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ABSTRACT 

Rachel E. Bangle: Interfacial Electron Transfer for Solar Energy Conversion: Kinetic and 
Mechanistic Insights 

(Under the direction of Gerald J. Meyer) 

 

 The ubiquity of sunlight makes solar energy a promising alternative to carbon fuels, 

but wide-spread applications will require solar energy storage. To this end, solar energy and 

earth-abundant chemical feedstocks might be converted to liquid fuels in devices termed dye-

sensitized photoelectrosynthesis cells (DSPECs). This Dissertation seeks to build 

fundamental understandings of interfacial electron transfer (IET) reactions between 

molecular sensitizers and metal oxide (MOx) nanocrystals important to DSPEC optimization. 

Chapter 1 outlines the chemical processes involved in DSPEC operation and the semi-

classical theories which describe IET. 

 Chapters 2 develops a novel method to sensitize MOx materials through diazonium 

electrografting. Diazonium-substituting Ru-bis-terpyridine sensitizers were successfully 

anchored to MOx surfaces through alkaline-stable, covalent bonds. Though diazonium-

electrografted photoelectrodes produced small photocurrents relative to traditional anchoring 

groups in acidic conditions, they achieved sustained photocurrents at pH 12. 

 In Chapter 3, the IET mechanisms of dye-sensitized MOx core|shell materials 

generated through atomic layer deposition are discussed. Structural and kinetic analysis of 

Ru-polypyridyl-sensitized ZrO2|TiO2 and SnO2|TiO2 materials demonstrated that the rate and 

mechanism of IET could be controlled by the shell thickness and morphology. 
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 Chapters 4-7 explore IET reactions in dye-sensitized transparent conducting oxides 

(TCOs), which exhibit metallic behavior. In Chapter 4, a TCO displayed both anodic and 

cathodic capabilities, as the direction of photo-initiated IET with Ru-polypyridyl or Ru-

bipyrazine sensitizers was controlled by applied potentials and sensitizer excited state 

localization. In Chapters 5-7, Marcus-Gerischer kinetic analysis allowed quantification of 

IET reorganization energies (). This showed that for a Ru water oxidation catalyst, proton-

coupled IET exhibited a 0.4 eV larger  than did electron transfer alone (Chapter 5). Marcus-

Gerischer analysis also showed  to increase systematically with IET distance for Ru-

polypyridal and tri-aryl amine complexes located at defined positions within the TCO electric 

double layer (EDL) by layered ionic bridges (Chapter 6). In fact, within the outer-Helmholtz 

plane, IET was nearly activationless ( ≈ 0.1 eV). This was attributed to electric fields in the 

EDL which drastically decreased the dielectric response of the polar solvents. Further, 

insensitivity to solvent dynamics between water, acetonitrile, methanol, and benzonitrile 

indicated IET was non-adiabatic, even at the smallest distances (Chapter 7). 
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CHAPTER 1: INTERFACIAL ELECTRON TRANSFER FOR SOLAR ENERGY 
CONVERSION 

 

1.1 Meeting Global Energy Demands 

 Near consensus on the need to decrease greenhouse emissions and address climate 

change has developed in recent years. In 2016, the United Nations Framework Convention 

on Climate Change signed what is commonly known as the “Paris Agreement,” a multi-

national strategy to hold global warming to 2 °C above pre-industrial levels.1 This is an 

exigent task, as in 2019 the average global temperature was already 1 °C above the 20th 

century average, and projections show that continuation of the energy economy of 2000-2010 

would result in > 4 °C warming by the end of the century (Fig. 1.1).2,3 As such, the Paris 

Agreement outlined aggressive but necessary steps to avert the worst projected climate 

disasters—for global emissions to peak by 2025 and to be decreased by half by 2050.1,4–6 To 

achieve these goals equitably, wealthy nations will need to move even faster, cutting 

greenhouse emissions a staggering 55% by 2030.5 
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Figure 1.1. The deviation in the annual global temperature from the average temperature of 
the 20th century. Points are historical data. The dashed line is the projected temperature 
change assuming acceleration of fossil fuel use equivalent to that of 2000-2010. 

 While climate change mitigation necessitates rapid elimination of fossil fuels, 

extreme poverty eradication and global population growth will require significant energy.7 In 

2018, global energy consumption was 1.8 x 105 terrawatt hours (TWh), and current trends 

project this will likely increase 44% to ~ 2.6 x 105 TWh by 2050.8 To produce this energy 

would require 3.3 x 1010 tonnes of coal in 2050 alone, which would generate 2.1 x 1014 lbs of 

CO2, in addition to other toxins and greenhouse gases.9 To meet energy demands and 

simultaneously mitigate climate change will require rapid adoption of current renewable 

energy technologies and development of new carbon-neutral energy generation capabilities. 

1.1.1 The Case for Solar Energy 

The International Energy Agency projects that achievement of the Paris Agreement 

goals will require significant electrification of sectors currently powered by fossil fuels. At 

the same time, success is predicted to require that 75% of the world’s electricity be produced 

by renewable sources. This represents a drastic increase from the ~ 30% renewable electricity 

generated in 2020.6,8 Though currently hydrothermal electricity generation accounts for the 

largest portion of the renewable energy supply, the abundance of solar energy presents a 
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clear advantage.8 The average solar flux onto Earth is ~ 1.7 x 105 TW, meaning that the sun 

provides enough energy in a little more than an hour to meet current global energy demands 

for a year.10 Capture of some portion of this energy is made possible by the maturation of 

silicon photovoltaic (Si-PV) devices, which generally produce solar electricity with ~ 20% 

conversion efficiency.11 Governmental incentives and both public and private market 

investments have led to drastically lowered Si-PV manufacturing and installation costs, while 

technological developments have improved device lifetimes. This has made solar the fastest 

growing form of renewable electricity.8,12 In fact, in many countries development of new 

large-scale Si-PV electricity generation is less expensive than equivalent coal or gas plants.12  

 Cost-effectiveness, however, does not necessarily mean that rapid expansion of solar 

energy generation is without challenges. Because photovoltaics are preeminent, captured 

solar energy is almost exclusively converted to electricity. Though electrification of sectors 

such as domestic heating and passenger transport is cost-efficient and ongoing, electrification 

of many industrial processes is difficult.6 This leaves current solar energy conversion 

technologies, and electricity generated by any renewable source, inadequate to meet these 

specific demands. Further, the diurnal, seasonal, and weather-dependent sunlight fluctuations 

are problematic for consistent and reliable electricity generation.13 Energy storage is required 

to accommodate for irregularities in solar flux, but batteries are expensive, heavy, and 

frequently have lifetimes shorter than Si-PVs. Instead, solar electricity could be stored by 

powering turbines that pump water uphill or, but impractically large volumes of water would 

be required daily to meet current demands.14 A third possibility is to use solar energy not to 

generate electricity, but instead to drive chemical reactions to form bonds in energy-dense 

solar fuels, which will be discussed in the next section.4,14–20 
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1.1.2 Solar Fuels as Energy Storage 

 Solar fuels are inspired by natural photosynthesis, which is in fact the process that 

created today’s fossil fuels. Visible light absorption by chlorophylls in Photosystems (PS) I 

and II separate charges that are vectorially transferred through electron transport chains with 

free energy gradients to catalytic sites that oxidize water or reduce NADP+ to NADPH. The 

NADPH subsequently enters the Calvin cycle to produce carbohydrates with atmospheric 

CO2 as the carbon source.17 Researchers have envisioned artificial photosynthetic assemblies 

in which solar photons are absorbed and separated into redox equivalents that drive fuel-

forming reactions and water oxidation.4,14–20 Reduction of CO2 to form a liquid fuel is 

exceptionally desirable, as carbon fuels are easily integrated into our present energy 

infrastructure. Both water oxidation and CO2 reduction, however, are complex, multielectron 

processes that are thermally and kinetically difficult to couple with solar light absorption. 

 Fujishima and Honda published the first example of human-engineered solar fuels 

generation in 1972 (Fig. 1.2a).21 An illuminated TiO2 thin film electrically connected to a 

platinum dark cathode split water into oxygen and hydrogen gases. Hydrogen has been 

widely proposed as a prominent energy source in a future ‘hydrogen economy’. Fujishima 

and Honda used ultraviolet (UV) light to initiate bandgap excitation of TiO2 to generate 

valence band (VB) holes energetically competent to oxidize H2O to O2. The conduction band 

(CB) electrons were directed through an external circuit to the Pt electrode where proton 

reduction to H2 occurred with a pH gradient. Since this seminal example, many other metal 

oxide (MOx) semiconductors have been found to act as photo-initiated water oxidation 

catalysts (WOCs).17,22–25 In theory, any MOx with a VB energetically positive of the formal 

reduction potential of water (E° = 1.23 V vs NHE at pH 0) could serve as an anode in water 
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splitting photoelectrosynthesis cells.17,24 Unassisted water splitting, however, requires CB 

electrons that are thermodynamically capable of proton reduction. Currently, SrTiO3 is the 

only single-material photoanode that fulfills both of these requirements.26 

 
Figure 1.2. Solar fuels generation with MOx semiconductor light absorbers and WOCs. a) 
Photo-generated holes in a MOx VB split water while a Pt dark cathode reduces protons to 
H2. b) A MOx nanoparticle is deposited with a Pt hydrogen evolution site and RuO2, a WOC, 
both activated by light excitation of the MOx. c) Tandem MOx nanoparticles can exchange 
photo-generated holes and electrons via a redox mediator M while they split water or reduce 
protons. 

 Single MOx semiconductor photoanodes suffer, however, from the necessity that the 

MOx be the light absorber, electron transport medium, and catalyst simultaneously. Each 

process requires optimization, with sometimes conflicting demands on the MOx. As such, 

researchers have sought to decouple the necessary processes and optimize materials for each. 

In an early example, Grätzel derivatized TiO2 nanoparticles with deposits of Pt and RuO2, 

Fig. 1.2b.27 Here again, photo-generated electrons are transported through TiO2 to the Pt, 

which acts as a hydrogen evolution catalyst (HEC), while holes generated in proximity of the 

RuO2 activate the WOC. Alternatively, Bard employed multiple MOx nanoparticles in a 

tandem architecture with a redox mediator, which separated the two catalytic half reactions.28 

These strategies spread the demands of solar fuel generation across more chemical 

components, yet neither attained high catalytic efficiencies. This is in part due to the reliance 

on MOx as light absorbers, as the large band gaps required for catalysis also necessitate high-
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energy excitation.24 For example, the anatase TiO2 band gap is ~ 3.2 eV, which leads to a 

fundamental excitation at ~ 390 nm.17,24,29 Reliance on UV absorption disregards the vast 

majority of the solar spectrum. 

 Though a few other semiconductors, such as gallium arsenide and cadmium selenide, 

are capable of visible light absorption, they are unstable when illuminated in aqueous 

solution.24,30 As such, integration of molecular light absorbers, called sensitizers, with metal 

oxides represents a promising strategy to widen the wavelength range accessible for solar 

fuels generation.4,14,16–18,24,31,32 The use of molecular sensitizers was prompted by flash 

photolysis studies of [RuII(bpy)3]2+, where bpy is 2,2ʹ-bipyridine, which coupled sensitizer 

light absorption with electron transfer (ET).24 Visible light excitation of [RuII(bpy)3]2+ 

promotes an electron from the Ru metal center to a ligand-localized π* orbital. A molecular 

acceptor Q—often methyl viologen or similar—then quenches the excited state (ES) through 

ET to generate the oxidized [RuIII(bpy)3]3+ (Eq. 1.1).33,34 

[RuII(bpy)3]2+ + hν → [RuIII(bpy)2(bpy –●)]2+* + Q → [RuIII(bpy)3]3+ + Q –  (1.1) 

Though [Ru(bpy)3]3+ is thermally capable of water oxidation, completion of the 4 e– process 

in single electron steps is kinetically sluggish.33,34 Further, sensitizers which are strong 

photooxidants or photoreductants suitable for catalysis frequently are ineffective solar light 

harvesters. Thus, neither MOx nor molecular sensitizers alone are adequate to efficiently 

generate solar fuels. Use of the two together, however, enables optimization of each process 

individually to alleviate the weaknesses encountered when only a single MOx is utilized. 
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1.2 Dye-Sensitized Solar and Photoelectrosynthesis Cells 

 Integration of molecular sensitizers with semiconductor electron transport materials 

forms the basis of modern dye-sensitization. In 1991, Grätzel and O’Regan reported the first 

high-efficiency dye-sensitized solar cell (DSSC) made from TiO2 deposited on a conductive 

glass substrate with a trimeric ruthenium sensitizer.17,35 Grätzel and O’Regan’s key advance 

was the use of a mesoporous thin film composed of interconnected TiO2 nanocrystals that 

increase the surface area for sensitizer binding (Fig. 1.3a). The surface areas of these thin 

films are about 1000 times that of a planar surface, which enables effective solar light 

harvesting. In a generalized DSSC, visible light excitation of the sensitizers (often Ru(II) 

polypyridyl complexes) generates a reducing ES, which transfers an electron to an acceptor 

state in the MOx (usually TiO2) on pico- to femtosecond timescales, a process called 

injection.36,37 The electrons in the MOx generate a photovoltage by raising the quasi-Fermi 

level towards the vacuum level. The MOx also transports injected electrons through the thin 

films to an external circuit where they ultimately reduce redox mediators (typically I3
–) at a 

Pt electrode (Fig. 1.3b).35,38 The Grätzel and O’Regan DSSC achieved a conversion 

efficiency of 7%, but optimization of the sensitizer, electrolyte, and mediator have since 

resulted in up to ~15% efficiencies.17,39 
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Figure 1.3. a) MOx nanoparticles form high surface area mesoporous thin films that are 
sensitized to visible light with surface-anchored sensitizers. b) A general depiction of a 
DSSC in which light excitation of a sensitizer S initiates electron injection into the MOx CB. 
Transport through the MOx translates electrons into an external circuit and a Pt cathode 
where they reduce a redox mediator M+. M transfers an electron to S+ to regenerate the initial 
redox state of the sensitizer. Energies are not to scale. 

 A molecular WOC can serve in place of the redox mediators in DSSCs to form dye-

sensitized photoelectrosynthesis cells (DSPEC, Fig. 1.4). A common type of DSPEC splits 

water rather than generating electricity.17,18,20,24,32 Sensitizer excitation causes injection as in 

DSSCs, but the oxidized sensitizer is regenerated by ET from a WOC. Repeated ET events 

accumulate oxidizing equivalents and activate the WOC to oxidize water to O2. The injected 

electrons and protons are utilized at a Pt electrode for proton reduction to yield H2 gas (Fig. 

1.4a). Dye-sensitized water splitting remains inefficient, < 1% under AM 1.5 solar 

illumination, but Faradaic efficiencies for both H2 and O2 formation can exceed 50%.40–46  
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Figure 1.4. a) A DSPEC in which sensitizer excitation results in electron injection. Transport 
through the MOx to an external circuit and a Pt electrode where protons are reduced to H2. 
ET from a WOC regenerates the initial sensitizer state and collects oxidizing equivalents that 
activate the WOC. b) A tandem DSPEC in which the Pt electrode is replaced by a dye-
sensitized photocathode. Sensitizer excitation results in an ES that accepts an electron from 
the VB of the MOx. Subsequent ET events activate a CRC. Energies are not to scale. 

In tandem DSPECs, dye-sensitized water oxidation photoanodes are paired with dye-

sensitized photocathodes which use light to perform CO2 (or other) reduction reactions (Fig. 

1.4b).4,20,24,47,48 At the dye-sensitized photocathode, sensitizer excitation generates an ES 

which accepts an electron from the VB of the MOx. The electrons on the reduced sensitizer 

are funneled through subsequent ET events to a CO2 reduction catalyst (CRC). The activated 

CRC transforms CO2 to CO or, preferably, to more reduced, higher-nuclearity carbon fuels. 

The use of two photons in the tandem DPSEC may one day enable the generation of liquid 

carbon-based fuels that are more valuable than H2. 

 The DSSCs and DSPECs operate through a cumulative series of excitation, interfacial 

electron transfer (IET), electron transport, and intermolecular electron transfer steps. Each of 

these reactions have specific chemical and physical demands, which provide a myriad of 

ways in which the solar cell performance can be tuned and optimized. In the remainder of 

this section, the chemistry and physics of the essential DSPEC components will be discussed 

with a focus on efficiency and longevity. 
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1.2.1 Metal Oxide Electrodes 

Though the earliest solar fuels generation utilized only MOx semiconductors,21 it is 

widely thought that separate light absorbers, electron transport materials, and catalysts 

individually optimized for their own tasks will ultimately result in higher efficiencies. This 

removes some burden from the MOxs, which serve primarily as electron donors/acceptors 

and electron transport materials. Electron transport physically separates photo-generated 

holes and electrons and lengthens the lifetimes of charge separated states. Several properties 

of MOx electrodes are necessary for high efficiency: 1) large surface areas to anchor 

sensitizers and optimize solar light harvesting, 2) a sufficient density of redox-active states 

energetically aligned with the sensitizer excited state reduction potential (E° +/0*) to allow 

IET, and 3) high electron mobility for rapid electron transport through the MOx and away 

from the interface. Additionally, high MOx transparency in the visible region is desirable for 

spectroscopic analysis in a transmission mode. 

 Transparency to visible light requires a band gap ≥ 3.2 eV.24 This includes a great 

many MOx materials from which highly transparent, high surface area nanocrystalline films 

have been successfully prepared.17,25 These nanocrystalline thin films are typically produced 

by doctor blading colloidal sol-gel suspensions of MOx nanoparticles onto a conductive 

substrate. Special care is taken to prevent nanoparticle aggregation and thus light scatter 

within the films. After doctor-blading, the films are annealed at high temperatures to sinter 

nanoparticles and oxidize away organic polymer additives. The film thickness and porosity 

(frequently 40–60% by volume), as well as nanoparticle diameter, are readily controllable 

and determine the overall surface area.49 Monolayer surface coverages of molecular species 



11 
  

on these films generally correspond to ~ 10–7 ‒ 10–8 mol cm-2, which allows for significant 

absorption of visible light even for sensitizers with low extinction coefficients.24,49–53  

 Photoanodes are constructed from n-type MOxs, for which electrons are the primary 

free carriers, while photocathodes are constructed from p-type MOxs, for which holes are the 

primary free carriers.54,55 To date, p-type MOx materials have largely been limited to NiO. 

Dye-sensitized NiO solar cells, however, are highly inefficient, behavior attributed to slow 

hole transfer and a high defect density.56–62 Explorations of new p-type materials for dye-

sensitized photocathodes are ongoing, and Chapter 4 of this Dissertation provides a possible 

alternative class of materials that might serve in place of p-type MOx as photocathodes.  

The use of n-type MOx semiconductors, however, is much better characterized and is 

historically far more successful. Many MOx semiconductors have been explored as dye-

sensitized photoanodes, but by far the best studied are TiO2, SnO2, and ZnO. Not only was 

the anatase polymorph of TiO2 the first MOx employed for dye-sensitized photoanodes, but it 

has also performed most optimally in DSSC applications.63 Interest in ZnO stems from its 

electronic similarity to TiO2. The two materials have virtually identical CB edges, ECB, 

positive on an electrochemical scale of common sensitizer E° S+/0* values.17,25,63–67 For SnO2, 

the ECB is even more favorable, reported to be ~ 0.5 V more positive than that of TiO2 (Fig. 

1.5a).63,64,68–70 The value of ECB relative to E° S+/0* has been used to define the driving force 

for injection, and the larger driving force for dye-sensitized SnO2 is reflected in more rapid 

kinetics and higher injection yields from sensitizers that are weak excited state reductants.63–

65 Further, high electron mobilities in ZnO and SnO2 lead to rapid charge transport, which 

one would expect to extend the lifetimes of charge separated states.63,71,72 Despite this, 

however, TiO2 is still the champion DSSC material. 
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Figure 1.5. a) The density of acceptor states in TiO2, SnO2, and ZnO, where the states below 
ECB have been assigned as trap states. b) Core-shell nanostructures with an MOx1 core and a 
MOx2 shell. c) The position of the Fermi level EF in a n-type semiconductor and a 
transparent conducting oxide (TCO). 

These MOx materials are also frequently thought to contain trap states—localized 

redox-active states in the band gap identifiable in electrochemical experiments (Fig. 1.5a).66–

69,73,74 These localized states have been invoked as the main determinant of photo- and 

electrochemical behavior of MOx materials for applications in DSSCs.75–79 In a commonly 

accepted mechanism, after excited state injection, the electrons relax from the CB into lower-

energy trap states. Then thermally-activated escape from these states either into the CB or 

into nearby traps is required for either electron transport or transfer.70,80–83 The possibility of 

multiple trapping/detrapping events has been invoked in kinetic models to account for non-

exponential electron transport and electron transfer kinetics in nanocrystalline TiO2, though 

the physical origins of these kinetics are not definitively known.82,84 Trap states are thus 

frequently thought to be important in defining the lifetimes of photo-generated charge 

separated states in DSSCs and DSPECs. 

One strategy to improve MOx materials is to generate more complex nanostructures. 

An important example is a “core|shell” architecture, in which a MOx nanocrystalline thin 

film is coated through atomic layer deposition (ALD) with another MOx (Fig. 1.5b), the 

morphology of which is controlled by post-deposition heat treatments.85–88 The ALD layer 
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serves to passivate surface trap states and can instantiate a physical and energetic barrier to 

recombination in the photo-generated charge separated state.20,89–97 With these 

enhancements, DSPECs composed of SnO2|TiO2 core|shell materials oxidize water more 

efficiently than those made of either SnO2 or TiO2 alone.42,93 Efforts to elucidate the effects 

of ALD layers on the mechanism of IET from the MOx to a molecule are detailed in Chapter 

3 of this Dissertation. 

 A final class of useful MOx materials are transparent conducting oxides (TCOs) such 

as tin-doped indium oxide (Sn:In2O3, ITO), aluminum-doped zinc oxide (Al:ZnO, AZO), and 

fluorine-doped tin oxide (F:SnO2, FTO). In these materials, n-type doping raises the Fermi 

level (EF) of the into the CB (Fig. 1.5c). Moderate doping (5-10%) results in free carrier 

densities in excess of 1021 cm‒3, which leads to high electron mobility; low, temperature 

dependent resistivity; and an infrared localized surface plasmon resonance.98–100 The TCOs 

thus behave electrically like a metal while still maintaining high transparency to visible light. 

Though TCOs have historically been utilized for spectral and electrochemical analysis of 

dye-sensitized electrodes, their high density of carriers results in very small dye-sensitized 

photovoltages and hence low power conversion efficiencies. Recently, however, interest in 

TCOs for DSSCs has been piqued by reports that TCOs can serve as either photoanodes or 

photocathodes (see Chapter 4) and can generate long-lived photoinduced charge separated 

states.57,101–103 Further, the metallic behavior of TCOs allows experimental control of the IET 

driving force, which allows fundamental kinetic studies that have been utilized in Chapters 5-

7 of this Dissertation.104,105 
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1.2.2 Surface-Anchoring Strategies 

The transparency of the MOx to visible light necessitates sensitizers capable of 

excited state interfacial electron transfer with the MOx. To concentrate sensitizers at the 

MOx/electrolyte interface and encourage IET, sensitizers are generally chemically anchored 

to the MOx surface. Additionally, molecular WOCs and CRCs must be localized near the 

sensitizers to be efficiently activated. As such, strategies to stably anchor molecular species 

to MOx surfaces are vital to DSSC and DSPEC performance. Sensitizers are generally 

anchored through appended functional groups, often substituents at the 4,4ʹ positions of a 

2,2ʹ-bipyridine.106 The most commonly utilized substituents are carboxylic and phosphonic 

acids, which are proposed to form dative bonds with the metal ions in the MOx (Fig. 1.6).107–

109 Evidence from IR spectra suggest that both carboxylic and phosphonic acids likely anchor 

in a bidentate fashion, though binding modes have not been conclusively established.106 

Though carboxylic and phosphonic acids are stable in a wide range of organic solvents, they 

are vulnerable to hydrolysis in neutral or alkaline aqueous electrolytes. Carboxylic acid 

anchors are especially unstable and desorb within minutes in pH ≥ 4 solutions.106,110,111 

Phosphonic acid anchors are stable at pH < 7, but they are still not suitable for the alkaline 

conditions desirable for water oxidation.24 Recently, silatrane and hydroxamic acid groups 

(Fig. 1.6) have stably anchored sensitizers in a wide range of aqueous solutions, pH 2-

11.106,112,113 Though they have not yet been well characterized, these groups may present 

important advances in DSSC and DSPEC surface anchoring. The electrografting of 

diazonium-functionalized sensitizers to form alkaline-stable covalent bonds with a variety of 

MOx materials is reported in Chapter 2 of this Dissertation. 
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Figure 1.6. Substituents commonly employed as sensitizer anchors and likely anchoring 
modes on an MOx surface suggested from IR spectroscopy. 

Sensitizer anchors also influence DSSC and DSPEC performance by establishing 

electronic coupling between the sensitizer and MOx. Large coupling, which promotes rapid 

IET, results from orbital delocalization from the sensitizer onto the anchoring group.106 

Experimental comparisons of injection yields and rate constants give insights into relative 

sensitizer/MOx coupling through carboxylic, phosphonic, and hydroxamic acids.112,114,115 

Excited state injection rate constants were measured to be more than twice as large when 

sensitizers were anchored through carboxylic versus phosphonic acid.114 The sp3-hybridized 

P atom in the phosphonic acid disallows orbital delocalization onto the anchor, and as such 

sensitizer/MOx coupling is small. The opposite is true for the sp2-hybridized carbon in 

carboxylic acid. Injection rate constants have not to my knowledge been measured for 

hydroxamic acid-anchored sensitizers, but they have similar injection yields to carboxylic 

acid-anchored sensitizers.112,115 This suggests hydroxamic acids also generate relatively large 

sensitizer/metal oxide coupling. Injection yields and rate constants for silatrane-anchored 

sensitizers have yet to be established. 

 Catalysts are sometimes co-anchored to MOx surfaces alongside sensitizers, but the 

demands of catalyst anchors differ. Where anchored sensitizers should promote excited state 

IET with a large electronic coupling, anchored catalysts should promote intermolecular ET 

between the catalyst and sensitizer. In fact, IET between MOx and catalysts represents a 

major deactivation pathway.24 As such, catalysts are often anchored to the sensitizer rather 

than to the MOx itself either through synthesis of covalent sensitizer-catalyst assemblies or 
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through van der Waals interactions between hydrophobic groups on both molecular 

species.17,18,24,32,116 

1.2.3 Sensitizer Excited State Photophysics  

 Sensitizer development has focused extinction coefficient optimization over large 

spectral ranges, especially in the red and near IR regions. Several classes of molecular 

sensitizers, reviewed by Hagfeldt, et. al,10 have become prominent. Porphyrins, 

phthalocyanines, and a variety of conjugated organic molecules have been successfully 

utilized to sensitize MOx, but metal complexes, which frequently exhibit metal-to-ligand 

charge transfer (MLCT) absorbances in the visible region, are most common. Coordination 

complexes of Fe, Re, Cu, Os, and Pt have been used as sensitizers, but Ru coordination 

complexes have been studied most extensively. Ruthenium(II) complexes with bipyridine, 

terpyridine, heterocyclic, or phenanthroline ligands exhibit MLCT transitions in the visible 

region with extinction coefficients generally on the order of 104 M‒1 cm‒1.10,34,117 Though Ru-

based sensitizers exhibit limited absorbance in the near-IR, careful ligand design has led to a 

number of panchromatic Ru sensitizers, most notably those with thiocyanate ligands.10,118–120  

Sensitizers must also be energetically competent to undergo ES interfacial electron 

transfer with the MOx CB (or VB) to generate a charge-separated state (Eq. 1.2).  

MOx|‒S + hν → MOx|‒S* → MOx(e–)|–S+ (anode)    (1.2) 

       → MOx(h+)|–S– (cathode)   

The oxidized/reduced sensitizers must then be energetically appropriate for regenerative ET 

with the catalyst or redox mediator. These thermodynamic demands are often contrary to the 

need to absorb visible and near-IR light, however. At a photoanode, for example, excited 

state injection requires the sensitizer E° S+/0* be more negative on an electrochemical scale 
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than ECB, which for TiO2 is -0.1 V vs NHE at pH 0 with a -59 mV/pH shift as the electrolyte 

is made more alkaline.24 Because E° S+/0* is related to the sensitizer ground state reduction 

potential, E° S+/0 through the free energy stored in the excited state, ΔGES (Eq. 1.3), injection 

is promoted by a small or negative E° S+/0 and a large ΔGES. 

E° S+/0* = E° S+/0 ‒ ΔGES        (1.3) 

Successful regeneration, however, requires that the sensitizer E° S+/0 be more positive than 

the reduction potential of the WOC or the redox mediator. Further, a large ΔGES, requires 

high energy photons, in clear conflict with the desire for visible and near-IR absorption.24 As 

such, sensitizers must balance energetic and light absorption requirements. 

1.2.4 Water Oxidation and CO2 Reduction Catalysts 

 In DSPECs, oxidized or reduced sensitizers are regenerated through ET with a WOC 

or CRC (Eq. 1.4). Repeated photon absorption and regenerative ET then serves to build 

oxidizing or reducing equivalents and activate the catalysts. 

MOx(e–)|–S+–WOC → MOx(e–)|–S–WOC+ (anode)    (1.4) 

MOx(h+)|–S––CRC → MOx(h+)|–S–CRC– (cathode) 

Charge recombination (see below) limits DSPEC efficiency, as both water oxidation and CO2 

reduction are kinetically slow relative to the unwanted recombination. This manifests as 

relatively small turn-over frequencies (TOFs) for many WOCs and CRCs.16–19,24 Because 

water oxidation is mechanistically complex yet very important, much research has focused 

on the individual steps in the composite mechanism and the identification of structure-

function relationships. Ruthenium-based WOCs have been the most studied, though Ir-, Co-, 

and Fe-centered catalysts have also been successful.18 In general, transition metal-based 

WOCs accumulate oxidizing equivalents to generate high-valent metal oxo (M=O) 
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intermediates that have been proposed to initiate O‒O bond formation. Both nucleophilic 

water attack on the M=O bond and the coupling of two M=O in a radical-like reaction have 

been proposed.18 Mechanistic studies have allowed significant progress since the first 

molecular WOC was reported in 1982—a μ-oxo bridged dinuclear Ru complex known as the 

“Blue Dimer” with a turn-over number (TON) of 13 and a turn-over frequency (TOF) of 

0.0042 s‒1.121 The most successful catalysts in use today are Sun-type catalysts based on a 

single-site Ru complex with a 2,2ʹ-bipyridine-6,6ʹ-dicarboxylate ligand.122 For select 

examples of these WOCs, turn over numbers (TONs) greater than 100,000 and TOFs > 1000 

s‒1 have been reported.18,123 The kinetic influence of proton involvement in WOC ET 

reactivity is addressed in Chapter 5 of this Dissertation. 

 Numerous CRCs have also been reported since the 1970s, frequently transition metal 

complexes with macrocyclic or porphyrin ligands.18,124,125 Development of molecular CRCs 

has strived not only to improve stability, TOF, and overpotential, but also to enable 

selectivity, as CO2 reduction can lead to multiple products (CO, formate, oxylate, alcohols, 

alkanes, etc.). In addition, CO2 reduction is often kinetically competitive with proton and/or 

O2 reduction. CRCs with first-row, earth-abundant metals are known to be stable and 

efficient. A notable example is an Fe-porphyrin catalyst that reduces CO2 to CO with 

Faradaic efficiencies > 90%, TOF > 1,000,000 s‒1, and no observable degradation over 

days.126,127 From these highly successful catalysts, current efforts focus on catalysis that 

yields higher-value carbon products. 

1.2.5 Productive and Detrimental Electron Transfer Events 

 It is thus clear that DSPEC operation requires a daunting number of chemical 

processes, illustrated for a photoanode in Fig. 1.7: 1) sensitizer excitation, 2) excited state 
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injection, 3) electron relaxation into MOx trap states, 4) electron transport through the MOx, 

5) sensitizer regeneration, and 6) catalysis. These productive steps, however, compete 

kinetically with detrimental pathways which limit efficiency.10,24,128 Generation and 

maintenance of charge-separated states for the long timescales required for catalysis can fail 

due to a) ES decay, b) back electron transfer (BET), and c) charge recombination (CR). 

 
Figure 1.7. Productive (green) and detrimental (red) processes in DSPEC photoanode 
function. Energies are not to scale. 

A generalized DSSC which utilizes TiO2 sensitized with Ru-polypyridyl light 

absorbers and the iodide/iodine couple as a redox mediator provides a useful illustration of 

how these detrimental processes can limit efficiency. For Ru-polypyridyl sensitizers, excited 

state decay generally occurs on nanosecond timescales, which competes kinetically with 

femto- and picosecond injection and can limit the injection yield. After injection, the 

oxidized sensitizer is then susceptible to BET with the electron in the TiO2 (Eq. 1.5).  

MOx(e–)|–S+ → MOx|–S        (1.5) 

This BET competes kinetically with regeneration with iodide, both of which occur on micro- 

to millisecond timescales. After regeneration, the charge separated state comprised of the 

reduced TiO2 and the oxidized mediator is susceptible to CR on the microsecond to second 

timescales (Eq. 1.6).  

MOx(e–)|–S + M+ → MOx|–S + M       (1.6) 
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This CR is a particularly potent threat in DSPECs which utilize catalysts rather than redox 

mediators, as catalysis requires multiple redox equivalents and frequently occurs over 

seconds. Deceleration and minimization of these detrimental processes, especially BET and 

CR, are important to DSPEC efficiency. 

 

1.3 Electron Transfer Kinetics 

 At the heart of DSSC and DSPEC operation are two interfacial electron transfer 

reactions: productive excited state electron/hole injection to generate a charge-separated state 

and detrimental recombination of separated holes and electrons. The rates of these IET 

reactions are important determinants of the overall yields, and as such to understand and 

control them is crucial for DSSC and DSPEC optimization. Further, IET between MOx 

nanoparticles and surface-anchored sensitizers is of fundamental interest, as surface 

attachment generates unique reaction environments that affect kinetic parameters.54,129 

Fundamental theories to predict the rate constants for IET have been developed from 

analogous inter- and intramolecular electron transfer theories. 

1.3.1 Marcus Theory 

 Inter- and intramolecular ET alter bond lengths and solvent structure, which changes 

potential energy. This fundamental assertion is a starting point for transition state theory, in 

which chemical reactants and products represent minima on a potential energy surface (PES). 

Conversion of reactants to products thus requires crossing a saddle point, which represents a 

transition state, in the multi-dimensional surface. The energy input to move from the reactant 

minimum to the transition state, called the Gibbs free energy of activation (–ΔG‡), then 

dictates the rate constant and equilibrium constant for the reaction. Though the historical 
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development of transition state theory through the late 19th and early 20th centuries was 

tremendous, the modern semi-classical expression (Eq. 1.7) was developed by Rudolph 

Marcus in the 1950s.130,131 
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This expression describes the ET rate constant, kET, in terms of three physical parameters: the 

Gibbs free energy change of the reaction (ΔG°), colloquially called the driving force (–ΔG°); 

the electronic coupling between the donor and acceptor wave functions (Hab); and the 

reorganization energy (λ).129–135 

In the Marcus picture of electron transfer, the multi-dimensional reaction PES is 

simplified to two parabolas, one that describes the reactant and the other that describes the 

product, which represent harmonic oscillators (Eq. 1.8 and 1.9, Fig. 1.8a). 
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Here, GR and GP are the Gibbs free energies for the reactant and product, respectively; X is 

the nuclear configuration of the bonds and solvent; and f is the Hooke’s Law force constant, 

equivalent in Marcus Theory to 2λ. The fundamental kinetic parameters in Eq. 1.7 can then 

be mapped onto these parabolas (Fig. 1.8a).  

The free energy difference between the reactant and product PES minima shows ΔG°. 

This is typically measured experimentally by the difference in the donor and acceptor 

reduction potentials. Electronic coupling Hab is illustrated by mixing of the two parabolas at 

the reactant/product intersection. Values of Hab are defined by the distance between the donor 

and acceptor (R), the innate coupling (Hab°) when the donor and acceptor are at the van der 
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Waals separation (R°), and a decay parameter (β) dependent on the intervening medium (Eq. 

1.10). 

𝐻௔௕ ൌ 𝐻௔௕° exp ቀെ ఉ

ଶ
ሺ𝑅 െ 𝑅°ሻ ቁ       (1.10) 

The height of the cusp at the reactant/product intersection which must be crossed at the 

instant of thermal ET is ΔG‡. This is defined in terms of the other Marcus parameters (Eq. 

1.11).  

∆𝐺‡ ൌ ሺ୼ீ°ାఒሻమ

ସఒ
          (1.11) 

Finally, the free energy difference between the reactant and the product PES at the nuclear 

configuration of the reactant minimum defines λ (Fig. 1.8).130,131 Physically, this is the energy 

stored in the destabilized solvent and bonds of the Frank-Condon state, dictated by the Born-

Oppenheimer approximation to occur upon instantaneous light-inducted ET. Some energy λ 

is then required to alter the bond lengths and reorient the solvent molecules in response to the 

change in charge distribution upon ET. 

 

Figure 1.8. a) Reactant and product PESs for a self-exchange reaction as described by 
Marcus Theory. The parameters ΔG°, λ, Hab, and ΔG‡ are indicated. b) Points marked on the 
reactant (red) and product (blue) PES correspond to particular bond and solvent 
configurations for the reactant and product minima (1 and 4) and the Frank-Condon states 
upon reactant or product excitation (2 and 3). 
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The total reorganization energy is often taken as a sum of inner-sphere (λi) and outer-

sphere (λo) components such that λ = λi + λo. The inner-sphere component arises because 

bond length displacements accompany electron transfer. The energy of a given bond j with 

force constant fj is described by Hooke’s law, and the total λi is the summation of the energy 

change across all bonds (Eq. 1.12).  
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Here n is the number of bonds, and lP and lR are the product and reactant bond lengths.130,131 

The outer-sphere component arises from the solvent dielectric response to changes in charge 

distribution upon ET (Eq. 1.13).130,131,136 
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Here, e is the elementary charge, εop and εst are the optical and static dielectric constants, and 

rD and rA are the donor and acceptor radii. Values of λi tend to be small without Jahn-Teller 

or other distortions in the transition state, and thus λo often dwarfs λi (λ ≈ λo). 

 One of the most salient and unexpected features of Marcus Theory is the parabolic 

dependence of ΔG‡ and kET on driving force, –ΔG°, to produce three distinct kinetic regimes 

(Fig. 1.9a).130,131,133 When –ΔG° < λ, called the normal region, , kET is predicted to increase 

with –ΔG°. A kET maximum is reached in the activationless region when –ΔG° = λ and ΔG‡ = 

0. Significantly, when –ΔG° > λ the magnitude of kET is predicted to decrease with driving 

force to result in what is often called the Marcus inverted region. The experimental 

realization of inverted electron transfer kinetics by Closs and Miller (Fig. 1.9b) cemented 

Marcus’s work as the foundation of modern ET Theory.137 Notably, however, the observed 

decay of kET in the inverted region was less steep than predicted by Eq. 1.7. In the Closs-

Miller experiment, when –ΔG° was large, coupling between vibrational excited states of the 
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acceptor and the donor wave function allowed quantum tunneling through the activation 

barrier. A quantum mechanical expression which sums over all vibrational modes (ω) in a 

Frank-Condon weighted density of states (Eq. 1.14) accounted for this tunneling and 

adequately modelled the experimental data.133,134,137 
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Figure 1.9. a) PES with constant λ and negligible Hab illustrate the parabolic dependence of 
ΔG‡ on –ΔG°, which divides ET into three regions. b) The first experimental observation of 
inverted kinetics for intramolecular ET in the pictured donor-bridge-acceptor molecules (ref. 
137). The acceptor identity, pictured for each data point, tuned –ΔG°. The dashed parabola 
shows a fit to Eq. 1.7, while the solid curve shows a fit to Eq. 1.14. 

1.3.2 Adaptation of Marcus Theory for Interfacial Electron Transfer 

 Because the three fundamental Marcus parameters suggest predictable kinetic 

responses, they are valuable to control electron transfer kinetics both in solution and at 

interfaces. For instance, in DSPECs catalysts are frequently positioned far from the MOx 

surface to minimize Hab and limit charge recombination.24,102,116 Precise control of λ and Hab, 

however, necessitates that they be experimentally measured. Because donor and acceptor 

reduction potentials can be controlled with substituents, experiments in which –ΔG° is 

systematically tuned are often used to determine λ and Hab for intra- and intermolecular 

ET.137–139 These experiments are complicated for interfacial electron transfer is DSSCs and 

DSPECS, however, as values of –∆G° are often ambiguous for reactions with defect-rich, 
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nanocrystalline MOx semiconductors.84,140–146 In the absence of defect states, –∆G° for IET 

from a semiconductor MOx donor to a molecular acceptor with a formal reduction potential 

E°ʹ that lies with the forbidden bandgap is defined by –ΔG° = eE°ʹ – ECB. In practice, 

however, estimates of ECB often rely on reported flat band potentials for MOx single crystals 

which may not be equivalent to nanocrystalline materials. This also discounts the possibility 

that low-energy MOx trap states are involved in IET. As such, Marcus analysis of IET with 

traditional semiconducting metal oxides has seen limited success. 

 Values of –∆G° are better defined for IET reactions between molecular species and 

conductive electrodes. For a conductive electrode donor and a molecular acceptor, –ΔG° is 

determined by the molecular E°ʹ and the electrode Fermi level (EF) which is in turn 

controlled by an externally applied potential (Eapp) (Eq. 1.15).  

െ𝛥𝐺௢ ൌ 𝑒𝐸°′ െ 𝐸ி ൌ 𝑒൫𝐸°′ െ 𝐸௔௣௣൯       (1.15) 

This is the basis for voltammetry experiments, in which Eapp predictably initiates 

electrochemical reduction or oxidation of a molecular species at a conductive electrode.54 

Interfacial electron transfer reactions, however, are fundamentally different than intra- and 

intermolecular ET reactions described by Marcus Theory. Within a conductive electrode, a 

continuum of redox-active states exist that may act as an electron donor or acceptor, and IET 

can occur from a range of states within the continuum. For example, in the case of an 

electrode donor and a molecular acceptor, individual IET events can occur from the highest-

energy occupied electrode state at the Fermi level (ρ(EF)) and from the occupied states in the 

continuum below. In analogy to Marcus Theory, each state in the continuum can be 

conceptualized as a reactant PES (Fig. 1.10a), and IET from each state proceeds with a rate 

constant determined by an individual barrier. The observed interfacial electron transfer rate 



26 
  

constant (kIET) reflects a summation of these individual IET events across the electrode 

continuum as expressed by Marcus-Gerischer Theory (Eq. 1.16).54,147–151 
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Here, Hab is the electronic coupling between the electrode and molecular species, ρ(E) is the 

density of the electrode states, f(E,EF) is the Fermi-Diraac distribution that describes the 

occupancy of the electrode states relative to EF, and W(E) is the activation barrier for IET 

from each state.54,147–152 Values of W(E) form a Gaussian distribution relative to the 

molecular E°ʹ (Eq. 1.17) equivalent to the activation term in the semiclassical Marcus 

expression. 

𝑊ሺ𝐸ሻ ൌ ଵ

ඥସగఒ௞ಳ்
exp ቀି

ሺ∆ீ°ሺாሻାఒሻమ

ସఒ௞ಳ்
ቁ       (1.17)  

The overall kIET is thus determined by the energetic overlap between ρ(E)f(E,EF) and W(E), 

often depicted as in Fig. 1.10b, where the electrode continuum of states is shown on the left, 

occupied states are denoted in gray, and the W(E) distribution is shown on the right. 

 

Figure 1.10. a) Marcus Theory for intermolecular (left) and interfacial (right) ET with 
equivalent –ΔG° and λ. Hab is small in both cases. The continuum of electrode states involved 
in IET is shown as nested PESs, each with ΔG‡ dictated by its intersection with the product 
PES. The Fermi level state is represented as ρ(EF). b) A depiction of Marcus-Gerischer 
Theory which illustrates the energetic overlap between the electrode states ρ(E)f(E,EF) and 
W(E), the distribution of IET activation energies. W(E) is positioned relative to the molecular 
E°ʹ, and its width is defined by λ. Single-headed arrows show IET reactivity. 
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 Like the semiclassical Marcus expression, W(E) is maximized when –ΔG° = λ. 

However, Marcus-Gerischer Theory predicts a quite different kinetic response to –ΔG° than 

does Marcus Theory. Because it is proportional to the integral of W(E), kIET is sigmoidal with 

–ΔG°, and –ΔG° = λ represents the inflection point of the curve (Fig. 1.11). This means that 

though kIET growth decelerates with –ΔG° when –ΔG° > λ, no inverted region is predicted. 

Instead, kIET continues to increase until the overlap of ρ(E)f(E,EF) and W(E) is unity— when 

–ΔG° > 2λ. Under these conditions, kIET reaches a maximum attainable value (𝑘ூா்
௠௔௫) defined 

by Hab (Eq. 1.18). 

𝑘ூா்
௠௔௫ ൌ  ଶగ

ℏ
𝐻௔௕

ଶ𝜌         (1.18) 

This expression assumes that f(E,EF) is in the low-temperature limit and that ρ(E) is 

independent of energy. Substitution of Eq. 1.18 allows Eq. 1.16 to be expressed in a form 

convenient for least-squares regression (Eq. 1.19) which is useful for experimental 

quantification of λ from the IET kinetic response to –ΔG°.104,105  

௞಺ಶ೅
௞಺ಶ೅
೘ೌೣ ൌ

ଵ

ଶ
൤1 െ erf ൬

୼ீ°ା𝝀

ଶඥ𝝀௞ಳ்
൰൨        (1.19) 

For IET, λo is predicted to depend on the solvent dielectric response, the distance between the 

electrode and molecule (RIET), and the molecular radii (r) (Eq. 1.20).54,131,153 
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Figure 1.11. The Marcus-Gerischer prediction of 𝑘ூா் 𝑘ூா்
௠௔௫⁄  vs. –ΔG° for IET (black). The 

derivative of this curve gives the Gaussian distribution of activation barriers W(E) (green). 

In celebrated examples by Chidsey, Finklea, Hanshew, and others, the kinetic 

response predicted by Eq. 1.16 and 1.19 has been observed experimentally, most commonly 

for molecules tethered to gold electrodes by long-chain alkane thiol self-assembled 

monolayers.154–157 In Chapters 5-7 of this Dissertation, this kinetic analysis will be applied to 

photo-initiated reactions at conductive interfaces to experimentally determine λ and Hab for 

IET reactions relevant to DSSCs and DSPECs. 

1.3.3 Complications of Adiabaticity 

 A subtlety of Eqs. 1.7 and 1.16 is the assumption that the reaction is non-adiabatic, 

with small values of Hab relative to λ and kbT. In fact, the PES in Figs. 1.9 and 1.10 are 

presented with negligibly small Hab. In this case, the cusp at the intersection of the reactant 

and product PESs, which must be crossed for ET, is sharp, and oscillations in the nuclear 

configuration move the system along the reactant PES. The system passes frequently through 

the transition state but spends little time in this configuration. Here, movement onto the 

product PES requires a low-probability instantaneous hop from the reactant PES at the 

intersection. Some ET reactions, however, are adiabatic, with molecular orbital 

delocalization that causes significant overlap of the donor and acceptor wave 
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functions.129,131,133,158–164 For intra- and intermolecular ET, this manifests in mixing of the 

reactant and product PESs, which lowers and broadens the intersection cusp (Fig. 1.8a). In 

this case, continuous progress along the nuclear configuration is unlikely to result in a return 

to the reactant minimum. The probability of movement onto the product PES from the 

transition state thus approaches unity.  

The defining feature of adiabatic ET is that electronic motion becomes correlated 

with nuclear solvent and inner-sphere motions in violation of the Born-Oppenheimer 

approximation. Because of this, kinetics of adiabatic ET are much more mathematically 

complex than those of non-adiabatic ET.158–162 This means that the solvent not only acts as a 

static energy dump through λo, but dynamically contributes to changes in charge distribution 

on the time scale of electronic motion. Solvent dynamics are frequently quantified by the 

solvent longitudinal relaxation time (τL), the time required for solvent dipoles to undergo 

dielectric response to changes in charge distribution (Eq. 1.21).136,165,166 

𝜏௅ ൌ
ఌಮ
ఌೞ೟
𝜏஽           (1.21) 

Values of τL are proportional to the solvent viscosity and defined in terms of the Debye 

relaxation time (τD) measured from dielectric response spectra and the static and high-

frequency dielectric constants (εst and ε∞). To account for adiabaticity, kET can be defined 

with a transmission coefficient κ and a nuclear frequency νn (Eq. 1.22).  

Here κ is the probability of movement from the transition state to the product PES 

determined by Hab, and νn is commonly assigned as a relevant solvent rotation or 

intramolecular vibration. Both κ and νn depend on τL. This results in an ET rate constant ket 

which deviates from the purely non-adiabatic rate constant kNA defined in Eq. 1.7 by an 

adiabaticity parameter γ (Eq. 1.23).158–162 



30 
  

𝑘௘௧ ൌ 𝜅𝜈௡ exp ቀି
ሺ௱ீ°ାఒሻమ

ସఒ௞ಳ்
ቁ ൌ ఊ

ଵାఊ
𝜈௡ exp ቀି

ሺ௱ீ°ାఒሻమ

ସఒ௞ಳ்
ቁ ൌ ௞ಿಲ

ଵାఊ
    (1.22) 

𝛾 ൌ  ସగுೌ್
మఛಽ

ℏఒ
           (1.23) 

When γ ≪ 1, Eq. 1.22 simplifies to ket ≈ kNA, and the reaction is in the non-adiabatic limit. 

Adiabatic ET is signified by γ ≫ 1. From Eq. 1.23, it is apparent that an ET reaction will be 

pushed towards adiabaticity not only by large Hab, but also by small λ and slowly relaxing 

solvents (large τL). Adiabaticity manifests experimentally in τL-dependent kinetics, as ket is 

depressed in “slow,” viscous solvents. It also results in ket values independent of ET distance, 

as when γ ≫ 1, Hab
2 factors out of Eq. 1.22. 

In parallel to these expressions which describe adiabatic intra- and inter- molecular 

ET, robust theoretical treatments of adiabatic IET at electrode surfaces have been 

developed.167–174 Within these treatments, adiabaticity can be described by a transmission 

coefficient at each intersection of the reactant and product PESs. The multiple transition 

states allowed by the many PES intersections are offset by small coupling in each individual 

case. The IET adiabaticity parameter γIET then accounts for the continuum of states by 

inclusion of kBTρ, where ρ is the electrode density of states assumed to be energy 

independent (Eq. 1.24).167 

𝛾ூா் ൌ  ସగ௞ಳ்ఘுೌ್
మఛಽ

ℏఒ
          (1.24) 

Here adiabaticity not only predicts τL dependence and distance independence, but also kinetic 

insensitivity to ρ, which factors out of the non-adiabatic kIET in Eq. 1.16 along with Hab when 

γIET ≫ 1. 169,175 This means adiabatic IET kinetics should be insensitive to the composition of 

the electrode. 
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 Each of the experimental indications of adiabaticity described above have been 

observed for IET reactions at metallic electrodes. Electrochemical IET reactions have been 

reported to be solvent viscosity/τL dependent176–178 and electrode independent.175,179 Further, 

researchers have reported electrochemical IET to be distance-independent when anchored 

molecular species are positioned very near a metal electrode to promote Hab. These 

experiments, however, were hindered by instability and poor ordering in self-assembled 

monolayers of short hydrocarbon chains.180,181 Despite this evidence for adiabatic IET at 

metal electrodes, IET reactions involving semiconducting MOx are generally considered to 

be non-adiabatic. At dye-sensitized interfaces, however, surface-anchored molecular species 

are forced into close proximity with the electrode surface, which might be expected to 

promote sensitizer/MOx coupling and thus adiabaticity. The possibility of adiabatic IET in a 

dye-sensitized MOx will be explored in Chapter 7 of this Dissertation. 

 

1.4 Final Remarks 

 The use of solar photons to drive fuel forming chemical reactions in DSPECs would 

provide an avenue to store solar energy in the form of solar fuels. The overall function of a 

DSPEC, however, is chemically complex and requires the optimization of multiple electron 

transfer events and other chemical processes. Of particular importance are interfacial electron 

transfer reactions that either generate or destroy photo-initiated charge separated states. In 

order to enhance productive, and minimize detrimental, processes this Dissertation seeks to 

develop fundamental understanding of IET between metal oxide nanocrystalline thin films 

and anchored molecular species. In Chapter 2, attempts are detailed to improve the chemical 

anchors themselves by covalently binding sensitizers to MOx surfaces via diazonium 
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electrografting. Chapter 3 develops a deep mechanistic understanding of IET in core|shell 

MOx nanostructures with a focus on how these materials can slow unproductive back 

electron transfer and charge recombination. Chapters 4-7 describe a variety of IET reactions 

that involve transparent conducting oxides. It is shown that the electronic structure of TCOs 

allows them to act as both a photoanode and a photocathode (Chapter 4). The TCOs are also 

utilized as tools to experimentally quantify the fundamental Marcus parameters described 

above, most importantly  (Chapters 5-7). Special focus is given in this Dissertation to how 

the distance between the MOx and a molecule influences IET kinetics. 
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CHAPTER 2: SURFACE GRAFTING OF RU(II) DIAZONIUM-BASED 
SENSITIZERS ON METAL OXIDES ENHANCES ALKALINE STABILITY FOR 

SOLAR ENERGY CONVERSION1 
 

2.1 Introduction 

Wide band gap metal oxide (MOx) semiconductor materials have applications in 

batteries, optoelectronics, electrocatalysis, and solar energy conversion.1–5 Of specific 

importance to this Dissertation, mesoporous nanocrystalline MOx thin films serve as 

photoanodes or photocathodes for solar energy conversion in dye-sensitized solar cells 

(DSSC) and dye-sensitized photoelectrosynthesis cells (DSPECs).4,5 In DSPECs, a 

photosensitizer, anchored to the photoanode (often TiO2, SnO2, or a SnO2|TiO2 core|shell 

material) is excited by sunlight, which causes electron injection into the MOx acceptor states. 

The oxidized sensitizer is regenerated by electron transfer from a water oxidation catalyst 

present either in solution or co-adsorbed to the MOx photoanode. This process is repeated 

several times to generate the active catalyst and enable water oxidation to molecular 

dioxygen and protons. The protons then diffuse through an exchange membrane to reach the 

photocathode (usually NiO) where they are converted into molecular dihydrogen.5,6 Water 

oxidation with molecular catalysts is most rapid under alkaline conditions in the presence of 

a buffer base. Unfortunately, these conditions also result in significant sensitizer and catalyst 

desorption with the most common carboxylic acid and phosphonate surface binding 

 
1This chapter previously appeared as an article in the journal American Chemical Society Applied Materials & 
Interfaces. The original citation is: Bangle, R.E.; Sampaio, R.N.; Troian-Gautier, L.; Meyer, G.J. ACS Appl. 
Mater. Interfaces. 2018, 10 (3), 3121-3132. 
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groups.7–11 Thus binding motifs that are stable under alkaline conditions are critically needed 

for practical application of DSPECs and the realization of solar fuels. 

Pioneering work since the 80’s has placed ruthenium chromophores at the forefront of 

MOx sensitizers to visible light. Early reports used mostly ruthenium sensitizers in solution 

or immobilized in membranes, but the anchoring of said sensitizers to the MOx surface 

rapidly developed, leading to greater stability and increased charge injection.12–19 Classical 

anchoring groups were carboxylic acids and cyanoacrylic derivatives.9 Several other 

anchoring groups, including phosphonic acid,7–10 silatrane,7–9 hydroxamate,9,20 acetyl 

acetonate,9,21 boronic acid,9 silane,9,22,23 and pyridine derivatives9,24 have been developed 

since to remediate stability issues or desorption in selected conditions. For instance, 

carboxylic acids, for which a pKa of around 4.7 is usually accepted, are only stable at pH 

values smaller than their pKa.7 This becomes limiting when developing DSPEC devices in 

aqueous solution for water oxidation. Phosphonic acid derivatives were later introduced to 

improve aqueous stability and extend the range of pH in which a DSPEC or DSSC can be 

operated. Indeed, with their higher pKa, sensitizers containing phosphonic acid are more 

stable in neutral water. Nonetheless, the sensitizers containing phosphonic acid are not stable 

at pH greater than 7, a clear mismatch to the alkaline conditions ideal for implementation of 

water oxidation catalysts.7  

In this Chapter, we have examined the grafting of diazonium-based ruthenium 

sensitizers to MOx surfaces (Fig. 2.1) in order to investigate their stability at alkaline pHs. 

Surface functionalization through diazonium grafting is a widely-used technique for covalent 

binding of organic compounds on all forms of carbon, metallic surfaces, and polymers.25–35 A 

few recent studies have also shown diazonium grafting to be possible on MOx nanoparticles, 
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but to our knowledge neither the stability nor the functionality of these surfaces have been 

established.27,36–40 In this Chapter, the electrochemical grafting of a ruthenium terpyridine 

sensitizer was achieved on mesoporous MOxs (TiO2, SnO2, ZrO2, ZnO, indium-doped tin 

oxide (In2O3:Sn)) thin films deposited on fluorine-doped tin oxide (FTO) glass. Structurally 

analogous ruthenium chromophores bearing carboxylic acid or phosphonic acid groups were 

used to assess the comparative stability and surface coverage as well as the excited state 

injection properties. Despite lower injection yields, the diazonium grafted compounds 

displayed photostability under 100 mW/cm-2 illumination in pH 12 aqueous solutions for as 

long as 24 hours, which greatly outperformed the carboxylic and phosphonate analogues. 

Furthermore, the pH 12 stability under ambient light was observed for several months. The 

alkaline stability of diazonium-grafted sensitizers on oxide surfaces presents an opportunity 

to advance DSPEC applications, while the generality of the process described allows for 

potential applications to a wide range of technologies that utilize MOx surfaces with 

molecular components. 

 

Figure 2.1. The general strategy developed for electrografting diazonium-substituted 
sensitizer molecules on metal oxide (MOx) surfaces. The surfaces studied here were 
mesoporous thin films of metal oxide nanocrystals. The reactive diazonium substituent was 
generated in situ from the reaction between the amine precursor and tert-butylnitrite 
(tBuONO). 

MOx MOx 



51 
  

2.2 Experimental 

2.2.1 Materials 

The following reagents and substrates were used as received: acetonitrile (CH3CN, 

Burdick & Jackson, spectrophotometric grade, 99.9%); lithium perchlorate (LiClO4, Aldrich, 

99.99%), sodium perchlorate (NaClO4, Aldrich, ≥98.0%); tetra-n-butylammonium 

perchlorate (TBAClO4, Alfa Aesar, electrochemical grade); titanium(IV) chloride (TiCl4, 

Aldrich, 99.9%) ; sodium acetate (CH3COONa, Aldrich, ≥99%); tert-butyl nitrite 

((CH3)3CNO2, Alfa Aesar, 90%); sodium nitrite (NaNO2, Aldrich, ≥97%); sodium hydroxide 

(NaOH, Fisher, NF/FCC pellets); perchloric acid (HClO4, Alfa Aesar, 70%); hydrochloric 

acid (HCl, Fisher, certified ACS Plus); glacial acetic acid (CH3COOH, Fisher, certified 

ACS); nitric acid (HNO3, Fisher, 70%); poly(ethylene oxide) (Aldrich); poly(ethylene glycol) 

(Aldrich); terpineol (Aldrich); hydroxypropyl cellulose (HPC, Aldrich); polyethylene glycol 

copolymer (carbowax, Aldrich); titanium(IV) isopropoxide (Aldrich, 97%); zirconium(IV) 

isopropoxide (99.9%, Aldrich); zinc oxide nanoparticles (40 wt% in ethanol, <130 nm 

diameter, Aldrich); tin(IV) dioxide nanoparticles (15 wt% in H2O, 15 nm diameter, Alfa 

Aesar); In2O3 :Sn nanoparticles (TC8 DE, 20 wt% in ethanol, Evonik Industries) ; fluorine-

doped tin oxide-coated glass (FTO, Hartford Glass Co., Inc., 2.3 mm thick, 15Ω/□). 

Ruthenium trichloride hydrate (Oakwood Chemicals, 97%) and 4,4’,4’’-tri-tert-butyl-

2,2’:6’,2’’-terpyridine “ttt” (Sigma-Aldrich) were used as received. NMR solvents were 

purchased from Cambridge Isotope Laboratories, Inc. Ruthenium 4,4’,4’’-tri-tert-butyl-

2,2’:6’,2’’-terpyridine trichloride, [Ru(ttt)Cl3], tpy-C6H4-COOH, tpy-C6H4-PO3Et2 and tpy-

C6H4-NH2 were synthesized according to literature procedures.41–44 
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2.2.2 Synthesis of [Ru(ttt)(tpy-C6H4-COOH)]2+.2PF6
- 

[Ru(ttt)Cl3] (52 mg, 0.085 mmol) and tpy-C6H4-COOH (31 mg, 0.088 mmol) were 

place in a microwave tube. Ethanol (10 mL) and N-ethylmorpholine (0.5 mL) were added. 

The microwave tube was then sealed and heated under microwave irradiation at 120°C for 2 

hours. After reaction, 10 mL of water and 2 mL of a saturated NH4PF6 aqueous solution were 

added. The ethanol was removed under reduced pressure and the resulting solid was 

recovered by filtration and washed with water, small amounts of ethanol, and diethylether. 

The product, termed Ru-COOH, was obtained as a red powder (73 mg, 75%). This 

compound has been previously reported using a different procedure.45 

1H NMR (400 MHz, ∂-CD3CN) δ 9.02 (s, 2H), 8.78 (s, 2H), 8.64 (d, J = 8.1 Hz, 2H), 8.51 (d, 

J = 2.1 Hz, 2H), 8.36 (d, J = 8.4 Hz, 2H), 8.30 (d, J = 8.4 Hz, 2H), 8.04 – 7.86 (m, 2H), 7.36 

(d, J = 5.5 Hz, 2H), 7.29 – 7.17 (m, 4H), 7.12 (dd, J = 6.0, 2.1 Hz, 2H), 1.75 (s, 9H), 1.31 (s, 

18H). HRMS (ESI-MS) m/z: [M-(PF6)]+ Calculated for C49H50F6N6O2PRu 1001.2680; Found 

1001.2609. 

2.2.3 Synthesis of [Ru(ttt)(tpy-C6H4-PO3Et2)]2+.2PF6
– 

[Ru(ttt)Cl3] (156 mg, 0.256 mmol) and tpy-C6H4-PO3Et2 (114 mg, 0.256 mmol) were 

place in a microwave tube. Ethanol (18 mL) and N-ethylmorpholine (1.5 mL) were added. 

The microwave tube was then sealed and heated under microwave irradiation at 120°C for 2 

hours. After reaction, 10 mL of water and 2 mL of a saturated NH4PF6 aqueous solution were 

added. The ethanol was removed under reduced pressure and the resulting solid was 

recovered by filtration and washed with water, small amounts of ethanol, and diethylether. 

The product, termed Ru-PO3Et2 was obtained as a red powder (280 mg, 88%).  
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1H NMR (400 MHz, ∂-CD3CN) δ 9.00 (s, 2H), 8.78 (s, 2H), 8.64 (d, J = 8.1 Hz, 2H), 8.51 (d, 

J = 2.0 Hz, 2H), 8.36 – 8.27 (m, 2H), 8.12 (dd, J = 12.8, 8.3 Hz, 2H), 7.95 (td, J = 7.8, 1.5 

Hz, 2H), 7.36 (d, J = 5.0 Hz, 2H), 7.28 – 7.17 (m, 4H), 7.12 (dd, J = 6.0, 2.1 Hz, 2H), 4.19 

(ddd, J = 8.2, 7.1, 2.8 Hz, 4H), 1.75 (s, 9H), 1.38 (d, J = 7.0 Hz, 6H), 1.31 (s, 18H). HRMS 

(ESI-MS) m/z: : [M-PF6]+ Calculated for C52H59F6N6O3P2Ru 1093.3071; Found 1093.3017. 

2.2.4 Synthesis of [Ru(ttt)(tpy-C6H4-PO3H2)]2+.2PF6
- 

Ru-PO3Et2 (330 mg, 0.266 mmol) was dissolved in 25 mL of CH3CN. Trimethylsilyl 

bromide TMSBr (180 µL, 1.34 mmol) was added and the mixture was stirred at 70°C under 

an argon atmosphere for 24 hours. After reaction, the mixture was brought to room 

temperature, and 5 mL of methanol was added. The resulting solution was stirred for 30 

minutes and evaporated to dryness under reduced pressure. The residue was washed with 

small amounts of cold CH3CN and diethylether to obtain the title compound, termed Ru-

PO3H2, as a red powder (297 mg, 94 %).  

1H NMR (400 MHz, ∂-CD3OD) δ 9.31 (s, 2H), 9.08 (s, 2H), 8.90 (d, J = 8.1 Hz, 2H), 8.79 (d, 

J = 2.0 Hz, 2H), 8.42 (dd, J = 8.0, 3.1 Hz, 2H), 8.16 (dd, J = 13.1, 8.0 Hz, 2H), 8.01 (td, J = 

7.9, 1.5 Hz, 2H), 7.50 – 7.42 (m, 2H), 7.37 (d, J = 6.0 Hz, 2H), 7.32 – 7.22 (m, 4H), 1.81 (s, 

9H), 1.35 (s, 18H). HRMS (ESI-MS) m/z: : [M-(PF6)2]2+ Calculated for C48H51N6O3P1Ru 

446.1402; Found 446.1389. 

2.2.5 Synthesis of [Ru(ttt)(tpy-C6H4-NH2)]2+.2PF6
- 

[Ru(ttt)Cl3] (156 mg, 0.256 mmol) and tpy-C6H4-NH2 (87 mg, 0.268 mmol) were 

placed in a microwave tube. Ethanol (18 mL) and N-ethylmorpholine (1.5 mL) were added. 

The microwave tube was then sealed and heated under microwave irradiation at 120°C for 2 

hours. If the chloride salt was desired, the solution was evaporated to dryness and the residue 
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was washed with cold ethanol and diethyl ether. If the PF6
- compound was desired, after 

reaction, 10 mL of water and 2 mL of a saturated NH4PF6 aqueous solution were added. The 

ethanol was removed under reduced pressure and the resulting solid was recovered by 

filtration and washed with water, small amounts of ethanol and diethylether. The product, 

termed Ru-NH2, was obtained as a red powder (225 mg, 78%). This compound has been 

previously reported using a different procedure.46 

1H NMR (400 MHz, ∂-CD3CN) δ 8.89 (s, 2H), 8.77 (s, 2H), 8.60 (d, J = 8.2 Hz, 2H), 8.50 (d, 

J = 2.1 Hz, 2H), 8.00 (d, J = 8.5 Hz, 2H), 7.91 (td, J = 7.9, 1.6 Hz, 2H), 7.31 (d, J = 5.4 Hz, 

2H), 7.27 (d, J = 5.9 Hz, 2H), 7.20 – 7.15 (m, 2H), 7.13 (dt, J = 6.0, 3.3 Hz, 2H), 6.95 (d, J = 

8.5 Hz, 2H), 4.77 (s, 2H), 1.74 (s, 9H), 1.31 (s, 18H). [M-PF6]+ Calculatedd for 

C48H51F6N7PRu 972.2891; Found 972.2800. 

2.2.6 Synthesis of [Ru(ttt)(tpy-C6H4-N2
+)]3+.3PF6

- 

The procedure for synthesis of this compound, termed Ru-N2
+, was inspired by a 

report in literature.47 Ru-NH2 (75 mg, 0.084 mmol) was dissolved in 12 mL of 0.5 M HCl 

and brought to 0°C using an ice bath. NaNO2 (15 mg, 0.217 mmol), dissolved in 1 mL of 0.5 

M HCl was then added in one portion. The mixture was stirred at 0°C for 3 hours. After 

reaction, 2 mL of a saturated KPF6 aqueous solution was added to precipitate the complex. 

The title compound was isolated as a dark-red powder by filtration and was washed with 

water, cold ethanol, and diethylether and used without further purification. IR (neat) νmax 

(cm-1): 3320, 3105, 2960, 2910, 2870, 2266, 1610, 1585, 1475, and 1425.  

2.2.7 Characterization of Synthesized Compounds 

Characteristic nuclear magnetic resonance (NMR) spectra were obtained at room 

temperature on a Bruker Avance III 400 MHz spectrometer. Solvent residual peaks were 
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used as internal standards for 1H (δ =1.95 ppm for CD3CN, 3.31 ppm for CD3OD) and 13C (δ 

= 77.16 ppm for CDCl3, 39.52 ppm for DMSO) chemical shift referencing. NMR spectra 

were processed using MNOVA. 

Samples were further analyzed with a hybrid LTQ FT (ICR 7T) (ThermoFisher, 

Bremen, Germany) mass spectrometer. Samples were introduced via a micro-electrospray 

source at a flow rate of 3 µL/min. Xcalibur (ThermoFisher, Breman, Germany) was used to 

analyze the data. Each mass spectrum was averaged over 200 time domains. Electrospray 

source conditions were set as: spray voltage 4.7 kV, sheath gas (nitrogen) 3 arb, auxiliary gas 

(nitrogen) 0 arb, sweep gas (nitrogen) 0 arb, capillary temperature 275ºC, capillary voltage 

35 V and tube lens voltage 110 V. The mass range was set to 150-2000 m/z. All 

measurements were recorded at a resolution setting of 100,000. Solutions were analyzed at 

0.1 mg/mL or less based on responsiveness to the ESI mechanism. Low-resolution mass 

spectrometry (linear ion trap) provided independent verification of molecular weight 

distributions. 

UV−vis absorption spectra were recorded on a Varian Cary 60 or Cary 50 UV−vis 

spectrophotometer with a resolution of 1 nm. The molar absorption coefficients were 

determined by diluting a stock solution of the desired complex and represent averages of at 

least three independent measurements. 

Square wave and cyclic voltammetry were performed with a BASi Epsilon 

potentiostat in a standard three electrode cell in CH3CN or aqueous electrolytes. The cells 

consisted of a FTO/MOx working electrode and a platinum gauze counter-electrode. A non-

aqueous silver/silver chloride electrode (Pine) was used as a reference electrode that was 

referenced to an internal ferrocene (Fc) standard (630 mV vs. NHE).  
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2.2.8 Synthesis and Sensitization of Metal Oxide Thin Films 

Nanocrystalline anatase TiO2 (~15 nm diameter) and ZrO2 (~10 nm diameter) 

nanoparticles were prepared by acid hydrolysis of Ti(i-OPr)4 or Zr(i-OPr)4 as described 

previously.48 SnO2 (15 nm diameter) and In2O3 :Sn (~15 nm diameter) nanoparticles were 

prepared from colloidal nanoparticle suspensions, as described previously.49,50 ZnO 

nanoparticles (<130 nm diameter) were prepared from a ZnO colloidal suspension by an 

adjusted previously described procedure.51 Briefly, 15 g ZnO nanoparticle suspension was 

stirred and heated to 40˚C while 5% by mass hydroxypropyl cellulose was added. Following 

overnight stirring, 10 wt% terpineol was added followed by 5 min pulsed horn sonication.  

Thin MOx (TiO2, SnO2, ZrO2, ZnO, In2O3:Sn) nanoparticle films of approximately 4 

μm were prepared by doctor blading onto transparent FTO using ~3.5 μm cellophane tape 

(3M) as a spacer, followed by sintering for 30 min at 450˚C under oxygen flow and storage at 

80˚C. Film thickness and area were determined using a profilometer (Bruker DektatXT 

Profilometer). Tunneling Electron Microscopy (TEM) was used to capture images of the 

nanoparticles scraped from the films to measure particle size and gauge film density (See 

Associated Content section, Fig. 2.11). 

MOx films were sensitized with Ru-PO3H2 and Ru-COOH by at least 24 hour 

reaction with a concentrated solution of Ru-PO3H2 and Ru-COOH in CH3CN. Films were 

sensitized with Ru-N2
+ by electrografting with in situ generation of Ru-N2

+ from Ru-

NH2.2PF6
- by reaction with tert-butyl nitrite. To do so, a 2 mM solution of Ru-NH2 in 100 

mM TBAClO4 CH3CN electrolyte in a 3 mL cuvette was cooled to 0°C using an ice bath and 

sparged with argon for 30 min. After this, tert-butyl nitrite (20 µL, 0.15 mmol) was added 

and the mixture was allowed to react for 10 minutes. An immediate color change from red to 
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purple was noticed. After reaction, a standard three electrode electrochemical setup was 

introduced, in which the MOx film served as working electrode and a platinum gauze served 

as counter electrode. Remaining under an argon atmosphere and in an ice bath, TiO2 films 

were held at a potential ranging from +100 mV to -100 mV vs. NHE for 30 min. Other metal 

oxides reached maximal grafting at different applied potentials, as will be addressed in the 

Results and Discussion sections of this Chapter. Sensitized slides were then removed, rinsed 

with CH3CN to wash away unreacted material, and immersed in CH3CN for at least 30 

minutes prior to further use.  

 Alternatively, an aqueous electrografting method was also developed. A similar 

procedure was used using Ru-NH2.2Cl-. The complex was dissolved in 3mL of aqueous 0.5 

M HCl solution kept at 0°C and sparged with argon for 30 minutes before reaction with 

NaNO2 (20 µL of a 1 M NaNO2 solution, 0.02 mmol in total). A ~50 mV vs. NHE potential 

was applied for 30 min. The grafted surface was then washed with water and CH3CN and 

soaked in CH3CN. The aqueous electrografting gave similar absorbance results as the 

CH3CN electrografting. 

2.2.9 Sensitized Thin Film Characterization 

Fourier transform infrared spectroscopy (FTIR) measurements were acquired on both 

powder and thin film samples using a Bruker model Alpha FTIR spectrophotometer equipped 

with an Alpha-P attenuated total reflectance (ATR) attachment. 36 spectra with a 2 cm-1 

resolution were averaged to create the spectra with FTO subtracted as a baseline. X-ray 

photoelectron spectroscopy (XPS) was performed using a Kratos Axis Ultra-DLD 

spectrometer (Kratos Analytical Ltd., Manchester, UK) with a base pressure of 5 x 10-9 Torr 

equipped with a monochromatic Al K alpha source and a charge neutralizer. Survey and 
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high-resolution spectra were taken with pass energies of 80 eV and 20 eV, respectively. 

Binding energies (BE) were found using BE = 284.6 eV for C1s as a reference. 

Sensitized film stability was determined at various pHs in the dark and under 

illumination. Non-illuminated film stability was determined by soaking the sensitized films 

in water adjusted to the desired pH. The films were immersed for a specified amount of time 

and were then rinsed with water adjusted to the same pH prior to UV-vis measurement at the 

MLCT. Fresh soaking solutions were used for each time point at which significant desorption 

occurred. When little desorption occurred, slides were analyzed in a single solution. 

Alternatively, films were placed in water adjusted to the desired pH and constantly 

illuminated with a 455 nm LED (Thor labs, 100 mW cm-2) while periodic UV-vis 

measurements at the MLCT were made to determine photostability. 

Ru(III/II) reduction potentials of the sensitizers were measured on In2O3:Sn thin films 

by spectroelectrochemistry. Spectra were monitored by an Avantes AvaLight DHc light 

source and an Avantes StarLine AvaSpec-2048 UV/visible spectrophotometer, while 

potentials were applied by a Pine Research Instrumentation (PRI) Wavenow potentiostat 

controlled by Aftermath software (PRI). In2O3:Sn on a FTO thin film served as the working 

electrode with a platinum gauze counter electrode, and a Ag/AgCl saturated KCl reference 

electrode was employed. Sensitized thin films were submerged in argon-purged, pH-adjusted 

aqueous solutions. 

Photocurrents over extended time periods were examined with a home-built H cell 

using TiO2 and SnO2 thin films as working electrodes and platinum gauze as counter 

electrode. Electrodes were submerged in a nitrogen-saturated aqueous solution of 0.1 M 

acetate buffer and 0.5 M NaClO4 adjusted to pH 5 or 12. The working and counter electrodes 



59 
  

were separated by a Nafion proton-exchange membrane, with 50 mM sacrificial electron 

donor on the working electrode side (hydroquinone for pH 5 solutions, triethanolamine for 

pH 12 solutions). An overpotential of 400 mV vs NHE was applied, and the cell was 

illuminated at 1 Sun using a Cole-Parmer Illuminator (41720 series) equipped with a 400 nm 

low-pass filter (Thor labs). 

 

2.3 Results 

Three ruthenium sensitizers (Fig. 2.2) were obtained by reaction of the precursor 

ruthenium 4,4’,4’’-tri-tert-butyl-2,2’:6’,2’’-terpyridine trichloride, [Ru(ttt)Cl3] with the 

corresponding terpyridine ligand in ethanol in the presence of N-ethyl-morpholine. With 

regard to Ru-N2
+, it was either isolated by reaction of the parent amino compound (Ru-NH2) 

with NaNO2, or generated in situ with tert-butyl nitrite (tBuONO).  

 

Figure 2.2. Ruthenium sensitizers used in this study that differ only by their anchoring group 
(Ru-COOH, Ru-PO3H2 or Ru-N2

+). In the case of Ru-COOH and Ru-PO3H2, the overall 
charge is 2+ whereas in the case of Ru-N2

+, the overall charge is 3+.  

These ruthenium sensitizers differed only by their anchoring group, i.e. carboxylic 

acid (Ru-COOH), phosphonic acid (Ru-PO3H2), or diazonium (Ru-N2
+). The electron 

donating tri-tert-butyl moieties were introduced to the uppermost terpyridine to increase 

excited state localization on the ligand nearest the surface to favor charge injection. The 

bulkiness of these groups might also prevent polymerization side-reactions that have been 
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previously reported for grafting of diazonium salts.26,28,36Meosporous oxide thin films were 

sensitized with Ru-COOH or Ru-PO3H2 by overnight reactions in concentrated CH3CN 

solutions (dyeing solutions). Functionalization by Ru-N2
+ was achieved by an electrografting 

procedure developed herein and described below.  

2.3.1 Diazonium Electrografting 

The electrografting of Ru-N2
+ was first optimized for TiO2 and was then adjusted for 

SnO2, ZnO, ZrO2, and In2O3:Sn. A 2 mM solution of Ru-NH2 was reacted with an excess of 

tert-butyl-nitrite in 100 mM TBAClO4 CH3CN for 10 minutes at 0°C under argon to yield the 

desired Ru-N2
+. A constant potential ranging from +100 mV to -100 mV vs. NHE was 

applied for 30 min to the mesoporous nanocrystalline (anatase)TiO2 thin film. The same 

procedure achieved grafting on the other MOx slides, but the applied potential that gave the 

highest surface coverage (termed here “optimal potential”) was dependent on the identity of 

the MOx. Optimal potentials are presented over a 200 mV range for each MOx to account for 

small variations observed between samples (Table 2.1). The electrografting was nearly 

insensitive to whether TBAClO4 or LiClO4 electrolyte solutions were used. Both the period 

of time for which that potential was applied (from 5 to 60 minutes) and the sensitizer 

concentration (from 0.5 mM to 4 mM) were found to affect the sensitizer surface coverage, 

but increases in surface coverage were limited beyond the time and sensitizer concentration 

used herein, i.e. 30 minutes and 2 mM.  

The sensitizer surface coverage, Γ, was calculated with Eq. 2.1, where ε is the 

sensitizer extinction coefficient (Associated Content, Fig. 2.12), Amax is the maximum 

absorbance value attained on each MOx thin film, and 1000 is a factor to convert from L to 

cm3.52 
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Γ ൌ ஺೘ೌೣ

ఌ ൈଵ଴଴଴
           (2.1) 

The Ru-N2
+ data corresponds to grafting for 30 min from a 2 mM Ru-N2

+ solution. Surface 

coverage calculations were complicated by the large spectral shift observed between Ru-N2
+ 

in solution and the sensitizers grafted on the surface (Associated Content, Fig. 2.12). This 

means that the extinction coefficient measured for Ru-N2
+ gave no information about the 

surface coverage. To approximate surface coverage in this case, the value 17,000 M-1 cm-1 

was used, assuming Ru-N2
+ on the surface to have a similar extinction coefficient as Ru-

PO3H2 and Ru-COOH, 17500 M-1 cm-1 and 20900 M-1 cm-1 respectively. Functionalization 

with Ru-PO3H2 resulted in surface coverages very similar to those measured for Ru-N2
+ 

grafting, and functionalization with Ru-COOH consistently resulted in lower surface 

coverages.  

Table 2.1. Surface Coverage and Absorption Maxima of the Sensitized MOx Surfaces 

 Ru-N2
+ Ru-PO3H2 Ru-COOH 

 Surface 
Coverage 
(mol cm-2 

x 10-8) 

MLCT 
Absorption 
Max (nm) 

App. 
Potential (V 
vs NHE) 2 

Surface 
Coverage 
(mol cm-2 

x 10-8) 

MLCT 
Absorption 
Max (nm) 

Surface 
Coverage 
(mol cm-2 

x 10-8) 

MLCT 
Absorption 
Max (nm) 

TiO2 8.8 492 0.1 – -0.1 10.5 486 2.9 486 
SnO2 5.3 492 0.225 – 0.025 3.8 486 1.7 488 
ZnO 10.6 491 0.3 – 0.1 3.8 485 2.3 486 
ZrO2 4.7 490 -1.1 – -1.3 4.3 486 2.3 487 

In2O3:Sn 10.0 491 0.1 – -0.1 7.2 485 - 3 - 3 

The amount of grafted sensitizer was found to increase rapidly as more reducing 

potentials were applied (Fig. 2.3). The “turn on” potential for grafting on TiO2, SnO2, and 

ZnO was significantly more positive than the potential at which reduction of the oxide thin 

 
2The range of applied potentials found to induce maximum surface coverage. 
 
3Surface functionalization did not occur to an appreciable degree on In2O3:Sn. 
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films could be spectroscopically or electrochemically detected (Fig. 2.3). This behavior, 

however, differed for ZrO2 and In2O3:Sn, for which the grafting was concurrent with current 

onset. At applied potentials more negative than the “turn on” potential, the surface coverages 

decreased in what is termed a “turn off.” It should be noted that the ZrO2 grafting did not 

occur until a potential more negative than the potential “turn off” for the other MOx. 

Interestingly, no grafting was observed when TiO2 films were first reduced electrochemically 

at -1.0 V (as indicated by color change in the film) and then exposed to Ru-N2
+; the dark 

coloration associated with TiO2 reduction was unchanged with no evidence for sensitization. 

Additionally, when the FTO generally exposed in mesopores was coated and blocked with 

TiCl4 (described previously) prior to doctor-blading TiO2, the TiO2 films grafted Ru-N2
+ in 

the same way as films on untreated FTO.53 Despite these curious phenomena, 

electrochemical grafting was successfully optimized for TiO2, SnO2, ZnO, ZrO2, and 

In2O3:Sn (Table 2.1).  
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Figure 2.3. The left hand side shows the surface coverage (solid) as a function of applied 
potential for TiO2 (black), SnO2 (red), ZnO (blue), ZrO2 (green), and In2O3:Sn (orange). Each 
data point represents a new MOx thin film, and the solid lines are present to guide the eye. 
The surface grafting was performed in 2 mM Ru-N2

+ in 100 mM TBAClO4 CH3CN for 30 
min. The right-hand side shows linear voltammetry data (dashed) for each undyed MOx film. 
The voltammetry experiments were performed on undyed films in 100 mM TBAClO4 
CH3CN. 

Solution studies were performed to gain insight into chemistry in the sensitizer 

solutions that might account for the inability to graft at more negative applied potentials. In a 

typical experiment, TiO2 thin films were submerged in relatively dilute (~0.9 mM) Ar-

purged, 0˚C Ru-N2
+ solutions and held at potentials either more or less reducing than the 

ideal electrografting potential for TiO2 (70 mV and -530 mV vs NHE) for 30 minutes, then 

the electrodes were removed. The UV-vis spectra of the solution before and after potential 

application show a significant change after the more negative potential was applied (Fig. 

2.4). Similar changes occurred, albeit to a much smaller extent, at open circuit or when a less 

negative potential was applied. The spectrum measured after reduction bared a marked 

resemblance to Ru-NH2 or other ruthenium-bisterpyridine sensitizers (Fig. 2.4). 
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Figure 2.4. The visible absorption spectra of Ru-N2
+ sensitizer solutions before (black) and 

after 30 min of standing in solution at 0°C (orange), after applying 70 mV vs NHE (green), 
or after -530 mV vs NHE (red) in comparison to an equal-concentration solution of Ru-NH2 
(blue).  

Figure 2.5 shows the absorbance spectra of the sensitizers in solution and on a 

representative MOx surface (TiO2). The absorption was characteristic of metal-to-ligand 

charge-transfer (MLCT) transitions. The MLCT maximum shifted with the nature of the 

binding group and was independent of MOx surface, as can be seen in Table 2.1 and Fig. 

2.13 in the Associated Content section. As compared to Ru-PO3H2 and Ru-COOH, the Ru-

N2
+ grafted thin films displayed an MLCT absorbance that was broader and slightly red-

shifted (~5 nm). It should be noted that though these absorbance values are normalized, 

maximum attainable surface coverages depended on the nature of the MOx and the binding 

group. Representative spectra illustrating surface coverages of each sensitizer on each surface 

are shown in the Associated Content (Fig. 2.13). 
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Figure 2.5. Normalized UV-vis absorbance spectra of Ru-N2
+ (black), Ru-PO3H2 (red), and 

Ru-COOH (blue) in CH3CN solution (solid) and anchored to TiO2 (dashed).  

2.3.2 Surface Characterization 

The nature of the bonds between Ru-N2
+, Ru-PO3H2, and Ru-COOH and the 

surfaces were analyzed by FTIR spectroscopy as solid samples and on all the MOx except 

In2O3:Sn due to its lack of transmittance between 1500 and 4000 cm-1.54,55 Solid samples of 

the sensitizers exhibited three characteristic peaks between 2850 and 2970 cm-1 

corresponding to stretches of the three sensitizer tert-butyl groups, a C=C stretching peak at 

1610 cm-1, and many shared peaks in the fingerprint region that were independent of the 

binding group, (Fig. 2.6). Several of these peaks were also present on the sensitized MOx 

surfaces, but were not present in spectra of unsensitized MOx films, i.e. vibrations at 2960, 

2910, 2870, 1610, and 1400 cm-1. These peaks were common to all grafted MOx surfaces. 

The majority of the peaks are sharp and clear in the solid ruthenium sensitizers, however, 

they are significantly broadened and decreased in intensity on the MOx surfaces. Individual 

peaks are difficult to assign in the 1750-1500 cm-1 region for the different metal oxides. 

However, the broad and sharp absorbance peaks in this region that are metal oxide 
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independent likely correspond to sensitization. In addition to peaks shared between 

ruthenium sensitizers regardless of binding group, sharp peaks were observed in solid Ru-N2
+ 

at 2266 and 3320 cm-1 that were not present when Ru-N2
+ was grafted to any MOx surface. 

Ru-COOH sensitized MOx films displayed usually sharp C=O stretching peaks at 1730 cm-1, 

but this peak was notably broader on TiO2. Additionally, a peak at 1544 cm-1 was present on 

all MOx surfaces grafted with Ru-N2
+ that did not appear in the solid sample or on surfaces 

functionalized with Ru-PO3H2 or Ru-COOH.  

  

Figure 2.6. FTIR spectra of the ruthenium sensitizers before (top) and after sensitization of a 
metal oxide surface. Unsensitized films (green) are compared to Ru-N2

+ (black), Ru-PO3H2 
(red), and Ru-COOH (blue) on each examined MOx. Common peaks between the surfaces 
are marked by dashed lines (2960, 2910, 2870, 1610, and 1400 cm-1).  
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The XPS spectra of Ru-N2
+ grafted to TiO2 (Fig. 2.7) showed the presence of a peak 

at 285.0 eV that has been attributed to Ru 3d as well as the absence of a diazonium peak at 

403.8 eV.28,56 Titanium peaks in the XPS spectra were standard for TiO2, with no peak 

present that would be indicative of Ti(III) or a Ti-C bond (455 eV).36,56,57 A peak at 531.6 eV 

representing a Ti-O-C bond was present on TiO2 films sensitized with Ru-N2
+ that was 

absent on unsensitized TiO2 films and TiO2 films sensitized with Ru-PO3H2 and Ru-

COOH.58–61 XPS spectra of SnO2, ZnO, and ZrO2 (Associated Content, Fig. 2.14) also show 

no detectable change in oxidation state of the metal in the film, the presence of a Ru 3d peak, 

and the absence of diazonium peak. These features all indicate similar binding on all MOx.62  

 

Figure 2.7. The XPS spectra of Ru-N2
+ sensitized TiO2. a) Spectra from 0 to 1200 eV. b) 

High resolution Ti 2p region with characteristic TiO2 peaks marked in blue and absent Ti-C 
peak marked in green. c) High resolution C 1s region of the spectra with characteristic Ru 3d 
peak marked in red. d) High resolution O 1s region with overlaid spectra (intensity 
normalized) for Ru-N2

+ (black), Ru-PO3H2 (red), Ru-COOH (blue) and blank TiO2 (green) 
with characteristic peak for Ti-O-C marked in black. 



68 
  

The Ru(III/II) reduction potentials of both Ru-PO3H2 and the electrografted Ru-N2
+ 

on MOx surfaces were measured by spectroelectrochemistry on In2O3:Sn at pH 1, 5, and 10 

in aqueous solution and found to be E1/2 = 1.07 ± 0.02 mV vs. NHE. Note that desorption of 

Ru-PO3H2 was observed while performing measurements at alkaline pHs. 

2.3.3 Surface Stability 

Figure 2.8 shows the relative stability of Ru-N2
+ and Ru-PO3H2 grafted on TiO2 in 

aqueous solutions of pH= 7, 10, and 12. Once bound to the surface, the diazonium sensitizers 

were remarkably stable. Even when immersed in saturated NaOH solution for several days, 

no notable desorption of diazonium-grafted sensitizers was observed. In short time scale 

experiments (up to 6 hours) in the dark, Ru-N2
+ stability on TiO2 was monitored up to pH 12. 

Ru-N2
+ remained stable on the surface under all examined conditions, while Ru-PO3H2 at pH 

7 desorbed by more than 50% in less than one minute as measured at the MLCT absorbance 

(Fig. 2.8a). In an analogous fashion, Ru-COOH desorbed immediately at pHs greater than 5 

(not shown). Under constant illumination (455 nm light, 100 mW/cm2) for 24 hours at pH 12, 

Ru-N2
+ maintained >97% surface coverage as measured by the MLCT absorbance and 

displayed no spectral shifts (Fig. 2.8b). Full spectra over 24 hours under illumination are 

shown in Associated Content, Fig. 2.15. 
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Figure 2.8. Surface coverage as monitored at the respective MLCT absorbances versus time 
for a) non-illuminated and b) illuminated sensitized TiO2. In a) Ru-N2

+ (solid) was compared 
to Ru-PO3H2 (dashed) while immersed at pH 7 (black), pH 10 (red), and pH 12 (blue) 
aqueous solutions over 6 hours. In b) Ru-N2

+ was illuminated with 455 nm, 100 mW/cm2 
light over 24 hours while immersed in pH 12 solution. 

2.3.4 Sensitized Thin Film Photocurrents 

Photocurrents produced by the sensitizer MOx were measured under 1 Sun 

illumination with 200 mV applied potential in the presence of 50 mM electron donor 

(hydroquinone at pH 5 and triethanolamine at pH 12). Small photocurrents were measured on 

TiO2 with either Ru-N2
+ or Ru-PO3H2. To enhance the photocurrent amplitude, SnO2, with a 
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conduction band ~500 mV more positive than TiO2, was used. With sensitized SnO2, 

significantly larger photocurrents were attained despite lower surface coverage. The 

sensitized SnO2 photocurrents were thus considered further. Though photocurrents measured 

in alkaline conditions were small, at pH 12 the Ru-N2
+ grafted SnO2 films produced and 

maintained photocurrents for >4 hours with little loss (<25%) (Fig. 2.9). It should be noted 

that in Figure 2.9, the initial peak as the light was turned on was reproducible. It is a 

commonly-seen feature in sensitized interfaces in aqueous solution and has been attributed to 

electrode polarization.63–66 UV-Visible absorption data clearly show that this initial 

photocurrent signature does not result from sensitizer desorption. At pH 5, photocurrents 

were measured for both TiO2 and SnO2. Both Ru-N2
+ and Ru-PO3H2 were stable on the 

surface on the time-scales employed. Photocurrent densities were normalized for the 

sensitizer surface coverages. Surprisingly, Ru-PO3H2 produced 7x the current of Ru-N2
+ on 

SnO2 and almost 30x the current of Ru-N2
+ on TiO2 (Fig. 2.9). This stark binding group-

dependence was replicable across all pH values at which Ru-PO3H2 was reasonably stable on 

the surface on the timescales of the experiments (30 min, up to pH 8). Ru-COOH was not 

included for comparison because significant desorption occurred above pH 5. 
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Figure 2.9. a) Sustained photocurrent density normalized for surface coverage measured at 
pH 12 for SnO2 grafted with Ru-N2

+. b) Photocurrent densities normalized for surface 
coverage on TiO2 with Ru-N2

+ (black), TiO2 with Ru-PO3H2 (red), SnO2 with Ru-N2
+ (blue), 

and SnO2 with Ru-PO3H2 (green) were measured at pH 5. In both cases, photocurrent 
densities were measured under 1 Sun illumination in aqueous 0.1 M acetate buffer, 0.5 M 
NaClO4, 50 mM sacrificial electron donor (hydroquinone at pH 5, triethanolamine at pH 12). 

 

2.4 Discussion 

There are very few fundamental studies that report on the grafting of diazonium-

based compounds to MOx colloids or thin films.27,36–40 For example, viologen phenyl 

diazonium salts have recently been grafted on TiO2 for the development of electrochromic 

materials.40 These studies have shown the grafting process to be possible, but their use in 
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solar devices is limited.36 The functionality and stability of these grafted MOxs has not been, 

to our knowledge, previously examined.27,36–40 Here, the synthesis of three structurally 

related ruthenium sensitizers are reported that differ only by the anchoring group; Ru-N2
+, 

Ru-PO3H2, and Ru-COOH. The electrochemical grafting procedure reported for Ru-N2
+ 

enabled meaningful comparisons of all three sensitizers on mesoporous MOx thin films 

composed of TiO2, SnO2, ZrO2, ZnO, and In2O3:Sn nanoparticles. Most notably, the 

diazonium-grafted MOx films were stable in highly alkaline conditions, including saturated 

NaOH solution. Below we describe a proposed mechanism for the diazonium electrografting 

and the remarkable stability toward surface hydrolysis. 

 Attenuated total reflectance FTIR measurements showed that the sensitized thin films 

that were not highly sensitive to the identity of the MOx or binding group. Some peak shifts 

and differences in intensity and linewidth were observed, but most clear peaks could be 

found in common between all MOx and binding methods. The low intensity bands measured 

on the MOx surface made further assignment ambiguous. Spectra of solid Ru-N2
+ exhibited 

intense peaks at 2266 and 3320 cm-1, regions in which diazonium stretches are known to 

occur.57,67 These peaks were absent when Ru-N2
+ was grafted to a MOx surface, indicating 

that the sensitizer grafted by removal of the -N2
+ group, as seen previously in diazonium 

grafting of organic compounds.26,27,36 The XPS data confirmed that grafting successfully 

occurred through the presence of a Ru 3d peak at 281 eV.56 The Ti 2p peaks were in good 

agreement with literature values for TiO2 (464 eV and 458 eV),56,68 with no evidence of Ti-C 

bond formation that is known to give rise to a peak at 455 eV.36 A significant band ascribed 

to a Ti-O-C bond was observed at 531.6 eV on films grafted with Ru-N2
+ that has been 

previously reported.58,59,61 This band was absent in unsensitized TiO2 thin films or those 
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sensitized with Ru-PO3H2 and Ru-COOH. Taken together, this data indicates that Ru-N2
+ 

formed a M-O-C bond with terminal oxygen in the lattice of TiO2 and other MOx, as has 

been reported previously.36 Importantly, this M-O-C bond is covalent, in contrast to dative 

bonds that are often thought to for between phosphonic or carboxylic acids and MOx 

materials. This is likely responsible for the greater stability of grafted Ru-N2
+. 

In other instances of diazonium electrografting, azo coupling has been reported to 

form of multilayers of the grafted molecular species, but evidence suggests that this did not 

occur here.26,28,36 Most directly, the surface coverage for Ru-N2
+ on electrografted MOx films 

reached a plateau with time with maximum attainable values similar to surface coverages 

measured for Ru-PO3H2 sensitized films. Electrografting for times longer than ~30 min did 

not result in increased sensitizer surface coverage. However, FTIR and XPS evidence was 

inconclusive with regard to the question of azo coupling. The FTIR spectra of all MOx 

surfaces grafted with Ru-N2
+ exhibited a peak at 1544 cm-1 that is in the azo (1490-1550 cm-

1) and C=C stretching regions.69 In the N 1s region of XPS spectra of all Ru-N2
+-grafted 

MOx surfaces, a shoulder was present (~399 eV) that was not present for Ru-PO3H2 

sensitized films. This may correspond to terpyridine ligands that are not complexed to Ru on 

the surface, as previously reported.25,70 Taken together this evidence precludes a definitive 

claim of no azo coupling in Ru-N2
+ grafted sensitizer layers, but the observed maximum 

surface coverage implies that it was either limited or absent. 

Figure 2.10 displays the proposed reaction mechanism between Ru-N2
+ and the MOx 

surface, which is supported by previous work.36 Electrochemical diazonium grafting is 

proposed to occur when the -N2
+ group was removed by one electron reduction (1 in Fig. 

2.10) to generate an aryl radical that subsequently abstracted a hydrogen atom from the MOx 
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surface (2 in Fig. 2.10). The newly formed surface oxygen radical is then proposed to react 

with a second aryl radical in solution to form a MOx-O-aryl-Ru bond (3 in Fig. 2.10). 

Though we propose here that two diazonium sensitizers are involved in this reaction, we 

cannot exclude the possibility that steps 2 and 3 in Fig. 2.10 might occur in a single 

concerted step involving a solvent molecule. 

 

Figure 2.10. Proposed electrografting mechanism for Ru-N2
+ with a FTO-MOx surface. The 

grafting occurs at the FTO (blue arrow) or by electrons in trap states (green arrow). Upon 
reduction of Ru-N2

+ (step 1), N2 gas is released and an aryl radical is formed that abstracts a 
hydrogen atom from a surface hydroxyl group to yield an unreactive ruthenium sensitizer and 
an M-O• radical (step 2). The oxygen radical then reacts with another aryl radical generated 
by surface reduction (step 1) to form the covalent M-O-C(aryl) bond (step 3). The possibility 
that steps 2 and 3 occur in one concerted step cannot be ruled out, nor can the possibility of 
CH3CN as a H atom source.  

The observation of an MOx dependent “optimal potential” range for maximum 

surface coverage provided additional insights into the grafting mechanism. For TiO2, SnO2, 

and ZnO, Ru-N2
+ grafting was initiated at potentials significantly more positive than the 

potential at which reduction of the MOx thin films was observed by electrochemical or 

spectroscopic means. Electrografting was then absent at more negative potentials. To 
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rationalize this “turn on” potential, it is hypothesized that a few electrons in deep trap states 

initiate the grafting reaction chemistry. This is consistent with grafting dependent on the 

MOx identity, as the onset potentials were correlated with the onset of MOx reduction as 

measured by linear voltammetry. Diazonium reduction could occur at the FTO substrate (Fig. 

2.10), but limited numbers of radicals could be produced in this way as the exposed FTO 

surface area is small. It was shown that initiation did not solely occur at the FTO, as FTO 

substrates that had been treated with TiCl4 to block FTO exposure were sensitized through 

Ru-N2
+ electrografting to the same extent as untreated slides. 

To better understand the “turn off” potential, unsensitized TiO2 films were reduced at 

a potential of ~-1 V vs NHE. The black coloration of the films was maintained as the applied 

potential was removed and an argon purged Ru-N2
+ solution was introduced. No evidence for 

sensitization to the surface was observed. This indicates that electrons within the TiO2 films 

were not sufficient to complete the electrografting reaction and may have inhibited the 

productive reactions observed when only a few electrons were present. While speculative, it 

may be that the electrons present in the reduced MOx thin films rapidly react with the surface 

radicals generated in steps 2 and/or 3 in Fig. 2.10, thereby inhibiting formation of the O-C 

bonds. It is also possible that the increased numbers of electrons in the films at more 

reducing potentials increase the Ru-N2
+ degradation reaction rates. This possibility is 

supported by the spectral change in Ru-N2
+ solutions observed upon application of a 

potential more negative than the “turn off” potential. This is also consistent with the “turn 

off” dependence on the MOx identity, especially the much more reducing potential required 

to both “turn on” and “turn off” grafting in the insulating ZrO2. This is consistent with the 
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relative density of states for each material and the necessity of available redox-active states to 

provide electrons for Ru-N2
+ electrografting. 

 The Ru-N2
+ grafted MOx thin films were remarkably stable in alkaline solution, with 

no observed desorption of sensitizers during storage in aqueous pH 12 solution for months. 

Films left for several days in saturated NaOH were still highly colored, yet complete 

desorption of Ru-PO3H2 and Ru-CO2H was apparent. Under 100 mW/cm2 irradiation for 24 

hours at pH 12, >97% of the initial Ru-N2
+ grafted TiO2 surface coverage was maintained. 

Photocurrents also displayed high stability. Sustained photocurrents were measured for Ru-

N2
+ on SnO2 for >4 hours at pH 12. With more acidic conditions, comparative studies with 

Ru-PO3H2 were possible, and the photocurrent were found to be significantly larger for Ru-

PO3H2 than those for Ru-N2
+. This may arise from weaker electronic coupling to the Ti sites 

resulting in fewer injected electrons. It may also result from stronger electronic coupling 

from the covalent bonds resulting in fast back electron transfer and a net decrease in 

photocurrent. If diazonium electrografting and the excellent alkaline stability that it 

instantiates is to be leveraged for DSPEC applications, either photo-initiated injection yields 

on nanosecond time-scales must be understood and optimized. 

 

2.5 Conclusions 

In conclusion, electrografting of a diazonium-substituted sensitizer was successfully 

performed on a range of MOx surfaces (TiO2, SnO2, ZnO, ZrO2, and In2O3:Sn). The 

observed stability in alkaline conditions represents a substantial advance from the state-of-

the-art. Indeed, comparative studies with equivalent sensitizers with -COOH and -PO3H2 

anchoring groups were found to be only stable up to pH 4 and pH 7, respectively. Though 
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recent explorations of hydroxamic acid and silatrane anchoring groups have suggested they 

may be stable in alkaline conditions, they may not be optimal for all DSPEC applications.7 

Films sensitized with Ru-N2
+ studied in this Chapter show remarkable stability at pH 12 and 

beyond. The stability that diazonium-grafted Ru-based sensitizers offer in alkali conditions 

allows for MOx sensitization and anchoring of water oxidation catalysts in conditions at 

which water splitting is most thermodynamically accessible. In addition, the versatility of this 

electrografting technique to many oxide interfaces presents an opportunity for applications 

outside of solar energy conversion. 
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2.7 Associated Content 

 

Figure 2.11. TEM images of MOx nanoparticles scraped from thin films. Types of MOx are 
separated as a) TiO2, b) SnO2, c) ZrO2, d) ZnO, and e) In2O3:Sn. 
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Figure 2.12. Extinction coefficients of Ru-N2
+ (black), Ru-PO3H2 (red), and Ru-COOH 

(blue) dissolved in CH3CN. 
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Figure 2.13. UV-Vis absorbance spectra of sensitized MOx surfaces showing relative 
absorbance intensity. Ru-N2

+ (black), Ru-PO3H2 (red), and Ru-COOH (blue) are shown for 
a) TiO2, b) SnO2, c) ZrO2, d) ZnO, and e) In2O3:Sn. Ru-N2

+ grafted films were made by 
electrografting at held potentials given in Table 2.1 using a 2 mM Ru-N2

+ solution in 100 
mM TBAClO4 CH3CN for 30 min. Ru-PO3H2 and Ru-COOH were adsorbed by soaking 
films in concentrated solutions in CH3CN. 
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Figure 2.14. XPS spectra of a) SnO2, b) ZnO, and c) ZrO2 films sensitized with Ru-N2
+. 

High-definition spectral regions verify the presence of the sensitizer through the presence of 
a Ru 3d peak (C1s) and show no detectable change in oxidation state of the metal. 
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Figure 2.15. UV-visible spectra of Ru-N2
+ sensitized TiO2 in pH 12 aqueous solution as it is 

illuminated with 455 nm, 100 mW cm-2 light over 24 hrs. No spectral shift is observed, and 
little change in absorbance occurs. 
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CHAPTER 3: TUNNELING AND THERMALLY-ACTIVATED ELECTRON 
TRANSFER IN DYE-SENSITIZED SNO2|TIO2 CORE|SHELL NANOSTRUCTURES4 

 

3.1 Introduction 

Metal oxide nanostructures, which are composed of a core of one metal oxide and a 

shell of another, are promising materials for applications in sensitized photoelectrodes,1–3 gas 

sensors,4 batteries,5,6 and perovskite solar cells.7 A particularly promising core|shell material 

for solar energy conversion applications is a SnO2 core with a TiO2 shell generated by atomic 

layer deposition (ALD), abbreviated SnO2|TiO2.8–13 In regenerative dye-sensitized solar cells, 

mesoporous thin films of SnO2|TiO2 have higher efficiencies than do films of SnO2 

alone.8,11,13 For dye-sensitized water oxidation, the SnO2|TiO2 materials are superior to either 

TiO2 or SnO2.9,10 The improved performance is generally attributed to inhibited 

recombination of the injected electrons (MO2(e-)) with the oxidized sensitizer or catalyst 

(S+), Eq. 3.1.  

MO2(e-)|-S+  MO2|-S        (3.1) 

The origins of the slowed charge recombination, however, remain uncertain.1,12,14–17 

Previous researchers have proposed a band edge offset model to rationalize the slow 

interfacial electron transfer (ET) in SnO2|TiO2, referring to the disparate band edge minima 

of the two oxides— the conduction band edge minimum of rutile SnO2 is ~ 0.5 eV more 

 
4This chapter previously appeared as an article in the Journal of Physical Chemistry C. The original citation is: 
Bangle, R.E.; Mortelliti, M.J.; Troian-Gautier, L.; Dempsey, J.L.; Meyer, G.J. J. Phys. Chem. C. 2020, 124 (45), 
25148-25159. 



91 
  

positive than that of rutile TiO2. Hence, in this model, an electron in the SnO2 core must 

move through or over a 0.5 eV barrier to undergo ET to molecular acceptors.15 Because of 

the difficulty of overcoming such a large barrier, ET has been proposed by several 

researchers to occur through tunneling, an assignment generally supported by an exponential 

dependence of the ET rate constant on the shell thicknesses.12,14–17 Importantly, all of these 

studies, and the few which invoke a thermally activated mechanism,12,14,16 were performed at 

a single temperature, so the mechanistic assignments remain speculative. Further, the band 

edge offset model relies on band edge positions of crystalline materials measured in aqueous 

solution and ignores the large spread (~ 1 V) of reported flat band potentials18–20 as well as 

the possibility of a mixed oxide phase at the SnO2|TiO2 interface.21–23  

In this Chapter, we quantify the electron transfer described in Eq. 3.1 over a 70 °C 

temperature range for mesoporous thin films of rutile SnO2, rutile TiO2, anatase TiO2, 

ZrO2|TiO2, and SnO2|TiO2 sensitized to visible light with [Ru(2,2′-bipyridine)2(4,4′-

bis(phosphonic acid)-2,2′-bipyridine)]2+ (RuP) which is thermally competent to drive water 

oxidation. The temperature dependent kinetic studies reported here enable direct assignment 

of the underlying electron transfer mechanism(s) as activated or tunneling. Comparative 

studies with rutile SnO2 and both the anatase and rutile polymorphs of TiO2 show an ~ six-

fold smaller barrier for ET from SnO2, which undoubtedly underlies the reported efficiency 

improvements of TiO2-based dye-sensitized solar cells.24,25 In sensitized SnO2|TiO2, 

Arrhenius and Eyring analysis as a function of shell thickness and post-deposition heat 

treatment provide the detailed mechanistic insights necessary to propose a predictive model 

for interfacial ET. This model is supported by temperature-dependent kinetics observed in 

sensitized ZrO2|TiO2, where the insulator ZrO2 precludes electron transport to the core. 
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3.2 Experimental 

3.2.1 Electrode Materials and Fabrication 

A paste of ~10 nm rutile SnO2 nanocrystals was prepared as described previously.26 

Glacial acetic acid was added dropwise to a SnO2 colloid solution (Alfa Aesar, 15 wt/v%, 

~15 nm diameter). The solution was stirred at room temperature for 36 hours before acid 

digestion at 240 °C for 80 hours. The resulting clumpy solution was sonicated using a 

Branson ultrasonic horn, and hydroxypropylcellulose (Sigma-Aldrich, Mw ~80,000 Da, Mn ~ 

10,000, powder, 20 mesh particle size) was added slowly to 5 wt% while vigorously stirring. 

The resulting paste was stirred at room temperature for 2 weeks prior to use. 

ZrO2 paste was synthesized by modifying a reported procedure.27 17 mL of 70 wt% 

zirconium(IV) propoxide in 1-propanol (Sigma-Aldrich) was added dropwise at 0.5 mL/min 

to a stirring 100 mL aqueous solution of 0.1 M HNO3. The solution of white particulate was 

heated at 100 °C until concentrated to 33 mL (6-8 hours). The resulting solution was 

subjected to acid digestion at 190 °C for 15 hours (45 min ramp-up and 1 hr ramp-down). 

The suspension was sonicated in an ice bath for 20 minutes then vigorously stirred as 9 wt% 

of hydroxypropylcellulose (Sigma- Aldrich, Mw ~80,000 Da, Mn ~ 10,000, powder, 20 mesh 

particle size) was added over the course of an hour. The resulting paste was stirred for 2 days 

prior to use. High-resolution transmission electron microscopy of the paste revealed quasi-

spherical ZrO2 nanocrystals with a diameter of 14.3 ± 6.3 nm averaged over 150 

measurements. 

Sol-gel pastes of anatase TiO2 (a-TiO2) and r-TiO2 were prepared as previously 

described.26–28 For a-TiO2, 15 nm nanocrystals were synthesized by dropwise addition of 10 

mL titanium(IV) isopropoxide (Aldrich, 97%) to a solution of 0.42 mL 70% HNO3 in 60 mL 
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deionized water, which was then concentrated at 95 °C to a total volume of 20 mL and 

subjected to acid digestion for 12 hours at 200 °C. After allowing the paste to cool, 1 g finely 

ground carbowax (polyethyleneglycol Bisphenol A Epichlorohydrin Copolymer 15,000-

20,000 Da; Aldrich) was added. The paste was stirred for 5 days prior to use. For r-TiO2, ~75 

nm nanorods were synthesized by dropwise addition of TiCl4 (Sigma-Aldrich, 99.9%) to 

deionized water to create a 2M solution. The solution was rapidly diluted to 0.5 M TiCl4 and 

stirred for 5 days at room temperature in the dark. The milky white solution was sonicated in 

an ice bath for 50 minutes, and the liquid was decanted from the solid after settling for 3 

hours. The powder was suspended in ethanol and centrifuged (5500 rpm). After supernatant 

removal and resuspension in ethanol, the solution underwent 3 cycles of sonication in an ice 

bath followed by rotary evaporation and resuspension in ethanol. Following the third cycle, 

the solid was suspended in Milli-Q water to create a ~15 wt% r-TiO2 solution. 

Hydroxypropylcellulose was added slowly to 7 wt%, and the paste was stirred for two days 

prior to use. 

Thin films were fabricated by doctor-blading a metal oxide paste onto clean fluorine-

doped tin oxide glass plates (FTO, Hartford Glass, 15 Ω/sq) or glass microscope slides, using 

a layer of Scotch tape as a spacer. After doctor blading the pastes onto FTO-coated glass and 

drying in air 30 min, the films were heat treated. SnO2 films were heated at 450 °C for 1 

hour. To avoid cracking, the ZrO2 films were first heated at 100 °C for 10 minutes, followed 

by heating at 450 °C for 1 hour. The a-TiO2 films were heated at 450 °C for 30 minutes 

under O2 flow. The r-TiO2 films were heated at 100 °C for 10 minutes, and subsequently 

heated at 500 °C for 1 hour. The films then immediately underwent either atomic layer 

deposition or sensitization. Films thicknesses were measured by a Bruker Optics DektakXT 
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stylus profilometer as follows: SnO2 was 4-6 µm, ZrO2 was 5-7 µm, a-TiO2 was 4 µm, and r-

TiO2 was 5-6 µm. 

3.2.2 Atomic Layer Deposition (ALD) of TiO2 Shells 

Atomic layer deposited coatings were fabricated using an Ultratech/Cambridge 

NanoTech Savannah S200 reactor system. Tetrakisdimethylamidotitanium(IV) (TDMA-Ti) 

(Sigma-Aldrich, 99.999%) and ultrapure DI water served as the reactant and co-reactant for 

the deposition of TiO2, each equilibrated at 75 °C for 1 hour prior to deposition. Ultrahigh 

purity N2 (Airgas, 99.999%) served as the carrier gas. The empty ALD chamber was pre-

treated with 50 cycles of TiO2 deposited at 150 °C to ensure a consistent sticking coefficient 

to the reactor walls. Metal oxide films annealed on FTO were aligned parallel to the inlet and 

outlet ports, and the chamber was placed under dynamic vacuum for 10 minutes with a 

carrier gas flow rate of 20 sccm. Prior to precursor exposure, the chamber was isolated from 

dynamic vacuum, which was resumed during the purge steps. One ALD cycle consisted of a 

0.5 sec dose of TDMA-Ti, 20 sec exposure, 30 sec purge, 0.02 sec dose of H2O, 20 sec 

exposure, and 30 sec purge. The flow rate was reduced to 5 sccm prior to precursor doses and 

increased to 400 sccm during purges. The thickness of the shell was controlled by the number 

of applied ALD cycles. After ALD, the core|shell films were immediately heat treated for 30 

min (225 °C/hr ramp-up, 450 °C/hr ramp-down). Core|shell films termed “unannealed” were 

treated at 200 °C, and films termed “annealed” were heated at 450 °C. 

Herein, shell thicknesses are described in terms of the number of ALD cycles of TiO2 

rather than a geometric thickness to avoid mischaracterizing inhomogeneous shells. For the 

sake of comparison, the TiO2 ALD in this study has been estimated from transmission 
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electron microscopy to deposit 0.66 Å per cycle, similar to the per-cycle deposition 

previously measured by ellipsometry on planar silicon wafers.14,21 

3.2.3 Sensitization 

Metal oxide materials were sensitized to the maximum attainable surface coverage by 

reaction with 6 mM [Ru(2,2′-bipyridine)2(4,4′-bis(phosphonic acid)-2,2′-bipyridine)]2+, 

abbreviated RuP, in methanol for 24 hours. The synthesis of RuP has been discussed 

previously.29 

3.2.4 Film Characterization 

Raman spectra were acquired using a Renishaw inVia Raman spectrophotometer 

equipped with a Leica microscope. The 633 nm excitation source was generated by a 

RenishawRL633 HeNe laser. The Raman shift was calibrated to the silicon F1g peak (520.2 ± 

0.2 cm–1). 20 accumulative measurements were performed for each sample in the dark using 

a 1800 I/mm (vis) grating, a CCD camera detector, and a 10 second exposure time. 

High resolution transmission electron microscopy (HRTEM) imaging was performed 

using a FEI Talos F200X transmission electron microscope which applied an accelerating 

voltage of 200 kV. Samples were stripped from glass microscope slides using an electron 

microscopy razor blade, and the powder was sonicated for 20 minutes in ethanol. The 

resulting dispersions were drop-cast onto 400 mesh lacey carbon grids and dried under 

vacuum. All images were analyzed in ImageJ software. Lattice space (d-space) values were 

quantified by averaging at least 10 measurements obtained from the fast-Fourier transform 

(FFT) of a selected area of the image. If necessary, for some samples a circular mask was 

applied to two diffraction points and d-space values were obtained from the inverse FFT.  
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UV–visible absorbance spectra were obtained on an Agilent Cary 60 UV–vis 

spectrophotometer. The films were immersed in N2-sparged 0.1 M HClO4 aqueous solutions 

and held at 45° relative to the incident light.  

3.2.5 Transient Absorption Spectroscopy 

Transient absorption spectroscopy in N2-sparged 0.1 M aqueous HClO4 was 

performed using a previously described apparatus.30 Pulsed light excitation was enacted with 

a Q-switched, pulsed Nd:YAG laser doubled to 532 nm (Quantel, U.S.A., Brilliant B, 5-6 nm 

FWHM). Samples were excited at 1 Hz with laser fluence at the sample of ~ 3 mJ/pulse. 

Absorption changes were probed by a 150 W xenon arc lamp aligned perpendicular to the 

pulse beam. The probe lamp was pulsed to 70 V at 1 Hz for time scales < 100 μs. Light 

detection was accomplished with a SPEX 1702/04 monochromator optically coupled to a 

photomultiplier tube (Hamamatsu R928) connected to a digital oscilloscope (LeCroy 9450, 

Dual 330 MHz). The overall instrument response time was ~ 10 ns. Single wavelength 

kinetics are presented as an average of 90-150 laser pulses. Transient absorption 

spectroscopy was performed as a function of sample temperature, 10 °C to 80 °C, which was 

controlled with a CoolSpek cryostat (Unisoku). 

 

3.3 Results 

3.3.1 Characterization of SnO2|TiO2 Core|Shell Films 

Mesoporous thin films of rutile SnO2 nanocrystals, which are quasi-spherical and ~ 

10 nm in diameter, form mesoporous films that have been characterized previously.26 Atomic 

layer deposition (ALD) of TDMA-Ti onto this SnO2 enabled fabrication of SnO2|XTiO2 

core|shell materials, where X is the number of ALD cycles. After TiO2 deposition, 
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SnO2|XTiO2 materials termed ‘unannealed’ were heated to 200 °C for 30 minutes, while 

SnO2|XTiO2 termed ‘annealed’ were heated to 450 °C. As shown in HRTEM images (Figs. 

3.1 and 3.13-14 in the Associated Content section), deposition of 10 cycles of TiO2 results in 

films nearly indistinguishable from bare SnO2, while deposition of 20, 30, or 50 cycles of 

TiO2 results in smooth shells that progressively thicken with X. As observed previously, 

application of 50 ALD cycles of TiO2 partially fills the mesoporous void spaces in the 

SnO2.14,21,26,31–33 In both annealed and unannealed materials, rutile SnO2 cores are identifiable 

in HRTEM images (Fig 3.1) by lattice fringes with 0.330 nm and 0.260 nm d-space value, 

which are characteristic of the SnO2 (110) and (101) crystalline planes, respectively. 

Unannealed TiO2 shells exhibit no discernable lattice fringes (Fig 3.1a-d), while annealed 

TiO2 shells exhibit lattice fringes with 0.320 nm, 0.250 nm, 0.220 nm, and/or 0.170 nm d-

space values. The TiO2 matrix for SnO2|50TiO2, which partially fills the SnO2 pores, was 

highly polycrystalline, which increased the uncertainty of d-space measurements, with 

standard deviations from ±0.010 nm to ±0.017 nm. Nevertheless, these lattice spacings in the 

annealed materials are characteristic of rutile TiO2 (r-TiO2) (110), (101), (111), and (211) 

crystalline planes, respectively (Fig 3.1e-h). 
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Figure 3.1. HRTEM images of unannealed a) SnO2|10TiO2, b) SnO2|20TiO2, c) 
SnO2|30TiO2, and d) SnO2|50TiO2 and annealed e) SnO2|10TiO2, f) SnO2|20TiO2, g) 
SnO2|30TiO2, and h) SnO2|50TiO2. White bars at the bottom of each image represent a 10 nm 
scale. Annealed materials were treated at 450 °C after ALD, while unannealed materials were 
treated at 200 °C. Each ALD cycle indicated as X in SnO2|XTiO2 is estimated to deposit ~ 
0.66 Å TiO2. White arrows denote the TiO2 shells, red lines represent the lattice fringe 
measurements characteristic of SnO2, and white lines represent the lattice fringe 
measurements characteristic of r-TiO2. These magnified images are portions of Figs. 3.13 
and 3.14 in the Associated Content section. 

Annealed and unannealed SnO2|XTiO2 materials also exhibit distinctive Raman 

spectra (Fig. 3.2). Rutile SnO2 displays prominent Eg and A1g phonon modes at 476 and 633 

cm–1 respectively, a broad band centered at 560 cm–1 (labeled S1) ascribed to a non-

stoichiometric SnOx species, and small features at 245 and 310 cm-1 attributable to infrared-

active phonon modes with Eu symmetry.26,34–40 In unannealed SnO2|XTiO2 materials, 

addition of TiO2 layers progressively depresses the S1 band, enhances the A1g and Eu modes, 

and generally broadens features, but no clear new bands arise. In contrast, addition of 

annealed TiO2 results in progressive growth of a small spectral feature at 245 cm-1 and broad 

peaks centered at 430 and 603 cm-1. These peaks are not visible in SnO2|10TiO2 and are 

unclear in SnO2|20TiO2, but are easily distinguished in annealed SnO2|30TiO2 and 
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SnO2|50TiO2. The peak positions are consistent with the reported Raman spectrum of r-TiO2 

multi-phonon, A1g, and Eg modes, respectively.41,42  

 

Figure 3.2. Raman spectra of unannealed (light) and annealed (dark) SnO2|XTiO2 where X is 
the number of cycles of TiO2 deposited, indicated on the left. Each ALD cycle is estimated to 
deposit ~ 0.66 Å TiO2. 

Previous reports have established that ALD-generated TiO2 coatings are amorphous 

when deposited at temperatures below 150-250° C, while exposure to higher temperatures 

leads to either anatase TiO2 (a-TiO2,150-400 °C) or r-TiO2 (> 300 °C).43–45 Growth of r-TiO2 

has been reported at lower temperatures, however, on SnO2 and other rutile substrates.46,47 

This literature precedence is in line with HRTEM and Raman evidence for r-TiO2 in 

annealed shells, heated to 450 °C, and the lack of evidence for crystalline TiO2 in unannealed 

shells, heated to 200 °C. In total HRTEM images, Raman spectra, and previous literature are 

consistent with the assignment of TiO2 shells in ‘annealed’ SnO2|XTiO2 as rutile and in 

‘unannealed’ SnO2|XTiO2 as amorphous. 
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3.3.2 Characterization of ZrO2|TiO2 Core|Shell Films 

Nanocrystals of ZrO2 form mesoporous films analogous to the SnO2 materials. 

Analysis of this ZrO2 by HRTEM reveals quasi-spherical nanocrystals with an average size 

of 14 ± 6 nm. A small population of larger nanocrystals possess a more rod-like morphology 

(Fig. 3.15 in the Associated Content section). Atomic layer deposition of TiO2 onto ZrO2 

nanocrystalline films results in ZrO2|XTiO2 materials, which are heat treated for 30 minutes 

at either 200 °C (unannealed) or 450 °C (annealed). As for SnO2|10TiO2, HRTEM images of 

unannealed and annealed ZrO2|10TiO2 are nearly indistinguishable from ZrO2 alone (Figs. 

3.16-3.17 in Associated Content). A smooth shell without discernable lattice fringes is 

observed for 20, 30, and 50 unannealed TiO2 cycles (Fig. 3.16). Annealed ZrO2|XTiO2 

samples with at least 20 ALD cycles of TiO2 have visible shells that appear to have 

continuous lattice fringes extending to the edges of the nanocrystals (Fig. 3.17). 

Raman spectra of ZrO2 materials (Fig. 3.18 in Associated Content) display peaks 

indicative of monoclinic and tetragonal ZrO2 phases, assignments supported by the observed 

x-ray diffraction pattern (Fig. 3.19 in Associated Section).48 Deposition of 10 ALD cycles of 

TiO2 results in Raman spectra nearly indistinguishable from that of ZrO2, regardless of post-

deposition heat treatment. Raman spectra of unannealed ZrO2|20TiO2 and ZrO2|30TiO2 

weakly exhibit additional peaks at 150 and 421 cm-1 which become prominent in unannealed 

ZrO2|50TiO2 (Fig. 3.18a). Occurrence of these features is accompanied by a shift of ZrO2 x-

ray diffraction peaks to larger 2θ values (Fig. 3.19). Upon annealing, the Raman peaks at 150 

and 421 cm-1 are enhanced and an additional peak at 531 cm-1 arises for ZrO2|30TiO2 and 

ZrO2|50TiO2 (Fig. 3.18). The sharp peak at 150 cm-1 is consistent with the Eg phonon mode 
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of anatase TiO2 (a-TiO2), while the peaks at 421 cm-1 and 531 cm-1 most closely resemble 

prominent modes of ZrTiO4.42,49–54  

Raman and HRTEM evidence thus suggest that shells in annealed ZrO2|XTiO2 consist 

of a-TiO2 with ZrTiO4 species at the interface. For unannealed ZrO2|XTiO2, despite lack of 

evidence for crystallinity in HRTEM, Raman spectra indicate that some portions of the 

thickest TiO2 shells are anatase. However, interposition of thin ALD layers of amorphous 

Al2O3 between the SnO2 and unannealed TiO2 shells removes the 150 and 421 cm-1 Raman 

peaks, suggesting shells in these materials remain amorphous. Annealing these SnO2|Al-

2O3|TiO2 materials returns the sharp Raman peak indicative of a-TiO2 at 150 cm-1, but no 

features characteristic of ZrTiO4 (Fig. 3.20 in the Associated Content).49–54 

3.3.3 Sensitization with RuP 

Mesoporous, nanocrystalline thin films of SnO2 and ZrO2 are nearly transparent to 

visible light (Fig. 3.3a and Fig. 3.21a in Associated Content). Addition of ALD TiO2 

generates progressively more opaque films that both scatter more light and exhibit lower 

energy fundamental absorbance features, consistent with previous literature.21 Films were 

sensitized to visible light with surface-anchored RuP, as indicated by the characteristic RuP 

metal-to-ligand charge transfer (MLCT) absorption peak (Fig. 3.3b and Fig. 3.21b). Surface 

coverages of RuP, Γ, were calculated from the MLCT absorbance using Eq. 3.2 (Table 3.1), 

where Amax is the maximum MLCT absorption, and εmax is the molar absorption coefficient of 

RuP at the same wavelength (13,300 M–1 cm–1, 460 nm).55 

Γ ൌ ஺೘ೌೣ

ଵ଴଴଴ൈఌ೘ೌೣ
          (3.2) 
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Deposition of TiO2 lowers the attainable Γ as pore filling results in smaller available surface 

areas. Additionally, Γ values are generally larger for unannealed over annealed core|shell 

materials and for ZrO2|TiO2 over SnO2|TiO2. 

 

Figure 3.3. UV-Visible spectra acquired in aqueous 0.1 M HClO4 for a) unsensitized and b) 
RuP-sensitized SnO2|XTiO2 materials, where X is the number of ALD cycles. Each ALD 
cycle is estimated to deposit ~ 0.66 Å TiO2. Solid lines represent unannealed films, while 
dashed lines represent annealed. Spectra in b) were generated by subtraction of the spectra of 
the unsensitized materials from spectra of RuP-sensitized films. 

Table 3.1. RuP Surface Coverage, Γ, in Sensitized Core|Shell Materials 

 
Γ (x 10–8 mol cm–2) 

SnO2|XTiO2 ZrO2|XTiO2 
X Annealed Unannealed Annealed Unannealed 
10 3.7 4.3 4.1 4.5 
20 2.9 3.7 4.2 4.5 
30 3.1 3.5 4.3 5.2 
50 2.2 2.1 2.3 2.4 

 



103 
  

3.3.4 Temperature Dependence of Interfacial Electron Transfer 

Transient absorption spectroscopy in N2-sparged aqueous 0.1 M HClO4 solution was 

employed to quantify interfacial electron transfer (ET) pseudo-rate constants for annealed 

and unannealed SnO2|XTiO2. As shown in Fig. 3.4, pulsed 532 nm light generates a RuP 

excited state which rapidly transfers an electron into poorly-defined acceptor states in the 

core|shell material. Within the 10 ns instrument response time, this forms an oxidized RuP 

molecule—signified by a long-lived decrease in the RuP MLCT absorbance (∆A) spanning ~ 

385–500 nm—and an excess electron in the SnO2|TiO2. The core|shell electron then 

recombines through interfacial ET with the oxidized sensitizer (Eq. 3.1, Fig. 3.4), and the 

RuP transient spectral change returns to the initial absorbance. The ET was monitored at 402 

nm, which is an isosbestic point of the RuP excited state transient absorption spectrum, as a 

function of temperature from 10 to 80 °C for both annealed and unannealed RuP-sensitized 

SnO2|TiO2 materials with shells of variable thicknesses (Fig. 3.5, Figs. 3.22-3.23 in 

Associated Content). In all cases, initial absorption magnitudes are recovered within 5 ms, 

indicating no net photochemistry occurs. Small sample-to-sample adjustments to the laser 

fluence ensured nearly constant initial ∆A.56 For the majority of SnO2|XTiO2 variations, ET 

accelerates at high temperatures, with the exception of unannealed SnO2|50TiO2 for which 

ET kinetics are temperature independent. 
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Figure 3.4. A SnO2 nanoparticle core is coated with a TiO2 shell through ALD. The number 
of applied ALD cycles (X) controls the shell thickness. Materials are sensitized with RuP, 
which is excited with pulsed 532 nm light to initiate electron transfer from the RuP excited 
state into the material. The acceptor states in the core/shell are poorly defined and could exist 
in the core, shell, or interface (gray arrows). Electrons in the material then recombine with 
the photo-oxidized RuP through interfacial ET with rate constant k1/2, as reflected in the 
observed transient spectral changes. 

 

Figure 3.5. Transient absorption changes (∆A) monitored in aqueous 0.1 M HClO4 at 402 
nm over the indicated temperature ranges following pulsed 532 nm light excitation of RuP-
sensitized SnO2|XTiO2 films, where X is the number of ALD TiO2 cycles. Each ALD cycle is 
estimated to deposit ~ 0.66 Å TiO2. Shells were either annealed (heated to 450 °C) or 
unannealed (heated to 200 °C) post deposition as indicated. 

As frequently reported in mesoporous metal oxide materials, interfacial ET kinetics 

were non-exponential.57,58 As such, interfacial ET pseudo-rate constants, k1/2, were 

approximated as the inverse of the time required for ∆A at 20 ns to decay by half. Arrhenius 

plots (Fig. 3.6a) show that core|shell materials annealed at 450 °C post TiO2 deposition 
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manifest exclusively linear temperature dependence of ln(k1/2) values from 10 to 80 °C. In 

contrast, unannealed SnO2|10TiO2, SnO|20TiO2, and SnO2|30TiO2, each heated to 200 °C 

post TiO2 deposition, exhibit non-linear Arrhenius plots (Fig. 3.6b). Values of ln(k1/2) are 

nearly temperature-independent below ~ 40 °C, but increase linearly (and remarkably steeply 

for SnO2|20TiO2 and SnO2|30TiO2) at higher temperatures. Temperature-independent ET is 

observed across the entire probed range for unannealed SnO2|50TiO2. 

 

Figure 3.6. Arrhenius analysis of interfacial electron transfer following 532 nm pulsed light 
excitation in aqueous 0.1 M HClO4 for RuP-sensitized SnO2|XTiO2 films, where X in the 
number of ALD TiO2 cycles. Each ALD cycle is estimated to deposit ~ 0.66 Å TiO2. 
Materials were heated post TiO2 deposition for 30 min to either a) 450 °C (annealed) or b) 
200 °C (unannealed). Dashed lines represent fits of the linear portions of the data to Eq. 3.3. 
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Analogous reference studies were performed for RuP-sensitized rutile SnO2, r-TiO2, 

and a-TiO2 mesoporous thin films. Transient spectral changes for SnO2 and a-TiO2 were 

measured at 402 nm after 532 nm pulsed light excitation as a function of temperature (Fig. 

3.24 in Associated Content). The fundamental absorbance of r-TiO2 prevented spectroscopic 

detection at 402 nm, so spectral changes were instead monitored at 460 nm. Pseudo-rate 

constants of ET for both r-TiO2 and a-TiO2 increase with temperature to a similar degree, 

while for SnO2, ET pseudo-rate constants increase only slightly with temperature (Fig. 3.7).  

 

Figure 3.7. Arrhenius analysis of interfacial electron transfer following 532 nm pulsed light 
excitation in aqueous 0.1 M HClO4 for RuP-sensitized SnO2, rutile TiO2 (r-TiO2), and 
anatase TiO2 (a-TiO2). Dashed lines represent fits to Eq. 3.3. 

 Interfacial ET pseudo rate constants were also quantified as a function of temperature 

from transient spectral changes for RuP-sensitized ZrO2|XTiO2 materials (Figs. 3.25-3.26 in 

Associated Content). Insulating ZrO2 cores possess high-energy acceptor states which are 

thought to be inaccessible to the RuP excited state, forcing injected electrons to reside 

exclusively in the TiO2 shell.14,17 Here, the kinetic response to temperature was insensitive to 

the post-deposition heat treatment (Fig. 3.8). For annealed and unannealed ZrO2|10TiO2, k1/2 
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increases only slightly with temperature. For all other ZrO2|XTiO2 materials, Arrhenius plots 

display similar slopes, greater than that of ZrO2|10TiO2. Kinetics were within error the same 

when a thin layer of amorphous Al2O3 was deposited onto the ZrO2 prior to TiO2 deposition 

to form unannealed ZrO2|Al2O3|50TiO2 (Fig. 3.27 in Associated Content).59 

 

Figure 3.8. Arrhenius plots of interfacial electron transfer following 532 nm pulsed light 
excitation in aqueous 0.1 M HClO4 for RuP-sensitized ZrO2|XTiO2 films, where X in the 
number of ALD TiO2 cycles, that were either annealed (solid circles, dashed lines) or 
unannealed (open circle, dotted lines) post TiO2 deposition. Each ALD cycle is estimated to 
deposit ~ 0.66 Å TiO2. Dashed lines represent fits to Eq. 3.3. 

 

3.3.5 Arrhenius and Eyring Analysis 

The Arrhenius equation states that thermally-activated electron transfer rate constants 

are defined by a pre-exponential frequency factor A, the temperature T, and an activation 

energy Ea (Eq. 3.3). 

ln 𝑘ଵ/ଶ ൌ ቀாೌ
ோ
ቁ ଵ
்
൅ ln𝐴        (3.3) 

Under conditions in which interfacial ET rate constants depend exponentially on temperature, 

Ea vales were quantified from Arrhenius plots (Fig. 3.6-3.8) using Eq. 3 (Table 3.2, Fig. 3.9). 
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For SnO2, Ea is small— ~ 4 kJ mol-1, and a- and r-TiO2 display equal Ea values—24 kJ mol-

1. In annealed SnO2|TiO2 films, Ea is ~ 6 kJ mol–1 for SnO2|10TiO2, but ~ 30 kJ mol–1 for 

materials with thicker shells.60 The same is true for both annealed and unannealed 

ZrO2|XTiO2. In unannealed SnO2|XTiO2, significantly larger Ea values are observed— ~ 25 

kJ mol–1 for SnO2|10TiO2 and ~ 95 kJ mol–1 for SnO2|20TiO2 and SnO2|30TiO2. 

Table 3.2. Activation Energies, Ea, for Interfacial Electron Transfer 

 Ea (kJ mol–1) 
Annealed5 Unannealed6 

SnO2 4 േ 1  
r-TiO2 24 േ 4  
a-TiO2 24 േ 2  

SnO2|10TiO2 6 േ 3 25 േ 3 
SnO2|20TiO2 34 േ 4 96 േ 10 
SnO2|30TiO2 27 േ 3 93 േ 11 
SnO2|50TiO2 27 േ 3 - 
ZrO2|10TiO2 7 േ 2 5 േ 1 
ZrO2|20TiO2 18 േ 1 19 േ 5 
ZrO2|30TiO2 22 േ 3 24 േ 2 
ZrO2|50TiO2 24 േ 1 23 േ 3 

 

 

 
5Heated to 450 °C for 30 min in air after TiO2 deposition. 
 
6Heated to 200 °C for 30 min in air after TiO2 deposition. 
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Figure 3.9. Activation energies, Ea, for temperature-dependent interfacial electron transfer 
on core|shell films in aqueous 0.1 M HClO4 as a function of shell thickness, represented by 
the number of ALD cycles of TiO2. Each ALD cycle is estimated to deposit ~ 0.66 Å TiO2. 
Annealed shells are represented as solid circles, while unannealed shells are represented as 
open circles. SnO2|TiO2 films are shown in red, and ZrO2|TiO2 films are shown in blue. 
Reference Ea values for SnO2 and TiO2 are shown as dashed lines. Equal values of Ea were 
obtained for a-TiO2 and r-TiO2. 

Similarly, the Eyring equation, Eq. 3.4, describes thermally-activated ET rate 

constants in terms of the enthalpy, ∆H‡, and entropy, ∆S‡, of activation, which allow 

calculation of the Gibbs free energy of activation, ∆G‡ (Table 3.3, Fig. 3.28 in Associated 

Content). 

ln ቀ௞
்
ቁ ൌ ି∆ு‡

ோ

ଵ

்
൅ ln ቀ௞್

௛
ቁ ൅ ∆ௌ‡

ோ
       (3.4) 

It should be noted that ∆S‡ and ∆G‡ depend on the absolute values of the ET rate constants, 

while in this study k1/2 pseudo-rate constants serve as proxies. As such, the internal 

comparisons of ∆S‡ and ∆G‡ are more meaningful than absolute values. 
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Table 3.3. Enthalpies, ∆H‡, Entropies, ∆S‡, and Gibbs Free Energies, ∆G‡, of Activation 

 Annealed7 Unannealed8 

∆H‡  
(kJ mol–1) 

∆S‡  
(J mol–1 K–1) 

∆G‡ c 

(kJ mol–1) 
∆H‡  

(kJ mol–1) 
∆S‡  

(J mol–1 K–1) 
∆G‡9 

(kJ mol–1) 
SnO2|10TiO2 3 േ 1 -123 േ 3 44 േ 2 21 േ 2 -74 േ 5 46 േ 3 
SnO2|20TiO2 31 േ 1 -51 േ 2 48 േ 1 93 േ 5 130 േ 15 51 േ 9 
SnO2|30TiO2 24 േ 2 -62 േ 6 45 േ 4 90 േ 6 120 േ 15 51 േ 10 
SnO2|50TiO2 25 േ 1 -59 േ 3 44 േ 2 - - - 
ZrO2|10TiO2 10 േ 1 12 േ 4 6 േ 3 8 േ 1 7 േ 4 5 േ 2 
ZrO2|20TiO2 21 േ 1 35 േ 3 9 േ 2 22 േ 3 44 േ 7 7 േ 5 
ZrO2|30TiO2 24 േ 1 34 േ 3 13 േ 2 26 േ 2 27 േ 7 18 േ 4 
ZrO2|50TiO2 27 േ 1 28 േ 3 18 േ 2 25 േ 1 17 േ 3 20 േ 2 

 

Values of ∆H‡ are analogous to Ea values quantified through Arrhenius analysis, and 

display the same trends with core identity, shell thickness, and post-deposition heat 

treatment. Values of ∆S‡, however, provide new insights (Fig. 3.10).61 For ZrO2|XTiO2, 

values of ∆S‡ are insensitive to post-deposition heat treatment and are near 0 J mol-1 K-1. 

Annealed SnO2|XTiO2 and unannealed SnO2|10TiO2 undergo ET with large negative ∆S‡, 

between –50 and –120 J mol–1 K–1. In stark contrast, unannealed SnO2|20TiO2 and 

SnO2|30TiO2 undergo ET with ∆S‡ ≈ +125 J mol–1 K–1. Values of ∆H‡ and ∆S‡ were used to 

calculate ∆G‡ at 60 °C (Table 3.3), a temperature at which ET is temperature dependent in all 

materials except unannealed SnO2|50TiO2. For ZrO2|XTiO2, ∆G‡ increased linearly with 

shell thickness. Interestingly, however, in SnO2|XTiO2, the interplay of ∆H‡ and ∆S‡ result in 

nearly equal ∆G‡ for all samples, 47 േ 3 kJ mol-1. For both ZrO2|XTiO2 and SnO2|XTiO2, 

∆G‡ values predict the observed k1/2 remarkably well (Fig. 3.11). 

 
7Heated to 450 °C after TiO2 deposition. 
 
8Heated to 200 °C after TiO2 deposition. 
 
9Calculated as ∆G‡ = ∆H‡ – T∆S‡ for 60 °C. 
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Figure 3.10. Values of ∆S‡ for thermally-activated interfacial electron transfer on RuP-
sensitized core|shell films in aqueous 0.1 M HClO4. Each ALD cycle is estimated to deposit 
0.66 Å TiO2. Annealed materials, heated to 450 °C post TiO2 deposition, are shown as solid 
circles, while unannealed materials, heated to only 200 °C, are shown as open circles. 
SnO2|TiO2 films are shown in red, while ZrO2|TiO2 films are shown in blue. 

 

Figure 3.11. Comparative values of ∆G‡ (linear scale, red or blue circles) and k1/2 (log scale, 
black crosses and asterisks) for temperature-dependent interfacial ET in 0.1 M HClO4 for 
RuP-sensitized a) SnO2|XTiO2 and b) ZrO2|XTiO2. Values observed at 60 °C are given, but 
similar agreement holds at all temperatures at which ET is thermally activated. Annealed 
materials are represented by closed circles (∆G‡) and asterisks (k1/2). Unannealed materials 
are represented by open circles (∆G‡) and crosses (k1/2). 
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3.4 Discussion 

Interfacial electron transfer pseudo-rate constants k1/2 were quantified as a function of 

temperature for RuP-sensitized mesoporous thin films of rutile SnO2, anatase TiO2 (a-TiO2), 

rutile TiO2 (r-TiO2), ZrO2|XTiO2, and SnO2|XTiO2 (where X is the number of applied ALD 

cycles). For SnO2|XTiO2, the kinetic response varied dramatically between materials that 

were heated to 200 °C post TiO2 deposition, termed ‘unannealed’, and materials that were 

heated to 450 °C, termed ‘annealed’. While k1/2 for annealed films increased exponentially 

with temperature, unannealed films exhibited k1/2 values that were temperature-independent 

from 10 to 40 °C and increased exponentially at higher temperatures. For the thickest 

unannealed shells, SnO2|50TiO2, k1/2 values were within experimental error equal across the 

entire probed temperature range, 10 to 80 °C. 

Raman and HRTEM analysis indicate that, for SnO2|XTiO2, unannealed TiO2 shells 

are likely amorphous, while annealed shells exhibit lattice fringes and Raman spectra 

consistent with the rutile polymorph, r-TiO2. Because this morphology change appears to be 

associated with stark differences in ET kinetics, these SnO2|XTiO2 materials lend an 

opportunity to develop a structure–function relationship between the crystallinity and the 

mechanism of interfacial electron transfer. 

The temperature dependence of electron transfer kinetics differentiates thermally-

activated and tunneling reactions.62–64 For thermally-activated ET, rate constants are 

predicted to increase exponentially with temperature, as described by Eq. 3.3 and 3.4. 

Conversely, tunneling rate constants are predicted to be temperature independent, as 

described by Eq. 3.5, where k° is the inherent electron transfer rate constant, β is the 

tunneling decay parameter, and D is the ET distance. 
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𝑘 ൌ 𝑘°𝑒ିఉ஽          (3.5) 

As such, an exponential temperature dependence of pseudo rate constants in this study 

indicates thermally-activated interfacial ET, while temperature independence denotes 

tunneling.  

3.4.1 Thin TiO2 Shells 

Annealed and unannealed ZrO2|10TiO2 and SnO2|10TiO2 exhibit behavior distinct 

from materials of the same composition with thicker shells. Because these thin shells are not 

discernable in HRTEM images or Raman spectra, definitive morphology assignment is not 

possible. As such, meaningful structure function relationships cannot be unambiguously 

determined. 

 The kinetic results do reveal, however, that these thin-shell materials undergo faster 

ET than do materials with thicker shells. For annealed SnO2|10TiO2 and both annealed and 

unannealed ZrO2|10TiO2, values of k1/2 increase exponentially with temperature, which 

indicates a thermally-activated ET. Unannealed SnO2|10TiO2, however, undergoes thermally-

activated ET only at temperatures above ~ 40 °C, while at lower temperatures, ET occurs 

through tunneling. The fast ET kinetics in all thin-shell samples are consistent with small ET 

barriers signified by low Ea values. Additionally, they exhibit anomalously low (i.e. more 

negative) values of ∆S‡, indicating transition states more entropically penalized than those in 

thicker shells. Annealed SnO2|10TiO2 exhibits an Ea within experimental error equal to both 

annealed and unannealed ZrO2|10TiO2 and SnO2. This suggests annealed SnO2|10TiO2 may 

have a common ET rate determining step (RDS) with one or more of these materials, but 

evidence is inconclusive. 
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3.4.2 Annealed SnO2|XTiO2 

Raman spectra and HRTEM images of annealed SnO2|XTiO2, where X is 20, 30, and 

50, suggest that the TiO2 shells have a rutile morphology. In these crystalline materials, 

values of k1/2 increase exponentially with temperature from 10 to 80 °C, which shows that the 

RDS is exclusively thermally activated, with an activation energy of 30 േ 3 kJ mol–1 

regardless of shell thickness. Importantly, this activation energy is only slightly larger than 

the Ea quantified for r-TiO2 and annealed ZrO2|XTiO2, Ea ≈ 24 kJ mol-1. In ZrO2|XTiO2, the 

high energy acceptor states of the ZrO2 core are inaccessible to electrons transferred from the 

RuP excited state. As such, annealed ZrO2|XTiO2 serves as a proxy for the behavior of the 

TiO2 shell alone, albeit an imperfect one due to its anatase crystallinity.14 The discrepancy 

should be minimal, however, as equal Ea values were quantified for a- and r-TiO2. The near 

parity of Ea between annealed SnO2|XTiO2, annealed ZrO2|XTiO2, and r-TiO2 suggests a 

shared interfacial ET RDS. 

 The study of interfacial ET in dye-sensitized mesoporous TiO2 materials has a long 

history,65–67 much of which is concerned with determining the RDS and the physical source 

of the non-exponential kinetics.57,68–70 Though far from conclusive,71–73 under many 

experimental conditions, the observed rate constants report on transport of the injected 

electron to the oxidized sensitizer,69,70,74 suggesting interfacial ET in TiO2 to be rate limited 

by small polaron transport between TiIII/IV sites.75 As such, the RDS for interfacial ET in 

annealed SnO2|XTiO2 is herein proposed to be electron TiIII/IV hopping, as shown in Fig. 

3.12. This is consistent with both the nearly equivalent Ea measured for annealed 

SnO2|XTiO2, annealed ZrO2|XTiO2, and r-TiO2 and the lack of shell thickness dependence 

for Ea in annealed SnO2|XTiO2. It also does not preclude the possibility that electrons move 
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between the SnO2 and TiO2 phases, as transport through SnO2 is faster than that through 

TiO2.75 

 

Figure 3.12. Proposed interfacial electron transfer mechanisms in a) annealed and b-c) 
unannealed SnO2|XTiO2 in which X is the number of applied ALD cycles is X. Black arrows 
represent rate determining steps (RDS)—solid arrows are thermally activated and dashed are 
tunneling. Dashed gray arrows represent fast steps after an RDS, and gray dotted arrows 
indicate fast steps that may occur before the RDS. a) In annealed SnO2|XTiO2, HRTEM and 
Raman evidence suggest shells are rutile (r-TiO2). Temperature-dependent kinetics are 
consistent with the RDS being thermally-activated TiIII/IV hopping through the shell. b-c) In 
unannealed SnO2|XTiO2, HRTEM and Raman evidence suggest shells are amorphous. b) 
When X = 20 and 30, temperature-dependent kinetics are consistent with tunneling from the 
core or interface to the RuP at low temperatures and activation into a conduction band-like 
transition state at high temperatures. c) When X = 50, temperature-independent kinetics are 
consistent with tunneling from the interface or core to the RuP. 

Annealed SnO2|XTiO2 materials do, however, exhibit ET Ea values slightly larger 

than ZrO2|XTiO2 and r-TiO2. Additionally, Eyring analysis reveals that ∆S‡ for ET in 

annealed SnO2|XTiO2 is more negative than that of ZrO2|XTiO2, indicating a significant 

entropic penalty upon entering the transition state. Though the physical origin of this 

difference is not well-understood, it may reflect the chemical environment of the donor TiIII 

in the TiIII/IV hop. If the donor TiIII in the RDS is in or near the SnO2/TiO2 interface, lattice 

distortions may lead to a disordered reagent state, and thus the observed entropic cost in the 

transition state. 
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3.4.3 Unannealed SnO2|XTiO2 

Unannealed SnO2|XTiO2 materials exhibit starkly different temperature-dependent 

kinetics than do their annealed counterparts. Raman spectra and HRTEM images of 

unannealed SnO2|XTiO2, where X is 20, 30, and 50, suggest the TiO2 shells to be amorphous. 

For the thickest unannealed shells, SnO2|50TiO2, temperature-independent k1/2 values from 

10 to 80 °C indicate that interfacial ET occurs exclusively through tunneling. Tunneling is 

also indicated in unannealed SnO2|20TiO2 and SnO2|30TiO2 at temperatures below 40 °C. At 

higher temperatures, however, the k1/2 values accelerate rapidly with temperature as a 

thermally-activated ET mechanism with a remarkably large barrier, Ea ≈ 95 kJ mol–1, 

eclipses the tunneling reaction.  

 These data reveal that, for SnO2|XTiO2 materials, the post-deposition heat treatment 

and resulting shell morphology determine the operative interfacial ET mechanism. The 

amorphous TiO2 shell alone, however, is not sufficient to account for the tunneling and large 

ET barriers in unannealed SnO2|XTiO2. Though Raman and HRTEM evidence suggest that 

unannealed ZrO2|20/30TiO2 and ZrO2|Al2O3|50TiO2 have amorphous shells, these materials 

undergo exclusively thermally-activated ET, unlike the SnO2|XTiO2 materials. In fact, for 

ZrO2 with amorphous TiO2 shells, k1/2 and Ea values were within experimental error equal to 

those of annealed ZrO2|XTiO2 with anatase shells, a surprising finding which suggests TiO2 

crystallinity may not significantly impact ET under these conditions. The ZrO2|XTiO2 ET 

barrier Ea ≈ 24 kJ mol–1 is in stark contrast to unannealed SnO2|20/30TiO2, where an 

incredibly large barrier exists that cannot be overcome at low temperatures. As such, the 

RDS for interfacial ET in unannealed SnO2|XTiO2 cannot be TiIII/IV hopping, nor is it easily 



117 
  

rationalized by any mechanism that invokes only the amorphous TiO2 shell. The RDS must 

instead involve either the SnO2 core or the SnO2/TiO2 interface. 

 The RDS of thermally-activated ET in unannealed SnO2|XTiO2 is highly entropically 

favored, with ∆S‡ ≈ 125 J mol–1 K–1. This large positive ∆S‡ value indicates the transition 

state to be significantly more disordered than the reactant state. A highly energetic and highly 

disordered transition state is consistent with activation into or near the delocalized TiO2 

conduction band. It is plausible that this activation results in ET into the amorphous TiO2, 

and the electron then undergoes comparatively fast TiIII/IV hopping to the RuIIIP acceptor. 

This mechanism, however, is inconsistent with the changeover from large-barrier thermally-

activated ET in unannealed SnO2|20/30TiO2 to tunneling at all temperatures in unannealed 

SnO2|50TiO2. Instead, it is proposed that thermally-activated interfacial ET in unannealed 

SnO2|20/30TiO2 occurs in one step—an electron moves directly from the core or interface to 

the RuIIIP through a conduction-band like transition state. 

 In total, this data suggests a physical picture of interfacial ET in unannealed 

SnO2|XTiO2 (Fig. 3.12) in which electron movement from the core or interface into the 

amorphous TiO2 is associated with a prohibitively large energetic barrier. This is consistent 

with recent findings that electron transport in a SnO2|XTiO2-based dye-sensitized solar cell 

occurs through TiO2 when the material is annealed but SnO2 when the material is 

unannealed.21 At low temperatures, electrons in unannealed SnO2|XTiO2 tunnel from either 

the core or core/shell interface to the RuIIIP sensitizer. At higher temperatures, the rate 

constant for thermally-activated ET from the core or interface to the RuIIIP becomes faster 

than the tunneling process and thus predominates. This mechanistic change is able to occur at 

a relatively low temperature, ~ 40 °C, despite a massive activation barrier due to the entropic 
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favorability of a delocalized conduction band-like transition state. In materials with very 

thick amorphous shells (SnO2|50TiO2), however, the distance between the core or interface 

and the RuIIIP is too great to cover in a single activated step, and ET occurs exclusively 

through tunneling. 

3.4.4. Informing a Predictive Model 

Here, the thickness and morphology of the TiO2 shell in a SnO2|TiO2 core|shell 

nanostructure was found to determine the mechanism by which the material underwent 

interfacial electron transfer with a surface-anchored molecule. Control of the shell thickness 

and morphology should thus allow predictable control of the interfacial ET rate constant and 

help realize the specific goal of slowing undesirable charge recombination in core|shell 

nanostructures utilized for solar energy conversion. 

In both annealed and unannealed SnO2|XTiO2, interfacial ET was observed to be 

thermally activated under at least some conditions. Despite that thermally-activated ET in 

annealed and unannealed SnO2|XTiO2 seem to have different RDSs, the reactions occur with 

similar Gibbs activation energies. In unannealed SnO2|XTiO2, the interplay of large enthalpic 

barriers and significant entropic incentives results in ∆G‡ values only slightly larger than 

those of the annealed SnO2|XTiO2. This similarity in ∆G‡ results in unannealed 

SnO2|20/30TiO2 manifesting interfacial ET k1/2 values less than an order of magnitude 

smaller than those of the annealed materials (Fig. 3.11).  

The smallest attainable k1/2 values are instead achieved by promoting a tunneling 

mechanism, especially at the elevated temperatures at which terrestrial solar energy 

conversion devices operate. The structure/function relationship between the shell 

morphology and the ET mechanism thus becomes instructive. To create a system in which 
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electrons will reliably tunnel, shells must be amorphous and sufficiently thick to disallow a 

thermally-activated direct electron transfer from the core or interface to the molecular 

acceptor.  

 The kinetic data in this study suggest that electron transfer between a crystalline core 

or the nearby core|shell interface and an amorphous shell may be prohibitively difficult. The 

physical reason, however is not readily apparent from these results. Electron transfer between 

rutile SnO2 and amorphous TiO2 could be constrained by the difficulty of increasing the 

effective mass of the electron, of a large polaron becoming a small polaron, or of moving 

from an s to a d orbital between which coupling is poor. Currently, however, the acceptor 

states of SnO2|XTiO2 materials are not well characterized. A better understanding of the 

electron dynamics within SnO2|TiO2 and other core|shell nanostructures is necessary to 

clarify the details of their interfacial electron transfer mechanisms. 

 

3.5 Conclusions 

 This Chapter represents a significant step forward in elucidating detailed mechanistic 

information on interfacial electron transfer in SnO2|TiO2 core|shell nanostructures to 

molecular acceptors at the TiO2 shell surface. Temperature dependent kinetic studies have 

definitively shown that both tunneling and thermally-activated electron transfer are operative 

in sensitized SnO2|TiO2 materials. Most notably, the mechanism of interfacial electron 

transfer depends critically on the temperature to which the SnO2|TiO2 is heated after TiO2 

deposition. High annealing temperatures result in rutile TiO2 shells and thermally-activated 

electron transfer proposed herein to be rate limited by TiIII/IV hopping in the shell. Low 

annealing temperatures result in amorphous TiO2 shells and a kinetic competition between 
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tunneling and thermally-activated interfacial electron transfer. Here, remarkably large 

activation energies are offset by entropically favorable transition states. Ultimately, the 

interplay of entropic and enthalpic barriers reliably predicts the interfacial electron transfer 

pseudo-rate constants of each sensitized material. The slowest interfacial electron transfer is 

achieved in thick amorphous shells and occurs by a tunneling mechanism. 
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3.7 Associated Content 

 

 

Figure 3.13. HRTEM images of unannealed a) SnO2|10TiO2, b) SnO2|20TiO2, c) 
SnO2|30TiO2, and d) SnO2|50TiO2. After ALD, materials were heated to 200 °C for 30 min 
in air. Each ALD cycle is estimated to deposit ~ 0.66 Å TiO2. 
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Figure 3.14. HRTEM images of annealed a) SnO2|10TiO2, b) SnO2|20TiO2, c) SnO2|30TiO2, 
and d) SnO2|50TiO2. Annealing was performed by heating at 450 °C for 30 min in air. Each 
ALD cycle is estimated to deposit ~ 0.66 Å TiO2. 
 
 
 
 
 

a) b) 

c) d) 
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Figure 3.15. HRTEM images of a-c) ZrO2 nanocrystals and d) their size distribution (14 ± 6 
nm). Lattice fringes are visible when images are magnified.  
 

a) b) 

c) d) 
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Figure 3.16. HRTEM images of unannealed a) ZrO2|10TiO2, b) ZrO2|20TiO2, c) 
ZrO2|30TiO2, and d) ZrO2|50TiO2. Materials were heat treated for 30 minutes at 200 °C post 
TiO2 deposition. Each ALD cycle is estimated to deposit ~ 0.66 Å TiO2. 
 

a) b) 

c) d) 
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Figure 3.17. HRTEM images of annealed a) ZrO2|10TiO2, b) ZrO2|20TiO2, c) ZrO2|30TiO2, 
and d) ZrO2|50TiO2. Annealing was performed at 450 °C for 30 min in air. Each ALD cycle 
is estimated to deposit ~ 0.66 Å TiO2. 
 

 

Figure 3.18. Raman spectra for a) unannealed and b) annealed ZrO2|XTiO2 where X is the 
number of cycles of TiO2 deposited. The labels “m” and “t” represent the monoclinic and 
tetragonal phonon modes, respectively, for ZrO2. Each ALD cycle is estimated to deposit 
0.66 Å TiO2. 

a) b) 

c) d) 
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Figure 3.19. Grazing incidence angle XRD of ZrO2 (red) and annealed ZrO2|50TiO2 (blue). 
Grazing incidence angle X-ray diffraction was performed using a Rigaku SmartLab 
diffractometer with a 3 kW Cu tube Kα X-ray source (λ = 1.5406 Å) and a HyPix-3000 high-
energy-resolution multi-dimensional detector operated in 0D mode. Measurements were 
performed at a fixed incidence angle of 1.000 degree with a step of 0.020 degrees at a speed 
of 1.000 degree per minute. Diffraction patterns were analyzed and assigned in Rigaku’s 
PDXL2 software. Here, films were doctor-bladed onto microscope slides to avoid FTO 
diffraction. ICSD data for monoclinic ZrO2 (m-ZrO2, pink, PDF card No. 01-086-1450), 
tetragonal ZrO2 (t-ZrO2, black, PDF card No. 01-075-9645), and tetragonal anatase TiO2 (a-
TiO2, green, PDF card No. 01-084-1285) are presented as vertical lines at the bottom of the 
graph. After annealing ZrO2|50TiO2, the m-ZrO2 (011) at 24.05 deg, (110) at 24.45 deg, and 
(-111) at 28.18 dg, and the t-ZrO2 (101) at 30.21 all shift toward higher 2θ values. Annealing 
was performed at 450 °C for 30 min in air. Each ALD cycle is estimated to deposit 0.66 Å 
TiO2. 
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Figure 3.20. a) Raman spectra of ZrO2 (bottom, black), ZrO2|15Al2O3 (middle, blue) and, 
ZrO2|15Al2O3|50TiO2 (top, red). Minimal changes are observed among the samples, 
demonstrating that the insulating amorphous alumina inner layer prevented crystallization of 
the TiO2 shell. To create the alumina inner layer, 50 ALD cycles of alumina was first 
deposited at 130 °C to pre-treat the empty reactor chamber using Trimethylaluminum (TMA, 
Sigma-Aldrich, 97%) and ultrapure DI water at 130 °C. Both water and TMA precursor 
reservoirs were held at room temperature. 15 cycles of Al2O3 was subsequently deposited on 
six freshly prepared ZrO2 slides at 130 °C using a 0.02 sec pulse of TMA, 20 sec exposure, 
30 sec purge, 0.02 sec pulse of H2O, 20 sec exposure, 30 sec purge. The nitrogen flow rate 
during exposures was 5 sccm, and the flow rate for the purges was 20 sccm. After 15 cycles 
of Al2O3 was deposited on ZrO2, the films were heated in air at 200 °C for 30 min to remove 
adventitious carbon. The 50 cycles of TiO2 was deposited using the recipe detailed in the 
experimental section. b) Raman spectra comparing ZrO2 with annealed ZrO2|50TiO2 and 
ZrO2|15Al2O3|50TiO2. Characteristic anatase Eg(1), B1g(1), B1g(2), and Eg(2) phonon modes are 
observed at 146, 402, 519, and 639 cm–1 for annealed ZrO2|15Al2O3|50TiO2. c) 
Magnification on the lower wavenumber region displaying a 4 cm–1 red-shift in peak maxima 
from annealed ZrO2|50TiO2 to ZrO2|15Al2O3|50TiO2.  
 

a) b) 

c) 
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Figure 3.21. UV-vis spectra of a) bare ZrO2|XTiO2 (reported as %transmittance) and b) RuP-
sensitized ZrO2|XTiO2 in N2-sparged pH 1 HClO4, where X is the number of ALD cycles of 
TiO2. Each ALD cycle is estimated to deposit 0.66 Å TiO2. The high degree of scatter by the 
films obscures the true fundamental absorption onset of the metal oxide material. To account 
for increasing scatter with increasing TiO2 shell thickness, the spectra of the bare films were 
subtracted from the spectra of the dye-sensitized films to generate spectra in (b). The wavy 
patterns at higher wavelengths in the spectra are due to thin film interference.  
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Figure 3.22. Absorption changes measured at 402 nm after pulsed 532 nm light excitation in 
aqueous 0.1 M HClO4 over the indicated temperature range for RuP-sensitized annealed 
SnO2|XTiO2 films where X is the number of ALD cycles of TiO2. Each ALD cycle is 
estimated to deposit 0.66 Å TiO2. 
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Figure 3.23. Absorption changes measured at 402 nm after pulsed 532 nm light excitation in 
aqueous 0.1 M HClO4 over the indicated temperature range for RuP-sensitized unannealed 
SnO2|XTiO2 materials where X is the number of ALD cycles of TiO2. Each ALD cycle is 
estimated to deposit 0.66 Å TiO2. 
 
 

 

Figure 3.24. Absorption changes measured at 402 nm (a and c) or 460 nm (b) after pulsed 
532 nm light excitation in aqueous 0.1 M HClO4 over the indicated temperature range for 
RuP-sensitized mesoporous nanocrystalline thin films a) rutile SnO2, b) rutile TiO2, and c) 
anatase TiO2. 



131 
  

 

 

Figure 3.25. Absorption changes measured at 402 nm after pulsed 532 nm light excitation in 
aqueous 0.1 M HClO4 over the indicated temperature range for RuP-sensitized annealed 
ZrO2|XTiO2 films where X is the number of ALD cycles of TiO2. Each ALD cycle is 
estimated to deposit 0.66 Å TiO2. 
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Figure 3.26. Absorption changes measured at 402 nm after pulsed 532 nm light excitation in 
aqueous 0.1 M HClO4 over the indicated temperature range for RuP-sensitized unannealed 
ZrO2|XTiO2 films where X is the number of ALD cycles of TiO2. Each ALD cycle is 
estimated to deposit 0.66 Å TiO2. 
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Figure 3.27. Arrhenius plots of interfacial electron transfer following 532 nm pulsed light 
excitation in aqueous 0.1 M HClO4 for RuP-sensitized unannealed ZrO2|50TiO2 (black) and 
ZrO2|Al2O3|50TiO2 (red) films, both treated at 200 °C after TiO2 deposition. Each ALD cycle 
is estimated to deposit ~ 0.66 Å TiO2.  
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Figure 3.28. Eyring analysis of interfacial electron transfer following 532 nm pulsed light 
excitation in aqueous 0.1 M HClO4 for RuP-sensitized core|XTiO2 materials, where X in the 
number of ALD TiO2 cycles. Films were a) annealed SnO2|TiO2, b) unannealed SnO2|TiO2, 
c) annealed ZrO2|TiO2, and d) unannealed ZrO2|TiO2. Dashed lines represent fits of the linear 
portions of the data to the Eyring equation, Eq. 3.4. 
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CHAPTER 4: FACTORS THAT CONTROL THE DIRECTION OF EXCITED 
STATE ELECTRON TRANSFER AT DYE-SENSITIZED OXIDE INTERFACES10 

 

4.1 Introduction 

Mesoporous thin films of nanocrystalline TiO2 sensitized to visible light with 

molecular sensitizers, such as Ru-polypyridyl complexes, porphyrins, or donor-π-acceptor 

organic dyes, have been widely utilized for solar energy conversion.1–4 Absorption of a 

photon by the sensitizer results in electron transfer from the excited state to the TiO2 acceptor 

states in a process often called electron injection5–9 that drives electrical power generation in 

dye-sensitized solar cells. Thus, efficient injection is vital to high-performance dye-sensitized 

solar cells. Although less well optimized, the use of p-type metal oxides allows for electron 

transfer in the opposite direction: electron transfer from the metal oxide to the sensitizer 

excited state, a process that is often termed hole transfer.10,11 This Chapter reports the use of 

dye-sensitized conductive oxide materials where the direction of electron transfer can be 

controlled through external potential application and through the oxide-sensitizer electronic 

coupling. 

 The efficiency of these interfacial electron transfer reactions is predicted to depend on 

the energetic overlap and electronic coupling between the excited state sensitizer and the 

redox active states within the metal oxide.8,12–17 Substantial literature precedent exists for  

tuning the excited state injection yield through molecular-level modification of the

 
10This chapter previously appeared as an article in the Journal of Physical Chemistry C. The original citation is: 
Bangle, R.E.; Meyer, G.J. J. Phys. Chem. C. 2019, 123 (42), 25967-25976. 
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sensitizers, the electrolyte composition, or surface functionalization of the oxide.5,12,25,26,17–24 

Of particular note to this Chapter, injection into both TiO2 and SnO2 has been reported to 

decrease under negative applied potentials.5,12,17,19,21,27,28 Studies comparing injection into 

metal oxide nanocrystallites, however, have to date only systematically examined 

semiconducting metal oxides16,25,29 and have not considered transparent conducting oxides 

(TCOs), which have vastly different electronic structures and behaviors. 

 In contrast to conventional semiconducting oxides, TCOs have high electrical 

conductivity that results from the high doping levels.30–32 This high conductivity paired with 

optical transparency in the visible region make TCOs a promising candidate for new classes 

of photoelectrodes and a tool for the elucidation of fundamental charge transfer reactions. 

Such high doping precludes the generation of a large open circuit photovoltage through dye-

sensitization, yet are potentially useful for applications in solar fuel production under short 

circuit conditions.33–38 Tin-doped indium oxide (ITO) is a prominent TCO where Sn doping  

raises the Fermi level to within the conduction band to generate free carriers. This leads to 

ITO having metallic properties such as high conductivity and plasmon absorption features, 

while still being transparent in the visible region.30–32,39–42 This is in contrast to TiO2 and 

SnO2 where the Fermi level is within the forbidden bandgap and free carriers are absent. 

The use of ITO as a photoelectrode has historically had limited success.36,43 Injection 

from sensitizer excited states has been observed,34,39,42,44 but is followed by rapid detrimental 

recombination of the injected electron with the oxidized sensitizer. Recent studies have, 

however, successfully slowed recombination through control of the sensitizer surface 

orientation.35–38,43 Furthermore, the high conductivity has enabled direct measure of the 

reorganization energy for interfacial electron and proton-coupled electron transfer 
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reactions.39,42,45 These examples encourage the continued and increased use of ITO as a 

photoelectrode and prompt studies into the fundamental reactivity of dye-sensitized ITO 

interfaces. 

In this Chapter, excited state electron transfer with ITO, TiO2, and SnO2 metal oxides 

sensitized to visible light with [Ru(2,2ʹ-bipyridine)2(4,4ʹ-(PO3H2)2-2,2ʹ-bipyridine)]Br2 (RuP) 

and [Ru(2,2ʹ-bipyrazine)2(4,4ʹ-(PO3H2)2-2,2ʹ-bipyridine)]Br2 (Ru(bpz)) (Fig. 4.1), were 

examined in a conventional three electrode photoelectrochemical cell. The direction of 

excited state electron transfer was found to be dependent on the electronic structure of the 

metal oxide, the applied potential, and the sensitizer-oxide electronic coupling. In particular, 

ITO was shown to both accept and donate electrons to molecular excited states, and the 

efficiency of each reaction was determined by the energetic position of the Fermi level and 

the electronic coupling between the oxide and the redox active Ru metal center and diimine 

ligands. These factors represent important consideration for applications of TCOs in solar 

energy conversion. 

 

Figure 4.1. Structure of sensitizers employed in this study, abbreviated RuP (X = C) and 
Ru(bpz) (X = N). 
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4.2 Experimental 

4.2.1 Materials 

The following materials were purchased from the indicated supplier and used without 

further purification: acetonitrile (CH3CN, Brudick and Jackson, Spectrochemical grade), 

lithium perchlorate (LiClO4, Aldrich, 99.99%), argon (Airgas, 99.999%), titanium(IV) 

isopropoxide (Aldrich, 97%), zirconium(IV) isopropoxide (Aldrich, 99.9%), tin(IV) dioxide 

nanoparticles (15 wt% in H2O, 15 nm diameter, Alfa Aesar); In2O3:Sn (ITO) nanoparticles 

(TC8 DE, 20 wt% in ethanol, Evonik Industries); fluorine-doped tin(IV) oxide-coated glass 

(FTO, Hartford Glass Co., Inc., 2.3 mm thick, 15Ω/sq). The following compounds were 

synthesized as previously described: [Ru(2,2ʹ-bpy)2(4,4ʹ-(PO3H2)2-2,2ʹ-bpy)]Br2 (RuP)46 and 

[Ru(2,2ʹ-bpz)2(4,4ʹ-(PO3H2)2-2,2ʹ-bpy)]Br2 (Ru(bpz))47 where bpy is 2,2’-bipyridine, and bpz 

is 2,2’-bipyrazine (Fig. 4.1). 

4.2.2 Thin Film Preparation 

Nanocrystalline (~15nm diameter) suspensions of TiO2 and ZrO2 were prepared using 

a previously described sol-gel method48 by acid hydrolysis of titanium(IV) isopropoxide and 

zirconium(IV) isopropoxide. Sol-gel pastes of SnO2 and ITO were prepared from colloidal 

nanoparticle suspensions by addition of polymeric porosity developers (poly(ethylene oxide) 

and poly(ethylene glycol) or hydroxypropyl cellulose, respectively) as described 

previously.39,49 Nanoparticle pastes were doctor-bladed onto conductive FTO-coated glass, 

dried in air for ~30 minutes, and sintered for 30 minutes at 450 ˚C under O2. The resulting 

mesoporous nanocrystalline thin films were 3-4 μm thick as measured by a Bruker DektatXT 

profilometer. Films were stored at 80 ˚C until used further. Sensitizers were adsorbed to 
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saturation surface coverage to the mesoporous films by ~24 hour soaking in aqueous pH 1 

HClO4 solutions of the sensitizer. 

4.2.3. Electrochemistry and Spectro-electrochemistry 

 For all experiments in which a potential was applied, a standard three electrode cell 

was employed. The working electrode was the metal oxide film on conductive FTO-coated 

glass; the counter electrode was Pt mesh; and the reference electrode was a silver wire in 100 

mM LiClO4 CH3CN. Reference electrodes were calibrated by measurement of the ferrocene 

reduction potential (Fc+/0 E1/2) in 100 mM tert-butyl ammonium perchlorate CH3CN, and all 

values were reported as values versus the normal hydrogen electrode (NHE) after conversion 

using Fc+/0 E1/2 = +630 mV vs NHE. Solutions were sparged with argon for at least 20 

minutes prior to electrochemical experiments. Transient absorption spectroscopy and steady-

state and time-resolved photoluminescence experiments with an applied potential were 

performed using a BASi Epsilon potentiostat to hold an applied potential for the duration of 

the experiment.  

Double potential step chronoamperometry (DPSCA) and steady state 

spectroelectrochemistry experiments were performed with potentials applied by a Pine 

Research Instrumentation Wavenow potentiostat controlled by Aftermath software (PRI). 

DPSCA experiments were performed by stepping between subsequent positive (+0.9 V vs 

NHE, 10 seconds), negative (varied, 30-45 seconds), then positive (+0.9 V, 30-45 seconds) 

potentials while measuring the resulting current. The negative potential charged the films, 

and the resulting charge was extracted upon switching to the positive potential. The measured 

current of the charge extraction was integrated to find the charge in a film at a given applied 

potential, which was then converted to number of electrons per cm3.  
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Spectro-electrochemistry experiments were performed by measuring the UV-visible 

spectrum of a film using an Avantes AvaLight DHc light source and an Avantes StarLine 

AvaSpec-2048 UV/visible spectrophotometer with varied applied potentials. A modified 

Nernst equation was used to model the mole fraction of Ru(bpz)2+, Ru(bpz)+, or Ru(bpz)3+ at 

each applied potential, Eq. 4.1 where χ is the mole fraction of the complex, Eapp is the applied 

potential, Eoʹ is the formal reduction potential, and α is a non-ideality factor. 

𝜒 ൌ ଵ

ଵାଵ଴ሺಶೌ೛೛షಶ°ᇲሻ/ሺఱవ.మഀሻ        (4.1) 

The potential at which the mole fractions of Ru(bpz)+ and Ru(bpz)2+ were equal was taken to 

be the formal reduction potential, Eºʹ 2+/+ = -0.52 V vs NHE. Similarly, the potential at which 

the mole fractions of Ru(bpz)3+ and Ru(bpz)2+ were equal was Eºʹ 3+/2+ = +2.05 V vs NHE.  

 

4.2.4. Photoluminescence and Transient Absorption Spectroscopy 

Steady-state photoluminescence (PL) spectra were obtained using a Horiba Fluorolog 

3 spectrofluorometer with a 450 W Xe arc lamp as the excitation source. Samples were 

excited at 460 nm, near the MLCT peak for RuP. PL spectra were detected from a front 

facing orientation to limit the effects of scatter from the metal oxide nanocrystallites and 

FTO substrates.  

 Time-resolved PL experiments were performed with a nitrogen dye laser. A PTI GL-

3300 nitrogen laser pumped a Photon Technology International GL-301 dye laser pulsed 

centered at 445 nm performed excitation. Signal was detected by a Hamamatsu R928 PMT 

optically coupled to a ScienceTech model 9010 monochromator and a LeCroy Waverunner 

LT322 oscilloscope. Measurements were averaged over 180 laser pulses. 
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Transient absorption spectroscopy with nanosecond time resolution was performed 

using an apparatus described previously.50 Pulsed excitation was accomplished using a Q-

switched, pulsed Nd:YAG laser (Quantel U.S.A.(Big Sky) Brilliant B, 5-6 ns FWHM) 

doubled to 532 nm. The laser fluence at the samples was 1-3 mJ/pulse at 1 Hz unless 

otherwise noted. A 150 W xenon arc lamp aligned perpendicular to the laser served as the 

probe beam. For measurements of time < 100 μs, the probe lamp was pulsed with 70 V at 1 

Hz. Signal was detected with a monochromator (SPEX 1702/04) optically coupled to a 

Hamamatsu R928 PMT connected to a computer-interfaced digital oscilloscope (LeCroy 

9450, Dual 330 MHz). Overall instrument response time was ~10 ns. Single wavelength 

kinetic experiments were averages of 90-150 laser pulses. Transient spectra were generated 

by averaging 30 laser pulses at each wavelength (10 nm steps) over a range of 370-800 nm. 

Transient spectra were modelled using Mathematica 11 (Wolfram) by a sum of the 

independently measured delta spectra between the species present before and after the laser 

pulse (S*, S+, and S-) optimized by linear least squares regression. 

 

4.3 Results 

In this study, light-initiated interfacial electron transfer between Ru-polypyridyl 

sensitizers and metal oxide nanocrystalline films were characterized in a three electrode 

photoelectrochemical cell in 0.1 M LiClO4 CH3CN at open circuit and with an applied 

potential (Eapp). The visible absorption spectra of the sensitizers anchored to each metal oxide 

and the unsensitized metal oxides are shown in Fig. 4.2. The ground state Ru3+/2+ and Ru2+/+ 

reduction potentials (E°ʹ) were determined by spectro-electrochemistry for the sensitizers 

anchored to ITO. The absorption spectra of the 1-electron oxidized and reduced sensitizers 
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are given in Fig. 4.10 in the Associated Content section. The 1-electron reduced sensitizers 

absorbed light centered at ~510 nm, and the 1-electron oxidized sensitizers displayed bleach 

from 380-550 nm. The equilibrium potential where the two redox states were in equal 

concentration was taken as the formal reduction potential (Fig. 4.11 in Associated Content 

and Table 4.1).20,39 The excited state reduction potentials (E°ʹ Ru3+/2+* and E°ʹ Ru2+*/+) were 

determined through thermodynamic cycles with the ground state potentials, and the free 

energy stored in the excited state as has been previously described.22 From this data it is clear 

that RuP is a potent photoreductant while Ru(bpz) is a strong photooxidant. 

 

Figure 4.2. The visible absorbance spectra for the sensitizers a) RuP and b) Ru(bpz) 
anchored at saturation surface coverage to TiO2 (black), SnO2 (red), and ITO (blue) in 0.1 M 
LiClO4 CH3CN. The dashed spectra of represent unsensitized metal oxide films. 

Table 4.1: Reduction potentials of the sensitizers anchored to ITO 

 
Eºʹ Ru3+/2+ 
(V vs NHE) 

Eºʹ Ru3+/2+* 

(V vs NHE) 
Eºʹ Ru2+/+ 
(V vs NHE) 

Eºʹ Ru2+*/+ 
(V vs NHE) 

ITO|RuP +1.54 11 -0.62 11 -1.26 11 +0.88 11 
ITO|Ru(bpz) +2.05  -0.05  -0.52  +1.58  

 
The sensitized metal oxide thin films were characterized by double potential step 

chronoamperometry (DPSCA). In these experiments, the potential was held at a sufficiently 

 
11Taken from Ref. 39. 
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negative potential to partially reduce the oxide. The potential was then rapidly switched to a 

more positive value and integration of the current provided the charge within the film that 

was then divided by the film volume to provide the electron density. This procedure was 

repeated at a series of reducing potentials which allowed the density of states as a function of 

potential to be determined. The densities of states acquired in this way were insensitive to 

whether RuP or Ru(bpz) were employed. The densities of states were found to be dependent 

on the nature of the oxide material (Fig. 4.3) and were well modelled by an exponential 

function for TiO2 and ITO and a sigmoidal function for SnO2. The largest electron density 

change was observed for ITO. TiO2 had a greater electron density than SnO2 at Eapp < -0.5 V, 

but this was reversed at Eapp > -0.5 V. For TiO2 and SnO2, this represents an absolute 

electron density, as essentially all of the charge was removed at the positive potential. For 

ITO, however, significant electron density was present at the positive potential and the data 

should be viewed as a change in electron density.  

 

Figure 4.3. Charge extraction quantified by double potential step chronoamperometry for the 
indicated dye-sensitized metal oxide in a 0.1 M LiClO4 CH3CN electrolyte. Overlaid as solid 
lines are fits to an exponential function for TiO2 and ITO and a sigmoidal function for SnO2. 
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4.3.1. Photoluminescence 

Photoluminescence (PL) was observed from RuP and Ru(bpz) and the PL spectra 

were measured as a function of Eapp (Fig. 4.4 inset). For TiO2|RuP and SnO2|RuP, the PL 

spectra displayed a maximum at 16,000 cm-1 that was insensitive to the applied potential. The 

PL maximum measured for ITO|RuP red shifted by ~1000 cm-1 with application of positive 

potentials. The PL spectra of Ru(bpz) displayed a maximum at 15,500 cm-1 that was 

insensitive to the applied potential when anchored to TiO2, SnO2, or ITO. 

The PL intensity was dependent on the applied potential, the sensitizer, and the metal 

oxide. For TiO2|RuP and SnO2|RuP, the PL intensity was very small at open circuit (not 

shown) and at positive applied potentials, but increased with more negative applied potentials 

(Fig. 4.4a,b). The opposite behavior was observed for ITO|RuP (Fig. 4.4c) and ITO|Ru(bpz) 

(Fig. 4.4f), for which the PL intensity was large at positive potentials and decreased at 

negative potentials. The PL spectra of TiO2|Ru(bpz) and SnO2|Ru(bpz) showed little or no 

dependence on Eapp with positive applied potentials, +1.4 V ≥ Eapp ≥ +0.2 V, but the PL 

intensity decreased with Eapp ≤ 0 V (Fig. 4.4d,e). 
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Figure 4.4. Time resolved PL decays measured at 650 nm after pulsed 445 nm excitation of 
the indicated dye-sensitized metal oxide in 0.1 M LiClO4 CH3CN over the applied potential 
ranges given. Insets provide the PL spectra under the same conditions. Average rate 
constants extracted from this data are given as kpl in Table 4.2. Overlaid for ITO|S are fits to 
Eq. 4.5. 

Pulsed light excitation of the sensitized oxide materials provided PL decays that were 

non-exponential under all conditions investigated.6,8 Average rate constants, kpl, were 

extracted by taking the inverse of the time required for the PL to decay to 1/e of the initial 

value and are compiled in Table 4.2. At applied potentials where the PL intensity was a 

maximum, so too was the average excited state lifetime. Negative applied potentials resulted 

in longer lived excited states for TiO2|RuP* and SnO2|RuP* and shorter for ITO|RuP*. More 

rapid excited state decay was observed at negative applied potentials for ITO|Ru(bpz)*. 

Excited state relaxation for TiO2|Ru(bpz)* and SnO2|Ru(bpz)* were insensitive to the applied 

potential over the range +1.4 V ≥ Eapp ≥ 0 V and decreased when Eapp was less than 0 V. 

Overlaid fits for ITO|S* to Eq. 4.5 (discussed below, Fig. 4.12 in the Associated Content 

section) are provided in Fig. 4.4. 
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4.3.2 Transient Absorption Spectroscopy 

Interfacial electron transfer was directly quantified by nanosecond transient 

absorption spectroscopy. Visible light excitation of either sensitizer resulted in the 

characteristic absorption features of a metal-to-ligand charge transfer (MLCT) excited state: 

an absorption band with a maximum in the ultraviolet region and a bleach centered at ~460 

nm (Fig. 4.10 in Associated Content). A ground/excited state isosbestic point was identified 

at 402 nm. 

Regardless of the underlying metal oxide, pulsed light excitation of RuP yielded a 

long-lived bleach across the visible region consistent with formation of the oxidized 

sensitizer (Fig. 4.10). This feature was most pronounced with positive applied potentials 

while at negative potentials the spectra was predominated by the RuP* spectrum (Fig. 4.13 in 

Associated Content). The transient absorbance spectra present upon pulsed light excitation of 

Ru(bpz) anchored to the metal oxides held at a given applied potential are shown in Fig. 4.5. 

The transient absorption data at observation times < 0.5 μs was predominately due to the 

MLCT excited state (Fig. 4.10). For TiO2|Ru(bpz) regardless of Eapp, the excited state was 

observed exclusively (Fig. 4.5a). The spectra were well-modelled by the spectrum of 

Ru(bpz)* anchored to the insulator ZrO2 with no evidence of interfacial electron transfer.  

In contrast, transient absorption spectra of SnO2|Ru(bpz) and ITO|Ru(bpz) with negative Eapp 

displayed a growth in absorption centered at 510 nm at observation times > 0.5 μs (Fig. 

4.5b,c). The transient absorbance spectra at all observation times were well-modelled by a 

sum of the spectral changes associated with the MLCT excited state and the reduced Ru(bpz) 

complex. Though the positive absorption growth of SnO2|RuP was small, there was a 



154 
  

systematic difference from the excited state spectrum in the 470 – 530 nm region where 

reduced Ru(bpz) has a characteristic absorption (Fig. 4.5b, inset).  

 

Figure 4.5. Transient absorption spectra of Ru(bpz) anchored to (a) TiO2, (b) SnO2, and (c) 
ITO in 0.1 M LiClO4 CH3CN recorded 0.02 μs (black) and 1 μs (red) after pulsed 532 nm 
laser excitation. Overlaid are simulations generated by linear least squares regression with 
the Ru(bpz)* spectrum (a) or a sum of the Ru(bpz)* and reduced Ru(bpz) spectra (b and c). 
In b) the excited state difference spectrum of ZrO2|Ru(bpz)* (blue) is included. The inset is a 
view of the spectra that emphasizes the systematic difference between the spectra measured 
for SnO2|Ru(bpz) and ZrO2|Ru(bpz)*. 

The transient absorbance change monitored at 500 nm upon pulsed light excitation for 

Ru(bpz) anchored to the metal oxides as a function of the applied potential is given in Fig. 

4.6. For TiO2|Ru(bpz), an absorbance bleach was observed that returned to the ground state 

absorbance with kinetics that were independent of applied potential when +1.4 V ≥ Eapp ≥ 0 

V (Fig. 4.6a). When Eapp < 0 V, the bleach amplitude was smaller and relaxation to the 

ground state was enhanced. A similar bleach was observed for SnO2|Ru(bpz) when +1.4 V ≥ 

Eapp ≥ +0.6 V with kinetics that were independent of the applied potential (Fig. 4.6b). 

Application of a more negative potential, +0.4 V ≥ Eapp ≥ +0.2 V, resulted in a diminished 

bleach that relaxed more quickly to the ground state. With Eapp ≤ 0 V, a positive transient 

absorbance signal was observed. Pulsed excitation of ITO|Ru(bpz) yielded a short-lived 

bleach followed by a long-lived positive absorbance. The amplitude of the bleach decreased 
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with negative applied potentials, while the amplitude of the positive feature increased, (Fig. 

4.6c). 

 

Figure 4.6. Absorbance change monitored at 500 nm with the indicated applied potentials vs 
NHE after pulsed 532 nm light excitation of Ru(bpz) anchored to a) TiO2, b) SnO2, or c) 
ITO. Overlaid in c) are fits to Eq. 4.4, and the rate constants extracted are given in Table 4.2. 

The transient absorption and photoluminescence kinetic data were used to determine 

the rate constants for excited state relaxation, injection, and hole transfer that are summarized 

in Table 4.2. The average rate constants for excited state relaxation in the absence of 

interfacial electron transfer processes were measured with the sensitizers anchored to ZrO2. 

The excited state relaxation was non-exponential, but was well described by the Kohlrausch-

Williams Watts (KWW) function from which an average rate constant, kes, was extracted, Eq. 

4.2 and 4.3. Here β is inversely related to a Levy distribution of rate constants with 0 < β < 

1.51 

Aሺ𝑡ሻ ൌ A଴eିሺ௞௧ሻ
ഁ

         (4.2) 

𝑘௘௦ ൌ  ௞ఉ

୻ቀభ
ഁ
ቁ
          (4.3) 

Excited state relaxation rate constants were found to be 2.5 x 106 and 14 x 106 s-1 for RuP* 

and Ru(bpz)*, respectively. The average rate constants for PL decay of the sensitizers 

anchored to the other oxides, kpl, were larger when interfacial electron transfer occurred 
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(Table 4.2). Excited state injection for RuP* could not be time-resolved, consistent with kinj > 

108 s-1. There was no evidence for excited state injection by Ru(bpz)*.  

Table 4.2. Average Rate Constants for Excited State Decay, Injection, and Hole Transfer 

 
Eapp 
(V vs NHE) 

 kpl 

(x 107 s-1)12 
kinj  
(x 107 s-1)13 

kht  
(x 107 s-1)14 

TiO2|RuP 
+1 V 1.3 > 10 - 
0 V 1.1 > 10 - 

SnO2|RuP 
+1 V 0.7 > 10 - 
0 V 0.6 > 10 - 

ITO|RuP 
+1 V 1.0 > 10 1.5 
0 V 2.2 > 10 3.3 

TiO2|Ru(bpz) 
+1 V 0.9 - - 
0 V 1.0 - - 

SnO2|Ru(bpz) 
+1 V 1.7 - - 
0 V 3.1 - > 10 

ITO|Ru(bpz) 
+1 V 3.4 - 6.5 
0 V 4.7 - 8.9 

 
Transient absorption kinetics shown in Fig. 4.6c were non-exponential and consisted 

of contributions from both Ru(bpz)* decay and formation of the reduced sensitizer by 

interfacial hole transfer. The hole transfer rate constants, kht, were obtained with Eq. 4.4.  

𝐴ሺ𝑡ሻ ൌ  𝐴ଵ𝑒ିሺ௞೐ೞ௧ሻ
ഁ
൅ 𝐴ଶ𝑒ି௞೓೟௧ ൅ 𝐴ଷ𝑒ିሺ௞ೝ೐೎௧ሻ

ഁᇲ
     (4.4) 

Here the first term corresponded to excited state decay, the second to hole transfer and the 

third for recombination of the reduced sensitizer with a hole in the oxide. The first term was 

fixed to values measured by transient absorbance on ZrO2. While the second two terms in Eq. 

4.4 represent a five-parameter fit, hole transfer produced a long-lived interfacial charge 

separated state that was kinetically well separated in time. This allowed for discrete 

 
12Average excited state decay rates quantified by time-resolved photoluminescence. 
 
13Excited state injection could not be time-resolved with the apparatus utilized. 
 
14Average excited state hole transfer rate constants measured directly by transient absorption for ITO|(Ru(bpz)) 
and inferred from potential dependent photoluminescence decays for ITO|RuP. 
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quantification. The hole transfer rate constants increased with negative applied potentials 

(Table 4.2 and Fig. 4.12 in Associated Content). 

 The time resolved photoluminescence decays for ITO|Ru(bpz)* in Fig. 4.4f were 

modelled by Eq. 4.5, where the values of kes, kht, and β were determined from transient 

absorbance data.  

𝑃𝐿𝐼ሺ𝑡ሻ ൌ  𝑃𝐿𝐼ଵ𝑒ିሺ௞೐ೞ௧ሻ
ഁ
൅ 𝑃𝐿𝐼ଶ𝑒ି௞೓೟௧      (4.5) 

Hole transfer products were not directly observed for ITO|RuP and were instead inferred 

from the potential dependent PL decays in Fig. 4.4c that were modelled with Eq. 4.5 to 

estimate kht values. 

The transient concentrations of oxidized RuP were quantified at the ground-excited 

state isosbestic point (402 nm) as the applied potential was tuned (Fig. 4.14 in Associated 

Content). The signal amplitude at 20 ns (A0) divided by the amplitude at the most positive 

applied potential for each metal oxide (A0,max), A0/A0,max, provided information on the 

injection yield as a function of Eapp (Fig. 4.7). For TiO2|RuP, the injection yield was the same 

for Eapp ≥ 0 V, but injection yields decreased sharply at more negative applied potentials. A 

similar trend was observed for SnO2|RuP with little change in injection when Eapp ≥ 0.4 V 

and decreased injection yields when Eapp < 0.4 V. For ITO|RuP, a decrease in the injection 

yield occurred even at the most positive applied potentials. Regardless of metal oxide, 

injection became undetectably small as the applied potential approached the excited-state 

reduction potential of RuP (Eº 3+/2+* = -0.62 V).39 
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Figure 4.7. The amplitude of the absorption change measured 20 ns (A0) after pulsed 532 nm 
excitation divided by the largest amplitude measured at positive applied potential (A0,max) as 
a function of the applied potential for the indicated RuP sensitized oxide in 0.1 M LiClO4 
CH3CN.  

 

4.4 Discussion 

Excited state interfacial electron transfer was quantified with three nanocrystalline 

metal oxides, the conducting ITO and the semiconducting TiO2 and SnO2. Electron transfer 

from the excited state sensitizer to the metal oxide, injection, and electron transfer from the 

metal oxide to the excited state, hole transfer, were quantified. In agreement with Marcus-

Gerischer electron transfer theory, the key factors that determined the direction of light-

driven electron flow were determined to be the oxide electronic structure and the electronic 

coupling between the sensitizer and the oxide surface.39,52–56 These two factors are discussed 

below with the context for the relevant literature and applications in solar energy conversion. 
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4.4.1 Oxide Electronic Structure 

A key difference between the semiconducting and conducting oxides was the electron 

density at positive applied potentials. For the semiconducting TiO2 and SnO2 there was no 

evidence for excess electrons consistent with the presence of the forbidden band gap.1–3,57 For 

the conductive oxide ITO, electrons were present at all the potentials studied, behavior 

expected for the metal-like nature of this oxide.31,58 The electron density magnitude was 

quantified in the dark by a double potential step, charge extraction technique. The best fits of 

the charge extraction data are replotted in Fig. 4.8 where ρ(E) represents the oxide density of 

states. Note that the onset potential for SnO2 was more positive than that of TiO2, indicative 

of a more positive flat band potential. As previously reported, the TiO2 density of states was 

much larger at more negative potentials, behavior consistent with the lower dielectric 

constant of SnO2.49 The density of states of the ITO were largest at all applied potentials and 

increased exponentially as the Fermi level was raised toward the vacuum level. It is 

important to note that a significant electron density existed at the positive potential used to 

extract the charge, so the ρ(E) for ITO is best thought of a difference in density of states and 

not an absolute value as was the case for TiO2 and SnO2. 
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Figure 4.8. The density of states, ρ(E), of the metal oxides with the free energy distributions, 
W(E), for the indicated redox states of RuP (black) and Ru(bpz) (red). Dashed lines are 
extrapolations of these fits beyond the experimental range. Gaussian distributions for the 
sensitizers are shown for hole transfer (unshaded) and injection (shaded).  

Also indicated in Fig. 4.8 are Gaussian distributions W(E) of the sensitizer electronic 

states calculated by Eq. 4.6. The width of the Gaussian distribution is defined as 2λ, where λ 

is the total reorganization energy for electron transfer.12,39,52 A value of λ = 0.6 eV was 

utilized here based on the reported value for ITO|RuP3+/2+.39 It was tacitly assumed that the 

reorganization energy for the two sensitizers was the same and independent of which states 

participated in the redox chemistry. These distributions and the oxide density of states 

provide a means to predict the electron transfer kinetics in the framework of Marcus-

Gerischer electron transfer theory.6,39,62,52–56,59–61 

𝑊ሺ𝐸ሻ ൌ  ଵ

ඥସగఒ௞ಳ்
exp ቀି

ሺ௱ீ೚ሺாሻାఒሻమ

ସఒ௞ಳ்
ቁ       (4.6) 
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In Marcus-Gerischer theory, interfacial electron transfer occurs with a distribution of 

activation energies (W(E)) between discrete isoenergetic states of the sensitizer and the oxide 

(ρ(E)).12,39,52 The rate constant for interfacial electron transfer, kIET, is determined by the 

electrode/molecule coupling matrix (Hab) and the degree of energetic overlap between ρ(E) 

and W(E), Eq. 4.7.  

𝑘ூா் ൌ  ଶగ
ℏ
׬ 𝜌ሺ𝐸ሻ𝑓ሺ𝐸,𝐸ிሻ|𝐻௔௕ሺ𝐸ሻ|ଶ𝑊ሺ𝐸ሻ 𝑑𝐸
ஶ
ିஶ      (4.7) 

For injection, the shaded excited state donor distribution of RuP3+/2+* have good overlap with 

the unfilled states of all the oxides, consistent with the rapid injection measured here, kinj > 

108 s-1.12,39,63 As the applied potential, Eapp, was raised, the injection yields decreased. For 

TiO2|RuP and SnO2|RuP, the applied potential where injection began to measurably decrease 

aligned well with potentials at which occupation of the metal oxide acceptor states resulted in 

a smaller overlap with the excited state sensitizer.   

For ITO|RuP, the injection yields as a function of the applied potential could not be 

explained by overlap of the excited state donor with the oxide acceptor states. With the 

reasonable assumption that the applied potential defines the ITO Fermi level, eEapp ≈ EF, the 

injection yields decreased when EF was several hundred millivolts more positive on an 

electrochemical scale than E°ʹ RuP3+/2+* and the related Gaussian distribution W(E). This 

behavior was attributed to competitive hole transfer. The donor states in the ITO have 

significant overlap with the excited state acceptor distribution, W(E) RuP2+*/+. While the PL 

intensity supported this explanation, the RuP+ product of hole transfer was not observed 

spectroscopically. Since the reduced sensitizer is a very potent reductant, Eoʹ RuP2+/+ = -1.26 

V, it has quantitative overlap with the ITO acceptor states. It is expected to rapidly transfer 

an electron to the ITO thermally, thereby precluding its detection. 
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The unshaded Gaussian distributions W(E) in Fig. 4.8 represent the energetic range 

over which the sensitizer excited states can be reduced, relevant to hole transfer. Due to its 

conductive character, ITO has a significant density of redox active states that overlap fully 

with the empty states of Ru(bpz)2+*/+ and RuP2+*/+. This allows hole transfer within the 

Marcus-Gerischer framework. For ITO|Ru(bpz), hole transfer was directly observed 

spectroscopically. Furthermore, the rate constant for hole transfer was found to increase 

markedly as the Fermi level was raised toward the vacuum level, in good agreement with 

theory. Contrarily, SnO2 and TiO2 have small overlap with the sensitizer acceptor states, so 

hole transfer was not expected under most conditions. At an applied bias of 0 V there was 

evidence for hole transfer for SnO2|Ru(bpz)2+*/+, but not TiO2|Ru(bpz)2+*/+. This occurs 

because SnO2 has a larger density of low energy donor states under these conditions. The 

observation of hole transfer in SnO2, but not in TiO2, provides an alternative explanation for 

why SnO2 is an inferior oxide material for applications in dye-sensitized solar cells. 

While the integrated overlap of the oxide electronic states and the excited state 

sensitizer shown in Fig. 4.8 explains most of the experimental results, it does not fully 

explain all the data. For example, why was excited state injection absent for ITO|Ru(bpz)* 

even when the Fermi level was held at very positive potentials with quantitative overlap? 

Why was there no evidence for hole transfer for TiO2, even at the most negative applied 

potentials where considerable overlap was evident? Finally, if the reduced RuP+ was not 

observed on ITO due to a subsequent fast thermal electron transfer to the oxide, why didn’t 

the same occur for Ru(bpz)+? To address these questions, the electronic coupling matric 

element, Hab, in the Marcus-Gerischer equation must be explicitly considered. 
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4.4.2 Electronic Coupling 

A significant difference between the two sensitizers employed is the location of the 

excited state electron. In RuP*, the excited state is localized on the phosphonated bipyridine 

ligand that links the sensitizer to the oxide. In Ru(bpz)*, the excited state is localized on a 

bipyrazine ligand.20 In other words, the excited state is localized on a ligand adjacent to the 

oxide in RuP* and remote from the oxide in Ru(bpz)* (Fig. 4.9). While the presence of a 

common surface anchoring ligand might reasonably be expected to provide the same 

electronic coupling for the two sensitizers, the electronic coupling to the redox active ligand 

is quite different as a result of the inherent asymmetry of these charge-transfer excited states.  

 
Figure 4.9. Excited state localization adjacent to the metal oxide for RuP* provides larger 
electronic coupling than does excited state localization on the remote ligand for Ru(bpz)*. 

Localization of the excited state on the surface anchoring ligand is believed optimal 

for excited state injection in dye-sensitized solar cells.1,2 In contrast, a remote excited state 

has weaker electronic coupling which enhances the probability that excited state relaxation 

will compete with electron injection. The absence of excited state injection for ITO|Ru(bpz)* 

at potentials as positive as +1.4 V indicates that electronic coupling at dye-sensitized 

electrode interfaces is even more important than previously thought. 
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Formally, hole transfer involves electron transfer from the oxide to the RuIII center. 

The localization shown in Fig. 4.9 is most ideal for hole transfer to Ru(bpz)* as the electron 

has a pathway to tunnel through the surface anchoring ligand to RuIII.35 In contrast, electron 

transfer to RuIII may be impeded by the excited state localized on the adjacent ligand. Indeed, 

Coulombic repulsion may shift the local electron density away from the surface resulting in 

weaker electronic coupling. This likely explains the inability to directly observe hole transfer 

for ITO|RuP and the smaller hole transfer rate constants that were inferred from the time 

resolved PL data (Table 4.2). In principle, hole transfer to RuP* could occur by a charge-shift 

type mechanism,64 but no evidence for this was observed experimentally. 

In the above discussion, it was assumed that eEapp ≈ EF for the conductive metal 

oxide ITO. It should be noted, however, that a potential drop across the mesoporous thin film 

or imperfect contact between with the fluorine doped tin oxide (FTO) substrate may result in 

some deviations.65 This assumption however, provides good agreement with the experimental 

data and suggests minimal discrepancies between Eapp and the ITO Fermi level. Further, the 

applied potential dependence of both hole transfer rate constants and injection yields requires 

that the Fermi energy be tuned relative to the sensitizer excited state reduction potentials 

even at very negative applied potentials where the TiO2 and SnO2 are highly reduced. Such 

conditions can lead to Fermi level pinning (sometimes called band edge unpinning), but there 

was no evidence for this suggesting that the interface behaves ideally.1,2 

 

4.5 Conclusions 

Two key factors were identified that control the direction of electron flow at dye-

sensitized oxide surfaces: the density of redox active states and the electronic coupling. The 



165 
  

transparent conducting oxide ITO underwent efficient hole transfer to an excited state 

sensitizer. The same reactivity was only achieved under narrow conditions for the 

semiconductor SnO2. For ITO|RuP, hole transfer occurred in competition with excited state 

injection leading to decreased injection yields. Because ITO has a large density of electronic 

states at energies within the bandgap of TiO2 and SnO2, it was capable of efficient hole 

transfer reactivity when excited state electronic coupling to the metal center was optimized 

and to the reduced ligand was minimized. Though hole transfer may be detrimental to the 

performance of ITO as a photoanode, it opens up the possibility of using ITO as a 

photocathode. 
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4.7 Associated Content 

 

Figure 4.10. The delta absorbance spectra from the ITO|Ru(II) state to the (a) oxidized and 
(b) reduced forms of ITO|RuP (black) and ITO|Ru(bpz) (red). The spectra of the oxidized 
sensitizers were generated by spectroelectrochemistry in a 3 electrode photoelectrochemical 
cell with a 0.1 M LiClO4 CH3CN electrolyte. Complete oxidation was distinguished by 
cessation of spectral change upon positive applied potential shifts. The absorption spectra of 
the reduced sensitizers were generated by transient absorption changes upon pulsed laser 
excitation of the sensitizers solvated in CH3CN with 10 mM concentrations of a tri-p-
tolylamine donor. c) Transient absorption changes that occurred upon excited state formation 
were measured by pulsed laser excitation of the sensitizers anchored to the insulator ZrO2. 

 

 
Figure 4.11. a) Reductive and c) oxidative spectroelectrochemistry of ITO|Ru(bpz) to 
determine Eºʹ Ru2+/+ and Eºʹ Ru 3+2/+ in 0.1 M LiClO4 CH3CN. Mole fractions of Ru(bpz)2+ 
and b) Ru(bpz)+ or d) Ru(bpz)3+ as a function of the applied potential with overlaid fits to the 
modified Nernst equation 
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Figure 4.12 Hole transfer rate constants kht extracted from transient absorption changes 
measured at 500 nm upon pulsed 532 nm light excitation in 0.1 M LiClO4 CH3CN for 
ITO|Ru(bpz) (a) or from photoluminescence decay kinetics measured at 650 nm upon pulsed 
455 nm light excitation in 0.1 M LiClO4 CH3CN for ITO|RuP (b). 
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Figure 4.13. Transient absorbance spectra measured at the indicated delay time after pulsed 
532 nm excitation of ITO|RuP (lines added to guide the eye) in 0.1 M LiClO4 CH3CN at the 
indicated applied potentials. 

 

 

Figure 4.14. Transient absorbance changes monitored at 402 nm after pulsed 532 nm 
excitation of RuP anchored to a) TiO2, b) SnO2, and c) ITO in 0.1 M LiClO4 CH3CN over the 
indicated applied potential range. 
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CHAPTER 5: DETERMINATION OF PROTON-COUPLED ELECTRON 
TRANSFER REORGANIZATION ENERGIES WITH APPLICATION TO WATER 

OXIDATION CATALYSTS15 
 

5.1 Introduction 

Proton-coupled electron transfer (PCET) describes reactions that involve a change in 

both electron and proton content between reactants and products.1–3 Homogeneous reactions 

have been characterized, some of which were inspired by natural photosynthesis.4–10 The 

PCET reactivity at semiconducting11,12 and metal13–15 interfaces has also garnered 

considerable interest. Like electron transfer (ET) reactions, PCET dynamics are expected to 

depend on the electronic coupling Hab, the free energy change −ΔG,o and the reorganization 

energy λ, yet a consensus on the magnitude of λ does not exist. Babcock predicted that 

protein reorganization would be smaller when the H+ and the e– were transferred together as 

opposed to sequentially.16,17 This seems intuitively reasonable, yet the limited experimental 

data available today suggests the opposite, λPCET ≥ λET.5,18,19 It is desirable to determine 

λPCET directly from kinetic data measured as a function of −ΔGo as described by Marcus.20–22 

Electrochemical techniques enable continuous tuning of −ΔGo without the need to synthesize 

a family of donor–acceptor compounds.23–25 

In this Chapter is reported a new kinetic method that utilizes the highly doped oxide 

material In2O3:Sn (ITO) whose transparent and conductive nature has been widely exploited 

 
15This chapter previously appeared as an article in the Journal of the American Chemical Society. The original 
citation is: Schneider, J.; Bangle, R.E.; Swords, W.B.; Troain-Gautier, L.; Meyer, G.J. J. Am. Chem. Soc. 2019, 
141 (25), 9758-9763. 
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for spectro-electrochemical characterizations.26 Photoactive water oxidation catalysts that 

undergo well-defined PCET chemistry were chosen for this case study.27–30 Pulsed light 

excitation of the ruthenium catalysts [RuII(tpy)(4,4′-(PO3H2)2-bpy)OH2]2+ (RuII-OH2), where 

tpy is 2,2ʹ:6ʹ,2ʺ-terpyridine and bpy is 2,2ʹ-bipyridine, resulted in rapid excited state electron 

transfer to the ITO yielding the oxidized catalyst and an injected electron. The subsequent 

recombination reaction was tuned above and below the pKa of RuIII-OH2 to be primarily ET 

(pH < 1.7) or PCET (2 ≤ pH ≤ 5), noting that the latter reaction can occur either in one 

concerted step (CPET) or sequentially (Fig. 5.1).29 The data revealed that reactivity at pH > 

1.7 was kinetically inhibited relative to reactivity < 1.7, behavior that likely resulted from an 

almost 2-fold increase in the reorganization energy of PCET relative to ET. The generality of 

this approach was tested with a second water oxidation catalyst [RuII(tpy)(4,4′-(CH2-

PO3H2)2-bpy)OH2]2+. These experiments provide a new method by which λPCET can be 

systematically quantified, and the reported PCET values in this Chapter give insights into 

water oxidation with molecular catalysts. 

 

Figure 5.1. a) Interfacial PCET reaction pathways (sequential or concerted) for the ITO(e–) 
and the oxidized water oxidation catalyst. The ET reaction was characterized at pH < 1.7 
(ET2). The PCET reactivity was characterized at pH ≥ 2. b) Chemical structure of the 
surface-anchored catalysts without (x = 0; RuII-OH2) and with a methylene spacer (x = 1; 
[RuII(tpy)(4,4′-(CH2-PO3H2)2-bpy)OH2]2+). 
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5.2 Experimental 

5.2.1 ITO Thin Film Preparation 

The mesoporous ITO films were prepared as previously reported23 with a thin 

ZrO2 shell deposited by atomic layer deposition for better resolution of the reaction 

kinetics.31 An ITO dispersion in ethanol (20 % by weight, Evonik) was stirred overnight with 

an equal volume of 10 wt% solution of Hydroxypropyl Cellulose (Sigma Aldrich) in ethanol. 

This mixture was then used for film preparation. Thin films were deposited by doctor blade 

technique onto FTO substrates using one layer of scotch tape to define film thickness, in 

general 1 layer of scotch tape resulted in 3-4 µm thick films. To obtain mesoporous ITO 

films the fresh doctor bladed films were annealed in tube furnace for 30 min at 450 °C under 

oxygen atmosphere. Sensitization of the mesoporous ITO thin films was accomplished by 

overnight reaction in 5 µM aqueous catalyst solutions resulting in surface coverages of ~ 2 x 

10-8 mol cm-2, about ¼ of the saturation surface coverage, abbreviated ITO|-RuII-OH2. The 

catalysts [RuII(tpy)(4,4′-(PO3H2)2-bpy)OH2]2+ and [RuII(tpy)(4,4′-(CH2-PO3H2)2-bpy)OH2]2+, 

where bpy is 2,2′-bipyridine and tpy is 2,2′:6′,2″-terpyridine, were synthesized as previously 

reported.30,32 

The surface coverage was determined using a modified Beer-Lambert law, A = 

1000εΓ, with Γ representing the surface coverage, ε the extinction coefficient. The extinction 

coefficient for the peak of the [RuII(tpy)(bpy)2(4,4ʹ-(PO3H2)2-bpy)OH2]2+  metal-to-ligand 

charge transfer absorbance is 9600 M-1 cm-1.29 The absorbance of the ruthenium catalyst was 

uniform across the metal oxide thin film, i.e. the same absorbance value was measured at 

several different locations on the thin film, which implies that the Ru-catalyst was 

homogeneously distributed over the ITO electrode. The catalyst is most likely bound to the 
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surface via the bidentate mode of the phosphonate group, as IR spectroscopy studies 

suggest.33 

5.2.2 Atomic Layer Deposition (ALD) 

A Cambridge NanoTech Savannah S200 instrument was used to deposit a conformal 

shell of ZrO2 on ITO as described previously34 at a deposition temperature of 150 °C. In 

deposition cycles, a 0.3 s pulse of Tetrakis(dimethylamido)zirconium(IV) was followed by a 

20 s exposure in the reactor and a 60 s purge. 

5.2.3 Electrochemical and Spectroelectrochemical Measurements 

Spectroelectrochemistry experiments were performed with an Avantes AvaLight DHc 

light source and an Avantes StarLine AvaSpec-2048 UV/visible spectrophotometer. 

Transient absorption, spectroelectrochemical, and cyclic voltammetry experiments were 

performed in a standard three electrode cell comprised of a Ru-catalyst sensitized ITO/FTO 

working electrode, a Ag/AgCl (4 M KCl, externally referenced to SCE), and a Pt mesh 

counter electrode. Solutions were sparged with argon for at least 20 min prior to all 

electrochemical experiments. A BASi Epsilon potentiostat was used to hold an applied 

potential for the duration of the experiment. 

5.2.4 Transient Absorption Spectroscopy Measurements 

Nanosecond transient absorption spectroscopy (TA) was performed using a Q-

switched, pulsed Nd:YAG laser (Quantel U.S.A.(Big Sky) Brilliant B, 5-6 ns FWHM) 

doubled to 532 nm as the pulse beam.35 The laser fluence at samples was 1-4 mJ/pulse at 1 

Hz. A 150 W xenon arc lamp aligned orthogonal to the laser served as probe beam. For 

measurements of time < 100 μs, the probe lamp was pulsed with 70 V at 1 Hz. Signal was 

detected with a monochromator (SPEX 1702/04) optically coupled to a Hamamatsu R928 
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photomultiplier tube. Transient data were acquired with a computer-interfaced digital 

oscilloscope (LeCroy 9450, Dual 330 MHz) with an overall instrument response time of ~10 

ns. Single wavelength kinetic traces consisted of 90-150 averaged laser pulses. Transient 

spectra were generated from single wavelength measurements over a 370-800 nm range in 10 

nm steps. Typically, 30 transients were signal averaged at each monitored wavelength. 

5.2.5 Kinetic Analysis 

The decay dynamics were described by the rate constants k1/2 determined from the 

time required for the signal (ΔAbsobance490nm) to decay to ½ of the initial signal amplitude, 

k1/2 = 1/t1/2.23 Alternative analysis in which rates were represented as the time required for the 

signal to decay to 1/e of the initial amplitude resulted in invariant determined values of λ. 

The statistical error for reorganization energy for ET and PCET process was 0.5 ± 0.05 eV 

and 0.9 ± 0.06 eV, respectively. 

 

5.3 Results and Discussion 

The visible absorbance spectra of an ITO|-RuII-OH2 electrode were recorded in pH = 

1 and 5 aqueous HClO4 solutions (Fig. 5.2). For both pH values a broad metal-to-ligand 

charge transfer (MLCT) absorption band centered at 490 nm was obtained. A quasi-

reversible E1/2(RuIII/II) redox wave was measured by cyclic voltammetry as a function of pH 

(Fig. 5.6 in the Associated Content section). A Nernstian shift of 59 mV/pH was observed 

from pH = 5 to 1.7 indicative of a one-electron and one proton reaction (Fig. 5.2b). At pH 

values below 1.7, E1/2(RuIII/II) was pH independent evincing the one-electron oxidation 

without proton involvement. Literature values for E1/2 [RuIII/II(OH2/OH)(tpy)(bpy)]3+/2+ 

displayed a small negative potential shift (<50 mV) attributed to the absence of the electron 
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withdrawing phosphonate groups.27,29 Also indicated on this plot are pKa values of RuII-

OH2 and RuIII-OH2, the formal reduction potentials of the aquo E°ʹ2(RuIII/OH2) and 

hydroxo E°ʹ1 (RuIII/OH) catalysts. 

 

Figure 5.2. (a) Visible absorption spectra of ITO|-RuII-OH2 recorded in a pH 1 (black) or pH 
5 (red) solution. The inset shows the transient absorption spectra measured 20 ns after pulsed 
532 nm excitation (4 mJ cm–2) at pH 1 (black circles) and 5 (red circles) with overlaid 
spectro-electrochemical data as the solid lines. (b) Plots of E1/2 as a function of pH for the 
RuIII/II redox chemistry measured on the ITO surface (diamonds) and previously reported 
data for the catalyst without phosphonate groups in fluid solution (solid lines).27 

 The inset of Fig. 5.2a shows transient spectra measured 20 ns after pulsed 532 nm 

laser excitation of ITO|-RuII-OH2 in pH 1 and 5 solutions with overlaid RuII to 

RuIII absorbance difference spectra obtained from spectro-electrochemistry. The prompt 

MLCT bleach was consistent with rapid excited-state electron transfer kinj > 108 s–1 and the 

formation of an injected electron and oxidized catalyst. Transient absorption spectra alone 

did not report on the protonation state of the coordinated water. This was instead inferred 

from the kinetic data. Under all experimental conditions employed, one transient interfacial 

state was observed that recombined to ground-state products without evidence of permanent 

photochemistry. 

Recombination of the injected electrons with the oxidized catalyst was measured as a 

function of the applied potential, Eapp, and pH in a standard three-electrode cell. The 
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recombination kinetics were measured over the potential range −0.1 to +0.9 V vs NHE in 100 

mV increments. Single-wavelength kinetic data on nanosecond and longer time scales at pH 

1 and pH 3, respectively, show recombination is significantly faster at low pH (Fig. 5.3). The 

recombination reaction was tuned with pH to occur with and without proton involvement. 

For example, at pH 1 about 90% of the oxidized catalysts were present as RuIIIOH2, and the 

primary reaction was ET. At pH 3 about 95% of the catalysts were RuIIIOH, and the primary 

reaction was PCET. 

 

Figure 5.3. Absorption changes monitored at 490 nm after pulsed 532 nm laser excitation of 
ITO|-RuII-OH2 as a function of Eapp at pH 1 (top) and at pH 3 (bottom). The k1/2 values 
obtained at different pH values are shown as a function of Eapp in the inset. 

As is commonly observed on oxide surfaces, the transient data were not well 

described by a first-order kinetic model, so the reciprocal of the time required for 1/2 of the 
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charge separated states to recombine (k1/2) was taken as a proxy for the rate 

constant.23,36,37 The k1/2 values measured at different pH values are represented as a function 

of Eapp in the inset of Fig. 5.3. The largest rate constants were measured at pH 0–1, where an 

ET mechanism was expected. Under conditions that promoted PCET, the rate constants were 

smaller. At any given pH, the rate constants saturated at large driving force (−Eapp) consistent 

with Marcus–Gerischer theory vida infra. The smaller k1/2
max values at pH > 3 are not fully 

understood, but may be due to weaker coupling between the catalyst and the oxide as 

evidenced by desorption under alkaline conditions. 

These kinetic experiments were repeated in D2O to determine the kinetic isotope 

effect (KIE = kH/kD). At pH ≥ 2, a KIE = 1.12 ± 0.04 was measured, where at pH ≤ 1 there 

was no measurable isotope effect with a KIE = 0.99 ± 0.02 (Fig. 5.7 in the Associated 

Content Section). Unfortunately, the KIE values do not in themselves distinguish the PCET 

mechanism, as they are known to vary widely 0.5–700.8,38–41  

The PCET reduction of RuIII-OH to yield RuII-OH2 can occur either via 

stepwise15,28,35,42 or concerted13,14 mechanisms (Fig. 5.1). In the case of stepwise PT-ET, the 

free energy change for proton transfer (ΔGPT
o = −0.059·(pKa(RuIIIOH2/OH) – 

pKa(H3O+/H2O) = −0.1 eV) is independent of Eapp. Thus, rate limiting PT would result in 

potential independent rate constants, clearly contrary to the kinetic data in Fig. 5.3. The rate 

limiting ET with a PT pre-equilibrium is unlikely, as the observed rate constant does not 

follow k1/2(pH 5) = Kak1/2(pH 0). Further, at constant ET driving force, the observed 

recombination at pH 5 was slower than at pH 1, contradictory to an ET-limited mechanism 

(Fig. 5.8 in the Associated Content section). Hence, a CPET mechanism is most consistent 

with the experimental data. 
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By analogy to heterogeneous ET reactions, the free energy dependence of the PCET 

kinetic data were analyzed with Marcus–Gerischer theory as illustrated in Fig. 5.4 with the 

rate constant k defined in Eq. 5.1.43 

 𝑘 ൌ ଶగ

ℏ
׬ 𝜌ሺ𝐸ሻ𝑓ሺ𝐸,𝐸ிሻ|𝐻௔௕|ଶ𝑊ሺ𝐸ሻ𝑑𝐸
ஶ
ିஶ       (5.1) 

Here, the total distribution of electronic levels in the ITO electrode is represented by ρ(E), 

and their occupancy is controlled by Eapp which sets the Fermi energy, EF. The high carrier 

density of ITO provides metallic character, and ρ(E) has been shown to vary continuously 

over the applied potential range utilized here. The term f(E, EF) is the Fermi–Dirac 

distribution, and Hab(E) is the electronic coupling matrix element. The catalyst acceptor 

states are represented by W(E), a Gaussian distribution of classical activation energies (Eq. 

5.2).44 

 𝑊ሺ𝐸ሻ ൌ ଵ

ඥସగ௞ಳ்
exp ቀି

ሺ∆ீ°ାఒሻమ

ସఒ௞ಳ்
ቁ       (5.2) 

Here, ΔGo is controlled by EF = Eapp. Both PCET and ET occur isoenergetically.23 The free 

energy for ET ΔGET
o corresponds to the difference between EF and the standard reduction 

potential E2° (Eq. 5.3). For PCET the free energy is equal to the sum of ΔGET
o and ΔGPT

o, 

and ΔGPT
o is determined by the relative pKa values of RuIIIOH2/OH (pKa = 1.7) and 

H3O+/H2O (pKa = 0) (Eq. 5.4).45,46  

Δ𝐺°ா் ൌ െ൫𝑒𝐸°ଶ൫𝑅𝑢ூூூ ூூ⁄ 𝑂𝐻ଶ൯ െ 𝐸ி൯      (5.3) 

Δ𝐺°௉஼ா் ൌ Δ𝐺°ா் ൅ ∆𝐺°௉்        (5.4) 

ൌ െ൫𝑒𝐸°ଶ൫𝑅𝑢ூூூ ூூ⁄ 𝑂𝐻ଶ൯ െ 𝐸ி൯ െ 2.3𝑅𝑇ሺ𝑝𝐾௔ሺ𝑅𝑢ூூூ 𝑂𝐻ଶ 𝑂𝐻⁄ ሻ െ 𝑝𝐾௔ሺ𝐻ଷ𝑂ା 𝐻ଶ𝑂ሻሻ⁄  

Values of k1/2 at each Eapp (or –ΔG°) are given in Tables 5.1 and 5.2 in the Associated 

Content section. 
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Figure 5.4. Gerischer diagram representation of energetics associated with PCET from ITO 
to RuIII-OH to yield RuII-OH2. 

In the low-temperature limit of the Fermi–Dirac distribution and with the assumption 

that ρ(E) and Hab(E) are independent of Eapp, Eqs. 5.1 and 5.2 become Eqs. 5.5 and 5.6. 

𝑘 ൌ 𝑘௠௔௫ ׬
ଵ

ඥସగ௞ಳ்
exp ቀି

ሺ௱ீ°ାఒሻమ

ସఒ௞ಳ்
ቁ 𝑑𝐸

ஶ
ாಷ

       (5.5) 
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ଶඥఒ௞ಳ்
൰൨         (5.6) 

Marcus–Gerischer theory predicts increased rate constants with increasing −ΔGo. Because of 

the continuum of the electronic states in ITO, the rate constants are expected to reach a 

maximum when –ΔGo > 2λ. This is in contrast to the inverted region predicted by Marcus for 

molecular electron transfer reactions.44 In addition, at the condition –ΔGo = λ, k is not 

maximized but is equal to half the value of kmax as indicated in Fig. 5.4. 

 Plots of k/kmax (k = k1/2, kmax = k1/2
max) as a function of driving force are shown in Fig. 

5.5a for both ET (black) and PCET (blue). As expected, k increased with –ΔGo until a 

maximum value was realized. Fits of the experimental data to Eq. 5.6 gave λET = 0.5 eV and 

λPCET = 0.9 eV. The corresponding W(E) functions are shown in Fig. 5.5b. To test generality, 

a derivative with a methylene spacer between the catalyst and the phosphonate binding group 
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[RuII(tpy)(4,4′-(CH2-PO3H2)2-bpy)OH2]2+ (Fig. 5.1) was analyzed in this manner to yield 

λET of 0.4 eV and λPCET of 0.8 eV (Fig. 5.9-5.11). Prior literature reports λPCET > 1 eV in 

homogeneous solutions18,28,47–49 and ∼0.7 eV for heterogeneous interfaces.14 Theoretical 

predictions by Hammes-Schiffer et al.19,50 indicate an additional ∼0.3 eV in reorganization 

for PCET relative to ET, which is in a good agreement with the experimental value of 0.4 eV 

found here. 

 

Figure 5.5. a) Normalized rate constants (symbols) and fit to Eq. 5.4 (solid lines) for ET 
(black) and PCET (blue). Dashed red lines represent the condition, −ΔGo= λ, at which k = 
1/2 kmax. (b) W(E) obtained from differentiation of the fit with indicated values for λET = 0.5 
eV and λPCET = 0.9 eV. 

 

5.4 Conclusions 

This Chapter demonstrates a successful application of Marcus–Gerischer theory to 

quantify experimentally the reorganization energy for PCET reactions. The approach requires 

only a transparent conductor, a means to photo-initiate the PCET reaction, and a method to 

monitor the kinetic rate constant as a function of the applied potential. Future studies in 

which the PCET reactivity occurs to fully solvated species outside the electric double layer 

are expected to provide first-order kinetics51 and a better understanding of how the oxide 
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interface influences reorganization energies.52 For the reduction of RuIII-OH to RuII-

OH2 reported here, a PCET pathway was identified that required 0.4 eV higher 

reorganization energy than did electron transfer without proton involvement. The decreased 

recombination rate constants to water oxidation catalysts represents an important advance as 

charge recombination limits the efficiency of dye-sensitized water oxidation. Hence, solar 

water oxidation efficiencies may be enhanced by inhibiting recombination at pH values that 

promote PCET. 
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5.6 Associated Content 

 

Figure 5.6. a) Cyclic voltammograms of RuIII/II for [RuII(tpy)(4,4ʹ-(PO3H2)2-bpy)OH2]2+ 
measured in the pH region 0-5. b) Cyclic voltammograms of ITO electrode measured at pH 1 
and 5. Scan rate = 10 mV/s. The experiments in the present study have been carried out at 
low catalyst surface coverages to inhibit disproportionation reaction chemistry.30 

 

Figure 5.7. Kinetic isotope effect kH/kD as function of Eapp measured at pH 1 and 5 after 
pulsed 532 nm laser excitation of ITO|-RuII-OH2. Transient absorption signals used to 
calculate kH/kD were monitored at 490 nm after 532 nm laser excitation. 
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Table 5.1. Summary of the transient absorption kinetic data for ΔA490nm obtained at pH 1 
with corresponding free energy values. –ΔG°ET was calculated according to Eq. 5.3, with E2°ʹ 
(RuIII/IIOH2) = 1.1 V vs NHE. 

Eapp (V vs NHE) –ΔG° (eV) k1/2 (s–1) 

0.9 0.2 2.9 x 106 

0.8 0.3 5.1 x 106 

0.7 0.4 9.2 x 106 

0.6 0.5 1.6 x 107 

0.5 0.6 2.0 x 107 

0.4 0.7 2.7 x 107 

0.3 0.8 2.8 x 107 

0.2 0.9 2.8 x 107 

 
Table 5.2. Summary of the transient absorption kinetic data for ΔA490nm obtained at pH 2-5 
with corresponding free energy values. –ΔG°PCET was calculated according to Eq. 5.4, with 
E2°ʹ (RuIII/IIOH2) = 1.1 V vs NHE. 

Eapp  
(V vs NHE) 

–ΔG°  
(eV) 

k1/2 

pH 2 pH 3 pH 4 pH 5 
0.8 0.4 1.3 x 106 2.6 x 105 - - 
0.7 0.5 2.2 x 106 5.1 x 105 2.1 x 105 1.5 x 105 

0.6 0.6 3.7 x 106 1.2 x 106 4.7 x 105 4.1 x 105 

0.5 0.7 5.9 x 106 2.5 x 106 1.5 x 106 9.5 x 105 

0.4 0.8 9.9 x 106 4.8 x 106 3.4 x 106 2.2 x 106 

0.3 0.9 1.3 x 107 1.1 x 107 6.3 x 106 4.4 x 106 

0.2 1.0 2.2 x 107 2.1 x 107 1.0 x 107 6.1 x 106 

0.1 1.1 3.0 x 107 2.6 x 107 1.0 x 107 7.7 x 106 

0 1.2 3.0 x 107 2.7 x 107 1.2 x 107 7.1 x 106 

-0.1 1.3 3.0 x 107 2.6 x 107 1.1 x 107 7.0 x 106 
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Figure 5.8. Normalized absorption change monitored at 490 nm after pulsed 532 nm laser 
excitation of ITO|-RuII-OH2 at pH 0 (red) and at pH 5 (black). Note that the applied bias was 
controlled to assure a constant free energy change of -0.4 eV when electron transfer was the 
only assumed mechanism. 

 

Figure 5.9. a) The visible absorption spectra of [RuII(tpy)(4,4ʹ-(CH2-PO3H2)2-bpy)OH2]2+ 
recorded at a pH 3. b) Plots of E1/2 as a function of pH for the RuIII/II redox chemistry 
measured on the ITO surface. 
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Figure 5.10. Absorption changes monitored at 490 nm after pulsed 532 nm laser excitation 
of ITO|-[RuII(tpy)(4,4ʹ-(CH2-PO3H2)2-bpy)OH2]2+ as function of Eapp at a) pH 1 and b) pH 3. 

 

Figure 5.11. a) The k1/2 values obtained at different pH values for ITO|-[RuII(tpy)(4,4ʹ-(CH2-
PO3H2)2- bpy)OH2]2+ are shown as function of Eapp. b) Normalized rate constants (symbols) 
and fit to Equation 4 (solid lines) for ET (black) and PCET (blue) with λET = 0.4 eV and 
λPCET = 0.8 eV. 
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CHAPTER 6: KINETIC EVIDENCE THAT THE SOLVENT BARRIER FOR 
ELECTRON TRANSFER IS ABSENT IN THE ELECTRIC DOUBLE LAYER16 

 

6.1 Introduction 

It has been known for over 60 years that the dielectric constant, ε, of water molecules 

at polarized conductive interfaces is dramatically reduced from that of bulk water, ε = 80. For 

example, several independent capacitance studies have revealed that the first layer of water at 

a mercury surface had an effective ε between 3 and 8.1–3 Further studies have shown this to 

be general to many solid-water interfaces, including non-aqueous electrolytes, behavior 

attributed to restricted rotational freedom of the solvent dipole.4–14 Classical dielectric 

continuum and more sophisticated levels of theory indicate that the solvent, or outer-sphere, 

reorganization energy, λo, approaches zero as ε decreases.15–18 This is an important prediction 

as λo determines the barrier for most electron transfer reactions of interest in biology, 

chemistry, and catalysis.19,20 Despite the importance of these predictions and reports of 

accelerated electron transfer kinetics near electrode surfaces,21–27 experimental values of 

reorganization energies at solid-electrolyte interfaces remain elusive as such measurements 

are intrinsically difficult to conceive and perform.  

Previous studies of interfacial electron transfer have predominantly relied on 

electrochemical investigations of thermal electron transfer reactions which occurred through

 
16This Chapter previously appeared as two papers in the Journal of the American Chemical Society. They are 
combined here. The original citations are: 1) Bangle, R.E.; Schneider, J.; Piechota, E.J.; Troian-Gautier, L.; 
Meyer, G.J. J. Am. Chem. Soc. 2020, 142 (2),674-679. 2) Bangle, R.E.; Schneider, J.; Conroy, D.T.; Aramburu-
Trošelj, B.; Meyer, G.J. J. Am. Chem. Soc. 2020, 142 (35), 14940-14946. 
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self-assembled monolayers, SAMs, of long-chain thiols terminated with redox-active 

molecules on gold electrodes.21–29 Unfortunately, SAMS with short-chain hydrocarbons have 

poor stability precluding electron transfer study at short distances. Of note, Chidsey and 

coworkers have shown that the total reorganization energy, λ, decreased by 30% when 

interfacial electron transfer occurred ~ 7 Å versus ~ 20 Å from a gold surface.23 Distance-

dependent interfacial electron transfer kinetics have also been attributed to interfacial ion 

concentrations,24,25,30 to electronic coupling,27 and to both electronic coupling and λ.22,23,26 

The underlying origin(s) of this SAMS behavior is difficult to experimentally disentangle, 

however, as both the molecular reduction potentials and the kinetics are distant 

dependent.24,30 

In this Chapter, a transparent conductive oxide, tin-doped indium oxide (ITO), 

combined the advantages of previous electrochemical experiments with the ultrafast 

timescales accessible by pulsed laser techniques. Transparent conductive oxides are an 

important class of materials for optoelectronic applications that are utilized here as a 

powerful analytical tool.31–33 Through sensitizing mesoporous ITO films with redox-active 

molecules, pulsed-light-initiated interfacial electron transfer reactions were monitored 

spectroscopically as a function of the thermodynamic driving force, –∆G°. The position of 

the molecules relative to ITO in either acidic aqueous or LiClO4 CH3CN electrolyte was 

controlled on an Angstrom scale by layered molecular spacers. Kinetic analysis showed λ to 

be near zero proximate to the electrode surface irrespective of solvent, significantly 

decreased from λ quantified at larger molecule-electrode distances. This diminished electron 

transfer barrier was reflected in rapid electron transfer at the ITO surface. Similarly, 

enhanced electron transfer kinetics were observed with close surface proximity for 
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intermolecular self-exchange that occurred parallel to a semiconducting TiO2 surface in 

aqueous electrolyte. The generality and implications of this finding are discussed. 

 

6.2 Experimental 

6.2.1 Materials 

All materials were used as received without further purification. Perchloric acid 

(70%, Sigma-Aldrich), LiClO4 (99.999 %, trace metal basis), zirconyl chloride octahydrate 

(reagent grade, 98%), methylene diphosphonic acid, titanium(IV) isopropoxide (97%), 

hydroxypropyl cellulose (average MW = 80,000, 20 mesh particle size), and 

polyethyleneglycol Bisphenol A Epichlorohydrin Copolymer (carbowax, 15,000-20,000 Da) 

were obtained from Sigma-Aldrich. Ethanol (99.5+ %) was obtained from Acros Organics. 

Acetonitrile was purchased from Brudick and Jackson (Honeywell). In2O3:Sn (ITO) 

nanoparticles (TC8 DE; 20 wt% dispersion in ethanol) were purchased from Evonik. 

Fluorine-doped tin oxide (FTO) glass substrates (15 Ω/sq) were obtained from Hartford 

Glass. RuP, [RuII(bpy)2(4,4’-(PO3H2)2-bpy)]2+, where bpy is 2,2’-bipyridine, and TPA, 4-

[N,N-di(p-tolyl)amino]benzylphosphonic acid, were synthesized as previously reported.34  

6.2.2 Mesoporous Film Preparation 

The In2O3:Sn (ITO) sol-gel pastes were generated by combination of colloidal 

suspensions of ITO nanoparticles (~ 15 nm diameter) in ethanol (20 wt%) with 

hydroxypropyl cellulose (10 wt%).31 TiO2 sol-gel pastes were generated by the combination 

of carbowax with TiO2 nanoparticles (15 nm diameter) synthesized by acid digestion of 

titanium(IV) isopropoxide, as described previously.34,35 Metal oxide pastes were doctor-

bladed onto FTO-coated conductive glass, dried in air for ~ 30 min, and annealed in a tube 



199 
  

furnace at 450 °C under O2 flow for 30 min. Films generated in this way were measured to be 

3-4 μm by a Bruker DektatXT profilometer. 

 Films were sensitized with layer-by-layer bridge units and redox-active molecules 

RuP and/or TPA. Films termed ITO|-(X)n-TPA were first sensitized to 50% saturation 

surface coverage with RuP by reaction of ITO films with 0.1 M HClO4 aqueous solutions of 

RuP. Surface coverages were controlled through reaction time. Molecular bridge units were 

assembled by subsequent reactions of films with 0.1 M HClO4 aqueous solutions of 5 mM 

methylene diphosphonic acid (overnight) then 6 mM ZrOCl2•8 H2O (2 hours). Multiple 

bridge units were assembled by repeating the process. Assemblies were terminated by either 

RuP or TPA by overnight reaction with acidic aqueous or ethanol solutions, respectively.  

6.2.3 Mesoporous Film Characterization 

ITO and TiO2 nanoparticles scraped from films were visualized with tunneling 

electron microscopy (TEM) using a JEOL 2010F FasTEM with a Zirconated tungsten field 

emission tip and a 2K X 2K Gatan CCD bottom mount camera. UV-vis spectra were 

obtained with an Agilent Cary 60 UV-Vis spectrometer. Molecular surface coverages, Γ, of 

RuP and TPA were determined by UV-visible absorbance spectroscopy using a modified 

Beer-Lambert law, A = ε x Γ x 1000, where A is the absorbance and ε is the molecular 

extinction coefficient at a given wavelength. For TPA, surface coverage measurements were 

obtained after fully oxidizing the TPA in a standard three-electrode cell. Surface coverages 

are given in Table 6.1. 
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Table 6.1. Saturated Molecular Surface Coverages, Γ 

 RuP Γ  
(x 10-8 mol/cm3) 

TPA Γ  
(x 10-8 mol/cm3) 

ITO|-(X)n-RuP 1.0 - 
ITO|-(X)n-TPA 0.5 0.7 
TiO2|-(X)n-RuP 7.0 - 
TiO2|-(X)n-TPA - 7.0 

 

6.2.4 Quantifying Electron Transfer Distances 

Electron transfer distances were estimated from density functional theory (DFT) 

models of RuIIIP, TPA+, and methylene diphosphonic acid shown in Fig. 6.1. Reported R 

values in Table 6.2 represent the distance between the redox centers, Ru for RuIIIP and N for 

TPA+, and a plane through the O of the anchoring phosphonic acid groups. DFT calculations 

were completed in Gaussian 16. Molecular geometries were energetically optimized with the 

B3LYP functional in IEFPCM modelled water and CH3CN, where the basis set LanL2DZ 

was applied to ruthenium, and 6-311g was applied to all other atoms. In layer-by-layer 

assemblies, the interlayer distance of Zr4+ flanked by to phosphonate groups has been 

previously experimentally determined to be ~ 7 Å.36,37 

6.2.5 Electrochemical and Spectro-electrochemical Measurements 

Electrochemical potentials were applied in a standard three-electrode cell in which the 

metal oxide film of a conductive FTO-glass substrate served as working electrode. Platinum 

mesh served as counter electrodes. Experiments are performed in either Ar-sparged aqueous 

0.1 M HClO4 or 0.1 M LiClO4 CH3CN, and all potential values are reported versus the 

Normal Hydrogen Electrode (NHE). In aqueous electrolytes, Ag/AgCl reference electrodes 

were employed, while in CH3CN electrolytes a silver wire in 0.1 M LiClO4 CH3CN solution 

served as a pseudo-reference calibrated versus the ferrocene/ferrocenium reduction potential 
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measured in 0.1 M tert-butyl ammonium perchlorate CH3CN (Fc+/0 E1/2 = 630 mV vs NHE). 

Cyclic voltammetry measurements were performed with a Pine Research Instruments 

WaveNow Potentiostat controlled by Aftermath software (PRI). For spectro-

electrochemistry, this potentiostatic control was coupled with UV-visible absorption 

spectroscopy measured with an Avantes AvaLight DHc light source and an Avantes StarLine 

AvaSpec-2048 spectrometer. Formal redox potentials E°ʹ for ITO|-(X)n-RuIII/IIP and ITO|-

(X)n-TPA+/0 were quantified from spectroelectrochemistry by modeling the spectra as a 

function of applied potential as a sum of the ITO|-(X)n-RuIIP and ITO|-(X)n-RuIIIP (or ITO|-

(X)n-TPA0 and ITO|-(X)n-TPA+) spectra, optimized through linear least squares regression to 

determine the mole fraction of each species χ. Values of χ as a function of applied potential 

were fit with Eq. 6.1, where Eapp is the applied potential and α is non-ideality factor often 

employed in electrochemistry on mesoporous films.38 

𝜒 ൌ ଵ

ଵାଵ଴ሺಶೌ೛೛షಶ°ᇲሻ/ሺఱవ.మഀሻ         (6.1) 

6.2.6 Transient Absorption Spectroscopy Measurements 

Transient absorption spectroscopy was performed with a previously described 

apparatus.39 Pulsed light excitation was performed with a Q-switched, pulsed Nd:YAG laser 

(Quantel U.S.A, Brilliant B, 5-6 ns FWHM) doubled to 532 nm. Laser fluences at the sample 

were 1-8 mJ/pulse, adjusted to generate the same initial signal amplitude for each sample, at 

1 Hz. Signal was probed by a 150 W xenon arc lamp (Applied Photophysics) aligned 

perpendicular to the pulse beam. The probe lamp was pulsed at 1 Hz with 70 V when 

measuring on time scales < 100 μs. Signal was detected using a SPEX 1702/04 

monochromator optically coupled to a Hamamatsu R928 photomultiplier tube connected 

LeCroy 9450, Dual 330 MHz digital oscilloscope. In total, the instrument response time was 
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~ 10 ns. Single wavelength kinetic measurements were generated by averaging the results of 

at least 90 laser pulses. Transient spectra were generated by combining single wavelength 

measurements taken approximately every 10 nm over the relevant spectral range. ITO photo-

electrodes within standard three-electrode cells as described above were submerged in either 

Ar-sparged aqueous 0.1 M HClO4 or 0.1 M LiClO4 CH3CN in a glass cuvette. 

 Electron transfer kinetics in ITO|-(X)n-RuP and ITO|-(X)n-TPA between injected 

electrons and oxidized molecules was non-exponential. Electron transfer rate constants kIET 

were quantified as the inverse of the time required for the initial signal to decay by half. 

Reorganization energies extracted from kinetic data were insensitive to whether kIET was 

quantified as the inverse of the time for signal to decay to ½ of the initial or 1/e of the initial 

signal. Reported uncertainties in kinetic values and reorganization energies represent the 

standard deviation between at least three independent measurements. 

6.2.7 Chronoabsorptometry Measurements 

TiO2 photoelectrodes served as working electrodes in standard three-electrodes cells 

submerged in Ar-sparged aqueous 0.1 M HClO4 in a glass cuvette as described above. 

Chronoabsorptometry measurements were obtained using a Pine Research Instruments 

WaveNow Potentiostat controlled by Aftermath software (PRI), an Avantes AvaLight DHc 

light source, and an Avantes StarLine AvaSpec-2048 spectrometer. An oxidizing potential 

was applied to the film and held for several minutes, and the UV-visible absorption spectrum 

was monitored as a function of time. For TiO2|-(X)n-RuP, the applied potential, Eapp, was 0.5 

V more positive than the formal reduction potential, E°ʹ, of RuP, Eapp = E°ʹ(RuIII/II) + 0.5 V. 

Oxidative instability of TPA prevented application of Eapp = E°ʹ(TPA+/0) + 0.5 V for the time 

required to oxidize the entire film. Instead, Eapp = E°ʹ(TPA+/0) + 0.15 V was applied. The rate 
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of oxidation of the TPA under these conditions was within error the same as the rate of 

reduction observed when Eapp = E°ʹ(TPA+/0) – 0.5 V was applied to the oxidized films. 

 Electron diffusion coefficients, D, and self-exchange electron transfer rate constants, 

kSE were quantified from chronoabsorptometry measurements. To quantify D spectral 

changes at a characteristic wavelength (460 nm for TiO2|-(X)n-RuP and 690 nm for TiO2|-

(X)n-TPA) were fit with a variation of the Anson equation given in Eq. 6.2.40,41  

∆𝐴 ൌ
ଶ∆஺೑஽భ మ⁄ ௧భ మ⁄

ௗగభ మ⁄           (6.2) 

In this equation, ∆A is the absorbance change at the specified wavelength, ∆Af is the total 

change in absorbance upon fully oxidizing the film, and d is the TiO2 film thickness in cm 

measured by profilometry. Values of kSE were calculated from D using Eq. 6.3, where M is 

the intermolecular spacing between redox-active molecules in cm determined with Eq. 

6.4.40,41  

𝑘ௌா ൌ
ସ஽

ெమ           (6.3) 

𝑀 ൌ 𝑐଴
ିଵ ଷ⁄            (6.4) 

Here, c0 is the volume concentration of redox-active molecules, molecules per cm3, 

calculated with Eq. 6.5 where N is Avogadro’s number and the surface coverage Γ is 

determined from UV-visible absorption spectroscopy as described above. 

𝑐଴ ൌ
୻ൈே

ௗൈୡ୭ୱସହ°
           (6.5) 

Note that this M determination, which results in M ~ 2 nm, makes the simplifying assumption 

that redox-active molecules are evenly distributed through the entire volume of the 

mesoporous TiO2 film. 
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6.3 Results 

Mesoporous thin films of ITO nanocrystals were utilized to provide the surface area 

required for spectroscopic characterization in a transmission mode (Fig. 6.8 in the Associated 

Content section).31,42 A pulsed laser excites the ruthenium complex RuP, [RuII(bpy)2(4,4ʹ-

(PO3H2)2-bpy)]2+, where bpy is 2,2ʹ-bipyridine, tethered to ITO and immersed in either 0.1 M 

HClO4 aqueous or 0.1 M LiClO4 CH3CN solutions (Fig. 6.1). The excited state injects into 

the ITO,43 and the subsequent interfacial electron transfer rate constants (kIET) were measured 

as a function of the thermodynamic driving force (–∆G°). In some cases, the acceptor was 

RuIIIP, while in others it was an oxidized triphenylamine, TPA+ (4-[N,N-di(p-

tolyl)amino]benzylphosphonic acid) generated by lateral electron transfer to RuIIIP (Fig. 

6.1b).44,45 These acceptors were selected as they have a negligibly small inner-sphere 

reorganization energy, λi, such that λ = λi + λo ~ λo.46–48 

 

Figure 6.1. a) The molecular structure of RuP, TPA, and spacer with DFT models utilized to 
estimate R. b) Molecules and ITO electrodes where X is methylene diphosphonic acid 
coordinated to Zr4+that served as an ionic bridge to position RuP or TPA more distance from 
the interface. Light excitation of RuP initiates excited state injection into ITO, kinj, which is 
followed by lateral electron transfer, klat, from TPA if present. Charge recombination occurs 
through interfacial electron transfer with rate constant kIET. 
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The redox-active groups were positioned at variable distances from the polarized 

electrode using a layer-by-layer molecular approach. Bridges comprised of a methylene 

carbon with two terminal phosphonate groups that underwent Lewis acid-base interactions 

with a Zr4+ cation served as a modular unit to position the redox-active molecules remote 

from the surface.36,42,49–52 The bridge unit is represented in Fig. 6.1 as (X)n, where ‘n’ is the 

number of units, to produce the nomenclature ITO|-(X)n-Acceptor. In most cases, the 

acceptors were reacted with the electrode to reach saturation surface coverage, ~ 1 x 10–8 

mol/cm2. For films termed ITO|-(X)n-TPA, electrodes were sensitized to ~50% saturation 

surface coverage with RuP prior to co-anchoring layer-by-layer assemblies of TPA to 

saturation. Molecular surface coverages measured by UV-visible absorption are given in 

Table 6.1. The molecular length scale was estimated by density functional theory (Fig. 6.1a) 

as described in the Experimental section above. Note that the sp3-hybridized carbon atom in 

the TPA positions the nitrogen center only ~ 4.3 Å from the surface. 

These molecule-functionalized conductive oxide photo-electrodes differ significantly 

from previously reported SAMs.21–23 The SAMs form a hydrophobic organic layer between 

the gold surface and a redox-active group, where the length of the hydrocarbon chain is 

known.23,53 The interfaces interrogated here are more polar, with charged ionic bridges. 

Further, the gold electrodes of previous studies were generally planar, while spherical ITO 

nanocrystals (~ 15 nm in diameter, Fig. 6.8 in the Associated Content section) interconnected 

in a mesoporous thin film were utilized here.54 The layer-by-layer strategy provides a 

systematic and well-documented means to control distance between a redox-active molecule 

and an oxide surface on an Angstrom length scale.36,49  
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Figure 6.2a and 6.9 in the Associated Content section show the visible absorbance 

spectra of ITO|-(X)n-RuP, ITO|-(X)0-TPA, and unsensitized ITO. The absorbance centered at 

460 nm was assigned to the RuP metal-to-ligand charge transfer (MLCT) transitions that 

were minimally sensitive to n. The neutral TPA did not absorb visible light.55 The surface-

functionalized photo-electrodes were utilized as working electrodes in standard three-

electrode cells in either aqueous pH 1 HClO4 or 0.1 M LiClO4 CH3CN (Fig. 6.2b). Pulsed 

green light excitation resulted in excited state injection into the ITO, and the subsequent 

electron transfer from the electrode to the oxidized molecule was monitored 

spectroscopically.39 Within the instrument response time, excited state injection and lateral 

electron transfer from TPA (when present) occurred, i.e. kinj and klat > (10 ns)–1. Hence, the 

transient spectra measured at the earliest times were consistent with formation of an injected 

electron in ITO and RuIIIP (or TPA+) (Figs. 6.2c and 6.9-6.10 in the Associated Content 

section). Absorbance spectra obtained before and after kinetic measurements revealed no 

evidence of net photochemistry. Care was taken to adjust the laser irradiance such that 

approximately equivalent concentrations of RuIIIP (or TPA+) were present at the earliest 

observation times under all the conditions investigated. This is illustrated by the initial 

amplitudes of the transient spectral change, ∆A, that are shown without normalization in Fig. 

6.11 in the Associated Content section. The subsequent back electron transfer kinetics were 

quantified as a function of the applied potential, Eapp (Figs. 6.3 and 6.12-6.14 in the 

Associated Content section). 
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Figure 6.2. a) Visible absorbance spectra of ITO|-(X)n-RuP, ITO|-(X)0-TPA, and 
unsensitized ITO in aqueous 0.1 M HClO4 solution. b) The rate constant for electron transfer 
kIET to RuIIIP (or TPA+) was quantified by nanosecond transient absorption spectroscopy as a 
function of –Go in a standard three-electrode cell in either aqueous 0.1 M HClO4 or 0.1 M 
LiClO4 CH3CN electrolytes. Green pulsed laser excitation perpendicular to a white light 
probe initiates electron transfer as evidenced by the decrease in the visible absorption, A, 
presented as an absorption change, ∆A. c) Transient absorption spectra of ITO|-(X)0-RuP and 
ITO|-(X)0-TPA measured 1 μs after pulsed 532 nm excitation modelled by the difference 
between the initial and oxidized absorption spectra (solid lines) in aqueous 0.1 M HClO4. 

 

Figure 6.3. Absorption change measured after pulsed 532 nm excitation of ITO|-(X)n-RuP 
(a-b, 402 nm) and ITO|-(X)n-TPA (c-d, 690 nm) in aqueous 0.1 M HClO4 as a function of the 
applied potential vs NHE, Eapp. e-f) Values of kIET increased with –∆G° to a limiting value 
kmax, where –∆G° = e(E°ʹ – Eapp). 
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Due to the conductive nature of the ITO, Eapp controlled the energetic position of the 

Fermi energy, EF. This allowed experimental attunement of –∆G°, defined as –∆G° = eE°ʹ – 

EF = e(E°ʹ – Eapp), where E°ʹ is the formal reduction potential of the molecular acceptor 

determined by spectroelectrochemistry or cyclic voltammetry (Figs. 6.15 and 6.16 in the 

Associated Content section).31 In aqueous 0.1 M HClO4 solution, E°ʹ for ITO|-(X)n-RuP3+/2+ 

and ITO|-(X)n-TPA were 1.35 V and 0.88 V vs NHE, respectively. In 0.1 M LiClO4 CH3CN, 

E°ʹ values were shifted positively: 1.54 V vs NHE for ITO|-(X)n-RuP, and 1.05 V vs NHE 

for ITO|-(X)n-TPA. Surprisingly, E°ʹ values were insensitive to n, in contrast to observed 

distance dependence of E°ʹ for redox-active molecules anchored to gold electrodes through 

SAMs.24 

As is commonly reported at metal oxide interfaces, the recombination kinetics were 

non-exponential, and the inverse of the time required for ½ of the initial charged separated 

states to recombine was taken as a surrogate for the true rate constant, kIET.56 Equivalent 

trends in kIET with –∆G° were obtained when the inverse of the time required for the number 

of charge separated states to reach 1/e of the initial amount was used. The kinetic data in 

Figs. 6.3 and 6.12-14 in the Associated Content section showed that as increasingly negative 

Eapp made –∆G° more favorable, kIET increased up to a limiting value called kmax, given in 

Table 6.2. Furthermore, charge recombination was most rapid for the acceptors positioned 

nearest the ITO surface.  
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Table 6.2. Interfacial Electron Transfer Kinetic Parameters 

 
R 

(Ǻ) 

0.1 M HClO4 H2O 0.1 M LiClO4 CH3CN 

λ (eV) 
kmax (s–1 x 

106) 
Hab

17
 

(cm–1) 
λ (eV) 

kmax (s–1 x 
106) 

Hab
17 

(cm–1) 
ITO|-(X)0-

TPA 
4.3 

0.12 ± 
0.04 

27 0.6 
0.11 ± 
0.04 

22 0.6 

ITO|-(X)1-
TPA 

15 
0.63 ± 
0.03 

4.8 0.3 
0.62 ± 
0.03 

6.5 0.3 

ITO|-(X)2-
TPA 

24 
0.77 ± 
0.02 

3.0 0.2 
0.9 ± 
0.1 

4.2 0.2 

ITO|-(X)0-
RuP 

8.1 
0.53 ± 
0.06 

33 0.7 
0.57 ± 
0.02 

11 0.4 

ITO|-(X)1-
RuP 

17 
0.84 ± 
0.03 

3.2 0.2 
0.85 ± 
0.03 

2.7 0.2 

ITO|-(X)2-
RuP 

26 
0.90 ± 
0.04 

4.5 0.3 
0.94 ± 
0.06 

2.3 0.2 

 
The kinetic rate constants were analyzed with Marcus-Gerischer theory for interfacial 

electron transfer, the essential aspects of which are defined in Fig. 6.4. Vital to this model is 

the energetic overlap between the electronic states in an electrode and a molecule. This 

model is applicable to both molecular oxidation and reduction by an electrode, but reduction 

will be elucidated here as an example. Within the Marcus-Gerischer framework, electron 

transfer can occur between an occupied state in an electrode and an equivalent-energy 

unoccupied molecular state. Because the metallic electrode consists of a continuum of 

occupied states, electron transfer reactions occur across an energetic distribution, and the 

overall rate constant is the integral of the rate constants across all energy E, as expressed in 

and Eq. 6.6.15,31,57–59 

𝑘 ൌ ଶగ

ℏ
׬ 𝜌ሺ𝐸ሻ𝑓ሺ𝐸,𝐸୊ሻ|𝐻ୟୠሺ𝐸ሻ|ଶ𝑊ሺ𝐸ሻ𝑑𝐸
ஶ
ିஶ      (6.6) 

 
17Values calculated from kmax from ITO electronic densities of states determined in ref. 31 and assuming 1 
surface atom involved. 
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Here, ρ(E) is the density of electronic states in ITO, f(E,EF) is the Fermi-Dirac distribution, 

Hab(E) is the molecule-electrode electronic coupling matrix element, W(E) is a Gaussian 

distribution of activation barriers, kB is the Boltzmann constant, and ℏ is the reduced Planck 

constant. Both ρ(E) and Hab(E) are assumed to be independent of Eapp. In Fig. 6.4, the 

distribution of activation barriers for electron transfer to a molecular acceptor (Eq. 6.7) is 

shown relative to the molecular formal reduction potential E°ʹ.  

𝑊ሺ𝐸ሻ ൌ ଵ

ඥସగఒ௞ా்
exp ቀି

ሺ∆ீ°ାఒሻమ

ସఒ௞ా்
ቁ       (6.7) 

The width of the distribution is defined by the total reorganization energy, λ. The potential 

applied to the electrode tunes –∆G°, and more favorable –∆G° leads to increased electron 

transfer rate constants, kIET. At sufficiently exergonic potentials, kIET reaches a limiting value, 

kmax, which reports on Hab (Eq 6.8).  

𝑘௠௔௫ ൌ
ଶగ

ℏ
𝐻௔௕

ଶ𝜌         (6.8) 

The metallic nature of the ITO electrodes allowed for direct tuning of ∆G° by an 

externally applied potential, Eapp. The Fermi energy EF is directly defined by Eapp such that -

∆G° = eE°’-EF = e(E°’-Eapp). Quantification of the change in kIET with –∆G° allows 

evaluation of W(E) and determination of λ, i.e. when λ is small, k increases over a narrow –

∆G° range before reaching kmax. Through the assumptions that ρ(E) and Hab(E) are 

independent of energy and that f(E,EF) is in the low-temperature limit, substitution of Eq. 6.8 

into Eq. 6.6 produces Eq. 6.9, a convenient form for extracting λ from kinetic data, as used in 

Fig. 6.4b-c and 6.17 in the Associated Content section.  

௞಺ಶ೅
௞೘ೌೣ

ൌ  ଵ
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௱ீ°ାఒ
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The continuum of states in the conductor results in quantitatively different behavior than that 

observed for molecular donor-acceptor complexes where inverted kinetic behavior is 

expected for sufficiently exergonic reactions.15,60,61 The reorganization energy λ corresponds 

to –∆G° at ½kmax, as shown by the dashed lines in Figs. 6.4b-c and 6.17. The λ values 

extracted in this way were within experimental error insensitive to 0.1, 0.2 or 0.5 M HClO4 

ionic strength. For RuP in aqueous 0.1 M HClO4, equal λ values were obtained when 

electrodes were sensitized to 10% and 100% full saturation surface coverage. 

 

Figure 6.4. a) Illustration of the key principles of Marcus-Gerischer theory. A Gaussian 
distribution of activation energies, W(E), for electron transfer from electrode states, ρ(E), to a 
molecule exists with a maximum at E°ʹ – λ/e, where E°ʹ is the formal reduction potential, e is 
the number of electrons transferred, and λ is the total reorganization energy. The red dashes 
and circles represent the expected kinetic behavior when a significant barrier is present; kIET 
increases to a saturation value at exergonic potentials, kmax. b-c) Values of kIET measured in 
aqueous 0.1 M HClO4 were normalized by kmax and fit with Eq. 6.9, represented by solid 
lines. Dashed lines represent λ values, which are quantified as –∆G° when kIET/kmax = 1/2. 

Values of λ exhibited a systematic dependence on the electrode-molecule distance R, 

Fig. 6.5 and Table 6.2, in both aqueous 0.1 M HClO4 and 0.1 M LiClO4 CH3CN. Values of R 

were estimated as the distance between the redox centers, RuIII for RuP and N+ for TPA, and 

a plane through O atoms of the phosphonic acid binding groups using molecular lengths 

estimated from DFT models shown in Fig. 6.1. In layer-by-layer assemblies, the interlayer 

distance of Zr4+ flanked by two phosphonate groups has been previously reported to be ~ 7 

Å.36,37 At distances greater than 15 Å, λ ≈ 0.9 eV in both aqueous 0.1 M HClO4 and 0.1 M 
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LiClO4 CH3CN was approximately equal to the value previously determined for similar 

molecular donor-acceptor systems in fluid solution.60 Acceptors positioned more proximate 

to the electrode showed progressively decreased λ values, such that at less than 5 Å, λ = 0.12 

eV in aqueous 0.1 M HClO4 and λ = 0.11 eV in 0.1M LiClO4 CH3CN. These molecules have 

small inner-sphere reorganization energies, λi ~ 0.1 eV, indicating that the outer-sphere 

reorganization is negligibly small, i.e., λo ~ 0.24, 25 This drastically reduced value of λ 

signifies that the barriers for electron transfer, ∆G‡ = λ/4 when ΔG° = 0, do indeed approach 

zero near the polarized interface as predicted theoretically.  

 

Figure 6.5. The electron transfer barrier, ∆G‡, and λ as a function of the electrode-molecule 
distance, R in aqueous 0.1 M HClO4 (closed circles) and 0.1 M LiClO3 CH3CN (open 
circles). The dashed line represents ∆G‡ and λ values predicted by dielectric continuum 
theory, Eq. 6.10, assuming εst = 80 for H2O and εst = 37.5 for CH3CN across all R. The poor 
fit to experimental data at small R is consistent with a decreased εst within the electric double 
and diffuse layers. 

Marcus-Gerischer analysis also provides an estimate of the electronic coupling 

between the electrode and the molecule, Hab. The free energy dependence of the rate 

constants provides λ, while the saturation rate constant, kmax, provides Hab, Eq. 6.8.31 The 

kinetic data in Fig. 6.3 and 6.14 in the Associated Content section reveal that Hab decreases 

as the molecule-electrode separation increases in both aqueous 0.1 M HClO4 and 0.1 M 
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LiClO4 CH3CN. Values of Hab decreased exponentially with a decay parameter β ≈ 0.2 Ǻ–1. 

This unexpectedly small β value indicates weak distance dependence of kmac, consistent with 

electron transfer through a conductive medium.25,62–65 Precise determination of Hab, however, 

requires knowledge of the effective density of states in the electrode and the number of 

participating surface atoms, both of which are non-trivial. Best estimates of the ITO density 

of states assuming one surface-atom donor provide small Hab values, < 1 cm–1 given in Table 

6.2.31 Such small coupling is consistent with non-adiabatic electron transfer.19,21,66,67 As 

shown in Figs. 6.2 and 6.9-6.10 in the Associated Content section, spectral evidence for 

strong coupling was absent, and the absorption spectra of RuP and TPA+ were insensitive to 

their position within the electric double layer. This was further suggestive of small Hab and 

non-adiabatic electron transfer.21  

To test generality and understand electron transfer barriers within the electric double 

layer that do not involve the electrode as an electron source, self-exchange reactions 

occurring laterally across a semiconducting anatase TiO2 surface were quantified in a 

standard three-electrode cell in 0.1 M HClO4 water (Fig. 6.6). Like that observed on ITO 

surfaces, the visible absorption spectra of RuP and TPA+ were again independent of the 

number of ionic bridges, indicative of nearly equivalent surface coverages. As depicted in 

Fig. 6.6b, lateral self-exchange electron transfer was initiated by a potential step sufficient to 

oxidize the molecules but insufficient to access the TiO2 valence band, as is well-documented 

in literature.68–70 In this manner, electron transfer is initiated at the conductive substrate 

(FTO) and proceeds across the TiO2 by lateral self-exchange electron transfer. The direct 

oxidation of the molecules by TiO2 is absent because E°ʹ(TPA+/0) and E°ʹ(RuIII/II) are within 

the band gap. The accompanying spectral changes were monitored with time and provided 
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the self-exchange electron transfer rate constant, kSE, as described in the Experimental section 

(Eqs. 6.2 and 6.3).70 The data in Fig. 6.7 show that lateral self-exchange occurred more 

rapidly for molecules near the TiO2 surface. Values of kSE were approximately 8x larger for 

molecules directly linked to the surface, while those furthest were indistinguishable between 

RuP and TPA, indicative of a common outer-sphere solvent barrier to self-exchange. More 

rapid self-exchange for molecules linked directly to the oxide is consistent with a decreased 

λ, parallel to the low λ observed for interfacial electron transfer kinetics on ITO where the 

oxide was the electron donor. 

 

Figure 6.6. a) Scheme of lateral self-exchange electron transfer with rate constants kSE in 
TiO2 layer-by-layer assemblies. b) Experimental approach to monitor self-exchange, depicted 
in the top panel, where a potential step sufficient to oxidize the surface anchored molecules, 
Eapp ≫ E°ʹ, defines time zero, t0. Oxidation is initiated at the conductive FTO substrate and 
continues across the mesoporous thin film. The sensitized TiO2|-(X)n-RuP or TiO2|-(X)n-TPA 
film undergoes a color change as lateral self-exchange occurs, monitored by visible 
absorption spectroscopy. 



215 
  

 

Figure 6.7. a) Absorption change, ∆A, upon application of Eapp ≫ E°ʹ as a function of time at 
representative wavelengths for TiO2|-(X)n-RuP (460 nm, shown in red) and TiO2|-(X)n-TPA 
(690 nm, shown in blue) in aqueous 0.1 M HClO4. Yellow lines are fits to Eq. 6.2. b) Values 
of kSE were quantified from fits in (a) and Eq. 6.3 and plotted vs distance from the electrode, 
R. 

 

6.4 Discussion 

The marked decrease in λ near the polarized interfaces is attributed to the influence of 

the electric double layer (EDL) on the dielectric constant of water and acetonitrile. While 

physical descriptions of the EDL have evolved over time, most agree that a strong 107 V/cm 

electrostatic potential is present.2,57 Solvent molecules and ions directly adsorbed to the 

electrode comprise the inner-Helmholtz plane, beyond which a layer of solvated ions make 

up the outer-Helmholtz plane. Further from the electrode is a diffuse layer, where the field is 

screened by intervening solvent molecules and solvated ions. When directly linked to the 

oxide, the oxygen atoms of the phosphonate anchoring groups are within the inner-Helmholtz 

plane, while the redox-active portion of the molecules are within or near the outer-Helmholtz 

plane. Those linked through ionic bridges probe the diffuse layer. The data reveal that λo is 

absent at the closest distances and approaches bulk solution values at distances > 15 Å. 



216 
  

Dielectric continuum theory predicts a link between λo and the interfacial electron 

transfer distance, R, through Eq. 6.10.15,57 

𝜆௢ ൌ
௘మ
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ଵ
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െ ଵ

ଶோ
ቁ       (6.10) 

Here, εop and εst are the optical and static dielectric constants of the solvent, and a is the 

molecular radius. The dashed and dotted lines in Fig. 6.5 is a dielectric continuum model of 

λo and ∆G‡ using Eq. 6.10 and εst equal to that of bulk solvent, εst = 80 for H2O and εst = 37.5 

for CH3CN. Note that dielectric continuum theory predicts similar λo for these two solvents 

despite the factor of > 2 difference in their εst, as both H2O and CH3CN have large εst relative 

to εop.71–73 A physically reasonable radius a = 4.5 Å was utilized. As is evident at a distance < 

5 Å, the assumption of εst = 80 or 37.5 fails to predict the negligibly small barrier for electron 

transfer measured experimentally. To accurately model this data, εst ≈ 2 is required in both 

cases, in reasonable agreement with both early and recent studies.1–4 Indeed, the dashed and 

dotted lines in Fig. 6.5 which represents Eq. 6.10 using the εst of bulk solvents overestimates 

λ and ∆G‡ for all distances less than ~ 15 Å. A physical picture similar to that put forward by 

Bockris is consistent with this data.2 Within the Helmholtz planes (< 5 Å), the electric field 

greatly depresses the effective εst and rigidly orients H2O and CH3CN molecules, preventing 

their reorganization. In fact, the near identical results obtained here between H2O and 

CH3CN reflects the supposition that any polar solvent should have a greatly decreased εst 

within the Helmholtz planes.74 In the diffuse layer solvent molecules and ions progressively 

screen the field. The systematic deviation between predicted and experimental λ values 

herein thus maps the dielectric constant in the EDL and diffuse layer, a physical picture that 

has long been difficult to access experimentally.   
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The kinetic evidence that the solvent barrier is absent in the Helmholtz planes is 

restricted here to molecular acceptors linked directly to a conductive oxide, with supporting 

evidence on a semiconducting oxide. Though it is speculative to generalize these results, a 

number of theoretical and experimental studies have indicated that a dramatically reduced 

dielectric constant is expected at many solid-electrolyte interfaces.4,7,8,75–77 If true, the impact 

on practical and fundamental aspects of solar energy conversion would be tremendous and 

deserves brief discussion. In molecular electrocatalysis, the data here reveal that both the 

electronic coupling and the reorganization energy are most optimal within the Helmholtz 

planes. Hence new synthetic methodologies that integrate molecular catalysts into electrode 

surfaces should enhance molecular electrocatalysis turn over frequencies.78,79 Further, a 

common assumption is that λo for a surface-anchored molecule is half that measured in fluid 

solution, presumably because only about half of the molecule is solvated.57,80 The data herein 

show that this is a poor assumption, as λo is negligibly small within the Helmholtz planes. 

Finally, photoelectrochemical water oxidation efficiency with molecular catalysts is reported 

to be most optimal for catalysts far-removed from the electrode surface, where unwanted 

charge-recombination reactions are minimized.42,49 Though this approach favors catalysis in 

kinetic competition with recombination, it fails to exploit the decreased electron transfer 

barrier within the Helmholtz planes. New electrode architectures with catalysts located at 

additional interfaces physically separated the from the electrode where reducing equivalents 

are located are thus expected to provide higher solar water splitting efficiency. 
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6.5 Conclusions 

In conclusion, the rate constants for electron transfer from a conductor to molecular 

acceptors positioned within an aqueous and an organic electric double layer as a function of 

the Gibbs free energy change are reported. The absorption spectra and the reduction 

potentials were insensitive to position, while the electron transfer kinetics and their free 

energy dependencies were highly sensitive to location within the electric double layer. 

Application of Marcus-Gerischer theory revealed that the reorganization energy was 

negligibly small within the Helmholtz planes and increased to bulk values within the diffuse 

layer, behavior mirrored in lateral self-exchange kinetics. Hence the solvent barrier for 

electron transfer was absent within the Helmholtz planes. This finding is important for 

advancing our fundamental knowledge of interfacial electron transfer as it relates to 

emerging applications in biology, chemistry, and catalysis. 
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6.7 Associated Content 

 

Figure 6.8. a) Transmission electron microscopy imaging of interconnected ITO 
nanocrystals mechanically removed from an FTO substrate. b) Photograph of unsensitized 
(left) and RuP-sensitized (right) ITO films illustrating transparency and coloration. 

 

Figure 6.9. Visible absorbance spectra of ITO|-(X)n-RuP in 0.1 M LiClO4 CH3CN solution. 
Inset: transient absorption spectra of ITO|-(X)0-RuP and ITO|-(X)0-TPA measured 1 μs after 
pulsed 532 nm excitation modelled by the difference between the initial and oxidized 
absorption spectra (solid lines). 
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Figure 6.10. Normalized transient absorption difference spectra measured 100 ns after 
pulsed 532 nm light excitation (points) overlaid with spectral changes that occur upon 
electrochemical oxidation of a) ITO|-(X)n-RuP in aqueous 0.1 M HClO4, b) ITO|-(X)n-TPA 
in aqueous 0.1 M HClO4, c) ITO|-(X)n-RuP in 0.1 M LiClO4 CH3CN, and d) ITO|-(X)n-TPA 
in 0.1 M LiClO4 CH3CN. 
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Figure 6.11. Absorption changes monitored at 402 nm (a-c) and 690 nm (d-f) upon 532 nm 
pulsed light excitation of (a-c) ITO|-(X)n-RuP or (d-f) ITO|-(X)n-TPA where n = 0, 1, or 2 as 
indicated in 0.1 M aqueous HClO4 as a function of Eapp vs NHE. Absorption changes are 
presented without normalization to illustrate that roughly equivalent initial concentrations of 
RuIIIP or TPA+ were initially present under each Eapp and n condition. Similar results were 
obtained in 0.1 M LiClO4 CH3CN solution. 
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Figure 6.12. Absorption changes monitored at 402 nm (a) or 690 nm (b) following pulsed 
532 nm light excitation of a) ITO|-(X)2-RuP or b) ITO|-(X)2-TPA in aqueous 0.1 M HClO4 as 
a function of Eapp vs NHE. 

 

Figure 6.13. Absorption changes monitored at 402 nm (RuP) or 690 nm (TPA) following 
pulsed 532 nm light excitation of ITO|-(X)n-RuP or ITO|-(X)n-TPA as indicated in 0.1 M 
LiClO4 CH3CN as a function of Eapp vs NHE over the indicated ranges. 
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Figure 6.14. Values of kIET extracted as the inverse of the time required for the initial signal 
to decay by half from single wavelength transient absorption spectroscopy measurements in 
0.1 M LiClO4 CH3CN for a) ITO|-(X)n-RuP and b) ITO|-(X)n-TPA. 

 

Figure 6.15. Spectroelectrochemical determination of formal reduction potentials in aqueous 
0.1 M HClO4. UV-visible absorption spectra in aqueous 0.1 M HClO4 of a) ITO|-(X)0-RuP or 
b) ITO|-(X)0-TPA upon application of the indicated potentials. Inset is the mole fraction χ of 
a) RuIIP or b) TPA+ as a function of applied potential with an overlaid fit to Eq. 6.1 that was 
utilized to determine the formal reduction potential E°ʹ of the molecules. 



224 
  

 

Figure 6.16. Cyclic voltammograms (scan rate 5 mV/sec) of a) ITO|-(X)n-RuP (RuIII/II) and 
b) ITO|-(X)n-TPA (TPA+/0) for n = 0, 1, and 2 in a three-electrode cell in 0.1 M LiClO4 
CH3CN are shown. Values of Eºʹ were taken to be the midpoint between the oxidative and 
reductive peaks and matched well those extracted from spectroelectrochemistry. Values of 
Eºʹ were insensitive to n. 

 

Figure 6.17. Values of kIET measured in 0.1 M LiClO4 CH3CN were normalized by kmax and 
fit with Eq. 6.9, represented by solid lines. Dashed lines represent λ values, which are 
quantified as –∆G° when kIET/kmax = 1/2. 
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Figure 6.18. The maximum attainable rate constant (kmax) as a function of ET distance R for 
interfacial electron transfer from ITO to oxidized molecules for ITO|-(X)n-RuP and ITO|-
(X)n-TPA in 0.1 M LiClO4 CH3CN and aqueous 0.1 M HClO4 solutions. Values of kmax 
decreased exponentially as a function of R with an exponential decay parameter β ≈ 0.2 Å-1. 
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CHAPTER 7: SOLVENT INFLUENCE ON NON-ADIABATIC INTERFACIAL 
ELECTRON TRANSFER AT CONDUCTIVE OXIDE/ELECTROLYTE 

INTERFACES18 
 

7.1 Introduction 

Predictive models to describe electron transfer rate constants at metal-electrolyte 

interfaces have been invaluable for the development of solar energy conversion technologies, 

batteries, and electrochemical engineering processes. Semiclassical interfacial electron 

transfer theory was adapted from related homogeneous electron transfer theory with 

particular attention to metallic interfaces functionalized with redox active molecular 

complexes.1-11 The main conceptual difference between interfacial and intramolecular 

electron transfer lies in the delocalized continuum of electronic states associated with a 

metal.4,11 Each electronic state within the metal can undergo an electron transfer event to or 

from an isoenergetic electronic state within the molecule. Integration over the continuum of 

metallic states results in the ensemble interfacial electron transfer rate constant. In other 

words, the interfacial electron transfer rate constant is determined by the energetic overlap 

between the continuum of electronic states of the conductor and the molecular distribution 

(Fig. 7.1). As described by the Fermi golden rule, the degree of energetic overlap, and thus 

the interfacial electron transfer rate constant, is defined by the same fundamental parameters 

that govern both interfacial and intermolecular electron transfer kinetics—the Gibbs free 

 
18This chapter previously appeared as an article in the Journal of Chemical Physics. The original citation is: 
Aramburu-Trošelj, B.; Bangle, R.E.; Meyer, G.J. J. Chem. Phys. 2020, 153 (13), 134702. 
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energy ∆G°, the electronic coupling between the donor and acceptor Hab, and the free energy 

required to reorganize the bonds and surrounding solvent λ.  

 

Figure 7.1. A theoretical representation of interfacial electron transfer from a metal to a 
molecular acceptor. Assuming the low-temperature limit of the Fermi-Dirac distribution 
f(E,EF), the interfacial electron transfer rate constant is proportional to the integration over 
the continuum of electrode states ρ(E)f(E,EF) and the Fermi’s golden rule distribution of 
activation energies for reduction of the molecule, W(E). The total reorganization energy λ 
defines the width of W(E). The driving force in eV for a one-electron process is defined as    
–∆G° = eE°'–EF = e(E°'–Eapp), where E°' is the formal reduction potential of the molecule, EF 
is the Fermi level in eV, Eapp is an externally applied potential, and e is the elementary 
charge.  

This semiclassical framework for the prediction of an interfacial electron transfer rate 

constant, kIET, from a metal to a molecule is depicted in Fig. 7.1 and described by Eq. 

7.1.3,11,12 The continuum of metal electronic states is represented by ρ(E)f(E, EF), where ρ(E) 

is the density of states of the metal, and f(E, EF) is the Fermi-Dirac distribution describing the 

occupancy of these states in relation to the electrode Fermi level, EF. The distribution of 

activation energies associated with reduction of the molecule is represented by W(E) (Eq. 

7.2), with a full-width-at half maximum determined by the reorganization energy, λ. 

𝑘ூா் ൌ
ଶగ

ℏ
׬ 𝜌ሺ𝐸ሻ𝑓ሺ𝐸,𝐸ிሻ|𝐻௔௕ሺ𝐸ሻ|ଶ𝑊ሺ𝐸ሻ𝑑𝐸
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The utilization of an electrode in place of a molecular donor affords a distinct 

advantage to the study of interfacial electron transfer over that of intramolecular donor-

acceptor complexes. Systematic variation of the driving force –∆G° in donor-acceptor 

complexes requires considerable synthetic chemistry. However, in interfacial reactions, –∆G° 

is defined by the difference between the molecular formal reduction potential, E°', and the 

Fermi level EF of the metal as described in Eq. 7.3, where e is the elementary charge: 

െ∆𝐺° ൌ 𝑒𝐸°′ െ 𝐸ி         (7.3) 

Because application of externally applied potentials (Eapp) to a metallic electrode readily 

controls the Fermi level, Eapp = EF/e, –∆G° can be precisely tuned with a potentiostat.  

Measurement of the kinetic response to –∆G° provides a straightforward method to 

experimentally probe W(E) and to quantify both λ and Hab. Contrary to the inverted region 

theorized and observed in intramolecular electron transfer,13,14 interfacial electron transfer 

theory predicts kIET to increase with –∆G° to a maximum attainable value, kmax, when –∆G° > 

2λ. When –∆G° = λ, kIET is ½ kmax, and values of kIET normalized to kmax provide a convenient 

means to quantify λ , Eq. 7.4. Assuming the low temperature limit of f(E, EF), kmax reports on 

Hab and ρ, both of which are also considered to be independent of the applied potential (Eq. 

7.5).  

௞಺ಶ೅
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௱ீ°ାఒ

ଶඥఒ௞ಳ்
൰൨         (7.4) 

𝑘௠௔௫ ൌ  ଶగ
ℏ
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ଶ𝜌         (7.5) 

The explicit experimental disentanglement of λ, Hab, and –∆G° is hence uniquely accessible 

for interfacial electron transfer through this analysis. This theory has been experimentally 
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validated through an expansive body of research on thermal electron transfer with gold 

electrodes with self-assembled monolayers (SAMS).15–20  

The studies described in Chapters 5 and 6 have utilized transient absorption 

spectroscopy to quantify interfacial electron transfer kinetics from a transparent conductive 

oxide (TCO) electrode to surface-anchored molecular acceptors as a function of –∆G°. This 

approach requires a means to photo-initiate the desired electron transfer reaction in a 

standard electrochemical cell. Utilization of the theory described above to analyze the data 

allowed direct quantification of λ and Hab for interfacial electron transfer to ruthenium-

polypyridyl and triarylamine complexes relevant to solar water oxidation.12,21–23 These 

studies exemplify how factors such as proton involvement and proximity to the metal surface 

impact λ and Hab. A somewhat surprising finding in Chapter 6 was the apparent insensitivity 

of λ, Hab, and kIET to electrolyte concentration. The utilization of aqueous electrolytes with 

0.1 M, 0.2 M, and 0.5 M HClO4 as well as a 0.1 M LiClO4 acetonitrile electrolyte resulted in 

surprisingly similar kinetic behavior. The insensitivity to the electrolyte concentration is in 

contrast to predictions of Frumkin.11,24 Similarly, the near parity between acetonitrile and 

water contrasts with experimental17,20,24–28 and theoretical29–39 studies where solvent 

dynamics were found to play an important role in many interfacial electron transfer reactions. 

To explore the impact of solvent on interfacial electron transfer at metal oxide 

interfaces, kinetic data are reported in this Chapter in the slowly relaxing solvents methanol 

(MeOH) and benzonitrile (PhCN). The redox-active molecules were positioned within the 

electric double layer and the diffuse layer of an Sn:In2O3 (ITO) electrode using a previously 

reported layer-by-layer approach with ionic bridges.40 Kinetic analysis with semiclassical 

interfacial electron transfer theory indicated that in all cases interfacial electron transfer 
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occurred with very low electronic coupling, indicative of a non-adiabatic mechanism. The 

kinetic data and analysis are discussed in comparison to recently published results obtained 

in water and acetonitrile electrolytes.22,23 

 

7.2 Experimental 

7.2.1 Materials 

All materials were used as received without further purification. Perchloric acid 

(70%, Sigma-Aldrich), zirconyl chloride octahydrate (reagent grade, 98%) and methylene 

diphosphonic acid were obtained from Sigma-Aldrich. Ethanol (99.5+ %) and methanol 

(MeOH, 99.8%) were obtained from Acros Organics. Benzonitrile (PhCN, 99%) was 

purchased from TCI. In2O3:Sn (ITO) nanoparticles (VP ITO TC8) were purchased as a 

powder from Evonik Industries. Fluorine-doped tin oxide (FTO) glass substrates (15 Ω/sq) 

were obtained from Hartford Glass. RuP, [RuII(bpy)2(4,4’-(PO3H2)2-bpy)]2+, where bpy is 

2,2’-bipyridine, and TPA, 4-[N,N-di(p-tolyl)amino]benzylphosphonic acid, were synthesized 

as previously reported.41  

7.2.2 Oxide Thin Film Preparation 

The In2O3:Sn (ITO) nanoparticles (20 wt%) were thoroughly sonicated in 100-proof 

ethanol with 2-[2-(2-Methoxyethoxy)ethoxy]acetic acid (3 wt% compared to ITO) to form a 

stable dispersion. A sol-gel paste was generated by mixing equal volumes of the 20 wt% ITO 

dispersion and a 10 wt% hydroxypropyl cellulose/ethanol solution. The paste was doctor-

bladed onto FTO-coated conductive glass using two layers of Scotch tape as a spacer to 

define the ITO film thickness. The paste was then dried in air for ~ 30 min and annealed in a 
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tube furnace at 450 °C under O2 flow for 30 min. Films generated in this way were measured 

to be 3-4 μm thick by a Bruker DektatXT profilometer.  

ITO materials were functionalized with redox-active molecules RuP and/or TPA, 

which were positioned at variable distances from the ITO surface on the Angstrom length 

scale with ionic bridges as in Chapter 6.22,23,40,42 Electrodes termed ITO|-(X)n-TPA employed 

in transient absorption experiments were first sensitized to 50% saturation surface coverage 

(~ 5 x 10-9 mol cm-2) with RuP by reaction of ITO with RuP in methanol.23 Surface 

coverages were controlled through reaction time. Molecular bridge units were assembled by 

subsequent reactions of ITO electrodes with 0.1 M HClO4 aqueous solutions of 5 mM 

methylene diphosphonic acid (overnight) then 6 mM ZrOCl2•8 H2O (2 hours). Multiple 

bridge units were assembled by repeating the process. Bridge assemblies were terminated by 

redox-active molecules, either RuP or TPA, by overnight reaction with RuP/methanol or 

TPA/ethanol solutions. For spectroelectrochemical measurements, ITO|-(X)n-TPA electrodes 

were prepared without first sensitizing the ITO with RuP. 

7.2.3 Electrochemical and Spectro-electrochemical Measurements 

A standard three-electrode cell with the ITO as a working electrode, a platinum mesh 

counter electrode, and a silver wire quasi-reference electrode. Experiments were performed 

in Ar-sparged 0.1 M LiClO4 MeOH or PhCN solutions. All potentials are reported versus the 

Normal Hydrogen Electrode (NHE). For spectroelectrochemical measurements, 

potentiostatic control was coupled with UV-visible absorption spectroscopy measured with 

an Avantes AvaLight DHc light source and an Avantes StarLine AvaSpec-2048 

spectrometer. The reference utilized for all absorption spectra reported was an ITO electrode 

that had not been surface functionalized. Formal redox potentials E°ʹ for ITO|-(X)n-RuIII/IIP 
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and ITO|-(X)n-TPA+/0 were quantified by modeling the absorption change at 455 nm and 680 

nm, respectively, with a modified Nernst equation, Eq. 7.6. Here ∆A is the normalized 

absorbance change, Eapp is the applied potential, and α is a non-ideality factor.43 The E°ʹ 

values reported represent the equilibrium potential at which the concentrations of the 

oxidized and reduced species were equal. 

∆𝐴 ൌ ଵ

ଵାଵ଴ሺಶ౗౦౦షಶ°ᇲሻ/ሺఱవ.మഀሻ         (7.6) 

7.2.4 Transient Spectroscopy Measurements 

Transient absorption spectroscopy was performed with a previously described 

apparatus.44 Pulsed 532 nm light excitation was provided by a frequency-doubled, Q-

switched, pulsed Nd:YAG laser (Quantel U.S.A, Brilliant B, 5-6 ns FWHM). Laser fluences 

were adjusted between 1-8 mJ/pulse to generate the same initial concentration of reactants. A 

white light 150 W xenon arc lamp (Applied Photophysics) aligned perpendicular to the 

excitation served as the probe beam that was pulsed at 1 Hz for time scales < 100 μs. A 

SPEX 1702/04 monochromator optically coupled to a Hamamatsu R928 photomultiplier tube 

was used for detection. An optically triggered LeCroy 9450, Dual 330 MHz oscilloscope was 

utilized to average (typically 90 laser pulses) digitize the transient signal. The instrument 

response time was ~ 10 ns. Single wavelength kinetic measurements were generated by 

averaging the results of 90 laser pulses. The samples were an ITO photo-electrode positioned 

at a 45o angle to the excitation in a standard three-electrode cell in a glass cuvette. The 

electrolytes were purged with argon gas before all measurements. 
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7.3 Results 

Mesoporous nanocrystalline films of the transparent conducting oxide Sn:In2O3 (ITO) 

were functionalized with RuP, [RuII(bpy)2(4,4′-(PO3H2)2-bpy)]2+, and TPA, 4-[N,N-di(p-

tolyl)amino]benzylphosphonic acid as illustrated in Fig. 7.2. Molecular acceptors were either 

directly anchored to the ITO through phosphonic acid groups or were positioned away from 

the surface through ionic bridge units, represented as X, that consisted of a methylene 

diphosphonic acid molecule coordinated to a Zr4+ Lewis acid.22,23,40,42 The distance between 

the ITO surface and the redox active center was controlled through the number of bridging 

units X to produce films abbreviated as ITO|-(X)n-Acceptor, n= 0, 1 or 2.  

The visible absorption spectra of ITO|-(X)n-RuP, display a broad characteristic metal-

to-ligand charge transfer absorption band centered near 450 nm when submerged in methanol 

(MeOH) or benzonitrile (PhCN) (Figs. 7.3d and Fig. 7.9a in the Associated Content section). 

The neutral TPA does not absorb visible light, however thermal oxidation to yield ITO|-(X)n-

TPA+ is accompanied by a significant color change and the appearance of a prominent 

absorption band centered at 680 nm. (Figs. 7.3a and Fig. 7.9b in the Associated Content 

section). The reference spectra were an ITO electrode that had not been surface 

functionalized. The absorption spectra were within experimental error independent of the 

number of spacers, n. 
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Figure 7.2. a) ITO electrodes were functionalized with the redox-active molecules RuP and 
TPA. b) Electrodes abbreviated as ITO|-(X)n-RuP were synthesized by a layer-by-layer 
technique. Each ionic bridge, X, consisted of a methylene diphosphonic acid molecule bound 
to a Zr(IV) Lewis acidic cation, and the molecule-electrode distance was controlled by the 
number of linked bridges, n. Kinetic measurements of the electrodes termed ITO|-(X)n-TPA 
also contained RuP anchored directly to the surface. Electron transfer distances were 
estimated from DFT models of the molecules and a 7 Å interlayer Zr(IV) spacing. Pulsed 
light excitation of RuP (1) resulted in excited state electron transfer from RuP to ITO (2). If 
TPA was present, intermolecular electron transfer from TPA to RuIIIP generated TPA+(black 
3). Electron recombination (red 3 or 4) with rate constant kIET was quantified 
spectroscopically to either RuIIIP or TPA+. 
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Figure 7.3. The visible absorbance spectra of (a) ITO|-(X)n-TPA+ and (d) ITO|-(X)n-RuP in 
0.1 M LiClO4 MeOH. (b, e) Visible absorbance spectra measured over the indicated applied 
potential range vs NHE of (b) ITO-(X)0-TPA and (e) ITO|-(X)0-RuP in 0.1 M LiClO4 MeOH. 
(c,f) The absorbance change ∆A measured at (c) 680 nm for TPA and (f) 455 nm for RuP as a 
function of applied potential with overlaid fits to a modified Nernst equation, with Eq. 7.6. 

The formal reduction potential, E°ʹ, for both RuIII/IIP and TPA+/0 were determined 

through spectroelectrochemical experiments with ITO|-(X)n-RuP and ITO|-(X)n-TPA (Figs. 

7.3b,e and Figs. 7.10-7.13 in Associated Content). Spectral changes were monitored as a 

function of the applied potential at 455 nm for ITO|-(X)n-RuP and 680 nm for ITO|-(X)n-

TPA and modelled with Eq. 7.6.22,43,45 Values of E°ʹ obtained in 0.1 M LiClO4 methanol or 

benzonitrile were within experimental error insensitive to distance from the ITO surface or 

the solvent (Figs. 7.3c,f). For ITO|-(X)n-RuIII/IIP, E°ʹ = 1.55 V vs NHE, and for ITO|-(X)n-

TPA+/0, E°ʹ = 1.02 V vs NHE. 

Pulsed 532 nm excitation of RuP resulted in the prompt appearance of the oxidized 

complex, data consistent with rapid ITO|-(X)n-RuIIP* → ITO(e-)|-(X)n-RuIIIP excited-state 

electron injection into ITO, kinj > 108s-1. After pulsed light excitation of ITO|-(X)n-TPA, for 
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which both RuP and TPA were present, rapid intermolecular electron transfer from TPA to 

light-generated RuIIIP occurred within 10 ns to yield ITO|-(X)n-TPA+. Data collected 50 ns 

after excitation are shown in Figs. 7.4 and 7.14 in the Associated Content section for n = 0 

and 1, while there was no spectroscopic evidence for excited state injection after excitation of 

ITO|-(X)2-RuP in either methanol or benzonitrile electrolytes.  

 

Figure 7.4. Transient absorption spectra measured 50 ns after pulsed 532 nm light excitation 
(points) for (a) ITO|-(X)n-TPA and (b) ITO|-(X)n-RuP in 0.1 M LiClO4 MeOH. Overlaid as 
black lines are simulations based on the spectroelectrochemical oxidation of the molecule. 

Following excited state injection and (for ITO|-(X)n-TPA) intermolecular electron 

transfer, the desired interfacial electron transfer reaction was monitored spectroscopically at 

402 nm (ITO(e-)|-(X)n-RuIIIP → ITO|-(X)n-RuIIP) or 690 nm (ITO(e-)|-(X)n-TPA → ITO|-

(X)n-TPA+). Kinetics for the interfacial electron transfer were measured as a function of the 

applied potential (Eapp). Typical data for ITO|-(X)n-TPA in 0.1 M LiClO4 MeOH are shown 
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in Fig. 7.5, while data for ITO|-(X)n-TPA in 0.1 M LiClO4 PhCN and ITO|-(X)n-RuP are 

given in Figs. 7.15-7.16 in the Associated Content section. The kinetic data was non-

exponential and the reciprocal of the time required for reaction to reach ½ of the initially 

formed reactants was taken as an estimate of the interfacial electron transfer rate constant, 

kIET. The magnitude of kIET increased with increasingly negative Eapp and was most rapid for 

molecules anchored directly to the oxide surface. However, the sensitivity of the kinetic data 

to Eapp was smallest for ITO|-(X)0-TPA. Note that after pulsed light excitation of ITO|-(X)1-

RuP, transient spectral changes indicated that reduction of the RuP* excited state took place, 

thus lowering the yield of excited state injection (Fig. 7.17 in the Associated Content 

section).46 As increasingly negative potentials were applied, the timescales of charge 

recombination and excited state reduction became similar, precluding accurate kIET 

quantification. As such, ITO|-(X)1-RuP is excluded from further kinetic analysis. 

 

Figure 7.5. The absorption change ∆A measured at 690 nm after pulsed 532 nm light 
excitation of ITO|-(X)0-TPA (left), ITO|-(X)1-TPA (center) and ITO|-(X)2-TPA (right) 
immersed in a 0.1 M LiClO4 MeOH as a function of the applied potential vs. NHE. 

The interfacial electron transfer rate constant kIET, quantified as the inverse half-life, 

measured as a function of the applied potential are given in Fig. 7.6 and 7.16 in the 

Associated Content section. For ITO|-(X)0-RuP and ITO|-(X)n-TPA, values of kIET increased 

with negative Eapp before reaching a saturation value, kmax. Further, for a given Eapp, kIET 
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decreased with distance from the ITO surface. Normalization of kIET by kmax resulted in plots 

shown in Figs. 7.6b and Fig. 7.18 in the Associated Content section, which were well-

modelled by semiclassical heterogeneous electron transfer theory (Eq. 7.4) to extract the total 

reorganization energy λ (Table 7.1). Values of Hab were extracted from kmax using Eq. 7.5. 

This equation requires knowledge of the density of electronic states of the electrode, ρ, which 

has been previously estimated from Drude analysis of the near infrared plasmon absorption 

to be 0.45 ev-1 for mesoporous ITO.12 This estimate, however, requires knowledge of the 

number of surface atoms in ITO capable of undergoing interfacial electron transfer with a 

molecule, which adds uncertainty to calculated Hab values. For the present analysis, a single 

surface atom was assumed. 

 

Figure 7.6. (a) Values of kIET quantified as a function of –∆G° = e(E°ʹ – Eapp) for kinetic data 
measured in 0.1 M LiClO4 MeOH. b) Plots of kIET normalized by kmax in 0.1 M LiClO4 
MeOH with overlaid fits to Eq. 4. When kIET = ½ kmax, –∆G° = λ, as illustrated by dashed 
lines.  
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Table 7.1. Relevant Interfacial Electron Transfer Kinetic Parameters 

 PhCN MeOH 

 
R / 
Å19  / eV 

kmax /  
x 106 s-1 Hab / cm-1  / eV 

kmax / 
 x 106 s-

1 

Hab / cm-

1 

ITO|-(X)0-RuP 7.4 0.38 ± 0.03 31 0.7 
0.56 ± 
0.03 

33 0.7 

ITO|-(X)0-TPA 4.6 0.08 ± 0.04 30 0.7 
0.09 ± 
0.03 

31 1.7 

ITO|-(X)1-TPA 15 0.58 ± 0.03 11 0.4 
0.63 ± 
0.01 

2.5 0.2 

ITO|-(X)2-TPA 24 0.52 ± 0.04 1.5 0.2 
0.72 ± 
0.01 

0.8 0.1 

 

For ITO|-(X)0-RuP and ITO|-(X)n-TPA, Hab values were within experimental error 

indistinguishable between MeOH and PhCN. Values of λ, however, were systematically 

smaller for interfacial electron transfer occurring in PhCN. For ITO|-(X)2-TPA, where λ is 

expected to approach homogeneous solution values,11,22,23 λ ≈ 0.6 eV in PhCN, while in 

MeOH λ ≈ 0.75 eV. 

 

7.4 Discussion 

The kinetics for interfacial electron transfer from ITO to acceptors physically located 

within the electric double layer and the diffuse layer were quantified as function of the free 

energy change in both benzonitrile (PhCN) and methanol (MeOH). The kinetic approach 

required a high surface area mesoporous thin film conductive electrode so that the desired 

reaction could be photoinitiated and quantified as a function of G. Marcus-Gerischer 

analysis provided estimates of the reorganization energy, and the electronic coupling. This 

 
19Estimated by DFT in references 22 and 23. 
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data compliments the measurements of the same materials in water and acetonitrile (MeCN) 

in Chapter 6, providing an opportunity to evaluate the impact of solvent on interfacial 

electron transfer at oxide interfaces.22,23 It is important to emphasize that the formal reduction 

potentials and absorption spectra of the molecules were insensitive to the number of bridge 

units and were only weakly solvent dependent. However, the interfacial electron transfer rate 

constants, kIET, were highly sensitive to the number of bridge units with a more acute solvent 

dependence. Below we discuss this data, first with regard to the reorganization energy 

followed by the electronic coupling. 

7.4.1 Reorganization Energy 

 The quantified λ values were largest when the distance from the oxide-electrolyte 

interface was greatest and decreased to λ ≈ 0.1 eV at the smallest distance. Dielectric 

continuum theory predicts that λo should decrease with the donor-acceptor distance as 

described by Eq. 7.7. 
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ቁ        (7.7) 

Here, εst and εop are the solvent static and optical dielectric constants, a is the radius of a 

spherical cavity occupied by the molecular acceptor,6,47 and R is the distance between the 

ITO and the molecule.11,48 Values of R were estimated as the distance between the redox 

center of the molecule (N for TPA and Ru for RuP) and a plane through the O atoms of the 

phosphonic anchoring group as shown in Fig. 7.2. Distances in the RuP, TPA, and 

diphosphonic acid were estimated by density functional theory and the Zr(IV) interlayer 

spacing was estimated to be 7 Å.22,23 Experimental reorganization energies in this study were 

best modelled with a = 4.8 Å, and are represented as a function of distance in Fig. 7.7 (solid 

lines), assuming εst = 32.7 and εop = 1.76 for MeOH and εst = 25.2 and εop = 2.33 for PhCN.49 
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This dielectric continuum expression predicts the smaller λ values observed for PhCN and 

the decrease in λ near the surface, but fails to predict the vanishingly small λ observed in 

ITO|-(X)0-TPA, when the redox center of the TPA is a mere ~4.6 Å from the surface. Note 

that these molecular acceptors have negligibly small inner-sphere reorganization energies 

(λi),50,51 such that the total reorganization energy λ is approximately equal to the outer-sphere 

reorganization energy λo, i.e. λ = λo + λi ≈ λo.  

 

Figure 7.7. Experimentally extracted reorganization energies λ for interfacial electron 
transfer as a function of distance between the molecule and electrode R in MeOH (black 
points) and PhCN (red points). Solid lines represent dielectric continuum predictions of λ as a 
function of R assuming εst = 32.7 and εop = 1.76 for MeOH and εst = 25.2 and εop = 2.33 for 
PhCN. 

Values of λ near 0 for ITO|-(X)0-TPA in MeOH and PhCN align with recent data 

obtained in H2O and MeCN, which also found λ ≈ 0.1 eV.22,23 That these λ values in MeOH, 

PhCN, H2O, and MeCN are within experimental error equal, suggests that inductive effects 

recently reported by Matyushov,52 which would predict λ to be significantly larger in bulkier 

solvents, are not significant here. In these studies, the unexpectedly small λ at the metal 

oxide/electrolyte interface was attributed to the electric double layer (EDL). Though 
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descriptions of the EDL have evolved over time, the polarized metal electrode is generally 

thought to have specifically adsorbed ions and rigidly oriented solvent molecules at the 

interface.11,53 This is often called the inner-Helmholtz plane. The outer-Helmholtz plane, for 

which a strong electric field is also present, consists of solvated ions. Beyond this, a diffuse 

layer of solvent and solvated ions progressively screens the electric field. Gouy and 

Chapman’s model assumed that the field decays continuously from the metal surface, while 

Stern separated potential decay in the EDL and the diffuse layer.54  

 Experimental evidence for a loss of the rotational freedom in water molecules within 

the EDL that drastically reduces εst has been previously reported,55–60 although the behavior 

of non-aqueous interfaces has been less thoroughly explored.38,61 The dielectric constant in 

the diffuse layer increased until bulk solvent properties are measured far from the interface. 

That λ for interfacial electron transfer in ITO|-(X)0-TPA is near zero in H2O, MeCN, MeOH, 

and PhCN suggest that within the Helmholtz planes, εst approaches εop for each solvent. This 

manifests in nearly identical electron transfer rate constants for ITO|-(X)0-TPA regardless of 

solvent (Fig. 7.8). The generality suggests near-activationless interfacial electron transfer to 

be a general effect within the Helmholtz planes of a conductor-electrolyte interface. 
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Figure 7.8. Interfacial electron transfer rate constants kIET as a function of –∆G° for ITO|-
(X)0-TPA in the indicated solvents. Circular points represent data from this work. Blue 
crosses are taken from ref. 23, and green crosses are taken from ref. 22. Solid lines represent 
fits to Eq. 7.8 (see text below) to extract Rips-Jortner kinetic parameters in Table 7.2. 

7.4.2 Electronic Coupling 

The remarkable solvent insensitivity of the interfacial electron transfer kinetics for 

ITO|-(X)0-TPA (MeOH, PhCN, H2O, and MeCN) raises questions about the mechanism of 

the reaction. As X increases to 1 and 2, a non-adiabatic reaction is reasonably expected over 

the large distances created by the ionic bridges.15 However, strong coupling at small 

distances, i.e. for ITO|-(X)0-TPA, might be expected to result in adiabatic electron transfer. 

While there was no direct spectroscopic evidence for enhanced coupling at short distances in 

ITO|-(X)0-TPA, researchers have previously identified electron transfer reactions at metal 

interfaces that depend on the solvent longitudinal relaxation time τL, and that have been thus 

assigned as adiabatic and dynamically controlled.20,24,27,28 Methanol and PhCN are slowly 

relaxing solvents with large τL, while for H2O and MeCN solvent motion relaxation occurs 

ten and twenty times faster, respectively (Table 7.2). As such, if the electron transfer were 
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dynamically controlled, kinetics should be distinct between the two solvent sets. Further, the 

slow relaxation of MeOH and PhCN may promote solvent control.20,30,34,37,39 

 Though there are several theoretical treatments to describe the influence of 

adiabaticity on interfacial electron transfer,30,32–36,39,62 application of Sumi-Marcus theory as 

refined by Rips and Jortner is an appealingly straightforward approach, Eq. 7.8.29,39,63–65  

𝑘஺ ൌ
௞಺ಶ೅
ଵା ఊ

          (7.8) 

Here, the non-adiabatic electron transfer rate constant kIET (Eqs. 7.1 and 7.4) is affected by 

the solvent dynamics through an adiabaticity parameter γ (Eq. 7.9) to yield an adiabaticity-

corrected rate constant kA. 

𝛾 ൌ ସగఛಽுೌ್
మ

ℏఒ
          (7.9) 

When the adiabaticity parameter is small, γ ≪ 1, the reaction is non-adiabatic, and kA ∝ Hab
2, 

as in Eq. 7.5. When γ ≫ 1, however, Hab
2 factors out of the preexponential term, the reaction 

is adiabatic, and kA ∝ 1/τL. For a reaction to be adiabatic in the Rips-Jortner model, a slowly-

relaxing solvent environment (large τL), high electrode-molecule electronic coupling (large 

Hab), and/or a small reorganization energy (λ) is required. 

 To analyze the degree of adiabaticity for interfacial electron transfer in ITO|-(X)0-

TPA in each solvent, values of kIET quantified from transient spectral changes as a function of 

–∆G° were modelled with Eq. 7.8 (Fig. 7.8). As in modelling with Eq. 7.4, the range over 

which the kinetics are sensitive to Eapp reflects λ, and kmax reflects the preexponential factor, 

now assumed to contain information on both Hab and γ. Values of λ, Hab, and γ quantified 

using Eq. 7.8-7.9 are given in Table 7.2. Values of τL depend on εst as described in Eq. 7.10, 

where ε∞ is the high-frequency dielectric constant and τD is the Debye relaxation time.  
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This means τL is likely significantly affected by the EDL. As such, γ values (Table 7.2) were 

calculated both with the εst of the bulk solvent and the decreased εst required to model the 

experimental λ values in Table 7.1 with Eq. 7.7. These produce a lower and upper limit of γ, 

respectively. Interestingly, λ and Hab values quantified by Eq. 7.8 were within experimental 

uncertainty equal to those quantified in the non-adiabatic limit (Eq. 7.4). Values of Hab were 

all exceptionally small, < 1 cm-1. Though large τL values in MeOH and PhCN yielded γ 

values roughly 5–20x greater than those for H2O and MeCN, even the upper limit γ values 

were all ≪ 1. This indicates the observed electron transfer at these ITO surfaces, even within 

the Helmholtz planes and in slowly relaxing solvents, is non-adiabatic. 

Table 7.2. Solvent Characteristics and Kinetic Parameters Extracted with Rips-Jortner Theory 

Solvent εst
 εop

20 τL (ps) λ (eV) Hab (cm-1) γ (x 10-3) 21 

MeOH 
32.7 20 
(2.2) 22 

1.76 
4.39 23 
(66) 24 0.08 0.7 

8.2 
(120) 

PhCN 
25.2 20 
(3.3) 22 

2.33 
5.72 23 

(44) 24 0.09 0.7 
8.6 
(66) 

H2O 
78.5 20 
(2.5) 22 

1.78 
0.48 23 

(15) 24 0.12 0.6 
0.4 
(14) 

MeCN 
35.9 20 
(2.5) 22 

1.80 
0.20 23 

(3) 24 0.11 0.6 
0.2 
(3) 

 
The assignment of a non-adiabatic interfacial electron transfer with this Rips-Jortner 

analysis is consistent with the observed similarity between the interfacial electron transfer 

 
20Values taken from reference 49. 
 
21 Calculated from Eq. 7.9 using two τL values. The first value is calculated using the εst of the bulk solvent, to 
generate a lower limit of κ. For values in parentheses, τL is calculated using the εst required to model 
experimentally determined λ values, as to represent an upper limit of κ. 
 
22 Values required to model experimental λ values in Table 7.1 with Eq. 7.7. 
 
23 Calculated with Eq. 7.10 using bulk εst values from reference 49. 
 
24 Calculated with Eq. 7.10 using εst values that best model experimental λ. 
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rate constants for ITO|-(X)0-TPA in each solvent. No systematic dependence of kIET on 

solvent τL was observed (Fig. 7.19 in the Associated Content section). Further, kIET depended 

exponentially on distance from the electrode irrespective of solvent (Fig. 7.20 in the 

Associated Content section), and the absorbance spectra of RuP and TPA were insensitive to 

the molecules’ position in the EDL (Figs. 7.1 and Fig. 7.9 in the Associated Content section). 

All of these experimental measures point to small Hab and non-adiabatic electron transfer. 

Very weak coupling results in non-adiabatic electron transfer, even when the EDL lowers εst 

values to slow the solvent longitudinal relaxation and virtually eliminate λ—both factors that 

promote adiabaticity. Why Hab in these functionalized transparent conductive oxide materials 

is so low is not readily apparent, as electron transfer reactions between molecules and 

metallic electrodes on similar length scales are generally considered to be adiabatic.20,24,27,28 

It may be that the s orbitals which comprise the conduction band states of ITO couple poorly 

to anchored molecules.66 It is also possible that surface heterogeneity leads to a subset of 

electron transfer events that occur non-adiabatically, while others with larger Hab occur 

adiabatically within the 10 ns instrument response time. While a small fraction of the 

interfacial electron transfer may occur on shorter time scales, the data reported in this 

Chapter are fully in line with a non-adiabatic mechanism. 

 

7.5 Conclusions 

Interfacial electron transfer was observed as a function of –∆G° from a mesoporous 

ITO electrode to tethered, redox-active molecules positioned at various distances from the 

conductor-electrolyte interface. Absorbance spectra and formal reduction potentials of the 

molecules were independent of their physical location. Analysis with semiclassical electron 
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transfer theory revealed the reorganization energy λ for the electron transfer to be 

significantly smaller in PhCN than in MeOH when molecules were distant from the interface 

in the diffuse layer. Values of λ decreased as molecules approached the interface and were 

vanishingly small, λ ≈ 0.1 eV, at the shortest attainable distances. The near-activationless 

electron transfer was attributed to the strong electric field in the Helmholtz planes of the 

electric double layer, which drastically reduced the solvent static dielectric constant. The 

impact of the electric double layer on the reorganization energy has now been quantified in 

MeOH, PhCN, H2O, and MeCN, suggesting that activationless electron transfer in the 

Helmholtz planes may be generalizable to all polar solvents. Exceptionally low coupling 

between the ITO and the redox-active molecules resulted in non-adiabatic electron transfer, 

even at the shortest distances and conditions which would promote adiabaticity, as revealed 

by Rips-Jortner analysis. This non-adiabaticity manifest in electron transfer rate constants 

that show no systematic dependence on the solvent τL between MeOH, PhCN, H2O, and 

MeCN. The data reveal that electron transfer barriers are dramatically diminished within the 

Helmholtz planes of the conductive oxide-electrolyte electric double layer. 
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7.7 Associated Content 

 

Figure 7.9. Visible absorption spectra of ITO|-(X)n-RuP (a) and oxidized ITO|-(X)n-TPA (b) 
in PhCN 0.1 M LiClO4.  

 

Figure 7.10. Oxidative visible spectroelectrochemistry of ITO|-(X)n-TPA for n = 1, (a), and 
n = 2, (b), in MeOH 0.1 M LiClO4. c) Normalized absorption changes measured at 680 nm 
extracted from a) and b) as a function of applied potential for ITO|-(X)n-TPA (n = 1, 2) with 
an overlaid fit to Eq. 7.5.  
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Figure 7.11. Oxidative visible spectroelectrochemistry of ITO|-(X)0-TPA (a), ITO|-(X)1-TPA 
(b) and ITO|-(X)2-TPA (c) in PhCN 0.1 M LiClO4. d) Normalized absorption change at 680 
nm extracted from a), b), and c) as a function of the applied potential for ITO|-(X)n-TPA (n = 
0, 1, 2) with an overlaid fit to Eq. 7.5.  

 

Figure 7.12. Oxidative visible spectroelectrochemistry of ITO|-(X)n-RuP for n = 1, (a), and n 
= 2, (b), in MeOH 0.1 M LiClO4. c) Normalized absorption change at 455 nm extracted from 
Figures a) and b) as a function of applied potential for ITO|-(X)n-RuP (n = 1, 2) with an 
overlaid fit to Eq. 7.5.  
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Figure 7.13. Oxidative visible spectroelectrochemistry of ITO|-(X)0-RuP (a), ITO|-(X)1-RuP 
(b) and ITO|-(X)2-RuP (c) in PhCN 0.1 M LiClO4. d) Absorption changes at 455 nm 
extracted from Figures a), b), and c) as a function of applied potential for ITO|-(X)n-RuP with 
an overlaid fit to Eq. 7.5. 
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Figure 7.14. Transient absorption spectra measured 50 ns after pulsed 532 nm light 
excitation (points) for (c) ITO|-(X)n-TPA and (d) ITO|-(X)n-RuP for the indicated value of n 
in 0.1 M LiClO4 PhCN. The solid lines are simulations based on spectroelectrochemical data. 

 

 

Figure 7.15. The absorption change ∆A measured after pulsed 532 nm light excitation 
monitored at 690 nm for ITO|-(X)0-TPA (left), ITO|-(X)1-TPA (center) and ITO|-(X)2-TPA 
(right) in 0.1 M LiClO4 PhCN as a function of the applied potential vs. NHE. 
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Figure 7.16. The absorption change ∆A at 402 nm measured after pulsed 532 nm light 
excitation of ITO|-(X)0-RuP in 0.1 M LiClO4 MeOH (left) and PhCN (right) as a function of 
the applied potential vs. NHE. 

 

 

Figure 7.17. The absorption change ∆Abs monitored at 402 nm after pulsed 532 nm light 
excitation of ITO|-(X)0-RuP (red) and ITO|-(X)1-RuP (blue) 0.1 M LiClO4 MeOH measured 
at the negative applied potential required to reach kmax, -0.6 V vs NHE for ITO|-(X)0-RuP and 
0 V vs NHE for ITO|-(X)1-RuP. The positive ∆Abs feature present for ITO|-(X)1-RuP is 
consistent with excited state reduction of RuP that prevented accurate determination of kIET. 
The positive feature is absent for ITO|-(X)0-RuP. 
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Figure 7.18. Logarithmic plots of kIET vs Eapp vs NHE for ITO|-(X)0-RuP and ITO|-(X)n-TPA 
(n = 0, 1, 2) (a), and their corresponding plots of ket/kmax vs -G° (b) with overlaid fits to Eq. 
7.4. All data were acquired in PhCN 0.1 M LiClO4. 

 

 

Figure 7.19. Plot of the experimentally extracted kmax values vs τL for MeCN (0.20 ps), H2O 
(0.48 ps), PhCN (5.72 ps) and MeOH (4.39 ps) for ITO|-(X)0-TPA and ITO|-(X)0-RuP. 
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Figure 7.20. A logarithmic plot of kmax vs distance in the indicated solvents. 
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