whether the input audio belongs to heard or unheard

classes. The second level classifier makes the final determination of the most probable sound type

for the input audio.

5.6.1 Heard vs. Unheard Determination

Recall that Sound-Semantics is trained on examples from the heard classes only and the goal

of the cross modal projection step is to create a projection of an input audio which is as close as

possible to its corresponding textual label. Hence, the projection of audio clips from an unheard

class are unlikely to be close to any class labels that are in our training data.

Using this hypothesis, we devise a simple threshold-based decision algorithm to determine whether

an input audio clip belongs to an unheard class. For an input audio, u, it belongs to an unheard

class if the following condition is true:

min
h∈H
‖E(h)− ρ(u)‖ > Π (5.6)

where, ρ(u) is the audio embedding, H is the set of heard classes, Π is an empirically determined

threshold, and ||.|| is the Euclidean norm. If this condition is false, u belongs to a heard class.
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Figure 5.7: The accuracy of heard and unheard class detection depends on the threshold Π’s value.

The threshold, Pi is empirically determined to maximize the accuracy of heard vs. unheard class

detection over an empirical dataset. In Figure 6.14, we plot the accuracy for Π ∈ [0.5− 2.0]. We

observe that setting a high threshold fails to detect any class as unheard and the accuracy drops to

almost zero for unheard classes. On the other hand, setting the threshold too small leads to poor

results for heard classes as it determines every audio sample as unheard. Hence, there is a trade-off
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between the heard and unheard class detection accuracy. The optimum threshold is 1.25, for which,

the classification accuracy of both the heard and unheard classes are around 85%.

5.6.2 Classification

Once an audio clip is determined to be from a heard or an unheard class, we use a nearest

neighbor classifier to get the class label. If the audio is detected as heard category, we consider labels

from only the heard categories, and select the label that has the minimum Euclidean distance from

the audio’s projected embedding. Likewise, if the audio is detected as an unheard type, we consider

labels from only the unheard categories, and select the label that has the minimum Euclidean

distance from the audio’s projected embedding.

5.7 Implementation Notes

• Mobile Phone Application. We develop a mobile phone application to run Sound-Semantics.

The application records audio and classifies them using the models we have designed. We use

Tensorflow Lite [160] to build the application to run our pre-built models. In Table 5.1, we list the

run-time for inference of the two models. We see that the siamese network having four convolutional

layers takes 112 ms on average for inference, which is about 4 times higher than the inference time

for cross modal projection model having only two fully connected layers.

Table 5.1: Runtime of our algorithms

Operation Execution Time(ms)
Siamese network inference 112
Cross Modal network inference 39

• Training. We train our models on a server machine and use the pre-built models in the mobile

application. We use mini-batch with Adaptive-Moment-Estimation (Adam) [161] to train the models.

We use Adam as it adapts its learning rate for faster convergence than an optimizer with a fixed

learning rate algorithm such as Stochastic-Gradient-Descent (SGD).

5.8 Empirical Evaluation

In this section, we empirically evaluate the proposed algorithms with well-known public datasets

and report the effectiveness of different parts of Sound-Semantics’ pipeline. Note that our evaluation

is primarily focused on Sound-Semantics’ capability in inferring acoustic events that do not have

training examples. The data we use in the evaluation have common environmental noise and
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reverberation effects, and thus our neural network models and their evaluation implicitly included

these artifacts. However, environmental effects vary in different acoustic environments and impacts

any audio classification algorithm negatively. To deal with this, additional pre-processing steps such

as noise removal, reverberation compensation, and augment training should be applied in conjunction

with Sound-Semantics.

5.8.1 Datasets

We use three datasets in the empirical evaluation: ESC-50, ESC-10, and AudioSet [162, 83].

ESC-50 and ESC-10 are two popular datasets for audio event recognition and have been used in

several recent audio classification papers [162, 97]. These two datasets have labeled collection of 2000

and 400 environmental audio recordings, respectively. There are a total of 10 and 50 classes with 5

seconds long 40 examples per class for ESC-10 and ESC-50 dataset, respectively. The datasets are

provided with five folds for easy benchmarking across all algorithms. The ESC-50 also divides the

dataset into categories such as Animals, Natural Soundscapes, and Interior.

AudioSet is primarily used to learn priors for transfer learning [162] to recognize acoustic events on

datasets like ESC-10 and ESC-50. AudioSet is weakly labeled and most of the files are multi-labeled.

On average, there are five labels per file [83]. This makes AudioSet unsuitable for our system’s

evaluation as we focus on single label classification problems. Hence, we select a subset of the classes

and files from AudioSet which have at least 50 single-labelled files. This results in a dataset that has

over 1600 audio clips from 33 classes.

5.8.2 Performance of Robust Audio Representation

In Section 5.4, we use a contrastive function (Equation 5.1) to learn representation of audio.

Contrastive function directly learns to map similar audio closer and dissimilar audio farther in

feature space. This gives our proposed Siamese network based robust audio representation advantage

over traditional classifier network based feature learning. Here, we compare Siamese based robust

audio representation with a traditional classifier network based feature learning, by evaluating the

clusters generated by mapping audio samples in feature space. Better representation results in

more separability between clusters of different classes and less variance in a cluster of same class.

For this comparison, we used ESC-10 data set. We generated feature for each of the five folds

using Sound-Semantics’ robust audio representation pipeline and convolutional neural network based

classifier. Both of the networks have same number of layers and same parameters for fair comparison.
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Moreover, they were trained with same number of epochs.

Table 5.2: Our proposed Robust Audio Representation preserves better clustering properties than feature
extracted from a convolutional neural network based classifier.

Algorithm
Intra-cluster
Centroid Distance

Inter-cluster
Variance

Convolutional Network 0.36 0.029
Sound-Semantics’ Robust
Audio Representation

0.59 0.017

We compared the features learnt by the two algorithms using two metrics. First, the mean

distance between the centroids of the clusters for different classes. Second, the inter-cluster variance

among each class. From Table 5.2, we find that the mean distance of the centroids for Sound-

Semantics is 0.59, on the other hand the mean distance for convolutional network is 0.36. This

shows that features generated by Sound-Semantics is able to differentiate between the classes more

efficiently than features generated by convolutional network. Then, we compare the quality of the

clusters by comparing that the inter-cluster variance for Sound-Semantics and convolutional network

are 0.017 and 0.029, respectively. Therefore, we conclude that, our robust audio representation

algorithm learns better representation than traditional convolutional networks.

5.8.3 Performance of Proposed Neighbour-Aware Loss

We compare our proposed neighbour-aware loss with MSE loss by comparing their accuracy

in classifying audio events with training examples. We used ESC-10 dataset and ESC-50 dataset.

For ESC-10 we did the experiment for all the folds. Moreover, we did the experiments with the

categories listed in ESC-50 and reported the mean accuracy with variance as error bar in Figure 5.8.

We refer the category based ESC-50 dataset as ESC-50 Categorized. Note that, in a category the

class labels are much closer in embedding space than a general ESC-10 dataset. For example, in

Animal category some of the classes are : dog, cat, pig. They all are very close to each other in word

embedding space which makes Sound-Semantics’ cross-modal projection based classification harder.

In Figure 5.8, we see that our proposed loss has an accuracy of 83%, whereas MSE loss has an

accuracy of 82% for ESC-10 dataset. However, for categorized ESC-50 dataset where the labels are

closer to each other in embedding space our proposed neighbour-aware loss has an average accuracy

of 76% and MSE has an average accuracy of 72%. So, we see a performance boost of 4% here. As
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Figure 5.8: Sound-Semantics’ proposed neighbour-aware loss yields better result in classifying heard classes.
The effectiveness of neighbour-aware loss reflects more in ESC-50 Categorized dataset. In categorized dataset
the class labels are closer in embedding space which makes the scenario harder for MSE loss. Sound-Semantics’
proposed loss function comes as winner because it is aware of the neighbor words.

our proposed loss considers neighbour words when projecting audio to word embedding space, it

performed better when the labels in the dataset are closer to each other compared to MSE loss.

5.8.4 Performance on Unheard Class

Here, we report Sound-Semantics’ performance on unheard classes. These are the classes that

Sound-Semantics did not have any examples during training phase. As, current state of the arts are

not able to classify audio data without training examples, here we only report the performance of

Sound-Semantics with varying number of unheard classes. To evaluate Sound-Semantics’ performance,

we used a subset of ESC-50 and AudioSet as dataset, where we select classes based on the acoustic

and semantic similarity.

For evaluation, we consider five scenarios. The scenarios have 2, 3, 4 and 5 unheard classes

respectively. Each scenario was evaluated atleast three times with different combinations of classes

in both heard and unheard classes. For ESC 50 dataset, the unheard classes were selected from each

category by making sure that the category has some classes in the heard category. For AudioSet we

picked the unheard classes by selecting from the closest labels of the classes in the heard category.

In Figure 6.12, we show the accuracy of Sound-Semantics for different number of unheard classes.

We observe that for two unheard classes, the mean accuracy of Sound-Semantics is around 90%

for the ESC dataset and 76% for the Audioset. The drop of accuracy for Audioset is due to weak

labeling and presence of noise in the audio clips. For both datasets, the accuracy drops as the

number of unheard classes increases. The reason is that the accuracy of unheard sound detection is

dependent upon the heard classes. An unheard sound is detected successfully only when there are

heard sounds which are similar in acoustic properties as well as their labels’ contextual properties
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Figure 5.9: Sound-Semantics’ accuracy in unheard audio event classification decreases from 90% to 60% for 2
to 5 unheard classes in the ESC dataset. For Audioset, due to weak labeling and noise, the accuracy drops to
76% for 2 unheard classes.

in the text domain. The heard classes act as representatives of the corresponding unheard classes.

As more classes fall into the unheard category, their representative classes in the heard category

decreases. Therefore, we see that the accuracy drops to 60% when five classes are in the unheard

category.

5.8.5 Performance on Heard Class

Sound-Semantics is a generalized acoustic event recognition system that is expected to encounter

examples of both heard and unheard classes at runtime. To test Sound-Semantics’ accuracy on heard

classes, we compare its performance with baseline algorithms such as Convolutional Neural Network

(CNN) and Random Forest. Both of them are trained with same number of epochs. We use more

epochs when using only CNN as it does not have the extra step of cross-modal projection. Note

that all of these algorithms have the same number of layers and same design of network for fair

comparison. We use the ESC-10 dataset in this experiment and perform a five-fold cross validation

using the folds that the dataset comes with. We also report the performance of the best classifiers

for the dataset, i.e., EnvNet [163] and ConvRBM [68].
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Figure 5.10: Sound-Semantics is able to classify heard audio events better than baseline algorithms because
of its robust audio representation and cross-modal projection.
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In Figure 6.13, we see that the mean accuracy of Sound-Semantics for heard classes is 82.25% which

is higher than that of a CNN with our cross-modal semantic projection (79.4%), a regular CNN (77%),

and random forest(71.8%). EnvNet and ConvRBM achieves 84.9% and 86.5% accuracy, respectively.

Note that both algorithms use raw audio as the input to the netowork unlike Sound-Semantics which

feeds time-frequency domain representation as the input to the network. These papers [163, 68]

learn the frequency filterbanks from raw audio data, and thus learns better representation and

eventually attains a higher accuracy. Sound-Semantics’ Siamese network-based robust representation

and cross-modal projection steps are generic and can be used with the techniques proposed in these

papers to achieve similar or higher accuracy in heard class detection.

5.8.6 Performance with Distractor Words

While Sound-Semantics performs well in detecting unheard audio classes it requires the unheard

label names beforehand. In this experiment, we wanted to see Sound-Semantics’ performance when

the unheard labels are not only limited to the expected classes, but has some extra random labels

also. We refer these extra words in the unheard labels as distractor words. We performed two sets of

experiments for a scenario with two unheard classes. In the first, experiment the distractor words

were chosen randomly and in the second experiment the distractor words were chosen from the

k-nearest neighbours of the expected class label in word embedding space. For example, if we had

cat sounds in unheard class then some of the nearest neighbour words were:dog, rabbit, pet, mouse

etc. Note that, both of these experiments were done with multiple pairs of unheard class and only

the average is reported here.
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Figure 5.11: Random word injection in unheard class labels does not have effect on Sound-Semantics’
performance in unheard class detection. Adding closest words with respect to unheard labels in embedding
space causes a certain drop in Sound-Semantics’ accuracy.

In Figure 5.11, we see the result with random words and nearest neighbour words as distractor

words. With random words, the accuracy does not change even with 50 distractor words. This

proves that the words have well spanned embedding and Sound-Semantics is robust with random
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Figure 5.12: Sound-Semantics achieves better accuracy than baseline algorithms in monitoring kitchen for
all scenarios with all proportion of heard vs unheard class in test samples. (a) Eight out of 10 class are in
heard category. Sound-Semantics’ accuracy remains over 70% for all cases. (b) For six out of 10 class in
heard category, Sound-Semantics’ accuracy drops from 75% to 58% with increasing proportion of test samples
coming from unheard classes, whereas the best baseline’s accuracy drops to 23% . (c) For, two out of 10 class
in heard category, Sound-Semantics achieves 77% accuracy when majority of test samples are from heard
category but drops to 28% with more test samples from unheard category.

Table 5.3: Dataset for Kitchen Monitoring.

Category Examples Count Length

Appliances
dryer, utensil, basin,
pouring, plate, blender,
vacuuming, heater

320 1600 s

Pet dog, cat 80 400 s

words injection. However, with nearest words added the accuracy drops around 10 distractor words.

This is because, the distractor words are too close to the unheard class labels in the embedding

space. We notice that from 10 to 50 distractor words, the accuracy does not dip very much and the

reason behind this is further inclusion of nearest distractor words do not have any effect as they are

far enough from the unheard class labels in embedding space.

5.9 Real world evaluation

We deploy Sound-Semantics phone application in two real world scenarios involving both indoor

and outdoor usages and evaluated our system’s performance with other state of the art acoustic event

classification algorithms. In this section we report the results from these two real world applications.

5.9.1 Kitchen Monitoring

We use Sound-Semantics in an indoor scenario for kitchen monitoring. In this application, a user

monitors his/her kitchen using Sound-Semantics. The user provides a total of 10 acoustic event

names which are listed in Table 5.3. The number of samples and total duration of audio are also

listed in the table.

We consider three different training scenarios to stress out Sound-Semantics’ performance under

different conditions. First, we consider that the user is giving 8 out of 10 classes’ audio examples
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to Sound-Semantics during training. So the number of classes in heard and unheard categories are

8 and 2, respectively. Second, we consider where 6 out of 10 classes’ audio examples are given to

Sound-Semantics during training. And, the last scenario is the hardest, where Sound-Semantics has

only 2 classes’ audio samples during training, that makes 8 out 10 classes in unheard category. For

each scenarios, we randomly picked the classes for heard and unheard categories but making sure that

classes from both Appliances and Pet have been selected. In Figure 5.12, we report the performance

of Sound-Semantics along with two baseline algorithms : convolutional neural network(CNN) and

random forest for all three aforementioned scenarios. For each scenario, we consider three cases

varying the ratio between samples from heard and unheard class in test dataset in the following ways:

a) #heard
#unheard = .25, b) #heard

#unheard = .5 and c) #heard
#unheard = .75. Here, # represents the number of samples.

In the first scenario (Figure 5.12(a)) where only 2 classes were in unheard category, we see that

Sound-Semantics’ accuracy is over 70% for all cases as there are enough representative classes in

training samples. For the 1st case where only .25 fraction of test samples are from heard category

baseline algorithms fall behind by a long margin (less than 20% accuracy) as they can not classify

any of the classes from unheard category. The situation gets better for the baselines as the fraction of

heard classes increase in test samples. The maximum accuracy of convolutional network approaches

around 60% for the case with .75 fraction of test classes in heard category. For this case, Sound-

Semantics’ accuracy(77%) still beats baseline algorithms by more than 15%. For the second scenario

(Figure 5.12(b)), with 4 classes in unheard category the scenario becomes harder as unheard category

classes have increased. Still, Sound-Semantics was able to classify around 57% of the test samples

even in the extreme case with only quarter fraction of test samples from heard category. In this case,

the baseline algorithms accuracy are around 22% and 23%. The third scenario (Figure 5.12(c)), is

the most challenging one as it deals with only two classes in the heard category. When the fraction

of test samples which belongs to heard category is .25 we see that Sound-Semantics’ performance

drops to 28% as it can not classify most of the unheard classes with such limited training data.

Although it still outperforms conv-net(23%) and random forest(24%). With less proportion of test

samples from unheard category, Sound-Semantics’ performance gets better as expected and reaches

77% when there are three-quarter of the test samples from heard category.
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Figure 5.13: Sound-Semantics performs better than baseline algorithms for all cases in street monitoring.
(a) When four out of six class are in heard category, Sound-Semantics has more than 70% accuracy for all
cases. On the other hand, baseline algorithms’ accuracy drops below 20% for some cases. (b) For three out
of six class in heard category Sound-Semantics outperforms all baseline algorithms for different cases. (c)
When two out of six class are in heard class, for .25 fraction of test samples coming from heard category
Sound-Semantics’ performance drops to 51% which is still two times more than baselines’ performance.

5.9.2 Street Monitoring

Sound-Semantics was also deployed in outdoor scenario for street event recognition. Here, we

showed the usecase of Sound-Semantics in sreet event recognition using audio such as: car engine

sound, honk or people talking etc. There are total 6 classes in this scenario and in Table 5.4, we

described the data for this application.

Table 5.4: Dataset for Street Monitoring

Category Examples Count Length
Vehicle car, airplane, honk, siren 160 800 s
Noise talking, shouting 80 400 s

For evaluation in outdoor environment, we again consider three scenarios. Scenario 1: out of

6 classes, 4 classes were in heard category and the rest of the 2 classes are in unheard category.

Scenario 2: both heard and unheard categories have 3 classes each.Scenario 3: heard category has

only 2 classes whereas unheard category has 4 classes. For each scenario we again vary the proportion

of heard vs unheard classes to .25, .50 and .75 respectively.

In Figure 5.13, we report the result of Sound-Semantics for all the cases in the three scenarios

we mentioned. In Scenario 1 (Figure 5.13(a)), where only 2 classes are in unheard category, we

find that Sound-Semantics has accuracy of over 70% for all the cases. On the other hand, the

baseline algorithms’ accuracy drops under 20% when most of the samples are coming from unheard

category. In scenario 2 (Figure 5.13(b)), for Sound-Semantics we see an accuracy of 75% for case 3

with majority of the samples in test cases coming from heard classes. However, when the ratio of

heard classes in test data get decreased in case 1 and 2, the accuracy drops. Yet, Sound-Semantics’
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performance is better than baselines by a margin of greater than 30%. For scenario 3 (Figure 5.13(c)),

where only two classes are in heard category, the accuracy for the case where 75% of test samples

are from heard classes reaches up to 83% for Sound-Semantics. For heard category the classification

has become a binary problem, and thus causes boost in accuracy for this case. However, for case 3,

the accuracy drops and gets to 51% where 75% of the test samples are from unheard categories. For

this case, baselines achieve a maximum accuracy of 23%.

5.10 Related Work

Audio classification has been a well known problem for decades. There are some approaches

to deal with limited training data for audio classification. Some of the past works dealt with

limited training data problem by generating new training examples with the help of perturbation

acoustic characteristics of existing examples, e.g., frequency warping [2], modifying tempo [164],

and adding simulated reverberation [145], and noise [165]. These works fall in the category of data

augmentation. Another direction of works use classifier fusion [166], where outputs of multiple

classifiers are combined to improve the overall accuracy. These techniques vary from simple voting

and averaging [167], to ranking [168], to learning decision templates [168]. Very recent works [162]

deal with the problem of limited data with transfer learning [169] from other large scale audio dataset.

Another branch of work [170] proposes classification algorithm for weekly-supervised dataset where

the presence or absence of an audio event in a clip is marked but the absolute position of the audio

event is not labelled. However, our problem is significantly different from these works as these papers

do not consider the scenario when absolutely no training examples are present. Ours’ is the first

work to deal with zero shot learning for audio data by leveraging semantic knowledge from textual

domain.

In image domain, learning from limited or no data has been explored recently. [123, 171] focus on

learning suitable image representation to classify images from very few or only one examples. These

works are totally different from ours as we want to recognize audio events without any training data.

The other branch of learning with limited data focuses on zero shot learning for image classification.

The earlier practices of zero shot learning [149, 172] for image classification problem infer the labels

of unseen classes using a two step algorithm. First, the attributes of the sample is inferred and then

the class label is predicted from an attribute database, which has most similar attributes with the

image. Recent works [173, 174] have explored the mapping between image features and semantic
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space by projecting image features into word embedding space. Similar line of works [175, 150, 176]

project image feature into semantic space then searches the nearest class label embedding using

ranking loss. Recent works such as [177] uses auto-encoder to generate embedding for image features

by reconstructing the images from the projected embedding. Although these papers propose zero

shot learning method for images, none of them addresses the problem for audio domain and the

associated challenges with it such as audio representation learning. Our work is the first system to

propose a zero shot learning method for audio classification where we overcome the challenges for

cross-modal learning between text and acoustic domain. To the best of our knowledge, we present

the first system with capabilities of inferring acoustic events without training examples and report

extensive evaluation of such system under varying scenarios.

5.11 Discussion

• Zero-Shot Learning Assumption. We assume that audio classes with similar acoustic properties

have semantically similar class labels. We use this assumption to learn the non-linear mapping

function to project audio signals onto the word embedding space. When there are no semantically

similar training examples corresponding to an unheard class, a zero-shot learner fails to recognize

examples from that unheard class. However, in a large dataset, the chances that there is no

semantically similar training example to an unheard class is relatively low. This is why zero-shot

learning performs better on larger and diverse datasets than smaller and skewed ones.

• Necessity of User-Provided Tag-List. The user-provided additional labels do not have any

influence on the training phase. They are only used in the classification step after the training has

been completed. If we do not have these additional labels, then the search space becomes too large

(i.e., as big as having all the words in our database for a language) in the classification stage. We

have demonstrated this in Section 5.8.6 where we added extra labels (i.e., distractor words) along

with user-provided additional labels. We find that the inclusion of similar semantic words with

additional labels causes a dip in the accuracy of unheard audio class detection.

• Heard-Unheard Synergy. Sound-Semantics’ accuracy on unheard sound classification depends on

the characteristics of heard classes. If the training classes have representative acoustic and semantic

representations of rare audio events, Sound-Semantics is able to infer it. Hence, as long as this

assumption is satisfied, Sound-Semantics can recognize rare, inconvenient, or unwanted events. For

example, to detect the sound class waves that has no training examples, we need to have some class

82



rain
(0.18)

wind 
(0.34)

thunderstorm
(0.6)

fire
(1.0)

wind
(0.65)

thunderstorm
(0.82)

rain
(0.87)

89

90
33

89

87

Spectrogram Level Distance
W

or
d 

Le
ve

l D
ist

an
ce

Ac
cu

ra
cy

100 %

0 %

fire
(1.0)

Figure 5.14: Sound-Semantics’ performance in recognition of an unheard audio event is contingent upon the
acoustic and word embedding similarity between that event and classes in heard category.

in the heard category that is close to waves in terms of acoustic properties as well as word semantics,

e.g., wind. However, without the presence of such classes in the heard category, the performance

of waves detection without examples drops. To visualize this, we conduct an experiment where we

want to classify the unheard sounds of waves. For training, we use one class from the following set

interchangeably in the heard category: {rain, wind, thunderstorm, fire}. We want to see the effect

of these classes for waves ’ zero-shot classification. We use the mean Euclidean distance between the

MFCC features of the audio samples of the classes as a metric for the Spectrogram-level distance and

the Euclidean distance between word embeddings as Word-level distance. We sort the classes {rain,

wind, thunderstorm, fire} in terms of both spectrogram-level distance and word embedding-level

distance from waves. In Figure 6.16, we show the sorted classes on the X and the Y axes based on

the spectrogram-level and word embedding-level distances. All distances are normalized by their

maximum. We see that, as the spectrogram level distance increases, the classification accuracy for

waves drops. We find that, for fire, the accuracy drops to 33% as it is very distant from waves in

both the spectogram and the word level.

5.12 Summary

This chapter presents the first system for acoustic event classification without training data.

We propose a novel context-aware audio representation embedded with semantic knowledge from

textual domain. Using this novel feature mapping, we created a classification algorithm capable of

inferring acoustic events with or without training examples. We evaluated our proposed system

Sound-Semantics with public audio dataset and presented the benchmarking for different parts of

the whole pipeline in the chapter. We also implemented a mobile application and deploy our system

in two real world applications. We compared our system’s performance with other state of the art
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audio classification algorithms and showed that our system is capable of inferring acoustic events

without any examples with an accuracy of 60%− 90% for different scenarios.
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CHAPTER 6

WiFi-Based Activity Recognition Through External Knowledge Transfer

6.1 Introduction

The widespread adoption of WiFi in indoor spaces, and the accessibility of WiFi signal charac-

teristics such as the signal strength (RSSI) and channel state information (CSI) in commodity WiFi

chipsets, make WiFi an attractive technology for human activity monitoring. Alternate solutions

that use wearables like smartwatches and activity trackers are becoming less attractive due to their

usage adherence issue, and systems that use cameras to monitor home activities raise serious privacy

concerns. WiFi sensing, on the other hand, is device-free, non-intrusive, and less privacy-invasive.

Hence, in recent years, we have seen an increase in WiFi-based sensing and inference systems whose

feasibility has been demonstrated in application scenarios such as home activity monitoring [16],

sleep monitoring [17], gesture-based smart device interaction [18, 19], and health vitals tracking [20].

walk drink drink run

walk drink drink run

: able to detect : not able to detect

Training Phase Testing(target) Phase

Existing
Systems

Wi-Fringe

Figure 6.1: Unlike existing systems, WiFringe is able to recognize run in the testing phase, even though it
did not see any training example of run in the training phase.

A vast majority of WiFi-based activity recognition systems employ either template matching

algorithms or machine learning classifiers — ranging from traditional classifiers like support vector

machines [22] to advanced deep convolutional neural networks [23]. These algorithms require a

decent number of training examples for each class of activity in order for the system to accurately

classify them. Furthermore, the capability of these systems are fundamentally limited by the number

of activity classes for which the system has been trained for. When these systems are presented with

a completely new type of activity, there is no built-in mechanism to make an educated guess about
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the possible class label for that unseen example.

Figure 6.1 illustrates this scenario. When a system is trained to recognize only {walk, drink},

but is presented with an example of an unseen activity, e.g., run, it is likely to detect the activity as

either walk (based on the closest match) or it will determine that it is an unknown category (based

on a distance threshold). At present, existing systems have no inherent mechanism to infer that the

activity could be run, as these systems have no prior knowledge of how an activity called run might

be.

A naïve way to deal with the above problem is to train a system with examples of all possible

activities that it may ever encounter. However, this is not feasible for several practical reasons.

First, despite recent efforts in environment-invariant activity classification [109], existing WiFi-based

sensing systems are prone to environment changes due to RF signals’ dependency on surroundings

for reflection, refraction and scattering. Hence, it puts the burden on the end-users to provide the

training data — which is time-consuming, error-prone, and in general, an inconvenience. Second,

even with environment-invariant techniques, due to the diversity of human activities, it is not feasible

to build models for all possible activities for users of all demographics. This motivates us to devise a

WiFi-based sensing system that recognizes activities and gestures without prior examples.

In this chapter, we propose the first system, called the WiFringe, which can infer activities from

WiFi data without requiring prior training examples for all of its activity classes. The principle behind

WiFringe is popularly known as the zero-shot learning [149, 150], which is an active research topic

in computer vision and image classification fields. Recently, zero-shot learning has also been applied

to general-purpose sound recognition problem [74]. These techniques are not directly applicable

to RF-based gesture recognition problems, since gestures require tracking sequential properties of

the signal and external knowledge about the attributes that defines an activity. To the best of our

knowledge, we are the first to apply zero-shot learning in RF-based device-free activity recognition

problem. The core idea of zero-shot learning is to exploit information or learned knowledge from

other sources such as textual descriptions, rules, and logic. For example, to teach the concept of run

to a system that has already learned to recognize walk, instead of training it with many examples of

run, we can add a rule into the system, e.g., “run is just like walk but it’s 3 to 5 times faster.” At

runtime, the system will use this additional information to classify a run activity correctly.

In WiFringe, to embed such rules between seen classes (i.e., explicitly trained) and unseen
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classes (i.e., not explicitly trained) in an RF sensing system, we exploit attributes and context-aware

representation of English words as the additional source of knowledge. Through a RF-domain to

text-domain projection algorithm, we blur the difference between an activity’s RF signature and

its corresponding English word/phrase by representing them in the same vector spaces, i.e., word

embedding [26] and word attribute [31] spaces. We exploit the attributes and semantic relationship

between English words as the background knowledge to classify an activity from WiFi that the

system has never seen before. We combine these algorithmic steps to develop an activity recognition

system that we name—WiFringe, as it can detect previously unseen fringe activities beyond what it

is trained for.

The intuition behind WiFringe is that the WiFi signature of an activity correlates with the

corresponding verb’s semantic and attribute information. Like two similar activities perturb the WiFi

signals similarly, when we describe these two activities in English sentences, we see a similar likeness

between the sentences. We generalize this notion for an arbitrary number of activities represented in

both RF and text domains, and strive to find a projection between the two representations from

the RF domain to the text domain. By learning this projection, we gain the ability to find the

corresponding English word from the RF representation of any arbitrary activity.

Projecting RF signals onto the space of textual representation is non-trivial and poses several

challenges that are addressed in this chapter. First, we propose context-aware RF features by

explicitly learning the transition of states (i.e., micro-activities) in an activity . We show that such a

representation is robust and yields better features for activity recognition in general. Second, we

propose a neural network architecture to merge text- and RF-domain representations of activities

so that WiFi CSI data are mapped to the attributes and distributional characteristics of English

words. This results in the first cross-modal RF embedding work, and paves the way for device-free

WiFi-based activity classification without requiring training data for all activities. Third, we propose

a two-level classifier that is capable of classifying both seen and unseen activity types. This makes

WiFringe a generalized system for classifying a wide variety of human activities.

We develop WiFringe using Intel Network Interface Card (NIC) 5300 [25] which captures the

WiFi CSI data. To develop the machine learning models, we collect training and testing data from

four volunteers in a multi-person apartment as well as in an office building for 20 activity classes —

which is, to the best of our knowledge, the largest collection of activities used in any WiFi-based
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device-free gesture recognition system till date. We show that WiFringe is able to recognize activities

with 62%-90% accuracy, as we vary the number of unseen classes from six to two.

The contributions of the chapter are the following:

• We describe WiFringe, which is the first system that addresses the problem of learning without

examples for WiFi based device-free named activity recognition.

• We propose a new approach to learn state-aware RF representation to preserve the transitional

characteristics of states in an activity. This representation by itself improves the classification

performance in supervised learning.

• We propose the first algorithm that exploits semantic knowledge and attributes in text to

enable classification of activities from WiFi data without prior training examples.

• We collect data from four volunteers, from two environments, for 20 activities, and show that

WiFringe beats state-of-the-art WiFi-based activity recognition algorithms by 30%.

6.2 Example Usage

WiFringe relieves the developers and end-users from the burden of extensive data collection and

training and is able to classify new types of activities for which no training examples are provided.

There are many WiFi-based activity recognition systems such as elderly monitoring [178], home

activity recognition [16], gesture based media controller [18], and gesture based gaming [179] where

the use WiFringe can significantly improve the performance as well as the intelligence of an application.

We describe one such scenario to illustrate the capability and usage of WiFringe.

Possible Type 
Names:

Run, Walk, Eat, Drink

Training 
Examples:

Walk
Drink

Training Phase

‘Run’

Runtime Action

Wi-
Fringe

Figure 6.2: WiFringe is able to recognize activities for which is has not been explicitly trained for.

Consider a simplified home activity recognition scenario which is shown in Figure 6.2. The user

of WiFringe wants to monitor four activities: {run, walk, eat, drink}. At first, they input this list of
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four activities (only the names) to WiFringe. WiFringe then asks the user to provide zero or more

training examples for each activity. However, our user provides training examples for two out of the

four classes: {walk, drink} and does not provide any example for the remaining two classes: {run,

eat}.

Despite the lack of training examples, WiFringe is able to recognize the run activity at runtime

by combining its knowledge of walk (from training) with its knowledge of the relationship between

run and walk (which it acquired from external sources such as textual embedding).

6.3 WiFringe System Design

WiFringe takes a short-duration WiFi CSI stream (e.g., 5–8 seconds) and a list of possible activity

types (i.e., a list of tags) as the input, and processes the CSI stream through a signal processing

pipeline to classify it as one of those given activity types. The design of WiFringe is modular.

Computationally expensive modules such as the one-time offline training of the classifiers are run

on a server, while the end-to-end activity classification pipeline—from sensing to classification—is

runnable on embedded systems such as smartphones and tablets1.

State-Aware 
Representation

(SAR)

Two-Stage 
Classifier

p lkSeen?

Unseen
Classifier

Seen
Classifier

yes

no

CSI (u)

tags {li}

Cross-Modal 
Projections

v

Word
Embedding
Projection

Attribute-
Space

Projection

+

Local
Features

Contextual
Features

STFT

Figure 6.3: WiFringe signal processing pipeline.

Figure 6.3 shows the signal processing pipeline of WiFringe, which consists of three main steps:

State-Aware Representation, Cross-Modal Projections, and Two-Stage Classifier. The State-Aware

Representation step extracts local and contextual features from the CSI stream. These features

are projected onto the word and attribute spaces to incorporate external knowledge from the text

domain in the Cross-Modal Projections step. The two-stage classifier determines if the input belongs

to a seen or an unseen class and then classifies it accordingly.

1Recent developments [180] have shown how to extract CSI on smartphones. In this chapter, we conduct experiments
using an Intel NUC [124].
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There are two classes of activities that WiFringe may encounter at runtime: seen and unseen

classes. The seen class refers to those activity types for which WiFringe has labeled CSI streams for

training. The unseen class, on the other hand, refers to activity types for which WiFringe does not

have any training CSI stream. For example, in the home activity monitoring scenario of Figure 6.2,

{walk, drink} are seen classes and {run, eat} are unseen classes.

The next three sections describe the algorithmic details of these three components of WiFringe.

6.4 State-Aware Representation

The goal of this step it to obtain a state-aware representation of WiFi CSI values corresponding

to an activity which encodes both the local features as well as the contextual features of an activity.

The local features refer to the frequency response of an activity at a particular time-step. In contrast,

the contextual features learn the contextual relationship among the local features. At the end of

this step, we obtain an information-rich, lower-dimension vector representation of a CSI stream

that captures both local and contextual features of an activity. This state-aware feature is generic,

and can be used directly with an off-the-shelf supervised classifier to recognize seen activities2. In

WiFringe, we use this representation as an intermediate output, which is used by the later stages of

the processing pipeline to enable recognition of both seen and unseen activities.

6.4.1 The Need for State-Aware Representation

The CSI stream is a time series of complex numbers, sampled at a rate of between 200Hz [119] to

2.5KHz [120]. The raw CSI data are not practical for direct use in the training or in the classification

steps, as with high sampling frequency, the dimension of the input vector becomes too large to

process efficiently. Moreover, raw CSI signals do not explicitly reflect the intrinsic characteristics of

the high-level activity, and generally, they contain artifacts of environmental factors that are not

related to the target activity. Hence, like most sensing and inference systems, we map raw data to a

lower dimensional vector, commonly known as the feature vector, based on the time and frequency

domain properties of the signal.

A wide variety of features have been proposed in the literature for activity recognition from WiFi

CSI data. The list includes classic time and frequency domain features such as cepstral coefficients

2In Section 6.8.2, we conduct an experiment to demonstrate its performance.

90



and spectral energy [16], as well as recent practices where a layer of a trained deep neural network is

considered as the learned features [23]. However, none of these techniques consider the sequential

nature of an activity when converting raw CSI values to feature vectors.
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(a) Two Examples of ‘Run’
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(b) Two Examples of ‘Push’

Figure 6.4: Different activities have different state sequences.

Human gestures and activities are time-series of micro-activities that we call states. For example,

in Figures 6.4, we show four spectrograms of CSI values where the first two correspond to two

examples of the run activity, and the last two corresponds to two examples of the push activity. We

observe that the pattern how the frequency response changes over the duration of an activity is

similar (if not quite the same) for the same activity, and dissimilar for the two different activities.

Hence, the key to recognize an activity is to model the sequential change in its frequency spectrum.

To capture the sequential properties of gestures and activities, [120] uses a Hidden Markov Model

(HMM) [181] where traditional time-frequency features (Discrete Wavelet Transform (DWT) [120])

are used to represent the states rather than learning representation that embeds the sequential

properties of states. A fundamental limitation of this and any other classical HMM-based approaches

is that the Markovian assumption, i.e., a state depends only on the previous state, does not hold for

most activities. These models do not work when the number of states is large and variable, and an

activity has longer term dependencies between the micro-activities that constitute it.

0
25
50
75

100

1 Step Look-
back

2 Step Look-
back

WiFringe

Ac
cu

ra
cy

(%
)

Figure 6.5: Looking back deeper in time improves modeling accuracy.

To demonstrate this, we conduct an experiment to predict the next state of an activity based on

the previous states. We use five activities {push, pull, run, walk, eat} and divide each sample into

five segments that represent the states that constitute an activity. To test the Markovian assumption

about the longer term dependencies among the micro-activities, we consider two variants: (a) One
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step Look-Back : a five-state Markov model resulting in a 5X5 dimension transition matrix, A, where

each entry, Aij represents the transitional probability of going from state i to state j, and (b) Two

Step Look-back : a 25-state Markov model resulting in a 25X5 dimension transition matrix, A, where

each entry, Aijk represents the transitional probability of going from state ij to state k. In Figure 6.5,

we observe that using the one step look-back, we get an average accuracy of 20% for predicting the

next state. We observe an improvement of prediction accuracy (63%) when we use the two step

look-back variant, which conditions on previous two states to predict the next state. This tells us

that a strong Markovian assumption that the current state only depends on previous state does

not hold strongly for activity’s sequence of states and looking back deeper in time improves the

modeling accuracy.

To overcome the limitations of existing activity modeling techniques, we propose state-aware

feature representation of CSI streams that captures complex, non-linear dependencies between

micro-actions that constitute an action—without requiring a strict Markovian assumption or a

predefined, fixed set of states. To achieve this, we employ a state-of-the-art deep neural network that

capture both the local (static) as well as contextual (sequential) properties of CSI spectrograms.

Our proposed state-aware model is able to predict the next state of an activity with 90% accuracy

(Figure 6.5), which is 30%− 70% higher than Markovian models.

6.4.2 Rationale Behind Deep Neural Networks

In WiFringe, a Convolutional Neural Network (CNN) [85] and a Recurrent Neural Network

(RNN) [85] are used in tandem to capture the local and the contextual features, respectively.

state1 state2 state3 state4 state5 state6

bi-directional 
LSTMs 

learn sequence
of states

CNNs
learn local

features

Figure 6.6: CNNs learn local patterns that characterize each state, whereas RNNs (LSTMs) learn sequence
of states.

The CSI spectrogram exhibits rich, informative, and distinguishable patterns for different states

within an activity. It contains temporal information, for which, a CNN is the most suitable choice [85].

CNNs contain a hierarchy of filters, where each filter’s job is to detect the presence of a particular
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pattern in a small region on the spectrogram. In Figure 6.6, we use rectangular boxes on the

spectrogram which are recognized by the different convolutional filters of the CNN shown on the left.

To model the sequential variation of states within an activity, we use an RNN. We choose an

RNN over classical approaches such as a Hidden Markov Model (HMM) since unlike HMMs, RNNs

do not require a strong Markovian assumption [182]. With RNNs, a model can learn long-term

dependencies among the states. Furthermore, neural networks are in general better at learning

complex patterns within the data than shallow models, and RNNs do not need fixed states like

an HMM does. In Figure 6.6, we use slices of a spectrogram to denote states and use arrows to

illustrate the inherent dependencies between nearby states.

To construct the RNN, we choose Long Short Term Memory (LSTM) as the recurrent component

since LSTMs are better at learning long-term dependencies between states [85], which makes them

suitable for capturing relationship between the past states with the recent states. To preserve

contextual information from both the future and the past states, we use a bi-directional LSTM

model. A unidirectional forward LSTM only captures the state transition from past to recent states.

But a bi-directional LSTM learns how future states influence past states as well. In many cases, it

is important to bring information from the last few states to model an activity and bi-directional

LSTMs have this feature.

CNN (t)

Forward 
LSTM (t)

Backward 
LSTM (t)state (t)

+

𝐻𝑡
→

𝐻𝑡
←

𝐻𝑡

Forward LSTM (t-1)

Backward LSTM (t+1)

Figure 6.7: Network architecture for state-aware representation.

6.4.3 Detailed Algorithmic Steps

Figure 6.7 shows the integrated neural network architecture that takes CSI spectrogram as the

input and produces the state-aware vector representation through a sequence of processing steps.

• CSI Processing: For a given CSI stream, X that corresponds to an instance of an activity,

we divide the CSI values into n equal segments {X1, X2, . . . , Xn}, which are the states. Here, n

is empirically determined, we used n = 5, that corresponds to one seconds of CSI data, in all our

93



experiments. For each segment Xi, we take the spectrogram [121] to obtain Si as follows:

Si = STFT(Xi)

where, STFT(.) denotes Short-Time Fourier Transform [121], which estimates the short-term,

time-localized frequency content of Xi.

• CNN Processing: We use a three-layer CNN, Gθ, where θ are the parameters of the network,

which takes Si as the input and produces a 1000 dimension vector, Li that represents the local

features of the input spectrogram:

Li = Gθ(Si)

Each layer of the CNN extracts a feature map from the input data. As we go deeper into network,

the deeper-layer filters extract more information. We empirically determine that three layers of

convolutional operations extract adequate information for the later steps of WiFringe. The filters

have a size of 3X3 and we increase the depth from 16 to 64 channels for the three layers. We use

Rectified Linear Units (ReLu), σ(a) = max{a, 0} as the non-linear activation function for their

robustness against the vanishing gradient problem [183]. The output of the third convolutional

layer is fed into two dense layers [85] with a ReLu activation layer in-between them. We keep 1000

neurons in the last dense layer, which is the dimension of the local feature vector.

• RNN Processing: For a total of n segments, we obtain n local feature maps Gθ(Si) from the

CNN. Each state’s local feature is fed into a bi-directional LSTM (bi-LSTM) to model the contextual

property of the states of an activity. The bi-LSTM network has two unidirectional LSTMs, i.e.,

a forward and a backward LSTM. For the forward LSTM, each hidden state
−→
Hi depends on the

previous state Hi−1 and the input Si. On the other hand, for the backward LSTM, each hidden

state
←−
Hi depends on the future state Hi+1 and the input Si. By using a bi-directional LSTM, we

obtain a representation of an activity that is aware of the transition of states which yields a strong

model of the activities. We use 500 neurons in both the forward and the backward LSTMs. Each

LSTM has a dropout layer to avoid overfitting.

• Representation: The final hidden representation of the bidirectional LSTM is the concatenation

of
−→
Hi and

←−
Hi.
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6.5 Cross-modal Projections

In the previous section, we proposed a feature learning algorithm that learns to map CSI stream

segments onto a feature space that captures the contextual information of sequential states of each

activity. This gives us a robust activity representation, which by itself can directly be used to

train robust activity classifiers. However, that representation can not be used to perform zero-shot

learning as it does not borrow knowledge from an external source. In this section, we describe the

cross-modal projection step of WiFringe which brings external knowledge from the text domain to

enable classification of unseen activities.

6.5.1 The Need for Cross-Modal Projections

Existing CSI-based human activity recognition systems can recognize only a fixed set of activities

for which the system has been trained for. When an unseen activity is presented to these systems,

the best they can do is to find the class that is closest to the given activity. Due to their reliance

on a single source of knowledge (i.e., only WiFi CSI-based training data), these systems by design

cannot generate a new class label that describes the unseen example. By having additional sources

(or modes) of knowledge, e.g, the relationship among words and their attributes in the English text,

we can enhance the ability of these systems to recognize previously unseen activities, and to generate

class labels that come from the additional knowledge sources (i.e., the text domain).

The secret recipe behind WiFringe’s ability to classify unseen activities is the cross modal

projection. Through this step, we blur the difference between an activity’s CSI stream and its

corresponding English word embedding and attributes, and make them (almost) equal in their feature

representations. In other words, if an English word (say, run) has a known vector representation

(e.g., obtained using Google’s Word-2-Vec [24] on a large dataset like Wikipedia) and a vector of

attributes of the word (e.g., movement of legs and motion of hands, which is obtained from [31]), the

goal of the cross-modal projection is to generate the exact same vectors when WiFringe is presented

with a CSI stream of that word (i.e., CSI of running).

Figure 6.8 illustrates cross-modal projection using run as the example activity, whose word

embedding and attribute vectors are X and A, respectively. In WiFringe, the activity representation

of run is passed through two cross-modal projection steps to obtain Yx and YA, corresponding to

the word and the attribute spaces, respectively, and it is made sure that Yx ≈ X and YA ≈ A. In

traditional feature representation, however, the projection is different (i.e., Y 6= X and Y 6= A), and
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(a) Existing Algorithms are unable to Project Activity into  Word 
Embedding or Attribute Space,  Y ≠ X, Y ≠ A

(b) Wi-Fringe Projects Activity into Word Embedding Space,
Yx = X+ ϵ and Attribute Space, YA = A + ϵ′

Word2Vecrun
(text)

Traditional 
Feature

Y (Traditional Feature 
Representation)

run
(CSI)

Attribute-Space A (Attribute Vector)

X (Word Embedding) run
(text)

Yx (Word-embedding space 
projection)

run
(CSI)

X (Word Embedding)

A (Attribute Vector)

YA (Attribute space  projection)

Word2Vec

Wi-Fringe
Cross-Modal 

Projection

Attribute-Space

Figure 6.8: Cross-modal projections map a CSI stream to its corresponding label in the word and attribute
embedding spaces.

hence, unlike WiFringe, traditional features cannot guess the word label of an unseen activity.

6.5.2 Rationale Behind Multiple Projections

The benefits of cross-modal projection from CSI to two latent spaces, i.e., word and activity-

attribute spaces, are as follows:

•Word Embedding Space: There are over 150 thousand English words for which researchers in the

natural language processing field have created semantically aware vector representations, called the

Word Embedding. Such an embedding preserves the contextual relationship among words and puts two

words that are similar in meaning or are often used in the same context closer in the representation

space. By projecting the activity representation to the word embedding space, WiFringe is able to

generate meaningful and context-aware representation of any CSI stream, irrespective of whether or

not it has seen CSI of the same class before.

• Activity-Attribute Space: Human activities and bodily gestures comprise of movements by

different body parts, i.e., arms, legs, head, and torso. Activities also involve external objects, e.g.,

an eating activity may involve the use of spoons and knives. These attributes create nuances in

different RF-based activity feature representations. Projecting CSI onto the activity-attribute space

embeds this information into the projection, as CSI implicitly gets affected by moving different sorts

of objects due to their reflections. Using this embedded contextual and attribute information from

CSI, WiFringe recognizes activities without any training examples.

WiFringe uses both word embedding and activity-attribute spaces for cross-modal projections to

combine the predictive power of both. Combining these two help each other in the final prediction

step. For example, in the word embedding space (50 dimensional W2Vec), run is surprisingly closer

to pull than walk, since they appear more with similar neighbouring words. However, run and walk
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are more similar in terms of activity properties. In the attribute space, therefore, run and walk are

closer to each other. In such scenarios, where relying only on the contextual semantic information

fails to figure the correct relationship between activities, the attribute information helps correct the

misprediction.

Likewise, in many cases, the attributes extracted for two activities are very similar. For example,

run and walk have the exact same attribute (binary) vectors when the attributes are constructed

from online dictionaries [31]. While we desire their vectors to be closer in the attribute space for

these two activities, we do not want them to be exact. This is because if they are the same, the

RF projections for these two activities will also be the same. Thus, WiFringe will not be able to

distinguish between walk and run if we only rely upon the attributes. In such scenarios, the word

embedding helps correct the problem and WiFringe is able to separate the activities in the joint

feature space.

6.5.3 Detailed Algorithmic Steps

The goal of cross-modal projection is to map state-aware representation of WiFi CSI streams

(Section 6.4) to two latent spaces, i.e., the word embedding space and the activity-attribute space.

The difficulty in this step is that although the class label corresponding to an activity has a fixed

word embedding and a fixed attribute-vector, the CSI values corresponding to the same activity

vary due to the diversity in human motion and physique. This makes the mapping from the CSI

domain to the word-embedding and activity-attribute spaces a non-linear projection problem. In

WiFringe, we solve this problem by using a neural network to learn the projection from CSI to the

latent spaces.

State-aware 
Activity 

Representation
(SAR)

Fully Connected 
Layer
(𝐹𝑤)

Word-embedding 
Projection

(𝑃𝑤)

Fully Connected 
Layer
(𝐹𝐴)

Attribute-space
Projection

(𝑃𝐴)

Joint Projection
𝑃

(𝑃𝑊 + 𝑃𝐴)

Figure 6.9: State Aware Representation is projected into both Word-embedding and Attribute space which
are then aggregated for a joint projection.

The projection operation is illustrated by Figure 6.9. The state-aware representation, i.e., the

output of the LSTM from Figure 6.7, is fed to two neural networks having fully connected layers.

97



The first network projects the state-aware representation onto the activity attribute space, and the

second network projects the representation onto the word embedding space. We refer to the last

layer of the neural networks that perform attribute space projection and word embedding projection

as FA and FW , respectively.

• Projecting onto Activity-Attribute Space. From the attribute database provided by [31], we

obtain a set of binary attributes associated with each activity. Each activity, ai is represented as

an m-dimension vector, di ∈ {1, 0}m, where m is the total number of attributes used to define an

activity. Each element d(k)
i is a binary indicator of whether the kth attribute is true or false for that

activity.

d
(k)
i =


1, if attribute k is true for activity ai.

0, otherwise
(6.1)

To get the likelihood of a CSI stream being predicted as an activity ai, we project FA to the

attribute space. We take the dot product of the attribute vector di and FA. The dot product

demonstrates the similarity between the projection FA with attribute vector di. For a CSI stream

from activity ai, our model’s target is to increase the similarity between di and FA. The similarity

which denotes the likelihood of FA’s probability of belonging to activity ai in attribute space is

calculated as a dot product:

P iA = di · FA (6.2)

• Projecting onto Word-Embedding Space. For an activity, ai whose word embedding is wi, we

want to project the CSI-based state-aware representation as close as possible to wi. Therefore, for

a CSI stream of an activity ai, our target is to project FW to be close to wi in vector space This

results in a higher value of dot product between FW and wi. Therefore, the similarity in word

embedding space is defined as following:

P iW = wi · FW (6.3)

• Projecting onto the Joint Space. To obtain a joint projection on both the attribute and the
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word embedding space, we employ an ensemble approach to combine the two projections from

Equations (6.2) and (6.3) as follows:

Pi = P iA + P iW (6.4)

where, Pi carries the confidence of a CSI segment’s probability of belonging to class ai. For |a|

number of activities, given FA and FW extracted using state-aware representation for a CSI segment

X as described in Section 6.4, the probability of X ∈ ai is calculated using the following softmax

operation:

p(ai|FA, FW ) =
ePi∑|a|
j=1 e

Pj
(6.5)

6.6 Two Stage Classifier

WiFringe employs a two-stage classifier to infer the most likely activity type for an input CSI

stream segment. The first-stage classifier determines whether the input CSI stream segment belongs

to a seen or an unseen class. The second-stage classifier makes the final determination of the most

probable activity type for the input CSI stream segment.

6.6.1 The Need for Two-Stage Classifier

Neural networks tend to memorize patterns in data from training. Thus, even for an unseen

category, the network tries to project an input close to one of the seen classes in the state-aware

representation space. While this serves our purpose of classifying an unseen activity, it affects the

classification performance of a generalized system where the system may encounter examples from

both seen and unseen classes. Since the unseen classes are projected too close to the seen classes,

they will be classified as one of those seen classes. In Figure 6.10(a), we plot the first two principal

components of our proposes state-aware activity representation for two activities: run and walk.

Here, the state-aware representation is trained with samples from walk. We see that for these two

activities, the projections are very close to each other with some overlaps. This results in errors in

deciding the samples from run (an unseen category) and they get classified as walk.

To overcome the problem posed by neural network based state-aware representation in distin-

guishing seen vs. unseen categories, we employ a classifier which is based on the signal characteristics

such as the time-frequency representation. To be more precise, while some activities such as run

and walk have similarity in their attributes, they still have distinguishable signal characteristics
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Figure 6.10: (a) State-aware activity representation projects samples of unseen class run close to samples of
seen class walk (b) Spectrogram level feature projects the samples of unseen class run far from the samples of
seen class walk.

that are embedded in WiFi CSI. Past works [120, 16] have proven the distinguishable power of

traditional signal-level features such as Short Time Fourier Transform (STFT) and Discrete Wavelet

Transform(DWT). We use STFT to detect if a sample is from a seen or an unseen category. STFT

gives us the changes in frequency components of the signal along the time axis.

In Figure 6.10(b), we plot the first two principal components of the STFT for the samples run

and walk. We see that they are well separated in the STFT representation, which allows us to

determine if an example is from a seen or an unseen category.

6.6.2 Detailed Algorithmic Steps

The two steps of the algorithm are as follows:

• Seen vs. Unseen Detection. We devise a simple threshold-based decision algorithm to determine

whether an input CSI stream segment belongs to an unseen class. We use K-means [184] clustering

algorithm to cluster the STFT of the training samples of the seen category classes. This gives us K

cluster centers, C1, C2, . . . , CK for K seen classes. For an input CSI stream segment, u, it belongs

to an unseen class if the following condition is true:

min
s∈S
‖Cs − STFT (u)‖ > Ω (6.6)

where, S is the set of seen classes and Ω is an empirically determined threshold that maximizes the

accuracy of seen vs. unseen class detection, and ‖.‖ is the Euclidean norm. When this condition is

false, u belongs to a seen class.

• Classification. If the CSI segment is recognized as from a seen category, only the labels from
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seen category are considered and the class label is obtained by applying the following equation:

aip(ai|FA, FW ) (6.7)

On the other hand, if the CSI segment is recognized as from an unseen category, we exclude all the

labels from the seen category and only the labels from the unseen category are considered and the

class label is obtained by applying Equation 6.7.

6.7 Experimental Setup

(a)

Intel 
NUC

Antenna

Intel NUC

Access Point

(b)

Intel NUC Access 
PointIntel NUC

Antenna

Figure 6.11: (a) Intel Nuc with Antennas. (b) Experimental Setup.

6.7.1 WiFi CSI Collection

We implement WiFringe on an Intel NUC [124] mini PC. The mini PC is interfaced with an Intel

NIC 5300 [25] and three omni-directional antennas with 6 dBi gain. To extract CSI values from the

NIC card, we use the tool developed by Halperin et. al [125]. This tool provides a modified firmware

for NIC 5300 and an open source Linux driver with user space tools to collect CSI information of

the received packets. We use a Netlink router as an access point (AP). The mini PC pings the

AP periodically at a certain interval and the CSI is extracted from the packet that is received by

the mini PC as an echo from the AP. The sampling rate of ping is set at 500 sample per second.

Therefore, according to Nyquist theorem [2] our system detects activities with a maximum of 250 Hz,

which is sufficient for human activities [120]. The PC and the AP are placed 12 feet apart from each

other. Experiments are done in a student apartment and an office space. Both rooms have typical

furniture, e.g., two tables, multiple chairs, and cabinets. Activities are performed by four volunteers

(1 female and 3 males). Figure 6.11(a) shows the mini PC Intel NUC connected to three antennas
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which we place on a stand during the experiments. Figure 6.11(b) shows the the two rooms with our

experimental setup.

6.7.2 Noise Reduction

CSI data extracted from the NIC card suffer from dominant noise, which makes gesture recognition

difficult. To remove noise, we follow [120]’s PCA-based denoising technique. Since the Channel

Frequency Response (CFR) for different subcarriers is a linear combinations of the same set of

waveforms with different initial phases, when a gesture is performed, the changes of CFR value in

different subcarriers are correlated. To extract the changes in CFR values caused by the movement

in different subcarriers, we apply PCA on the CSI stream collected from 30 subcarriers for each

TX-RX antenna pair. The ordered principal components give us the most variances experienced

across all sub-carriers. We discard the first principal component stream as it contains dominant

effect of noise. The second and the third components contain clear effect of gestures and less effect

of noise. We choose the third stream as it has shown better noise immunity. Although the selected

stream is less prone to noise, it still contains some effect of unwanted high-frequency noise. Hence,

the stream is passed through a Butterworth filter [126] to remove static noise. We set a cut off

frequency of 50Hz as human activity is usually below 50Hz in frequency. Thus, we obtain a de-noised

CSI stream from all sub-carriers.

6.7.3 Gesture Segmentation

In order to detect the start and the end of a gesture, we instruct the volunteers to perform gestures

with a brief pause between them. As the peaks in a CSI stream depends on the initial position of

the user, which is variable for different gestures, we cannot segment gestures by directly applying

a threshold on the CSI values. Instead, we follow [119] and take the first order difference of the

stream which is stable during the pause and fluctuates during gestures. We apply a threshold-based

peak detection technique on the first order difference to detect gestures. The segments on the first

order difference that are above a predefined threshold are detected as gestures. We refer [119] to the

readers for more details on pre-processing of CSI stream.

6.7.4 Data Augmentation

To avoid overfitting and to make our model robust, we use a data augmentation technique to

increase the user contributed data size by about 20 times. First, we apply a geometric transformation

to the time-frequency representation of the raw CSI signals. Specifically, we use translation to shift
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the spectrogram along the time axis. We exclude shifting along the frequency axis, as it does not

reflect any physical world phenomenon. Shifting along the time axis reflects the effect of recording

the same gesture at different timestamps. Second, We superimpose simulated noise on the signal

to augment the dataset further. Each signal is superimposed with a Gaussian white noise [2]. The

noise model is generated offline. Injecting noise captures environmental effect and makes the model

resilient to noisy environment.

6.7.5 Empirical Dataset

In this section, we describe our dataset collection method. WiFringe leverages knowledge from

the text domain using the activity names to classify activities without training examples. For that

reason, we need named activities that have semantic representation in English language. For example,

WiFringe is able to classify run if it has seen training examples of walk based on the semantic

relationship between these two words. However, WiFringe won’t be able to classify activities without

having semantic meaning in English or any other language.

Based on our study of named activities from [185, 186, 142], we collect 20 most common named

activities for our empirical evaluation. To the best of our knowledge, this is the largest dataset in terms

of the number of classes considered in WiFi-based activity recognition systems. Existing literature

have used 6–8 types of gestures for supervised activity recognition from WiFi [119, 142, 16, 120].

Our dataset contains activities collected from four volunteers in two different rooms with different

orientations and furniture. Our dataset is diverse and it stresses out the algorithmic components of

WiFringe. In Table 6.1, we provide the list of the 20 activities clustered with major attributes. On

average, each class have 100 samples.

Table 6.1: Twenty categories of activities are used in the experiments. Each category has 100 examples on
average.

Category Activities
Freehand Gestures Point, Raise, Rub, Scratch, Shake,

Toss, Circle, Arc.
Object-Human Interactions Drink, Eat, Push, Pull.

Upper/Lower-Body Gestures Sit, Stand, Bow, Duck, Kick.
Mobility Jump, Walk, Run.

103



6.8 Experimental Results

6.8.1 Accuracy of Unseen Class Detection

In this experiment, we report the accuracy of WiFringe for unseen classes. These are the classes

for which WiFringe did not have any training examples during training phase. As state-of-the-art

systems are not capable of recognizing activities without prior training examples, we are unable to

compare them with our solution (i.e., any existing algorithm will have an accuracy of random guess

at best). Hence, we report WiFringe’s performance in this section by varying the number of unseen

classes and compare it with two variants of our algorithm: (1) projecting State-Aware Representation

(SAR) onto only word embedding (W2Vec) space, and (2) projecting State-Aware Representation

(SAR) on only activity-attribute space. This comparison shows the performance boost due to joint

space projection. Note that WiFringe is able to correctly label an unseen activity only if it has

learned the representation of classes that are semantically related to it in terms of movement of body

parts and word-level embedding. Therefore, while selecting unseen classes, we keep at least one

class from the seen classes which is close to it in word embedding and attribute space. For example,

we select push as an unseen class and keep pull as a seen class which are semantically related. A

push is similar to a pull in motion of the body parts, e.g., both require movement of hand(s) but

legs remain unmoved. Furthermore, the two English words push and pull are closer in the word

embedding space as they appear in similar contexts.
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Figure 6.12: WiFringe’s accuracy for unseen activity classification.

In Figure 6.12 we report the accuracy of WiFringe in recognizing the unseen classes of activities

when 2–6 types of activities are from unseen classes. We evaluate with different combinations of

seen and unseen activities and present the mean accuracy and variance in the plot. In Figure 6.12,

we see that for two unseen classes, we achieve a classification accuracy of around 90%. With only

word embedding and attribute space projection, the accuracy is 87% and 88%, respectively. For
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three unseen activities, we get an accuracy near 83% with WiFringe. With only word embedding

projection the accuracy is around 80%, but with attribute space projection the accuracy drops to

60%. This is due to the similarity of activities in attribute space, which results in very similar

attribute vectors. Therefore, projecting only on attribute space makes the classification harder. As

the number of unseen classes increase to 4, 5, and 6, the accuracy becomes to 73% , 67% and and

62%, respectively. In all the cases, joint space projection boosts the performance in comparison

with single space projection. As the number of unseen classes increase, the problem becomes harder

since the model has to differentiate between more classes without training data. We report up to

six unseen classes in the plot, however, for seven unseen classes, our accuracy is around 53%. With

random selection, the accuracy for seven unseen class is 14.28%, so WiFringe is still better by almost

40%.

6.8.2 Accuracy of Seen Class Detection

In this experiment, we evaluate WiFringe’s seen class detection performance by keeping all the

classes in seen category. We compare WiFringe with other baseline classification algorithms. Recent

works [23, 109] have demonstrated the efficiency of using Convolutional Neural Network(CNN)-based

classifiers for WiFI based activity recognition. Following these works, we compare WiFringe with a

CNN classifier optimized for our dataset with five convolutional layers along with batch normalization

and dropout layers. As mentioned earlier, state-aware representation (SAR) by itself can be used

as a feature for supervised classification. Therefore, we also report the performance of state-aware

representation (SAR) integrated with a softmax layer. In addition, we also show the performance of

projecting state-aware representation only to word embedding space and attribute space. We use

five-fold cross-validation by randomly selecting training and testing examples each time. We also

report the classification performance of a shallow classifier with a traditional handcrafted feature

(i.e., STFT). We report the mean and variance of classification accuracy.
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Figure 6.13: WiFringe’s accuracy is higher than baseline algorithms in seen class detection.
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In Figure 6.13, we find that WiFringe achieves a mean accuracy of 82%. On the other hand,

state-aware representation (SAR) along with softmax layer is able to achieve around 80% mean

accuracy. The performance boost of WiFringe is due to the fact that from joint space projection, our

model is able to classify activities by integrating knowledge from both word embedding and attribute

domain. Projecting state-aware representation onto only word embedding and attribute space yields

accuracy of 78% and 76%, respectively. With CNN, we have an accuracy of 74%. Therefore, the

proposed state-aware Representation improves the accuracy for seen class detection by 8% than

CNN model. This improvement is achieved since the state-aware representation learns the temporal

relationship among the states in an activity. With an SVM, we see the accuracy is around 62%.

Therefore, it is evident that WiFringe is able to achieve better accuracy than other classifiers in seen

class detection. Note that WiFringe’s architecture is modular and generic. We can also integrate

other representation to WiFringe if necessary.

6.8.3 Accuracy of Seen vs Unseen Class Detection

In this section, we present the accuracy of our threshold based Seen vs. Unseen detection’s

performance. The accuracy is threshold dependent. In Figure 6.14, we plot the accuracy for

Ω ∈ [4.0− 5.25]. We observe that setting a high threshold fails to detect many class as unseen and

the accuracy drops for the unseen classes. With high threshold, the unseen class samples have to

be very far apart from any cluster center of the seen class clusters. On the other hand, setting

the threshold too small leads to poor results for seen classes as it determines majority CSI stream

sample as unseen. Hence, there is a trade-off between the seen and unseen class detection accuracy.

The optimum threshold is 4.75, for which, the classification accuracy of the seen and unseen classes

are around 80%.
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Figure 6.14: The accuracy of seen and unseen class detection depends on the threshold Ω’s value.
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Figure 6.15: WiFringe performs better than baseline algorithms for all cases. a)When 8 out of 10 classes are
in seen category, WiFringe has almost 80% accuracy for all cases. On the other hand, baseline algorithms’
accuracy drops below 20% for cases when unseen category dominate in test samples. b) For 5 out of 10
classes in seen category WiFringe outperforms all baseline algorithms for different cases. c) When 2 out of 10
classes are in seen class, for .25 fraction of test samples coming from seen category WiFringe’s performance
drops below 40% which is still 1.5 times better than baselines’ performance.

6.8.4 End to End Evaluation

To quantify WiFringe’s end-to-end performance, we report its classification accuracy for an

application scenario. We monitor a user’s home activity for ten different classes: {push, pull, run,

sit, rub, walk, stand, eat, scratch, drink}. We consider three different training scenarios. First, we

consider that the user provides 8 out of 10 activity classes’ examples to WiFringe during training, i.e.,

the number of classes in seen and unseen categories are 8 and 2, respectively. Second, we consider

the case where 5 out of 10 activity classes’ examples are given to WiFringe during training. The last

and the hardest test case is a scenario where WiFringe has only 2 activity classes’ samples during

training, i.e., 8 out 10 classes are unseen.

In Figure 6.15, we report the performance of WiFringe along with two baseline algorithms: a

convolutional neural network (CNN) and a random forest classifier for all three aforementioned

scenarios. For each scenario, we consider three cases where we vary the ratio between samples

from seen and unseen classes in the test dataset in the following ways: a) #seen
#unseen = 25%, b)

#seen
#unseen = 50% and c) #seen

#unseen = 75%. Here, # denotes number of samples.

In Scenario 1 (Figure 6.15(a)), where only 2 classes are in the unseen category, WiFringe shows

an accuracy around 80% for all the cases, whereas the baseline algorithms’ accuracy drops below

20% when most of the samples are coming from the unseen category. Note that the unseen classes

are chosen by keeping one of their closest neighbours in the word embedding and attribute space in

the seen category.

In scenario 2 (Figure 6.15(b)), WiFringe achieves an accuracy of 84% for case 3 with majority of
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the samples in test cases coming from the seen classes. However, when the ratio of seen classes in

the test data gets decreased in case 1, the accuracy drops to 73%. Yet, WiFringe’s performance is

better than both baselines by a margin of greater than 40%.

In scenario 3 (Figure 6.15(c)), where only two classes are in the seen category, the accuracy for

the case where 75% of test samples are from seen classes reaches up to 72% for WiFringe. However,

for case 1, the accuracy drops to 36% where 75% of the test samples are from the unseen categories.

This drop is due to the fact that most of the classes are now in unseen category and WiFringe has

very few classes to learn the mapping function from RF to text domain. For this case, baselines

achieve a maximum accuracy of only 24%. Therefore, it is evident that WiFringe’s performance is

better than traditional classification algorithms in all the cases.

6.8.5 Execution Time

Although only a few WiFi chipsets support CSI information extraction, we believe that in the

future, with new tools and chipsets, WiFringe will be runnable completely on a variety of platforms

including smartphones. In this experiment, we report the execution time of the proposed algorithms

for a computer (Macbook Pro). Data are read from the file system of the device. In Table 6.2, we

list the execution times for inference of the two models. We see that the state-aware representation

(SAR), which has convolutional and recurrent layers, takes 12ms on average for inference on a

Macbook. On the other hand, the execution time for cross-modal projection, which has two fully

connected layers, is around 2ms on a Macbook.

Table 6.2: Inference time of deep networks.

Network Macbook Pro
State-Aware Representation 12ms

Cross-Modal Projection 2ms

6.9 Related Work

6.9.1 Device-free Sensing

• RSSI based : WiFi based sensing have opened the doorway for device-free activity monitoring

in the last couple of years. Researchers have used wifi signal characteristics such as signal strength

(RSSI) and channel state information(CSI) for activity recognition [127]. RSSI based activity

recognitions have been proposed in [18, 128, 129, 130, 131]. However, RSSI based gesture recognition
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system have limitations in detecting fine-grained gestures. Moreover, all of these works require

training examples to detect a particular activity class. [18, 129] uses pattern matching algorithm to

find the best match between the target gesture with pre-defined gestures. Our target in this chapter,

is classifying activities and gestures without training examples and our framework can be ported to

RSSI based systems.

• Special Device based : There have been several works in gesture and activity recognition using

specialized devices and radars. [132, 23, 133] use FMCW [134, 135] radio to monitor user activity. [23]

trains a CNN classfier to detect human motion. [132] trains a hidden markov model using time-velocity

feature for activity recognition. [136] uses a 5-antenna receiver and a single-antenna transmitter

to perform gesture classification, in the presence of three other users performing random gestures.

They use doppler shifts to match with pre-defined gestures for an incoming test data. It is evident

that none of these specialized device based sensing system deals with ctivity recognition without

prior examples. They all require labelled training examples for activity recognition.

• CSI based : With the availability of CSI from network interface cards, multiple works [137,

138, 139, 140] have emerged which exploit CSI information for gesture and activity recognition. [16]

proposes a signal profile matching technique to detect loosely defined daily activities that involve

a series of body movements over a certain period of time. [120] proposes correlation between CSI

amplitude value and gesture speed to build model for gesture recognition. [141] uses variations

in the Channel State Information (CSI) to classify gaits of humans. [119] uses translation based

data augmentation technique to make gesture classification models robust to user orientation. [142]

proposed multi-person gesture recognition system by generating virtual gesture samples and combining

them to create an exhaustive template matching algorithm. Recent works such as [106, 107, 108]

use deep learning based techniques such Convolutional Neural Networks to recognize activities from

CSI. [143, 106] proposes recurrent neural network based activity classifier , however ours is the first

work to model the micro-activity or state transition which constitute an activity. [143] predicts

label for each segment of the CSI stream. On the other hand, we need only one label for the whole

CSI stream which makes our model to learn the entire sequence of states to make a decision about

the activity. Besides, we learn the local and transitional feature in an end to end manner with

bi-directional recurrent neural network, which makes our model stronger. Ours SAR is the first model

to incorporate local feature of states and their transition in a bi-directional fashion. [109] proposed
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an adversarial network to learn environment independent signal characteristics from gestures. In this

work, the authors used unlabelled data to improve their model’s performance. But their proposed

system is not able to infer an activity without having any training example. Very recent work [110]

proposed velocity profiles as environment independent feature to solve the problem of environmental

effect on CSI. All of these works rely on provided training examples to classify a particular class

of activity. WiFringe deals with classification of activity from WiFi CSI data without any training

examples. This is significantly different from current state of the arts.

6.9.2 Zero Shot Learning

In image domain, learning from limited or no data has been explored recently. [123, 171, 187]

focus on learning suitable image representation to classify images from very few or only one examples.

These works are totally different from ours as we want to recognize activities from WiFi without

any training data. The other branch of learning with limited data focuses on zero shot learning for

image classification. The earlier practices of zero shot learning [149, 172, 188] for image classification

problem infer the labels of unseen classes using a two step algorithm. First, the attributes of the

sample is inferred and then the class label is predicted from an attribute database, which has

most similar attributes with the image. Recent works [173, 174, 189] have explored the mapping

between image features and semantic space by projecting image features into word embedding space.

Similar line of works [175, 150, 176, 177] project image feature into semantic space then searches the

nearest class label embedding using ranking loss. Although these papers propose zero shot learning

method for images, none of them addresses the problem for RF domain and activity recognition.

[31, 190, 191, 192] do activity recognition using zero shot learning for RGBD data. [74] proposes

zero shot learning for audio event recognition. But, the sequential nature of activity and need for

external attribute knowledge makes our problem more challenging. [193] proposes zero shot learning

for body-worn IMU based activity recognition. However, our work is the first system to propose a

zero shot learning method for WiFi based activity classification where we overcome the challenges

for cross-modal learning between text and RF domain. These works on zero shot activity detection

use an attribute database of the gestures to recognize unseen types. Our contextual word-embedding

based approach does not require the attributes of the unknown gestures or activities beforehand. To

the best of our knowledge, we present the first system with capabilities of inferring activities from

RF signal without training examples. We propose the first work to integrate textual domain with
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RF. We also present novel feature representation for RF based activity monitoring.

6.10 Discussion

• Synergy Between Seen and Unseen Class For an unseen activity, WiFringe is able to detect

it with high accuracy if there is a seen class with similar class label property, i.e., similar word

embedding and attribute vectors. WiFringe assumes that activity classes with similar properties have

semantically similar class labels. We use this assumption to learn the non-linear mapping function

to project WiFi signals onto the word embedding and attribute spaces. Without semantically similar

training examples corresponding to an unseen class, a zero-shot learner fails to recognize examples

from that unseen class. However, in a large dataset, the chances that there is no semantically similar

training example to an unseen class is relatively low. To demonstrate this, we conduct an experiment.

We keep pull as an unseen class and exclusively put the following classes in the seen category in a

round-robin fashion: {push, throw, point, kick}. In Figure 6.16, on the X-axis, we put these classes

with their corresponding distances in the joint word embedding and attribute space with pull. We

see that, as the distance increases from the unseen category, the accuracy of unseen class recognition

drops. When push is in seen category, the classification accuracy for pull is more than 90%. As push

and pull are close in word embedding and attribute spaces, the presence of push in training data

helps recognize the samples from pull. As we go further away from pull in the word embedding and

attribute space, the accuracy drops even more. For kick, which is the farthest from pull, we see that

the classification accuracy for pull is around 60%.
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Figure 6.16: WiFringe’s performance in unseen activity recognition is dependent on its relationship with
classes in seen category.

• Necessity of User-Provided Tag-List. The user-provided additional labels do not have any

influence on the training phase. They are only used in the classification step after the training

has been completed. If we do not have these additional labels, then the search space becomes too

large (i.e., as big as having all the words in our database for a language) in the classification stage.

111



Therefore, the user provided labels for unseen class is important in getting better accuracy for unseen

activities.

• Environmental Effect. Our main objective in this chapter is to propose the first cross-modal RF

to text projection to enable zero-shot activity classification. The proposed representation learning

algorithm does not consider environment or multi-person effect. Recent works [109, 142] have

showed promising results on solving these issues. Both State-Aware Representation and Cross modal

projections are modular and generic. We can port these solutions to WiFringe to handle these

artifacts.

6.11 Summary

In this chapter, we present the first WiFi-based device-free activity recognition system that does

not require training examples for all activities. We propose a robust state-aware representation of

RF signature associated with activities to preserve their contextual information. We propose a novel

way to embed contextual information from the text domain to the RF domain by projecting RF

data onto the word embedding and attribute space. We use this cross-modal RF embedding and

propose a general classifier to recognize both seen and unseen activities. We collect WiFi data for

20 different activities from four volunteers and show that WiFringe is capable of inferring activities

from WiFi without training examples with 62%− 90% accuracy for 2–6 unseen classes.
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CHAPTER 7

Privacy Preserving Acoustic Sensing

7.1 Introduction

Having reached the milestone of human-level speech understanding by machines, continuous

listening devices are now becoming ubiquitous. Today, it is possible for an embedded device to

continuously capture, process, and interpret acoustic signals in real-time. Tech giants like Apple,

Microsoft, Google, and Amazon have their own versions of continuous audio sensing and interpretation

systems. Apple’s Siri [1] and Microsoft’s Cortana [194] understand what we say, and act on them to

fetch us a web page, schedule a meeting, find the best sushi in town, or tell us a joke. Google and

Amazon have gone one step further. Android’s ‘OK Google’ feature [195], Amazon’s Echo [196],

and Google Home [?] devices do not even require user interactions such as touches or button presses.

Although these devices are activated upon a hot-word, in the process, they are continuously listening

to everything. It is not hard to imagine that sooner or later someone will be hacking into these

cloud-connected systems and will be listening to every conversation we are having at our home,

which is one of our most private places.

Furthermore, there is a recent trend in the IoT world that many third-party, commercial IoT

devices are now becoming voice enabled by using the APIs offered by the voice-controlled personal

assistant devices like Echo or Google Home. Henceforth, we will refer to these devices interchangeably

as smart hubs, home hubs, or simply hubs. For example, many home appliances and web services

such as Google Nest thermostats [?], Philips Hue lights [?], Belkin WeMo switches [?], TP-Link

smart plugs [?], Uber, and Amazon ordering are now ‘Alexa-Enabled’ – which means, we can send

voice commands to an Amazon Echo device to actuate electrical devices and home appliances.

Because it enables actuation and control of real-world entities, a potential danger is that they can

be activated by false commands (e.g., sounds from a TV) and/or unauthorized commands (e.g., an

outsider commands someone’s home hub to control his home appliances, places a large purchase on

his Amazon account, or calls a Uber driver). A careful scrutiny of voice commands is therefore a
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necessity to ensure safety and security.

Unfortunately, none of the existing voice-enabled home hub devices take any of these vulnerabilities

into account while processing the audio. They merely apply standard noise-cancellation [197, 198, 199]

to suppress non-speech background sounds in order to improve the signal-to-noise ratio. However,

this process alone cannot eliminate acoustic signals from unwanted acoustic sources that happen

to be present in the environment and overlap in time and/or frequency with a user’s voice signals.

There is also no support for personalization of speech commands in these devices.

In this chapter, we study the ‘overhearing’ problem of acoustic sensing devices, and develop a

system that mitigates personal or contextual information leakage due to the presence of unwanted

sound sources in the acoustic environment. Instead of developing a special-purpose, application-

specific embedded system that works only for voice commands, we address the problem in a generic

setting where a user can define a specific type of sound as primary (i.e., a relevant or essential

sound type for the application), or secondary (i.e., a non-essential and potentially privacy concerning

sound). For example, the voice of a user issuing a command is a primary source for home hubs,

whereas any identifiable background noises such as the sounds from appliances, other conversations

are examples of secondary sounds. Furthermore, instead of proposing modifications to existing home

hubs, we build an independent embedded system that connects to a home hub via its audio input.

Considering the aesthetics of home hubs, we envision the proposed system as a smart sleeve or a

cover for these home hubs. The proposed system has necessary hardware and software to capture the

audio, isolate signals from distinct sound sources, filter out signals that are from unwanted sources,

and process the signals to enforce policies such as personalization before the signals enter into an

untrusted system like Amazon Echo or Google Home. The device is programmable, i.e., an end user

is able to configure it for different usage scenarios.

Developing such an embedded system poses several challenges. First, in order to isolate acoustic

sources, we are required to use an array of microphones. Continuously sampling multiple microphones

at high rates, at all times, and then processing them in real-time is extremely CPU, memory, and

time demanding for resource-constrained systems. Second, to train the system to distinguish primary

and secondary sources, we are required to collect audio samples from an end user to create person

or context specific acoustic models. To the users, it would be an inconvenience if we require them

to record a large number of audio samples for each type of sound in their home. Third, because
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no acoustic source separation is perfect, there will always be residuals of secondary sources after

the source separation has been completed. These residuals contain enough information to infer

personal or contextual information, and hence, they must be eliminated to ensure protection against

information leakage.

In this chapter, we address all these challenges and develop a complete system called the

SoundSifter. The hardware of SoundSifter consists of a low-cost, open-source, embedded platform

that drives an array of microphones at variable rates. Five software modules perform five major

acoustic processing tasks: to orchestrate the sampling rates of the microphones, to align the signals,

to isolate sound sources, to identify primary source, and to post process the stream to remove

residuals and perform speaker identification. At the end of the processing, audio data is streamed

into the home hub. We thoroughly evaluate the system components, algorithms, and the full system

using empirical data as well as real deployment scenarios in multiple home environments.

The contributions of this chapter are the following:

• We describe SoundSifter, the first system that addresses the overhearing problem of voice-

enabled personal assistant devices like Amazon Echo, and provides an efficient, pragmatic

solution to problems such as information leakage, and unauthorized or false commands due to

the presence of unwanted sound sources in the environment.

• We devise an algorithm that predicts a spectral property of incoming audio to control the

sampling rates of the microphone array to achieve an efficient acoustic source separation.

• We devise an algorithm that estimates noise directly from the secondary sources and nullifies

residuals of secondary signals from the primary source.

• We conduct empirical and real-world experiments to demonstrate that SoundSifter runs in

real-time, is noise resilient, and supports selective and personalized voice commands that

commercial voice-enabled home hubs do not.

7.2 Usage Scenarios

We describe two motivating scenarios for SoundSifter that are specific to voice-controlled home

hubs.
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7.2.1 Voice-Only Mode

Continuous listening devices of today hear everything in their surrounding acoustic environment.

The goal of voice-only mode is to ensure that only speech signals enter into these devices while all

other sound sources in a home environment such as sounds from TV, appliances, non-voice human

sounds such as laughter, crying, coughing, sounds of an activity such as cooking, cleaning, etc. are

completely filtered out of the system. This is achieved in SoundSifter by using a combination of

source separation, recognition, and suppression.

7.2.2 Personalized Commands

ordering something not wanted, giving input to to-do list, child mode

Command personalization may be of multiple types. we dont do the 1st twoFirstly, voice

commands containing an exact sequence of words or an utterance. Secondly, voice commands that

contain a certain keyword or a set of keywords in it. Third, voice commands of a certain person.

These are achieved in SoundSifter by first applying the voice-only mode, and then performing

additional acoustic processing such as speech-to-text and speaker identification.

Note that, although we only mention home hub related usage scenarios of SoundSifter in this

section, the generic notion of primary and secondary sound allows us to configure the system for

other applications where it can filter in/out different primary/secondary sounds as well.

7.3 Overview of SOUNDSIFTER

SoundSifter is motivated by the need of a smart acoustic filter that inspects audio signals and

takes proper actions such as filtering sounds from unwanted secondary sources and checking the

content of primary signals before letting them into a voice-enabled home hub or any such continuous

listening devices.

SoundSifter connects to a home hub or a mobile device’s audio jack, and can be thought of as

an extension to their on-board audio I/O subsystem. It captures and processes all incoming audio

streams, isolates audio signals from distinct sources, identifies and blocks out any sound that has

not been labeled ‘primary’ by a user during its installation, and only lets processed audio enter into

a hub for further application-specific processing.
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Figure 7.1: (a) System interface, and (b) block diagram of SoundSifter.

7.3.1 Basic Workflow

Figure 7.1(a) shows how SoundSifter sits between audio sources and a home hub. Further

details of its internal processing blocks are shown in Figure 7.1(b). The system has an Audio

I/O Controller that controls an array of microphones (required for source separation), a speaker,

Bluetooth and an audio jack to support external audio I/O. The Source Separator executes the

acoustic source separation algorithm by controlling the microphones via the audio I/O controller and

using precomputed acoustic models. The Post Processing module further filters and obfuscates the

already separated primary stream to eliminate traces of residuals from other sources and to enforce

policies (read from a configuration file) such as personalized commands. The policies are further

described in 7.3.3 as usage scenarios. Finally, the processed audio output is let go into the home hub

via the audio jack.

7.3.2 Initial Setup and Programming

SoundSifter needs to be programmed once for each use case (described in the next section).

Programming the device essentially means creating acoustic models for each type of primary sound

involved in a scenario. Because these sounds are often user- or home-specific, this process requires

the active engagement of a user. To make the process simple, a user is provided with a mobile app

that is as easy as using a media player. The mobile app connects to SoundSifter over Bluetooth, and

interacts with it by sending programming commands and receiving responses. No audio data are

exchanged between the devices.

In the app, the user is guided to send commands to SoundSifter to record 10s− 30s audio for
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each type of primary sound, label them, and specify in which scenario they will be used. The system

also needs some examples of a few common types of secondary sounds for the application scenario.

However, it does not require a user to record and label all possible secondary sounds. We empirically

determined that as long as SoundSifter has 2-3 types of secondary sounds per use case, it is capable

of detecting primary vs secondary sounds with a high accuracy and a negligible false positive rate.

Once the recording and labeling phase is over, SoundSifter uses an algorithm to create acoustic

models, deletes all raw audio data, and only the labeled models are stored inside the device in a

configuration file.

7.3.3 Usage Scenarios

We describe two motivating scenarios for SoundSifter that are specific to voice-controlled home

hubs.

Voice-only mode: Continuous listening devices of today hear everything in their surrounding

acoustic environment. The goal of voice-only mode is to ensure that only speech signals enter

into these devices while all other sound sources in a home environment such as sounds from TV,

appliances, non-voice human sounds such as laughter, crying, coughing, sounds of an activity such

as cooking, cleaning, etc. are completely filtered out of the system. This is achieved in SoundSifter

by using a combination of source separation, recognition, and suppression.

Personalization: Command personalization may be of multiple types: voice commands contain-

ing an exact sequence of words or an utterance, voice commands that contain a certain keyword or a

set of keywords in it and voice commands of a certain person. These are achievable by first applying

the voice-only mode, and then performing additional acoustic processing such as speech-to-text and

speaker identification. Although we only mention home hub related usage scenarios of SoundSifter in

this section, the generic notion of primary and secondary sound allows us to configure the system for

other applications where it can filter in/out different primary/secondary sounds as well. Furthermore,

we did not implement a speech-to-text converter in our system due to time constraints, which we

leave as future work.

7.4 Studying the Problem

Prior to the development of SoundSifter, we performed studies and experiments to understand

the nature of the challenge.
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7.4.1 Need for Source Separation

As an alternative to source separation, we looked into simpler solutions such as filtering and

noise cancellation. However, those attempts failed since the sounds that may be present in the

environment overlap with one another in the frequency domain.
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Figure 7.2: Frequency plots of variety of sounds.

In Figure 7.2 we plot frequency characteristics of a selected set of sounds. For example, speech

(< 4 KHz) covers the full range of snoring (< 1.5 KHz) and asthmatic wheeze (< 1.3 KHz). Crying

infants and doorbell sounds range from 500 Hz to 1.6 KHz and 4.2 KHz, respectively. Music overlaps

with all sounds. Besides these, we also analyzed home appliances such as a blender, a washing

machine, door slams, toilet flushes, speech signals of different sexes and age groups, and asthmatic

crackling, and came to the conclusion that spatial information is the most effective method for

identifying and isolating primary information containing signals from other types of unwanted sounds

in a general purpose setting.

7.4.2 Number of Microphones

For effective source separation, we are required to use an array of microphones. In theory, the

number of microphones should equal the number of simultaneously active sources. However, for

sparse sources like audio (sources that do not produce a continuous stream) , source separation can

be performed with fewer microphones.

To determine an adequate number of microphones for source separation, we perform an experiment

where we use an array of five microphones that captures audio signals from 2–5 simultaneously active

sources: voice (primary sound), ringing phone, piano, songs, and television. Figure 7.3 shows the

quality of source separation in terms of mean residuals (the lower the better) as we vary the number

of microphones for different number of active sources. We observe that the residuals drop with more
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Figure 7.3: Source separation error for different number of microphones.

microphones. However, the reduction is not great for more than four microphones. Hence, we use

four microphones in our system and use an additional noise removal step to nullify the remaining

residuals.

7.4.3 Benefit of Rate Adaptation

According to the Nyquist theorem [200], the sampling rate of each microphone must be at least

twice of the maximum frequency of any source. However, sampling an array of microphones at a

very high rate costs significant CPU, memory, and power consumption. Note that our system is

suitable for portable home hub devices, where a plug-in power is not always an option. In such cases,

limited processing power is a challenge.
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Figure 7.4: CPU usage increases with sampling rate.

To validate this, we conduct an experiment using an ARM Cortex A8-based microcontroller. In

Figure 7.4, we observe that as the sampling rate is increased, CPU usage increases sharply. Memory

consumption also increases from 22 KB to 704 KB as we vary the sampling rate. Based on this

observation, we decide not to sample the microphones at the highest rate at all times; instead,

we adopt a predictive scheme where we probabilistically choose a sufficient sampling rate for the

microphone array based on previous knowledge on sound sources and signals that the system has

just seen.
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7.4.4 Modeling Sounds

After isolating the sources, for SoundSifter to determine which sounds to let in and which ones

to block, it has to identify the source that represents the primary sound. Because primary sounds in

different usage scenarios are highly subjective, SoundSifter must obtain a sufficiently large number

of audio samples directly from the end user to create a robust and accurate sound classifier. On one

hand, we need a large amount of training audio from the user for a robust classification. On the

other hand, requiring a user to collect these data is likely to be error prone and also an inconvenience

to them. Hence, it is customary to investigate techniques to create robust acoustic classifiers that

generate accurate and robust models based on a limited amount of training data.

7.4.5 Need for Residue Removal

A crucial observation during our study has been that even after source separation, when we look

into the stream of primary signals, we find traces of secondary sources. We realize that even though

the residues are too weak to be heard, using machine learning, they can be identified and recognized.
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Figure 7.5: Effect of residue on primary source.

To illustrate the vulnerability of signal residue, we conducted a small scale study. We performed

source separation for two cases – speech with: 1) music, and 2) a ringing phone in the background.

In both cases, the same set of 20 utterances is synthetically mixed (to keep the primary sound

identical) with the two background sounds. After source separation, we take the separated speech

streams, compute Mel-frequency cepstral coefficient (MFCC) [21] features, and plot the utterances

(total 40) in a 2D feature space as shown in Figure 7.5. In this figure, feature 1 and feature 2 denote

the two highest ranked components of MFCC. It is interesting to observe that even though the

residues of music and ring tone are not audible, their presence in the speech stream is statistically

significant – which is enough to distinguish the two cases.
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7.4.6 Analog Data Acquisition

A practical engineering challenge that we face with multi-channel audio data acquisition has been

the inability of commodity embedded hardware platforms to sample analog signals at a very high

rate. For example, considering the worst case where we are required to drive four analog microphones

at 44.1 KHz, we need an aggregate sampling rate of 176.4 KHz. Achieving such a high rate of analog

reading using off-the-shelf Linux-based embedded platforms such as Arduinos, Raspberry Pis, or

Beaglebones is non-trivial. We address this implementation challenge and believe our solution will

be helpful to anyone who wants to read analog audio at a high (e.g. MHz) rate.

7.5 Algorithm Design

The audio processing pipeline inside SoundSifter has five major stages. Figure 7.6 shows the

stages and their interconnections. The first two stages prepare the audio streams from the microphone

array for the source separation stage. These two stages together implement the proposed sampling

rate adaptation scheme in order to lower the CPU and memory consumption of SoundSifter. We use

FastICA [48] to perform the actual source separation. The last two stages perform further processing

to identify the primary source and to nullify the residuals of other sources in it.
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Figure 7.6: Components and interconnections inside SoundSifter’s audio processing pipeline.

In this section, we describe the first and the last two stages of SoundSifter’s audio processing

pipeline, i.e. the pre-processing and post-processing stages to demonstrate how these stages work in

concert to improve the efficiency and effectiveness in mitigating information leakage from unwanted

acoustic sources with SoundSifter.

7.5.1 Frequency Adaptation

SoundSifter adopts a predictive scheme to determine an adequate sampling rate for the microphone

array. Sampling rate adaptation in SoundSifter happens periodically, and the predicted rate is

estimated based on the knowledge of the portion of the audio that the system has already seen.

SoundSifter keeps an evolving Markov [201] model, whose transition probabilities help determine the
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expected maximum frequency of incoming audio, given the measured maximum frequencies of the

audio samples received during the last few ms.

Predicting the absolute value of the maximum frequency of incoming audio signals is practically

impossible in a generic setting. However, if we divide the full range of audible frequencies into

discrete levels, the transitions from one level to another can be predicted with a higher confidence.

For this, SoundSifter uses six ranges of frequencies by dividing the maximum sampling rate into six

disjoint sets 44.1/2h KHz, where 0 ≤ h ≤ 5. We denote these by the set {fi}, where 0 ≤ i ≤ 5.

Furthermore, since we are aiming at applying the past predicts the future principle, a question

that immediately comes up is how much past data to use for an accurate prediction of the desired

sampling rate? To determine this, we conduct an experiment to quantify the look-back duration.

We experiment with two different Markov models:

• 1-Step Look-back: Uses a 6-state Markov model, where each state corresponds to a frequency

in {fi}, resulting in a 6× 6 transition matrix having transitions of the form fi → fj .

• 2-Step Look-back: Uses a 36-state Markov model, where each state corresponds to a pair

of frequencies (fi, fj), resulting in a 36× 36 transition matrix having transitions of the form

(fi, fj)→ (fj , fk).
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Figure 7.7: 2-Step Look-back performs better than 1-Step Look-back for loud music

Figure 7.7 shows a comparison of these two frequency prediction approaches for an 8-minute

recording of loud music. Sampling frequency is adapted every 500 ms, compared with the ground

truth, and the prediction accuracy is reported every 25 seconds. We observe that the 2-step look-back,

i.e. the 36 state Markov model is a significant improvement over the 1-step look-back and has an

average prediction accuracy of 88.23% for this very challenging case. Higher than 2-step look-back
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might show a slightly better accuracy, but such a model would result in an explosion of states. Hence,

we use the 2-step look-back model in SoundSifter.

The proposed Markov model evolves over time. Initially, all transition probabilities in the model

are set so that the microphones are sampled at the highest rate. As the model starts to make

predictions, the probabilities are updated following a simple reward and punishment process where

every correct/incorrect predict is rewarded/punished by increasing/decreasing the probability. Both

the processes of making a prediction and updating the probability are O(1) operations.

Ideally one would expect SoundSifter to adapt all its microphones to the minimum required

frequency of the moment, but there is a small caveat. Because frequency prediction is not 100%

accurate, there is a chance that occasionally we will have mispredictions. Cases when the predicted

frequency is lower than the desired one, we will not be able to correct it in the next step unless we

have an oracle. To address this, we keep the sampling frequency of one microphone fixed at 44.1

KHz, while the sampling rates of all other microphones are adapted as described above. In case of

mispredictions, this microphone serves as the oracle and helps determine the correct frequency.

7.5.2 Signal Prediction and Filling

Adapting sampling rates at runtime has its benefits, but it also introduces an alignment problem

during source separation. By default, standard source separation algorithms such as the FastICA

assume that all microphones are sampled at a known fixed rate. In SoundSifter, this assumption

does not hold anymore, i.e. different microphones may be sampled at different rates. Therefore, we

are required to re-align samples from all the microphones and fill the gaps (missing samples) in each

of the low rate microphones. Because we work with a small amount of signals at a time, although

we expand the low rate samples, the process does not increase the total memory consumption

significantly.

We illustrate this using two microphones: xi(t) and xj(t), supposing they are sampled at 44.1

KHz and 11.025 KHz, respectively. Within a certain period of time (e.g., between two consecutive

frequency adaptation events), the first microphone will have four times more samples than the second

microphone. If we align them in time, there will be three missing values in the second stream for

each sample. If we assume a matrix of samples where each row corresponds to one microphone, the
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resultant matrix after alignment would look like the following:

xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9 . . .

xj1 ? ? ? xj5 ? ? ? xj9 . . .


To fill the missing values in the matrix, we formulate it as an interpolation problem and try to

predict the missing values in two ways:

• Linear Interpolation: Uses line segments to join consecutive points and any intermediate

missing value is predicted as a point on the line segment.

• Cubic Spline Interpolation: Uses piece-wise third order polynomials [202] to construct a

smooth curve that is used to interpolate missing samples.

The benefit of linear interpolation is that it is faster (e.g., 58 times when compared to cubic spline

for one second audio) than its higher order counterpart, but it performs very poorly in predicting

audio samples if the gaps between given points are large. Cubic spline produces smoother curves

and performs comparatively better for large gaps in missing values, but its running time is slower.

We pick linear interpolation and a suitable length for interpolation, so that it runs fast and is also

fairly accurate.
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Figure 7.8: Predicting missing values of a signal (a) using linear (b) and spline (c) interpolation.

Figure 7.8 compares both linear and spline methods for signal interpolation to raise up-sample a

signal from 1.378 KHz to 44.1 KHz. We observe that for 10 ms sample windows, linear interpolation

produces faster and better results than cubic splines.

7.5.3 Modeling and Recognizing Sounds

After source separation, SoundSifter classifies each isolated source as primary or secondary. If

we had sufficient training examples for each type of sound from an end user, the problem would
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be as simple as creating a standard machine learning classifier. However, to reduce the burden of

data collection on a user and to improve the robustness of the created classifier in a principled way,

we perform an additional data augmentation step prior to creating the classifier model. Recall that

this is a one time step that happens during the installation and programming of SoundSifter for a

particular usage scenario.

Data Augmentation The basic principle behind data augmentation [203, 204] is to generate

new training examples from existing ones by perturbing one or more acoustic characteristics. In

SoundSifter, we use two specific types of augmentation techniques to increase the user contributed

data size by about 13 times. These techniques are listed in Table 7.1.

Action Description
f-warping Remapping the frequency axis:

fi → αfi, where α ∈ [0.8, 1.2].

Inject Noise Superimposing simulated noise.
Noise models are created offline.

Table 7.1: Data augmentation techniques applied to increase user-contributed samples.

To apply frequency warping [144], each sample goes through a mapping phase 10 times, each

time using a different α that is chosen uniformly at random. Simulated random noise [165] is applied

to about one-third of these examples to further augment the data set. Overall, we obtain a 13.33-fold

boost in the number of training examples giving us original samples as well as their perturbed

versions that are resilient to noise and changes in frequency due to environmental effect.

Feature Extraction and Classification For each audio frame, a 13-element MFCC feature

vector is computed. Following common practice, a number of consecutive feature vectors are used to

calculate 13 deltas and 13 double deltas to obtain 39-element feature vectors for each frame. Finally,

the mean, standard deviation, and range of these vectors are taken to obtain a single 39-element

feature vector. A random forest [205] classifier is used to create the final classifier.

For speaker identification, we extend the feature vector of the previous step to include pitch as

an extra feature. Following [4], we estimate pitch using the zero crossing rate (ZCR) of the audio in

the time domain:

ZCR = 0.5×
n∑
i=2

|sign(si)− sign(si−1)| (7.1)
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Here, si represents audio samples, n is the length of a frame and sign(x ) is either +1 or −1 depending

on whether (x > 0) or (x < 0).

7.5.4 Eliminating Secondary Residues

After source separation and source identification, we obtain a primary and a number of secondary

sources. As seen previously in Figure 7.3, the residuals were not zero even in the best case, and in

Figure 7.5 we observed that such residuals are significant enough to recognize secondary sources

embedded within the isolated primary stream.

In order to nullify these residuals we employ a customized adaptive noise cancellation tech-

nique [206]. Standard noise cancellation algorithms either assume simple Gaussian noises or use

sophisticated hardware to capture noise sources to ‘subtract’ noise spectra from the main audio

stream. In SoundSifter, we are lucky to have the separated secondary source streams readily available

as a by product of source separation. These secondary streams are used as negative feedback to

remove their respective residues from the primary stream.

Output
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Primary
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Adaptive
Filter

  

noise 
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+
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Figure 7.9: Leveraging isolated secondary sources to nullify their residue through a customized adaptive noise
cancellation process.

Figure 7.9 shows the noise cancellation process where secondary sources are iteratively used

to estimate residual noise signals contributed by each of them, which are then subtracted from

the primary source to obtain residue-free signals. As an illustration, we consider p and ni as the

primary and secondary sources after the source separation step, respectively. An input to the noise

canceller is (p + nr
i ), where nr

i denotes the residuals. The secondary source ni is another input to

the canceller that is passed through an adaptive filter to produce an output n̂r
i that is a close replica

of nr
i . The output of the adaptive filter is subtracted from the primary input to produce the system

output z = p+ nri − n̂ri , which indicates the error signal for the adaptive process.

We adjust the filter using least mean squares (LMS) [207] algorithm that minimizes the output

power. We use a stochastic gradient descent method where the filter weights are adapted based on
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the error at the current time step. The weight update function for the least mean squares algorithm

is:

Wn+1 = Wn − µ∇ε[n] (7.2)

Here, ε represents the mean-square error, and µ is a constant that controls the speed of convergence.

7.6 Implementation Notes

Due to space limitations we only describe some key implementation issues.

7.6.1 Amazon Alexa Voice Service

To demonstrate SoundSifter, we must connect it to a home hub such as Amazon Echo or Google

Home. However, at present, none of these devices come with an audio input where we can pipe

in the processed audio from SoundSifter. Hence, we use Amazon Voice Service (AVS) to turn a

Raspberry Pi into an Alexa-enabled device which provides us with multiple options for audio inputs,

i.e. audio jacks as well as Bluetooth. We followed the step-by-step procedure [208] that Amazon

recommends to enable their voice service API in Raspberry Pi platform. Figure 7.10 shows our

custom home hub in a 3D printed case, which is functionally identical to an Amazon Echo device.

Figure 7.10: Alexa-enabled Raspberry Pi in a case.

7.6.2 SoundSifter in a BeagleBone Black

We have developed SoundSifter based on an open-source hardware platform called the Beaglebone

Black [209]. An advantage of BeagleBone Black over other open platforms is that, besides the

main ARM Cortex-A8 CPU, it has two additional cores known as the programmable real-time units

(PRUs) [210]. Each PRU provides fast (200 MHz, 32-bit) real-time access to a number of I/O pins.

This lets us sample multiple analog audio inputs at a very high rate.

We use a PRU enabled BeagleBone Black as SoundSifter’s processor. For the microphone array,

we use four Electret microphones [211]. For aesthetics, we 3D-print a case that contains the complete
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Figure 7.11: (Left) SoundSifter in its open case. (Right) the case sits on top of Alexa as a cover.

SoundSifter system. In Figure 7.11 we show the SoundSifter inside a green open case (left). The

lower half of this case is hollow, which allows us to put this on top of the Alexa device of Figure 7.10

as a cover (right).

7.6.3 Libraries

For Fast ICA we used the Modular toolkit for Data Processing (MDP) [212], which is a Python-

based data processing framework. We use the Pandas [213] library for interpolation. We use

libpruio [214] for PRUs, which is designed for easy configuration and data handling at high speed.

To use this library, we load kernel driver uio_pruss and enable PRU subsystems by loading the

universal device tree overlay [215].

7.7 Evaluation

We perform three types of experiments. First, we evaluate the execution time, CPU, and memory

usage of SoundSifter. Second, we evaluate the four key algorithms of SoundSifter using an empirical

dataset. Third, we perform an end-to-end evaluation of different use cases of SoundSifter and

compare the performance with an Amazon Echo device.

7.7.1 Microbenchmarks

Figure 7.12 shows execution times of five major components inside SoundSifter’s audio processing

pipeline for processing one second of audio. Frequency adaptation is a constant time operation

that takes only 1 ms. It is essentially a matrix look-up operation in the transition matrix. Signal

alignment and filling using linear interpolation takes 35 ms on average. As expected, the most time

consuming operation in SoundSifter is the source separation step that takes about 179 ms. For

source identification, SoundSifter takes 121 ms to calculate the features and 3 ms for classification.

The last component of SoundSifter residue removal takes 54.68 ms. Overall, SoundSifter’s execution
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time is 394 ms for processing 1 second audio, which means, the system runs in real-time.
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Figure 7.12: Run-time Analysis.

Table 7.2 lists the CPU and memory usage for the components of the audio processing pipeline.

The most expensive operation is source separation. It requires 57.4% of the CPU and 5.2% memory.

Other tasks such as source identification, signal filling, and residue removal use 50.8%, 33.6% and

11.5% of the CPU, respectively.

CPU (%) Memory (%)
Signal Filling 33.6 2.8

Source Separation 57.4 5.2
Source Identify 50.8 6.3

Residue Removal 11.5 2.5

Table 7.2: CPU and memory usage.

7.7.2 Algorithm Evaluation

To evaluate various components of SoundSifter, we use an empirical dataset which is segmented

into three categories of sounds as described in Table 7.3. We collect this data in a 15 square feet

room. For some of the analyses, such as (Figure 7.13, 7.15, 7.16, 7.18), where we want to evaluate

the performance of the system at the maximum sampling rate (i.e. 44.1 KHz), we have used a

multi-channel microphone setup [216]. This has allowed us to evaluate the proposed algorithms over

a wider range of sampling rates. In the final prototype of SoundSifter, we, however, use Electret

microphones [217] which have a frequency range of 20 Hz to 20 kHz. This is not an issue as long

as the application, where SoundSifter is in use, deals with signals < 20 kHz. For example, in our

chosen applications, the maximum frequency of any sound type in the environment is 10 KHz.

Frequency Adaptation We compare SoundSifter’s 2-step look-based frequency adaptation al-

gorithm’s accuracy with that of a 1-step look back Markov model in four test scenarios. These

scenarios represent: 1) a person talking, 2) two-person conversation and a TV in the background, 3)
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Dataset Count Examples Length
Speech 150 conversations (1-10 persons) 200 min
Home 54 TV, phone, mouse, keyboard 75 min
Song 10 rock, country 55 min

Table 7.3: Description of the empirical dataset.

two-person conversation with a loud song in the background, and 4) two-person conversation while

both TV and loud music are playing.
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Figure 7.13: SoundSifter has higher accuracy than 1 Step Look-back for all scenarios.

In Figure 7.13, we observe that although the performance of both approaches drop as the scenarios

become harder, the 2-step look-back model always performs better than the 1-step look-back method.

The 2-step look-back model maintains an accuracy in the range of 88.24%-95.26%, whereas the

1-step look-back model’s accuracy drops from 94.63% to 25.18%.

A reason behind SoundSifter’s frequency adaptation was to reduce resource consumption of the

embedded system. To evaluate this, we compare SoundSifter’s CPU usage with that of a BeagleBone

Black that is sampling four sensors at 44.1 KHz. We consider three scenarios demonstrating three

different types of acoustic environments: 1) a noisy environment where a high-volume song is playing,

2) a living room where two persons are talking and a television is running, and 3) a relatively quiet

environment where two persons are talking. The ranges of frequencies in these three scenarios are

11.03–5.51 KHz, 5.51–2.76 KHz, and ≤2.76 KHz, respectively.

Figure 7.14 shows that as the range of frequencies of the sound sources vary, because of the

adaptive nature of SoundSifter, its CPU usage decreases from 48.3%-38.1%. The CPU usage of the

BeagleBone remains fixed at 55.8% at all times.

Signal Prediction and Filling We measure the performance of signal prediction and filling of

SoundSifter by comparing its performance with a cubic spline-based interpolation scheme. We take
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Figure 7.14: Frequency adaptation reduces CPU usage especially for lower frequency ranges.

a 44.1 KHz audio and down-sample it to produce five signal streams having the rates of 1.378 KHz,

2.756 KHz, 5.512 KHz, 11.025 KHz, 22.05 KHz, respectively. These are then up-sampled again to

get back to 44.1 KHz, by using two interpolation methods: linear (as done in SoundSifter) and cubic

spline. The quality of interpolation is measured in terms of their correlation with the original 44.1

KHz signals. We run this experiment on 150 speech clips of 200 minutes, 10 song clips of 50 minutes

and four sound clips of 50 minutes.
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Figure 7.15: Linear Interpolation is more effective than Spline Interpolation for Signal Prediction and Filling.

Figure 7.15 shows that for 22.05 KHz, the predicted signals in SoundSifter show 98% correlation,

whereas spline interpolation shows 93%. For lower frequencies, spline’s performance drops significantly.

SoundSifter’s predicted signal shows more than 90% correlation even for 2.756 KHz. At 1.378

KHz, SoundSifter’ correlation drops to 79%, which is still significantly higher than that of spline

interpolation.

Sound Modeling and Recognition We illustrate the performance of SoundSifter’s sound mod-

eling and recognition with the help of two scenarios: 1) voice-only mode, and 2) personalized

mode.
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For the voice only mode, we test the accuracy of primary and secondary source recognition after

source separation, where speech is kept as the primary source.
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Figure 7.16: SoundSifter’s data augmentation technique improves modeling accuracy

In Figure 7.16, we observe that SoundSifter’s data augmentation technique outperforms a classifier

that is trained without data augmentation. For 2-3 sources, SoundSifter shows 89%-90.14% accuracy,

whereas without data augmentation, a classifier achieves only 66%-70% accuracy. As the number

of secondary sources increases, we see that without data augmentation the accuracy drops below

50% for 4-5 sources. SoundSifter’s classification accuracy remains stable even when the number of

sources is high. For 4-5 sources, SoundSifter achieves 89.13%-92.78% accuracy, and its false positive

rate has always been 0%.

For the personalized mode, we want to recognize the particular user’s commands and ignore

anything else. For this, we collect 64 voice commands from three persons as primary sources and

53 voice commands from seven persons as secondary sources. For primary speaker recognition,

SoundSifter achieves 94.87% accuracy. From Figure 7.17, we see that SoundSifter is able to detect all

the secondary users’ commands, resulting in a 0% false positive rates. For primary speaker detection,

SoundSifter was able to detect 58 out of 64 primary commands. Hence, this shows that SoundSifter

is able to accept or reject commands based on personalization.
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Figure 7.17: Confusion matrix for primary speaker recognition among up to 10 persons.
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Residue Removal We quantify the effectiveness of residue removal by showing that the residue

in the separated signals is reduced after applying the process. For this experiment, we consider

audio clips from a varying number of sound sources and apply Fast ICA with and without residual

removal and compare the noise residual (ξ) we get from these two approaches.
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Figure 7.18: Residue Removal reduces noise residual from the primary signal.

From Figure 7.18, we see that for 2, 3, 4 and 5 sources Fast ICA without residual removal has

0.164, 0.169, 0.159 and 0.181 noise residual, whereas Fast ICA with residual removal has 0.102, 0.101,

0.073 and 0.084 noise residual, respectively. From this result, we deduce that using Fast ICA with

residual removal has better performance for removing residue from the signal than using only Fast

ICA.

7.7.3 Full System Evaluation

Scenarios To demonstrate the effectiveness of SoundSifter, we compare its performance with an

Amazon Echo device in three different scenarios. Table 7.4 lists the scenarios.

Scenario Participants Noise Level
Voice Mode (normal) 15 13 dB
Voice Mode (noisy) 10 51 dB
Personalized Mode 10 13 dB

Table 7.4: Description of the scenarios.

These scenarios are designed to illustrate SoundSifter’s performance under different conditions

and demands. In the first scenario, we consider a normal environment where only one person

commands SoundSifter and Echo at the same time. In this experiment, we want to demonstrate

that the source separation and residue removal steps do not damage the quality of the audio signals

in SoundSifter. 50 commands from 15 different participants are used in this experiment.

For the second scenario, we consider a noisy environment. We ask our participants to issue

commands while loud music is playing in the background. We want to show that due to source
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separation and residue removal, SoundSifter is more resilient to noise than Amazon Echo. We have

collected 50 commands from 10 different participants for this scenario.

In the third scenario, we want to demonstrate that SoundSifter is personalized for a particular

user and an intruder is not able to issue arbitrary commands to SoundSifter. Amazon Echo does

not have this feature. For this experiment, we consider one of the ten participants as the primary

user and the other nine users as intruders. 50 voice commands for both the primary user and the

intruders are used in this experiment.

Comparison with Amazon Echo From Figure 7.19, we see that in the first scenario, both

SoundSifter and Echo are able to respond to all 50 commands. Hence, the source separation and

residue removal steps of SoundSifter did not affect the quality of audio. In the second scenario,

SoundSifter responds to 46 out of 50 commands, whereas Echo was only able to respond to 26 of

them. This shows that SoundSifter is more resilient than Echo in a noisy environment.
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Figure 7.19: For noisy voice mode, SoundSifter was able to respond to 46 commands whereas, Echo responded
to only 26 commands.

50

0

50 50

0

25

50

Detected	 Primary	
Person

Detected	 Intruder

Co
un
t

Amazon	Echo SoundSifter

Figure 7.20: For personalized mode, SoundSifter was able to detect all 50 intruder commands, Amazon Echo
fails to detect any of them.

In the third scenario, because Echo does not have any personalization support, it was unable to
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detect any intruders. On the other hand, from Figure 7.20, we find that SoundSifter is able to detect

all 50 of the intruder’s commands. This shows the strength of the special feature of SoundSifter that

is not currently supported by any commercial home hub devices.

7.8 Discussion

At present, home hub devices like Google Home and Amazon Echo do not have any audio input

port where we can pipe in processed audio from SoundSifter. This is why we had to develop a custom

Amazon Echo clone using a Raspberry Pi. For our system to work seamlessly with a commercial

home hub, either the device has to have an audio jack or it has to support open source software, so

that our algorithms can be run on them.

In SoundSifter, the calculation of audio features takes a significant amount of computation time.

Hence, the system is not fully ready for applications that require a very low latency. To address this

issue, as future work, we aim to develop new acoustic features that are lightweight but similar to

MFCC features in terms of performance.

The accuracy of the sound classifier depends on training, which is done by the end user who

has to record audio samples of his voice commands and secondary sound types. This may be

cumbersome to many users, and if the classifier is not trained sufficiently, the accuracy of primary

source classification may drop. To address this issue, as a future extension, we plan to develop new

classifiers that require a small number of training examples.

SoundSifter is not connected to the Internet, and audio processing happens inside the device.

After processing, SoundSifter deletes the audio stream periodically. However, our system is secure as

long as a hacker does not tamper with the device physically (e.g. by connecting extra wires to get

raw data) or inject software Trojans (e.g., by altering the source code to dump the memory to files

or by disabling/bypassing the algorithms during processing).

7.9 Related Work

Recent works have explored the security issues related to continuous listening devices. In [218]

the authors present an attack mechanism related to Google voice search by injecting audio files

with malicious audio commands. [219] shows the vulnerability of smart assistants with inaudible

commands from long distance. Similarly [220, 221] proposes inaudible and malicious voice commands

to attack voice assistants. [222] proposes an external hardware to match the vibration between the
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body and speech signal to detect authenticated user. [223] proposes a generic scheme that intervenes

the user and requires manual review for each potential voice command. [224] explores the sensitivity

of voice command on the security privacy of the personal assistants. In this chapter, we are the

first to explore the privacy issues related to the contextual information leakage through the voice

commands.

Solutions to the source separation problem under different assumptions on sources and mixing

systems fall into three main categories. The first category is based on Independent Component Analysis

(ICA) [46], where statistical independence of sources is exploited to estimate the sources. Although

efficient implementations exist [48, 225], these algorithms have certain fundamental limitations, e.g.,

they support at most one Gaussian source, and do not exploit signal properties such as non-negativity

or sparsity. The second category applies Non-negative Matrix Factorization (NMF) [39] to exploit

non-negativity of real-world signals. However, their lack of statistical assumptions on data does

not guarantee a correct decomposition of sources. The third type is based on Sparse Component

Analysis (SCA) [47], which exploits sparsity in signals, e.g., acoustic signals. In this chapter, we

could have used any of the three methods, but we implement FastICA [225, 48] which is a proven

and well-used algorithm.

In many digital systems, dynamic voltage and frequency scaling [226, 227, 228, 229, 230] are

applied to scale up/down the clock frequency of the entire system to lower the power consumption.

Our problem is significantly different and harder than that since we are required to dynamically

adapt sampling frequencies of an array of microphones (each one is assigned a different rate) and

make sure that the independent component analysis framework for source separation still works.

Standard practices toward dealing with limited training data fall broadly into two categories

– data augmentation and classifier fusion, which are often used together. Data augmentation

techniques [203, 204] generate new training examples by perturbing acoustic characteristics of

existing examples, e.g., frequency warping [144], modifying tempo [164], and adding simulated

reverberation [145], and noise [165]. In classifier fusion [146, 166], outputs of multiple classifiers

are combined to improve the overall accuracy. These techniques vary from simple voting and

averaging [167], to ranking [231, 168], to learning decision templates [148, 168]. In this chapter,

we only use data augmentation and avoided classifier fusion since that would require sharing and

exchanging classifier models of different users – which may violate their privacy.
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7.10 Summary

This chapter describes a system that mitigates information leakage due to the presence of

unwanted sound sources in an acoustic environment when using voice-enabled personal assistant

devices like Amazon Echo. We developed new algorithms to make acoustic source separation CPU

and memory efficient, and to remove residuals of unwanted signals from the main audio stream.

The performance of the system has been compared with that of commercial continuous listening

devices to show that it accurately filters out unwanted sounds and thus protects against personal

and contextual information leakage where existing devices fail.
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CHAPTER 8

Conclusion and Future Works

8.1 Summary of the Dissertation

In this thesis, we address the effect of sensor and environment heterogeneity on machine learning

based classifier for acoustic and WiFi signal. We also explore the problem of lack of labeled

examples in the context of acoustic event recognition and WiFi-based activity recognition. To this

end, we propose an unsupervised domain discovery algorithm to find the latent domains (sensors,

environment) for any general purpose timeseries signal. Then, we also propose a multi-source to

multi-target domain adaptation algorithm to remove the domain-induced bias from the neural

network architecture. We implement the proposed algorithms in a system named Sound-Adapter and

evaluate the proposed algorithms for acoustic event recognition. For WiFi-based activity recognition,

we propose a one-shot domain adaptation method WiDeo to adapt a neural network based classifier

trained on one environment to a new environment with only one labeled sample per activity class.

To solve the problem of lack of labeled example, we propose two systems Sound-Semantics and

WiFringe for audio and WiFi-based sensing, respectively, where we leverage knowledge from external

modality to classify classes with no labeled examples. We show for the first time that by utilizing the

state-of-the-art semantic representation of labels and verb attributes learned from word’s definition,

we can augment the sensing capability of acoustic and WiFi-based sensing systems that lack adequate

training examples. To evaluate our proposed algorithms, we collect data from real scenario with

multiple volunteers and present an elaborate sets of experiments. Finally, we study the privacy issues

of continuous listening device and propose a privacy preserving acoustic sensing system SoundSifter

to mitigate the contextual information leakage. We developed algorithms to make acoustic source

separation CPU and memory efficient, and to remove residuals of unwanted signals from the main

audio stream to preserve the privacy of the users.
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8.2 Future Directions

• Active Learning: In this thesis, we present methodologies to integrate knowledge from

external domain into acoustic and WiFi based classifiers. A potential approach for these

sensing systems to continuously learn is active learning, where the learning algorithm iteratively

asks the user or developer for label for a subset of the unlabeled data. Active learning in

combination with our proposed zero shot learning framework will pave the way for lifelong

learning sensing systems.

• Multi-modal Sensing: While we propose acoustic and WiFi sensing in separate systems,

the extension to my thesis is to integrate the two sensing modality in an end-to-end system.

Multi-modal input from both acoustic and WiFi domain will make a robust and more effective

sensing system.

• Multi-person WiFi Sensing: Our proposed WiFi based activity recognition algorithms are

trained with training data collected from only a single person in an environment. To the best of

my knowledge, currently there is no work in the literature that deals with multi-person activity

recognition. To make WiFi based activity recognition system more feasible, it is imperative to

make these models compatible for multi-person activity scenario. In this case, a large scale

data collection with multi-person activities and signal separation models need to be explored.
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APPENDIX A

WIFI CSI COLLECTION

A.1 CSI Data Capture

In this section, we briefly give a overview of the data collection method for WiFi CSI signal. We

use the tools provided by Halperin et.al. [125]. The tool is based on Intel Wi-Fi Wireless Link 5300

802.11n MIMO radios. The CSI tool provides channel matrices for 30 subcarrier groups, one group

for every 2 subcarriers at 20 MHz or one group in 4 at 40 MHz. The CSI tool is installed following

the instructions described in [232].

As the network manager is required to be disabled we connect to access point using the following

commands:

sudo modprobe -r iwldvm iwlwifi mac80211

sudo modprobe iwlwifi connector_log=0x1

sudo ifconfig wlan0 down

sudo ifconfig wlan0 up

sudo iwconfig wlan0 essid wideo #replace the AP name

sudo dhclient wlan0

Then we use the following commans for logging CSI value:

sudo linux-80211n-csitool-supplementary/netlink/log_to_file csi.dat

A.2 CSI Data Processing

The code for extracting CSI data from binary file into a timeseries data and converting to

frequency domain is provided in [233].

A.3 Word Embedding

We use the word embedding from [234] and verb attributes from [235].
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APPENDIX B

AUDIO PROCESSING

B.1 Synchronous Audio Recording

For synchronous audio collection, we use a network-based data collection setup using MQTT [236]

as the message broker. The idea is to use a laptop as the MQTT server and make it (or an external

speaker) play the audio files in sequence. Simultaneously, we send a message to all the clients (e.g.,

raspberry pi, smartphone) to record the audio file being played. We open-source the necessary codes

in [237].

B.2 Audio Data Processing

We use librosa [238]- an open source library developed for Python for audio signal processing

tasks i.e., fourier transform, spectrogram extraction and so on.

B.3 Source Separation

An implementation of fast-ICA for source separation is available in [239].

B.4 Gradient Reversal

Tensorflow code for gradient reversal is in [240].

B.5 High Sampling Rate

We use libpruio [241] for PRUs, which is designed for easy configuration and data handling at

high speed. To use this library, we load kernel driver uio_pruss and enable PRU subsystems by

loading the universal device tree overlay [215].
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