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ABSTRACT

Ramakanth Pasunuru: Multi-Objective Learning for Multi-Modal Natural Language Generation
(Under the direction of Mohit Bansal)

One of the important goals of Artificial Intelligence (AI) is to mimic the ability of humans

to leverage the knowledge or skill from previously learned tasks to quickly learn a new task. For

example, humans can reapply the learned skill of balancing the bicycle for learning to ride a mo-

torbike. In a similar context, the field of Natural Language Processing (NLP) has several tasks

including machine translation, textual summarization, image/video captioning, sentiment anal-

ysis, dialog systems, natural language inference, question answering, etc. While these different

NLP tasks are often trained separately, leveraging the knowledge or skill from related tasks via

joint training or training one task after another task in a sequential fashion, can have potential

advantages. To this end, this dissertation explores various NLP tasks (especially multi-modal text

generation and pair-wise classification tasks covering both natural language generation (NLG)

and natural language understanding (NLU)) leveraging information from the related auxiliary

tasks in an effective way via novel multi-objective learning strategies.

These proposed novel learning strategies can be broadly classified into three paradigms:

multi-task learning, multi-reward reinforcement learning, and continual learning. In multi-task

learning, we mainly focus on intuitively finding what related auxiliary tasks can benefit the multi-

modal video caption generation task and textual summarization task. We explore effective ways

of sharing the parameters across these related tasks via joint training. In multi-reward reinforce-

ment learning, we teach various skills to multi-modal text generation models in the form of re-

wards. For example, we try to teach the entailment skill to the video captioning model with en-

tailment rewards. Further, we propose novel and effective ways of inducing multiple skills by

‘dynamically’ choosing the auxiliary tasks (in MTL) or rewards (in RL) during the training in an
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automatic way using multi-armed bandits based approaches. Finally, in continual learning, we

explore sharing of information across various tasks in a sequential way, where the model continu-

ally evolves during the sequential training without losing the performance on previously learned

tasks. This kind of sharing allows the later tasks to benefit from previously trained tasks and vice-

versa in some cases. For this, we propose a novel method that continually changes the model

architecture to accommodate new tasks while retaining performance on old tasks. We empirically

evaluate our method on three natural language inference tasks.
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“The only person who is educated is the one who has learned how to learn and change.”

– Carl Rogers
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CHAPTER 1: INTRODUCTION

One of the important goals of Artificial Intelligence (AI) is to mimic the ability of humans

to leverage the knowledge or skill from previously learned tasks to quickly learn a new task. For

example, humans can reapply the learned skill of balancing the bicycle for learning to ride a

motorbike. Similarly, the field of Natural Language Processing (NLP) has several tasks including

machine translation, textual summarization, image/video captioning, sentiment analysis, dialog

systems, natural language inference, question answering, etc. While these different NLP tasks are

often trained separately, leveraging the knowledge from related tasks via joint training (Caruana,

1998; Luong et al., 2016) or training one task after another task in a sequential fashion (Devlin

et al., 2019; Parisi et al., 2019), can have potential advantages. Take for example abstractive

summarization, the task of compressing and rewriting a long document into a short summary.

One of the important aspects of a good summary is to be entailed by the input document, i.e., the

summary should not contain any information that is contradictory or unrelated to the original

document. Hence, this task could benefit by using the knowledge from entailment-related natural

language inference task (Dagan et al., 2005). Similarly, sequential/continual learning of tasks

is helpful in scenarios like enabling a robot to keep on learning new tasks via natural language

instructions (She et al., 2014), adapting a conversational agent to adapt to new conversation

topics (Lee, 2017), and improving a natural language inference system by adding new vocabulary

and adapting it to various domains without retraining from scratch (Pasunuru and Bansal, 2019).

To this end, this dissertation explores various NLP tasks (especially multi-modal text generation

and pair-wise classification tasks covering both natural language generation (NLG) and natural

language understanding (NLU)) leveraging information from the related auxiliary tasks in an
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effective way via novel multi-objective learning strategies in the context of multi-task learning,

multi-reward reinforcement learning, and continual learning.

Towards exploring the shared knowledge across various tasks, we first focused on video cap-

tioning, the task of automatically generating natural language description of the content of a

video clip. It has various applications such as assistance to a visually impaired person and im-

proving the quality of online video search or retrieval. Previous work in video captioning have

used sequence-to-sequence modeling, attention mechanism, hierarchical two-level RNNs for

efficient video encoding (Venugopalan et al., 2015a; Pan et al., 2016b; Yao et al., 2015; Pan et al.,

2016a; Yu et al., 2016). Despite these recent improvements, video captioning models still suf-

fer from the lack of sufficient temporal and logical supervision to be able to correctly capture

the action sequence and story-dynamic language in videos, especially in the case of short clips.

Hence, they would benefit from incorporating such complementary directed knowledge, both

visual and textual. We address this by jointly training the task of video captioning with two re-

lated directed-generation tasks: a temporally-directed unsupervised video prediction task and a

logically-directed language entailment generation task (Pasunuru and Bansal, 2017a). We model

this via many-to-many multi-task learning based sequence-to-sequence models (Luong et al.,

2016) that allow the sharing of parameters among the encoders and decoders across the three

different tasks, with additional shareable attention mechanisms. Additionally, we built the first

state-of-the-art video captioning demo system (Guo et al., 2017), with the additional novel as-

pects of generating multi-sentence, paragraph-based captions, and allowing cooperative user

feedback.

Another important NLP task, abstractive summarization, could also benefit from strong nat-

ural language inference skills, since a correct summary is logically entailed by the input docu-

ment, i.e., it should not contain any contradictory or unrelated information. Despite the promis-

ing improvements with neural sequence-to-sequence models via machine translation inspired

encoder-aligner-decoder approaches, further enhanced via convolutional encoders, pointer-copy

mechanisms, and hierarchical attention (Rush et al., 2015; Nallapati et al., 2016; See et al., 2017),
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abstractive summaries suffer from generating contradictory or unrelated information. Towards

this end, we incorporate natural language inference skills into an abstractive summarization

model via multi-task learning, where we share its decoder parameters with those of an entail-

ment generation model (Pasunuru et al., 2017). Further, an accurate abstractive summary of a

document should also contain all the salient information from the input document. We improve

this important aspect via multi-task learning with the task of question generation which teaches

the summarization model the right questions to ask, which in turn is directly related to salient

information in the input document (Pasunuru and Bansal, 2018). Jointly using both entailment

generation and question generation tasks to improve abstractive summarization, we present novel

multi-task learning architectures based on multi-layered encoder and decoder models, where we

empirically show that it is substantially better to share the higher-level semantic layers between

the three aforementioned tasks, while keeping the lower-level (lexico-syntactic) layers unshared.

We also explore different ways to optimize the shared parameters and show that ‘soft’ parameter

sharing achieves higher performance than hard sharing (Pasunuru and Bansal, 2018).

Exploring other ways of knowledge sharing among various tasks, we use reinforcement learn-

ing (RL), especially policy gradient-based RL (Williams, 1992), which enables to directly opti-

mize the sentence-level evaluation metrics as opposed to traditional cross-entropy loss. One can

leverage this by defining such metrics based on the properties of the related tasks, thus sharing

their information. To this end, to improve video captioning, we introduce an entailment-enhanced

reward function that guides the traditional phrase matching metric whenever the entailment score

is low for the generated sample w.r.t. the ground-truth caption as premise (Pasunuru and Bansal,

2017b). Optimization of this reward function ensures that the generated caption is logically-

entailed w.r.t. the ground-truth caption and does not contain spurious contradictory or extra (spu-

rious, unrelated) words, which is a big problem in the current state-of-the-art systems.

Similarly, we introduce two novel reward functions for abstractive summarization, one for

weighting more importance to salient words present in the generated summary, and another re-

ward function which gives high (length-normalized) scores to logically-entailed summaries using
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an entailment classifier (Pasunuru and Bansal, 2018). We show that these reward functions help

the summarization model get better, and we further show superior performance improvement

when these rewards are combined with our novel and effective multi-reward approach of optimiz-

ing multiple rewards simultaneously in alternate mini-batches (Pasunuru and Bansal, 2018).

While the above approaches in the context of MTL and multi-reward RL are appealing, they

need manual tuning of in what static proportions the auxiliary tasks (in MTL) or rewards (in RL)

have to be mixed during the training. Further, this tuning can be computationally expensive with

the increase in the number of tasks (or rewards) at hand. Addressing this issue, we introduce

‘dynamic’ mixing of auxiliary tasks or rewards in an automatic way using multi-armed bandits.

Next, we briefly describe those approaches for MTL and multi-reward RL.

In the above-mentioned MTL works, the weights between tasks during MTL training are

static and are considered hyperparameters. To avoid this, we move towards ‘self-learned MTL’

where we propose dynamic multi-armed bandit based training approach that automatically learns

how to effectively switch across the primary and auxiliary tasks during multi-task training (Guo

et al., 2018). In this setup, we improve the entailment and paraphrasing capabilities of a sentence

simplification model via MTL with related auxiliary tasks of entailment and paraphrase genera-

tion.

In the context of multi-reward RL, the previously proposed multi-reward optimization ap-

proaches are not scalable to optimize multiple reward functions and one needs to manually decide

the importance and scaling weights of these metric rewards. Further, it is important to consider

using a dynamic combination and curriculum of metric rewards that flexibly changes over time.

Considering the above aspects, in our work (Pasunuru et al., 2020), we automate the optimization

of multiple metric rewards simultaneously via a multi-armed bandit approach (DORB), where

at each round, the bandit chooses which metric reward to optimize next, based on expected arm

gains. We use the Exp3 algorithm for bandits and formulate two approaches for bandit rewards:

(1) Single Multi-reward Bandit (SM-Bandit); (2) Hierarchical Multi-reward Bandit (HM-Bandit).

We empirically show the effectiveness of our approaches via various automatic metrics and hu-
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man evaluation on two important NLG tasks: question generation and data-to-text generation,

including on an unseen-test transfer setup.

We also explore sharing of information across various tasks in a sequential way via contin-

ual learning, where the model parameters continually evolve during the sequential training of

related tasks without losing the performance on previously learned tasks. This kind of sharing

allows the later tasks to benefit from previously trained tasks and vice-versa in some cases. In our

work (Pasunuru and Bansal, 2019), we propose a novel approach called continual architecture

search (CAS) by leveraging neural architecture search (NAS) (Pham et al., 2018). NAS is the

process of automatically learning the neural model or cell structure that best suits the given task,

and we leverage it for continual learning of various video captioning tasks and natural language

inference tasks via block-sparsity and orthogonality constraints without losing performance.

With the above-proposed approaches of multi-objective learning across various NLP tasks

(with multi-modal input), we can efficiently transfer/share knowledge and effectively learn com-

plex behavior among multiple tasks.

1.1 Thesis Statement

Through various multi-objective learning strategies, it is possible to efficiently transfer/share

knowledge and effectively learn complex behavior among multiple tasks in the domains of multi-

modal text generation and pair-wise text classification.

1.2 Overview of Chapters

The remainder of this dissertation is organized into eight chapters. Chapter 2 discusses the

related work around the three multi-objective paradigms and various NLP tasks used in our ex-

periments. Chapter 3 presents our work on multi-task learning with video captioning. Chapter 4

presents a novel multi-task learning approach applied for textual summarization. Chapter 5 and

Chapter 6 explore the idea of leveraging the skills of related tasks in the form of rewards for im-
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proving the tasks of video captioning and textual summarization, respectively. Chapter 7 presents

our novel and effective ways of inducing multiple skills by ‘dynamically’ choosing the auxiliary

tasks (in MTL) or rewards (in RL) during the training in an automatic way using multi-armed

bandits based approaches. Next, Chapter 8 discusses our novel continual learning approach

where the model can dynamically change its architecture to learn new tasks. Finally, Chapter 9

summarizes the contributions herein and discusses the potential opportunities for future work.
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CHAPTER 2: BACKGROUND AND RELATED WORK

In this chapter, we discuss the background and related work of multi-task learning, reinforce-

ment learning, and continual learning. We also discuss the related work of various multi-modal

text generation tasks and text classification tasks used in our work.

2.1 Multi-Task Learning

2.1.1 Overview

Multi-task learning (MTL) is a useful learning paradigm to improve the supervision and the

generalization performance of a task by jointly training it with related tasks (Caruana, 1998;

Argyriou et al., 2007; Kumar and Daumé III, 2012). One can also motivate multi-task learning

from a biological perspective on how humans learn new skills by often applying the knowledge

that was acquired by learning related tasks. For example, humans can apply the skill of balancing

learned through biking to learn motorcycle.

Multi-task learning has wide applications to natural language processing (Collobert and We-

ston, 2008), computer vision (Girshick, 2015), speech recognition (Deng et al., 2013), etc. The

most common way of performing MTL is via hard or soft parameter sharing of hidden layers. In

the hard parameter sharing, hidden layers between all tasks are shared, while keeping the task-

specific layers separate. In soft parameter sharing, each task has its own parameters while the

distance between the soft sharing parameters is regularized to encourage these parameters to be

similar or close in their representation space (Duong et al., 2015; Yang and Hospedales, 2017).
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2.1.2 Why does MTL work?

Below, we discuss some of the reasons why MTL works and how it achieves better generaliz-

ability.

• Data Augmentation: MTL provides more signals to learn a task in the form of additional

data coming from related tasks. Essentially, this means MTL provides data augmentation

(might be noisy) to improve a tasks’ performance.

• Representation Bias: MTL not only learns representations that better fit the given task

but also constraints the model to prefer representations that other tasks also prefer (Baxter,

2000). This will help the model to generalize better to new tasks.

• Regularization: MTL also acts as a good regularizer by introducing inductive bias. Differ-

ent tasks have different noise patterns, and MTL enables simultaneous training of multiple

tasks thereby averaging out the noise and avoiding the over-fitting problem.

2.1.3 Earlier works in MTL

Two of the important ideas that were most pursued in earlier MTL works are block sparse

regularization (Yuan and Lin, 2006; Argyriou et al., 2007; Zhang et al., 2008) and learning task

relationships (Evgeniou et al., 2005; Chen et al., 2010; Thrun and O’Sullivan, 1996). Next, we

will discuss some of the works around these two ideas.

For better understanding, let us consider a linear model. Let us assume that there are T tasks

with the model parameters for the ith task are represented by θi, where θ is an N -dimension vec-

tor. Let’s also assume that these parameters are sparse in nature (many previous works considered

this assumption (Yuan and Lin, 2006)). For MTL, let us assume that few parameters θi,j of ith

task with j ⊂ [1, N ] are shared across all tasks. To achieve both sparsity and also share the pa-

rameters across tasks, we need to have non-zero values at the shared positions. This means that

if we put all the parameters of the T tasks in the form of a matrix A of size N × T , then only a
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few rows are non-zeros, which is nothing but they have to be block sparse. We can achieve block-

sparsity by computing `q norm for each row of A and then applying `1 norm. This is otherwise

known as `1/`q mixed norms constraint. Zhang et al. (2008) used `1/`∞ mixed norm and Ar-

gyriou et al. (2007) used `1/`2 mixed norm to achieve block sparsity in the context of MTL. Note

that if the features do not overlap much across the tasks, this mixed norm can perform worse than

the element-wise regularization (Negahban and Wainwright, 2008). To address this issue, Jalali

et al. (2010) decomposed the parameter matrix A into two matrices (B and S) such that A = B+S

with matrix B constrained with mixed norm and matrix S constrained with element-wise sparsity.

As mentioned above, features may no overlap much across tasks. In such scenarios, we

could leverage prior knowledge on which tasks are related and group them together while do-

ing MTL. (Evgeniou et al., 2005) proposed a clustering constraint by penalizing both the norms

of the parameter matrix A. Further, it is extended to tasks that can be grouped into tree or graph

structures (Chen et al., 2010; Thrun and O’Sullivan, 1996). Other works related to learning task

relationships focused on Bayesian methods. Lawrence and Platt (2004) proposed to use Gaussian

Processes to infer shared parameters in MTL. Daumé III (2009) proposed a hierarchical Bayesian

model to learn a latent task hierarchy.

2.1.4 MTL for Deep Neural Networks

Several recent works have adopted MTL in neural models (Luong et al., 2016; Misra et al.,

2016; Hashimoto et al., 2017; Ruder et al., 2019; Kaiser et al., 2017). Most of the earlier MTL

approaches assume homogeneous setting, i.e., all the tasks are associated with single output,

however, more recent works considered heterogeneous setting, i.e., having unique outputs for

each task. MTL has been applied to sequence-to-sequence models, sharing parameters across the

tasks’ encoders and decoders and showed significant improvements on machine translation using

parsing and image captioning as related auxiliary tasks (Luong et al., 2016). In computer vision

tasks, MTL sharing is done at convolutional layers, while learning task specific fully-connected

layers (Zhang et al., 2014). These are further improved by placing matrix priors on the fully-
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connected layers thereby allowing them to learn the relationship between tasks (Long and Wang,

2015). However, these approaches are restricted to pre-defined structure for sharing. Addressing

this issue, a bottom-up approach has been proposed that dynamically allows to widen the network

during the training based on a criterion that promotes grouping of related tasks (Lu et al., 2017).

Similarly, cross-stitch networks (Misra et al., 2016) has been proposed to learn a linear combi-

nation of the task-specific previous layers’ output as input to the current layer so that each task

can leverage the knowledge of the other task. A hierarchical layer sharing for MTL has been pro-

posed to reflect linguistic hierarchy of multiple tasks (POS tagging, chunking, dependency pars-

ing, semantic relatedness, and textual entailment) by jointly training them with a strategy for suc-

cessively growing the depth of the network to solve increasingly complex tasks (Hashimoto et al.,

2017). Our work (Pasunuru and Bansal, 2017a) used hard parameter sharing at encoder-decoder

level between video captioning, unsupervised video prediction, and entailment generation to

share knowledge across them. We extended this to train an MTL setup with soft parameter train-

ing at layer level between textual summarization, question generation, and entailment generation.

Further, Sluice Networks (Ruder et al., 2019) provided a unified MTL framework combining

hard parameter sharing, cross-stitch networks, and block-sparse regularization approaches. An-

other way of sharing information with MTL is via the knowledge distillation (Hinton et al., 2014),

where task-specific models teach a multi-task model (Clark et al., 2019) to effectively learn the

joint representation of all tasks. This approach removes the restriction of using parameter sharing

across tasks for MTL learning.

The success of MTL models also depends on the choice of the auxiliary tasks for a given

primary task. On the problem of identifying task relatedness, a formal framework for task re-

latedness was provided by (Ben-David and Schuller, 2003) and derived generalization error

bounds for learning of multiple tasks. Bingel and Søgaard (2017) explored task relatedness via

exhaustively experimenting with all possible two task tuples in a non-automated multi-task setup.

Further, our work (Guo et al., 2019a) proposed a two-stage MTL approach, where the first stage

automatically selects the most useful auxiliary tasks via a Beta-Bernoulli multi-armed bandit
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with Thompson Sampling, and the second stage learns the training mixing ratio of these selected

auxiliary tasks via a Gaussian Process based Bayesian optimization framework.

2.2 Reinforcement Learning

2.2.1 Overview

Reinforcement Learning (RL) is a training mechanism in which an agent or a policy is al-

lowed to interact with a given environment in order to maximize a reward. It has successful

application to many research areas such as continuous control (White and Sofge, 1992), dia-

logue systems (Singh et al., 2002; Peng et al., 2017; Srivastava et al., 2019), and games (Tesauro,

1995; Narasimhan et al., 2015). Recently, a special case of RL, called policy gradients based rein-

forcement learning, has been widely applied to text generation problems in NLP through REIN-

FORCE algorithm (Williams, 1992). REINFORCE has already been used for other applications

such as computer vision (Mnih et al., 2014; Xu et al., 2015a) and speech recognition (Graves

and Jaitly, 2014). Text generation models are traditionally optimized to predict the next work

using the cross-entropy loss, which does not correlate well with the sentence-level metrics that

the task is finally evaluated on (e.g., BLEU, CIDEr). Moreover, these models suffer from ex-

posure bias (Ranzato et al., 2016), which occurs when a model is only exposed to the training

data distribution, instead of its own predictions. The idea of using the model’s own predictions

at training time was first advocated by Hal Daumé et al. (2009), where they cast the structure

prediction problems as a particular instance of reinforcement learning. Motivated by this, Ran-

zato et al. (2016) proposed a mixed sequence level training paradigm that uses model predictions

during training and also use non-differential metrics as reward using REINFORCE. Following

this work, a few successful examples of REINFORCE for text generation include image cap-

tioning (Rennie et al., 2017; Ren et al., 2017), abstractive summarization (Paulus et al., 2018;

Chen and Bansal, 2018; Pasunuru and Bansal, 2018; Celikyilmaz et al., 2018), machine trans-

lation (Wu et al., 2016; Gu et al., 2017), sentence simplification (Zhang and Lapata, 2017a), as
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well as video captioning (Pasunuru and Bansal, 2017b; Wang et al., 2018). Further, some works

have also explored the problem of optimizing multiple rewards simultaneously in the context

of machine translation (Neubig and Watanabe, 2016), video captioning (Pasunuru and Bansal,

2017b), summarization (Pasunuru and Bansal, 2018), and question generation and data-to-text

generation (Pasunuru et al., 2020).

2.2.2 Details on REINFORCE Algorithm

Traditional text generation systems minimize the cross-entropy loss during training, but typi-

cally evaluated using phrase-matching metrics: BLEU, METEOR, CIDEr, and ROUGE-L. This

discrepancy can be addressed by directly optimizing the non-differentiable metric scores using

policy gradients pθ, where θ represents the model parameters. In text generation systems, model

acts as an agent and interacts with its environment (multi-modal input and text output). At each

time step, the agent generates a word (action), and the generation of the end-of-sequence token

results in a reward r to the agent. Our training objective is to minimize the negative expected

reward function given by:

L(θ) = −Ews∼pθ [r(ws)] (2.1)

where ws = {ws1, ws2, ..., wsm}, and wst is the word sampled from the model at time step t. Based

on the REINFORCE algorithm (Williams, 1992), the gradients of the non-differentiable, reward-

based loss function can be computed as follows:

∇θL(θ) = −Ews∼pθ [r(ws)∇θ log pθ(w
s)] (2.2)

The above gradients can be approximated from a single sampled word sequence ws from pθ

as follows:

∇θL(θ) ≈ −r(ws)∇θ log pθ(w
s) (2.3)
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However, the above approximation has high variance because of estimating the gradient with

a single sample. Adding a baseline estimator reduces this variance (Williams, 1992) without

changing the expected gradient. Hence, Eqn: 2.3 can be rewritten as follows:

∇θL(θ) ≈ −(r(ws)− bt)∇θ log pθ(w
s) (2.4)

where bt is the baseline estimator, where bt can be a function of θ or time step t, but not a func-

tion of ws. Using the chain rule, loss function can be written as:

∇θL(θ) =
m∑
t=1

∂L

∂st

∂st
∂θ

(2.5)

where st is the input to the softmax layer, where st = W Thdt .
∂L
∂st

is given by Zaremba and

Sutskever (2015) as follows:

∂L

∂st
≈ (r(ws)− bt)(pθ(wt|hdt )− 1wst ) (2.6)

The overall intuition behind this gradient formulation is: if the reward r(ws) for the sam-

pled word sequence ws is greater than the baseline estimator bt, the gradient of the loss function

becomes negative, then model encourages the sampled distribution by increasing their word

probabilities, otherwise the model discourages the sampled distribution by decreasing their word

probabilities. Previous works have taken different approaches to calculate the baseline estima-

tor. For example, the baseline estimator in Ranzato et al. (2016) is a simple linear regressor with

hidden state of the decoder hdt at time step t as the input. They stop the back propagation of gra-

dients before the hidden states for the baseline bias estimator. Rennie et al. (2017) proposed a

self-critical sequence training approach to calculate the baseline estimator, which is based on

the reward obtained by the current model using the test time inference algorithm, i.e., choosing

the arg-max word wat of the final vocabulary distribution at each time step t of the decoder. In

our work, we explore both these baseline estimator approaches for various text generation tasks.
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We also employ the joint cross-entropy (LXE) and reinforce loss (LRL) so as to optimize the non-

differentiable evaluation metric as reward while also maintaining the readability of the generated

sentence (Wu et al., 2016; Paulus et al., 2018; Pasunuru and Bansal, 2017b), which is defined as

LMixed = γLRL + (1− γ)LXE, where γ is a tunable hyperparameter.

2.3 Continual Learning

Continual learning is a long-standing challenge for machine learning (French, 1999; Hass-

abis et al., 2017), which is defined as an adaptive system capable of learning from a continuous

stream of information, where such information progressively increases over time and there is no

predefined number of tasks to be learned. The major problem in continual learning is catastrophic

forgetting. Various works have tried to address this catastrophic forgetting problem, and they can

be broadly classified into (1) architectural, (2) functional, and (3) structural approaches.

Architectural approaches mainly focus on altering the architecture of the network to reduce

the interference between the tasks without changing the objective function, thereby reducing

the catastrophic forgetting. A simple form of architectural regularization is by freezing weights

that are important for the previously-learned tasks (Razavian et al., 2014). One can also reduce

the learning rates of the shared layers with previously-learned tasks while fine-tuning to avoid

dramatic changes (Donahue et al., 2014; Yosinski et al., 2014). Further, a dramatic architectural

change approach is to copy the parameters of the previous-learned task and augment with new

features while learning a new task (Rusu et al., 2016), but this will increase the complexity with

the number of tasks. Functional approaches to reduce catastrophic forgetting focus on penalizing

the changes in the input-output function of the neural network. An approach based on knowledge

distillation (Hinton et al., 2014) was proposed (Li and Hoiem, 2017) to keep the predictions of

the previous task’s network while training with the data from the new task. Another regulariza-

tion approach is to minimize the final hidden activations while moving from one task to another

task (Jung et al., 2016). Structural approaches involve penalties on the parameters training for the

new task such that they are close to the parameters for the old task. Recently, elastic weight con-
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solidation (EWC) approach (Kirkpatrick et al., 2017) has been proposed with a quadratic penalty

on the difference between the parameters of new and old tasks.

Some other notable works in the very recent years are based on using intelligent synapses

to accumulate task-related information over time (Zenke et al., 2017), using online variational

inference with neural networks for continual learning (Nguyen et al., 2017), and dynamically

expandable network that can expand its parameter capacity by splitting/duplicating based on

incoming new data in sequence (Yoon et al., 2018). Similar to Yoon et al. (2018), Sarwar et al.

(2019) proposed to grow the network to learn new tasks while sharing a base network among all

tasks. Further, Xu and Zhu (2018) proposed to expand each layer in the network based on new

incoming data/task using reinforcement learning. Our work (Pasunuru et al., 2020) leveraged neu-

ral architecture search to continually evolve the model parameters during the sequential training

of several tasks, without losing performance on previously learned tasks (via block-sparsity and

orthogonality constraints). Along similar lines, Li et al. (2019) used neural architecture search to

find optimal networks for each task in the continual learning setup.

2.4 Multi-Modal Text Generation and Text Classification Tasks

2.4.1 Video Captioning

Early video captioning work (Guadarrama et al., 2013; Thomason et al., 2014; Huang et al.,

2013) used a two-stage pipeline to first extract a subject, verb, and object (S,V,O) triple and then

generate a sentence based on it. An end-to-end neural model was proposed to fed mean-pooled

static frame-level visual features (from convolution neural networks pre-trained on image recog-

nition) of the video as input to the language decoder (Venugopalan et al., 2015b). To harness the

important frame sequence temporal ordering, Venugopalan et al. (2015a) proposed a sequence-

to-sequence model with video encoder and language decoder RNNs. Further, linguistic improve-

ments are explored to the caption decoder by fusing it with external language models (Venu-

gopalan et al., 2016). Moreover, an attention or alignment mechanism was added between the
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encoder and the decoder to learn the temporal relations (matching) between the video frames and

the caption words (Yao et al., 2015; Pan et al., 2016a). In contrast to static visual features, tem-

poral video features are considered from a 3D-CNN model pre-trained on an action recognition

task (Yao et al., 2015).

To explore long range temporal relations, Pan et al. (2016a) proposed a two-level hierar-

chical RNN encoder which limits the length of input information and allows temporal transi-

tions between segments. A hierarchical RNN generating sentences at the first level and the sec-

ond level capturing inter-sentence dependencies in a paragraph was proposed by (Yao et al.,

2015). Pan et al. (2016b) proposed to simultaneously learn the RNN word probabilities and a

visual-semantic joint embedding space that enforces the relationship between the semantics of

the entire sentence and the visual content. Our works (Pasunuru and Bansal, 2017a,b) improved

video captioning by inducing various skills via multi-task learning and reinforcement learning

approaches.

Following are some other notable works in recent years. Wang et al. (2018) proposed a hi-

erarchical reinforcement learning method to generate more detailed captions to a video. This

method has a high-level manager module that learns to design sub-level goals, and a low-level

module to complete these sub-goals. Chen et al. (2018) proposed a strategy to choose minimal

video frames by maximizing the diversity of frames and minimizing the difference between gen-

erated and ground-truth captions. This is done using a reinforcement learning setup. Wang et al.

(2019b) introduced a gated mechanism that fuses different types of representations in the video

to create a global syntactic structure. Together, they aid for better video captioning generator. By

controlling the syntactic structure, this method could control the diversity of the generated cap-

tions. For better modeling of object interactions in videos, Zhang et al. (2020b) proposed object

relational graph-based encoder and also tried to leverage external language model knowledge into

the caption model. Further, Perez-Martin et al. (2021) created a joint embedding space of visual,

semantic, and syntactic representations for better caption generation.
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2.4.2 Abstractive Summarization

Automatic text summarization has been progressively improving over the time, initially more

focused on extractive and compressive models (Jing and McKeown, 2000; Knight and Marcu,

2002; Clarke and Lapata, 2008; Filippova et al., 2015; Kedzie et al., 2015), and moving more

towards compressive and abstractive summarization based on graphs and concept maps (Gian-

nakopoulos, 2009; Ganesan et al., 2010; Falke and Gurevych, 2017) and discourse trees (Gerani

et al., 2014), syntactic parse trees (Cheung and Penn, 2014; Wang et al., 2013), and Abstract

Meaning Representations (AMR) (Liu et al., 2015; Dohare and Karnick, 2017). Recent work

has also adopted machine translation inspired neural seq2seq models for abstractive summariza-

tion with advances in hierarchical, distractive, saliency, and graph-attention modeling (Rush

et al., 2015; Chopra et al., 2016; Nallapati et al., 2016; Chen et al., 2016; Tan et al., 2017). Paulus

et al. (2018) and Henß et al. (2015) incorporated recent advances from reinforcement learning.

Also, See et al. (2017) further improved results via pointer-copy mechanism and addressed the

redundancy with coverage mechanism. In the direction of directly optimizing the evaluation met-

rics rather than the cross-entropy loss, Paulus et al. (2018) and Celikyilmaz et al. (2018) have

explored the use of policy gradients based reinforcement learning for abstractive summariza-

tion. On top of See et al. (2017)’s model, our works (Pasunuru and Bansal, 2018; Pasunuru et al.,

2018) employed multi-task learning and reinforcement learning approaches to induce external

knowledge (saliency and entailment capabilities) into textual summarization models. In order to

make the summary generation fast, Chen and Bansal (2018) proposed a model that first selects

salient sentence and then generates an abstractive summary from these salient sentences. Further,

they also use reinforcement learning approach. Similarly, (Gehrmann et al., 2018b) followed a

bottom-up approach where a content selector first selects candidate phrases in the source docu-

ment that could be part of the summary, and decode summary from these pre-selected phrases

using copy mechanism. Recent works (Liu and Lapata, 2019; Lewis et al., 2019; Zhang et al.,

2020a) further leveraged various large pre-trained models to significantly improve the perfor-

mance on textual summarization.
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2.4.3 Sentence Simplification

Sentence simplification is the task of improving the readability and understandability of an

input text. This challenging task has been the subject of research interest because it can address

automatic ways of improving reading aids for people with limited language skills, or language

impairments such as dyslexia (Rello et al., 2013), autism (Evans et al., 2014), and aphasia (Car-

roll et al., 1999). It also has wide applications in NLP tasks as a preprocessing step, for example,

to improve the performance of parsers (Chandrasekar et al., 1996), summarizers (Klebanov et al.,

2004), and semantic role labelers (Vickrey and Koller, 2008; Woodsend and Lapata, 2014). Previ-

ous approaches to sentence simplification systems range from hand-designed rules (Siddharthan,

2006), to syntactic and lexical simplification via synonyms and paraphrases (Siddharthan, 2014;

Kaji et al., 2002; Horn et al., 2014; Glavaš and Štajner, 2015), as well as treating simplification as

a monolingual MT task, where operations are learned from examples of complex-simple sentence

pairs (Specia, 2010; Koehn et al., 2007; Coster and Kauchak, 2011; Zhu et al., 2010; Wubben

et al., 2012; Narayan and Gardent, 2014). Recently, Xu et al. (2016b) trained a syntax-based

MT model using the newly proposed SARI as a simplification-specific objective. Further, Zhang

and Lapata (2017b) used reinforcement learning in a sequence-to-sequence approach to directly

optimize simplification metrics. In this dissertation, we first introduce the pointer-copy mecha-

nism (See et al., 2017) as a novel application to sentence simplification, and then use multi-task

learning to bring in auxiliary entailment and paraphrasing skills.

2.4.4 Question Generation

The goal of the question generation (QG) task is to generate a natural question that can be

answered by the given answer span in a context. Recent works have applied seq2seq neural mod-

els for QG, e.g., generating the question given answer sentence (Du et al., 2017; Zhou et al.,

2017), or the whole paragraph (Du and Cardie, 2018; Song et al., 2018b; Liu et al., 2019a; Zhao

et al., 2018; Kim et al., 2019; Sun et al., 2018). Many works also used RL to optimize specific

metrics (Song et al., 2018a; Kumar et al., 2019; Yuan et al., 2017). Recently, Zhang and Bansal
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(2019) proposed semantics-enhanced rewards to improve the QG model, and also used the multi-

reward approach proposed by Pasunuru and Bansal (2018) in their RL models.

2.4.5 Data-to-Text Generation

Data-to-text is the task of expressing the components (attributes and values) of meaning

representation (MR) as human-readable natural sentences. Previous work in this area include

templates (Reiter, 1995), rules (Reiter et al., 2005), pipelines (Reiter, 2007; Reiter and Dale,

1997), probabilistic models (Liang et al., 2009) and more recently end-to-end as well as neural-

based methods (Wen et al., 2015; Mei et al., 2016; Dušek and Jurcicek, 2016; Lampouras and

Vlachos, 2016; Dušek et al., 2020; Wiseman et al., 2017; Gong, 2018; Chen and Mooney, 2008;

Reiter, 2017; Lebret et al., 2016; Distiawan et al., 2018; Gehrmann et al., 2018a; Marcheggiani

and Perez-Beltrachini, 2018; Guo et al., 2019b; Zhao et al., 2020). In our work, we use the state-

of-the-art model from Zhao et al. (2020) as our baseline.

2.4.6 Text Classification Tasks

Recently, GLUE benchmark (Wang et al., 2019a) has been proposed to evaluate models on

multiple text classification tasks which are meant to cover a diverse and difficult range of NLP

problems. These tasks are categorized into single sentence tasks, natural language inference

tasks (NLI), and similarity and paraphrasing tasks. Many recent large-scale pre-trained language

models are evaluated on this benchmark to show the generalizability of these models to diverse

text classification tasks (Devlin et al., 2019; Liu et al., 2019b). In this dissertation, we primarily

focus on the NLI tasks, where, given a premise sentence and a hypothesis sentence, the task is to

predict whether the premise entails the hypothesis, contradicts the hypothesis, or neither. Some

of the popular NLI tasks are: Question-Answering NLI (Rajpurkar et al., 2016), Recognizing

Textual Entailment (RTE) (Dagan et al., 2005), and Winograd NLI (Levesque et al., 2012).
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CHAPTER 3: MULTI-TASK LEARNING FOR VIDEO CAPTIONING

3.1 Introduction

Video captioning is the task of automatically generating a natural language description of

the content of a video, as shown in Fig. 3.1. It has various applications such as assistance to a

visually impaired person and improving the quality of online video search or retrieval. This task

has gained recent momentum in the natural language processing and computer vision communi-

ties, esp. with the advent of powerful image processing features as well as sequence-to-sequence

LSTM models. It is also a step forward from static image captioning, because in addition to mod-

eling the spatial visual features, the model also needs to learn the temporal across-frame action

dynamics and the logical storyline language dynamics.

Previous work in video captioning (Venugopalan et al., 2015a; Pan et al., 2016b) has shown

that recurrent neural networks (RNNs) are a good choice for modeling the temporal information

in the video. A sequence-to-sequence model is then used to ‘translate’ the video to a caption.

Venugopalan et al. (2016) showed linguistic improvements over this by fusing the decoder with

external language models. Furthermore, an attention mechanism between the video frames and

the caption words captures some of the temporal matching relations better (Yao et al., 2015; Pan

et al., 2016a). More recently, hierarchical two-level RNNs were proposed to allow for longer

inputs and to model the full paragraph caption dynamics of long video clips (Pan et al., 2016a; Yu

et al., 2016).

Despite these recent improvements, video captioning models still suffer from the lack of

sufficient temporal and logical supervision to be able to correctly capture the action sequence

and story-dynamic language in videos, esp. in the case of short clips. Hence, they would ben-

efit from incorporating such complementary directed knowledge, both visual and textual. We
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Figure 3.1: A video captioning example from the YouTube2Text dataset, with the ground truth
captions and our many-to-many multi-task model’s predicted caption.

address this by jointly training the task of video captioning with two related directed-generation

tasks: a temporally-directed unsupervised video prediction task and a logically-directed language

entailment generation task. We model this via many-to-many multi-task learning based sequence-

to-sequence models (Luong et al., 2016) that allow the sharing of parameters among the encoders

and decoders across the three different tasks, with additional shareable attention mechanisms.

The unsupervised video prediction task, i.e., video-to-video generation (adapted from Srivas-

tava et al. (2015)), shares its encoder with the video captioning task’s encoder, and helps it learn

richer video representations that can predict their temporal context and action sequence. The

entailment generation task, i.e., premise-to-entailment generation (based on the image caption do-

main SNLI corpus (Bowman et al., 2015)), shares its decoder with the video captioning decoder,

and helps it learn better video-entailed caption representations, since the caption is essentially an

entailment of the video, i.e., it describes subsets of objects and events that are logically implied

by (or follow from) the full video content. The overall many-to-many multi-task model combines

all three tasks.

Our three novel multi-task models show statistically significant improvements over the state-

of-the-art, and achieve the best-reported results (and rank) on multiple datasets, based on several

automatic and human evaluations. We also demonstrate that video captioning, in turn, gives

mutual improvements on the new multi-reference entailment generation task.
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Figure 3.2: Baseline sequence-to-sequence model for video captioning: standard encoder-decoder
LSTM-RNN model.

3.2 Models

We first discuss a simple encoder-decoder model as a baseline reference for video captioning.

Next, we improve this via an attention mechanism. Finally, we present similar models for the

unsupervised video prediction and entailment generation tasks, and then combine them with

video captioning via the many-to-many multi-task approach.

3.2.1 Baseline Sequence-to-Sequence Model

Our baseline model is similar to the standard machine translation encoder-decoder RNN

model (Sutskever et al., 2014) where the final state of the encoder RNN is input as an initial

state to the decoder RNN, as shown in Fig. 3.2. The RNN is based on Long Short Term Memory

(LSTM) units, which are good at memorizing long sequences due to forget-style gates (Hochre-

iter and Schmidhuber, 1997). For video captioning, our input to the encoder is the video frame

features1 {f1, f2, ..., fn} of length n, and the caption word sequence {w1, w2, ..., wm} of length m

is generated during the decoding phase. The distribution of the output sequence w.r.t. the input

sequence is:

p(w1, ..., wm|f1, ..., fn) =
m∏
t=1

p(wt|hdt ) (3.1)

1We use several popular image features such as VGGNet, GoogLeNet and Inception-v4. Details in Sec. 3.3.1.
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Figure 3.3: Attention-based sequence-to-sequence baseline model for video captioning (similar
models also used for video prediction and entailment generation).

where hdt is the hidden state at the tth time step of the decoder RNN, obtained from hdt−1 and wt−1

via the standard LSTM-RNN equations. The distribution p(wt|hdt ) is given by softmax over all the

words in the vocabulary.

3.2.2 Attention-based Model

Our attention model architecture is similar to Bahdanau et al. (2015), with a bidirectional

LSTM-RNN as the encoder and a unidirectional LSTM-RNN as the decoder, see Fig. 3.3. At

each time step t, the decoder LSTM hidden state hdt is a non-linear recurrent function of the

previous decoder hidden state hdt−1, the previous time-step’s generated word wt−1, and the context

vector ct:

hdt = S(hdt−1, wt−1, ct) (3.2)
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Figure 3.4: Our many-to-many multi-task learning model to share encoders and decoders of the
video captioning, unsupervised video prediction, and entailment generation tasks.

where ct is a weighted sum of encoder hidden states {hei}:

ct =
n∑
i=1

αt,ih
e
i (3.3)

These attention weights {αt,i} act as an alignment mechanism by giving higher weights to certain

encoder hidden states which match that decoder time step better, and are computed as:

αt,i =
exp(et,i)∑n
k=1 exp(et,k)

(3.4)

where the attention function et,i is defined as:

et,i = wT tanh(W e
ah

e
i +W d

ah
d
t−1 + ba) (3.5)

where w, W e
a , W d

a , and ba are learned parameters. This attention-based sequence-to-sequence

model (Fig. 3.3) is our enhanced baseline for video captioning. We next discuss similar models

for the new tasks of unsupervised video prediction and entailment generation and then finally

share them via multi-task learning.
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3.2.3 Unsupervised Video Prediction

We model unsupervised video representation by predicting the sequence of future video

frames given the current frame sequence. Similar to Sec. 3.2.2, a bidirectional LSTM-RNN en-

coder and an LSTM-RNN decoder is used, along with attention. If the frame level features of a

video of length n are {f1, f2, ..., fn}, these are divided into two sets such that given the current

frames {f1, f2, .., fk} (in its encoder), the model has to predict (decode) the rest of the frames

{fk+1, fk+2, .., fn}. The motivation is that this helps the video encoder learn rich temporal repre-

sentations that are aware of their action-based context and are also robust to missing frames and

varying frame lengths or motion speeds. The optimization function is defined as:

minimize
φ

n−k∑
t=1

||fdt − ft+k||22 (3.6)

where φ are the model parameters, ft+k is the true future frame feature at decoder time step t and

fdt is the decoder’s predicted future frame feature at decoder time step t, defined as:

fdt = S(hdt−1, f
d
t−1, ct) (3.7)

similar to Eqn. 3.2, with hdt−1 and fdt−1 as the previous time step’s hidden state and predicted

frame feature respectively, and ct as the attention-weighted context vector.

3.2.4 Entailment Generation

Given a sentence (premise), the task of entailment generation is to generate a sentence (hy-

pothesis) which is a logical deduction or implication of the premise. Our entailment generation

model again uses a bidirectional LSTM-RNN encoder and LSTM-RNN decoder with an attention

mechanism (similar to Sec. 3.2.2). If the premise sp is a sequence of words {wp1, w
p
2, ..., w

p
n} and

the hypothesis sh is {wh1 , wh2 , ..., whm}, the distribution of the entailed hypothesis w.r.t. the premise

is:
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p(wh1 , ..., w
h
m|w

p
1, ..., w

p
n) =

m∏
t=1

p(wht |hdt ) (3.8)

where the distribution p(wht |hdt ) is again obtained via softmax over all the words in the vocabulary

and the decoder state hdt is similar to Eqn. 3.2.

3.2.5 Multi-Task Learning

Multi-task learning helps in sharing information between different tasks and across domains.

Our primary aim is to improve the video captioning model, where visual content translates to

a textual form in a directed (entailed) generation way. Hence, this presents an interesting op-

portunity to share temporally and logically directed knowledge with both visual and linguistic

generation tasks. Fig. 3.4 shows our overall many-to-many multi-task model for jointly learning

video captioning, unsupervised video prediction, and textual entailment generation. Here, the

video captioning task shares its video encoder (parameters) with the encoder of the video pre-

diction task (one-to-many setting) so as to learn context-aware and temporally-directed visual

representations (see Sec. 3.2.3).

Moreover, the decoder of the video captioning task is shared with the decoder of the textual

entailment generation task (many-to-one setting), thus helping generate captions that can be

‘entailed’ by, i.e., are logically implied by or follow from the video content (see Sec. 3.2.4).2

In both the one-to-many and the many-to-one settings, we also allow the attention parameters

to be shared or separated. The overall many-to-many setting thus improves both the visual and

language representations of the video captioning model.

We train the multi-task model by alternately optimizing each task in mini-batches based on a

mixing ratio. Let αv, αf , and αe be the number of mini-batches optimized alternately from each

2Empirically, logical entailment helped captioning more than simple fusion with language modeling (i.e., partial
sentence completion with no logical implication), because a caption is also ‘entailed’ by a video in a logically-
directed sense and hence the entailment generation task matches the video captioning task better than language
modeling. Moreover, a multi-task setup is more suitable to add directed information such as entailment (as opposed
to pretraining or fusion with only the decoder). Details in Sec. 3.4.1.
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of these three tasks – video captioning, unsupervised video future frames prediction, and entail-

ment generation, resp. Then the mixing ratio is defined as αv
(αv+αf+αe)

:
αf

(αv+αf+αe)
: αe
(αv+αf+αe)

.

3.3 Experimental Setup

3.3.1 Datasets

Video Captioning Datasets We report results on three popular video captioning datasets. First,

we use the YouTube2Text or MSVD (Chen and Dolan, 2011) for our primary results, which

contains 1970 YouTube videos in the wild with several different reference captions per video (40

on average). We also use MSR-VTT (Xu et al., 2016a) with 10, 000 diverse video clips (from a

video search engine) – it has 200, 000 video clip-sentence pairs and around 20 captions per video;

and M-VAD (Torabi et al., 2015) with 49, 000 movie-based video clips but only 1 or 2 captions

per video, making most evaluation metrics (except paraphrase-based METEOR) infeasible. We

use the standard splits for all three datasets. Further details about all these datasets are provided

in Appendix A.1.

Video Prediction Dataset For our unsupervised video representation learning task, we use the

UCF-101 action videos dataset (Soomro et al., 2012), which contains 13, 320 video clips of

101 action categories, and suits our video captioning task well because it also contains short

video clips of a single action or few actions. We use the standard splits – further details in Ap-

pendix A.1.

Entailment Generation Dataset For the entailment generation encoder-decoder model, we use

the Stanford Natural Language Inference (SNLI) corpus (Bowman et al., 2015), which contains

human-annotated English sentence pairs with classification labels of entailment, contradiction

and neutral. It has a total of 570, 152 sentence pairs out of which 190, 113 correspond to true

entailment pairs, and we use this subset in our multi-task video captioning model. For improving

video captioning, we use the same training/validation/test splits as provided by Bowman et al.
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(2015), which is 183, 416 training, 3, 329 validation, and 3, 368 testing pairs (for the entailment

subset).

However, for the entailment generation multi-task results (see results in Sec. 3.4.3), we mod-

ify the splits so as to create a multi-reference setup which can afford evaluation with automatic

metrics. A given premise usually has multiple entailed hypotheses but the original SNLI corpus is

set up as single-reference (for classification). Due to this, the different entailed hypotheses of the

same premise land up in different splits of the dataset (e.g., one in train and one in test/validation)

in many cases. Therefore, we regroup the premise-entailment pairs and modify the split as fol-

lows: among the 190, 113 premise-entailment pairs subset of the SNLI corpus, there are 155, 898

unique premises; out of which 145, 822 have only one hypothesis and we make this the training

set, and the rest of them (10, 076) have more than one hypothesis, which we randomly shuffle and

divide equally into test and validation sets, so that each of these two sets has approximately the

same distribution of the number of reference hypotheses per premise.

These new validation and test sets hence contain premises with multiple entailed hypotheses

as ground truth references, thus allowing for automatic metric evaluation, where differing gen-

erations still get positive scores by matching one of the multiple references. Also, this creates a

more challenging dataset for entailment generation because of zero premise overlap between the

training and val/test sets. We will make these split details publicly available.

Pre-trained Visual Frame Features For the three video captioning and UCF-101 datasets, we

fix our sampling rate to 3fps to bring uniformity in the temporal representation of actions across

all videos. These sampled frames are then converted into features using several state-of-the-art

pre-trained models on ImageNet (Deng et al., 2009) – VGGNet (Simonyan and Zisserman, 2015),

GoogLeNet (Szegedy et al., 2015; Ioffe and Szegedy, 2015), and Inception-v4 (Szegedy et al.,

2016).
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3.3.2 Evaluation (Automatic and Human)

For our video captioning as well as entailment generation results, we use four diverse auto-

matic evaluation metrics that are popular for image/video captioning and language generation

in general: METEOR (Denkowski and Lavie, 2014a), BLEU-4 (Papineni et al., 2002), CIDEr-

D (Vedantam et al., 2015), and ROUGE-L (Lin, 2004). Particularly, METEOR and CIDEr-D

have been justified to be better for generation tasks, because CIDEr-D uses consensus among the

(large) number of references and METEOR uses soft matching based on stemming, paraphras-

ing, and WordNet synonyms. We use the standard evaluation code from the Microsoft COCO

server (Chen et al., 2015) to obtain these results and also to compare the results with previous

papers.3

We also present human evaluation results based on relevance (i.e., how related is the gen-

erated caption w.r.t. the video contents such as actions, objects, and events; or is the generated

hypothesis entailed or implied by the premise) and coherence (i.e., a score on the logic, readabil-

ity, and fluency of the generated sentence).

3.3.3 Training Details

We tune all hyperparameters on the dev splits: LSTM-RNN hidden state size, learning rate,

weight initializations, and mini-batch mixing ratios (tuning ranges in Appendix A.1). We use the

following settings in all of our models (unless otherwise specified): we unroll video encoder/de-

coder RNNs to 50 time steps and language encoder/decoder RNNs to 30 time steps. We use a

1024-dimension RNN hidden state size and 512-dim vectors to embed visual features and word

vectors. We use Adam optimizer (Kingma and Ba, 2015). We apply a dropout of 0.5. See Ap-

pendix A.1 for full details.

3We use avg. of these four metrics on validation set to choose the best model, except for single-reference M-VAD
dataset where we only report and choose based on METEOR.
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3.4 Experimental Results

3.4.1 Video Captioning on YouTube2Text

Table 3.1 presents our primary results on the YouTube2Text (MSVD) dataset, reporting sev-

eral previous works, all our baselines and attention model ablations, and our three multi-task

models, using the four automated evaluation metrics. For each subsection below, we have re-

ported the important training details inline, and refer to Appendix A.1 for full details (e.g., learn-

ing rates and initialization).

Baseline Performance We first present all our baseline model choices (ablations) in Table 3.1.

Our baselines represent the standard sequence-to-sequence model with three different visual fea-

ture types as well as those with attention mechanisms. Each baseline model is trained with three

random seed initializations and the average is reported (for stable results). The final baseline

model ⊗ instead uses an ensemble (E), which is a standard denoising method (Sutskever et al.,

2014) that performs inference over ten randomly initialized models, i.e., at each time step t of the

decoder, we generate a word based on the avg. of the likelihood probabilities from the ten models.

Moreover, we use beam search with size 5 for all baseline models. Overall, the final baseline

model with Inception-v4 features, attention, and 10-ensemble performs well (and is better than all

previous state-of-the-art), and so we next add all our novel multi-task models on top of this final

baseline.

Multi-Task with Video Prediction (1-to-M) Here, the video captioning and unsupervised video

prediction tasks share their encoder LSTM-RNN weights and image embeddings in a one-to-

many multi-task setting. Two important hyperparameters tuned (on the validation set of caption-

ing datasets) are the ratio of encoder vs decoder frames for video prediction on UCF-101 (where

we found that 80% of frames as input and 20% for prediction performs best); and the mini-batch

mixing ratio between the captioning and video prediction tasks (where we found 100 : 200 works
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Models METEOR CIDEr-D ROUGE-L BLEU-4
PREVIOUS WORK

LSTM-YT (V) (Venugopalan et al., 2015b) 26.9 - - 31.2
S2VT (V + A) (Venugopalan et al., 2015a) 29.8 - - -
Temporal Attention (G + C) (Yao et al., 2015) 29.6 51.7 - 41.9
LSTM-E (V + C) (Pan et al., 2016b) 31.0 - - 45.3
Glove + DeepFusion (V) (E) (Venugopalan et al., 2016) 31.4 - - 42.1
p-RNN (V + C) (Yu et al., 2016) 32.6 65.8 - 49.9
HNRE + Attention (G + C) (Pan et al., 2016a) 33.9 - - 46.7

OUR BASELINES

Baseline (V) 31.4 63.9 68.0 43.6
Baseline (G) 31.7 64.8 68.6 44.1
Baseline (I) 33.3 75.6 69.7 46.3
Baseline + Attention (V) 32.6 72.2 69.0 47.5
Baseline + Attention (G) 33.0 69.4 68.3 44.9
Baseline + Attention (I) 33.8 77.2 70.3 49.9
Baseline + Attention (I) (E) ⊗ 35.0 84.4 71.5 52.6

OUR MULTI-TASK LEARNING MODELS

⊗ + Video Prediction (1-to-M) 35.6 88.1 72.9 54.1
⊗ + Entailment Generation (M-to-1) 35.9 88.0 72.7 54.4
⊗ + Video Prediction + Entailment Generation (M-to-M) 36.0 92.4 72.8 54.5

Table 3.1: Primary video captioning results on Youtube2Text (MSVD), showing previous works,
our several strong baselines, and our three multi-task models. Here, V, G, I, C, A are short for
VGGNet, GoogLeNet, Inception-v4, C3D, and AlexNet visual features; E = ensemble. The
multi-task models are applied on top of our best video captioning baseline ⊗, with an ensemble.
All the multi-task models are statistically significant over the baseline (discussed inline in the
corresponding results sections).

well). Table 3.1 shows a statistically significant improvement4 in all metrics in comparison to

the best baseline (non-multitask) model as well as w.r.t. all previous works, demonstrating the

effectiveness of multi-task learning for video captioning with video prediction, even with unsu-

pervised signals.

Multi-Task with Entailment Generation (M-to-1) Here, the video captioning and entailment

generation tasks share their language decoder LSTM-RNN weights and word embeddings in

a many-to-one multi-task setting. We observe that a mixing ratio of 100 : 50 alternating mini-

batches (between the captioning and entailment tasks) works well here. Again, Table 3.1 shows

4Statistical significance of p < 0.01 for CIDEr-D and ROUGE-L, p < 0.02 for BLEU-4, p < 0.03 for METEOR,
based on the bootstrap test (Noreen, 1989; Efron and Tibshirani, 1994) with 100K samples.
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statistically significant improvements5 in all the metrics in comparison to the best baseline model

(and all previous works) under this multi-task setting. Note that in our initial experiments, our en-

tailment generation model helped the video captioning task significantly more than the alternative

approach of simply improving fluency by adding (or deep-fusing) an external language model (or

pre-trained word embeddings) to the decoder (using both in-domain and out-of-domain language

models), again because a caption is also ‘entailed’ by a video in a logically-directed sense and

hence this matches our captioning task better (also see results of Venugopalan et al. (2016) in

Table 3.1).

Multi-Task with Video and Entailment Generation (M-to-M) Combining the above one-to-

many and many-to-one multi-task learning models, our full model is the 3-task, many-to-many

model (Fig. 3.4) where both the video encoder and the language decoder of the video captioning

model are shared (and hence improved) with that of the unsupervised video prediction and entail-

ment generation models, respectively.6 A mixing ratio of 100 : 100 : 50 alternate mini-batches of

video captioning, unsupervised video prediction, and entailment generation, resp. works well. Ta-

ble 3.1 shows that our many-to-many multi-task model again outperforms our strongest baseline

(with statistical significance of p < 0.01 on all metrics), as well as all the previous state-of-the-

art results by large absolute margins on all metrics. It also achieves significant improvements

on some metrics over the one-to-many and many-to-one models.7 Overall, we achieve the best

results to date on YouTube2Text (MSVD) on all metrics.

3.4.2 Video Captioning on MSR-VTT, M-VAD

In Table 3.2, we also train and evaluate our final many-to-many multi-task model on two other

video captioning datasets (using their standard splits; details in Appendix A.1). First, we evaluate

5Statistical significance of p < 0.01 for all four metrics.
6We found the setting with unshared attention parameters to work best, likely because video captioning and video
prediction prefer very different alignment distributions.
7Many-to-many model’s improvements have a statistical significance of p < 0.01 on all metrics w.r.t. baseline, and
p < 0.01 on CIDEr-D w.r.t. both one-to-many and many-to-one models, and p < 0.04 on METEOR w.r.t. one-to-
many.
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Models M C R B
Venugopalan et al. (2015b)? 23.4 - - 32.3
Yao et al. (2015)? 25.2 - - 35.2
Xu et al. (2016a) 25.9 - - 36.6
Rank1: v2t navigator 28.2 44.8 60.9 40.8
Rank2: Aalto 26.9 45.7 59.8 39.8
Rank3: VideoLAB 27.7 44.1 60.6 39.1
Our Model (New Rank1) 28.8 47.1 60.2 40.8

Table 3.2: Results on MSR-VTT dataset on the 4 metrics. ?Results are reimplementations as
per Xu et al. (2016a). We also report the top 3 leaderboard systems – our model achieves the new
rank 1 based on their ranking method.

Models METEOR
Yao et al. (2015) 5.7
Venugopalan et al. (2015a) 6.7
Pan et al. (2016a) 6.8
Our M-to-M Multi-Task Model 7.4

Table 3.3: Results on M-VAD dataset.

on the new MSR-VTT dataset (Xu et al., 2016a). Since this is a recent dataset, we list previous

works’ results as reported by the MSR-VTT dataset paper itself.8 We improve over all of these

significantly. Moreover, they maintain a leaderboard9 on this dataset and we also report the top

3 systems from it. Based on their ranking method, our multi-task model achieves the new rank 1

on this leaderboard. In Table 3.3, we further evaluate our model on the challenging movie-based

M-VAD dataset, and again achieve improvements over all previous work (Venugopalan et al.,

2015a; Pan et al., 2016a; Yao et al., 2015).10

3.4.3 Entailment Generation Results

Above, we showed that the new entailment generation task helps improve video captioning.

Next, we show that the video captioning task also inversely helps the entailment generation task.

8In their updated supplementary at https://www.microsoft.com/en-us/research/wp-content/uploads/2016/10/
cvpr16.supplementary.pdf

9http://ms-multimedia-challenge.com/leaderboard

10Following previous work, we only use METEOR because M-VAD only has a single reference caption per video.
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Models M C R B
Entailment Generation 29.6 117.8 62.4 40.6
+Video Caption (M-to-1) 30.0 121.6 63.9 41.6

Table 3.4: Entailment generation results with the four metrics.

Given a premise, the task of entailment generation is to generate an entailed hypothesis. We use

only the entailment pairs subset of the SNLI corpus for this, but with a multi-reference split setup

to allow automatic metric evaluation and a zero train-test premise overlap (see Sec. 3.3.1). All

the hyperparameter details (again tuned on the validation set) are presented in Appendix A.1. Ta-

ble 3.4 presents the entailment generation results for the baseline (sequence-to-sequence with at-

tention, 3-ensemble, beam search) and the multi-task model which uses video captioning (shared

decoder) on top of the baseline. A mixing ratio of 100 : 20 alternate mini-batches of entailment

generation and video captioning (resp.) works well.11 The multi-task model achieves stat. signif-

icant (p < 0.01) improvements over the baseline on all metrics, thus demonstrating that video

captioning and entailment generation both mutually help each other.

3.4.4 Human Evaluation

In addition to the automated evaluation metrics, we present pilot-scale human evaluations

on the YouTube2Text (Table 3.1) and entailment generation (Table 3.4) results. In each case,

we compare our strongest baseline with our final multi-task model (M-to-M in case of video

captioning and M-to-1 in case of entailment generation). We evaluate a random sample of 300

generated captions (or entailed hypotheses) from the test set, across three human evaluators.

We remove the model identity to anonymize the two models, and ask the human evaluators to

choose the better model based on relevance and coherence (described in Sec. 3.3.2). As shown

in Table 3.5 and Table 3.6, the multi-task models are always better than the strongest baseline

11Note that this many-to-one model prefers a different mixing ratio and learning rate than the many-to-one model for
improving video captioning (Sec. 3.4.1), because these hyperparameters depend on the primary task being improved,
as also discussed in previous work (Luong et al., 2016).
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Relevance Coherence
Not Distinguishable 70.7% 92.6%
SotA Baseline Wins 12.3% 1.7%
Multi-Task Wins (M-to-M) 17.0% 5.7%

Table 3.5: Human evaluation on YouTube2Text video captioning.

Relevance Coherence
Not Distinguishable 84.6% 98.3%
SotA Baseline Wins 6.7% 0.7%
Multi-Task Wins (M-to-1) 8.7% 1.0%

Table 3.6: Human evaluation on entailment generation.

for both video captioning and entailment generation, on both relevance and coherence, and with

similar improvements (2-7%) as the automatic metrics (shown in Table 3.1).

3.4.5 Insights

Fig. 3.5 shows video captioning generation results on the YouTube2Text dataset where our

final M-to-M multi-task model is compared with our strongest attention-based baseline model

for three categories of videos: (a) complex examples where the multi-task model performs better

than the baseline; (b) ambiguous examples (i.e., ground truth itself confusing) where multi-task

model still correctly predicts one of the possible categories (c) complex examples where both

models perform poorly. Overall, we find that the multi-task model generates captions that are

better at both temporal action prediction and logical entailment (i.e., correct subset of full video

premise) w.r.t. the ground truth captions.

On analyzing the cases where the baseline is better than the final M-to-M multi-task model,

we find that these are often scenarios where the multi-task model’s caption is also correct but

the baseline caption is a bit more specific, e.g., “a man is holding a gun” vs “a man is shooting a

gun”.
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(a) (b) (c)

Figure 3.5: Examples of generated video captions on the YouTube2Text dataset: (a) complex
examples where the multi-task model performs better than the baseline; (b) ambiguous examples
(i.e., ground truth itself confusing) where multi-task model still correctly predicts one of the
possible categories (c) complex examples where both models perform poorly.

Given Premise Generated Entailment
a man on stilts is playing a tuba for money on the boardwalk a man is playing an instrument
a child that is dressed as spiderman is ringing the doorbell a child is dressed as a superhero
several young people sit at a table playing poker people are playing a game
a woman in a dress with two children a woman is wearing a dress
a blue and silver monster truck making a huge jump over
crushed cars

a truck is being driven

Table 3.7: Examples of our multi-task model’s generated entailment hypotheses given a premise.

Finally, Table 3.7 presents output examples of our entailment generation multi-task model

(Sec. 3.4.3), showing how the model accurately learns to produce logically implied subsets of the

premise.

3.5 Conclusion

We presented a multimodal, multi-task learning approach to improve video captioning by

incorporating temporally and logically directed knowledge via video prediction and entailment

generation tasks. We achieve the best reported results (and rank) on three datasets, based on

multiple automatic and human evaluations. We also show mutual multi-task improvements on the
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new entailment generation task. In the next chapters, we apply our entailment-based multi-task

paradigm to other directed language generation tasks such as textual summarization task.
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CHAPTER 4: MULTI-TASK LEARNING FOR TEXTUAL SUMMARIZATION

4.1 Introduction

Abstractive summarization is the challenging NLG task of compressing and rewriting a doc-

ument into a short, relevant, salient, and coherent summary. It has numerous applications such

as summarizing storylines, event understanding, etc. As compared to extractive or compressive

summarization (Jing and McKeown, 2000; Knight and Marcu, 2002; Clarke and Lapata, 2008;

Filippova et al., 2015; Henß et al., 2015), abstractive summaries are based on rewriting as op-

posed to selecting. Recent end-to-end, neural sequence-to-sequence models and larger datasets

have allowed substantial progress on the abstractive task, with ideas ranging from copy-pointer

mechanism and redundancy coverage, to metric reward based reinforcement learning (Rush et al.,

2015; Chopra et al., 2016; Nallapati et al., 2016; See et al., 2017).

Despite these strong recent advancements, there is still a lot of scope for improving the sum-

mary quality generated by these models. A good rewritten summary is one that contains all the

salient information from the document, is logically followed (entailed) by it, and avoids redun-

dant information. The redundancy aspect was addressed by coverage models (Suzuki and Nagata,

2016; Chen et al., 2016; Nallapati et al., 2016; See et al., 2017), but we still need to teach these

models about how to better detect salient information from the input document, as well as about

better logically-directed natural language inference skills.

In this work, we improve abstractive text summarization via soft, high-level (semantic) layer-

specific multi-task learning with two relevant auxiliary tasks. The first is that of document-to-

question generation, which teaches the summarization model about what are the right questions

to ask, which in turn is directly related to what the salient information in the input document is.

The second auxiliary task is a premise-to-entailment generation task to teach it how to rewrite a
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summary which is a directed-logical subset of (i.e., logically follows from) the input document,

and contains no contradictory or unrelated information. For the question generation task, we

use the SQuAD dataset (Rajpurkar et al., 2016), where we learn to generate a question given a

sentence containing the answer, similar to the recent work by Du et al. (2017). Our entailment

generation task is based on the recent SNLI classification dataset and task (Bowman et al., 2015),

converted to a generation task (Pasunuru and Bansal, 2017a).

Further, we also present novel multi-task learning architectures based on multi-layered en-

coder and decoder models, where we empirically show that it is substantially better to share the

higher-level semantic layers between the three aforementioned tasks, while keeping the lower-

level (lexico-syntactic) layers unshared. We also explore different ways to optimize the shared

parameters and show that ‘soft’ parameter sharing achieves higher performance than hard shar-

ing.

Empirically, our soft, layer-specific sharing model with the question and entailment gener-

ation auxiliary tasks achieves statistically significant improvements over the state-of-the-art on

both the CNN/DailyMail and Gigaword datasets. It also performs significantly better on the

DUC-2002 transfer setup, demonstrating its strong generalizability as well as the importance of

auxiliary knowledge in low-resource scenarios. We also report improvements on our auxiliary

question and entailment generation tasks over their respective previous state-of-the-art. Moreover,

we significantly decrease the training time of the multi-task models by initializing the individual

tasks from their pretrained baseline models. Finally, we present human evaluation studies as well

as detailed quantitative and qualitative analysis studies of the improved saliency detection and

logical inference skills learned by our multi-task model.

4.2 Models

First, we introduce our pointer+coverage baseline model and then our two auxiliary tasks:

question generation and entailment generation (and finally the multi-task learning models in

Sec. 4.3).
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4.2.1 Baseline Pointer+Coverage Model

We use a sequence-attention-sequence model with a 2-layer bidirectional LSTM-RNN en-

coder and a 2-layer uni-directional LSTM-RNN decoder, along with Bahdanau et al. (2015) style

attention. Let x = {x1, x2, ..., xm} be the source document and y = {y1, y2, ..., yn} be the target

summary. The output summary generation vocabulary distribution conditioned over the input

source document is Pv(y|x; θ) =
∏n

t=1 pv(yt|y1:t−1, x; θ). Let the decoder hidden state be st at

time step t and let ct be the context vector which is defined as a weighted combination of encoder

hidden states. We concatenate the decoder’s (last) RNN layer hidden state st and context vector

ct and apply a linear transformation, and then project to the vocabulary space by another linear

transformation. Finally, the conditional vocabulary distribution at each time step t of the decoder

is defined as:

pv(yt|y1:t−1, x; θ) = sfm(Vp(Wf [st; ct] + bf ) + bp) (4.1)

where, Wf , Vp, bf , bp are trainable parameters, and sfm(·) is the softmax function.

Pointer-Generator Networks Pointer mechanism (Vinyals et al., 2015) helps in directly copy-

ing the words from the source sequence during target sequence generation, which is a good fit for

a task like summarization. Our pointer mechanism approach is similar to See et al. (2017), who

use a soft switch based on the generation probability pg = σ(Wgct + Ugst + Vgewt−1 + bg),

where σ(·) is a sigmoid function, Wg, Ug, Vg and bg are parameters learned during training.

ewt−1 is the previous time step output word embedding. The final word distribution is Pf (y) =

pg · Pv(y) + (1 − pg) · Pc(y), where Pv vocabulary distribution is as shown in Eq. 4.1, and copy

distribution Pc is based on the attention distribution over source document words.

Coverage Mechanism Following previous work (See et al., 2017), coverage helps alleviate

the issue of word repetition while generating long summaries. We maintain a coverage vector

ĉt =
∑t−1

t=0 αt that sums over all of the previous time steps attention distributions αt, and this

is added as input to the attention mechanism. Coverage loss is Lcov(θ) =
∑

t

∑
imin(αt,i, ĉt,i).
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Finally, the total loss is a weighted combination of cross-entropy loss and coverage loss:

L(θ) = − logPf (y) + λLcov(θ) (4.2)

where λ is a tunable hyperparameter.

4.2.2 Two Auxiliary Tasks

Despite the strengths of the baseline model described above with attention, pointer, and cover-

age, a good summary should also contain maximal salient information and be a directed logical

entailment of the source document. We teach these skills to the abstractive summarization model

via multi-task training with two related auxiliary tasks: question generation task and entailment

generation.

Question Generation The task of question generation is to generate a question from a given

input sentence, which in turn is related to the skill of being able to find the important salient infor-

mation to ask questions about. First the model has to identify the important information present

in the given sentence, then it has to frame (generate) a question based on this salient information,

such that, given the sentence and the question, one has to be able to predict the correct answer

(salient information in this case). A good summary should also be able to find and extract all the

salient information in the given source document, and hence we incorporate such capabilities into

our abstractive text summarization model by multi-task learning it with a question generation

task, sharing some common parameters/representations (see more details in Sec. 4.3). For setting

up the question generation task, we follow Du et al. (2017) and use the SQuAD dataset to extract

sentence-question pairs. Next, we use the same sequence-to-sequence model architecture as our

summarization model. Note that even though our question generation task is generating one ques-

tion at a time1, our multi-task framework (see Sec. 4.3) is set up in such a way that the sentence-

1We also tried to generate all the questions at once from the full document, but we obtained low accuracy because of
this task’s challenging nature and overall less training data.
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level knowledge from this auxiliary task can help the document-level primary (summarization)

task to generate multiple salient facts – by sharing high-level semantic layer representations. See

Sec. 4.6 and Table 4.10 for a quantitative evaluation showing that the multi-task model can find

multiple (and more) salient phrases in the source document. Also see Sec. 4.6 (and supp) for

challenging qualitative examples where baseline and SotA models only recover a small subset of

salient information but our multi-task model with question generation is able to detect more of

the important information.

Entailment Generation The task of entailment generation is to generate a hypothesis which is

entailed by (or logically follows from) the given premise as input. In summarization, the gen-

eration decoder also needs to generate a summary that is entailed by the source document, i.e.,

does not contain any contradictory or unrelated/extraneous information as compared to the in-

put document. We again incorporate such inference capabilities into the summarization model

via multi-task learning, sharing some common representations/parameters between our summa-

rization and entailment generation model (more details in Sec. 4.3). For this task, we use the

entailment-labeled pairs from the SNLI dataset (Bowman et al., 2015) and set it up as a genera-

tion task (using the same strong model architecture as our abstractive summarization model). See

Sec. 4.6 and Table 4.9 for a quantitative evaluation showing that the multi-task model is better

entailed by the source document and has fewer extraneous facts. Also see Sec. 4.6 for qualita-

tive example of how our multi-task model with the entailment auxiliary task is able to generate

more logically-entailed summaries than the baseline and SotA models, which instead produce

extraneous, unrelated words not present (in any paraphrased form) in the source document.

4.3 Multi-Task Learning

We employ multi-task learning for parallel training of our three tasks: abstractive summa-

rization, question generation, and entailment generation. In this section, we describe our novel

layer-specific, soft-sharing approaches and other multi-task learning details.
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Figure 4.1: Overview of our multi-task model with parallel training of three tasks: abstractive
summary generation (SG), question generation (QG), and entailment generation (EG). We share
the ‘blue’ color representations across all the three tasks, i.e., second layer of encoder, attention
parameters, and first layer of decoder.

4.3.1 Layer-Specific Sharing Mechanism

Simply sharing all parameters across the related tasks is not optimal, because models for

different tasks have different input and output distributions, esp. for low-level vs. high-level

parameters. Therefore, related tasks should share some common representations (e.g., high-level

information), as well as need their own individual task-specific representations (esp. low-level

information). To this end, we allow different components of model parameters of related tasks to

be shared vs. unshared, as described next.

Encoder Layer Sharing: Belinkov et al. (2017) observed that lower layers (i.e., the layers

closer to the input words) of RNN cells in a seq2seq machine translation model learn to represent

word structure, while higher layers (farther from input) are more focused on high-level semantic

meanings (similar to findings in the computer vision community for image features (Zeiler and

Fergus, 2014)). We believe that while textual summarization, question generation, and entailment

generation have different training data distributions and low-level representations, they can still
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benefit from sharing their models’ high-level components (e.g., those that capture the skills of

saliency and inference). Thus, we keep the lower-level layer (i.e., first layer closer to input words)

of the 2-layer encoder of all three tasks unshared, while we share the higher layer (second layer

in our model as shown in Fig. 4.1) across the three tasks.

Decoder Layer Sharing: Similarly for the decoder, lower layers (i.e., the layers closer to the

output words) learn to represent word structure for generation, while higher layers (farther from

output) are more focused on high-level semantic meaning. Hence, we again share the higher level

components (first layer in the decoder far from output as shown in Fig. 4.1), while keeping the

lower layer (i.e., second layer) of decoders of all three tasks unshared.

Attention Sharing: As described in Sec. 4.2.1, the attention mechanism defines an attention

distribution over high-level layer encoder hidden states and since we share the second, high-level

(semantic) layer of all the encoders, it is intuitive to share the attention parameters as well.

4.3.2 Soft vs. Hard Parameter Sharing

Hard-sharing: In the most common multi-task learning hard-sharing approach, the parameters

to be shared are forced to be the same. As a result, gradient information from multiple tasks will

directly pass through shared parameters, hence forcing a common space representation for all the

related tasks. Soft-sharing: In our soft-sharing approach, we encourage shared parameters to be

close in representation space by penalizing their l2 distances. Unlike hard sharing, this approach

gives more flexibility for the tasks by only loosely coupling the shared space representations. We

minimize the following loss function for the primary task in soft-sharing approach:

L(θ) = − logPf (y) + λLcov(θ) + γ‖θs − ψs‖ (4.3)

where γ is a hyperparameter, θ represents the primary summarization task’s full parameters,

while θs and ψs represent the shared parameter subset between the primary and auxiliary tasks.
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4.3.3 Fast Multi-Task Training

During multi-task learning, we alternate the mini-batch optimization of the three tasks, based

on a tunable ‘mixing ratio’ αs : αq : αe; i.e., optimizing the summarization task for αs mini-

batches followed by optimizing the question generation task for αq mini-batches, followed by

entailment generation task for αe mini-batches (and for 2-way versions of this, we only add one

auxiliary task at a time). We continue this process until all the models converge. Also, impor-

tantly, instead of training from scratch, we start the primary task (summarization) from a 90%-

converged model of its baseline to make the training process faster. We observe that starting

from a fully-converged baseline makes the model stuck in a local minimum. In addition, we also

start all auxiliary models from their 90%-converged baselines, as we found that starting the aux-

iliary models from scratch has a chance to pull the primary model’s shared parameters towards

randomly-initialized auxiliary model’s shared parameters.

4.4 Experimental Setup

Datasets: We use CNN/DailyMail dataset (Hermann et al., 2015; Nallapati et al., 2016) and

Gigaword (Rush et al., 2015) datasets for summarization, and the Stanford Natural Language

Inference (SNLI) corpus (Bowman et al., 2015) and the Stanford Question Answering Dataset

(SQuAD) (Rajpurkar et al., 2016) datasets for our entailment and question generation tasks, resp.

We also show generalizability/transfer results on DUC-2002 with our CNN/DM trained models.

Appendix A.2 has full dataset details.

Evaluation Metrics: We use the standard ROUGE evaluation package (Lin, 2004) for reporting

the results on all of our summarization models. Following previous work (Chopra et al., 2016;

Nallapati et al., 2016), we use ROUGE full-length F1 variant for all our results. Following See

et al. (2017), we also report METEOR (Denkowski and Lavie, 2014a) using the MS-COCO

evaluation script (Chen et al., 2015).
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Models ROUGE-1 ROUGE-2 ROUGE-L METEOR
PREVIOUS WORK

Seq2Seq(50k vocab) (See et al., 2017) 31.33 11.81 28.83 12.03
Pointer (See et al., 2017) 36.44 15.66 33.42 15.35
Pointer+Coverage (See et al., 2017) ? 39.53 17.28 36.38 18.72
Pointer+Coverage (See et al., 2017) † 38.82 16.81 35.71 18.14

OUR MODELS

Two-Layer Baseline (Pointer+Coverage) ⊗ 39.56 17.52 36.36 18.17
⊗ + Entailment Generation 39.84 17.63 36.54 18.61
⊗ + Question Generation 39.73 17.59 36.48 18.33
⊗ + Entailment Gen. + Question Gen. 39.81 17.64 36.54 18.54

Table 4.1: CNN/DailyMail summarization results. ROUGE scores are full length F-1 (as previous
work). All the multi-task improvements are statistically significant over the state-of-the-art
baseline.

Human Evaluation Criteria: We used Amazon MTurk to perform human evaluation of sum-

mary relevance and readability. We selected human annotators that were located in the US,

had an approval rate greater than 95%, and had at least 10,000 approved HITs. For the pair-

wise model comparisons discussed in Sec. 4.5.2, we showed the annotators the input article,

the ground truth summary, and the two model summaries (randomly shuffled to anonymize model

identities) – we then asked them to choose the better among the two model summaries or choose

‘Not-Distinguishable’ if both summaries are equally good/bad. Instructions for relevance were

defined based on the summary containing salient/important information from the given article,

being correct (i.e., avoiding contradictory/unrelated information), and avoiding redundancy. In-

structions for readability were based on the summary’s fluency, grammaticality, and coherence.

Training Details All our soft/hard and layer-specific sharing decisions were made on the valida-

tion/development set. Details of RNN hidden state sizes, Adam optimizer, mixing ratios, etc. are

provided in Appendix A.2.
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Models R-1 R-2 R-L
PREVIOUS WORK

ABS+ (Rush et al., 2015) 29.76 11.88 26.96
RAS-El (Chopra et al., 2016) 33.78 15.97 31.15
lvt2k (Nallapati et al., 2016) 32.67 15.59 30.64
Pasunuru et al. (2017) 32.75 15.35 30.82

OUR MODELS

2-Layer Pointer Baseline ⊗ 34.26 16.40 32.03
⊗ + Entailment Generation 35.45 17.16 33.19
⊗ + Question Generation 35.48 17.31 32.97
⊗ + Entailment + Question 35.98 17.76 33.63

Table 4.2: Summarization results on Gigaword. ROUGE scores are full length F-1. All the
multi-task improvements are statistically significant over the state-of-the-art baseline.

4.5 Experimental Results

4.5.1 Summarization (Primary Task) Results

Pointer+Coverage Baseline We start from the strong model of See et al. (2017).2 Table 4.1

shows that our baseline model performs better than or comparable to See et al. (2017).3 On Gi-

gaword dataset, our baseline model (with pointer only, since coverage not needed for this single-

sentence summarization task) performs better than all previous works, as shown in Table 4.2.

Multi-Task with Entailment Generation We first perform multi-task learning between abstrac-

tive summarization and entailment generation with soft-sharing of parameters as discussed in

Sec. 4.3. Table 4.1 and Table 4.2 shows that this multi-task setting is better than our strong base-

line models and the improvements are statistically significant on all metrics4 on both CNN/Dai-

lyMail (p < 0.01 in ROUGE-1/ROUGE-L/METEOR and p < 0.05 in ROUGE-2) and Gigaword

(p < 0.01 on all metrics) datasets, showing that entailment generation task is inducing useful

inference skills to the summarization task (also see analysis examples in Sec. 4.6).

2We use two layers so as to allow our high- versus low-level layer sharing intuition. Note that this does not increase
the parameter size much (23M versus 22M for See et al. (2017)).
3As mentioned in the github for See et al. (2017), their publicly released pretrained model produces the lower scores
that we represent by † in Table 4.1.
4Statistical significance is computed via bootstrap test (Noreen, 1989; Efron and Tibshirani, 1994) with 100K
samples.
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Models Relevance Readability Total
MTL VS. BASELINE

MTL wins 43 40 83
Baseline wins 22 24 46
Non-distinguish. 35 36 71

MTL VS. SEE ET AL. (2017)
MTL wins 39 33 72
See et al. (2017) wins 29 38 67
Non-distinguish. 32 29 61

Table 4.3: CNN/DM Human Evaluation: pairwise comparison between our 3-way multi-task
(MTL) model w.r.t. our baseline and See et al. (2017).

Models Relevance Readability Total
MTL wins 33 32 65
Baseline wins 22 22 44
Non-distinguish. 45 46 91

Table 4.4: Gigaword Human Evaluation: pairwise comparison between our 3-way multi-task
(MTL) model w.r.t. our baseline.

Multi-Task with Question Generation For multi-task learning with question generation, the

improvements are statistically significant in ROUGE-1 (p < 0.01), ROUGE-L (p < 0.05), and

METEOR (p < 0.01) for CNN/DailyMail and in all metrics (p < 0.01) for Gigaword, compared

to the respective baseline models. Also, Sec. 4.6 presents quantitative and qualitative analysis of

this model’s improved saliency.5

Multi-Task with Entailment and Question Generation Finally, we perform multi-task learning

with all three tasks together, achieving the best of both worlds (inference skills and saliency).

Table 4.1 and Table 4.2 show that our full multi-task model achieves the best scores on CNN/Dai-

lyMail and Gigaword datasets, and the improvements are statistically significant on all metrics on

both CNN/DailyMail (p < 0.01 in ROUGE-1/ROUGE-L/METEOR and p < 0.02 in ROUGE-2)

and Gigaword (p < 0.01 on all metrics). Finally, our 3-way multi-task model (with both en-

5In order to verify that our improvements were from the auxiliary tasks’ specific character/capabilities and not just
due to adding more data, we separately trained word embeddings on each auxiliary dataset (i.e., SNLI and SQuAD)
and incorporated them into the summarization model. We found that both our 2-way multi-task models perform
significantly better than these models using the auxiliary word-embeddings, suggesting that merely adding more data
is not enough.
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Models R-1 R-2 R-L
See et al. (2017) 34.30 14.25 30.82
Baseline 35.96 15.91 32.92
Multi-Task (EG + QG) 36.73 16.15 33.58

Table 4.5: ROUGE F1 scores on DUC-2002.

tailment and question generation) outperforms the publicly-available pretrained result (†) of the

previous SotA (See et al., 2017) with stat. significance (p < 0.01), as well the higher-reported

results (?) on ROUGE-1/ROUGE-2 (p < 0.01).

4.5.2 Human Evaluation

We also conducted a blind human evaluation on Amazon MTurk for relevance and readabil-

ity, based on 100 samples, for both CNN/DailyMail and Gigaword (see instructions in Sec. 4.4).

Table. 4.3 shows the CNN/DM results where we do pairwise comparison between our 3-way

multi-task model’s output summaries w.r.t. our baseline summaries and w.r.t. See et al. (2017)

summaries. As shown, our 3-way multi-task model achieves both higher relevance and higher

readability scores w.r.t. the baseline. W.r.t. See et al. (2017), our MTL model is higher in rele-

vance scores but a bit lower in readability scores (and is higher in terms of total aggregate scores).

One potential reason for this lower readability score is that our entailment generation auxiliary

task encourages our summarization model to rewrite more and to be more abstractive than See

et al. (2017) – see abstractiveness results in Table 4.11.

We also show human evaluation results on the Gigaword dataset in Table 4.4 (again based

on pairwise comparisons for 100 samples), where we see that our MTL model is better than our

state-of-the-art baseline on both relevance and readability.6

6Note that we did not have output files of any previous work’s model on Gigaword; however, our baseline is already
a strong state-of-the-art model as shown in Table 4.2.
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Models M C R B
Pasunuru and Bansal (2017a) 29.6 117.8 62.4 40.6
Our 1-layer pointer EG 32.4 139.3 65.1 43.6
Our 2-layer pointer EG 32.3 140.0 64.4 43.7

Table 4.6: Performance of our pointer-based entailment generation (EG) models compared with
previous SotA work. M, C, R, B are short for Meteor, CIDEr-D, ROUGE-L, and BLEU-4, resp.

Models M C R B
Du et al. (2017) 15.2 - 38.0 10.8
Our 1-layer pointer QG 15.4 75.3 36.2 9.2
Our 2-layer pointer QG 17.5 95.3 40.1 13.8

Table 4.7: Performance of our pointer-based question generation (QG) model w.r.t. previous
work.

4.5.3 Generalizability Results (DUC-2002)

Next, we also tested our model’s generalizability/transfer skills, where we take the models

trained on CNN/DailyMail and directly test them on DUC-2002. We take our baseline and 3-way

multi-task models, plus the pointer-coverage model from See et al. (2017).7 We only re-tune the

beam-size for each of these three models separately (based on DUC-2003 as the validation set).8

As shown in Table 4.5, our multi-task model achieves statistically significant improvements over

the strong baseline (p < 0.01 in ROUGE-1 and ROUGE-L) and the pointer-coverage model

from See et al. (2017) (p < 0.01 in all metrics). This demonstrates that our model is able to

generalize well and that the auxiliary knowledge helps more in low-resource scenarios.

4.5.4 Auxiliary Task Results

In this section, we discuss the individual/separated performance of our auxiliary tasks.

7We use the publicly-available pretrained model from See et al. (2017)’s github for these DUC transfer results, which
produces the † results in Table 4.1. All other comparisons and analysis in this chapter are based on their higher ?
results.
8We follow previous work which has shown that larger beam values are better and feasible for DUC corpora. How-
ever, our MTL model still achieves stat. significant improvements (p < 0.01 in all metrics) over See et al. (2017)
without beam retuning (i.e., with beam = 4).
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Models R-1 R-2 R-L M
Final Model 39.81 17.64 36.54 18.54

SOFT-VS.-HARD SHARING

Hard-sharing 39.51 17.44 36.33 18.21
LAYER SHARING METHODS

D1+D2 39.62 17.49 36.44 18.34
E1+D2 39.51 17.51 36.37 18.15
E1+Attn+D2 39.32 17.36 36.11 17.88

Table 4.8: Ablation studies comparing our final multi-task model with hard-sharing and dif-
ferent alternative layer-sharing methods. Here E1, E2, D1, D2, Attn refer to parameters of the
first/second layer of encoder/decoder, and attention parameters. Improvements of final model
upon ablation experiments are all stat. signif. with p < 0.05.

Models Average Entailment Probability
Baseline 0.907
Multi-Task (EG) 0.912

Table 4.9: Entailment classification results of our baseline vs. EG-multi-task model (p < 0.001).

Entailment Generation We use the same architecture as described in Sec. 4.2.1 with pointer

mechanism, and Table 4.6 compares our model’s performance to Pasunuru and Bansal (2017a).

Our pointer mechanism gives a performance boost, since the entailment generation task involves

copying from the given premise sentence, whereas the 2-layer model seems comparable to the

1-layer model.

Question Generation Again, we use same architecture as described in Sec. 4.2.1 along with

pointer mechanism for the task of question generation. Table 4.7 compares the performance of

our model w.r.t. the state-of-the-art Du et al. (2017).

4.6 Ablations and Insights

Soft-sharing vs. Hard-sharing As described in Sec. 4.3.2, we choose soft-sharing over hard-

sharing because of the more expressive parameter sharing it provides to the model. Empirical
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Models Average Match Rate
Baseline 27.75 %
Multi-Task (QG) 28.06 %

Table 4.10: Saliency classification results of our baseline vs. QG-multi-task model (p < 0.01).

results in Table. 4.8 prove that soft-sharing method is statistically significantly better than hard-

sharing with p < 0.001 in all metrics.9

Comparison of Different Layer-Sharing Methods We also conducted ablation studies among

various layer-sharing approaches. Table 4.8 shows results for soft-sharing models with decoder-

only sharing (D1+D2; similar to Pasunuru et al. (2017)) as well as lower-layer sharing (encoder

layer 1 + decoder layer 2, with and without attention shared). As shown, our final model (high-

level semantic layer sharing E2+Attn+D1) outperforms these alternate sharing methods in all

metrics with statistical significance (p < 0.05).10

Quantitative Improvements in Entailment We employ a state-of-the-art entailment classi-

fier (Chen et al., 2017), and calculate the average of the entailment probability of each of the

output summary’s sentences being entailed by the input source document. We do this for output

summaries of our baseline and 2-way-EG multi-task model (with entailment generation). As

can be seen in Table 4.9, our multi-task model improves upon the baseline in the aspect of being

entailed by the source document (with statistical significance p < 0.001). Further, we use the

Named Entity Recognition (NER) module from CoreNLP (Manning et al., 2014) to compute the

number of times the output summary contains extraneous facts (i.e., named entities as detected

by the NER system) that are not present in the source documents, based on the intuition that a

well-entailed summary should not contain unrelated information not followed from the input

premise. We found that our 2-way MTL model with entailment generation reduces this extrane-

9In the interest of space, most of the analyses are shown for CNN/DailyMail experiments, but we observed similar
trends for the Gigaword experiments as well.
10Note that all our soft and layer sharing decisions were strictly made on the dev/validation set (see Sec. 4.4).
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Models 2-gram 3-gram 4-gram
See et al. (2017) 2.24 6.03 9.72
MTL (3-way) 2.84 6.83 10.66

Table 4.11: Abstractiveness: novel n-gram percent.

ous count by 17.2% w.r.t. the baseline. The qualitative examples below further discuss this issue

of generating unrelated information.

Quantitative Improvements in Saliency Detection For our saliency evaluation, we used the

answer-span prediction classifier from Pasunuru and Bansal (2018) trained on SQuAD (Ra-

jpurkar et al., 2016) as the keyword detection classifier. We then annotate the ground-truth and

model summaries with this keyword classifier and compute the % match, i.e., how many salient

words from the ground-truth summary were also generated in the model summary. The results are

shown in Table 4.10, where the 2-way-QG MTL model (with question generation) versus base-

line improvement is stat. significant (p < 0.01). Moreover, we found 93 more cases where our

2-way-QG MTL model detects 2 or more additional salient keywords than the pointer baseline

model (as opposed to vice versa), showing that sentence-level question generation task is helping

the document-level summarization task in finding more salient terms.

Qualitative Examples on Entailment and Saliency Improvements Fig. 4.2 presents an exam-

ple of output summaries generated by See et al. (2017), our baseline, and our 3-way multi-task

model. See et al. (2017) and our baseline models generate phrases like “john hartson” and “hamp-

den injustice” that don’t appear in the input document, hence they are not entailed by the input.11

Moreover, both models missed salient information like “josh meekings”, “leigh griffiths”, and

“hoops”, that our multi-task model recovers.12 Hence, our 3-way multi-task model generates

summaries that are both better at logical entailment and contain more salient information.

11These extra, non-entailed unrelated/contradictory information are not present at all in any paraphrase form in the
input document.
12We consider the fill-in-the-blank highlights annotated by human on CNN/DailyMail dataset as salient information.
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Abstractiveness Analysis As suggested in See et al. (2017), we also compute the abstractiveness

score as the number of novel n-grams between the model output summary and source docu-

ment. As shown in Table 4.11, our multi-task model (EG + QG) is more abstractive than See et al.

(2017).

4.7 Conclusion

We presented a multi-task learning approach to improve abstractive summarization by incor-

porating the ability to detect salient information and to be logically entailed by the document,

via question generation and entailment generation auxiliary tasks. We propose effective soft and

high-level (semantic) layer-specific parameter sharing and achieve significant improvements

over the state-of-the-art on two popular datasets, as well as a generalizability/transfer DUC-2002

setup.
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Input Document: celtic have written to the scottish football association in order to gain an ‘ under-
standing óf the refereeing decisions during their scottish cup semi-final defeat by inverness on sunday
. the hoops were left outraged by referee steven mclean ś failure to award a penalty or red card for a
clear handball in the box by josh meekings to deny leigh griffith ś goal-bound shot during the first-half
. caley thistle went on to win the game 3-2 after extra-time and denied rory delia ś men the chance
to secure a domestic treble this season . celtic striker leigh griffiths has a goal-bound shot blocked
by the outstretched arm of josh meekings . celtic ś adam matthews -lrb- right -rrb- slides in with a
strong challenge on nick ross in the scottish cup semi-final . ‘ given the level of reaction from our sup-
porters and across football , we are duty bound to seek an understanding of what actually happened
, ćeltic said in a statement . they added , ‘ we have not been given any other specific explanation
so far and this is simply to understand the circumstances of what went on and why such an obvious
error was made . h́owever , the parkhead outfit made a point of congratulating their opponents , who
have reached the first-ever scottish cup final in their history , describing caley as a ‘ fantastic club
ánd saying ‘ reaching the final is a great achievement . ćeltic had taken the lead in the semi-final
through defender virgil van dijk ś curling free-kick on 18 minutes , but were unable to double that lead
thanks to the meekings controversy . it allowed inverness a route back into the game and celtic had
goalkeeper craig gordon sent off after the restart for scything down marley watkins in the area . greg
tansey duly converted the resulting penalty . edward ofere then put caley thistle ahead , only for john
guidetti to draw level for the bhoys . with the game seemingly heading for penalties , david raven
scored the winner on 117 minutes , breaking thousands of celtic hearts . celtic captain scott brown
-lrb- left -rrb- protests to referee steven mclean but the handball goes unpunished . griffiths shows off
his acrobatic skills during celtic ś eventual surprise defeat by inverness . celtic pair aleksandar tonev
-lrb- left -rrb- and john guidetti look dejected as their hopes of a domestic treble end .
Ground-truth: celtic were defeated 3-2 after extra-time in the scottish cup semi-final .

leigh griffiths had a goal-bound shot blocked by a clear handball. however, no action was taken

against offender josh meekings . the hoops have written the sfa for an ’understanding’ of the
decision .
See et al. (2017): john hartson was once on the end of a major hampden injustice while playing
for celtic . but he can not see any point in his old club writing to the scottish football association over
the latest controversy at the national stadium . hartson had a goal wrongly disallowed for offside
while celtic were leading 1-0 at the time but went on to lose 3-2 .
Our Baseline: john hartson scored the late winner in 3-2 win against celtic . celtic were leading
1-0 at the time but went on to lose 3-2 . some fans have questioned how referee steven mclean and
additional assistant alan muir could have missed the infringement .

Multi-task: celtic have written to the scottish football association in order to gain an ‘ understand-
ing ’ of the refereeing decisions . the hoops were left outraged by referee steven mclean ’s failure

to award a penalty or red card for a clear handball in the box by josh meekings . celtic striker

leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings .

Figure 3: Example of summaries generated by See et al. (2017), our baseline, and 3-way multi-task model
with summarization and both entailment generation and question generation. The boxed-red highlighted
words/phrases are not present in the input source document in any paraphrasing form. All the unboxed-
green highlighted words/phrases correspond to the salient information. See detailed discussion in Fig.
1 and Fig. 2 above. As shown, the outputs from See et al. (2017) and the baseline both include non-
entailed words/phrases (e.g. “john hartson”), as well as they missed salient information (“hoops”, “josh
meekings”, “leigh griffiths”) in their output summaries. Our multi-task model, however, manages to
accomplish both, i.e., cover more salient information and also avoid unrelated information.

Figure 4.2: Example summary from our 3-way MTL model. The boxed-red highlights are
extraneously-generated words not present/paraphrased in the input document. The unboxed-green
highlights show salient phrases.
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CHAPTER 5: REINFORCEMENT LEARNING FOR VIDEO CAPTIONING

5.1 Introduction

The task of video captioning (Fig. 5.1) is an important next step to image captioning, with

additional modeling of temporal knowledge and action sequences, and has several applications

in online content search, assisting the visually-impaired, etc. Advancements in neural sequence-

to-sequence learning has shown promising improvements on this task, based on encoder-decoder,

attention, and hierarchical models (Venugopalan et al., 2015a; Pan et al., 2016a). However, these

models are still trained using a word-level cross-entropy loss, which does not correlate well with

the sentence-level metrics that the task is finally evaluated on (e.g., CIDEr, BLEU). Moreover,

these models suffer from exposure bias (Ranzato et al., 2016), which occurs when a model is only

exposed to the training data distribution, instead of its own predictions. First, using a sequence-

level training, policy gradient approach (Ranzato et al., 2016), we allow video captioning models

to directly optimize these non-differentiable metrics, as rewards in a reinforcement learning

paradigm. We also address the exposure bias issue by using a mixed-loss (Paulus et al., 2018;

Wu et al., 2016), i.e., combining the cross-entropy and reward-based losses, which also helps

maintain output fluency.

Next, we introduce a novel entailment-corrected reward that checks for logically-directed par-

tial matches. Current reinforcement-based text generation works use traditional phrase-matching

metrics (e.g., CIDEr, BLEU) as their reward function. However, these metrics use undirected

n-gram matching of the machine-generated caption with the ground-truth caption, and hence fail

to capture its directed logical correctness. Therefore, they still give high scores to even those

generated captions that contain a single but critical wrong word (e.g., negation, unrelated action

or object), because all the other words still match with the ground truth. We introduce CIDEnt,
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Figure 5.1: A correctly-predicted video caption generated by our CIDEnt-reward model.

which penalizes the phrase-matching metric (CIDEr) based reward, when the entailment score

is low. This ensures that a generated caption gets a high reward only when it is a directed match

with (i.e., it is logically implied by) the ground truth caption, hence avoiding contradictory or

unrelated information (e.g., see Fig. 5.1). Empirically, we show that first the CIDEr-reward model

achieves significant improvements over the cross-entropy baseline (on multiple datasets, and

automatic and human evaluation); next, the CIDEnt-reward model further achieves significant

improvements over the CIDEr-based reward. Overall, we achieve the new state-of-the-art on the

MSR-VTT dataset.

5.2 Models

Attention Baseline (Cross-Entropy) Our attention-based seq-to-seq baseline model is similar to

the Bahdanau et al. (2015) architecture, where we encode input frame level video features {f1:n}

via a bi-directional LSTM-RNN and then generate the caption w1:m using an LSTM-RNN with

an attention mechanism. Let θ be the model parameters and w∗1:m be the ground-truth caption,

then the cross entropy loss function is:

L(θ) = −
m∑
t=1

log p(w∗t |w∗1:t−1, f1:n) (5.1)
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where p(wt|w1:t−1, f1:n) = softmax(W Thdt ), W
T is the projection matrix, and wt and hdt are the

generated word and the RNN decoder hidden state at time step t, computed using the standard

RNN recursion and attention-based context vector ct.

Reinforcement Learning (Policy Gradient) In order to directly optimize the sentence-level

test metrics (as opposed to the cross-entropy loss above), we use a policy gradient pθ, where θ

represent the model parameters. Here, our baseline model acts as an agent and interacts with its

environment (video and caption). At each time step, the agent generates a word (action), and the

generation of the end-of-sequence token results in a reward r to the agent. Our training objective

is to minimize the negative expected reward function:

L(θ) = −Ews∼pθ [r(ws)] (5.2)

where ws is the word sequence sampled from the model. Based on the REINFORCE algo-

rithm (Williams, 1992), the gradients of this non-differentiable, reward-based loss function are:

∇θL(θ) = −Ews∼pθ [r(ws) · ∇θ log pθ(w
s)] (5.3)

We follow Ranzato et al. (2016) approximating the above gradients via a single sampled word

sequence. We also use a variance-reducing bias (baseline) estimator in the reward function.

Mixed Loss During reinforcement learning, optimizing for only the reinforcement loss (with

automatic metrics as rewards) doesn’t ensure the readability and fluency of the generated caption,

and there is also a chance of gaming the metrics without actually improving the quality of the

output (Liu et al., 2016a). Hence, for training our reinforcement based policy gradients, we use a

mixed loss function, which is a weighted combination of the cross-entropy loss (XE) and the rein-

forcement learning loss (RL), similar to the previous work (Paulus et al., 2018; Wu et al., 2016).

This mixed loss improves results on the metric used as reward through the reinforcement loss

(and improves relevance based on our entailment-enhanced rewards) but also ensures better read-
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Figure 5.2: Reinforced (mixed-loss) video captioning using entailment-corrected CIDEr score as
reward.

ability and fluency due to the cross-entropy loss (in which the training objective is a conditioned

language model, learning to produce fluent captions). Our mixed loss is defined as:

LMIXED = (1− γ)LXE + γLRL (5.4)

where γ is a tuning parameter used to balance the two losses. For annealing and faster conver-

gence, we start with the optimized cross-entropy loss baseline model, and then move to optimiz-

ing the above mixed loss function.1

5.3 Reward Functions

Caption Metric Reward Previous image captioning papers have used traditional captioning

metrics such as CIDEr, BLEU, or METEOR as reward functions, based on the match between the

generated caption sample and the ground-truth reference(s). First, it has been shown by Vedan-

tam et al. (2015) that CIDEr, based on a consensus measure across several human reference

captions, has a higher correlation with human evaluation than other metrics such as METEOR,

ROUGE, and BLEU. They further showed that CIDEr gets better with more number of human

references (and this is a good fit for our video captioning datasets, which have 20-40 human

references per video).

1We also experimented with the curriculum learning ‘MIXER’ strategy of Ranzato et al. (2016), where the XE+RL
annealing is based on the decoder time-steps; however, the mixed loss function strategy (described above) performed
better in terms of maintaining output caption fluency.
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Ground-truth caption Generated (sampled) caption CIDEr Ent
a man is spreading some butter in a pan puppies is melting butter on the pan 140.5 0.07
a panda is eating some bamboo a panda is eating some fried 256.8 0.14
a monkey pulls a dogs tail a monkey pulls a woman 116.4 0.04
a man is cutting the meat a man is cutting meat into potato 114.3 0.08
the dog is jumping in the snow a dog is jumping in cucumbers 126.2 0.03
a man and a woman is swimming in the pool a man and a whale are swimming in a pool 192.5 0.02

Table 5.1: Examples of captions sampled during policy gradient and their CIDEr vs Entailment
scores.

More recently, Rennie et al. (2017) further showed that CIDEr as a reward in image caption-

ing outperforms all other metrics as a reward, not just in terms of improvements on CIDEr metric,

but also on all other metrics. In line with these above previous works, we also found that CIDEr

as a reward (‘CIDEr-RL’ model) achieves the best metric improvements in our video captioning

task, and also has the best human evaluation improvements (see Sec. 5.5.3 for result details, incl.

those about other rewards based on BLEU, SPICE).

Entailment Corrected Reward Although CIDEr performs better than other metrics as a reward,

all these metrics (including CIDEr) are still based on an undirected n-gram matching score be-

tween the generated and ground truth captions. For example, the wrong caption “a man is playing

football” w.r.t. the correct caption “a man is playing basketball” still gets a high score, even

though these two captions belong to two completely different events. Similar issues hold in case

of a negation or a wrong action/object in the generated caption (see examples in Table 5.1).

We address the above issue by using an entailment score to correct the phrase-matching met-

ric (CIDEr or others) when used as a reward, ensuring that the generated caption is logically

implied by (i.e., is a paraphrase or directed partial match with) the ground-truth caption. To

achieve an accurate entailment score, we adapt the state-of-the-art decomposable-attention model

of Parikh et al. (2016) trained on the SNLI corpus (image caption domain). This model gives us

a probability for whether the sampled video caption (generated by our model) is entailed by the
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ground truth caption as premise (as opposed to a contradiction or neutral case).2 Similar to the

traditional metrics, the overall ‘Ent’ score is the maximum over the entailment scores for a gen-

erated caption w.r.t. each reference human caption (around 20/40 per MSR-VTT/YouTube2Text

video). CIDEnt is defined as:

CIDEnt =


CIDEr− λ, if Ent < β

CIDEr, otherwise
(5.5)

which means that if the entailment score is very low, we penalize the metric reward score by

decreasing it by a penalty λ. This agreement-based formulation ensures that we only trust the

CIDEr-based reward in cases when the entailment score is also high. Using CIDEr−λ also en-

sures the smoothness of the reward w.r.t. the original CIDEr function (as opposed to clipping the

reward to a constant). Here, λ and β are hyperparameters that can be tuned on the dev-set; on

light tuning, we found the best values to be intuitive: λ = roughly the baseline (cross-entropy)

model’s score on that metric (e.g., 0.45 for CIDEr on MSR-VTT dataset); and β = 0.33 (i.e., the

3-class entailment classifier chose contradiction or neutral label for this pair). Table 5.1 shows

some examples of sampled generated captions during our model training, where CIDEr was

misleadingly high for incorrect captions, but the low entailment score (probability) helps us suc-

cessfully identify these cases and penalize the reward.

5.4 Experimental Setup

Datasets We use 2 datasets: MSR-VTT (Xu et al., 2016a) has 10, 000 videos, 20 references/video;

and YouTube2Text/MSVD (Chen and Dolan, 2011) has 1970 videos, 40 references/video. Stan-

dard splits and other details are in Appendix A.3.

2Our entailment classifier based on Parikh et al. (2016) is 92% accurate on entailment in the caption domain, hence
serving as a highly accurate reward score. For other domains in future tasks such as new summarization, we plan to
use the new multi-domain dataset by Williams et al. (2018b).
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Models BLEU-4 METEOR ROUGE-L CIDEr-D CIDEnt Human*
PREVIOUS WORK

Venugopalan et al. (2015b)? 32.3 23.4 - - - -
Yao et al. (2015)? 35.2 25.2 - - - -
Xu et al. (2016a) 36.6 25.9 - - - -
Pasunuru and Bansal (2017a) 40.8 28.8 60.2 47.1 - -
Rank1: v2t navigator 40.8 28.2 60.9 44.8 - -
Rank2: Aalto 39.8 26.9 59.8 45.7 - -
Rank3: VideoLAB 39.1 27.7 60.6 44.1 - -

OUR MODELS

Cross-Entropy (Baseline-XE) 38.6 27.7 59.5 44.6 34.4 -
CIDEr-RL 39.1 28.2 60.9 51.0 37.4 11.6
CIDEnt-RL (New Rank1) 40.5 28.4 61.4 51.7 44.0 18.4

Table 5.2: Our primary video captioning results on MSR-VTT. All CIDEr-RL results are statisti-
cally significant over the baseline XE results, and all CIDEnt-RL results are stat. signif. over the
CIDEr-RL results. Human* refers to the ‘pairwise’ comparison of human relevance evaluation
between CIDEr-RL and CIDEnt-RL models (see full human evaluations of the 3 models in
Table 5.3 and Table 5.4).

Automatic Evaluation We use several standard automated evaluation metrics: METEOR, BLEU-

4, CIDEr-D, and ROUGE-L (from MS-COCO evaluation server (Chen et al., 2015)).

Human Evaluation We also present human evaluation for comparison of baseline-XE, CIDEr-

RL, and CIDEnt-RL models, esp. because the automatic metrics cannot be trusted solely. Rele-

vance measures how related is the generated caption w.r.t, to the video content, whereas coher-

ence measures readability of the generated caption.

Training Details All the hyperparameters are tuned on the validation set. All our results (includ-

ing baseline) are based on a 5-avg-ensemble. See Appendix A.3 for extra training details, e.g.,

about the optimizer, learning rate, RNN size, Mixed-loss, and CIDEnt hyperparameters.

5.5 Experimental Results

5.5.1 Primary Results

Table 5.2 shows our primary results on the popular MSR-VTT dataset. First, our baseline

attention model trained on cross entropy loss (‘Baseline-XE’) achieves strong results w.r.t. the
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Relevance Coherence
Not Distinguishable 64.8% 92.8%
Baseline-XE Wins 13.6% 4.0%
CIDEr-RL Wins 21.6% 3.2%

Table 5.3: Human eval: Baseline-XE vs CIDEr-RL.

previous state-of-the-art methods.3 Next, our policy gradient based mixed-loss RL model with

reward as CIDEr (‘CIDEr-RL’) improves significantly4 over the baseline on all metrics, and not

just the CIDEr metric. It also achieves statistically significant improvements in terms of human

relevance evaluation (see below). Finally, the last row in Table 5.2 shows results for our novel

CIDEnt-reward RL model (‘CIDEnt-RL’). This model achieves statistically significant5 improve-

ments on top of the strong CIDEr-RL model, on all automatic metrics (as well as human evalua-

tion). Note that in Table 5.2, we also report the CIDEnt reward scores, and the CIDEnt-RL model

strongly outperforms CIDEr and baseline models on this entailment-corrected measure. Overall,

we are also the new Rank1 on the MSR-VTT leaderboard, based on their ranking criteria.

Human Evaluation We also perform small human evaluation studies (250 samples from the

MSR-VTT test set output) to compare our 3 models pairwise.6 As shown in Table 5.3 and Ta-

ble 5.4, in terms of relevance, first our CIDEr-RL model stat. significantly outperforms the base-

line XE model (p < 0.02); next, our CIDEnt-RL model significantly outperforms the CIDEr-RL

model (p < 0.03). The models are statistically equal on coherence in both comparisons.

3We list previous works’ results as reported by the MSR-VTT dataset paper itself, as well as their 3 leaderboard
winners (http://ms-multimedia-challenge.com/leaderboard), plus the 10-ensemble video+entailment generation
multi-task model of Pasunuru and Bansal (2017a).
4Statistical significance of p < 0.01 for CIDEr, METEOR, and ROUGE, and p < 0.05 for BLEU, based on the boot-
strap test (Noreen, 1989; Efron and Tibshirani, 1994).
5Statistical significance of p < 0.01 for CIDEr, BLEU, ROUGE, and CIDEnt, and p < 0.05 for METEOR.
6We randomly shuffle pairs to anonymize model identity and the human evaluator then chooses the better caption
based on relevance and coherence (see Sec. 5.4). ‘Not Distinguishable’ are cases where the annotator found both
captions to be equally good or equally bad).
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Relevance Coherence
Not Distinguishable 70.0% 94.6%
CIDEr-RL Wins 11.6% 2.8%
CIDEnt-RL Wins 18.4% 2.8%

Table 5.4: Human eval: CIDEr-RL vs CIDEnt-RL.

Models B M R C CE H*
Baseline-XE 52.4 35.0 71.6 83.9 68.1 -
CIDEr-RL 53.3 35.1 72.2 89.4 69.4 8.4
CIDEnt-RL 54.4 34.9 72.2 88.6 71.6 13.6

Table 5.5: Results on YouTube2Text (MSVD) dataset. CE = CIDEnt score. H* refer to the
pairwise human comparison of relevance.

5.5.2 Other Datasets

We also tried our CIDEr and CIDEnt reward models on the YouTube2Text dataset. In Ta-

ble 5.5, we first see strong improvements from our CIDEr-RL model on top of the cross-entropy

baseline. Next, the CIDEnt-RL model also shows some improvements over the CIDEr-RL model,

e.g., on BLEU and the new entailment-corrected CIDEnt score. It also achieves significant im-

provements on human relevance evaluation (250 samples).7

5.5.3 Other Metrics as Reward

As discussed in Sec. 5.3, CIDEr is the most promising metric to use as a reward for caption-

ing, based on both previous work’s findings as well as ours. We did investigate the use of other

metrics as the reward. When using BLEU as a reward (on MSR-VTT), we found that this BLEU-

RL model achieves BLEU-metric improvements, but was worse than the cross-entropy baseline

on human evaluation. Similarly, a BLEUEnt-RL model achieves BLEU and BLEUEnt metric

improvements, but is again worse on human evaluation. We also experimented with the new

7This dataset has a very small dev-set, causing tuning issues – we plan to use a better train/dev re-split in future
work.

64



Figure 5.3: Output examples where our CIDEnt-RL model produces better entailed captions than
the phrase-matching CIDEr-RL model, which in turn is better than the baseline cross-entropy
model.

SPICE metric (Anderson et al., 2016) as a reward, but this produced long repetitive phrases (as

also discussed in Liu et al. (2016b)).

5.5.4 Insights

Fig. 5.1 shows an example where our CIDEnt-reward model correctly generates a ground-

truth style caption, whereas the CIDEr-reward model produces a non-entailed caption because

this caption will still get a high phrase-matching score. Further, Figure 5.3 shows several exam-

ples where our CIDEnt-reward model produces better entailed captions than the ones generated

by the CIDEr-reward model. This is because the CIDEr-style captioning metrics achieve a high
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score even when the generation does not exactly entail the ground truth but is just a high phrase

overlap. This can obviously cause issues by inserting a single wrong word such as a negation,

contradiction, or wrong action/object. On the other hand, our entailment-enhanced CIDEnt score

is only high when both CIDEr and the entailment classifier achieve high scores. The CIDEr-RL

model, in turn, produces better captions than the baseline cross-entropy model, which is not

aware of sentence-level matching at all.

5.6 Conclusion

We first presented a mixed-loss policy gradient approach for video captioning, allowing for

metric-based optimization. We next presented an entailment-corrected CIDEnt reward that fur-

ther improves results, achieving the new state-of-the-art on MSR-VTT. In the next chapter, we

will apply our entailment-corrected rewards to other directed generation tasks such as textual

summarization (using the new multi-domain NLI corpus (Williams et al., 2018b)).
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CHAPTER 6: REINFORCEMENT LEARNING FOR TEXTUAL SUMMARIZATION

6.1 Introduction

Abstractive summarization, the task of generating a natural short summary of a long docu-

ment, is more challenging than the extractive paradigm, which only involves selection of impor-

tant sentences or grammatical sub-sentences (Jing and McKeown, 2000; Knight and Marcu, 2002;

Clarke and Lapata, 2008; Filippova et al., 2015). Advent of sequence-to-sequence deep neural

networks and large human summarization datasets (Hermann et al., 2015; Nallapati et al., 2016)

made the abstractive summarization task more feasible and accurate, with recent ideas ranging

from copy-pointer mechanism and redundancy coverage, to metric reward based reinforcement

learning (Rush et al., 2015; Chopra et al., 2016; Ranzato et al., 2016; Nallapati et al., 2016; See

et al., 2017).

A good abstractive summary requires several important properties, e.g., it should choose the

most salient information from the input document, be logically entailed by it, and avoid redun-

dancy. Coverage-based models address the latter redundancy issue (Suzuki and Nagata, 2016;

Nallapati et al., 2016; See et al., 2017), but there is still a lot of scope to teach current state-of-

the-art models about saliency and logical entailment. Towards this goal, we improve the task of

abstractive summarization via a reinforcement learning approach with the introduction of two

novel rewards: ‘ROUGESal’ and ‘Entail’, and also demonstrate that these saliency and entail-

ment skills allow for better generalizability and transfer.

Our ROUGESal reward gives higher weight to the important, salient words in the sum-

mary, in contrast to the traditional ROUGE metric which gives equal weight to all tokens. These

weights are obtained from a novel saliency scorer, which is trained on a reading comprehension

dataset’s answer spans to give a saliency-based probability score to every token in the sentence.

67



Our Entail reward gives higher weight to summaries whose sentences logically follow from the

ground-truth summary. Further, we also add a length normalization constraint to our Entail re-

ward, to importantly avoid misleadingly high entailment scores to very short sentences.

Empirically, we show that our new rewards with policy gradient approaches perform signif-

icantly better than a cross-entropy based state-of-the-art pointer-coverage baseline. We show

further performance improvements by combining these rewards via our novel multi-reward opti-

mization approach, where we optimize multiple rewards simultaneously in alternate mini-batches

(hence avoiding complex scaling and weighting issues in reward combination), inspired from

how humans take multiple concurrent types of rewards (feedback) to learn a task. Overall, our

methods achieve the new state-of-the-art (including human evaluation) on the CNN/Daily Mail

dataset as well as strong improvements in a test-only transfer setup on DUC-2002. Lastly, we

present several analyses of our model’s saliency, entailment, and abstractiveness skills.

6.2 Models

6.2.1 Baseline Sequence-to-Sequence Model

Our abstractive text summarization model is a simple sequence-to-sequence single-layer

bidirectional encoder and unidirectional decoder LSTM-RNN, with attention (Bahdanau et al.,

2015), pointer-copy, and coverage mechanism – please refer to See et al. (2017) for details.

6.2.2 Policy Gradient Reinforce

Traditional cross-entropy loss optimization for sequence generation has an exposure bias

issue and the model is not optimized for the evaluated metrics (Ranzato et al., 2016). Reinforce-

based policy gradient approach addresses both of these issues by using its own distribution during

training and by directly optimizing the non-differentiable evaluation metrics as rewards. We use

the REINFORCE algorithm (Williams, 1992; Zaremba and Sutskever, 2015) to learn a policy

pθ defined by the model parameters θ to predict the next action (word) and update its internal
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Figure 6.1: Overview of sequence generator with RL training.

(LSTM) states. We minimize the loss function LRL = −Ews∼pθ [r(ws)], where ws is the sequence

of sampled words with wst sampled at time step t of the decoder. The derivative of this loss func-

tion with approximation using a single sample along with variance reduction with a bias estima-

tor is:

∇θLRL = −(r(ws)− be)∇θ log pθ(w
s) (6.1)

There are several ways to calculate the baseline estimator; we employ the effective SCST ap-

proach (Rennie et al., 2017), as depicted in Fig. 6.1, where be = r(wa), is based on the reward

obtained by the current model using the test time inference algorithm, i.e., choosing the arg-max

word wat of the final vocabulary distribution at each time step t of the decoder. We use the joint

cross-entropy and reinforce loss so as to optimize the non-differentiable evaluation metric as re-

ward while also maintaining the readability of the generated sentence (Wu et al., 2016; Paulus

et al., 2018; Pasunuru and Bansal, 2017b), which is defined as LMixed = γLRL + (1− γ)LXE, where

γ is a tunable hyperparameter.

6.2.3 Multi-Reward Optimization

Optimizing multiple rewards at the same time is important and desired for many language

generation tasks. One approach would be to use a weighted combination of these rewards, but

this has the issue of finding the complex scaling and weight balance among these reward combi-
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nations. To address this issue, we instead introduce a simple multi-reward optimization approach

inspired from multi-task learning, where we have different tasks, and all of them share all the

model parameters while having their own optimization function (different reward functions in

this case). If r1 and r2 are two reward functions that we want to optimize simultaneously, then we

train the two loss functions of Eqn. 6.2 in alternate mini-batches.

LRL1 = −(r1(ws)− r1(wa))∇θ log pθ(w
s)

LRL2 = −(r2(ws)− r2(wa))∇θ log pθ(w
s)

(6.2)

6.3 Rewards

ROUGE Reward The first basic reward is based on the primary summarization metric of ROUGE

package (Lin, 2004). Similar to Paulus et al. (2018), we found that ROUGE-L metric as a reward

works better compared to ROUGE-1 and ROUGE-2 in terms of improving all the metric scores.1

Since these metrics are based on simple phrase matching/n-gram overlap, they do not focus on

important summarization factors such as salient phrase inclusion and directed logical entailment.

Addressing these issues, we next introduce two new reward functions.

Saliency Reward ROUGE-based rewards have no knowledge about what information is salient

in the summary, and hence we introduce a novel reward function called ‘ROUGESal’ which

gives higher weight to the important, salient words/phrases when calculating the ROUGE score

(which by default assumes all words are equally weighted). To learn these saliency weights, we

train our saliency predictor on sentence and answer spans pairs from the popular SQuAD reading

comprehension dataset (Rajpurkar et al., 2016)) (Wikipedia domain), where we treat the human-

annotated answer spans (avg. span length 3.2) for important questions as representative salient

information in the document. As shown in Fig. 6.2, given a sentence as input, the predictor as-

signs a saliency probability to every token, using a simple bidirectional encoder with a softmax

1For the rest of the chapter, we mean ROUGE-L whenever we mention ROUGE-reward models.
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Figure 6.2: Overview of our saliency predictor model.

layer at every time step of the encoder hidden states to classify the token as salient or not. Finally,

we use the probabilities given by this saliency prediction model as weights in the ROUGE match-

ing formulation to achieve the final ROUGESal score (see Appendix A.4 for details about our

ROUGESal weighted precision, recall, and F-1 formulations).

Entailment Reward A good summary should also be logically entailed by the given source doc-

ument, i.e., contain no contradictory or unrelated information. Pasunuru and Bansal (2017b) used

entailment-corrected phrase-matching metrics (CIDEnt) to improve the task of video caption-

ing; we instead directly use the entailment knowledge from an entailment scorer and its multi-

sentence, length-normalized extension as our ‘Entail’ reward, to improve the task of abstractive

text summarization. We train the entailment classifier (Parikh et al., 2016) on the SNLI (Bow-

man et al., 2015) and Multi-NLI (Williams et al., 2018b) datasets and calculate the entailment

probability score between the ground-truth (GT) summary (as premise) and each sentence of

the generated summary (as hypothesis), and use avg. score as our Entail reward.2 Finally, we

add a length normalization constraint to avoid very short sentences achieving misleadingly high

2Since the GT summary is correctly entailed by the source document, we directly (by transitivity) use this GT as
premise for easier (shorter) encoding. We also tried using the full input document as premise but this didn’t perform
as well (most likely because the entailment classifiers are not trained on such long premises; and the problem with
the sentence-to-sentence avg. scoring approach is discussed below).
We also tried summary-to-summary entailment scoring (similar to ROUGE-L) as well as pairwise sentence-to-
sentence avg. scoring, but we found that avg. scoring of ground-truth summary (as premise) w.r.t. each generated
summary’s sentence (as hypothesis) works better (intuitive because each sentence in generated summary might be a
compression of multiple sentences of GT summary or source document).
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entailment scores:

Entail = Entail× #tokens in generated summary
#tokens in reference summary

(6.3)

6.4 Experimental Setup

6.4.1 Datasets and Training Details

CNN/Daily Mail dataset (Hermann et al., 2015; Nallapati et al., 2016) is a collection of online

news articles and their summaries. We use the non-anonymous version of the dataset as described

in See et al. (2017). For test-only generalization experiments, we use the DUC-2002 single docu-

ment summarization dataset3. For entailment reward classifier, we use a combination of the full

Stanford Natural Language Inference (SNLI) corpus (Bowman et al., 2015) and the recent Multi-

NLI corpus (Williams et al., 2018b) training datasets. For our saliency prediction model, we use

the Stanford Question Answering (SQuAD) dataset (Rajpurkar et al., 2016).

During training, all our LSTM-RNNs are set with hidden state size of 256. We use a vocabu-

lary size of 50k, where word embeddings are represented in 128 dimension, and both the encoder

and decoder share the same embedding for each word. We encode the source document using

a 400 time-step unrolled LSTM-RNN and 100 time-step unrolled LSTM-RNN for decoder. We

clip the gradients to a maximum gradient norm value of 2.0 and use Adam optimizer (Kingma

and Ba, 2015) with a learning rate of 1 × 10−3 for pointer baseline and 1 × 10−4 while training

along with coverage loss, and 1× 10−6 for reinforcement learning. Following See et al. (2017), we

add coverage mechanism to a converged pointer model. For mixed-loss (XE+RL) optimization,

we use the following γ values for various rewards: 0.9985 for ROUGE, 0.9999 for Entail and

ROUGE+Entail, and 0.9995 for ROUGESal and ROUGESal+Entail. For reinforcement learning,

we only use 5000 training samples (< 2% of the actual data) to speed up convergence, but we

found it to work well in practice. During inference time, we use a beam search of size 4.

3http://www-nlpir.nist.gov/projects/duc/guidelines/2002.html

72

http://www-nlpir.nist.gov/projects/duc/guidelines/2002.html


6.4.2 Evaluation Metrics

We use the standard ROUGE package (Lin, 2004) and Meteor package (Denkowski and

Lavie, 2014a) for reporting the results on all of our summarization models. Following previous

work (Chopra et al., 2016; Nallapati et al., 2016; See et al., 2017), we use the ROUGE full-length

F1 variant.

Human Evaluation Criteria: We also performed human evaluation of summary relevance and

readability, via Amazon Mechanical Turk (AMT). We selected human annotators that were lo-

cated in the US, had an approval rate greater than 98%, and had at least 10, 000 approved HITs.

For the pairwise model comparisons discussed in Sec. 6.5, we showed the annotators the input ar-

ticle, the ground truth summary, and the two model summaries (randomly shuffled to anonymize

model identities) – we then asked them to choose the better among the two model summaries

or choose ‘Not-Distinguishable’ if both summaries are equally good/bad. Instructions for rele-

vance were based on the summary containing salient/important information from the given article,

being correct (i.e., avoiding contradictory/unrelated information), and avoiding redundancy. In-

structions for readability were based on the summary’s fluency, grammaticality, and coherence.

6.5 Experimental Results

Baseline Cross-Entropy Model Results Our abstractive summarization model has attention,

pointer-copy, and coverage mechanism. First, we apply cross-entropy optimization and achieve

comparable results on CNN/Daily Mail w.r.t. previous work (See et al., 2017).4

ROUGE Reward Results First, using ROUGE-L as RL reward (shown as ROUGE in Table 6.1)

improves the performance on CNN/Daily Mail in all metrics with stat. significant scores (p <

0.001) as compared to the cross-entropy baseline (and also stat. signif. w.r.t. See et al. (2017)).

4Our baseline is statistically equal to the paper-reported scores of See et al. (2017) (see Table 6.1) on ROUGE-
1, ROUGE-2, based on the bootstrap test (Efron and Tibshirani, 1994). Our baseline is stat. significantly better
(p < 0.001) in all ROUGE metrics w.r.t. the github scores (R-1: 38.82, R-2: 16.81, R-3: 35.71, M: 18.14) of See
et al. (2017).
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Models R-1 R-2 R-L M
PREVIOUS WORK

Nallapati et al. (2016)? 35.46 13.30 32.65 -
See et al. (2017) 39.53 17.28 36.38 18.72
Paulus et al. (2018) (XE)

? 38.30 14.81 35.49 -
Paulus et al. (2018) (RL)

? 39.87 15.82 36.90 -
OUR MODELS

Baseline (XE) 39.41 17.33 36.07 18.27
ROUGE (RL) 39.99 17.72 36.66 18.93
Entail (RL) 39.53 17.51 36.44 20.15
ROUGESal (RL) 40.36 17.97 37.00 19.84
ROUGE+Ent (RL) 40.37 17.89 37.13 19.94
ROUGESal+Ent (RL) 40.43 18.00 37.10 20.02

Table 6.1: Results on CNN/Daily Mail (non-anonymous). ? represents previous work on anony-
mous version. ‘XE’: cross-entropy loss, ‘RL’: reinforce mixed loss (XE+RL). Columns ‘R’:
ROUGE, ‘M’: METEOR.

Similar to Paulus et al. (2018), we use mixed loss function (XE+RL) for all our reinforcement

experiments, to ensure good readability of generated summaries.

ROUGESal and Entail Reward Results With our novel ROUGESal reward, we achieve stat.

signif. improvements in all metrics w.r.t. the baseline as well as w.r.t. ROUGE-reward results

(p < 0.001), showing that saliency knowledge is strongly improving the summarization model.

For our Entail reward, we achieve stat. signif. improvements in ROUGE-L (p < 0.001) w.r.t.

baseline and achieve the best METEOR score by a large margin. See Sec. 6.6 for analysis of the

saliency/entailment skills learned by our models.

Multi-Reward Results Similar to ROUGESal, Entail is a better reward when combined with

the complementary phrase-matching metric information in ROUGE; Table 6.1 shows that the

ROUGE+Entail multi-reward combination performs stat. signif. better than ROUGE-reward in

ROUGE-1, ROUGE-L, and METEOR (p < 0.001), and better than Entail-reward in all ROUGE

metrics. Finally, we combined our two rewards ROUGESal+Entail to incorporate both saliency
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Models R-1 R-2 R-L M
Baseline (XE) 35.50 14.57 32.19 14.36
ROUGE (RL) 35.97 15.45 32.72 14.50
ROUGESal+Ent (RL) 38.95 17.05 35.52 16.47

Table 6.2: ROUGE F1 full length scores of our models on test-only DUC-2002 generalizability
setup.

Models Relevance Readability Total
ROUGESal+Ent 55 54 109
See et al. (2017) 34 33 67
Non-distinguish. 11 13 24

Table 6.3: Human Evaluation: pairwise comparison of relevance and readability between our
ROUGESal+Entail multi-reward model and See et al. (2017).

and entailment knowledge, and it gives the best results overall (p < 0.001 in all metrics w.r.t.

both baseline and ROUGE-reward models), setting the new state-of-the-art.5

Human Evaluation Table. 6.3 shows the MTurk anonymous human evaluation study (based on

100 samples), where we do pairwise comparison between our ROUGESal+Entail multi-reward’s

output summaries w.r.t. See et al. (2017) summaries on CNN/Daily Mail (see setup details in

Sec. 6.4.2). As shown, our multi-reward model is better on both relevance and readability.

Test-Only Transfer (DUC-2002) Results Finally, we also tested our model’s generalizability/-

transfer skills, where we take the models trained on CNN/Daily Mail and directly test them on

DUC-2002 in a test-only setup. As shown in Table 6.2, our final ROUGESal+Entail multi-reward

RL model is statistically significantly better than both the cross-entropy (pointer-generator +

coverage) baseline as well as ROUGE reward RL model, in terms of all 4 metrics with a large

margin (with p < 0.001). This demonstrates that our ROUGESal+Entail model learned better

transferable and generalizable skills of saliency and logical entailment.

5Our last three rows in Table 6.1 are all stat. signif. better in all metrics with p < 0.001 compared to See et al.
(2017).
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Models 2-gram 3-gram 4-gram
See et al. (2017) 2.24 6.03 9.72
Baseline (XE) 2.23 5.58 8.81
ROUGE (RL) 2.69 6.57 10.23
ROUGESal (RL) 2.37 6.00 9.50
Entail (RL) 2.63 6.56 10.26

Table 6.4: Abstractiveness: novel n-gram percentage.

6.6 Output Analysis

Saliency Analysis We analyzed the output summaries generated by See et al. (2017), and our

baseline, ROUGE-reward and ROUGESal-reward models, using our saliency prediction model

(Sec. 6.3) as the keyword detection classifier. We annotated the ground-truth and model sum-

maries with this keyword classifier and computed the % match, i.e., how many salient words

from the ground-truth summary were also generated in the model summary6, and the scores are

27.95%, 28.00%, 28.80%, and 30.86%. We also used the original CNN/Daily Mail Cloze Q&A

setup (Hermann et al., 2015) with the fill-in-the-blank answers treated as salient information,

and the results are 60.66%, 59.36%, 60.67%, and 64.66% for the four models. Further, we also

calculated the ROUGESal scores (based on our reward formulation in Sec. 6.3), and the results

are 42.04%, 42.14%, 43.05%, and 46.56% for the four models. All three of these saliency anal-

ysis experiments illustrate that our ROUGESal reward model is stat. signif. better in saliency

than the See et al. (2017), our baseline, and ROUGE-reward models (p < 0.001 for all three

experiments).

Entailment Analysis We also analyzed the entailment scores of the generated summaries from See

et al. (2017), and our baseline, ROUGE-reward, and Entail-reward models, and the results are

27.33%, 27.21%, 28.23%, and 28.98%.7 We observe that our Entail-reward model achieves stat.

significant entailment scores (p < 0.001) w.r.t. all the other three models.

6In order to select the keywords for this analysis, we used a 0.2 probability threshold on the saliency classifier (based
on the scale of the classifier’s distribution).
7Based on our ground-truth summary to output summary sentences’ average entailment score (see Sec. 6.3); similar
trends hold for document-to-summary entailment scores.
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Abstractiveness Analysis In order to measure the abstractiveness of our models, we followed

the ‘novel n-gram counts’ approach suggested in See et al. (2017). First, we found that all our

reward-based RL models have significantly (p < 0.01) more novel n-grams than our cross-

entropy baseline (see Table 6.4). Next, the Entail-reward model ‘maintains’ stat. equal abstrac-

tiveness as the ROUGE-reward model, likely because it encourages rewriting to create logical

subsets of information, while the ROUGESal-reward model does a bit worse, probably because

it focuses on copying more salient information (e.g., names). Compared to previous work (See

et al., 2017), our Entail-reward and ROUGE-reward models achieve statistically significant im-

provement (p < 0.01) while ROUGESal is comparable.

6.7 Conclusion

We presented a summarization model trained with novel RL reward functions to improve

the saliency and directed logical entailment aspects of a good summary. Further, we introduced

the novel and effective multi-reward approach of optimizing multiple rewards simultaneously in

alternate mini-batches. We achieve the new state-of-the-art on CNN/Daily Mail and also strong

test-only improvements on a DUC-2002 transfer setup. In the next chapter, we will introduce a

better way of optimizing multiple reward using multi-armed bandits.
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CHAPTER 7: AUTOMATION METHODS FOR MTL AND RL WITH BANDITS

In previous chapters (Chapters 3, 4, 5, 6), we presented various multi-task learning and rein-

forcement learning based approaches to share knowledge across tasks. While these approaches

are appealing, they need manual tuning of in what static proportions the auxiliary tasks (in MTL)

or rewards (in RL) have to be mixed during the training. Further, this tuning can be computa-

tionally expensive with the increase in the number of tasks (or rewards) at hand. Addressing this

issue, in this chapter, we introduce ‘dynamic’ mixing of auxiliary tasks (in MTL) or rewards

(in RL) in an automatic way using multi-armed bandits. First, we briefly discuss multi-armed

bandits, and then discuss its application to automate MTL and multi-reward RL optimization.

7.1 Multi-Armed Bandits (MAB)

Many control problems can be cast as multi-armed bandit problems, where the goal is to

select a sequence of arms/actions in order to optimize certain objective (e.g., expected future

payoff) (Bubeck et al., 2012). One widely studied problem in the multi-armed bandit litera-

ture is finding the optimal trade-off between exploration and exploitation (Audibert et al., 2009;

Macready and Wolpert, 1998; Auer et al., 2002a; Kveton et al., 2019; Bubeck et al., 2012). Some

widely used bandit algorithms include ε-greedy (Sutton and Barto, 2018), Boltzmann explo-

ration (Kaelbling et al., 1996), UCB (Auer et al., 2002a), Thompson sampling (Chapelle and Li,

2011), contextual bandit (Sharaf and Daumé III, 2019), as well as Exp3 adversarial bandit (Auer

et al., 2002b).

Multi-armed bandit algorithms have been used in a wide range of applications, such as online

advertising (Chen et al., 2013), recommendation (Li et al., 2010), multi-task task selection (Guo

et al., 2019a), and hyper-parameter optimization (Li et al., 2018; Merentitis et al., 2018). Re-
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cently, Graves et al. (2017) apply a non-stationary multi-armed bandit (in particular, the Exp3.S

algorithm) to select an adaptive policy (curriculum) that a neural network follows to maximize

the learning efficiency. Sharma and Ravindran (2017) use multi-armed bandit sampling to choose

which domain data (harder vs. easier) to feed as input to a single model (using different Atari

games). To our knowledge, we are the first ones to apply multi-armed bandits approaches to au-

tomate MTL and multi-reward RL optimization in the context of text generation tasks. We will

provide more details in the later sections on the MAB algorithms used for MTL and multi-reward

RL scenarios.

7.2 Dynamic Multi-Task Learning with Bandits

In Chapter 3 and Chapter 4 we proposed various ways of sharing the parameters across tasks.

However, we have to manually tune the static mixing ratio of various tasks during the training.

The complexity of finding the right optimal mixing ratio is exponentially hard with the increase

in the number of tasks at hand. Also, instead of a mixing ratio, a dynamic approach could be

more beneficial. Addressing these issues, in this chapter, we propose a multi-armed bandit ap-

proach that dynamically learns an effective schedule (curriculum) of switching between tasks for

optimization during multi-task learning, instead of the traditional approach with a manually-

tuned, static (fixed) mixing ratio (Luong et al., 2016). This dynamic approach allows us to

achieve not only equal, but in fact better results than the manual approach, while importantly

avoiding the hassle of tuning on the large space of mixing ratios over several different tasks.

Next, we briefly discuss the primary and auxiliary tasks used in this dynamic multi-task learning

setup.

We choose sentence simplification as our primary task. Sentence simplification is the task of

improving the readability and understandability of an input text. This challenging task has been

the subject of research interest because it can address automatic ways of improving reading aids

for people with limited language skills, or language impairments such as dyslexia (Rello et al.,

2013), autism (Evans et al., 2014), and aphasia (Carroll et al., 1999). It also has wide applications
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in NLP tasks as a preprocessing step, for example, to improve the performance of parsers (Chan-

drasekar et al., 1996), summarizers (Klebanov et al., 2004), and semantic role labelers (Vickrey

and Koller, 2008; Woodsend and Lapata, 2014).

Several sentence simplification systems focus on operations such as splitting a long sentence

into shorter sentences (Siddharthan, 2006; Petersen and Ostendorf, 2007), deletion of less im-

portant words/phrases (Knight and Marcu, 2002; Clarke and Lapata, 2006; Filippova and Strube,

2008), and paraphrasing (Devlin, 1999; Inui et al., 2003; Kaji et al., 2002). Inspired from ma-

chine translation based neural models, recent work has built end-to-end sentence simplification

models along with attention mechanism, and further improved it with reinforcement-based pol-

icy gradient approaches (Zhang and Lapata, 2017b). Our baseline is a novel application of the

pointer-copy mechanism (See et al., 2017) for the sentence simplification task, which allows

the model to directly copy words and phrases from the input to the output. We further improve

this strong baseline by bringing in auxiliary entailment and paraphrasing knowledge via soft and

dynamic multi-level, multi-task learning.

Apart from the three simplification operations discussed above, we also ensure that the sim-

plified output is a directed logical entailment w.r.t. the input text, i.e., does not generate any

contradictory or unrelated information. We incorporate this entailment skill via multi-task learn-

ing (Luong et al., 2016) with an auxiliary entailment generation task. Further, we also induce

word/phrase-level paraphrasing knowledge via a paraphrase generation task, enabling parallel

learning of these three tasks in a three-way multi-task learning setup. We employ a novel ‘multi-

level’ layered, soft sharing approach, where the parameters between the tasks are loosely coupled

at different levels of layers; we share higher-level semantic layers between the sentence simpli-

fication and entailment generation tasks (which teaches the model to generate outputs that are

entailed by the full input), while sharing the lower-level lexico-syntactic layers between the sen-

tence simplification and paraphrase generation tasks (which teaches the model to paraphrase only

the smaller sub-sentence pieces).
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Empirically, we evaluate our system on three standard datasets: Newsela, WikiSmall, and

WikiLarge. First, we show that our pointer-copy baseline is significantly better than sequence-to-

sequence models, and competitive w.r.t. the state-of-the-art. Next, we show that our multi-level,

multi-task framework performs significantly better than our strong pointer baseline and other

competitive sentence simplification models on both automatic evaluation as well as on human

study simplicity criterion. Further, we show that the dynamic multi-armed bandit based switching

of tasks during training improves over the traditional manually-tuned static mixing ratio. Lastly,

we show several ablation studies based on different layer-sharing approaches (higher versus

lower) with auxiliary tasks, hard versus soft sharing, dynamic mixing ratio sampling, as well as

our model’s learned entailment and paraphrasing skills.

Next, we first describe our sentence simplification baseline model with attention mecha-

nism, which is further improved by pointer-copy mechanism. Later, we introduce our two aux-

iliary tasks (entailment and paraphrase generation) and discuss how they can share specific

lower/higher-level layers/parameters to improve the sentence simplification task in a multi-task

learning setting. Finally, we discuss our new multi-armed bandit based dynamic multi-task learn-

ing approach.

7.2.1 Pointer-Copy Baseline Sentence Simplification Model

Our baseline is a 2-layer sequence-to-sequence model with both attention (Bahdanau et al.,

2015) and pointer-copy mechanism (See et al., 2017). Given the sequence of input/source tokens

x = {x1, ..., xTs}, the model learns an auto-regressive distribution over output/target tokens

y = {y1, ..., yTo}, which is defined as Pvocab(y|x; θ) =
∏

t p(yt|y1:t−1, x; θ), where θ repre-

sents model parameters and p(yt|y1:t−1, x; θ) is probability of generating token yt at decoder

time step t given the previous generated tokens y1:t−1 and input x. Given encoder hidden states

{hi}, and decoder’s tth time step hidden state (of last layer) st, the context vector ct =
∑

i αt,ihi,

where the attention weights αt,i define an attention distribution over encoder hidden states:

αt,i = exp(et,i)/
∑

k exp(et,k), where et,i = vTa tanh(Wast + Uahi + ba). Finally, the conditional
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distribution at each time step t of the decoder is defined as p(yt|y1:t−1, x; θ) = softmax(Wss
′
t),

where the final hidden state s′t is a combination of context vector ct and last layer hidden state st

and is defined as s′t = tanh(Wc[ct, st]), where Ws and Wc are trained parameters.

Pointer-Copy Mechanism: This helps in directly copying the words from the source inputs to

the target outputs via merging the generative distribution and attention distribution (as a proxy of

copy distribution). The goal of sentence simplification is to rewrite sentences more simply, while

preserving important information; hence, it also involves significant amount of copying from the

source. Our pointer mechanism approach is similar to See et al. (2017). At each time step of the

decoder, the model makes a (soft) choice between words from the vocabulary distribution Pvocab

and attention distribution Patt (based on words in the input) using the word generation probability

pg = σ(Wgct+Ugst+Vgdt+bg), where σ(·) is sigmoid, Wg, Ug, Vg and bg are trainable parameters,

and dt is decoder input. The final vocabulary distribution is defined as the weighted combination

of vocabulary and attention distributions:

Pf (y) = pgPvocab(y) + (1− pg)Patt(y) (7.1)

7.2.2 Auxiliary Tasks

Entailment Generation The task of entailment generation is to generate a hypothesis which is

entailed by the given input premise. A good simplified sentence should be entailed by (follow

from) the source sentence, and hence we incorporate such knowledge through an entailment

generation task into our sentence simplification task. We share the higher-level semantic lay-

ers between the two tasks (see reasoning in Sec. 7.2.3 below). We use entailment pairs from

SNLI (Bowman et al., 2015) and Multi-NLI (Williams et al., 2018b) datasets for training our

entailment generation model, where we use the same architecture as our sentence simplification

model.

Paraphrase Generation Paraphrase generation is the task of generating similar meaning phrases

or sentences by reordering and modifying the syntax and/or lexicon. Paraphrasing is one of the
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Figure 7.1: Overview of our 3-way multi-task
model. Same color and dashed connections
represent soft-shared parameters in different
layers.
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Figure 7.2: Overview of our multi-armed
bandits algorithm for dynamic mixing ratio
learning. It consists of a controller with 3
arms/tasks.

common operations used in sentence simplification, i.e, by substituting complex words and

phrases with their simpler paraphrase forms. Hence, we add this knowledge to the sentence

simplification task via multi-task learning, by sharing the lower-level lexico-syntactic layers

between the two tasks (see reasoning in Sec. 7.2.3 below). For this, we use the paraphrase pairs

from ParaNMT (Wieting and Gimpel, 2017a). Here, again, we use the same architecture as our

sentence simplification model.

7.2.3 Multi-Task Learning

In this subsection, we discuss our multi-task, multi-level soft sharing strategy with parallel

training of sentence simplification and related auxiliary tasks (entailment and paraphrase genera-

tion).

The predominant approach for multi-task learning in sequence-to-sequence models is to di-

rectly hard-share all encoder/decoder layers/parameters (Luong et al., 2016; Johnson et al., 2016;

Pasunuru and Bansal, 2017a; Kaiser et al., 2017). However, this approach places very strong

constraints/priors on the primary model to compress knowledge from diverse tasks. We believe

that while the auxiliary tasks considered in this work share many similarities with the primary

sentence simplification task, they are still different in either lower-level or higher-level represen-

tations (e.g., entailment will deal with higher-level, full-sentence logical inference, while para-
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phrasing will handle the lower-level intermediate word/phrase simplifications). In this section,

we propose to relax the priors in two ways: (1) we share the model parameters in a finer-grained

scale, i.e. layer-specific sharing, by keeping some of their parameters private, while sharing re-

lated representations; and (2) we encourage shared parameters to be close in certain distance

metrics with a penalty term instead of hard-parameter-tying (Luong et al., 2016).

Multi-Level Sharing Mechanism Fig. 7.1 shows our multi-task model with parallel training of

three tasks: sentence simplification (primary task), entailment generation (auxiliary task), and

paraphrase generation (auxiliary task). Recently, Belinkov et al. (2017) observed that different

layers in a sequence-to-sequence model (trained on translation) exhibit different functionalities:

lower-layers (closer to inputs) of the encoder learn to represent word structure while higher layers

(farther from inputs) are more focused on semantics and meanings (Zeiler and Fergus (2014) ob-

served similar findings for convolutional image features). Based on these findings, we share the

higher-level layers1 between the entailment generation and sentence simplification tasks, since

they share higher semantic-level language inference skills (for full sentence-to-sentence logical

directedness). On the other hand, we share the lower-level lexico-syntactic layers2 between the

paraphrase generation and sentence simplification tasks, since they share more word/phrase and

syntactic level paraphrasing knowledge to simplify the smaller, intermediate sentence pieces.

Sec. 7.2.7 present empirical ablations to support our intuitive layer sharing.3

Soft Sharing In multi-task learning, we can do either hard sharing or soft sharing of parame-

ters. Hard sharing directly ties the parameters to be shared, and receives gradient information

from multiple tasks. On the other hand, soft sharing only loosely couples the parameters, and

encourages them to be close in representation space. Hence the soft sharing approach gives more

1We found that sharing higher-level semantic layers (farther from input/output), i.e., encoder layer 2, attention, and
decoder layer 1 (in Fig. 7.1), to work well. See Sec. 7.2.7 for ablations on alternative layer sharing methods.
2We found that sharing lower-level lexico-syntactic layers (closer to input/output), i.e., encoder layer 1 and decoder
layer 2 (in Fig. 7.1), to work well. See Sec. 7.2.7 for ablations on alternative layer sharing methods.
3Note that even though entailment just tries to generate shorter, logical-subset sub-sentences, the overall saliency
and quality of the simplified output is still balanced because the entailment task is flexibly (softly) shared with the
paraphrasing and sentence simplification tasks, and the final model mixture is chosen based on simplification task
metrics.
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flexibility for parameter sharing, hence allowing different tasks to choose what parts of their

parameters space to share. We minimize the l2 distance between shared parameters as a regular-

ization along with the cross entropy loss. Hence, the final loss function of the primary task with a

related auxiliary task is defined as follows:

L(θ) = − logPf (y|x; θ) + λ||θs − φs|| (7.2)

where θ represents the full parameters of the primary task (sentence simplification), θs and φs

are the subsets of shared parameters between the primary and auxiliary task resp., and λ is a

hyperparameter.

Multi-Task Training We employ multi-task learning with parallel training of related tasks in

alternate mini-batches based on a mixing ratio αss:αeg:αpp, where we alternatively optimize αss,

αeg, αpp mini-batches of sentence simplification, entailment generation, and paraphrase genera-

tion, respectively, until all models converge. In the next section, we discuss a new approach to

replace this static mixing ratio with dynamically-learned task switching.

7.2.4 Dynamic Mixing Ratio Learning

Current multi-task models are trained via alternate mini-batch optimization based on a task

‘mixing ratio’ (Luong et al., 2016; Pasunuru and Bansal, 2017a), i.e., how many iterations on

each task relative to other tasks (see end of Sec. 7.2.3). This is usually treated as a very important

hyperparameter to be tuned, and the search space scales exponentially with the number of tasks.

Hence, we importantly replace this manually-tuned and static mixing ratio with a ‘dynamic’

mixing ratio learning approach, where a controller automatically switches between the tasks

during training, based on the current state of the multi-task model. Specifically, we use a multi-

armed bandits based controller with Boltzmann exploration (Kaelbling et al., 1996) with an

exponential moving average update rule.
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We view the problem of learning the right mixing of tasks as a sequential control problem,

where the controller’s goal is to decide the next task/action after every ns training steps in each

task-sampling round tb.4 Let {a1, ..., aM} represent the set of 3 tasks in our multi-task setting, i.e.,

sentence simplification, entailment generation, and paraphrase generation. We model the con-

troller as a M -armed bandits, where it selects a sequence of actions/arms over the current training

trajectory to maximize the expected future payoffs (see Fig. 7.2). At each round tb, the controller

selects an arm based on noisy value estimates and observes rewards rtb for the selected arm (we

use the negative validation loss of the primary task as the reward in our setup). One problem in

bandits learning is the trade-off between exploration and exploitation, where the agent needs to

make a decision between taking the action that yields the best payoff on current estimates, or

explore new actions whose payoffs are not yet certain. For this, we use the Boltzmann explo-

ration (Kaelbling et al., 1996) with exponentially moving action value estimates. Let πtb be the

policy of the bandit controller at round tb, we define this to be:

πtb(ai) = exp(Qtb,i/τ)
/ M∑

j=1

exp(Qtb,j/τ) (7.3)

where Qtb,i is the estimated action value of each arm i at round tb, and τ is the temperature.5 If

Q0,i is the initial value estimate of arm i, then Qtb,i is the exponentially weighted mean with the

decay rate α:

Qtb,i = (1− α)tbQ0,i +

tb∑
k=1

α(1− α)tb−krk (7.4)

To further help the exploration process, we follow the principle of optimism under uncertainty (Sut-

ton and Barto, 1998) and set Q0,i to be above the maximum empirical rewards. Empirically, we

show that this approach of ‘dynamic mixing ratio’ is equal or better than the traditional static

mixing ratio (see Table 7.3). Also, we further show ablation study in Sec. 7.2.7 to show that

this switching approach is better than the alternative approach of first using multi-armed bandits

4We set ns to 10 to reduce variance of estimates, i.e., the bandit controller’s task/action will be trained for 10 mini-
batches.
5We tried decaying the temperature variable, but we didn’t find this to very beneficial, so we instead fix this to 1.0.
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for finding an optimal ‘final’ mixing ratio and then re-training the model based on this bandits-

selected mixing ratio.

7.2.5 Evaluation Setup

Datasets We first describe the three standard sentence simplification datasets we evaluate on:

Newsela, WikiSmall, and WikiLarge; next, we describe datasets for our auxiliary entailment and

paraphrase generation tasks. Newsela (Xu et al., 2015b) is acknowledged as a higher-quality

dataset for studying sentence simplifications, as opposed to Wikipedia-based datasets which

automatically align complex-simple sentence pairs and have generalization issues (Zhang and

Lapata, 2017b; Xu et al., 2015b; Amancio and Specia, 2014; Hwang et al., 2015; Štajner et al.,

2015). Newsela consists of 1, 130 news articles, and we follow previous work (Zhang and La-

pata, 2017b) to use the first 1, 070 documents for training, and 30 documents each for develop-

ment and test. WikiSmall (Zhu et al., 2010) contains automatically-aligned complex-simple

sentences from the ordinary-simple English Wikipedias. The data has 89, 042 pairs for train-

ing and 100 for test. We use the 205-pairs validation set from Zhang and Lapata (2017b). Wiki-

Large (Zhang and Lapata, 2017b) is a larger Wikipedia corpus aggregating pairs from Kauchak

(2013), Woodsend and Lapata (2011), and WikiSmall. We use the exact training/evaluation sets

provided by Zhang and Lapata (2017b). SNLI and MultiNLI: For the task of entailment gen-

eration, we use the Stanford Natural Language Inference (SNLI) corpus (Bowman et al., 2015)

and MultiNLI (Williams et al., 2018b). We use their entailment labeled pairs for our entailment

generation task, following previous work (Pasunuru and Bansal, 2017a). The combined SNLI and

MultiNLI dataset has 302, 879 entailment pairs, out of which we use 276, 720 pairs for training,

and the rest are divided into validation and test sets. ParaNMT: For the task of paraphrase gen-

eration, we use the back-translated paraphrase dataset provided by Wieting and Gimpel (2017a).
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The filtered version of the dataset has 5.3 million pairs of paraphrases.6 We use 99% for training,

and the rest are evenly divided into validation and test sets.

Evaluation Metrics Following previous work (Zhang and Lapata, 2017b), we report all the stan-

dard evaluation metrics: SARI (Xu et al., 2016b), FKGL (Kincaid et al., 1975), and BLEU (Pa-

pineni et al., 2002). However, several studies have shown that BLEU is poorly correlated w.r.t.

simplicity (Zhu et al., 2010; Štajner et al., 2015; Xu et al., 2016b). Moreover, Shardlow (2014)

argues that FKGL (Kincaid et al., 1975), which measures readability of simpler output (lower is

better), favors very short sentences even though longer/less coarse counterparts can be simpler.

Further, Xu et al. (2016b) argues that BLEU tends to favor conservative systems that do not make

many changes, and proposes SARI metric which explicitly measures the quality of words that

are added and deleted. SARI is shown to correlate well with human judgment in simplicity (Xu

et al., 2016b), and hence we primarily focus on this metric in our models’ performance analysis.7

Further, we also do human evaluation based on: Fluency (‘is the output grammatical and well

formed?’), Adequacy (‘to what extent is the meaning expressed in the original sentence preserved

in the output?’) and Simplicity (‘is the output simpler than the original sentence?’), following

guidelines suggested by Xu et al. (2016b) and Zhang and Lapata (2017b).

Training Details All our soft/hard and layer-specific sharing decisions (Sec.7.2.7) were made

on the validation/dev set. Our model selection (tuning) criteria is based on the average of our 3

metrics (SARI, BLEU, 1/FKGL) on the validation set. Please refer to the Appendix A.5 for full

training details (vocabulary overlap, mixing ratios and bandit sampler decay rates and reward,

WikiLarge pre-training, etc.).

6We chose ParaNMT over other paraphrase datasets (e.g. the phrase-to-phrase PPDB dataset (Ganitkevitch et al.,
2013)), because ParaNMT is a sentence-to-sentence dataset and hence is a more natural fit for sentence-level
multi-task RNN-layer sharing with our sentence-to-sentence simplification task.
7We use the JOSHUA package for calculating SARI and BLEU score following Zhang and Lapata (2017b) and Xu
et al. (2016b). Our FKGL implementation is based on https://github.com/mmautner/readability.
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Models BLEU FKGL SARI
PREVIOUS WORK

PBMT-R 18.19 7.59 15.77
Hybrid 14.46 4.01 30.00
EncDecA 21.70 5.11 24.12
DRESS 23.21 4.13 27.37
DRESS-LS 24.30 4.21 26.63

OUR MODELS

Baseline ⊗ 23.72 3.25 28.31
⊗ + Ent. 16.82 2.21 31.55
⊗ + Paraphr. 16.29 2.03 31.71
⊗+Ent+Par 11.86 1.38 32.98

Table 7.1: Newsela (FKGL: lower
is better). Note that SARI is the
primary, human-correlated metric
for sentence simplification (Xu
et al., 2016b).

WIKISMALL WIKILARGE

Models BLEU FKGL SARI BLEU FKGL SARI
PREVIOUS WORK

PBMT-R 46.31 11.42 15.97 81.11 8.33 38.56
Hybrid 53.94 9.21 30.46 48.97 4.56 31.40
SBMT-SARI - - - 73.08 7.29 39.96
EncDecA 47.93 11.35 13.61 88.85 8.41 35.66
DRESS 34.53 7.48 27.48 77.18 6.58 37.08
DRESS-LS 36.32 7.55 27.24 80.12 6.62 37.27

OUR MODELS

Baseline ⊗ 36.18 7.69 25.67 82.37 7.84 36.68
⊗+Ent+Par 29.70 6.93 28.24 81.49 7.41 37.45

Table 7.2: WikiSmall/Large results (FKGL: lower is
better). Note that SARI is the primary, human-correlated
metric for sentence simplification (Xu et al., 2016b).

7.2.6 Experimental Results

We evaluate our models on three datasets and via several automatic metrics plus human evalu-

ation.8

Pointer Baseline First, we compare our pointer baseline with various previous works: PBMT-

R (Wubben et al., 2012), Hybrid (Narayan and Gardent, 2014), SBMT-SARI (Xu et al., 2016b)9,

and EncDecA, DRESS, and DRESS-LS (Zhang and Lapata, 2017b). As shown in Table 7.1, our

pointer baseline already achieves the best score in FKGL and the second-best score in SARI on

Newsela, and also achieves overall comparable results on both WikiSmall and WikiLarge (see

Table 7.2).

Multi-Task Models We further improve our strong pointer-based sentence simplification base-

line model by multi-task learning it with entailment and paraphrase generation. First, we show

that our 2-way multi-task models with auxiliary tasks (entailment and paraphrase generation) are

8As described in Sec. 7.2.5, Newsela is considered as a higher quality dataset for text simplification, and thus we
report ablation-style results (e.g., 2-way multi-task models and different layer-sharing ablations) and human eval-
uation on Newsela (since Wikipedia datasets are automatically-aligned). Moreover, we report SARI, FKGL, and
BLEU for completeness, but as described in Sec. 7.2.5, SARI is the primary human-correlated metric for sentence
simplification.
9We borrow the SBMT-SARI results for WikiLarge from Zhang and Lapata (2017b).

89



Models BLEU FKGL SARI
NEWSELA

Static Mixing Ratio 11.86 1.38 32.98
Dynamic Mixing Ratio 11.14 1.32 33.22

WIKISMALL

Static Mixing Ratio 29.70 6.93 28.24
Dynamic Mixing Ratio 27.23 5.86 29.58

Table 7.3: Results on dynamic vs. static mixing ratio (FKGL: lower is better).

statistically significantly better than our pointer baseline and previous works in both SARI and

FKGL on Newsela (see Table 7.1).10 Next, Table 7.1 and Table 7.2 summarize the performance

of our final 3-way multi-level, multi-task models with entailment generation and paraphrase gen-

eration on all three datasets. Here, our 3-way multi-task models are statistically significantly

better than our pointer baselines in both SARI and FKGL (with p < 0.01) on Newsela and Wik-

iSmall, and in SARI (p < 0.01) on WikiLarge. Also, our 3-way multi-task model is statistically

significantly better than the 2-way multi-task models in SARI and FKGL with p < 0.01 (see

Table 7.1). In Sec. 7.2.7, we further provide a set of detailed ablation experiments investigating

the effects of different (higher-level versus lower-level) layer sharing methods and soft- vs. hard-

sharing in our multi-level, multi-task models; and we show the superiority of our final choice of

higher-level semantic sharing for entailment generation and lower-level lexico-syntactic sharing

for paraphrase generation.

Dynamic Mixing Ratio Models Finally, we present results on our 3-way multi-task model with

the new approach of using ‘dynamic’ mixing ratios based on multi-armed bandits sampling (see

Sec. 7.2.4). As shown in Table 7.3, this dynamic multi-task approach achieves a stat. significant

improvement in SARI as compared to the traditional fixed and manually-tuned mixing ratio based

3-way multi-task model: 33.22 vs. 32.98 (p < 0.05) on Newsela, and 29.58 vs. 28.24 (p <

0.001) on WikiSmall. Hence, this allows us to achieve not only equal, but in fact better results

10Stat. significance is computed via bootstrap test (Noreen, 1989; Efron and Tibshirani, 1994). Both our 2-way
multi-task models are statistically significantly better in SARI and FKGL with p < 0.01 w.r.t. our pointer baseline
and previous works. Note the discussion in Sec. 7.2.5 about why BLEU is not a good sentence simplification metric.
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HUMAN EVALUATION MATCH-WITH-INPUT
Models Fluency Adequacy Simplicity Average BLEU (%) ROUGE (%) Exact Match (%)
Ground-truth 4.97 4.08 3.83 4.29 18.25 43.74 0.00
Hybrid 3.88 3.82 3.92 3.87 25.74 56.20 3.34
DRESS-LS 4.84 4.18 3.21 4.08 42.93 67.61 14.48
Pointer Baseline 4.61 3.94 3.99 4.18 30.80 60.56 10.68
3-way Multi-task 4.73 3.18 4.62 4.18 8.74 37.82 2.41

Table 7.4: Human evaluation results (on left) and closeness-to-input source results (on right), for
Newsela. In Sec. 7.2.6 ‘Human Evaluation’, we discuss the issue of high adequacy scores for
outputs that are very similar to the input (see right part of the table).

than the manual approach, while importantly avoiding the hassle of tuning on the large space of

mixing ratios over several different tasks. In Sec. 7.2.7, we further provide ablation analysis to

study whether the improvements come from the bandit learning this dynamic curriculum or from

the bandit finding the final optimal mixing-ratio at the end of the sampling procedure (and also

compare it to a random curriculum).

Human Evaluation We also perform an anonymized human study comparing our pointer base-

line, our multi-task model, some previous works (Hybrid (Narayan and Gardent, 2014) and state-

of-the-art DRESS-LS (Zhang and Lapata, 2017b)), and ground-truth references (see left part

of Table 7.4), based on fluency, adequacy, and simplicity (see Sec. 7.2.5 for more details about

these criteria) using 5-point Likert scale. We asked annotators to evaluate the models (randomly

shuffled to anonymize model identity) based on 200 samples from the representative and cleaner

Newsela test set, and their scores are reported in Table 7.4. Our 3-way multi-task model achieves

a significantly higher (p < 0.001) simplicity score compared to DRESS-LS, Hybrid, and our

pointer baseline models. However, we next observe that our 3-way multi-task model has lower

adequacy score as compared to DRESS-LS and the pointer model, but this is because our 3-way

multi-task model focuses more strongly on simplification, which is the goal of the given task.

Moreover, based on the overall average score of the three human evaluation criteria, our 3-way

multi-task model is also significantly better (p < 0.03) than the state-of-the-art DRESS-LS
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model (and p < 0.001 w.r.t. Hybrid model).11 Also, on further investigation, we found that a

problem with the adequacy metric is that it gets artificially high scores for output sentences which

are exact match (or a very close match) with the input source sentence, i.e., they have very little

simplification and hence almost fully retain the exact meaning. In the right part of Table 7.4, we

analyzed the matching scores of the outputs from different models w.r.t. the source input text,

based on BLEU, ROUGE (Lin, 2004) and exact match. First, this shows that the ground-truth

sentence-simplification references are in fact (as expected) very different from the input source

(0% exact match, 18% BLEU, 44% ROUGE). Next, we find that our multi-task model also has

low match-with-input scores (2% exact match, 9% BLEU, 38% ROUGE), similar to the behavior

of the ground-truth references. On the other hand, DRESS-LS (and pointer baseline) model is

generating output sentences which are substantially closer to the input and hence is not making

enough changes (14% exact match, 43% BLEU, 68% ROUGE) as compared to the references

(which explains their higher adequacy but lower simplicity scores).

7.2.7 Ablations and Insights

In this section, we conduct several ablation analyses to study the different layer-sharing mech-

anisms (higher semantic vs. lower lexico-syntactic), soft- vs. hard-sharing, two dynamic multi-

armed bandit approaches, and our model’s learned entailment and paraphrasing skills. We also

present and analyze some output examples from several models.12 Note that all our soft and layer

sharing decisions were strictly made on the dev/validation set (see Sec. 7.2.5).

Different Layer Sharing Approaches We empirically show that our final multi-level layer shar-

ing method (i.e., higher-level semantic layer sharing with entailment generation, while lower-

level lexico-syntactic layer sharing with paraphrase generation) performs better than the follow-

11Note that our multi-task model is stat. equal to our pointer baseline on the overall-average score, showing the
available trade-off between systems that simplify conservatively vs. strongly, based on one’s desired downstream
task application. Also refer to the high ‘match-with-input’ issue with the adequacy metric discussed next.
12Since Newsela is considered as the more representative dataset for sentence simplification with lesser noise and
human quality (Xu et al., 2015b; Zhang and Lapata, 2017b), we conduct our ablation studies on this dataset, but we
observed similar patterns on the other two datasets as well.
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Models BLEU FKGL SARI
Final (High Ent + Low PP) 11.86 1.38 32.98
Both lower-layer 11.94 1.47 31.92
Both higher-layer 12.26 1.38 32.02
Swapped (Low Ent + High PP) 21.64 2.97 29.07
Hard-sharing 13.01 1.38 32.36

Table 7.5: Multi-task layer ablation results on Newsela.

ing alternative layer sharing methods: (1) both auxiliary tasks with high-level layer sharing, (2)

both with low-level layer sharing, and (3) reverse/swapped sharing (i.e., lower-level layer shar-

ing for entailment, and higher-level layer sharing for paraphrasing). Results in Table 7.5 show

that our approach of high-level sharing for entailment generation and low-level sharing for para-

phrase generation is statistically significantly better than all other alternative approaches in SARI

(p < 0.01) (and statistically better or equal in FKGL).

Soft- vs. Hard-Sharing In this work, we use soft-sharing instead of hard-sharing approach

(benefits discussed in Sec. 7.2.3) in all of our models. Table 7.5 also presents empirical results

comparing soft- vs. hard-sharing on our final 3-way multi-task model, and we observe that soft-

sharing is statistically significantly better than hard-sharing in SARI with p < 0.01.

Quantitative Improvements in Entailment We employ a state-of-the-art entailment classi-

fier (Chen et al., 2017) to calculate the entailment probabilities of output sentence being en-

tailed by the ground-truth.13 Table 7.6 summaries the average entailment scores for the Hybrid,

DRESS-LS, Pointer baseline, and 2-way multi-task model (with entailment generation auxil-

iary task), showing that the 2-way multi-task model improves in the aspect of logical entailment

(p < 0.001), demonstrating the inference skill acquired by the simplification model via the auxil-

iary knowledge from the entailment generation task.

13For this entailment analysis, we use ground-truth output as premise instead of input source, because: (1) entailment
w.r.t. input source can give artificially high scores even when the output doesn’t simplify enough and just copies the
source (see the discussion in Sec. 7.2.6 and Table 7.4); (2) By transitivity, if output is entailed by ground-truth, which
in turn is entailed by source, then output should also be entailed by source (plus, we want the output to be closer to
ground-truth than to input source).

93



Models Entailment Paraphrasing
Ground-truth N/A 62.1
Hybrid 34.8 74.1
DRESS-LS 30.7 77.9
Pointer Baseline 36.9 76.6
2-way Multi-Task 41.4 63.9

Table 7.6: Analysis: Entailment and paraphrase
classification results (avg. probability scores as %)
on Newsela.

Models Deletions Additions
Hybrid 95.18 0.000
DRESS-LS 85.37 0.047
Pointer Baseline 88.91 0.026
3-way Multi-Task 97.54 0.049

Table 7.7: Analysis: SARI’s sub-operation
scores on Newsela dataset.

Quantitative Improvements in Paraphrasing We use the paraphrase classifier from Wieting

and Gimpel (2017b) to compute the paraphrase probability score between the generated out-

put and the input source. The results in Table 7.6 show that our 2-way multi-task model (with

paraphrasing generation auxiliary task) is closer to the ground-truth in terms of the amount of

paraphrasing (w.r.t. input) required by the sentence-simplification task, while the pointer baseline

and previous models have higher scores due to higher amount of copying from input source (see

‘Match-with-Input’ discussion in Sec. 7.2.6, Table 7.4).

Addition/Deletion Operations We also measured the performance of the various models in

terms of the addition and deletion operations using SARI’s sub-operation scores computed w.r.t.

both the ground-truth and source (Xu et al., 2016b). Table 7.7 shows that our multi-task model is

equal or better in terms of both operations.

Two Multi-Armed-Bandit Approaches As described in Sec. 7.2.4, our multi-armed bandit ap-

proach with dynamic mixing ratio during multi-task training learns a sufficiently good curriculum

to improve the sentence simplification task (see Sec. 7.2.6). Here, we further show an ablation

study on another alternative approach of using multi-armed bandits, where we record the last 10%

of the actions from the bandit controller14, then calculate the corresponding mixing ratio based

on this 10%, and run another independent model from scratch with this fixed mixing ratio. We

found that the curriculum-style dynamic switching of tasks is in fact very effective as compared

to this other 2-stage approach (33.22 versus 32.58 in SARI with p < 0.01). This is intuitive be-

14We choose the last 10% to avoid the noisy action-value estimates at the start of the training.
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Figure 7.3: Task selection probability over training trajectory, predicted by bandit controller.

cause the dynamic switching of tasks during multi-task training allows the model to choose the

best next task to run based on the current state (as well as the previous curriculum path) of the

model, as opposed to a fixed/static single mixing ratio for the full training period. In Fig. 7.3,

we visualize the (moving averages of) probabilities of selecting each task, which shows that in

the 0-1000 #rounds range, the bandit initially gives higher weight to the main task, but gradually

redistributes the probabilities to the auxiliary tasks; and beyond 1000 #rounds, it then alternates

switching among the three different tasks periodically. We also experimented with replacing the

bandit controller with random task choices, and our bandit-controller achieves statistically signifi-

cantly better results than this approach in both SARI and FKGL with p < 0.01, which shows that

the path learned by the bandit controller is meaningful.

Multi-Task Learning vs. Data Augmentation To verify that our improvements come indeed

from the auxiliary tasks’ specific character/capabilities and not just due to adding more data,

we separately trained word embeddings on each auxiliary dataset (i.e., SNLI+MultiNLI and

ParaNMT) and incorporated them into the primary simplification model. We found that both

our 2-way multi-task models perform stat. significantly better than these models (which use the

auxiliary word-embeddings), suggesting that merely adding more data is not enough. Moreover,
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Table 7.5 shows that only specific intuitive (syntactic vs. semantic) layer sharing between the

primary and auxiliary tasks helps results and not just adding data.

7.2.8 AUTOSEM: Automatic Task Selection and Mixing in MTL

In the previous section, we have presented an effective way of dynamically switching across

auxiliary tasks during MTL training avoiding the hassle of manual tuning of the mixing ratio of

tasks. Another issue is the success of MTL models also depend on the correct choice of auxiliary

tasks. One can achieve this via manual intuition or hyper-parameter tuning over all combinatorial

task choices, but this introduces human inductive bias or is not scalable when the number of

candidate auxiliary tasks is considerably large.

Addressing this issue, we proposed AUTOSEM (Guo et al., 2019a) framework, a two-stage

Bayesian optimization pipeline. The first stage addresses automatic task selection from a pool of

auxiliary tasks. For this, we use a non-stationary multi-armed bandit controller (MAB) (Bubeck

et al., 2012; Raj and Kalyani, 2017) that dynamically alternates among task choices within the

training loop, and eventually returns estimates of the utility of each task w.r.t. the primary task.

We model the utility of each task as a Beta distribution, whose expected value can be interpreted

as the probability of each task making a non-negative contribution to the training performance of

the primary task. Further, we model the observations as Bernoulli variables so that the posterior

distribution is also Beta-distributed. We use Thompson sampling (Chapelle and Li, 2011; Russo

et al., 2018) to trade off exploitation and exploration.

The second stage then takes the auxiliary tasks selected in the first stage and automatically

learns the training mixing ratio of these tasks, through the framework of Bayesian optimization,

by modeling the performance of each mixing ratio as a sample from a Gaussian Process (GP)

to sequentially search for the optimal values (Rasmussen, 2004; Snoek et al., 2012). For the

covariance function in the GP, we use the Matern kernel which is parameterized by a smoothness

hyperparameter so as to control the level of differentiability of the samples from GP. Further,

following Hoffman et al. (2011), we use a portfolio of optimistic and improvement-based policies
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as acquisition functions (Shahriari et al., 2016) for selecting the next sample point from the GP

search space.

We conducted several experiments on the GLUE natural language understanding bench-

mark (Wang et al., 2019a), where we choose each of RTE, MRPC, QNLI, CoLA, and SST-2 as

the primary task, and treat the rest of the classification tasks from the GLUE benchmark as can-

didate auxiliary tasks. Empirical results suggest that our AUTOSEM framework can successfully

find useful auxiliary tasks and automatically learn their mixing ratio, achieving significant per-

formance boosts on top of strong baselines for several primary tasks, e.g., 5.2% improvement on

QNLI, 4.7% improvement on RTE, and 2.8%/0.8% improvement on MRPC.

7.3 Optimizing Multiple RL Rewards with Bandits

Recent advancements in end-to-end neural networks-based approaches have shown wide

success in various sequence generation tasks: machine translation (Sutskever et al., 2014; Lu-

ong et al., 2015), dialogue systems (Vinyals and Le, 2015; Serban et al., 2016), textual sum-

marization (Rush et al., 2015; Nallapati et al., 2016; See et al., 2017), image/video caption-

ing (Bahdanau et al., 2015; Venugopalan et al., 2015a; Pasunuru and Bansal, 2017a), ques-

tion generation (Du et al., 2017; Du and Cardie, 2018; Zhang and Bansal, 2019), etc. In all of

these tasks, cross-entropy loss optimization has been widely used as a standard optimization

approach (Sutskever et al., 2014), but this approach suffers from exposure-bias issue (Ranzato

et al., 2016) and does not optimize for the non-differentiable automatic evaluation metrics that

measure the quality of the generated sequence. Recent introduction of policy gradient-based re-

inforcement learning approaches address these issues for sequence generation tasks by directly

optimizing the non-differentiable evaluation metrics (Zaremba and Sutskever, 2015; Ranzato

et al., 2016; Rennie et al., 2017).

However, optimizing for a particular metric/reward via policy gradient-based approaches

often leads to improvement in mostly that specific metric, suggesting that this approach is gaming

the metrics (Paulus et al., 2018). The weighted average of multiple metrics or surrogate rewards
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have been explored (Liu et al., 2017b), but these approaches have to deal with finding the optimal

scale balance across different metrics. One can alternatively optimize multiple metrics via a

mixing ratio (Pasunuru and Bansal, 2018) (Chapter 6), but this still needs careful tuning of the

mixing ratio. Moreover, all these reward approaches are fixed and do not change over training,

and all the metrics may not be important over every stage of the training. Thus, it might be useful

to consider using a dynamic combination of metrics, which rewards to use early vs. later, or

which rewards might be useful to come back later in training, and consider the context of the full

history of rewards, as well as the model’s current state and the nature of the metric.

To this end, we present a multi-armed bandit approach (which we name the DORB frame-

work) where the arms of the bandit are the choices of the metrics that we want to optimize as

rewards. At every round, the bandit chooses the next possible metric to optimize based on its

previous performance history over these metrics, hence allowing the automatic learning of an

optimal curriculum of rewards. We explore this approach in the context of exploration vs. ex-

ploitation via Exp3 algorithm (Auer et al., 2002b) with two novel approaches for bandit rewards:

(1) Single Multi-reward Bandit (SM-Bandit); (2) Hierarchical Multi-reward Bandit (HM-Bandit).

First, we present a reward scaling approach to maintain the metric rewards range in [0, 1]. Next,

we present our SM-Bandit, where at each round, the bandit’s reward is based on the performance

improvement from multiple sources. Here, we use the average of all the scaled metric rewards

from multiple sources as the final reward to the bandit. Finally, we present our HM-Bandit, which

consists of a single first-level controller, as well as K second-level multi-armed bandits. The

first-level controller’s goal is to find the under-performing reward metric, while the second-level

bandits’ goal is to trigger the specific metric optimizer that will lead to a promising improvement

in this specific metric.

We validate the effectiveness of our approaches on two important generation tasks: question

generation and data-to-text generation (including an unseen-test transfer setup) via both auto-

matic evaluation metrics and human evaluation. For question generation, we present results on

the SQuAD QG dataset (Du et al., 2017), and for data-to-text NLG, we choose the WebNLG
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...during the age of enlightenment, philosophers
such as john locke advocated the principle in their
writings, whereas others, such as thomas hobbes ...

who was an advocate of separation of powers?

Figure 7.4: Overview of our multi-armed bandit reward selection framework DORB. At each
step, the model outputs are scored based on a reward function (metric), where the choice of the
reward function is dynamically controlled by the multi-armed bandit. Then the corresponding
optimization is executed based on the chosen reward function. Finally, the observed validation
performance metrics are given as feedback to the bandit.

dataset (Gardent et al., 2017). We show that our bandit-based approaches perform statistically

significantly better (based on human evaluation) than strong single-reward based RL models as

well as non-bandits based multi-reward methods such as the multi-task approach of Pasunuru

and Bansal (2018). We further present various interpretable analyses of our bandit progress and

learned rewards curriculum over different bandit approaches.

7.3.1 Multi-Reward Optimization

In this section, we first describe the policy gradients-based reinforcement learning (RL) ap-

proach for text generation tasks, and then discuss the need for a better multi-reward optimization

approach for RL in the context of generation tasks. Lastly, we introduce our novel methods for

multi-reward optimization via multi-armed bandits.

Glossary: Agent: RL policy gradients; Bandit: multi-armed bandit; Controller: controller in

HM-Bandit (see Fig. 7.5).

Policy Gradient Background. Cross-entropy loss based optimization is traditionally used for

the sequence generation tasks. However, recent policy gradient-based reinforcement learning
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approach has shown two advantages over the cross-entropy loss optimization approach: (1) avoid-

ing exposure bias issue which is about the mismatch in the output distributions created by differ-

ent train and test time decoding approaches in cross-entropy loss optimization; (2) able to directly

optimize the non-differentiable evaluation metrics.

To this end, REINFORCE algorithm (Williams, 1992; Zaremba and Sutskever, 2015) is used

to learn a policy pθ defined by the model parameters θ to predict the next action (tokens in our

setup). Specifically, instead of minimizing the negative log-likelihood, we minimize the follow-

ing loss:

LRL = −Ews∼pθ [r(ws)] (7.5)

where ws is the sequence of sampled tokens and r(·) is the reward function that measures the

quality of ws. The derivative of this loss function can then be approximated using a single sample

along with a bias estimator b̂ to reduce variance:

∇θLRL = −(r(ws)− b̂)∇θ log pθ(w
s) (7.6)

There are several ways to calculate the baseline estimator, and in this work we use the SCST

mechanism (Rennie et al., 2017).

Need for a better multi-reward optimization. Often, an RL agent can improve the policy pθ

via multiple reward sources. However, efficient ways of optimizing multiple rewards in a policy

gradient-based reinforcement learning setup have been less explored. Previous works have ei-

ther explored using a weighted combination of multiple rewards (Zhang and Lapata, 2017a; Li

et al., 2016) or alternate fashion of optimizing multiple rewards inspired via multi-task learning

setup (Pasunuru and Bansal, 2018). However, these approaches have a disadvantage of tuning

the weights of the rewards combination or using a static tunable mixing ratio while optimizing

in an alternate fashion. On the other hand, previous work (Shi et al., 2018) have tried to pose

the text generation problem in inverse reinforcement learning framework (IRL) to directly learn

a reward function using training data, instead of coming up with sparse reward signals. How-
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ever, this approach does not have the flexibility to consider user intended rewards, hence may

not be always desirable. To this end, we explore multi-reward optimization via a multi-armed

bandit approach (Bubeck et al., 2012; Lattimore and Szepesvári, 2019; Burtini et al., 2015). Dur-

ing the training, the bandit explores/exploits the choice of reward functions in order to improve

the overall performance of the model. In the remaining part of this section, we discuss various

multi-armed bandit-based models for multi-reward optimization (Sec. 7.3.2), and reward settings

(Sec. 7.3.3). Then, we present the two novel approaches, namely Single Multi-reward Bandit

(SM-Bandit, Sec. 7.3.4) and Hierarchical Multi-reward Bandit (HM-Bandit, Sec. 7.3.5).

7.3.2 Multi-Armed Bandit for Multi-Reward Optimization

Given a set of K candidate actions (arms) {a1, a2, ..., aK}, the objective of a multi-armed ban-

dit problem is to maximize rewards earned through a sequence of lever pulls (actions). We call

this reward as bandit reward. We view the problem of optimizing multiple rewards as a sequential

design of experiments (Robbins, 1952), where the bandit’s goal is to decide the next arm (loss

function) to pull after each round in order to maximize the rewards it earns.

Let {R1, R2, .., RK} be a set of different rewards from K sources which can measure the

model/policy’s performance. To directly maximize the performance of these K rewards, we need

to use K different reinforcement learning-based loss functions. Let the loss function for Ri be:

LRLi = −Ews∼pθ [Ri(w
s)] (7.7)

Each of these K loss functions is considered as an arm of the multi-armed bandit (i.e., the arm-

s/joysticks in Fig. 7.4), where pulling the ith arm will result in optimizing for reinforcement

based loss function LRLi (i.e., in Fig. 7.4, main model parameters get updated). The goal of the

bandit is to explore and exploit different loss functions and maximize its reward (the validation

performance of the model, see Fig. 7.4). One widely studied problem is the trade-off between
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“exploitation” of the arm with the highest estimated payoff and “exploration” of less known arms.

For this, we use the popular Exp3 bandit algorithm (Auer et al., 2002b).

Exp3 Bandit Algorithm A stochastic bandit is completely determined by the distribution of

rewards of respective actions. However, it will be hard to argue that rewards are truly randomly

generated, and even if they are randomly generated, the rewards could be correlated over time

(e.g., the validation performance at the next step will be correlated with validation performance

at this time step). Taking all these factors into account makes the algorithm overly complicated,

and thus an alternative is to assume nothing about the underlying mechanism that generates the

rewards while still trying to achieve the lowest possible regret. This is called the adversarial

bandit problem, where the goal is to design an algorithm that keeps the regret small regardless of

what rewards are assigned to actions.

Exponential-weight algorithm for Exploration and Exploitation, or Exp3 (Auer et al., 2002b),

was created to handle the non-stochastic adversarial bandit problem. We use this algorithm in our

DORB framework. Exp3 works by maintaining a set of weights for each candidate action, and

the weights are used to decide randomly which action to take next. The empirical observation

is fed back to the bandit to either increase or decrease the relevant weights. The algorithm also

has a hyper-parameter γ ∈ [0, 1] that decides the probability to take action uniformly at random.

Specifically, at round t, the bandit picks action (arm) i among K arms based on the arm selection

probability which is defined as follows:

pt(i) = (1− γ) wt,i∑K
j=1wt,j

+
γ

K
(7.8)

where the weights wt,i are updated based on the observed bandit reward rBt :

r̂Bt,j =


rBt /pt(i) if j = i

0 otherwise
(7.9)
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wt+1,i = wt,i exp(γr̂
B
t,i/K) (7.10)

7.3.3 Bandit Reward Settings

Note that in this work, we have two sets of rewards: rewards used for optimizing the sequence

generation model via policy gradients-based reinforcement learning (R1 in Fig. 7.4, Sec. 7.3.1),

and rewards used for the bandit (R2 in Fig. 7.4). The rewards for the generation model are used

to optimize the model w.r.t. the metric of interest, while the rewards for the bandit help the bandit

decide which “metric of interest” the generation model should optimize.

In order to maintain consistent magnitude/scale across metric rewards while using them for

bandits, we use scaled rewards via the quantiles of rewards history following Graves et al. (2017).

Let Rt = {Ri}t−1i=1 be the history of unscaled rewards up to time step t. Let qlot and qhit be the

lower and upper quantiles of Rt, respectively.15 Then, the scaled reward, r̂t is defined as follows:

r̂t =


0 if Rt < qlot

1 if Rt > qhit

Rt−qlot
qhit −qlot

, otherwise

(7.11)

Instead of keeping the entire history of rewards, we use past n rewards from the history.

7.3.4 Single Bandit with Multi-Reward

Often, we want to optimize multiple metrics in our RL approach. For this, we have to give a

joint reward coming from multiple sources (metrics in our case) to the bandit as a bandit reward.

One can easily give the weighted combination of these rewards coming from multiple sources

as a reward to the bandit. However, tuning these weights is intractable if the number of reward

sources is large. Here, we introduce a new approach called Single Multi-reward Bandit (SM-

15We set qlot and qhit to be 20th and 80th quantiles.
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Algorithm 1 SM-Bandit Training
1: Inputs: #rewards: K, #train steps: ntrain, #steps in bandit round: nbandit
2: Initialize the Exp3 bandit B with K arms
3: a← chooseArm(B) . Based on Eqn. 7.8
4: i← 0
5: while i < ntrain do
6: Sample word sequence ws from model
7: Calculate rewards Rtrain based on ws

8: Optimize model’s LRLa loss using Rtrain
a

9: if i mod nbandit == 0 then
10: Evaluate model to get Rval

11: r ← 1
K

∑K
k=1 scaled(Rval

k ) . Based on Eqn. 7.11
12: updateBandit(B, a, r) . Based on Eqn. 7.10
13: a← chooseArm(B)
14: i← i+ 1

Bandit), which avoids tuning and uses rewards from multiple sources as feedback to the bandit.

Let LRL1 , LRL2 , and LRL3 be the reinforcement learning-based loss functions corresponding

to three arms of the bandit: arm1, arm2, and arm3, respectively. If arm2 is selected at round

t, then we optimize for LRL2 and measure the performance of all the unscaled metric scores

on the validation set and then calculate the corresponding scaled rewards for each metric. We

average over these scaled rewards and give that as a reward to the bandit. The generalization

of this reward for K-armed bandit is: rt = 1
K

∑K
i=1 r̂

t
i , where rt is the bandit reward at round

t and r̂ti is the scaled reward (Eq. 7.11) for the metric corresponding to armi at round t. This

approach allows us to avoid tuning the balancing weights across the metrics that we optimize,

and ensure that the bandit is improving all metrics, as the bandit goal is to maximize the average

of all metrics. A detailed procedure of SM-Bandit is described in Algorithm 1.

7.3.5 Hierarchical Bandit with Multi-Reward

The SM-bandit’s goal in the previous approach described in Sec. 7.3.4 is to improve all met-

rics using a single bandit. In this section, we introduce another bandit-based variant to improve

all metrics but by using multiple bandits which are controlled by a controller, called Hierarchical

Multi-reward Bandits (HM-Bandit, Fig. 7.5). The HM-Bandit consists of a single first-level con-
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Bandits

Pull Arm
(Metrics)

Bandit reward

Optimize the selected metric

ControllerChoose under-performing bandit

Figure 7.5: Overview of the hierarchical multi-armed bandit. The first-level has a controller and
the second-level has bandits. The controller decides which bandit of the second-level will be
pulled. The second-level bandits then decide which metric to use as the reward function during
RL optimization.

troller (not a bandit, top row in Fig. 7.5), and K second-level multi-armed bandits (middle row in

Fig. 7.5). The first-level controller’s goal is to find the under-performing reward metric, while the

second-level bandits’ goal is to trigger a specific metric optimizer that will lead to a promising

improvement in this specific metric. More intuitively, the first-level controller sets the objec-

tive (e.g., ROUGE needs to be improved), while the second-level bandit decides which specific

reward function can help accomplish the objective. A detailed procedure of our HM-bandit is

described in Algorithm 2. This concept is also loosely related to Bayesian model selection, where

it’s common to use a hierarchical specification of models (Rasmussen and Williams, 2005).

7.4 Tasks and Setup for DORB Framework

We use question generation and data-to-text generation tasks in our experiments. In this

section, we discuss the details on these two tasks along with the experimental setup.
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Algorithm 2 HM-Bandit Training
1: Inputs: #rewards: K, #train steps: ntrain, #steps in bandit round: nbandit, #steps in controller round:
ncontroller

2: Create the controller C with K bandits
3: Initialize all bandits, and set j ← 0
4: B ← chooseBandit(C, j) . choose bandit at index j
5: a← chooseArm(B) . Based on Eqn. 7.8
6: i← 0
7: while i < ntrain do
8: Sample word sequence ws from model
9: Calculate rewards Rtrain based on ws

10: Optimize model’s LRLa loss using Rtrain
a

11: if i mod nbandit == 0 then
12: Evaluate model to get Rval

13: r ← scaled(Rval
j )

14: updateBandit(B, a, r) . Based on Eqn. 7.10
15: a← chooseArm(B)
16: if i mod ncontroller == 0 then
17: Evaluate model to get Rval

18: j ← argmink{scale(Rval
k )}Kk=1

19: B ← chooseBandit(C, j)
20: a← chooseArm(B)
21: i← i+ 1

7.4.1 Question Generation

Baseline. Given a paragraph p, and an answer span a, the goal of the QG model is to gener-

ate a question q answering a. We follow the encoder-attention-decoder style architecture (see

Fig. 7.4). The encoder is a bi-directional LSTM-RNN (Hochreiter and Schmidhuber, 1997)

with self-attention (Wang et al., 2017), and the decoder is a uni-directional LSTM-RNN with

attention (Luong et al., 2015) and pointer (Gu et al., 2016) mechanism, similar to Zhang and

Bansal (2019). The input to the model is a concatenation of contextualized word representa-

tions (BERT (Devlin et al., 2019)), answer tag embedding (BIO tagging scheme), Part-of-Speech

(POS) tag embedding, and Named-Entity (NER) tag embedding.

Rewards. We use ROUGE-L, QPP, and QAP (Zhang and Bansal, 2019) as rewards for this task.

QPP is calculated as the probability of the generated question being the paraphrase of the ground-
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truth question via a classifier trained on Quora Question Pairs. QAP is calculated as the probabil-

ity of a pre-trained QA model to correctly answer the given generated question as input.

Dataset & Evaluation. We use the SQuAD QG English dataset from Du et al. (2017) for the

QG task, derived from SQuAD v1.1 (Rajpurkar et al., 2016), and the test set consists of 10%

sampled examples from the training set, as the SQuAD test set is not open. For pre-processing,

we do standard tokenization. We report on evaluation metrics including BLEU-4, METEOR,

ROUGE-L, Q-BLEU1 (Nema and Khapra, 2018), as well as QPP and QAP (Zhang and Bansal,

2019).

7.4.2 Data-to-Text Generation

Baseline. Given a set of Resource Description Framework (RDF) triples,16 the task is to generate

a natural language text describing the facts in the RDF data. Following Zhao et al. (2020), we

serialize and reorder the RDF data as an intermediate planning setup, and feed the plan into a

seq2seq model with attention and copy mechanism.

Rewards. We use BLEU, ROUGE-L, and Entailment-Score (Pasunuru and Bansal, 2018) as

rewards. Entailment-Score is calculated based on the probability that the generated sentence is

classified as an entailment w.r.t. the ground truth.17

Dataset & Evaluation. We use the WebNLG dataset (Gardent et al., 2017) - a widely used En-

glish benchmark for data-to-text generation which focuses on micro-planning involving several

subtasks like referring expression generation, aggregation, lexicalization, sentence segmenta-

tion, and surface realization. It contains 9,674 unique RDF triple-sets and 25,298 text references,

which is divided into train, dev, and test sets.18 We report all our results on the ‘seen’ and ‘un-

seen’ part of the test set. For each sample, the input is a set of up to 7 RDF triples from DBPedia,

and the output is their text descriptions. The standard evaluation metrics for this dataset include

16Each triple contains a subject, a predicate, and an object.
17We use a RoBERTa classifier (Liu et al., 2019b) trained on MultiNLI (Williams et al., 2018a) as entailment scorer.
18https://webnlg-challenge.loria.fr/
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METEOR19 (Denkowski and Lavie, 2014b), BLEU (Papineni et al., 2002), and TER20 (Snover

et al., 2006). We also report ROUGE-L (Lin, 2004) and Entailment-Score (Pasunuru and Bansal,

2018).

7.4.3 Training Details

All the hyperparameters are tuned on the validation set for both question generation and data-

to-text tasks. We use TITAN X and GeForce GTX 1080 GPUs for all our experiments. For the

question generation task, we use two layers for both encoder and decoder. We set the hidden size

of LSTM-RNN to 600 and use BERT-based contextual embeddings as input. We use a batch

size of 32, encoder maximum length of 512 and decoder maximum length of 50, and maximum

gradient clipping of 5. We use Adam optimizer (Kingma and Ba, 2015) with a learning rate of

1e-3 and 1e-6 for the cross-entropy and RL models, respectively. For data-to-text task, we use the

same hyperparameters as discussed in Zhao et al. (2020) for the cross-entropy model, e.g., we use

Adam with a batch size of 64 and an initial learning rate of 0.001. All RL models are initialized

with the best cross-entropy model checkpoint, and use Adam with a learning rate of 1e-6. We

refer to Appendix A.6 for full training details.

7.5 Experimental Results for DORB Framework

In this section, we present the performance of previous work, our cross-entropy baselines, our

RL-based baselines, and finally our multi-arm bandit-based models. We start with results on au-

tomatic evaluation (Sec. 7.5.1-7.5.2). Next, we present results on human evaluation (Sec. 7.5.3).

Finally, we present an interpretable analysis on the bandits (Sec. 7.5.4).

19http://www.cs.cmu.edu/˜alavie/METEOR/
20http://www.cs.umd.edu/˜snover/tercom/
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Models BLEU-4 METEOR ROUGE-L Q-BLEU1 QPP QAP

BASELINES

Cross-Entropy (Zhang and Bansal, 2019) 17.88 22.38 46.39 49.01 28.83 54.25
ROUGE-RL 18.03 22.55 46.64 49.52 29.09 55.07
QPP-RL 17.90 22.55 46.68 49.50 30.10 55.50
QAP-RL 18.22 22.69 46.65 49.72 30.03 57.60

MULTI-REWARD MODELS

Pasunuru and Bansal (2018)† 18.36 22.55 46.75 49.66 30.03 56.51
Our SM-Bandit† 18.68 22.88 46.80 50.02 30.15 56.92
Our HM-Bandit† 18.55 22.82 46.84 50.01 30.07 56.78

Table 7.8: Performance of our baselines and multi-armed bandit-based models on question
generation task. † denotes that these models use ROUGE-L, QPP, and QAP rewards during the
optimization.

7.5.1 Results on Question Generation

Baselines. Table 7.8 presents results on the question generation dataset for our baselines. We

use the previous state-of-the-art work (Zhang and Bansal, 2019) as our cross-entropy baseline.

Next, we apply policy gradients-based reinforcement learning (RL) approach, and observe that all

these models are better than the baseline in all metrics. Next, we will discuss the multi-reward RL

models.

Multi-Armed Bandit Approaches. Finally, we evaluate our two bandit approaches: SM-Bandit

and HM-Bandit as described in Sec. 7.3.4 and Sec. 7.3.5, respectively. Further, for a fair com-

parison of our multi-arm bandit-based models, we further implemented multi-reward alternate

optimization approach introduced by Pasunuru and Bansal (2018) and considered it as baseline

for our multi-reward models.21,22 This model is slightly better than single reward-based RL base-

lines. Table 7.8 presents the performance of the proposed two bandit models (SM-Bandit and

21We do not compare with fixed weighted combination of metrics during RL optimization, as finding the optimal
weighted combination is exponential complexity (searching among 100 values for n metrics needs 100n tuning
experiments), which we want to avoid via our bandit approach.
22We also experimented with the random choice of metrics during optimization. The results on the question genera-
tion task are very close to the baseline model (Pasunuru and Bansal, 2018): 18.31(BLEU), 22.50 (METEOR), 46.75
(ROUGE-L), 49.65 (Q-BLEU1), 30.04 (QPP), 56.56 (QAP). This is expected as the random choice baseline is same
as uniform sampling of metrics, which is closer to alternate optimization.
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Models BLEU (↑) METEOR (↑) TER (↓) ROUGE-L (↑) Entailment (↑)

BASELINES

Cross-Entropy (Zhao et al., 2020) 63.14/22.56 44.85/27.79 33.97/71.02 74.25/49.83 99.27/88.16
ROUGE-RL 63.35/22.96 44.84/28.18 33.85/70.58 74.29/50.07 99.11/88.59
BLEU-RL 63.24/23.06 44.82/28.21 33.94/70.33 74.26/50.00 99.30/87.82
Ent-RL 63.28/22.49 44.96/28.11 34.03/72.29 74.29/49.99 99.84/90.57

MULTI-REWARD MODELS

Pasunuru and Bansal (2018)† 63.00/22.58 45.03/28.29 34.22/72.71 74.29/50.05 99.56/91.83
Our SM-Bandit† 63.46/23.23 45.37/28.68 33.59/70.21 74.38/50.30 100.13/92.35
Our HM-Bandit† 63.38/23.21 45.34/28.70 33.58/70.17 74.39/50.26 100.21/92.40

Table 7.9: Performance of our baselines and multi-arm bandit-based models on the ‘seen/unseen’
test set of WebNLG data-to-text task. The unseen set has categories that are not seen during
the training, hence can be consider as a test-only transfer setup. † denotes that these models use
ROUGE-L, BLEU, and Entailment rewards during the optimization. For TER metric, lower (↓) is
better. For all other metrics, higher (↑) is better.

HM-Bandit) on various automatic evaluation metrics, and we observe that on average these mod-

els perform much better than the cross-entropy and single reward RL baseline models. Further,

our bandit models also perform better than the multi-reward approach proposed by Pasunuru

and Bansal (2018), suggesting that our bandit-based models are able to dynamically select the

reward to optimize for overall improvement in all the metrics that we want to optimize. Also see

discussion of significant improvements in human evaluation in Sec 7.5.3.

7.5.2 Results on Data-to-Text Generation

Baselines. Table 7.9 presents our baselines on the WebNLG data-to-text task. Our cross-entropy

model is comparable to the very recent state-of-the-art model (Zhao et al., 2020). Further, we

present single reward based RL models with ROUGE-L, BLEU, and Entailment score as rewards,

which again perform better than our cross-entropy model. Next, we will discuss multi-reward

models.

Multi-Armed Bandit Approaches. Table 7.9 also presents our multi-armed bandit models (SM-

Bandit and HM-Bandit) which simultaneously use ROUGE-L, BLEU, and Entailment score as

rewards. Again, we consider the model proposed by Pasunuru and Bansal (2018) as a baseline for
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Model ROUGE PB (Pasunuru and Bansal, 2018) SMB HMB

QUESTION GENERATION TASK

Relevance 4.28 4.40 4.56 4.55
Coherence 4.42 4.48 4.49 4.47

WEBNLG DATA-TO-TEXT TASK

Relevance 4.61 4.68 4.79 4.81
Coherence 4.75 4.79 4.78 4.80

Table 7.10: Human evaluation results on QG and WebNLG tasks. ROUGE: ROUGE-L single-
reward RL; PB (Pasunuru and Bansal, 2018): Pasunuru and Bansal (2018). Our SM-Bandit and
HM-Bandit are statistically significantly better than ROUGE and PB models (see Sec. 7.5.3).

multi-reward models. On average, our bandit-based models perform better than all our baselines

that are discussed in the above paragraph and also the model based on Pasunuru and Bansal

(2018).23 Also see discussion of significant improvements in human evaluation in Sec 7.5.3.

7.5.3 Human Evaluation

It is shown that RL models can game the metric that we use as the objective function (Paulus

et al., 2018). This motivated us to optimize the RL models on multiple metrics simultaneously,

thus trying to improve all the metrics and making the RL model hard to game any particular

metric. In this section, we validate the superiority of our bandit models via human evaluation

studies.

We performed anonymous human evaluation studies using Amazon Mechanical Turk (MTurk).

We chose human annotators such that they are located in the USA, have at least 10,000 approved

HITs, and have an approval rate of greater than 98%. For both question generation and WebNLG

data-to-text, we considered 200 samples for each, and compared ROUGE-L RL, Pasunuru and

Bansal (2018), SM-Bandit, and HM-Bandit models by asking the annotators to rate the quality

of the generated outputs based on relevance and coherence on 5-point Likert scale.24 Table 7.10

23In general, we observe better improvements with our bandit-based models in the unseen-test transfer setup.
24For question generation, relevance is defined as how clearly the generated question will be able to point to the right
answer, given an input paragraph as context. For WebNLG data-to-text, relevance is defined as how related is the
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Model Pasunuru and Bansal (2018) HM-Bandit

Relevance 3.49 3.68
Coherence 3.44 3.46

Table 7.11: Human evaluation results on WebNLG ‘unseen’ test set. Our HM-Bandit is statisti-
cally significantly better than Pasunuru and Bansal (2018) on relevance metric.
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Figure 7.6: Plots showing the probability distribution of each child bandit of the HM-Bandit
model on the QG task.

presents these human evaluation studies. In terms of relevance, our SM-Bandit and HM-Bandit

models are significantly better than Pasunuru and Bansal (2018) (p<0.01) and ROUGE-L RL

models (p<0.01) on question generation, while maintaining coherence.25 On data-to-text, in

terms of relevance, our SM-Bandit and HM-Bandit models are significantly better than Pasunuru

and Bansal (2018) with p<0.03 and p<0.02, respectively. Also, both bandit models are signifi-

cantly better than ROUGE-L RL model with p<0.01. We also performed a similar human evalu-

ation study for the test-only transfer setup on the unseen WebNLG test set, and the results are in

Table 7.11. Here also our bandit-based model (HM-Bandit) performed statistically significantly

better than Pasunuru and Bansal (2018) on relevance metric with p < 0.01, while maintaining

coherence.

generated description w.r.t. the given RDF data such as mentioning the facts. For both tasks, coherence is based on
the logic, readability, and fluency of the generated question or description.
25We use bootstrap test (Efron and Tibshirani, 1994; Noreen, 1989) for calculating the statistical significance score.
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Figure 7.7: Plot showing the probability distribution of each arm of the SM-Bandit on question
generation task.

7.5.4 Interpretable Bandit Analysis

Figure 7.7 presents the interpretable visualization of the probability distribution of each arm

of the SM-Bandit as the training progresses. We observe that each metric has played an important

role (as high probability arm) for at least a few rounds over the training trajectory. Also, there

are multiple switchings of these metrics over the training trajectory, suggesting that this kind of

automatic dynamic switching is important to improve the overall performance of RL models with

multiple rewards.

Figure 7.6 presents the progress of child bandits of HM-Bandit during the training for ques-

tion generation. As discussed in Sec. 7.3.5, these child bandits are controlled by a controller that

selects the under-performing bandit. We observe that our HM-Bandit mostly used ROUGE-L

child bandit for overall improvement in all metrics (as it is the under-performing metric). Fur-

ther, each child bandit gave more importance to the metric that it wants to improve, e.g., the

QAP child bandit gave more importance to the QAP arm. However, there is an exception for

the ROUGE-L child bandit, where ROUGE-L arm is not the most important, suggesting that to

improve the ROUGE-L metric other RL loss functions (QAP and QPP) are also useful.
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7.6 Conclusion

We presented a multi-level, multi-task learning approach to incorporate natural language

inference and paraphrasing knowledge into sentence simplification models, via soft sharing at

higher-level semantic and lower-level lexico-syntactic levels. To automate MTL, We introduce

a multi-armed bandits approach for learning a dynamic mixing ratio of tasks. We demonstrated

strong simplification improvements on three standard datasets via automatic and human evalua-

tion, and also discussed several ablation and analysis studies.

To automate multi-reward RL optimization, we presented novel approaches for dynamically

optimizing multiple reward metrics simultaneously via multi-armed bandit approach in the con-

text of language generation. We described two such mechanisms, namely single bandit and

hierarchical bandit with multiple rewards. We conducted experiments on two challenging lan-

guage generation tasks: question generation and data-to-text generation, and our method achieved

strong improvements based on human evaluation over previous approaches. We further presented

interpretable analysis on our bandit methods.

114



CHAPTER 8: CAS: CONTINUAL ARCHITECTURE SEARCH

8.1 Introduction

Architecture search enables automatic ways of finding the best model architecture and cell

structures for the given task or dataset, as opposed to the traditional approach of manually choos-

ing or tuning among different architecture choices, which introduces human inductive bias or is

non-scalable. Recently, this idea has been successfully applied to the tasks of language model-

ing and image classification (Zoph and Le, 2017; Zoph et al., 2018; Cai et al., 2018; Liu et al.,

2017a, 2018). The first approach of architecture search involved an RNN controller which sam-

ples a model architecture and uses the validation performance of this architecture trained on the

given dataset as feedback (or reward) to sample the next architecture. Some recent attempts have

made architecture search more computationally feasible (Negrinho and Gordon, 2017; Baker

et al., 2017) via tree-structured search space or Q-learning with an ε-greedy exploration, and

further improvements via a weight-sharing strategy called Efficient Neural Architecture Search

(ENAS) (Pham et al., 2018).

In this work, we extend the architecture search approach to an important paradigm of trans-

fer learning across multiple data sources: continual learning. The major problem in continual

learning is catastrophic forgetting. For this, we introduce a novel ‘continual architecture search’

(CAS) approach, where the model parameters evolves and adapts when trained sequentially on a

new task while maintaining the performance on the previously learned tasks. For enabling such

continual learning, we formulate a two-step graph-initialization approach with conditions based

on block sparsity and orthogonality.

For empirical evaluation of our approach, we choose three domains of natural language infer-

ence (NLI) bi-text classification tasks from the GLUE benchmark (Wang et al., 2019a): QNLI,
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RTE, and WNLI, and three domains of multimodal-generation based video captioning tasks:

MSR-VTT (Xu et al., 2016a), MSVD (Chen and Dolan, 2011), and DiDeMo (Hendricks et al.,

2017). Note that we are the first ones to use the architecture search approach for text classifica-

tion tasks as well as multimodal conditioned-generation tasks, which achieves improvements on

the strong GLUE and video captioning baselines.

Next, for continual learning, we train the three tasks sequentially for both text classification

and video captioning (through our continual architecture search method) and show that this ap-

proach tightly maintains the performance on the previously-learned domain (also verified via

human evaluation), while also significantly maximizing the performance on the current domain,

thus enabling life-long learning (Chen and Liu, 2016). We also present various analyses for the

evolution of the learned cell structure in the continual learning approach, which preserves the

properties of certain edges while creating new edges for new capabilities.

8.2 Related Work

Neural architecture search (NAS) has been recently introduced for automatic learning of the

model structure for the given dataset/task (Zoph and Le, 2017; Zoph et al., 2018), and has shown

good improvements on image classification and language modeling. NAS shares some similarity

to program synthesis and inductive programming (Summers, 1986; Biermann, 1978), and it has

been successfully applied to some simple Q&A tasks (Liang et al., 2010; Neelakantan et al.,

2015; Andreas et al., 2016; Lake et al., 2015). NAS was made more computationally feasible

via tree-structured search space or Q-learning with ε-greedy exploration strategy and experience

replay (Negrinho and Gordon, 2017; Baker et al., 2017), or a weight-sharing strategy among

search space parameters called Efficient Neural Architecture Search (ENAS) (Pham et al., 2018).

We explore architecture search for text classification and video caption generation tasks and their

integration to the transfer learning paradigm of continual learning.

The major problem in continual learning is catastrophic forgetting. Some approaches ad-

dressed this by adding regularization to penalize functional or shared parameters’ change and
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learning rates (Razavian et al., 2014; Li and Hoiem, 2017; Hinton et al., 2014; Jung et al., 2016;

Kirkpatrick et al., 2017; Donahue et al., 2014; Yosinski et al., 2014). Others proposed copy-

ing the previous task and augmenting with new task’s features (Rusu et al., 2016), intelligent

synapses to accumulate task-related information (Zenke et al., 2017), or online variational infer-

ence (Nguyen et al., 2017). Also, Yoon et al. (2018) proposed a dynamically expandable network

based on incoming new data. In our work, we introduce ‘continual architecture search’ by ex-

tending the NAS paradigm to avoid catastrophic forgetting via block-sparsity and orthogonality

constraints, hence enabling a form of life-long learning (Chen and Liu, 2016). To the best of

our knowledge, our work is the first to extend architecture search to a continual incoming-data

setup. Elsken et al. (2019) and So et al. (2019) proposed evolutionary architecture search al-

gorithms that dynamically allocate more resources for promising architecture candidates, but

these works are different from us in that they do not consider the case where we have continual

incoming-data from different data sources, but instead focus on the continual evolution of the

model search for efficiency purposes.

8.3 Architecture Search for Text Classification and Generation

In this section, we first discuss how we adapt ENAS (Pham et al., 2018) for modeling our

bi-text classification and multimodal video captioning tasks. Next, we introduce our continual

approach of transfer learning leveraging architecture search.

8.3.1 ENAS Algorithm

Our initial architecture search approach is based on the recent Efficient Neural Architecture

Search (ENAS) method of Pham et al. (2018), but modeled for text classification and generation-

based video captioning. Fig. 8.1 presents the ENAS controller for sampling an RNN cell struc-

ture, which we use to learn the two encoders of our text classification model or encoder-decoder

for our video captioning model. The controller is a simple LSTM-RNN and the classifier en-

coder’s or video captioning encoder-decoder’s RNN cell structure is based on the combination
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of N nodes indexed by h(t)1 , h
(t)
2 , .., h

(t)
N (edges between nodes represent weight parameters) and

activation functions (ReLU, tanh, sigmoid, identity), where t denotes the time step. For node h(t)1 ,

there are two inputs: x(t) (input signal) and h(t−1)N (output from previous time-step), and the node

computations are:

c
(t)
1 = sigmoid(x(t) ·W (x,c) + h

(t−1)
N ·W (c)

0 ) (8.1)

h
(t)
1 = c

(t)
1 �f1(x(t)·W (x,h)+h

(t−1)
N ·W (h)

1 )

+ (1− c(t)1 )� h(t−1)N

(8.2)

where f1 is the activation function. Node hl, where l ∈ {2, 3, .., N}, receives input from node jl

where jl ∈ {h1, h2, .., hl−1}, and the computation is defined as follows:

c
(t)
l = sigmoid(h

(t)
jl
·W (c)

l,jl
) (8.3)

h
(t)
l = c

(t)
l � fl(h

(t)
jl
·W (h)

l,jl
) + (1− c(t)l )� h(t)jl (8.4)

During training, we alternately train the model parameters and controller parameters. First, we

sample a Directed Acyclic Graph (DAG) structure from the controller at every mini-batch and use

it to update the weight parameters of the task’s RNN nodes/parameters. Next, we sample a DAG

from the controller and measure the (validation) performance of that structure based on this new

updated state of the task model, and use this performance as a reward to allow the controller to

update its own parameters. We repeat this alternate training procedure until the model converges.

Later, we select the DAG structure with the best performance and use it to retrain the model from

scratch.

8.3.2 ENAS for Bi-Text Classification

For our NLI text classification tasks, we are given the sentence pair as input, and we have to

classify it as entailment or not. For a strong base model, we follow Conneau et al. (2017) model,

and use bidirectional LSTM-RNN encoders to encode both the sentences and then we do max-
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Figure 8.1: Architecture search models for bi-text classification and video caption generation
tasks.

pooling on the outputs from these encoders. Let v represent the max-pooling output from the first

sentence encoder and u represent the max-pooling output from the second sentence encoding.

The joint representation h is defined as h = [u; v; |u− v|;u� v]. The final representation is linearly

projected to the label classes, and then fed through softmax to get the final class distribution.

Fig. 8.1a presents an overview of our text classification model along with ENAS controller for

sampling an RNN cell structure. We sample an RNN cell structure from the ENAS controller

and use it in the two recurrent encoders of the bi-text classification model. In the first stage, we

learn the best cell structure, by sampling multiple cell structures and giving the corresponding

validation accuracy as the feedback reward to the controller. In the second stage, we use the best

cell structure from the stage-1 to retrain the text classification model from scratch.

8.3.3 ENAS for Conditioned Generation

Next, we go beyond text classification, and look at conditioned text generation with ENAS,

where we choose the task of video-conditioned text generation (also known as video caption-

ing) so as to also bring in a multi-modality aspect. For a strong baseline, we use a sequence-to-

sequence model with an attention mechanism similar to Pasunuru and Bansal (2017a), where we

encode the video frames as a sequence into a bidirectional LSTM-RNN and decode the caption

through another LSTM-RNN (see Fig. 8.1b). Our attention mechanism is similar to Bahdanau
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et al. (2015), where at each time step t of the decoder, the LSTM hidden state st is a non-linear

function of previous time step’s decoder hidden state st−1 and generated word wt−1, and the con-

text vector ct which is a weighted combination of the encoder hidden states {hi}. These weights

αt, are defined as:

αt,i =
exp(et,i)∑n
k=1 exp(et,k)

(8.5)

The attention function et,i = wT tanh(Wahi + Uast−1 + ba), where w, Wa, Ua, ba are learned

parameters. Fig. 8.1b presents our video captioning model along with ENAS controller. Here, we

sample an RNN cell structure from the ENAS controller and use it for both encoder and decoder,

and rest of the ENAS procedure is similar to Sec. 8.3.2.

8.4 Continual Architecture Search (CAS)

We introduce a novel continual learning paradigm on top of architecture search, where the

RNN cell structure evolves when trained on new incoming data/domains, while maintaining the

performance on previously learned data/domains (via our block-sparsity and orthogonality con-

ditions discussed below), thus enabling life-long learning (Chen and Liu, 2016). Let θ1,k ∈ θ1

and θ2,k ∈ θ2 (where k denotes model parameters) be the learned model parameters for task T

when independently trained on datasets d1 and d2. Then, we can say that θ2,k = θ1,k + ψ2,k, where,

ψ2,k is the change in the model parameters of θ1,k when trained independently on d2. There are in-

finitely many possible local optimal solutions for ψ2,k, hence in our continual learning approach,

we want to learn the parameters ψ2,k when training on dataset d2 such that it will not affect the

performance of the task w.r.t. dataset d1. For this, we formulate two important conditions:

Condition 1. When training the model on dataset d1, we constrain the model parameters θ1,k ∈

Rm×n to be sparse, specifically, to be block sparse, i.e., minimize
∑m

i=1 |(||θ1,k[i, :]||2)|1.

Here, || · ||2 represents the l2 norm and || · ||1 represents the l1 norm. l2 and l1 norms are

efficient in avoiding over-fitting; however, they are not useful for compact representation of the
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Figure 8.2: Continual architecture search (CAS) approach: green, solid edges (weight parame-
ters) are shared, newly-learned edges are represented with red, dashed edges.

network. Scardapane et al. (2017) proposed group sparsity in the neural networks to completely

disconnect some neurons. Our block sparse condition is inspired from their work. This sparsity

condition is also useful for our continual learning approach which we discuss in Condition 2.

Condition 2. When training the model on dataset d2, we start from θ1,k, keep it constant, and

update ψ2,k such that:

1. ψ2,k is block sparse, i.e., minimize
∑m

i=1 |(||ψ2,k[i, :]||2)|1.

2. θ1,k and ψ2,k are orthogonal.

It is important in the continual learning paradigm that we do not affect the previously learned

knowledge. As stated in Condition 1, we find a block sparse solution θ1,k such that we find the

solution θ2,k which is close to θ1,k and the new knowledge is projected in orthogonal direction

via ψ2,k so that it will not affect the previously learned knowledge, and thus ‘maintain’ the perfor-

mance on previously learned datasets. We constrain the closeness of θ2,k and θ1,k by constraining

ψ2,k to also be block sparse (Condition 2.1). Also, to avoid affecting previously learned knowl-

edge, we constrain θ1,k and ψ2,k to be orthogonal (Condition 2.2). However, strictly imposing

this condition into the objective function is not feasible (Bousmalis et al., 2016), hence we add

a penalizing term into the objective function as an approximation to the orthogonality condition:

Lp(θ2,k) = ||θT1,k · ψ2,k||22. Both Condition 2.1 and 2.2 are mutually dependent, because for two ma-

trices’ product to be zero, they share basis vectors between them, i.e., for an n-dimensional space,

there are n basis vectors and if p of those vectors are assigned to one matrix, then the rest of the
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n− p vectors (or subset) should be assigned to the other matrix.1 If we fill the rest of the rows with

zeros, then they are block sparse, which is the reason for using Condition 2.1. Our CAS condition

ablation (see Sec. 8.6.1) shows that both these conditions are necessary for continual learning.

Next, we describe the integration of our above continual learning approach with architecture

search, where the model continually evolves its cell architecture so as to perform well on the new

incoming data, while also tightly maintaining the performance on previously learned data (or

domains). Fig. 8.2 presents an overview of our continual learning integration approach into archi-

tecture search for sequential training on three datasets. Initially, given the dataset d1, we train the

architecture search model to find the best Directed Acyclic Graph (DAG) structure for RNN cell

and model parameters θ1,k under the block sparse condition described above in Sec. 8.4. We call

this step-1, corresponding to dataset d1. Next, when we have a new dataset d2 from a different do-

main, we further continue to find the best DAG and model parameters θ2,k for best performance

on d2, but initialized the parameters with step-1’s parameters θ1,k, and then trained on dataset d2

following Condition 2 (discussed in Sec. 8.4). We call this step-2, corresponding to dataset d2.

After the end of step-2 training procedure, for re-evaluating the model’s performance back on

dataset d1, we still use the final learned model parameters θ2,k, but with the learned DAG from

step-1.2 This is because we cannot use the old step-1 model parameters θ1,k since we assume that

those model parameters are not accessible now (assumption for continual learning with large

incoming data streams and memory limit for saving large parameter sets).

1Note that it is not necessary for the matrix to contain all of the n− p basis vectors, if the matrix rank is less than n,
then it may have less than n− p basis vectors.
2For evaluating the model’s performance on dataset d2, we obviously use the final learned model parameters θ2,k,
and the learned DAG from step-2.
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8.5 Experimental Setup

8.5.1 Text Classification Datasets

We choose the natural inference datasets of QNLI, RTE, and WNLI from the GLUE (Wang

et al., 2019a) benchmark to perform experiments for multi-task cell structure and continual archi-

tecture search. We use the standard splits provided by (Wang et al., 2019a).

QNLI Dataset: Question-Answering Natural Language Inference (QNLI) is extracted from

the Stanford Question Answering Dataset (Rajpurkar et al., 2016), where they created sentence

pair classification task by forming a pair between each question and the corresponding sentence

containing the answer. Hence the task is to find whether the given sentence context contains the

answer for the given question. In this dataset, we use the standard splits, i.e., 108k examples for

training, 5.7k for validation, and 5.7k for testing.

RTE Dataset: Recognizing Textual Entailment (RTE) is collected from a series of annual chal-

lenges on the task of textual entailment. This dataset spans the news and Wikipedia text. Here,

the task is to predict whether the sentence pair is entailment or not. In this dataset, we use the

standard splits, i.e., 2.5k examples for training, 276 for validation, and 3k for testing.

WNLI Dataset: Winograd Natural Language Inference (WNLI) is extracted from the dataset of

Winograd Schema Challenge for reading comprehension task. Original dataset is converted into a

sentence pair classification task by replacing the ambiguous pronoun with each possible referent,

where the task is to predict if the sentence with the substituted pronoun is entailed by the original

sentence. We use 634 examples for training, 71 for validation, and 146 for testing.

8.5.2 Video Captioning Datasets

For the conditioned-generation paradigm, we use three popular multimodal video captioning

datasets: MSR-VTT, MSVD, and DiDeMo to perform experiments for continual architecture

search and multi-task architecture search.
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MSR-VTT Dataset: MSR-VTT is a collection of 10, 000 short videos clips collected from a

commercial search engine covering 41.2 hours of video and annotated through Amazon Mechan-

ical Turk (AMT). Each video clip has 20 human annotated captions. We used the standard splits

following previous work, i.e., 6, 513 video clips as training set, 497 as validation set, and 2, 990

as test set.

MSVD Dataset: Microsoft Video Description Corpus (MSVD) is a collection of 1970 short

video clips collected in the wild and annotated through Amazon Mechanical Turk (AMT) in

different languages. In this work, we use only English language annotations. Each video clip on

an average is 10 seconds in length and approximately 40 annotations. We use the standard splits

following previous work, i.e., 1, 200 video clips as training set, 100 as validation set, and 670 as

test set.

DiDeMo Dataset: Distinct Describable Moments (DiDeMo) is traditionally a video localization

task w.r.t. given description query (Hendricks et al., 2017). In this work, we use it as a video

description task where given the video as input we have to generate the caption. We use the

standard splits as provided by Hendricks et al. (2017).

8.5.3 Evaluation

For GLUE tasks, we use accuracy as an evaluation metric following the previous work (Wang

et al., 2019a). For video captioning tasks, we report four diverse automatic evaluation metrics:

METEOR (Denkowski and Lavie, 2014a), CIDEr (Vedantam et al., 2015), BLEU-4 (Papineni

et al., 2002), and ROUGE-L (Lin, 2004). We use the standard evaluation code (Chen et al., 2015)

to obtain these scores for our generated captions w.r.t. the reference captions.

8.5.4 Training Details

In all our experiments, our hyperparameter choices are based on validation set accuracy for

GLUE tasks and an average of the four automatic evaluation metrics (METEOR, CIDEr, BLEU-
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4, and ROUGE-L) for video captioning tasks. We use same settings for both normal and architec-

ture search models, unless otherwise specified. More details in appendix.

8.6 Experimental Results and Insights

8.6.1 Continual Learning on GLUE Tasks

Baseline Models: We use bidirectional LSTM-RNN encoders with max-pooling (Conneau et al.,

2017) as our baseline.3 Further, we used the ELMo embeddings (Peters et al., 2018) as input to

the encoders, where we allowed to train the weights on each layer of ELMo to get a final rep-

resentation. Table 8.1 shows that our baseline models achieve strong results when compared

with GLUE benchmark baselines (Wang et al., 2019a).4 On top of these strong baselines, we add

ENAS approach.

ENAS Models: Next, Table 8.1 shows that our ENAS models (for all three tasks QNLI, RTE,

WNLI) perform better or equal than the non-architecture search based models.5 Note that we

only replace the LSTM-RNN cell with our ENAS cell, rest of the model architecture in ENAS

model is same as our baseline model.6

CAS Models: Next, we apply our continual architecture search (CAS) approach on QNLI, RTE,

and WNLI, where we sequentially allow the model to learn QNLI, RTE, and WNLI (in the or-

der of decreasing dataset size, following standard transfer setup practice) and the results are as

shown in Table 8.1. We train on QNLI task, RTE task, and WNLI task in step-1, step-2, and step-

3, respectively. We observe that even though we learn the models sequentially, we are able to

3We also tried various other models e.g., self-attention and cross-attention, but we found that the max-pooling
approach performed best on these datasets.
4We only report single-task (and not 9-task multi-task) results from the GLUE benchmark for fair comparison to our
models.
5On validation set, our QNLI ENAS model is statistically significantly better than the corresponding baseline with
p < 0.01, and statistically equal on RTE and WNLI (where the validations sets are very small), based on the boot-
strap test (Noreen, 1989; Efron and Tibshirani, 1994) with 100K samples. Since the test set is hidden, we are not able
to calculate the statistical significance on it.
6Note that ENAS random search baseline vs. optimal search validation performance on QNLI, RTE, and WNLI are
73.3 (vs. 74.8), 58.8 (vs. 60.3), and 54.0 (vs. 55.6), respectively, suggesting that the learned optimal cell structure is
better than the random cell structure.
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Models QNLI RTE WNLI
PREVIOUS WORK

BiLSTM+ELMo (Wang et al., 2019a) 69.4 50.1 65.1
BiLSTM+ELMo+Attn (Wang et al., 2019a) 61.1 50.3 65.1

BASELINES

Baseline (with ELMo) 73.2 52.3 65.1
ENAS (Architecture Search) 74.5 52.9 65.1

CAS RESULTS

CAS Step-1 (QNLI training) 73.8 N/A N/A
CAS Step-2 (RTE training) 73.6 54.1 N/A
CAS Step-3 (WNLI training) 73.3 54.0 64.4

Table 8.1: Test results on GLUE tasks for various models: Baseline, ENAS, and CAS (continual
architecture search). The CAS results maintain statistical equality across each step.

maintain performance on the previously-learned QNLI task in step-2 (74.1 vs. 74.2 on validation

set which is statistically equal, and 73.6 vs. 73.8 on test).7 Note that if we remove our sparsity

and orthogonality conditions (Sec. 8.4), the step-2 QNLI performance drops from 74.1 to 69.1

on validation set, demonstrating the importance of our conditions for CAS (see next paragraph

on ‘CAS Condition Ablation’ for more details). Next, we observe a similar pattern when we

extend CAS to the WNLI dataset (see step-3 in Table 8.1), i.e, we are still able to maintain the

performance on QNLI (as well as RTE now) from step-2 to step-3 (scores are statistically equal

on validation set).8 Further, if we compare the performance of QNLI from step-1 to step-3, we

see that they are also stat. equal on val set (73.9 vs. 74.2). This shows that our CAS method can

maintain the performance of a task in a continual learning setting with several steps.

CAS Condition Ablation: We also performed important ablation experiments to understand the

importance of our block sparsity and orthogonality conditions in the CAS approach (as discussed

in Sec. 8.4). Table 8.2 presents the ablation results of QNLI in step-2 with CAS conditions. Our

full model (with both Condition 2.1 and 2.2) achieves a validation performance of 74.1. Next,

we separately experimented with each of Condition 2.1 and 2.2 and observe that using only one

7Note that there is a small drop in QNLI performance for CAS Step-1 vs. ENAS (74.5 vs. 73.8); however, this is not
true across all experiments, e.g., in case of RTE, CAS Step-1 is in fact better than its corresponding ENAS model
(ENAS: 52.9 vs. CAS Step-1: 53.8).
8On validation set, QNLI step-3 vs. step-2 performance is 73.9 vs. 74.1, which is stat. equal. Similarly, on RTE,
step-3 vs. step-2 performance is 61.0 vs. 60.6 on validation set, which is again statistically equal.
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Model Accuracy on QNLI
No Condition with RTE DAG 54.1
No Condition 69.1
Only Condition 2.1 71.5
Only Condition 2.2 69.4
Full Model (Condition 2.1 & 2.2) 74.1

Table 8.2: Ablation (val) results on CAS conditions.

Models
MSR-VTT MSVD

C B R M AVG C B R M AVG
Baseline (Pasunuru and Bansal, 2017b) 48.2 40.8 60.7 28.1 44.5 85.8 52.5 71.2 35.0 61.1
ENAS 48.9 41.3 61.2 28.1 44.9 87.2 52.9 71.7 35.2 61.8
CAS Step-1 (MSR-VTT training) 48.9 41.1 60.5 27.5 44.5 N/A N/A N/A N/A N/A
CAS Step-2 (MSVD training) 48.4 40.1 59.9 27.1 43.9 88.1 52.4 71.3 35.1 61.7

Table 8.3: Video captioning results with Baseline, ENAS, and CAS models. Baseline is re-
produced numbers from github of Pasunuru and Bansal (2017b) which uses advanced latest
visual features (ResNet-152 and ResNeXt-101) for video encoder. C, B, R, M: CIDEr, BLEU-4,
ROUGE-L, and METEOR metrics.

condition at a time is not able to maintain the performance w.r.t. step-1 QNLI performance (the

decrease in score is statistically significant), suggesting that both of these two conditions are

important for our CAS approach to work. Further, we remove both conditions and observe that

the performance drops to 69.1. Finally, we also replaced the QNLI cell structure with the RTE

cell structure along with removing both conditions and the performance further drops to 54.1.

This shows that using the cell structure of the actual task is important.

Time Comparison: We compare QNLI training time on a 12GB TITAN-X Nvidia GPU. Our

baseline non-ENAS model takes 1.5 hours, while our CAS (and MAS) models take approxi-

mately the same training time (4 hours) as the original ENAS setup, and do not add extra time

complexity.
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8.6.2 Continual Learning on Video Captioning

Baselines Models: Our baseline is a sequence-to-sequence model with attention mechanism as

described in Sec. 8.3.3. We achieve comparable results w.r.t. SotA (see Table 8.3), hence serving

as a good starting point for the ENAS approach.

ENAS Models: Table 8.3 also shows that our ENAS models (MSR-VTT, MSVD) perform

equal/better than non-architecture search based models.9

CAS Models: Next, we apply our continual architecture search (CAS) approach on MSR-VTT

and MSVD, where we sequentially allow the model to learn MSR-VTT first and then MSVD,

and the results are as shown in Table 8.3. We observe that even though we learn the models se-

quentially, we are able to maintain performance on the previously-learned MSR-VTT task in

step-2, while also achieving greater-or-equal performance on the current task of MSVD in com-

parison with the general ENAS approach.10

Human Evaluation: We also performed human comparison of our CAS step-1 vs. step-2 via

Amazon MTurk (100 anonymized test samples, Likert 1-5 scale). This gave an overall score of

3.62 for CAS step-1 model vs. 3.55 for CAS step-2, which are very close (statistically insignifi-

cant with p = 0.32), again showing that CAS step-2 is able to maintain performance w.r.t. CAS

step-1.

8.6.3 Insights

Evolved Cell Structure with CAS Fig. 8.3 presents the cell structure in each step for the CAS

approach, where we sequentially train QNLI, RTE, and WNLI tasks. Overall, we observe that

the cell structures in CAS preserve the properties of certain edges while creating new edges for

new capabilities. We notice that the cell structure in step-1 and step-2 share some common edges

and activation functions (e.g., inputs to node 0) along with some new edge connections in step-2

9Note that ENAS random search performance on MSR-VTT test set is C:43.3, B:37.0, R:58.7, M:27.3, AVG: 41.6;
and on MSVD test set is C:83.7, B:47.4, R:71.1, M:33.6, AVG: 59.0, suggesting that these are lower than the learned
optimal cell structures’ performances shown in Table 8.3.
10MSR-VTT performance in step-1 and step-2 are stat. equal on CIDEr and ROUGE-L metrics.
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Figure 8.3: Learned cell structures for step-1, step-2, and step-3 of continual architecture search
for GLUE tasks.

(e.g., node 1 to node 3). Further, we observe that the step-3 cell uses some common edges w.r.t.

the step-2 cell, but uses different activation functions, e.g., edge between node 0 and node 1 is the

same, but the activation function is different. This shows that those edges are learning weights

which are stable w.r.t. change in the activation functions.

8.7 Conclusion

We first presented an architecture search approach for text classification and video caption

generation tasks. Next, we introduced a novel paradigm of transfer learning by combining archi-

tecture search with continual learning to avoid catastrophic forgetting.
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CHAPTER 9: SUMMARY, LIMITATIONS, AND FUTURE WORK

9.1 Summary of Contributions

We presented novel multi-objective learning approaches in the context of multi-task learning,

multi-reward reinforcement learning, and continual learning for various multi-modal text genera-

tion tasks and text classification tasks. We improved video captioning and textual summarization

by jointly training them with their related auxiliary tasks via multi-task learning. This essentially

proves that we can share the knowledge of auxiliary tasks to improve a given primary task. Simi-

larly, we improved the video captioning and textual summarization tasks by inducing knowledge

from other related tasks in the form of rewards. We further proposed novel and effective ways of

inducing multiple skills by ‘dynamically’ choosing the auxiliary tasks (in MTL) or rewards (in

RL) during the training in an automatic way using multi-armed bandits based approaches. In the

direction of sequential training of related tasks, we proposed a novel paradigm of transfer learn-

ing by combining architecture search with continual learning to avoid catastrophic forgetting. We

empirically tested our method on text classification and video caption generation tasks.

9.2 Limitations and Future Work

Multi-Task Learning. In our multi-task learning approaches for text generation tasks, we have

intuitively figured out what auxiliary tasks make sense for a given primary task. This scenario is

not always realistic, especially when the number of choices of auxiliary tasks increases. Address-

ing this issue, we recently proposed a method that automatically select the most useful auxiliary

tasks for a given primary task via a Beta-Bernoulli multi-armed bandit with Thompson Sam-

pling (Guo et al., 2019a). However, the limitation of the current MTL methods is about what
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parameters to share across the related tasks. Our work has explored intuitive ways of what pa-

rameters to share, but this is not realistic with the increase in the number of related tasks or the

complexity of the models. In future work, we would like to explore this direction.

Further, it would also be interesting to build a large-scale multi-task model that jointly trains

multiple NLP tasks (more than 10 tasks) together creating a unified model that can do inference

on multiple tasks. This could greatly reduce the computational cost of using multiple models

for various tasks/scenarios. Another interesting direction of our MTL work is to extend it to the

recent large-scale pre-trained language models (Devlin et al., 2019; Liu et al., 2019b), where

we can jointly fine-tune a pre-trained language model along with training various NLP tasks to

leverage the pre-existing knowledge of these pre-trained language models.

Multi-Reward Reinforcement Learning. In our multi-reward RL approaches, we proposed

to dynamically optimize multiple reward metrics simultaneously using multi-armed bandits.

However, there are few limitations to this approach, e.g., RL methods have high variance and our

bandit approach doesn’t consider the non-stationary aspect of the model during training, further

leading to more variance during the RL training. In future work, we would like to explore other

variants of bandits that also consider the non-stationary aspect. Further, our work has only shown

our method to apply on a maximum of three or four rewards. It would be an interesting future

direction to use multiple rewards at scale (more than 10 rewards) in the hopes that these multiple

rewards can approximate human-level feedback for RL training.

Continual Learning. In our continual architecture search (CAS), we have successfully shown

that we can retrain the performance of previously trained tasks while continually training new

tasks in a sequential manner. We have shown it for three NLI tasks. We observed that the old

tasks are slowly losing some performance when we add new tasks. If we sequentially train more

tasks, there will be a point where old tasks start showing a significant drop in their performances.

This is a limitation of our CAS approach. Note that scaling the continual learning to a lot of tasks

is one of the biggest challenges of AI.
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My dissertation looked at the continual learning of various tasks in a sequential fashion. One

could also do continual learning within the same task where the new examples try to teach the

model about new linguistic phenomena or correct a class of errors. The examples that provide

supervision to correct mistakes or learn a phenomenon are often hard or impossible to acquire

(e.g., due to privacy or ethics issues) (Wang et al., 2020). Hence, it is important to effectively

learn to correct mistakes using few extra training examples. Recent work has shown the general-

ization capability of large pre-trained models to handle multiple tasks with zero to few training

examples (Schick and Schütze, 2021; Brown et al., 2020; Yin et al., 2020). For example, Yin

et al. (2020) has shown that system trained for NLI can be used to perform new tasks zero-shot,

i.e., without any task-specific training data. We believe that similar models can be used to rapidly

learn to correct a phenomenon within the same task from a few (e.g., 10 or 15) training examples.

Towards addressing this problem, curating few-shot datasets which can try to correct a class of

errors or teach a new linguistic phenomenon could be an interesting future direction.
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APPENDIX A: EXPERIMENTAL SETUP AND TRAINING DETAILS

A.1 Full Training Details for MTL Video Captioning.

In all of our experiments, we tune all the model hyperparameters on validation (develop-

ment) set of the corresponding dataset. We consider the following short hyperparameters ranges

and tune lightly on: LSTM-RNN hidden state size - {256, 512, 1024}; learning rate in the range

[10−5, 10−2] with uniform intervals on a log-scale; weight initializations in the range [−0.1, 0.1]

and mixing ratios in the range 1:[0.01, 3] with uniform intervals on a log-scale. We use the fol-

lowing settings in all of our models (unless otherwise specified in a subsection below): we unroll

video encoder/decoder LSTM-RNNs to 50 time steps and language encoder/decoder LSTM-

RNNs to 30 time steps. We use a 1024-dimension LSTM-RNN hidden state size. We use 512-

dimension vectors to embed frame level visual features and word vectors. These embedding

weights are learned during the training. We use the Adam optimizer (Kingma and Ba, 2015) with

default coefficients and a batch size of 32. We apply a dropout with probability 0.5 to the vertical

connections of LSTM (Zaremba et al., 2014) to reduce overfitting.

A.1.1 Video Captioning on YouTube2Text

Baseline and Attention Models Our primary baseline model (Inception-v4, attention, ensemble)

uses a learning rate of 0.0001 and initializes all its weights with a uniform distribution in the

range [−0.05, 0.05].

Multi-Task with Video Prediction (1-to-M) In this model, the video captioning and unsuper-

vised video prediction tasks share their encoder LSTM-RNN weights and image embeddings

in a one-to-many multi-task setting. We again use a learning rate of 0.0001 and initialize all the

learnable weights with a uniform distribution in the range [−0.05, 0.05]. Two important hyperpa-

rameters tuned (on the validation set of captioning datasets) are the ratio of encoder vs decoder

frames for video prediction on UCF-101 (where we found that 80% of frames as input and 20%
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for prediction performs best); and the mini-batch mixing ratio between the captioning and video

prediction tasks (where we found 100 : 200 works well).

Multi-Task with Entailment Generation (M-to-1) In this model, the video captioning and

entailment generation tasks share their language decoder LSTM-RNN weights and word em-

beddings in a many-to-one multi-task setting. We again use a learning rate of 0.0001. All the

trainable weights are initialized with a uniform distribution in the range [−0.08, 0.08]. We ob-

serve that a mixing ratio of 100 : 50 (between the captioning and entailment generation tasks)

alternating mini-batches works well here.

Multi-Task with Video and Entailment Generation (M-to-M) In this many-to-many, three-

task model, the video encoder is shared between the video captioning and unsupervised video

prediction tasks, and the language decoder is shared between the video captioning and entailment

generation tasks. We again use a learning rate of 0.0001. All the trainable weights are initialized

with a uniform distribution in the range [−0.08, 0.08]. We found that a mixing ratio of 100 : 100 :

50 alternative mini-batches of video captioning, unsupervised video prediction, and entailment

generation works best.

A.1.2 Video Captioning on MSR-VTT

We also evaluate our many-to-many multi-task model on other video captioning datasets. For

MSR-VTT, we train the model again using a learning rate of 0.0001. All the trainable weights are

initialized with a uniform distribution in the range [−0.05, 0.05]. We found that a mixing ratio of

100 : 20 : 20 alternative mini-batches of video captioning, unsupervised video prediction, and

entailment generation works best.

A.1.3 Video Captioning on M-VAD

For the M-VAD dataset, we use 512 dimension hidden vectors for the LSTMs to reduce over-

fitting. We initialize the LSTM weights with a uniform distribution in the range [−0.1, 0.1] and
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all other weights with a uniform distribution in the range [−0.05, 0.05]. We use a learning rate

of 0.001. We found a mixing ratio of 100 : 5 : 5 alternative mini-batches of video captioning,

unsupervised video prediction, and entailment generation works best.

A.1.4 Entailment Generation

Here, we use video captioning to in turn help improve entailment generation results. We use

the same hyperparameters for both the baseline and the multi-task model (Sec. 5.3 and Table 4).

We use a learning rate of 0.001. All the trainable weights are initialized with a uniform distri-

bution in the range [−0.08, 0.08]. We found a mixing ratio of 100 : 20 alternate mini-batches

training of entailment generation and video captioning to perform best.

A.2 Datasets and Training Details for MTL Summarization

A.2.1 Dataset Details

CNN/DailyMail Dataset CNN/DailyMail dataset (Hermann et al., 2015; Nallapati et al., 2016)

is a large collection of online news articles and their multi-sentence summaries. We use the origi-

nal, non-anonymized version of the dataset provided by See et al. (2017). Overall, the dataset has

287, 226 training pairs, 13, 368 validation pairs and, 11, 490 test pairs. On an average, a source

document has 781 tokens and a target summary has 56 tokens.

Gigaword Corpus Gigaword is based on a large collection of news articles, where the article’s

first sentence is considered as the input document and the headline of the article as output sum-

mary. We use the annotated corpus provided by Rush et al. (2015). It has around 3.8 million

training samples. For validation, we use 2, 000 samples and for test evaluation we use the stan-

dard test set provided by Rush et al. (2015). Following previous work, we keep our vocabulary

size to 50, 000 frequent words.
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DUC Corpus We use the DUC-20021 document summarization dataset for checking our model’s

generalizability capabilities. DUC-2002 corpus consists of 567 documents with one or two hu-

man annotated reference summaries. We also tried beam retuning using DUC-20032 as a valida-

tion set, which consists of 624 documents with single human annotated reference summaries.

SNLI corpus We use the Stanford Natural Language Inference (SNLI) corpus (Bowman et al.,

2015) for our entailment generation task. Following Pasunuru and Bansal (2017a), we use the

same re-splits provided by them to ensure a zero train-test overlap and multi-reference setup.

This dataset has a total of 145, 822 unique premise pairs out of 190, 113 pairs, which are used for

training, and the rest of them are divided equally into validation and test sets.

SQuAD Dataset We use Stanford Question Answering Dataset (SQuAD) for our question gen-

eration task (Rajpurkar et al., 2016). In SQuAD dataset, given the comprehension and question,

the task is to predict the answer span in the comprehension. However, in our question genera-

tion task, we extract the sentence from the comprehension containing the answer span and cre-

ate a sentence-question pair similar to Du et al. (2017). The dataset has around 100K sentence-

question pairs from 536 articles.

A.2.2 Training Details

The following training details are common across all models and datasets. We use LSTM-

RNN in our sequence models with hidden state size of 256 dimension. We use 128 dimension

word embedding representations. We do not use dropout or any other regularization techniques,

but we clip the gradient to allow a maximum gradient norm value of 2.0. We use Adam opti-

mizer (Kingma and Ba, 2015) with a learning rate of 0.001. Also, we share the word embeddings

representation of both encoder and decoder in our models. All our tuning decisions (including

soft/hard and layer-specific sharing decisions) were made on the appropriate validation/develop-

ment set.

1https://www-nlpir.nist.gov/projects/duc/guidelines/2002.html

2https://www-nlpir.nist.gov/projects/duc/guidelines/2003.html
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CNN/DailyMail: For all the models involving CNN/DailyMail dataset, we use a maximum

encoder RNN step size of 400 and a maximum decoder RNN step size of 100. We use a mini-

batch size of 16. We initialize the LSTM-RNNs with uniform random initialization in the range

[−0.02, 0.02]. We set λ to 1.0 in the joint cross-entropy and coverage loss. Also, we only add

coverage to the converged model with attention and pointer mechanism, and make the learning

rate from 0.001 to 0.0001. During multi-task learning, we use coverage mechanism for primary

(CNN/DailyMail summarization) task but not for auxiliary tasks (because they do not have tradi-

tional redundancy issues). The penalty coefficient γ for soft-sharing is set to 5× 10−5 and 1× 10−5

for 2-way and 3-way multi-task models respectively (the range of the penalty value is intuitively

chosen such that we balance the cross-entropy and regularization losses). In inference time, we

use a beam search size of 4, following previous work (See et al., 2017).

Gigaword: For all the models involving Gigaword dataset, we use a maximum encoder RNN

step size of 50 and a maximum decoder RNN step size of 20. We use a mini-batch size of 256.

We initialize the LSTM-RNNs with uniform random initialization in the range [−0.01, 0.01]. We

do not use coverage mechanism to our Gigaword models. Also, we set our beam search size to 5,

following previous work (Nallapati et al., 2016).

DUC: For the CNN/DM to DUC domain-transfer experiments where we allow the beam sizes of

all models to be individually re-tuned on DUC-2003, the chosen tuned beam values are 10, 4, 3

for the multi-task model, baseline, and See et al. (2017), respectively.

Multi-Task Learning with Question Generation Two important hyperparameters tuned are

the mixing ratio between summarization and entailment generation, as well as the soft-sharing

coefficient. Here, we choose the mixing ratios 3:2 between CNN/DailyMail and SQuAD, 100:1

between Gigaword and SQuAD. Intuitively, these mixing ratios are close to the ratio of their

dataset sizes. We set the soft-sharing coefficient γ to 5× 10−5 and 1× 10−5 for CNN/DailyMail

and Gigaword, resp.
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Multi-Task Learning with Entailment Generation Here, we choose the mixing ratios 3:2

between CNN/DailyMail and SNLI, 20:1 between Gigaword and SNLI. We again set the soft-

sharing coefficient γ to 5× 10−5 and 1× 10−5 for CNN/DailyMail and Gigaword, resp.

Multi-Task Learning with Question and Entailment Generation Here, we choose the mixing

ratios and soft-sharing coefficients to be 4:3:3 and 5× 10−5 for CNN/DailyMail, and 100:1:5 and

1.5× 10−6 for Gigaword respectively.

A.3 Experimental Setup for RL Video Captioning

A.3.1 Datasets

MSR-VTT Dataset. MSR-VTT is a diverse collection of 10, 000 video clips (41.2 hours of du-

ration) from a commercial video search engine. Each video has 20 human annotated reference

captions collected through Amazon Mechanical Turk (AMT). We use the standard split as pro-

vided in (Xu et al., 2016a), i.e., 6513 for training, 497 for testing , and remaining for testing. For

each video, we sample at 3fps and we extract Inception-v4 (Szegedy et al., 2016) features from

these sampled frames and we also remove all the punctuations from the text data.

YouTube2Text Dataset. We also evaluate our models on YouTube2Text dataset (Chen and

Dolan, 2011). This dataset has 1970 video clips and each clip is annotated with an average of

40 captions by humans. We use the standard split as given in (Venugopalan et al., 2015a), i.e.,

1200 clips for training, 100 for validation and 670 for testing. We do similar pre-processing as the

MSR-VTT dataset.

A.3.2 Training Details

All the hyperparameters are tuned on the validation set. For each of our main models (base-

line, CIDEr and CIDEnt), we report the results on a 5-avg-ensemble, where we run the model 5

times with different initialization random seeds and take the average probabilities at each time
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step of the decoder during inference time. We use a fixed size step LSTM-RNN encoder-decoder,

with encoder step size of 50 and decoder step size of 16. Each LSTM has a hidden size of 1024.

We use Inception-v4 features as video frame-level features. We use word embedding size of 512.

Also, we project down the 1536-dim image features (Inception-v4) to 512-dim.

We apply dropout to vertical connections as proposed in Zaremba et al. (2014), with a value

0.5 and a gradient clip size of 10. We use Adam optimizer (Kingma and Ba, 2015) with a learn-

ing rate of 0.0001 for baseline cross-entropy loss. All the trainable weights are initialized with

a uniform distribution in the range [−0.08, 0.08]. During the test time inference, we use beam

search of size 5. All our reward-based models use mixed loss optimization (Paulus et al., 2018;

Wu et al., 2016), where we train the model based on weighted (γ) combination of cross-entropy

loss and reinforcement loss. For MSR-VTT dataset, we use γ = 0.9995 for our CIDEr-RL

model and γ = 0.9990 for our CIDEnt-RL model. For YouTube2Text/MSVD dataset, we use

γ = 0.9985 for our CIDEr-RL model and γ = 0.9990 and for our CIDEnt-RL model. The

learning rate for the mixed-loss optimization is 1 × 10−5 for MSR-VTT, and 1 × 10−6 for

YouTube2Text/MSVD. The λ hyperparameter in our CIDEnt reward formulation is roughly

equal to the baseline cross-entropy model’s score on that metric, i.e., λ = 0.45 for MSR-VTT

CIDEnt-RL model and λ = 0.75 for YouTube2Text/MSVD CIDEnt-RL model.

A.4 Additional Saliency Reward Details for RL Summarization

Here, we describe the ROUGE-L formulation at summary-level and later describe how we

incorporate saliency information into it. Given a reference summary of u sentences containing

a total of m tokens ({wr,k}mk=1) and a generated summary of v sentences with a total of n tokens

({wc,k}nk=1), let ri be the reference summary sentence and cj be the generated summary sentence.

Then, the precision (Plcs), recall (Rlcs), and F-score (Flcs) for ROUGE-L are defined as follows:

Plcs =

∑u
i=1 LCS∪(ri, C)

n
(A.1)
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Rlcs =

∑u
i=1 LCS∪(ri, C)

m
(A.2)

Flcs =
(1 + β2)RlcsPlcs
Rlcs + β2Plcs

(A.3)

where LCS∪ takes the union Longest Common Subsequence (LCS) between a reference sum-

mary sentence ri and every generated summary sentence cj (cj ∈ C), and β is defined in Lin

(2004). In the above ROUGE-L scores, we assume that every token has equal weight, i.e, 1. How-

ever, every summary has salient tokens which should be rewarded with more weight. Hence, we

use the weights obtained from our novel saliency predictor to modify the ROUGE-L scores with

salient information as follows:

P s
lcs =

∑u
i=1 LCS

∗
∪(ri, C)∑n

k=1 η(wc,k)
(A.4)

Rs
lcs =

∑u
i=1 LCS

∗
∪(ri, C)∑m

k=1 η(wr,k)
(A.5)

F s
lcs =

(1 + β2)Rs
lcsP

s
lcs

Rs
lcs + β2P s

lcs

(A.6)

where η(w) is the weight assigned by the saliency predictor for token w, and β is defined in Lin

(2004).3 Let {wk}pk=1 be the union LCS set, then LCS∗∪(ri, C) is defined as follows:

LCS∗∪(ri, C) =

p∑
k=1

η(wk) (A.7)

A.5 Training Details for Dynamic MTL

All LSTMs use hidden state size of 256. We train word vectors with embedding size of 128

with random initialization. We use gradient clipped norm of 2.0. Our model selection (tuning) cri-

teria is based on the average of our 3 metrics (SARI, BLEU, 1/FKGL) on the validation set. The

mixing ratios are αss:αeg:αpp = 6:1:3 for Newsela, 6:1:3 for WikiSmall, and 7:2:1 for WikiLarge.

The soft-sharing coefficient λ is set such that we balance the cross-entropy and regularization

3If a token is repeated at multiple times in the input sentence, we average the probabilities of those instances.
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losses (at convergence), which is 5 × 10−6 for Newsela, 1 × 10−6 WikiSmall, and 1 × 10−5 for

WikiLarge. We train models from scratch for Newsela and WikiSmall (using Adam (Kingma and

Ba, 2015) optimizer with learning rate of 0.002 and 0.0015, respectively). However, because of

the large size and computation overhead for WikiLarge, we first pre-train both main and auxiliary

models on their own domain until they reach 90% convergence, and use these models to initial-

ize the multi-task models, and set the learning rate to 1/10 of its original default value (0.001).

We set the decay rate α in the bandit controller to be 0.3. We use the negative validation loss as

the reward at each sampling step to the bandit algorithm. The validation loss is divided by two

as a smoothing technique.4 All our soft/hard and layer-specific sharing decisions (Sec. 7.2.7)

were made on the validation/dev set. We follow previous work (Zhang and Lapata, 2017b) in

their pre-processing and post-processing of named entities. We capped vocabulary size to be

50K and replaced less frequent words with UNK token.5 Unlike previous work (Zhang and La-

pata, 2017b), we do not use UNK-replacement at test time, but instead rely on our pointer-copy

mechanism. We use beam search with beam size of 5. All other details provided in our released

code.

A.6 Training Details for DORB models

All the hyperparameters are tuned on the validation set for both question generation and data-

to-text tasks. We use TITAN X and GeForce GTX 1080 GPUs for all our experiments, where all

our RL models roughly take 1 day to train on a single GPU.

For the question generation task, we use two layers for both bi-directional encoder and uni-

directional decoder. We set the hidden size of LSTM-RNN to 600 and use BERT-based contex-

4This constant serves the same purpose as the temperature variable in the softmax function.
5We measured the vocabulary overlap between the main and auxiliary tasks, and found that “word-form-overlap”
(percentage of unique word types in auxiliary task that also appear in the main task) to be 40.7% (entailment) and
41.0% (paraphrase), and “word-count-overlap” (percentage of words in auxiliary task that also appear in the main
task, based on token frequency counts) to be 95.2% (entailment) and 94.9% (paraphrase). Hence, this suggests
that only rare words (which make up for very few counts) aren’t considered in training process, and our pointer
mechanism handles these extra UNK words by copying the actual word-form from the source to the output.
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tual embeddings as input instead of word embeddings. The number of parameters in our model

is 33.3 million. We use a batch size of 32, encoder maximum length of 512 and decoder maxi-

mum length of 50, and maximum gradient clipping of 5. We use Adam optimizer (Kingma and

Ba, 2015) with a learning rate of 1e-3 and 1e-6 for cross-entropy model and RL models, respec-

tively. We use a dropout of 0.3 for the cross-entropy model and no dropout for RL models. For

multi-reward bandit models, we set the bandit coefficient (γ) to 0.1, and each round of the bandit

consists of optimization of 100 mini-batches of training data. For HM-Bandit, we set the con-

troller round size to 300 mini-batches. We consider the following short hyperparameters ranges

and manually tune on: learning rate in the range [1e-5, 1e-7]; bandit coefficient in the range [0.01,

0.5]; bandit round - {10, 100}; and controller round size - {30, 300}.

For WebNLG data-to-text task, we first serialize and reorder the RDF data as an intermediate

planning setup, and then feed the plan into an encoder-attention-decoder style architecture with

copy mechanism, to generate the text describing the RDF data. We use same hyperparameters as

discussed in Zhao et al. (2020) for the cross-entropy model, e.g., we use Adam with a batch size

of 64, initial learning rate of 0.001, and a dropout of 0.3. All RL models are initialized with the

best cross-entropy model checkpoint, and use Adam with a learning rate of 1e-6. We do not use

dropout for RL models. The number of parameters in our model is 5.9 million. For multi-reward

bandit models, we set the bandit coefficient (γ) to 0.15, and each round of the bandit consists of

optimization of 10 mini-batches of training data. For HM-Bandit, we set the controller round size

to 30 mini-batches. We consider the following short hyperparameters ranges and manually tune

on: learning rate in the range [1e-5, 1e-7]; bandit coefficient in the range [0.01, 0.5]; bandit round

- {10, 100}; and controller round size - {30, 300}.

A.7 Training Details for CAS

We use Adam optimizer (Kingma and Ba, 2015) and a mini-batch size of 64. We set the

dropout to 0.5. In all of our architecture search models, we use 6 nodes. For the controller’s

optimization, we again use Adam optimizer with a learning rate of 0.00035.
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For GLUE tasks, we use 256 dimensions for the hidden states of the RNNs, and for word

embeddings we use ELMo representations (Peters et al., 2018), where we down project the 1024

dimensions ELMo embeddings to 256. We use a learning rate of 0.001, and both encoder RNNs

are unrolled to 50 steps. For CAS conditions, we set the coefficients for block-sparsity and or-

thogonality conditions to 0.001 and 0.001, respectively.

For video captioning tasks, we use hidden state size of 1024 and word embedding size of 512.

For visual features, we use a concatenation of both ResNet-152 (He et al., 2016) and ResNeXt-

101 (Xie et al., 2017) image features. We use a learning rate of 0.0001, and we unroll the video

encoder and caption decoder to 50 and 20 steps, respectively. For CAS conditions, we set both

the coefficients of block-sparsity and orthogonality conditions to 0.0001.
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Dušek, O., Novikova, J., and Rieser, V. (2020). Evaluating the state-of-the-art of end-to-end natural
language generation: The E2E NLG Challenge. Computer Speech & Language, 59:123–156.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Efficient multi-objective neural architecture search
via lamarckian evolution. In ICLR.

Evans, R., Orasan, C., and Dornescu, I. (2014). An evaluation of syntactic simplification rules for
people with autism. In Proceedings of the 3rd Workshop on Predicting and Improving Text
Readability for Target Reader Populations (PITR), pages 131–140.

Evgeniou, T., Micchelli, C. A., Pontil, M., and Shawe-Taylor, J. (2005). Learning multiple tasks
with kernel methods. Journal of machine learning research, 6(4).

Falke, T. and Gurevych, I. (2017). Bringing structure into summaries: Crowdsourcing a benchmark
corpus of concept maps. In EMNLP.

Filippova, K., Alfonseca, E., Colmenares, C. A., Kaiser, L., and Vinyals, O. (2015). Sentence
compression by deletion with lstms. In EMNLP, pages 360–368.

Filippova, K. and Strube, M. (2008). Dependency tree based sentence compression. In Pro-
ceedings of the Fifth International Natural Language Generation Conference, pages 25–32.
Association for Computational Linguistics.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135.

Ganesan, K., Zhai, C., and Han, J. (2010). Opinosis: a graph-based approach to abstractive
summarization of highly redundant opinions. In Proceedings of the 23rd international
conference on computational linguistics, pages 340–348. ACL.

Ganitkevitch, J., Van Durme, B., and Callison-Burch, C. (2013). Ppdb: The paraphrase database.
In HLT-NAACL, pages 758–764.

Gardent, C., Shimorina, A., Narayan, S., and Perez-Beltrachini, L. (2017). The WebNLG challenge:
Generating text from rdf data. In Proceedings of the 10th International Conference on Natural
Language Generation, pages 124–133.

Gehrmann, S., Dai, F., Elder, H., and Rush, A. M. (2018a). End-to-end content and plan selection
for data-to-text generation. In Proceedings of the 11th International Conference on Natural
Language Generation, pages 46–56.

Gehrmann, S., Deng, Y., and Rush, A. M. (2018b). Bottom-up abstractive summarization. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 4098–4109.

148



Gerani, S., Mehdad, Y., Carenini, G., Ng, R. T., and Nejat, B. (2014). Abstractive summarization
of product reviews using discourse structure. In EMNLP, volume 14, pages 1602–1613.

Giannakopoulos, G. (2009). Automatic summarization from multiple documents. Ph. D. disserta-
tion.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448.

Glavaš, G. and Štajner, S. (2015). Simplifying lexical simplification: Do we need simplified
corpora. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing,
volume 2, pages 63–68.

Gong, H. (2018). Technical report for e2e nlg challenge. E2E NLG Challenge System Descriptions.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and Kavukcuoglu, K. (2017). Automated
curriculum learning for neural networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1311–1320. JMLR. org.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural
networks. In International conference on machine learning, pages 1764–1772.

Gu, J., Cho, K., and Li, V. O. (2017). Trainable greedy decoding for neural machine translation. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 1968–1978.

Gu, J., Lu, Z., Li, H., and Li, V. O. (2016). Incorporating copying mechanism in sequence-to-
sequence learning. In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 1631–1640.

Guadarrama, S., Krishnamoorthy, N., Malkarnenkar, G., Venugopalan, S., Mooney, R., Darrell,
T., and Saenko, K. (2013). Youtube2text: Recognizing and describing arbitrary activities using
semantic hierarchies and zero-shot recognition. In CVPR, pages 2712–2719.

Guo, H., Pasunuru, R., and Bansal, M. (2017). Interactive-length multi-task video captioning with
cooperative feedback. In NeurIPS Demo Track.

Guo, H., Pasunuru, R., and Bansal, M. (2018). Dynamic multi-level multi-task learning for
sentence simplification. In COLING.

Guo, H., Pasunuru, R., and Bansal, M. (2019a). AutoSeM: Automatic task selection and mixing
in multi-task learning. In NAACL, pages 3520–3531.

Guo, Z., Zhang, Y., Teng, Z., and Lu, W. (2019b). Densely connected graph convolutional net-
works for graph-to-sequence learning. Transactions of the Association for Computational
Linguistics, 7:297–312.
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