
GRAPH NODAL DOMAINS AND DATA

Wesley A. Hamilton

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the College

of Arts and Sciences.

Chapel Hill
2021

Approved by:

Jeremy L. Marzuola

Jingfang Huang

Shahar Kovalsky

J.S. Marron

Nicolas Fraiman



© 2021
Wesley A. Hamilton

ALL RIGHTS RESERVED

ii



ABSTRACT

Wesley A. Hamilton: Graph Nodal Domains and Data
(Under the direction of Jeremy L. Marzuola)

This thesis proposes and develops a graph spectral flow for computing nodal counts and nodal deficiencies

of graph Laplacian eigenvectors. Background on Laplace eigenfunctions and their nodal domains, as well

as the corresponding results in the spectral graph theory literature, is given. We also review some effective

tools that adapt spectral methods for the analysis of data, in particular the use of ratio cuts for partitioning

and diffusion maps for dimensionality reduction. We then define two versions of the graph spectral flow and

develop properties of each, after which examples of the spectral flow on a number of graphs are provided.

Finally we mention ongoing lines of research related to both theoretical and applied aspects of graphs’ nodal

counts.
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CHAPTER 1

Introduction

This thesis is concerned with a problem from spectral graph theory: given a network, and given a

“resonant frequency” for the network, is it possible to count the number of regions where the “resonant

frequency” is non-zero? In a sense the answer is yes, and this introductory chapter is meant to give a layperson

explanation of the main results followed by an overview of the thesis.

1.1 Main Results

By spectral, we mean certain “resonant” properties of functions defined on a network of interest. A

definition by analogy is the following: if you pour sand on a metal plate and vibrate the plate (by a speaker

or violin bow), resonant standing waves will push the sand to a family of lines where the standing waves

do not move; see Figure 1.1. These waves are called eigenfunctions (of the Laplacian), and the regions

avoided by the sand are called nodal domains. Although this motivating example is defined for continuous

domains, related constructions also exist for networks and have been effectively used for data analysis and

machine-learning tasks. These constructions for networks are the focus of this thesis.

A network consists of nodes, edges that connect nodes, and edge-weights that characterize the similarity

between connected nodes: if the edge-weight is large, the nodes are highly similar; if the edge-weight is

small, the nodes are dissimilar but still similar enough to be connected; if the edge-weight is zero, no edge

exists between the nodes. The network analogue for vibrating a membrane is through the network’s graph

Laplacian. In many ways the graph Laplacian describes how the network should vibrate if such a procedure

was possible, since it gives a discretization of the same differential equation that describes vibrations in

something like a metal plate.

While the patterns that appear on the plate are interesting in their own right, we can ask a slightly simpler

question: how many regions are demarcated by the sand? Another way to ask this question is to take a

snapshot of the vibrating plate, and look at the height of the plate within each nodal domain. Regions of the

plate in which the height is positive (relative to the non-vibrating plate) are called positive nodal domains, and

regions where the height is negative are called the negative nodal domains. Some nice results about counting
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Figure 1.1: Vibrating a metal plate covered with sand will produce standing waves and illuminate nodal
patterns in the sand. From [1].

these nodal domains exist, which we describe in the next chapter, and the same kind of question can be asked

for the network: how many “nodal regions” are there, where a “nodal region” will correspond to collections

of nodes that are connected to each other and all have the same “height”. Though the network doesn’t

necessarily have any interpretable geometry, so that the notion of the “height” of a node isn’t well-defined,

we can use the resonant states of the network’s graph Laplacian to give us something close.

In particular, the main result of this thesis is that:

Theorem 1.1.1. The number of nodal domains of a network’s resonant states can be counted in an explicitly

computable way.

See Theorem 3.2.6 and Theorem 3.3.11 for the mathematically precise versions of this theorem.

We’re also interested in what these nodal counts can tell us from a data science perspective. We build

intuition for this tool by seeing what the nodal counts are for a number of networks, both synthetic and

real-world.

1.2 Overview of the Thesis

Chapter 2 introduces the continuum (/metal plate) and graph (/network) frameworks and intuition

that underline the main results. Chapter 3 makes up the core of this thesis, in which Theorem 3.2.6 and

Theorem 3.3.11 are set up and proven, and in which some open questions are posed about the behaviour of

these resonant states and their relations to nodal counts. Chapter 4 provides a number of numerical results to

build intuition for what these nodal counts look like in the context of data. Finally, Chapter 5 mentions some
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avenues of ongoing work, both on the theoretical side and the data-analytic side.
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CHAPTER 2

Spectral Methods in Data Analysis

In this chapter we review the literature on nodal domains, in the continuum and graph setting, before

reviewing recent applications of spectral methods to the analysis of point clouds and data. Sections 2.1

and 2.2 are adapted from [3], while Sections 2.3 and 2.4 contain preliminary results from ongoing research.

2.1 Motivation from the Analysis of PDEs

The starting point of our study is the spectral theory of the Laplacian. Recall that for a domain Ω ⊂

Rn, the Laplacian is the operator ∆ defined by ∆ f = −
∑n

i=1 ∂
2
xi

f , where f is taken from an appropriate

function space. The Laplacian appears naturally in a number of physical models, including the diffusion

of heat and the propagation of waves. We are primarily interested in the spectral theory of ∆: what are

admissible eigenvalue/eigenfunction pairs (λ, ψ) such that ∆ψ = λψ wherever ψ and ∆ψ are defined. These

eigenvalue/eigenfunction pairs are fundamentally important in a number of fields, but are interesting to study

in their own right. In particular, the nodal domains and nodal sets of eigenfunctions ψ have been an active area

of research since the 1800s. In this section we review the history of Laplace-eigenfunction nodal domains,

and end with a spectral flow procedure that is the basis of this thesis.

2.1.1 Basic notions and Courant’s Theorem

Suppose Ω ⊂ Rn is a connected, bounded domain, and ∆ is the usual Laplacian on Rn with either Dirichlet

or Neumann boundary conditions on Ω. In the case of Dirichlet boundary conditions, the spectrum of ∆

consists of eigenvalues 0 < λ0 < λ1 ≤ · · · ; in the case of Neumann boundary conditions, ∆ has spectrum

0 = λ0 < λ1 ≤ · · · [4, 5]. Let φ0, φ1, ... be the corresponding eigenfunctions. The nodal sets of φk are the

connected components of {x : φk(x) = 0} =: Γ, the nodal domains of φk are the connected components of

Ω \ Γ, and the nodal count ν(φk) is the number of nodal domains. Of interest as well is the nodal deficiency

δ(φk), which can be thought of as quantifying the lack of oscillation of φk: when λk is a simple eigenvalue,

δ(φk) := k − ν(φk); when λk has multiplicity, set k∗ = min{s : λs = λk} and define δ(φk) := k∗ − ν(φk). The

main result about nodal counts is that δ(φk) ≥ 0 for all k, or equivalently, ν(φk) ≤ k.

The first result of interest to us is called the Sturm-Liouville theorem, which states that the nodal deficiency
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for Laplace eigenfunctions φk on a bounded interval always satisfy ν(φk) = 0 for all k.

Theorem 2.1.1. Let Ω = [0, 1] and consider the Dirichlet eigenvalue problem

∂xxu(x) = λu(x) for x ∈ (0, 1) and u(0) = u(1) = 0.

Sort the eigenvalues 0 < λ0 ≤ λ1 ≤ · · · , and call the corresponding eigenfunctions φ0, φ1, ... Then φk has

exactly k zeros in (0, 1).

One approach to proving Theorem 2.1.1 works as well for higher-dimensional domains, which we discuss

next. See [6] for a relatively elementary discussion of this (and related) results, and [7, Chapter XIII] for a

modern discussion.

In one dimension the nodal deficiency is identically zero, which may or may not be interesting depending

on your needs. In higher dimensions, however, the nodal deficiency may be non-zero. This is the content of

Courant’s nodal domain theorem:

Theorem 2.1.2. Let Ω ⊂ Rn, n ≥ 2, be a bounded, connected domain with Laplacian ∆, and let 0 < λ1 ≤

λ2 ≤ · · · be the ordered eigenvalues for the Dirichlet eigenvalue problem


∆u = λu in Ω,

u = 0 on ∂Ω.

If φ1, φ2, ... are the associated eigenfunctions, then k ≥ ν(φk).

The techniques we adopt in the graph setting mimic one set of approaches to proving Courant’s theorem,

so we provide a short sketch of the proof here. This proof is replicated from [4], and interested readers are

directed there for details.

Sketch of proof. Let Ω1,Ω2, ...,Ωk,Ωk+1, ... be the nodal domains of φk, and define new functions

ψ j :=


φk|Ω j , on Ω j,

0 on Ω \Ω j.

One can then choose coefficients αi such that the function f =
∑k

j=1 α jψ j is orthogonal to each eigenfunction

φ1, ..., φk−1. By construction f is zero on Ωk+1. But then f can be shown to be an eigenfunction for λk, and
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since f is zero on a domain with a limit point the maximum principle implies f must be identically zero.

Thus φk can have no more than k nodal domains. �

The key thing here was that by restricting the eigenfunction to each nodal domain, we got a family of

eigenfunctions for the same eigenvalue as φk. In the graph setting we use this same approach, though the

discrete nature of graphs requires some care.

A corollary of this result is that the first eigenfunction for each nodal domain is signed (i.e. does no

change sign), the first eigenvalue is simple, and higher eigenfunctions must be signed. A graph analogue of

this result is proved in Proposition 3.1.4.

Proposition 2.1.3 ([4, §1.5 Cor. 2]). With the same terminology as in Theorem 2.1.2,

• φ1 has constant sign;

• λ1 has multiplicity 1;

• λ1 is characterized as being the only eigenvalue with eigenfunction of constant sign.

The upper bound in Courant’s theorem theorem 2.1.2 can only be attained finitely many times, as shown

by Pleijel in [8]. The argument is nice: for a domain Ω ⊂ R2, an eigenvalue/eigenfunction pair (λk, ψ), and

nodal domains Ω1, ...,ΩN , one has the inequality Area(Ωi)
j20π

≥ 1
λn

, where j0 is the smallest positive zero of the

Bessel function J0. This result is a consequence of well known shape/eigenvalue optimization results, for

which [9] is a modern reference. Adding these inequalities over all nodal domains gives Area(Ω)
π j20

≥ k
λk

. Now

assuming that ν(φn) = n for infinitely many n, we can use Weyl’s law to get that Area(Ω)
π j20

≥
Area(Ω)

4π . Recall that

Weyl’s law in two dimensions states

lim
λ→∞

#{λk ≤ λ}

λ
=

Area(Ω)
4π

,

where the eigenvalues in question are for the Laplacian with Dirichlet boundary conditions on Ω [10]. We

have that j0 u 2.404... so j20 > 4, which gives us a contradiction.

On the other hand, there exist eigenfunctions with arbitrarily large index that have few nodal domains.

One procedure to construct such eigenfunctions is by perturbing the Laplacian by an L2(Ω) potential function

V , so that we work with eigenfunctions of ∆ + V on Ω with appropriate boundary conditions. Another

procedure that does not require changing the operator or domain is the following: let Ω = [0, π] × [0, π]
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Figure 2.1: The nodal domains of φt(x, y) = (1 − t) sin(k1x) sin(l1y) + t sin(k2x) sin(l2y) for (left to right)
t = 0, 0.25, 0.5, 0.75, 1.0. The nodal counts are, respectively, ν(φt) = 8, 8, 8, 10, 28.

and let ψ1 = sin(k1x) sin(l1y), ψ2 = sin(k2x) sin(l2y) be two eigenfunctions of ∆ with Dirichlet boundary

conditions, such that k2
1 + l21 = k2

2 + l22. One such choice is k1 = l2 , k2 = l1; another family of choices

is integers expressible as the sum of two squares [11]. Consider the 1-parameter family of eigenfunctions

ψt = (1 − t)ψ1 + tψ2 for t ∈ [0, 1]. As t varies from 0 to 1, the nodal domains of ψ1 will merge and transform

until they align with the nodal domains of ψ2 when t = 1. Depending on the choice of ki, li the number of nodal

domains of ψt for t ∈ (0, 1) may get as low as 2, but in general will be significantly fewer than the number

of nodal domains for ψ1 or ψ2 for ki, li large. As an explicit example, take k1 = 1, l1 = 8, k2 = 4, l2 = 7:

ν(ψ1) = 8 but ν(ψ2) = 28, so ψt for varying t will have nodal counts between 8 and 28; see Figure 2.1.

Despite these observations, methods to compute nodal counts exist. We survey those next.

2.1.2 Continuum Spectral Flows

The main result followed in this thesis towards counting nodal domains, and nodal deficiencies, comes

from [12]. Before discussing said result, we discuss aspects of the Dirichlet-to-Neumann operators for
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domains which play a fundamental role.

The Dirichlet-to-Neumann takes as input a(n appropriate) function f defined on the boundary of Ω, finds

the harmonic extension u of f (so that ∆u = 0 in Ω and u|∂Ω = f ), and then computes the outgoing normal

derivative of u along ∂Ω (denoted ∂νu := ∇u · n with n the outgoing normal to ∂Ω). Roughly speaking, the

Dirichlet-to-Neumann operator associates a charge placed on the boundary of a domain ( f ) to the induced

current across the boundary (∂νu). The spectral theory of Dirichlet-to-Neumann operators is an active area of

research, and [13] is a recommended reference.

The Dirichlet-to-Neumann operator lets us associate boundary value information on the nodal sets to the

behaviour of eigenfunctions for a perturbed Laplacian acting on the domain. The spectrum of these perturbed

Laplacians turns out to count the nodal deficiency as the strength of the perturbation increases. One version

of this result is as follows:

Theorem 2.1.4. The nodal deficiency of φk is precisely the number of eigenvalues of the bilinear form

Bσ(u, v) :=
∫

Ω

∇u · ∇vdµ + σ

∫
Γ

uvdS

that cross λk + ε for ε > 0 sufficiently small, as 0 ≤ σ→ ∞. Here Γ = {x : φk(x) = 0} ∩Ω, the nodal set of φk

in the interior of the domain. Equivalently, the number of nodal domains of φk is exactly the multiplicity of

the first Dirichlet eigenvalue on Ω \ Γ, which are precisely the eigenvalues of the limiting bilinear form B∞.

The motivation is an observation from [14] that the nodal deficiency is the Morse index (number of

negative eigenvalues) of a certain operator acting on certain optimal partitions of the domain. This observation

was extended in [15] to incorporate the spectrum of Dirichlet-to-Neumann operators in counting the nodal

deficiency. The connection between the Dirichlet-to-Neumann operator and Bσ is by considering the nodal

set as the “boundary”: Bσ induces operators Lσ = ∆ with Dirichlet boundary conditions on ∂Ω and the

condition
∂u
∂ν+

+
∂u
∂ν−

+ σu = 0

across the nodal set Γ of the eigenfunction in question, where ν± is the normal vector to Γ leaving the

positive/negative nodal region. This last condition is precisely that of a function being an eigenfunction

of the Dirichlet-to-Neumann operator though, namely u is an eigenfunction of Bσ if and only if u is a

Dirichlet-to-Neumann eigenfunction over Γ.
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The proof of Theorem 2.1.4 is straightforward once the right framework is established, and hinges on two

lemmas involving the eigenvalues of Bσ. Let γk(σ) denote the eigenvalue branch of the kth eigenvalue of ∆,

and uk(σ) the corresponding eigenfunction branch (which exist by general perturbation theory [16]). Let ε be

a small parameter. Then

1. γk(σ) = λk + ε (the eigenvalue branch crosses λk) if and only if −σ is an eigenvalue of the Dirichlet-to-

Neumann operator, and

2. γ′k(σ) =
∫
Γ

uk(σ)2dS ≥ 0; if γk(0) is in the spectrum of B∞ then γk(σ) is constant, otherwise γk(σ) is

increasing.

Together these lemmas give that the eigenvalue branches are increasing and can only cross λk with

positive slope. The eigenvalue branches that converge to λk are in one-to-one correspondence with the nodal

domains of the original eigenfunction, establishing the result. In this thesis, we replicate this proof strategy

for the corresponding bilinear forms on graphs. In particular, compare item (2) above to Lemma 3.2.3 and

Lemma 3.3.5.

Generalizations of the spectral flow mentioned here exist, in which the spectrum of families of bounded,

self-adjoint, Fredholm operators are studied. These constructions trace back to Atiyah-Patodi-Singer [17],

and have seen extensive use in global analysis, mathematical physics, symplectic geometry, and more. See

[18] for an introduction and overview of spectral flows in a functional analytic context, and particularly §5.2

for an overview of the spectral flow literature.

2.2 Motivation from Spectral Graph Theory

Spectral graph theory is an approach to analyzing graphs using eigenvalues and eigenvectors of certain

matrices. Classically the graph’s adjacency matrix and graph Laplacian have been used, but recent general-

izations study objects called generalized Laplacians (Definition 3.1.1). While the underlying ideas are the

same as for the continuum, graphs are fundamentally combinatorial objects and thus pose unique challenges

and opportunities with respect to their spectral properties. One such challenge is defining a notion of nodal

domain and nodal set. In this section we recast the nodal domain theorems from Section 2.1 into the graph

setting, and highlight a variety of ideas and proof methods from recent years.

There are plenty of good introductions to spectral graph theory, each with a different flavour. For general

algebraic graph theory with some spectral tools, see [19]. For an introductory network science treatment

(with more spectral tools), see [20]. Three monographs focused on spectral graph theory, with a heavily
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analytic flavour, are [21, 22, 23].

2.2.1 Weak and Strong Nodal Domains

Here we consider, for simplicity, an unweighted graph and the standard graph Laplacian. The graph G

consists of vertices V and edges E, with adjacency matrix A having a 1 in the (i, j) and ( j, i) entries whenever

(i, j) ∈ E, zeros elsewhere. The degree di of vertex i is the number of edges adjacent to i, and we collect these

degrees in a diagonal matrix D. The graph Laplacian of G is defined to be L = D − A. Since A and D are

symmetric, L is symmetric as well, and so its spectrum consists of real eigenvalues. Moreover, L is positive

semi-definite, since 〈u, Lu〉 =
∑

(i, j)∈E(ui − u j)2, and so its spectrum consists of non-negative eigenvalues. The

constant vector is in the kernel of L, so 0 is indeed in the spectrum of L.

In the continuum we were primarily interested in eigenfunctions of the Laplacian, and that interest carries

over to the graph setting. Let (λk, ψ) be the kth eigenvalue/eigenvector pairs of L, with λ0 = 0. The kinds of

results we are interested in are analogues of Theorem 2.1.2, though one difficulty quickly becomes apparent:

the notion of a “zero” for an eigenvector is less well-defined. Clearly if an eigenvector is zero on a vertex, we

consider that to be a true zero. If the eigenvector changes sign across an edge, however, we do not have a

single point in the graph that represents where the zero “should be” across said edge. If we collect all zero

vertices and sign-change edges and call that our nodal set, we’re left working with a collection of objects that

may contain a mix of vertices and edges.

In the graph setting it turns out to be more fruitful to work directly with the nodal domains of the

eigenvector, rather than the nodal sets. Moreover we focus on two kinds of nodal domains: weak nodal

domains are the maximally connected subgraphs H of G such ψiψ j ≥ 0 for all vertices i, j ∈ H, and strong

nodal domains are the connected components of the subgraph H of G for which ψiψ j > 0 for all vertices

i, j ∈ H [24]. Intuitively, all vertices in a weak nodal domain must have the same sign or be zero. An

equivalent definition for strong nodal domains is that they are the connected components of the subgraph for

which sign-change edges ((i, j) such that ψiψ j < 0), zero edges ((i, j) such that ψiψ j = 0), and zero vertices

(i such that ψi = 0) are removed. For both weak and nodal domains we have analogues of Courant’s nodal

domain theorem:

Theorem 2.2.1 ([22, Theorem 3.1],[25, Theorem 2]). For any connected graph G, the kth eigenfunction φk

of the graph Laplacian L has at most k weak nodal domains and at most k + r − 1 strong nodal domains,

where r is the multiplicity of λk.
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Proofs of this theorem are generally fairly direct utilizing matrix-theoretic formulations. We highlight the

approach in [22], in which the inequality for strong nodal domains is attained by showing that if ψ has m

nodal domains, then λm < λk+r, so

ν(ψ) = m ≤ k + r − 1 < k + r.

The approach is heavily inspired by the proof of 2.1.2.

Another approach utilizes objects called magnetic Laplacians, for which the framework is the following:

for each edge (i, j) we associate an edge wi j, and for each oriented edge we associate a complex number Bi j

so that B ji = Bi j. The collection of all oriented edges is denoted E. The magnetic Laplacian, for the choice of

magnetic field B, is the matrix LB defined by the quadratic form

qB(u) :=
1
2

∑
(i, j)∈E

wi j|ui − eBi j
√
−1u j|

2 −
∑
i∈V

Vi|ui|
2,

where Vi =
∑

(i, j)∈E wi j gives a notion of degree for each vertex. Note that LB is Hermitian, and so has real

spectrum

λ1(LB) ≤ λ2(LB) ≤ · · · ≤ λ|V |(LB).

See [26] for more on this construction.

The main result is another version of the nodal domain counts for Laplace eigenvectors:

Theorem 2.2.2 ([27, Theorem 1.1]). Let β1 be the minimal number of edges of G that need to be removed to

turn G into a tree. If λk is simple and ψ is never zero, then the number of edges Zψ over which ψ changes sign

satisfies k − 1 ≤ Ze ≤ k − 1 + β1.

Moreover, the nodal defect δ(ψ) = Zψ − ν(ψ) is the Morse index (number of negative eigenvalues) of the

operator Λk : B→ λk(LB), and Λk is smooth at its critical point B ∼ 1.

A direct corollary is that k − β1 ≤ ν(ψ) ≤ k, where ν(ψ) is the number of strong nodal domains of ψ. For

proofs and further discussion, see [28, 27, 26].

2.3 Spectral Methods in Data Analysis: Spectral Partitions

In this section, we touch on one family of recent approaches for using spectral information in the

analysis of data: using eigenfunctions of certain Laplacians to split a domain into two pieces, i.e. a clustering
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procedure. We start our discussion with a recent application of these ideas: gerrymandering and computational

redistricting. This motivates the introduction of ratio cuts of graphs, after which we discuss the continuum

analogue of these kinds of cuts.

2.3.1 Congressional redistricting and analogous partitions

Gerrymandering is process by which voter districts are drawn in a way to provide unfair political

advantages to one party or another. While gerrymandering has been around since the 19th century, recent

advances in computational methods and social awareness have resulted in mathematicians taking an active

role in aiding legislatures in the quantification and analysis of gerrymandered regions. For a survey on

computational approaches and their uses in gerrymandering cases in North Carolina see [29].

Recent approaches to computational redistricting treat this as a graph partitioning problem: given

counties/tracts/blocks in a state, construct a graph that encodes geographic relationships between the coun-

ties/tracts/blocks and then split said graph into the desired number of districts. While states have a number of

rules for what valid districts can look like, trying to enumerate all possible partitions is still unwieldy. For

example, Minnesota is estimated to have over 6 × 1018 possible Senate redistricting plans just by merging

House districts; the entire space of plans is estimated to have over 10100 possibilities [30]. This shows that

direct enumeration is not a viable approach, and smarter methods for exploring the space of partitions are

necessary. One of the challenges in computational redistricting is quantifying the various rules about what

may or may not constitute valid districts; see [31, §3.2] for a discussion of some common rules. We briefly

mention that other approaches to detecting gerrymandering based on the geometry of districts have been

proposed and analyzed [32].

One recent approach to exploring the space of redistricting plans is the recombination algorithm, or

ReCom for short [31]. Let G be the dual graph for counties/tracts/blocks in a state, where vertices correspond

to counties/tracts/blocks, and suppose G is partitioned into k disjoint sets G1,G2, ...,Gk, which we want to

interpret as voter districts. The simplest version of ReCom chooses two sets Gi,G j, takes the subgraph of G

induced by the vertices Gi ∪G j, and splits the induced subgraph into two new sets G̃i, G̃ j. One possibility for

cutting is via spanning trees: choose a spanning tree T of the induced subgraph and cut T into two disjoint

trees G̃i, G̃ j in such a way that the population of each half is approximately equal. In practice if the cut results

in two halves with one half’s population significantly larger than 50%, then the proposed tree is rejected and

a new tree is sampled. In this discussion we will assume that no trees are rejected, while still aiming for as

close to a 50 − 50 population split as possible.
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In the rest of this section we focus on more theoretical aspects of this kind of partitioning. Let T be some

spanning tree over precincts V , and suppose each vertex v ∈ V has an associated weight p(v). ReCom seeks

two disjoint subtrees T1,T2 such that the quantity 1
|T1 ||T2 |

is minimized, where |Ti| :=
∑

v∈Ti p(v). This ratio

ensures that the population of each T1 and T2 cannot be too small, forcing each to be roughly the same size.

If instead of two subtrees one seeks k disjoint sets to partition T , the objective functional
∑k

i=1
1
|Ti |

. A direct

computation shows that for k = 2 minimizing this last functional over a connected component V1 is equivalent

to minimizing 1
|T1 ||T2 |

. We note that this construction is specific to the case of a tree with unweighted edges.

Another generalization of the balanced-cut discussed above is the ratio cut of a graph. Let G = (V, E,w, p)

be a graph with edge-weight function w and vertex-weight function p. The ratio cut of G is the quantity

min
Ec⊂E

∑
e∈Ec w(e)
|V1||V2|

(2.1)

where V1 and V2 are the two connected components of the graph with the edges Ec removed. For a tree

with unweighted edges, Ec only consists of a single edge and so
∑

e∈Ec w(e) = 1 as analyzed above. The

minimizing set Ec is called the cut set. If instead one wants a partition into k subsets, the relevant minimization

problem is

min
V1,V2,...,Vk

k∑
i=1

∑
e∈E(Vi,Vc

i ) w(e)

|Vi|
,

where E(Vi,Vc
i ) consists of all edges with one vertex in Vi and one vertex in Vc

i , and V1 ∪ · · · ∪ Vk = V [33].

For k = 2, this problem boils down to the ratio cut of a graph.

To get a sense of how ReCom and the ratio cut work in practice, we run the following numerical

experiment:

1. sample 1000 points from the rectangle [0, 1] × [0, 2],

2. construct a graph G on the sampled points,

3. compute the ratio cut of G.

For ReCom we construct a minimal spanning tree (MST) on the sampled points, where the edge-weights are

Euclidean distances. MSTs are defined to be spanning trees on the underlying graph for which the sum of

edge-weights is minimal, and computationally efficient approaches exist to compute the MST for a given

graph [34, 35]. For the ratio cut, we use a self-tuning heat kernel approach to build a similarity matrix using
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Figure 2.2: The ReCom cuts for 1000 points sampled uniformly from the rectangle [0, 1] × [0, 2]. One of the
cuts exhibits an interface that cuts the domain into two nearly 1 × 1 squares, three of the cuts have interfaces
that cut the domain diagonally but still roughly in half, and one of the cuts seems to cut the domain into a
quarter and three-quarters.

points’ nearest neighbors [36, 37]; more details on this self-tuning construction can be found in Chapter 4.

Figure 2.2 shows the results of ReCom using the MST for five different samples of 1000 points. The left-

most plot gives what we might call a “reasonable” partition, especially when trying to keep the redistricting

motivation in mind; the cut results in two domains that are each close to being a 1× 1 square. The middle-left

and right two plots show more generic behaviour of these ReCom cuts, namely a slanted, bumpy interface

between the two domains. The middle plot shows behaviour we want to argue is non-generic, namely that the

interface does not intersect the two long axes. Analyzing the behaviour of ReCom with MSTs, particularly in

the setting of points sampled from rectangles, is the subject of ongoing work.

If instead of a MST we use a ratio cut to partition these sampled points, we get remarkably regular cuts

that all seem to cut the rectangle into two 1 × 1 squares; see Figure 2.3. The motivation here is that ratio cuts

incorporate local-neighborhood information among vertices when computing the cut edges, whereas a MST
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Figure 2.3: The ratio cuts for the same sampled points as in Figure 2.2, in which the graphs are constructed
with edges connecting a vertex to its 11 nearest-neighbors. Unlike the ReCom approach, the ratio cut exhibits
more regular interfaces that each cut the domain into two 1 × 1 squares.

does not account for local connections and just relies on a covering property for the graph. The underlying

network, as mentioned, has edges between a point and its 11 nearest-neighbors. This construction is useful

for numerical reasons: since each row of the network’s adjacency matrix has on average 11 non-zero entries,

solving the relevant systems of equations to find the ratio cut is computationally more feasible. Moreover,

enough edges originating from each vertex are present to preserve notions of local connectivity; i.e. we do

not run the risk of having multiple connected components in the sparsified network.

The results of Figure 2.3 suggest that as more points get sampled from [0, 1] × [0, 2] and the graph “fills

in” the domain, we should expect to recover “filled in” squares in the limiting partition. We discuss this

limiting behaviour, and its consistency, next.

2.3.2 1-Laplacian partitions

To discuss the limiting behaviour of these graph ratio cuts, we need to know what the right kind of

limiting object should look like. Recall that the k-partition ratio cut of a graph G asks for k disjoint subgraphs
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G1, ...,Gk so as to give a solution to minV1,...,Vk

∑k
i=1

∑
e∈E(Vi ,V

c
i ) w(e)

|Vi |
. We can interpret the numerators as lengths

of the boundaries between Vi and Vc
i , and the denominators as volumes of the regions Vi. This suggests

the following continuum formulation: let Ω ⊂ Rn be an open, bounded domain, and for a subset X ⊂ Ω set

∂ΩX = ∂X ∩ Ω, namely ∂ΩX is the boundary of X that sits in the interior of Ω. Then the k-partition ratio cut

for the continuum can be read as the solution to

min
Ω1,...,Ωk

k∑
i=1

Area(∂ΩXi)
Vol(Xi)

,

with the condition that Ω = ∪k
i=1Ωi; see [38] for a discussion that incorporates non-uniform sampling/measures.

Note that when k = 2, this problem reduces to

min
Ω1

Vol(Ω)Area(∂ΩΩ1)
Vol(Ω1)Vol(Ω \Ω1)

. (2.2)

With the target minimization problem identified, we can state an informal version of the main result about

consistency of the ratio cut.

Theorem 2.3.1 ([38]). Suppose we have a collection of points Xn = {x1, ..., xn} sampled uniformly from Ω.

Pick a family of scales εn that tend to 0 with some prescribed rate, a non-negative, non-increasing, L2([0,∞))

kernel function k0, and construct a graph Gn on Xn with edge-weights wi j := k0
(
‖xi−x j‖

ε

)
. Then as n→ ∞, the

solutions V1,V2 for the problem Equation (2.1) on G converge to the solutions Ω1,Ω \Ω1 for the problem

Equation (2.2).

The ratio cut can be realized in the continuum as the nodal set of the first 1-Laplacian eigenfunction on Ω.

The 1-Laplacian is the operator ∆(1) defined by the variational formulation 〈 f ,∆(1) f 〉 :=
∫
Ω
|∇ f |dx, and its

first eigenvalue is

λ1 = inf∫
Ω

f dx=0

∫
Ω
|∇ f |dx∫

Ω
| f |dx

.

Call the minimizing function f . Then since
∫
Ω

f dx = 0, f must change sign in Ω and hence have a nodal set

Γ. Let S = {x ∈ Ω : f (x) > 0}. An alternative characterization of λ1 shows that the Γ must minimize the ratio

cut
Len(Γ)Area(Ω)

Area(S )Area(Ω \ S )

([2, §3.1]).
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Figure 2.4: Two nearly rectangular domains with optimal cuts indicated. On the left, the cut occurs in a
neighborhood of the axis of (near) symmetry of the domain. On the right, even though the boundary of the
domain is perturbed in a sinusoidal way the cut occurs in nearly the same spot. Reproduced with permission
from [2].

Theorem 2.3.1 established that graph ratio cuts converge to continuum ratio cuts for certain graph

constructions, and the last paragraph gave a characterization of the ratio cut as the nodal set of a (1-)Laplace

eigenfunction. The last aspect we address in this subsection is the stability of ratio cuts, which can manifest

in two ways:

1. if the boundary of the domain Ω is perturbed by a small amount, the geometry of the cut should not

significantly change, and

2. if we iteratively cut a domain using ratio cuts, the shapes limit to rectangles away from the boundary.

The first manifestation is illustrated in Figure 2.4. On the left is a domain Ω, and the grey/black regions

correspond to the positive/negative nodal domains of a 1-Laplacian eigenfunction. The interface between

the two regions is referred to as the cut. On the right is another domain whose boundary is a sinusoidal

perturbation of the left domain. Even though the boundary has changed, the nodal domains and the cut seem

to remain largely unaffected.

Figure 2.5 illustrates the second manifestation, wherein iterative cuts seem to result in rectangles, at least

away from the boundary. Of course in the situation that the domain is a rectangle, the cut will occur in a

neighborhood of the axis of symmetry.

The situation in Figure 2.4 can be made precise, in that the stability of the cut can be quantified. This is

the content of [2], where they show that domains whose boundaries are close to the boundary of a rectangle,

the cut is close to a straight line cut along the rectangle’s axis of symmetry. Some specific families of

near-rectangles are studied in depth as well, and the dependence of the cut geometry on the parameters for

the near-rectangles is made explicit.
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Figure 2.5: On the left, a domain with interesting boundary geometry. From left to right, successive ratio cuts
are performed on each of the subdomains. As more ratio cuts are performed, the regions seem to converge to
rectangles. Reproduced with permission from [2].

2.4 Spectral Coordinates

Another family of spectral tools for analyzing data are through manifold learning and dimensionality

reduction techniques. Here, one wishes to find low-dimensional representations for high-dimensional and

messy data that preserve any intrinsic geometric structure. We first provide a case study of community

detection using census data, after which we survey the family of techniques known as diffusion maps.

2.4.1 Manifold Cities

The United States census collects data every 10 years through a nationwide questionnaire, which is used

to redraw voting districts, review funding allocations, etc. The census also runs the American Community

Survey (ACS) program, which collects data from approximately 300,000 addresses monthly and provides

a coarse picture of socioeconomic profiles across America in between census years. Other groups and

organizations may also collect data about who lives where in cities and other communities. The question we

consider here is whether communities of interest can be detected using just socioeconomic data. For example,

can one detect where universities are located within a city by just examining socioeconomic data? In some

sense, the answer is yes.

In [39], the authors propose a method for transforming census data into a network, and using intrinsic

properties of the network to detect notable communities (like student housing regions). Their method is as

follows:

1. Collect census data vectors Xi for each socioeconomic unit, like census tract or block, for the area of

interest,

2. Normalize each Xi by subtracting its mean, and dividing by its standard deviation,
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3. Construct a k-nearest neighbor network where the census units are vertices, and edges connect units if

the corresponding vectors Xi are close enough (in the paper, a k-nearest neighbor network construction

was used),

4. assign edge-weights such that the edge-weight for edge (i, j) is k0(‖Xi−X j‖), where k0 : [0,∞)→ [0,∞)

is non-increasing and satisfies k0(0) = 0 (in the paper, k0(r) = 1
r was used),

5. From the network’s adjacency matrix, construct the normalized graph Laplacian L = I − D−1/2AD−1/2,

where A is the weighted adjacency matrix and D is the diagonal matrix with di =
∑

(i, j)∈E wi j,

6. compute the eigenvectors of L and use these as Euclidean coordinates for the census units.

Once the data has been embedded into (low-dimensional) Euclidean space, standard clustering techniques

can be applied to find communities of interest. In [39], the values of each eigenvector were plotted over

census blocks for Bristol and student residential areas were identified by inspection. While communities

of interest are detectable, there isn’t necessarily any systematic way of picking out communities. Here we

present first steps towards a more systematic framework of community detection using these techniques.

Baltimore is the 30th most populous city in the United States, home to nearly 600,000 people. In addition

Baltimore is home to a number of colleges and universities. Figure 2.6 shows the 199 census tracts that

cover Baltimore, and which make up the census units in our replication of [39]. In this study the 5-year ACS

estimates of census tracts were used [40], which contain a number of estimated variables including: "Total

population, Female" , "Total households, Married-couple family", and "Households with one or more people

65 years and over". For this study we focused on the 467 variables in the ACS5-profile collection.

We convert Baltimore census tract data into a network, with one variation. Instead of choosing k0(r) =

1
r , we chose to use a self-tuned heat kernel approach [36], which almost amounts to choosing k0(r) =

exp(−r2/σ2) with σ a real parameter. In particular, the edge-weight between tract i and tract j is set as

exp(‖Xi − X j‖/(σiσ j)), where σi is the distance from vector Xi to its kth nearest neighbor. Using such

exponentials in constructing edge-weights is popular due to the connection to continuum Laplacians and their

heat kernels, as well as their desirable smoothness properties. Given the weighted adjacency matrix we then

construct the normalized graph Laplacian and compute the first few eigenvectors.

Figure 2.7 shows the first few eigenvector values for each tract, with red tracts having positive value and

blue tracts having negative value. The first eigenvector seems to pick out the central and southern portions

19



Figure 2.6: The 199 US census tracts of Baltimore city county.

Figure 2.7: The first three eigenvectors of the graph Laplacian for the Baltimore census data. The first
eigenvector seems to pick out more affluent regions of Baltimore.
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Figure 2.8: The first eigenvector of the census graph Laplacian on Baltimore (left), and the social variable
it most strongly correlates with (right). The variable in question is “Total population, Black or African
American.”

of Baltimore as one resonant community, and east/west Baltimore as a separate community; the second

eigenvector seems to behave similarly, though not as strongly. These observations correspond loosely to local

observations: central Baltimore tends to be more affluent as compared to east/west Baltimore. Note that

geography was not used to construct the census tract network, just socioeconomic data.

One natural question is what the latent variables are that drive these eigenvectors. Naively we can look for

the census variable that most strongly correlates with the first eigenvector, which in this case is DP05_0065E

“Total population, Black or African American”; Figure 2.8 This approach is insufficient for two reasons

(among others): it ignores the fact that the census variables are not independent, and spurious correlations

can arise. In particular, the second eigenvector most strongly correlates with “Occupied units paying rent,

$2,000 to $2,499”.

A more robust approach to detecting communities in Baltimore might be to incorporate more eigenvectors

and use these values as Euclidean coordinates, on which we can perform standard clustering techniques. In

our analysis we used ten eigenvectors, resulting in an embedding of Baltimore’s census tracts into R10. We

then performed hierarchical clustering using Ward’s linkage [41] to pick out two, three, and four clusters; the

results are displayed in Figure 2.10. Note that in the 2-cluster plot, the grey center of Baltimore is more clearly
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Figure 2.9: The second eigenvector of the census graph Laplacian on Baltimore (left), and the social variable
it most strongly correlates with (right). The variable in question is “Occupied units paying rent, $2,000 to
$2,499”

distinguished from the green east/west Baltimore. Two regions of interest are downtown Baltimore and the

harbour area (center, bottom) and Johns Hopkins University (center). Of note are other communities coloured

grey that are disconnected from the grey central region: Morgan State University is the grey region more

top-right, the University of Maryland Baltimore County is near the grey region in the lower-left, and Glen

neighborhood is included in the grey region in the upper-left. Glen is notable for having a large community

of coexisting African-Americans and Orthodox Jews [42].

This small study suggests that using graph Laplacian eigenvectors can be effective for community, and

other structure, detection in complex data. We give a more complete treatment of this technique, with

Figure 2.10: The results of using hierarchical clustering with Ward’s linkage to cluster Baltimore’s census
tracts.
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references, next.

2.4.2 Diffusion maps

Diffusion maps [43, 44] are a collection of techniques that incorporate “spectral information” to find good

low-dimensional representations of a data set. While other techniques exist that incorporate information about

intrinsic manifold structure [45], we focus on the more spectral techniques in this thesis. These methods work

by studying random walks on a network associated to the data, and use related probabilities to construct a

distance between data points. Since the introduction of this tool a number of adaptations and generalizations

have been proposed for a variety of problems [46, 47, 48, 49].

As mentioned, diffusion maps provide a theoretically robust family of techniques for manifold learning

based on a network’s graph Laplacian. The idea is that if the data comes from some underlying manifold

structure, then a version of the graph Laplacian can be used to approximate a (family of) diffusion process on

the manifold. This diffusion process provides a multi-scale geometric view of the data, wherein points of

the network are “close” or “highly similar” if there is a high probability of a random walker jumping from

one point to another. This then leads to an approximation of the manifold’s Laplace-Beltrami operator, from

which the eigenvalues and eigenvectors/eigenfunctions can be used to embed data in low-dimensional spaces.

The pipeline for using diffusion maps is as follows: after choosing a parameters α ∈ [0, 1] and t ∈ [0,∞),

1. Construct the graph Laplacian L = D − A for the network,

2. Set L(α) = D−αLD−α,

3. Normalize by setting L = D−αL(α),

4. Compute the eigenvalues/eigenvectors (λ j, u j) of L,

5. Set the diffusion coordinates for the ith data object as Ψi = (λt
1u1,i, λ

t
2u2,i, · · · , λ

t
kuk,i), where k is the

dimension of the desired embedding dimension.

By construction the eigenvalues of L satisfy 1 = λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 for a network of N vertices, so the

λt
i for small i are the largest such quantities. Even though L is not symmetric, L is conjugate to a symmetric

matrix via D−α/2LDα/2, and so the spectrum is real. Important to note here is that we’re not working with the

graph Laplacian directly, but rather a random-walk Laplacian associated to the network. This random-walk

Laplacian makes it possible to define a metric on the network by saying two points are close if a random walk

is more likely to jump from one to another; this notion is made precise next.
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Suppose we have a random walk process on the network, where the probability of ending up at vertex

y from vertex x in time t is denoted pt(y|x). As t → ∞, we can expect the random walk to converge to a

stationary distribution φ0(y), i.e. pt(y|x)→ φ0(y) as t → ∞. We can incorporate this stationary distribution

into a metric on the network by setting

D2
t (x1, x2) = ‖pt(y|x1) − pt(y|x2)‖2φ0

:=
∑

y

(pt(y|x1) − pt(y|x2))2 1
ψ0(y)

.

The weight 1
ψ0

encodes local densities of points through the stationary distribution, and the resulting distance

is small when the random walk is highly likely to jump between x1 and x2 in time t; see [44] for more details.

In practice, let ψk be the kth eigenvector of L(α) and define Ψt(x) = (λt
1ψ1(x), ..., λt

kψk(x)), where x is a

vertex of the network and k is the desired dimension of the embedding space. Ψt are the diffusion embeddings

at scale t, and their utility is in the fact that the Euclidean distance between diffusion embeddings is exactly

the diffusion distance between vertices:

Theorem 2.4.1. D2
t (x1, x2) = ‖Ψt(x1) − Ψt(x2)‖2 =

∑
j≥1 λ

2t
j (ψ j(x1) − ψ j(x2))2.

The proof is a straightforward computation after rewriting the eigenvectors ψ j in terms of the random-walk

Laplacian L; see [43]. While the parameter α did not explicitly show up in the theorem, α plays an important

role in determining what the underlying continuum operator should be. If the network is constructed on

a point cloud sampled from a manifold M, then as more points are sampled: when α = 0 we recover the

Laplace-Beltrami operator for M with a potential term, when α = 1
2 we recover a Fokker-Planck diffusion

process on M, and when α = 1 we recover the Laplace-Beltrami operator without a potential. In our work,

we primarily work with either α = 1
2 or α = 1.

In practice, not all eigenvectors ψ1, ..., ψ|V | need to be used since λ j → 0. The user has freedom to use the

first k dominant eigenvectors if the embedding dimension is provided, or ask that the diffusion embeddings

preserve the diffusion distance up to scale δ. Explicitly, set s(δ, t) = max{l ∈ N : |λl|
t > δ|λ1|

t}. Then taking

the first s(δ, t) eigenvectors ensures the diffusion embedding distances and diffusion distances are within δ of

each other [44].

A related manifold learning technique is t-Distributed Stochastic Neighbor (t-SNE), which seeks embed-

ding coordinates for vertices of a network based on an asymmetric random-walk between vertices [50]. The

first step of t-SNE essentially constructs (directed) edge-weights by a similar construction to L from the
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diffusion map pipeline, and these directed edge-weights are symmetrized to result in an undirected network

with edge-weights pi j between vertices i and j such that pii = 0 and
∑

j pi j = 1 for all i. Next, Euclidean

vectors yi for each vertex i are determined to minimize the Kullback-Liebler divergence

KL(P||Q) :=
∑
i, j

pi j log
pi j

qi j
,

where qi j := η(yi,y j)∑
k
∑

l,k η(yk ,yl)2 for an appropriate kernel η. t-SNE is particularly used for data visualization when

the vectors yi are chosen from R2 or R3, but it can be incorporated into a statistical pipeline with other tools.

Since its introduction, t-SNE has been shown to be effective at a number of clustering and data visualization

tasks [51, 52] with some theoretical guarantees [53].
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CHAPTER 3

The Graph Spectral Flow

In this chapter we prove two versions of the main theorem, Theorem 3.2.6 and Theorem 3.3.11, which

state that the kth eigenvector of a graph’s generalized Laplacian L can have at most k (strong) nodal domains.

While the two proofs are similar, there are some nuances arising from different underlying graph structures

that we highlight. Section 3.1 introduces the family of generalized graph Laplacians we use and establishes

some general properties of their spectra. Section 3.2 proves the graph nodal count theorem using the edge-

based construction, while Section 3.3 proves the same theorem using the vertex-based construction; these are

all slight generalizations of the results in [3]. Examples and applications are provided in the next chapter.

3.1 Definitions

Suppose G = (V, E,w) is a weighted graph without multiple edges. Vertices will generally be denoted

by natural numbers, edges will be 2-tuples of vertices and will be denoted as either (i, j), ei j, or just e, and

edge weights will be written w(e),w((i, j)), or wi j; w(e) = 0 means the edge e is not present in the graph.

We only consider graphs with non-negative edge weights. The adjacency matrix of G is the |V | × |V | matrix

W = (wi j)(i, j)∈E , and the degree matrix is the diagonal |V | × |V | matrix D = (
∑

j wi j)i∈V . For more on graph

Laplacians and their spectra, see [21] or [54].

The results that appeared in [3] were stated just for the unnormalized graph Laplacian of a graph. In this

chapter we work instead with generalized Laplacians, which we define next. While the results are the same,

working in this framework allows us to better incorporate spectral information into a statistical framework

when studying actual data.

Definition 3.1.1. A generalized Laplacian L on a graph G = (V, E,w) is the |V | × |V | matrix with Li j = −wi j

whenever (i, j) ∈ E, Li j = 0 whenever (i, j) < E, and the diagonal terms Lii are free to take any value.

A generalized Laplacian is diagonally dominant if the corresponding bilinear form

utLu =
∑

(i, j)∈E

wi j(diui − d ju j)2 +
∑
i∈V

Qiu2
i
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has Qi ≥ 0 and di > 0 for all i ∈ V for u ∈ R|V |.

This definition of a generalized Laplacian includes a number of familiar graph Laplacians, including the

ordinary graph Laplacian, the Dirichlet graph Laplacian, and the normalized graph Laplacian. The graph

Laplacian is easily recovered by setting each Qi = 0 and di = 1.

Definition 3.1.2. Given a subset S ⊂ V, the Dirichlet Laplacian corresponding to S , denoted L(S ), is the

ordinary graph Laplacian L of G with rows and columns corresponding to V \ S removed.

Let ES be the edges of G with both vertices in S . The Dirichlet Laplacian is diagonally dominant, since

utL(S )u =
∑

(i, j)∈ES

wi j(ui − u j)2 +
∑
i∈S

Qiu2
i

with Qi =
∑

j∈V\S wi j. Since Qi ≥ 0, L(S ) is diagonally dominant.

Definition 3.1.3. The normalized graph Laplacian L(n) is the matrix L(n) = D−1/2LD−1/2 = I−D−1/2AD−1/2.

The normalized graph Laplacian is also diagonally dominant, since

utL(S )u =
∑

(i, j)∈E

wi j

(
ui
√

wi
−

u j
√w j

)2

,

where wi =
∑

(i, j)∈E wi j.

The coefficients di in the expansion
∑

(i, j)∈E wi j(diui − d ju j)2 +
∑

i∈V Qiu2
i generally appear when consid-

ering a generalized Laplacian of the form T tLT , with T invertible. In this case T is interpreted as a change of

basis, and we see utT tLTu = (Tu)tL(Tu), so that the effective bilinear form is still L.

Note that given a diagonally dominant generalized Laplacian, adding a diagonal matrix with positive

entries preserves the diagonally dominant property. Sometimes such matrices are referred to as Schrodinger

operators on graphs; see for example [28].

The first result of this section is a graph analogue for eigenvalues/eigenfunctions of the Laplacian acting

on a domain with Dirichlet boundary conditions; compare with Proposition 2.1.3.

Proposition 3.1.4. Suppose G is connected and L is a diagonally dominant generalized Laplacian on G.

Then the first eigenvector φ0 of L is signed (φ0 is always everywhere positive or everywhere negative), is

nowhere zero, and λ0 is a simple eigenvalue.
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Proof. The variational characterization for eigenvalues [16, Chapter 1, §10] tells us that φ0 satisfies

φt
0Lφ0 = min

u∈R|V |,u,0
utLu = min

u∈R|V |,u,0

∑
(i, j)∈E

wi j(diui − d ju j)2 +
∑
i∈V

Qiu2
i .

We start by assuming φ0 is nowhere zero. Suppose φ0 changes sign across an edge e = (i, j), and without

loss of generality suppose φ0,i > 0 and φ0, j < 0. Then (diφ0,i − d jφ0, j)2 > (diφ0,i − d j(−φ0, j))2, so by flipping

the sign of φ0, j we further minimize φt
0Lφ0. Since G is connected, this process can be performed across all

sign-change edges to ensure φ0 has the same sign on every vertex.

Now suppose φ0 has a zero, say φ0,i = 0. Then perturbing φ0 at vertex i by a small ε will decrease

φt
0Lu, and so such a minimizer can have no zeros. A straightforward calculation shows that perturbing by

ε =

∑
(i, j)∈Ei did ju j

Qi+
∑

(i, j)∈Ei d2
i

results in such a minimum when considering just perturbations at vertex i.

If λ0 was not simple, i.e. λ0 = λ1, then again by the variational characterization we would have φ1 and φ0

be two orthogonal eigenvectors that are signed on G. This is impossible, and so λ0 must be simple. �

Similar proofs of this result specific to Dirichlet Laplacians can be found in the literature, e.g. [55] and

[22, Lemma 6.1].

We note a straightforward consequence of this last theorem, due to the fact that eigenvectors must be

orthogonal:

Corollary 3.1.5. For G and L as above, the eigenvectors φ1, φ2, ... must be signed.

The rest of this chapter focuses on the nodal domains of a fixed eigenvalue/eigenvector pair (λk, ψ), for

which we make two assumptions:

Assumption 3.1.6. In case λk has multiplicity greater than 1, k will be the first index for which λk appears

in the spectrum, i.e. k = min{l : Lψ = λlψ}.

Assumption 3.1.7. The coefficients di in utLu =
∑

(i, j)∈E wi j(diui − d ju j)2 +
∑

i∈V Qiu2
i are identically 1.

Assumption 3.1.8. The eigenvector ψ is non-zero on each vertex of G. In Section 3.2.3 we discuss what can

happen if ψ is zero on some vertices, though this situation turns out to be non-generic; see the introduction of

[27] for an extended discussion.

This first assumption ensures that our bounds are not affected by eigenvalue multiplicities. The second

assumption simplifies notation, and ensures we can write (Lu)i =
∑

(i, j)∈E wi j(ui − u j) + Qiui. The third
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Figure 3.1: On the left, four (strong) nodal domains are present (blue vertices have negative sign, red vertices
have positive sign, and white vertices are zero). No matter how the graph is perturbed so that the center vertex
acquires a sign, two of the nodal domains will merge to result in three nodal domains in total (as in the right).

assumption greatly simplifies notation and the ensuing arguments, and can always be enforced by (1)

perturbing the graph Laplacian by a diagonal matrix Q, or (2) perturbing the edge weights to “shift” a zero

off of a vertex. Note that this perturbation may significantly change the number of weak and strong nodal

domains: suppose four strong nodal domains/two weak nodal domains meet in an “X” with the center of the

“X” a zero vertex. Performing the aforementioned perturbation will cause two of the strong nodal domains to

merge, while splitting one of the weak nodal domains into two separate components; see Figure 3.1 for an

illustration of this example.

In light of this example, many times we may not want to perturb the graph at all. In these situations we

can modify the constructions to allow for the possibility of ψ having zeros, as described in section 3.2.3. We

also mention that, by Assumption 3.1.8, the nodal domains we consider are what are called strong nodal

domains in the literature [22].

3.2 The Edge-based Flow

In this subsection we replicate the edge-based spectral flow constructed in [3], with the necessary

modifications for the diagonally dominant generalized Laplacian framework. Section 3.2.1 contains the

main construction, and Section 3.2.2 proves some basic properties of the flow as well as the main theorem

Theorem 3.3.11. Section 3.2.3 discusses modifications to account for zero-vertices.

3.2.1 The Construction

The idea for the edge-based flow is to perturb L along the edges for which an eigenvector ψ changes

sign, in such a way that imposes a “zero boundary condition” across said edges. As the strength of the

perturbation increases the sign-change edges effectively disappear, and resulting bilinear form feels a graph
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whose connected components are the nodal domains of ψ.

Definition 3.2.1. Given an eigenvalue/eigenvector pair (λk, ψ) of the generalized Laplacian L, define the

sign change edges E± = {(i, j) : ψiψ j < 0}. For each (i, j) ∈ E±, define the rank-1, |V | × |V | matrices Pi j,

in which the 2 × 2, (i, j) block is wi j

q ji 1

1 qi j

 with qi j := − ψi
ψ j

and all other terms are zero. We define the

edge-based spectral flow as the collection of eigenvalues associated to the family of bilinear forms

Bσ(u, v) :=〈u,Lv〉 + σ〈u,
∑

(i, j)∈E±

Pi jv〉

=〈u,

L + σ
∑

(i, j)∈E±

Pi j

 v〉.

We set P =
∑

(i, j)∈E± Pi j and Lσ = L + σP, so that Bσ(u, v) = 〈u,Lσv〉. The edge-based spectral flow is

the curve (λ1(σ), λ2(σ), ..., λ|V |(σ)) with σ ∈ [0, 1] where each λi is an eigenvalue branch of Bσ.

Note that setting σ = 1 gives L1,i j = 0 for (i, j) ∈ E±, reflecting the notion that the sign-change edges

have disappeared from the graph.

3.2.2 Properties of the Flow

We next present a series of lemmas that together constitute a proof of Theorem 3.2.6. As mentioned

earlier, these proofs are replicated from [3] and adapted to our generalized Laplacian framework. Recall that

(λk, ψ) is an eigenvalue/eigenvector pair of L.

Lemma 3.2.2. The eigenvalue λk is in the spectrum of Lσ for 0 ≤ σ ≤ 1, and Lσψ = λkψ. In particular the

λk eigenvalue branch is constant.

Proof. Note that ψ is in the kernel of each Pi j, since

Pi jψ = wi j

q jiψi + ψ j

ψi + qi jψ j

 = wi j

−ψ j + ψ j

ψi − ψi

 =

00
 .

Thus,

Lσψ = Lψ + σPψ = Lψ = λkψ.

�
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Lemma 3.2.3. The eigenvalues of Bσ, which are the eigenvalues of the matrix Lσ, are non-decreasing

eigenvalue branches in σ for 0 < σ < 1 .

Proof. Suppose (λ, u) = (λσ, uσ) is an eigenvalue/eigenvector pair of Bσ with 〈u, u〉 = 1, so that

Bσ(u, v) = λ〈u, v〉 ∀v ∈ R|V |.

Each λσ is an analytic curve in σ, branching from the eigenvalue/eigenvector pairs of L0 = L; this follows

from standard perturbation theory [16]. Differentiating with respect to σ gives

Bσ(u, v)′ = B′σ(u, v) + Bσ(u′, v), and (λ〈u, v〉)′ = λ′〈u, v〉 + λ〈u′, v〉.

By the variational formulation for eigenvalues we must have Bσ(u, u′) = λ〈u, u′〉, and so

λ′〈u, u〉 + λ〈u′, u〉 = B′σ(u, u) + Bσ(u′, u),

which in turn gives

λ′ = B′σ(u, u) = 〈u,L′σu〉 = 〈u, Pu〉 .

Now 〈u, Pi ju〉 = (√q jiui +
√qi ju j)2 ≥ 0, so 〈u, Pu〉 ≥ 0 and λ′ ≥ 0 as desired. �

Lemma 3.2.4. Since L1 corresponds to the graph G with sign-change edges deleted, L1 consists of ν(ψ)

nodal domains G1,G2, ...,Gν(ψ). Denote this graph by Gψ, and let Lψ be the graph Laplacian of Gψ

with entries (i, j) ∈ E± set to zero, and diagonal entries unaffected. Note that Lψ = L1. The spectrum

0 < λψ1 ≤ λ
ψ
2 ≤ · · · ≤ λ

ψ
|V | of Lψ consists of:

1. λψ1 = · · · = λ
ψ
ν(ψ) = λk, and

2. λψ
ν(ψ)+1 > λk.

Restricting ψ to each Gi gives a signed eigenvector of λψ1 , so the eigenspace of L1 for λψ1 is the span of

ψ|G1 , ..., ψ|Gν(ψ) . Moreover, eigenvectors of higher eigenvalues must be signed on each connected component

of Gψ.
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Proof. To see that λψ1 > 0, suppose λψ1 = 0 with u an eigenvector. Then utL1u = λ
ψ
1 utu, which written out is

∑
(i, j)∈E

wi j(ui − u j)2 +
∑
i∈V

Qiu2
i +

∑
(i, j)∈E±

wi j(
√

q jiui +
√

qi ju j)2 = 0.

Every term on the left-hand side is non-negative, so equality holds only for the trivial solution u ≡ 0. Thus,

λ
ψ
1 > 0.

We show λ
ψ
1 = · · · = λ

ψ
ν(ψ) = λk by producing ν(ψ) eigenvectors of L1, each with eigenvalue λk.

Proposition 3.1.4 implies that each eigenvector is signed, so any eigenvalue beyond λψ
ν(ψ) must be strictly

greater than λk.

The ν(ψ) eigenvectors in question are precisely the restrictions of ψ to each nodal domain Gi:

(Lψψ|Gi) j =
∑

( j,m)∈E

wψ, jmψ j −
∑

( j,m)∈E\E±

wψ, jmψm + Q jψ j

=
∑

( j,m)∈E±

wψ, jmψ j +
∑

( j,m)∈E\E±

wψ, jm(ψ j − ψm) + Q jψ j

=
∑

( j,m)∈E±

w jm(1 + qm j)ψ j +
∑

( j,m)∈E\E±

w jm(ψ j − ψm) + Q jψ j

=
∑

( j,m)∈E±

w jm(ψ j − ψm) +
∑

( j,m)∈E\E±

w jm(ψ j − ψm) + Q jψ j

=
∑

( j,m)∈E

w jm(ψ j − ψm) + Q jψ j

= λkψ j,

In the right-hand side of the first line, the first term is the multiplication of ψ j with the diagonal entry of Lψ,

the second term is the off diagonal terms collected, and the third term is the potential piece. �

The next limit classifies the behaviour of eigenvalue branches when they cross λk. In particular, crossings

occur only with positive slope, since otherwise the eigenvalue branch turns out to be in the spectrum of both

L and L1 and hence constant.

Lemma 3.2.5. Let (λσ, u) be an eigenvalue/eigenvector pair of Lσ for 0 ≤ σ ≤ 1, where u depends on σ. If

λ′σ∗ = 0 for some σ∗ then λσ is constant and in the spectrum of L1. Moreover if λσ = λk then we also have

that u is a multiple of ψ.
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Proof. Recall that

λ′ = 〈u, Pu〉 =
∑

(i, j)∈E±

wi j(
√

q jiui +
√

qi ju j)2.

If λ′ = 0 then ui =
ψi
ψ j

u j for each (i, j) ∈ E±, and Pu = 0. But then Lσ∗u = Lu = λσ∗u, so λσ∗ is in the

spectrum of L with u a corresponding eigenvector. Thus λσ is constant on the interval [0, σ∗], and since these

eigenvalue branches are analytic, λσ is constant and in the spectrum of L1.

If moreover λσ∗ = λk, by Lemma 3.2.4 u is a linear combination of the restrictions ψ|Gk with Gk a nodal

domain of ψ. For a fixed Gk, we can find a constant α such that u|Gk = αψ|Gk . The condition ui =
ψi
ψ j

u j for

each (i, j) ∈ E± shows u|Gl = αψ|Gl whenever Gl and Gk are connected by a sign-change edge. Since G is

connected, u = αψ on all of G. �

Recall that the main result we are interested in is a graph analogue of the continuum spectral flow. Here

we restate the main theorem for the edge-based flow and prove it with the string of lemmas from above.

Theorem 3.2.6. Suppose (λk, ψ) is the kth eigenvalue/eigenvector pair of L, λk is simple, and that ψ is

non-zero at each vertex. Define

Bσ(u, v) = 〈u, Lv〉 + σ〈u,
∑

(i, j)∈E±

Pi jv〉

where E± = {(i, j) : ψiψ j < 0}, Pi j = wi j

q ji 1

1 qi j

, and qi j = −
ψi
ψ j

. Then as σ→ 1,

1. there are k − ν(ψ) eigenvalues of Bσ which cross λk, and

2. the number of eigenvalues of Bσ that converge to λk is exactly the number of nodal domains ν(ψ) of ψ.

Proof. By Lemma 3.2.3 the eigenvalue branches of Lσ are non-decreasing, and so are either constant or

strictly increasing by Lemma 3.2.5. Lemma 3.2.4 tells us that precisely ν(ψ) eigenvalue branches of Lσ

converge to λk, so δ(ψ) = k − ν(ψ) of the eigenvalues below λk will cross λk with positive slope and hence

converge to eigenvalues strictly greater then λk. �

3.2.3 Inclusion of Zero-Vertices

In case the eigenvector ψ does have zeros on G, we can modify the spectral flow construction to give

us the correct nodal count. The key idea is to replicate the Dirichlet Laplacian construction from the start,
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though we show by example that a construction similar to the vertex-based flow of Section 3.3 does not work.

The correct variant is described shortly after.

Given (λk, ψ), we define the sign change edges E± = {(i, j) : ψiψ j < 0} as before but now keep track of

the zero edges E0 = {(i, j) : ψiψ j ≤ 0}. As before we define the rank-1, |V | × |V | matrices Pi j = wi j

q ji 1

1 qi j


with qi j := − ψi

ψ j
and (i, j) ∈ E±. For each (i, j) ∈ E0, set P′i j = wi j

0 1

1 0

 . Vertices for which ψ is zero are

called zero vertices, and this collection we denote V0. One candidate for a zero-vertex modified edge-based

spectral flow utilizes the bilinear form

Bσ(u, v) : = 〈u,Lv〉 + σ〈u,
∑

(i, j)∈E±

Pi jv〉 + σ〈u,
∑

(i, j)∈E0

P′i jv〉

= 〈u,

L + σ
∑

(i, j)∈E±

Pi j + σ
∑

(i, j)∈E0

P′i j

 v〉.

We set P =
∑

(i, j)∈E± Pi j +
∑

(i, j)∈E0 P′i j and Lσ = L + σP, so that Bσ(u, v) = 〈u,Lσv〉. The edge-based

spectral flow is the curve (λ1(σ), λ2(σ), ..., λ|V |(σ)) with σ ∈ [0, 1] where each λi is an eigenvalue branch of

Bσ; compare to Definition 3.3.4.

As in Lemma 3.2.2, this flow satisfies 〈ψ,Lσψ〉 = λk for all σ. Unlike Lemma 3.2.3, however, this

flow is not non-negative. Intuitively, the form B1 imposes Dirichlet boundary conditions by re-weighting

appropriate edges in a way that effectively deletes the sign-change edges from the graph. When zero edges

are incorporated, the form B1 deletes these edges too but does not delete the zero vertex.

As an example of this phenomena, consider the complete graph on three vertices K3 with the eigenvector

ψ = (1,−1, 0). We compute the ordinary graph Laplacian

L =


2 −1 −1

−1 2 −1

−1 −1 2

 , P12 =


1 1 0

1 1 0

0 0 0

 , P
′
13 =


0 0 1

0 0 0

1 0 0

 , P
′
23 =


0 0 0

0 0 1

0 1 0

 .
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Figure 3.2: The edge-based spectral flows for K3 and ψ = (1,−1, 0); the flow on the left incorporates the term∑
(i, j)∈E0 P′i j, while the flow on the right has the rows and columns corresponding to zeros of ψ deleted from

Lσ. Not all branches in the flow on the left are non-decreasing, and hence Lemma 3.2.3 does not hold for this
construction.

Putting these pieces together gives

Lσ =


2 −1 −1

−1 2 −1

−1 −1 2

 + σ


1 1 1

1 1 1

1 1 0

 .

Figure 3.2 shows the spectral flow for Lσ when the zero vertex is kept in Lσ (left) and when the zero vertex is

deleted (right). The spectral flow with a zero vertex is clearly not non-decreasing, and this behaviour can be

attributed to the presence of an extraneous connected component of Gψ corresponding to the zero. Deleting

the zero vertex from Lσ results in the correct flow studied in Section 3.2.2.

Though the spectral flow is not non-negative, this new B1 can still be used to compute nodal domains and

nodal deficiencies. In practice, if ψ is zero on vertices of G, we construct Lσ = L + σ
∑

(i, j)∈E± Pi j and then

delete from Lσ the rows and columns corresponding to zero vertices. The multiplicity of λk in the spectrum

of L1 is the desired nodal count, as before.

3.3 The Vertex-based Flow

While the edge-based flow can compute nodal deficiencies of Laplacian eigenvectors, it cannot directly

incorporate zero vertices from the graph. In this section we provide a second construction of a graph spectral

flow called the vertex-based flow which adds “ghost vertices” corresponding to zeros of the eigenvector, and

results in the same nodal counts supplied by Theorem 3.2.6. One key use of this framework is in establishing

consistency of the graph spectral flow, wherein the addition of ghost vertices provides a clearer bridge to the
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continuum nodal sets; this is the subject of ongoing work.

3.3.1 The Construction

In this subsection we give the basic construction of a ψ-subdivision graph, in which ghost points are

added where the zeros of ψ “should” appear. We also give a means for extending vectors on the original

graph, interpreted as functions on the graph, to the ψ-subdivision, and show that ψ is still a λk eigenvector of

the ψ-subdivision’s graph Laplacian.

Definition 3.3.1. Given an eigenvector ψ of the diagonally dominant generalized Laplacian L we define

• the sign-change edges E± ⊂ E as those edges (i, j) such that ψiψ j < 0;

• the ghost vertices Vgh, defined by adding a vertex 0i j to G for each (i, j) ∈ E±:

Vgh = {0i j : (i, j) ∈ E±}.

The ψ-subdivision graph Gψ,σ of G is the new graph

Gψ,σ = (Vψ, Eψ,wψ,σ),

depending on a parameter σ ∈ [0,∞), with

• Vψ := V ∪ Vgh,

• Eψ := E ∪ {(i, 0i j), (0i j, j)}(i, j)∈E± , and

• wψ,σ(e) =



w(e), e ∈ E \ E±,

1
1+σw(e), e ∈ E±,

σ
1+σw(ẽ)(1 + q ji), e = (i, 0i j), ẽ = (i, j), q ji := −ψ j

ψi
> 0.

Finally, we write Lψ,σ for the corresponding diagonally dominant generalized Laplacian of Gψ,σ.

As mentioned, the idea behind this construction is to explicitly incorporate the zeros that should appear

across a sign-change edge into the graph itself. The parameter σ determines the strength of the sign-change

edges versus the strength of edges that are adjacent to the added zeros, which we refer to as ghost vertices.
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We would like to say that ψ is an eigenvector of Lψ,σ as well, though ψ is not defined on Gψ,σ. The next

definition provides a means of extending vectors/functions on G to vectors/functions on Gψ,σ, which is a

“correct” way if we want ψ to extend to an eigenvector; this is the content of Lemma 3.3.3.

Definition 3.3.2. A vector f ∈ R|V |, interpreted as a function on G, can be extended to f̃ ∈ R|V |+|Vgh |,

interpreted as a function on Gψ,σ, by setting f̃i = fi for i ∈ V, and f̃0i j = ai j fi + a ji f j for 0i j ∈ Vgh with

ai j = 1
1+qi j

.

Lemma 3.3.3. Suppose (λk, ψ) is an eigenvalue/eigenvector pair for the graph G, i.e. Lψ = λkψ. Then

Lψ,σψ̃ = λkψ̃ for all σ.

Proof. This is a straightforward computation. Because ψ is an eigenvector with eigenvalue λk, we have

(Lψ)i =
∑

(i, j)∈E

wi j(ψi − ψ j) +
∑
i∈V

Qiψi = λkψi.

If the vertex i is not in Vgh, then

(Lψ,σψ̃)i =
∑

(i, j)∈Eψ

wi j,σ(ψi − ψ j) + Qiψi

=
∑

(i, j)∈E

wi j,σ(ψi − ψ j) +
∑

(i,0i j)∈Eψ\E

σ

1 + σ
wi j(1 + q ji)(ψi − ψ0i j) + Qiψi

=
∑

(i, j)∈E\E±

wi j(ψi − ψ j)

+
∑

(i, j)∈E±

wi j

[
1

1 + σ
(ψi − ψ j) +

σ

1 + σ
(1 + q ji)ψi

]
+ Qiψi

=
∑

(i, j)∈E\E±

wi j(ψi − ψ j)

+
∑

(i, j)∈E±

wi j

[
1

1 + σ
(ψi − ψ j) +

σ

1 + σ
(ψi − ψ j)

]
+ Qiψi

=
∑

(i, j)∈E

wi j(ψi − ψ j) + Qiψi = λkψi = λkψ̃i.
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Otherwise

(Lψ,σψ̃)0i j =
σ

1 + σ
wi j(1 + q ji)(ψ0i j − ψi) +

σ

1 + σ
wi j(1 + qi j)(ψ0i j − ψ j)

=
−σwi j

1 + σ
((1 + q ji)ψi + (1 + qi j)ψ j)

= 0 = λkψ̃0i j ,

and so Lψ,σψ̃ = λkψ̃. �

The definition of the vertex-based spectral flow is similar to the edge-based flow, with the key differences

being that (1) zero/ghost vertices are explicitly incorporated, and (2) σ→ ∞. The rank-1 perturbations from

the edge-based construction are directly incorporated into the ψ-subdivision graph, though one can tease out

the edge-based flow from this construction; see Section 3.3.3.

Definition 3.3.4. Define the family of bilinear forms Bσ on Gψ by

Bσ(u, v) = 〈u,Lψ,σv〉 + σ〈u, v〉Vgh .

Here, 〈u, v〉Vgh is the inner product for Gψ restricted to Vgh.

Written out in full,

Bσ(u, v) =
∑

(i, j)∈E\E±

wi j(ui − u j)(vi − v j) +
∑
i∈V

Qiuivi

+
∑

(i, j)∈E±

wi j
1

1 + σ
(ui − u j)(vi − v j)

+
∑

(i, j)∈E±

wi j
σ

1 + σ

[
(1 + q ji)(ui − u0i j)(vi − v0i j)

+ (1 + qi j)(u j − u0i j)(v j − v0i j)
]

+ σ
∑
i∈Vgh

uivi.

3.3.2 Properties of the Flow

The properties of the vertex-based flow are all analogous to the edge-based case. Since the vertex-based

flow has a different underlying graph, more can be said and understood about the topology of the nodal
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sets. As such, the portions of this subsection that are distinct all relate to the inclusion of ghost vertices.

Theorem 3.3.11 is the vertex-based analogue of Theorem 3.2.6, and the rest of this subsection builds to its

proof.

We start with the vertex-based analogue of Lemma 3.2.3.

Lemma 3.3.5. The eigenvalues of Bσ are non-decreasing eigenvalue branches of the eigenvalues of Lψ,0, for

0 < σ < ∞.

Proof. The proof is the same as in the edge-based flow case from Lemma 3.2.3: we have

λ′ = B′σ(u, u) = 〈u,L′ψ,σu〉 + 〈u, u〉Vgh ,

and since 〈u, u〉 ≥ 0 we just need 〈u,L′ψ,σu〉 ≥ 0. This is a straightforward computation though:

〈u,L′ψ,σu〉 =
∑

(i, j)∈Eψ

w′i j,σ(ui − u j)2

=
∑

(i, j)∈E

(
1

1 + σ

)′
wi j(ui − u j)2

+
∑

(i,0i j)∈Eψ\E

(
σ

1 + σ

)′
wi j(1 + q ji)(ui − u0i j)

2

=
∑

(i, j)∈E±

(
1

1 + σ

)′
wi j(ui − u j)2 +

(
σ

1 + σ

)′
wi j(1 + q ji)(ui − u0i j)

2

+

(
σ

1 + σ

)′
wi j(1 + qi j)(u j − u0i j)

2

=
∑

(i, j)∈E±

wi j

(1 + σ)2

(
− (ui − u j)2 + (1 + q ji)(ui − u0i j)

2

+ (1 + qi j)(u j − u0i j)
2
)

=
∑

(i, j)∈E±

wi j

(1 + σ)2 qi j(u0i j + q jiu0i j − q jiui − u j)2.

Since wi j, qi j are both non-negative we conclude 〈u,L′ψ,σu〉 ≥ 0 and so λ′ ≥ 0. �

We next introduce the notion of boundary sets for graphs. In [3] this framework is necessary to introduce

the Dirichlet Laplacian, which we already have via Proposition 3.1.4. Instead, we use this notion of boundary

set to adapt Lemma 3.2.4 into the vertex-based framework. This is necessary since in the edge-based flow,
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the underlying combinatorial graph for L1 has ν(ψ) connected components. In our construction, however,

the underlying graph of Lψ,∞ has a single connected component; this is due to edges connecting the nodal

domains to ghost vertices. As such, we need a framework to discuss connected components that intersect at

ghost vertices and nowhere else.

Definition 3.3.6. For a graph G = (V, E,w) and a subset of vertices S , we define:

• the vertex boundary ∂VS as the vertices in V \ S that are adjacent to some vertex in S , and

• the edge boundary ∂ES as the edges in E that connect a vertex in ∂VS to a vertex in S .

The space of vectors u ∈ R|V | that are zero on ∂VS ⊂ V is denoted D∗S or just D∗ when S is clear, i.e.

D∗ = {u ∈ R|V | : u|S = 0}.

Finally, the Dirichlet subgraph induced by S , or the D-subgraph induced by S , denoted S (D), is the

subgraph of G induced by the vertices in S , together with the vertices of ∂VS and edges of ∂ES ; explicitly,

the induced subgraph is (S ∪ ∂VS , E|S ∪ ∂ES ,w|E|S∪∂ES ).

For more on vertex and edge boundaries of graphs, see [21, Chapter 8]

Definition 3.3.7. Given a graph G = (V, E) and a subset of vertices S , we call the induced D-subgraph of S

Dirichlet disconnected if there are subgraphs S 1, S 2 of G such that S (D) = S (D)
1 ∪ S (D)

2 and S 1 ∩ S 2 ⊂ ∂VS .

Otherwise, S is Dirichlet connected if S is not Dirichlet disconnected and both S 1 and S 2 are connected

subgraphs of G. We will write this last term as D-connected.

This next lemma is the vertex-based analogue of the first half of Lemma 3.2.4, and follows quickly

from Proposition 3.1.4. Note that this version is stated for a single (D-)connected component, whereas

Lemma 3.2.4 was stated for an entire, possibly disconnected, graph.

Lemma 3.3.8. Suppose that the subgraph S (D) is D-connected with Laplacian LS (D) induced from the

Laplacian L of G. Then

1. the eigenvector φ1 corresponding to λ(D)
1 is signed,

2. λ(D)
1 is simple, and
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3. higher index eigenvectors φi cannot be signed, implying a signed eigenvector must correspond to the

first Dirichlet eigenvalue.

Proof. That S (D) is D-connected tells us that the vertices S are a connected subgraph of G. This lemma then

follows directly from Proposition 3.1.4, since

utLS (D)u =
∑

(i, j)∈E|S

wi j(ui − u j)2 +
∑
i∈V

 ∑
(i, j)∈∂ES

wi j

 u2
i +

∑
i∈V

Qiu2
i

is a diagonally dominant generalized Laplacian. �

The following proposition forms the second half of the vertex-based analogue of Lemma 3.2.4, and shows

that the λk eigenspace of Lψσ is spanned by restrictions of ψ to each D-connected component of Gψ,∞.

Proposition 3.3.9. Given a graph G and a nowhere zero Laplace eigenvector ψ with eigenvalue λ, decompose

the nodal domains S = {i : ψi > 0} ∪ {i : ψi < 0} of the ψ-subdivision Gψ,∞ into D-connected graphs

S 1, S 2, ..., S n. Then the restriction of ψ to each S l, ψ|S l , is a Dirichlet eigenvector of S (D) with eigenvalue λ.

Moreover, ψ|S l is signed, and so λ is the first Dirichlet eigenvalue for each S l.

Proof. Recall that Gψ,∞ contains the original vertices of G together with ghost points 0i j for each (i, j) ∈ E±,

and each edge (i, j) ∈ E± is replaced by two edges (i, 0i j) and (0i j, j), with respective edge weights (1 + q ji)wi j

and (1 + qi j)wi j.

For a D-connected component S l, define

ψ|S l =


ψi, i ∈ S l,

0, i < S l,

which is the restriction of ψ to S l, followed by an extension by zero to the rest of the graph. We claim that

ψ|S l is an eigenvector of Lψ,∞ restricted to S l, which implies that ψ|S l is also a Dirichlet eigenvector of S l.

In general, for any vector u that is zero on Vgh we have

(Lψ,∞u)i =
∑

(i, j)∈E\E±

wi j(ui − u j) +
∑

(i, j)∈E±

wi j(1 + q ji)(ui − u0i j) + Qiui
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For i ∈ S l,

(Lψ,∞ψ|S l)i =
∑

(i, j)∈E\E±

wi j((ψ|S l)i − (ψ|S l) j)

+
∑

(i, j)∈E±

wi j(1 + q ji)((ψ|S l)i − (ψ|S l)0i j) + Qiψi

=
∑

(i, j)∈E\E±

wi j(ψi − ψ j) +
∑

(i, j)∈E±

wi j(1 + q ji)ψi + Qiψi

=
∑

(i, j)∈E\E±

wi j(ψi − ψ j) +
∑

(i, j)∈E±

wi j(ψi − ψ j) + Qiψi

=
∑

(i, j)∈E

wi j(ψi − ψ j) + Qiψi = λψi = λ(ψ|S l)i,

where the sum over E± can be empty or not depending on if i has neighbors in Vgh. This shows each ψ|S l

is a Dirichlet eigenvector of S l with eigenvalue λ. Moreover, each S l is a D-connected subgraph of Gψ,∞

corresponding to a nodal domain {i : ψi > 0} or {i : ψi < 0}, and so each ψ|S l is signed.

Thus we have constructed signed Dirichlet eigenvectors for λ on each of the D-connected components of

S (D), establishing that λ is the first Dirichlet eigenvalue for each S l. �

Next up is the vertex-based analogue that eigenvalue branches must cross with positive slope.

Lemma 3.3.10. If λ′σ∗ = 0 for some σ∗ ∈ (0,∞) then the corresponding eigenvalue branch λσ is constant

and λσ is in the spectrum of Lψ,∞. Moreover if λσ = λk then the eigenvector u is a constant multiple of ψ.

Proof. This proof follows mutatis mutandis as in the proof of Lemma 3.2.5: from λ′ = 0 we have 〈u, L′ψ,σu〉 =

0 and 〈u, u〉Vgh = 0. The latter equality forces u0i j = 0 for (i, j) ∈ E±, after with the former imposes ui =
ψi
ψ j

u j

across (i, j) ∈ E±:

〈u, L′ψ,σu〉 =
∑

(i, j)∈E±

wi j

(1 + σ)2 qi j(u0i j + q jiu0i j − q jiui − u j)2

0 =
∑

(i, j)∈E±

wi j

(1 + σ)2 qi j(−q jiui − u j)2

which shows ui =
ψi
ψ j

u j, as claimed. �

We are now able to prove the main theorem of this chapter in the vertex-based flow case, i.e. that by

adding ghost vertices and appropriate edge weights, we are still able to count the nodal domains of an
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eigenvector ψ.

Theorem 3.3.11. As σ→ ∞, the eigenvalues of Bσ converge to the Dirichlet eigenvalues of the D-subgraph

S (D) = ({i : ψ > 0} ∪ {i : ψ < 0})(D). The number of D-connected components of S (D) is the multiplicity of λk

for B∞, and the nodal deficiency of ψ on Gψ,∞ is δ(ψ) = k − ν(ψ). Note that, by construction, there will be

k − ν(ψ) + |Vgh| eigenvalue branches that cross λk as σ→ ∞.

Proof. As σ → ∞, the eigenvalue branches of Bσ are increasing or constant, and so either cross λk with

positive slope or are eigenvalues of Lψ,∞. Since the λk eigenspace of Lψ,∞ has multiplicity ν(ψ), exactly ν(ψ)

eigenvalue branches of Bσ will converge to λk. The remaining k − ν(ψ) + |Vgh| vertices will cross λk, and so

accounting for the eigenvalue branches originating from ghost vertices we conclude that the nodal deficiency

of ψ in G is precisely ν(ψ). �

As mentioned in the proof, the vertex-based flow will have |Vgh| extra eigenvalue branches. If we suppose

that |Vgh| > |V |, then since the branches are non-decreasing and cannot intersect one another we see that all of

the eigenvectors in the λk eigenspace of Lψ,∞ stemmed from indicator vectors of ghost vertices, or from the

0-eigenvector of L (if it exists). This observation suggests that the ghost vertices and their sign-change edges

are intimately related with the eigenspace of λk, though the details of this connection are still unclear.

Open Problem 3.3.12. How do the sign-change edges contribute to the nodal domain counts? For each

eigenvalue branch converging to λ∗, the corresponding eigenvector will converge to a linear combination of

first Dirichlet eigenvectors for each D-connected domain of Gψ: what do the eigenvectors tell us about the

nodal domains, and how does the graph topology determine which sign-change edges give rise to eigenvectors

of Lψ,∞?

In the continuum case, we know which eigenvalue branches will cross λk for domains Ω = [0, απ]× [0, π].

Indeed, for the Laplacian with separable potential L = ∆ + q(x) + r(y), its eigenvalues λm∗n∗ are precisely sums

of eigenvalues λm∗ of ∆ + q(x) and λn∗ of ∆ + r(y) acting on [0, απ] and [0, π] respectively: λm∗n∗ = λm∗ + λn∗ .

The characterization is as follows:

Theorem 3.3.13 ([12, Theorem 1]). The eigenvalue branch of λmn crosses λm∗n∗ if and only if λmn ≤ λm∗n∗

and m > m∗ or n > n∗.

This theorem has a geometric interpretation as well: if Eλm∗n∗ = {(x, y) : x > 0, y > 0, ( x
α )2 + y2 < λm∗n∗} is
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an open ellipse restricted to the first quadrant, and Rλm∗n∗ = {(x, y) : 0 < x ≤ m∗, 0 < y ≤ n∗} is a half-open

rectangle in the same quadrant, then the eigenvalue λmn crosses λm∗n∗ if and only if λm∗n∗ ∈ Eλm∗n∗ \ Rλm∗n∗ .

In general, however, the question of which eigenvalues contribute to crossings, in the continuum and

graph settings, remains open.

3.3.3 Relation between the Edge-based and Vertex-based constructions

While the edge-based and vertex-based flows follow different frameworks, they can be related by

considering the vertex-based flow for two functions f̃ , g̃ : Gψ,σ → R that are extensions of functions f , g on

G. This short subsection makes explicit this relation.

Proposition 3.3.14. Suppose ũ, ṽ : Gψ,σ → R are extensions of functions u, v on G. Then

Bσ(ũ, ṽ) = 〈u,Lv〉 + σ
∑

(i, j)∈E±

ai ja ji

wi j
〈u, Pi jv〉.

Proof. For functions ũ and ṽ that are extensions of functions u, v on G, we have

ũ0i j = ai jui + a jiu j =
1

1 + qi j
ui +

1
1 + q ji

u j,

so the term σ
∑

i∈Vgh ũiṽi of Bσ(ũ, ṽ) becomes

∑
(i, j)∈E±

a2
i juivi + ai ja jiuiv j + ai ja jiu jvi + a2

jiu jv j

=
∑

(i, j)∈E±

ai ja ji(
√

q jiui +
√

q jiu j)(
√

q jivi +
√

q jiv j)

=
∑

(i, j)∈E±

uT pi jv.

Here pi j is the matrix with zeros except at the i, j submatrix, taking the form

pi j =

 a2
i j ai ja ji

ai ja ji a2
ji

 = ai ja ji

q ji 1

1 qi j

 =
ai ja ji

wi j
Pi j.

We also see that
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∑
(i, j)∈E±

wi j
σ

1 + σ

[
(1 + q ji)(ui − u0i j)(vi − v0i j) + (1 + qi j)(u j − u0i j)(v j − v0i j)

]
=

∑
(i, j)∈E±

wi j
σ

1 + σ

[
(1 + q ji)((1 − ai j)ui − a jiu j)((1 − ai j)vi − a jiv j)

+ (1 + qi j)((1 − a ji)u j − ai jui)((1 − a ji)v j − ai jvi)
]
.

=
∑

(i, j)∈E±

wi j
σ

1 + σ

[
a ji(ui − u j)(vi − v j) + ai j(u j − ui)(v j − vi)

]
=

∑
(i, j)∈E±

wi j
σ

1 + σ
(ui − u j)(vi − v j),

since ai j + a ji = 1 and ai j
1+q ji

= 1. We conclude

Bσ(u, v) =
∑

(i, j)∈E\E±

wi j(ui − u j)(vi − v j) +
∑

(i, j)∈E±

wi j
1

1 + σ
(ui − u j)(vi − v j) +

∑
i∈V

Qiuivi

+
∑

(i, j)∈E±

wi j
σ

1 + σ

[
(1 + q ji)(ui − u0i j)(vi − v0i j)

+ (1 + qi j)(u j − u0i j)(v j − v0i j)
]
+ σ

∑
i∈Vgh

uivi

=
∑

(i, j)∈E\E±

wi j(ui − u j)(vi − v j) +
∑

(i, j)∈E±

wi j
1

1 + σ
(ui − u j)(vi − v j) +

∑
i∈V

Qiuivi

+
∑

(i, j)∈E±

wi j
σ

1 + σ
(ui − u j)(vi − v j) + σ

∑
i∈Vgh

uivi

=
∑

(i, j)∈E

wi j(ui − u j)(vi − v j) +
∑
i∈V

Qiuivi

+ σ
∑

(i, j)∈E±

ai ja ji(
√

q jiui +
√

q jiu j)(
√

q jivi +
√

q jiv j)

=〈u,Lv〉 + σ
∑

(i, j)∈E±

ai ja ji

wi j
〈u, Pi jv〉.

�

The constant in front of each 〈u, Pi jv〉 determines when effective Dirichlet boundary conditions are im-

posed across edges (i, j) ∈ E±, so in general we can consider the bilinear form 〈u, Lv〉+σ
∑

(i, j)∈E± ci j〈u, Pi jv〉.

For the choice ci j = wi j, we see that when σ = 1 the Laplacian L1 indicates each edge (i, j) ∈ E± is no longer
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present, which is where the Dirichlet boundary conditions come from. If instead we set ci j to be a constant c,

then as σ increases the term σ
∑

(i, j)∈E± c〈u, Pi jv〉 will impose Dirichlet boundary conditions across each edge

in E± independently, before adding the edge back into the graph. Explicitly, when σ =
wi j
c for (i, j) ∈ E±,

we get a Dirichlet boundary condition imposed just on (i, j) and across no other edges. For this reason it’s

important that the coefficients ci j are adapted to each sign-change edge.

Note as well that if either ψi or ψ j is zero, then the perturbation Pi j does not appear in Lψ,σ, and so

the necessary boundary conditions aren’t imposed across the edge (i, j). This shows that incorporating

zero-vertices needs to be done with care and via a different construction.

This version of the vertex-based bilinear form requires that ũ and ṽ are extensions of vectors u and v,

which in general may not be the case for eigenvectors of Lψ,σ. Nonetheless, as σ → ∞ the vertex-based

flow forces u|Vgh = v|Vgh = 0. This leads to 0 = u0i j = 1
1+qi j

ui + 1
1+q ji

u j, and so ui = −
1+qi j
1+q ji

u j =
ψi
ψ j

u j as in

Lemma 3.2.4.
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CHAPTER 4

Applications to Data

In this section we illustrate the use of nodal domain counts and spectra in analyzing data. The first section

contains relatively simple unweighted graphs and their nodal properties, while the second section explores

(unweighted) Erdős-Rényi graphs, (unweighted) Stochastic Block Models, and (weighted) random geometric

graphs. These examples are meant to build intuition about how intrinsic graph structure affects spectral and

nodal counts. The final section sees the nodal count applied to a popular dataset for machine learning tasks,

the MNIST handwritten digit data set.

In the first few sections we compute the eigenvalues and eigenvectors using the standard graph Laplacian.

Since some authors refer to a graph’s spectrum as the spectrum of the graph’s adjacency matrix, we fix a

definition to be used throughout:

Definition 4.0.1. The spectrum of a graph G is the spectrum of its standard graph Laplacian L = D − A.

4.1 Simple Graphs

Here we consider a family of “simple” graphs as baseline examples. Of note are complete graphs and

interval graphs, which have respectively 2 nodal domains for all eigenvectors, and zero nodal deficiency for

all eigenvectors. The interval graphs in particular mimic the Sturm-Liouville theorem (Theorem 2.1.1) from

the continuum.

4.1.1 Complete Graphs

Definition 4.1.1. The complete graph on n vertices, denoted Kn consists of the vertices {1, 2, ..., n} and all

edges (i, j), 1 ≤ i < j ≤ n.

Proposition 4.1.2. The spectrum of Kn is {0, n, ..., n}, with n repeated n − 1 times.
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Figure 4.1: The second (top row) and third (bottom row) eigenvector of the graph Laplacian for K5, along
with their edge-based (middle column) and vertex-based (right column) spectral flows. In the edge-based flow
for the third eigenvector (middle bottom), only three eigenvalue branches appear; the other two are hidden by
the eigenvalue branch above λ3. Reproduced from [3].

Proof. Note that the graph Laplacian of Kn has structure

L =



n − 1 −1 · · · −1

−1 n − 1 · · · −1
...

...
...

−1 −1 · · · n − 1


,

so 0 is an eigenvalue with eigenvector the constant vector, and a basis for the n-eigenspace is provided by

v1 = (1,−1, 0, ..., 0), v2 = (0, 1,−1, 0, ..., 0), etc. �

Figure 4.1 shows two eigenvectors (left column) for the complete graph on 5 vertices, K5, along with

the edge-based (center column) and vertex-based (right column) spectral flows. Since each vertex of K5 is

connected to every other vertex, any eigenvector will only have two nodal domains. This is indeed captured

by the spectral flows.
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Figure 4.2: The edge-based (middle) and vertex-based (right) spectral flows for the second eigenvector of the
graph Laplacian for C5 (left).

4.1.2 Cyclic Graphs

Definition 4.1.3. The cyclic graph on n vertices, denoted Cn consists of the vertices {1, 2, ..., n} and edges

(i, i + 1), 1 ≤ i < n and (n, 1).

Proposition 4.1.4. The spectrum of Cn is {2 − 2 cos( 2π j
n )}n−1

j=0 . Accordingly, each eigenvalue has multiplicity

2.

Proof. The graph Laplacian of Cn takes the form

L =



2 −1 0 0 · · · −1

−1 2 −1 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 2


.

Let ζ = e
2π
n

√
−1 be an nth root of unity. Then (1, ζ, ζ2, ..., ζn−1) is an eigenvector of L with eigenvalue

2 − ζ − ζ−1, of which we have n such choices of ζ. This procedure explicitly produces n eigenvectors for L

[54]. �

Figure 4.2 shows the second eigenvector of the cyclic graph (left) on 5 vertices, C5, with the edge-based

(center) and vertex-based (right) spectral flows. This eigenvector has two nodal domains, with the positive

nodal domain having three vertices and the negative nodal domain two, and the spectral flows each have two

eigenvalue branches converging to λ2 = 2 − 2 cos( 6π
5 ) ≈ 1.3819... The edge-based flow does not have any

branches that cross λ2, whereas the vertex-based flow has two crossings. One of these crossings corresponds

to a sign-change edge/ghost vertex, whereas the second crossing either corresponds the the other sign-change
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Figure 4.3: The spectral flow for the third eigenvector of the interval graph I7. We display the eigenvector
(left), along with its edge-based (middle) and vertex-based (right) spectral flows. The eigenvector graph
shows three nodal domains, and each of the spectral flows have three eigenvalue branches converging to
λ3 = 2(1 − cos( 2π

7 )) = 0.753.

edge, or the 0-eigenvector of the original graph Laplacian.

4.1.3 Interval Graphs

Definition 4.1.5. The 1D interval graph, or just interval graph, on n vertices, denoted In consists of the

vertices {1, 2, ..., n} and edges (i, i + 1), 1 ≤ i < n.

Proposition 4.1.6. The spectrum of In is {2 − 2 cos( jπ
n )}n−1

j=0 .

Note that In and Cn have the same spectrum. This is not a coincidence, and the proof relies on constructing

eigenvectors for In through eigenvectors of C2n+2.

Proof. The graph Laplacian of Cn takes the form

L =



1 −1 0 0 · · · 0

−1 2 −1 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1


.

The trick is to consider the spectrum of C2n+2, given in Proposition 4.1.4, and for each eigenvalue 2 − ζ − ζ−1

consider the pair of eigenvector (1, ζ, ...) + (1, ζ−1, ...). This eigenvector will have two zeros distance n + 1

apart, and so can be restricted to a 2 − ζ − ζ−1 eigenvector on In. �

See [54] for a slightly expanded discussion.

In Figure 4.3 we see the third eigenvector (left) of I7, along with its edge-based (center) and vertex-based

(right) spectral flows. Again, the flows each have three eigenvalue branches converging to λ3 = 0.753...
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Figure 4.4: The spectral flow for the fifth eigenvector of the interval graph I7,5. The eigenvector is displayed
(left) along with the edge-based (middle) and vertex-based (right) spectral flows. This eigenvector has three
nodal domains, and both the edge- and vertex-based flows have 3 eigenvalues less than or equal to λ5 in the
limit.

Note that in the vertex-based flow, one of the eigenvalue branches that converges to λ3 corresponded to the 0

eigenvector of L, while the other two branches corresponded to sign-change edges/ghost vertices.

Definition 4.1.7. The 2D interval graph on n,m vertices, denoted In,m consists of the nm vertices

{v1,1, ..., v1,m, v2,1, ..., vn,m},

and edges of the form (vi, j, vi+1, j) and (vi, j, vi, j+1) for 1 ≤ i < n and 1 ≤ j < m.

Proposition 4.1.8. For the spectrum of In,m, we can take two eigenvectors φk, ψ j of Ik, I j, with corresponding

eigenvalues λk, λ
′
j, and define a Laplace eigenvector φk ⊗ ψ j on In,m with eigenvalue λk + λ′j.

Proof. The proof follows by an observation that the graph Laplacian of In,m can be constructed by taking a

Kronecker product of the graph Laplacian for In and Im with appropriate identity matrices. Explicitly, let Idn

be the n × n identity matrix, and Ln the graph Laplacian for the interval graph In. Then the graph Laplacian

for the 2D interval graph In,m is Ln ⊗ Idm + Idn ⊗ Lm. Then this Laplacian has eigenvectors φk ⊗ ψ j, of which

there are nm of them, explicitly producing the required nm orthogonal eigenvectors. The corresponding

eigenvalues are λi + λ′j. �

See [54] for more details, where the spectrum is computed for the (slightly) more general Cartesian

product of two graphs.

Figure 4.4 shows the fifth eigenvector of I7,5 (left), corresponding to the eigenvector of I5 in Figure 4.3.

While there are again three nodal domains for the eigenvector, the distribution of eigenvalues is more
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complicated and hence both the edge-based (center) and vertex-based (right) spectral flows have eigenvalue

branches that cross λ5. Nonetheless, three eigenvalue branches converge to λ5 in the limit, matching our

observation that the eigenvector has three nodal domains.

4.1.4 Petersen Graphs

Definition 4.1.9. The generalized Petersen graph GP(n,m) for n ≥ 3 and 1 ≤ m ≤ b n−1
2 c consists of 2n

vertices {a0, ..., an−1, b0, ..., bn−1}, with edges of the form (ai, ai+1), (ai, bi), and (bi, bi+m) for 0 ≤ i ≤ n − 1,

where the sums are considered modulo n.

The familiar Petersen graph is GP(5, 2).

Proposition 4.1.10 ([56, Theorem 2.4]). The spectrum of the adjacency matrix for GP(n,m) consists of

eigenvalues δ2 j, δ2 j+1 that are roots of the quadratic equations

δ2 − (α j + β j)δ + α jβ j − 1 = 0

where α j = 2 cos( 2π j
n ), β j = 2 cos( 2π jm

n ). The eigenvalues for the graph Laplacian L of GP(n,m) are thus

3 − λ̃ for each eigenvalue λ̃ of the adjacency matrix.

Proof. For a full proof of the spectrum of the adjacency matrix, see [56]. We comment that the proof utilizes

the circulant structure of the adjacency matrix quite explicitly, and seeks eigenvectors on the graph constructed

from eigenvectors of the two Cn subgraphs.

That the graph Laplacian spectrum consists of 3− λ̃ for each eigenvalue λ̃ of the adjacency matrix follows

from the 3-regularity of GP(n,m). Namely if A is the adjacency matrix, then L = 3 ∗ Id − A. Hence if v is a λ̃

eigenvector of A, we get that v is a 3 − λ̃ eigenvector of L, as desired. �

We can also explicitly write out what the aforementioned roots/eigenvalues are:

Corollary 4.1.11 ([56, Corollary 2.5]). The spectrum of GP(n,m) consists of eigenvalues

3 − cos
(
2π j
n

)
− cos

(
2π jm

n

)
∓

√√cos
(
2π j
n

)
− cos

(
2π jm

n

)2 + 1,

for 0 ≤ j ≤ n − 1.

Figure 4.5 shows two eigenvectors for GP(7, 3) (left column), along with their edge-based (middle

column) and vertex-based (right column) spectral flows. The top row displays results for the 7th eigenvector,
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Figure 4.5: The 7th (top left) and 8th (bottom left) eigenvectors for the graph Laplacian of GP(7, 3), with
their edge-based (middle column) and vertex-based (right column) flows. Note that, by fig. 4.7 (top right),
the corresponding eigenvalues are equal.

and the bottom row displays results for the 8th eigenvector. By inspection both eigenvectors have three nodal

domains. Looking at the two spectral flows, however, suggests that in the limit we have four eigenvalue

branches converging to the given eigenvalue. In this case, it turns out to that the last crossings occur close to

σ = 1 in the edge-based flow, or much further along in the vertex-based flow. Indeed, Figure 4.6 shows that

final crossings occur close to σ = 0.989 and σ = 600 in the edge-based and vertex-based flows respectively.

This suggests that care must be taken when computing nodal counts, since numerical imprecision and loose

tolerances can lead to miscounting the spectrum, and hence miscounting the number of nodal domains.

Figure 4.6: The crossing in the edge-based and vertex-based flow of the 7th eigenvector of GP(7, 3). In the
edge-based flow the crossing occurs near σ = 0.990, while in the vertex-based flow the crossing occurs near
σ = 600. The edge-based flow indicates the final nodal count is 3, not 4 as when examined from afar.
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4.1.5 Nodal counts

In this short subsection we introduce another statistic to be used extensively when looking at actual data.

For each eigenvalue/eigenvalue vector pair (λk, ψ), we can compute ν(ψ) by counting the multiplicity of λk in

the spectrum of the matrix L + P from Theorem 3.2.6. Collecting each pair (k, ν(ψ)) gives us a summary of

the nodal domains across all eigenvectors, though these pairs depend on the choice of eigenbasis for the λk

eigenspace in the case of repeated eigenvalues. Weighted graphs constructed from point clouds generically do

not have repeated eigenvalues, so in practice this dependence on the eigenbasis does not affect our results. In

our experiments each eigenvector is normalized, and we have chosen to take the eigenvectors “as-is” directly

from the numerical eigenvalue solvers. The NumPy package in Python was used in all of the numerical

examples in this thesis, which uses LAPACK [57].

In Figure 4.7 we show the nodal counts for each eigenvector of the cyclic graph C31 (top left), GP(7, 3)

(top right), I7 (bottom left), and I7,5 (bottom right). Each point in the plots corresponds to a pair (k, ν(ψ)),

and two points are connected by a solid black line if the corresponding eigenvalues are equal. The red line

indicates the upper bound ν(ψ) ≤ k from Theorem 3.2.6 and Theorem 3.3.11. Of particular note are the nodal

count for I7, in which the nodal deficiency is identically 0, and the nodal count for I7,5, which consists of sums

of the eigenvalues for I7 and I5; the 1D interval graphs have nodal counts that conform to the Sturm-Liouville

theorem theorem 2.1.1.

4.2 Random Graphs

In this section we go still work with a number of unweighted graphs, which now have some stochastic

component to them. The first two families of graphs we explore are the Erdős-Rényi graphs and Stochastic

Block Models, after which we explore some geometric graphs constructed on points sampled from Rn.

4.2.1 Erdős-Rényi Graphs

Definition 4.2.1. An Erdős-Rényi graph ER(n, p) on n vertices with probability p is a graph in which each

edge (i, j) exists with probability p.

A related family of graphs also sometimes referred to as Erdős-Rényi graphs, denoted ER(n,M), consist

of n vertices and M total edges. The stochasticity arises in how the graph is chosen: we sample from all

possible graphs with n vertices and M edges uniformly. In our numerical examples we utilize the model

given in Definition 4.2.1. This family of graphs has been studied since at least the mid-1900s, and much

can be said about their asymptotic behaviour (such as properties of the connected components) as n→ ∞
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Figure 4.7: For the graphs C31 (top left), GP(7, 3) (top right), I7 (bottom left), I7,5 (bottom right), plotted
points correspond to pairs (k, ν(ψ)) for a λk eigenvector ψ of the graph’s Laplacian, and black dots are
connected by a line if they correspond to the same eigenvalue. The red line is the curve y = x; an eigenvector’s
nodal deficiency is the vertical distance between the corresponding dot and the red line.

[58, 59]. See also [60] for a textbook treatment of these graphs.

Figure 4.8 shows a single ER(20, p) graph for p = 0.1, 0.3, 0.5, 0.7, 0.9, 0.95. In case a disconnected ER

graph was sampled, we rejected it and sampled again. The nodal counts are displayed directly below each

ER(20, p) graph, and suggest that as the probability that an edge is included tends to 1, the ER graph tends

towards a complete graph. Likewise, for small p we expect the graph to resemble a tree, and the nodal counts

suggest the sampled ER graph is closer to an interval than a complete graph.

4.2.2 Stochastic Block Models

The Erdős-Rényi construction gives one family of graphs that can be informative in reasoning about

the “average behaviour” of graphs. One aspect not captured by this family is the possibility of community

structure, namely groups of vertices that have many edges within the groups and few edges between vertices

of different groups. This model is known as the Stochastic Block Model (SBM) [61], which we discuss next.

Definition 4.2.2. Given n vertices and a choice of k communities, split the vertices into k clusters of possible

variable sizes. For indices 1 ≤ i ≤ j ≤ k, choose a probability pi j that encodes the likelihood of an edge

joining vertices of groups i and j.

Generally we set each pii close to 1, and pi j for i , j smaller than 1. Note that the SBM agrees with the
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Figure 4.8: Various Erdős-Rényi random graphs on 20 vertices with their nodal domain counts; the graphs
correspond to edge probabilities (left to right) p = 0.1, 0.3, 0.5 in the top two rows and p = 0.7, 0.9, 0.95 in
the bottom two rows. As the probability that an edge connects vertices increases, the spectral flow is able to
detect that they are closer to being a complete graph than an interval.
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Figure 4.9: An example of a 2-community SBM, with pii = 0.7 and pi j = 0.1 for i , j. The adjacency
matrix (left) is displayed with yellow pixels indicating an entry of 1, and purple pixels indicating 0. Two
community structures are apparent, corresponding to groups of vertices that have a high probability of being
connected. The corresponding graph is also displayed (middle); the two circular groups of vertices correspond
to the communities and have more edges among vertices in the same community than to vertices in the other
community. The nodal count for each eigenvector is also display (right).

Erdős-Rényi model when n = k, or k = 1, but for n > k an SBM graph may have a quite different structure.

Two communities We start by analyzing a 2-community SBM, for which the within-community edge

probability is pii = 0.7 and the between-community edge probability is pi j = 0.1, i , j. Figure 4.9 shows the

adjacency matrix and graph for one sampled SBM graph. In the adjacency matrix plot, a yellow pixel in the

(i, j) entry indicates an edge between vertices i and j, whereas a purple pixel indicates the edge (i, j) is not

present. The 2-community structure is apparent, corresponding to the two square regions with many yellow

pixels. The two squares with primarily purple pixels correspond to the between-community edges. The graph

is plotted on the right: the two circles of vertices correspond to the two communities in the SBM, and we can

see explicitly the many edges between vertices of the same circles versus the relatively few edges between

vertices of different communities.

Three communities We construct a 3-community SBM similar to the 2-community model above: the

within-community edge probability is pii = 0.7 and the between-community edge probability is pi j = 0.1,

i , j. Figure 4.10 shows the adjacency matrix and graph corresponding to a single sample of a 3-community

SBM. The three communities are visible in the adjacency matrix plot as the three square regions of primarily

yellow pixels.

Five communities Finally, we construct two 5-community SBMs: the first has a macroscopic community

structure of a complete graph on 5 vertices, while the second has a macroscopic community structure of a

cyclic graph on 5 vertices. Since the cyclic and complete graph on 3 vertices coincide, these two 5-community
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Figure 4.10: An example of a 3-community SBM, with pii = 0.7 and pi j = 0.1 for i , j. Similar to
Figure 4.9, the adjacency matrix (left) is displayed with yellow pixels indicating an entry of 1, and purple
pixels indicating 0. Three community structures are apparent, corresponding to groups of vertices that have a
high probability of being connected. The corresponding graph is also displayed (middle); the three circular
groups correspond to the communities and have more edges among vertices in the same community than to
vertices in the other communities. The nodal count for each eigenvector is also display (right).

Figure 4.11: An example of a 5-community SBM, with pii = 0.7 and pi j = 0.1 for i , j. Similar to
Figure 4.9, the adjacency matrix (left) is displayed with yellow pixels indicating an entry of 1, and purple
pixels indicating 0. Five community structures are apparent, corresponding to groups of vertices that have a
high probability of being connected. The corresponding graph is also displayed (middle); the five circular
groups correspond to the communities and have more edges among vertices in the same community than to
vertices in the other communities. The nodal count for each eigenvector is also display (right).

constructions can be thought of as valid generalizations of the 3-community SBM considered above.

For the generalization with a complete graph macroscopic structure, we set the within-community edge

probability to be pii = 0.7 and the between-community edge probability to be pi j = 0.1, i , j. Figure 4.11

shows the adjacency matrix and graph corresponding to a single sample of a 5-community SBM. The five

communities are visible in the adjacency matrix plot as the five square regions of primarily yellow pixels.

Note that in the purple regions of the adjacency matrix there are still significant amounts of yellow pixels,

corresponding to the fact that vertices are able to be connected to vertices in any community.

For the generalization with a cyclic graph macroscopic structure, we set the within-community edge

probability to be pii = 0.7 and the between-community edge probabilities to be pi j = 0 if j , i + 1 or

(i, j) , (1, 5), and pi j = 0.1 otherwise. Figure 4.12 shows the adjacency matrix and graph corresponding to a
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Figure 4.12: An example of a 5-community SBM, with pii = 0.7, pi j = 0 if j , i + 1 or (i, j) , (1, 5),
and pi j = 0.1 otherwise. Similar to Figure 4.9, the adjacency matrix (left) is displayed with yellow
pixels indicating an entry of 1, and purple pixels indicating 0. Five community structures are apparent,
corresponding to groups of vertices that have a high probability of being connected. Of note is the significant
purple, corresponding to the lack of edges between “non-adjacent” communities. The corresponding graph
is also displayed (middle); the five circular groups correspond to the communities and have more edges
among vertices in the same community than to vertices in adjacent communities, and no edges to vertices
in non-adjacent communities. The nodal count for each eigenvector is also display (right); in contrast to
Figure 4.11, the nodal count suggests that this SBM sample is slightly further from a complete graph, since
higher eigenvectors upwards of 7 nodal domains.

single sample of a 5-community SBM. The five communities are visible in the adjacency matrix plot as the

five square regions of primarily yellow pixels. In contrast to the complete graph macroscopic structure, the

adjacency matrix plot has significantly more purple pixels. This corresponds to the inability of vertices in

non-adjacent communities to be connected by an edge.

Though the nodal counts displayed in Figure 4.11 and Figure 4.12 are similar, the former only has 7

eigenvectors with more than two nodal domains while the second has 25 eigenvectors with more than two

nodal domains. This suggests the nodal count can be an effective statistic for networks that are sufficiently

sparsified. We explore this aspect next.

Dependence of the Nodal Count on Between-Community Probabilities Here we revisit the 3-community

SBM and examine the dependence of the nodal count on the between-community probability pi j. Figure 4.13

shows the result of computing 3-community SBMs for various between-community probabilities. As the

probability for an edge between communities increases, higher eigenvectors will have fewer nodal domains,

suggesting that the underlying graph is spectrally closer to a complete graph.

Dependence of the Nodal Count on Between-Community Edge-weights Finally, we explored the de-

pendence of nodal counts on both between-community probabilities and edge-weights. We focused on the

5-community model with probabilities pii = 0.7, pi j = 0.1 for 1 ≤ i < j ≤ 5, and pi j = 0 otherwise; and with
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Figure 4.13: The adjacency matrices (top row), graphs (middle row), and nodal counts (bottom row) for a
family of 3-community SBMs. Each SBM has a within-community edge probability of pii = 0.7, whereas the
between-community edge probabilities are (left to right, columns) pi j = 0.05, 0.1, 0.2, 0.4. As the between-
community edge probability increases, the nodal counts become closer to the nodal count for the complete
graph: the first nodal count has 17 eigenvectors with more than 2 nodal domains, the second nodal count has
8, the third nodal count has 2, and the fourth nodal count has just 1.

edge-weight wi j = 1 for vertices i, j in the same community, and wi j = α for edges between communities.

We then set α = 1, 1
2 ,

1
3 , and 1

4 to explore the dependence of nodal counts on the edge-weights. Figure 4.14

shows the underlying graph in this experiment, while Figure 4.14 shows the nodal counts for the various

between-community edge-weights α.

The 5-community SBM in Figure 4.14 has an underlying structure of a 5-interval graph: each community

of 10 vertices corresponds to a single vertex of the 5-interval graph, and edges between communities

Figure 4.14: A 5-community SBM built to resemble an interval graph on 5 vertices. Left: the underlying
graph. Right: the adjacency matrix for the graph, with yellow pixels corresponding to a 1 in the matrix and
purple pixels corresponding to 0.
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Figure 4.15: The nodal counts for the 5-community SBM in Figure 4.14. Top row, left to right: the
nodal counts for α = 1, 1/2, 1/3, 1/4. Bottom row: the same nodal counts zoomed in to the domain
[0, 50] × [0,max{counts}].

correspond to the 4 edges in the 5-interval graph. As the edge-weights for edges between communities, α,

decreases, the corresponding nodal counts for the graphs are able to detect the underlying interval graph, as

seen in the second row of Figure 4.15; just as the interval graphs are Courant sharp, so are these 5-community

SBMs in the first 5 dominant eigenvectors. This is also verified by looking at the corresponding eigenvector

plots in Figure 4.16; the underlying SBM graph is plotted in 3D on the plane z = 0, and the corresponding

eigenvectors are plotted with eigenvector value as the height. The first eigenvector is constant, the second

eigenvector has a sign-change “community” right near the center, etc.

Also of note is the drop to two nodal domains in the nodal count plots (Figure 4.15), right after the sharp

nodal counts. As seen in the second row of Figure 4.16, the eigenvectors tend to concentrate and localize at

individual vertices, giving rise to the two nodal domains seen in the nodal count plots.

4.2.3 Random kNN Geometric Graphs

The final collection of random graphs we study are random geometric graphs for which only the k-nearest

neighbors are joined by an edge. These graphs are constructed by sampling a number of points from a

bounded domain in Rn and connecting points with an edge if at least one of them is among the k nearest

neighbors of the other. Edge-weights in our construction will be through a self-tuning heat kernel [36], which

incorporates an exponential to replicate the heat kernel of the continuum Laplacian.

Definition 4.2.3. A random kNN geometric graph is constructed from points x1, ..., xN sampled from a

bounded domain Ω ⊂ Rn, in which points are connected with an edge if one is among the k nearest neighbors
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Figure 4.16: The eigenvectors for the 5-community SBM of Figure 4.14, with between-community edge-
weight α = 1/4. Top row, left to right: eigenvectors 1-4. Bottom row, left to right: eigenvectors 5-8. Except
for the first eigenvector, edges are coloured red if they connect two positive vertices, and edges are coloured
blue if they connect two negative vertices. Vertex colour corresponds to function value, with red vertices
positive, blue vertices negative, and cyan vertices close to zero.

of the other, and edge-weights are given by

wi j := exp
−‖xi − x j‖

2

σiσ j

 ,
where σi is the distance from point xi to its Kth nearest neighbor, and K may or may not equal k. This choice

of wi j is the self-tuning heat kernel construction [36].

Generally, practitioners like to use edge-weights wi j = exp
(
‖xi−x j‖

ε

)
, where ε is a parameter that can be

adapted to the data and data analytic task. The idea behind the self-tuning heat kernel is that the data can be

used to effectively choose a parameter ε based on local connectivity between points. Moreover, relatively

small values of K can provide effective constructions for a wide range of data sets, including data in very

high-dimensional spaces. See [36] for more on this construction and related literature.

First, we construct a random kNN geometric graph using the self-tuning heat kernel procedure on points

sampled from [0, 1]. The spectrum of the interval graph IN and the Sturm-Liouville theorem (Theorem 2.1.1)

suggest that the nodal deficiencies of eigenvectors for small index should be zero, and this is indeed the case.

Figure 4.17 shows the first four non-trivial eigenvectors for N = 50, 100, 200 points sampled from [0, 1]. The

corresponding nodal counts are shown in Figure 4.18. Note that the nodal counts are Courant sharp, meaning

they have zero nodal deficiency, for the first approximately N/4 eigenvectors.
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Figure 4.17: The first four non-trivial eigenvectors (left to right columns) of a random kNN geometric graph
built on (top to bottom rows) N = 50, 100, 200 points sampled from [0, 1]. The eigenvector is displayed with
the underlying point cloud. Red/blue edges connect vertices of the same sign, while black edges connect
vertices of different signs. Though all the eigenvectors have the same qualitative properties, the 4th eigenvector
on N = 50 points (top right) has noticeably more sign-change edges cutting across non-sign-change edges.

Figure 4.18: Nodal counts for random kNN geometric graphs corresponding to (left to right) N = 50, 100, 200
points. The nodal counts are Courant sharp, i.e. the eigenvectors have zero nodal deficiency, for indices up to
approximately N/4, after which the nodal count decays in a qualitatively similar way for both N = 100 and
N = 200.
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Figure 4.19: Random kNN geometric graphs corresponding to (left to right columns) N = 50, 100, 200, 500
points sampled from [0, 1] × [0, 1]. The graphs are displayed (top row) above their respective nodal counts
(bottom row). As the number of sampled points increases, the nodal counts seem to peak near the indices
N/4 and N.

Figure 4.20: The first four non-trivial eigenvectors for the random kNN geometric graph on 500 points are
displayed. Even though each point has approximately 7 neighbors, the eigenfunctions seem to match the
profiles we would expect from eigenfunctions of the continuum Laplacian on [0, 1] × [0, 1].

Next we sample points from the unit square [0, 1] × [0, 1], construct a random kNN geometric graph

using the self-tuning heat kernel procedure, and study the nodal counts for graphs as the number of sampled

points increases. Figure 4.19 shows the results of this procedure, wherein the graph for N = 50, 100, 200, 500

points is displayed above its nodal counts. As the number of points increases, the nodal count tends to a

curve with local maxima near indices N/4 and N. This behaviour is reminiscent of what we saw in the case

of points sampled from [0, 1], in that the nodal count behaved as expected for the first N/4 eigenvectors. Of

course in the continuum we would expect the nodal count to get arbitrarily high even for relatively small

indices of eigenfunctions (namely, eigenfunctions of the form sin(k1x) sin(y)), which is not readily seen in

the graph Laplacian nodal counts.

4.3 Handwritten Digit Networks

The MNIST dataset is a popular collection of handwritten digits collected from both National Institute

of Standards and Technology (NIST) employees and high school students [62]. In this section we show the

results of computing nodal counts for each eigenvector of a self-tuned heat kernel construction using the
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Figure 4.21: Nine samples from the MNIST dataset, in which we have restricted the data to digits with labels
0, 1, or 2.

MNIST dataset. In particular we focused on 312 handwritten digits with labels 0, 1, 2, using two different

metrics on the data: Euclidean distances treating each image as a vector, and 2-Wasserstein distances treating

each image as a probability measure. The restriction to three labels was for ease of visualization and

interpretation. Examples of the digits can be found in Figure 4.21.

Each MNIST data object is a 28×28 array of greyscale pixel values (though Python’s default colour scheme

is purple to yellow), which can be treated as a vector in R784. Though this interpretation is computationally

cheap, information about pixel neighbours above and below a given pixel is discarded. One approach to

keeping track of neighboring pixel information is by treating each data object as a function f (x, y) on the

unit square [0, 1] × [0, 1]. Moreover, we normalize each function so that we are working with probability

distributions, namely we require that
∫

[0,1]×[0,1] f (x, y)dµ = 1 for each image; this interpretation and framework

lets us incorporate tools from optimal transport theory to study the space of MNIST digits.

In this section we review the necessary theoretical and computational aspects from optimal transport

theory, before looking at how nodal counts can be used to analyze this collection of data.

4.3.1 Optimal Transport

Informally speaking, the field of optimal transport asks how best to transport mass from one domain to

another, in a way that requires the least amount of effort. One instance of this problem arises when trying to

dig a moat, using the removed earth to build a wall; another instance arises in trying to transport baked goods

from a collection of bakeries to a collection of cafés. The mathematical framework that encompasses each

of these examples utilizes probability measures on appropriate underlying spaces, and has two equivalent
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formulations.

Given a domain Ω, and two probability measures f0, f1 on Ω, Monge’s optimal transport problem looks

to minimize ∫
Ω

c(x,T (x))d f0(x),

over all possible maps T such that the measures satisfy f1 = f0 ◦ T−1; the cost function c : Ω ×Ω→ [0,∞) is

often taken to be an L1 or L2 cost, so that c(x, y) = ‖x− y‖ or c(x, y) = ‖x− y‖2, but other choices are possible.

While this formulation matches our interpretation of moving mass from one location to another, it turns out

that such a minimizing map T may not exist. An alternative formulation is the Kantorovich optimal transport

problem, which seeks to minimize ∫
Ω×Ω

c(x, y)dπ(x, y)

over all possible probability couplings π between f0 and f1, namely π is a probability measure on Ω × Ω

whose first and second marginals are precisely f0 and f1 respectively. When solutions to the Monge and

Kantorovich probems exist, the total costs are the same, but the Monge problem may not have an optimal

map. For more on optimal transport, both its history and mathematical analysis, we refer to [63].

In this thesis we focus on the 2-Wasserstein distance between two probability measures f0, f1, defined as

W2
2 ( f0, f1) := inf

π∈Γ( f0, f1)

∫
Ω×Ω

1
2

d(x, y)2dπ(x, y),

where Γ( f0, f1) is the collection of probability couplings between f0 and f1, and d(x, y) is the Euclidean

distance between x and y ∈ Ω. An alternative characterization of the 2-Wasserstein distance is given by a

slightly enlarged optimization problem:

W2
2 ( f0, f1) := inf

ft ,vt

∫ 1

0

∫
Ω

1
2
‖vt‖

2d ftdt, such that 0 =
d
dt

ft + ∇ · ( ftvt),

where ft : [0, 1] → P(Ω) is a path of probability distributions on Ω and vt : [0, 1] × Ω → TΩ is a time-

dependent, velocity vector field on Ω; see [64] for more details and a proof of the equivalence.

To compute the 2-Wasserstein distance between MNIST digits, treated as probability measures on

Ω = [0, 1] × [0, 1], we adapt the numerical framework from [65]. Each MNIST image was interpolated onto

a simplicial mesh V for Ω, and the 2-Wasserstein geodesic ft was computed between each pair of images
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Figure 4.22: The MNIST digits dataset embedded into R2 using MDS on the Euclidean distance matrix. Left:
each dot corresponds to an MNIST image, with the corresponding label displayed. Green corresponds to
label 1, red corresponds to label 0, and blue corresponds to label 2. Middle: the nodal counts for all 312
eigenvectors. Right: the nodal counts for the first 50 eigenvectors.

along with the corresponding velocity vector field vt. The 2-Wasserstein distance is then approximately

W2
2 ( f0, f1) =

1∑
t=0

∑
s∈V

1
2
|s|‖vt,s‖

2 ft,s,

where the first sum is taken over the time discretization, the second sum is over all simplices s in the mesh,

and vt,s denotes the value of the vector field vt on the simplex s. See [65, §3] for more details on the discrete

optimal transport implementation.

4.3.2 Results

As in Section 4.2.3, we use a self-tuning heat kernel construction on each distance matrix to construct a

graph Laplacian, after which nodal counts are computed. Figure 4.22 shows the 2D embedding and nodal

counts for the MNIST data with Euclidean distances. While the digits labeled 1 are grouped together, the

digits labeled 0 and 2 seem to be uniformly distributed around the collection of 1s. Moreover, the nodal count

plot indicates that the first 30 eigenvectors all have 2 nodal domains. There are two possibilities for such

nodal counts: either (1) the data intrinsically lives in a very high dimensional space, and each eigenvector

is cutting the data into two roughly equal-sized halves, or (2) the graph Laplacian eigenvectors localize to

individual vertices. Inspecting the eigenvectors shows that, in the Euclidean setting, the first non-trivial

eigenvector picks out the cluster of data objects labeled 1, but then all subsequent eigenvectors are localizing

to individual vertices; these eigenvectors are displayed in Figure 4.23.

As mentioned, the MNIST digits are inherently 2D objects, and so incorporating the intrinsic 2D structure

in the metric should lead to stronger clustering behaviour in the data. Indeed, when using the 2-Wasserstein

distance to compare MNIST digits, we see better separation between the digits labeled 1, as well as the digits

labeled 0 and 2; see Figure 4.24, left. Moreover, the nodal counts of eigenvectors seem to decompose the data
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Figure 4.23: The first four eigenvectors of the self-tuning heat kernel Laplacian for the MNIST digits dataset
using Euclidean distances. Top row, left to right: eigenvectors 1 and 2. Bottom row, left to right: eigenvectors
3 and 4. Height corresponds to eigenvector value, and edges are coloured red if they connect two positive
vertices, or blue if they connect two negative vertices; sign-change edges are not displayed. Also, vertex
labels are drawn on the plane z = 0. The first eigenvector is constant, the second eigenvector localizes on the
cluster of digits labeled 1, and the next two eigenvectors do not exhibit readily interpretable results.

Figure 4.24: The MNIST digits dataset embedded into R2 using MDS on the 2-Wasserstein distance matrix.
Left: each dot corresponds to an MNIST image, with the corresponding label displayed. Green corresponds to
label 1, red corresponds to label 0, and blue corresponds to label 2. Using the 2-Wasserstein metric between
data objects gives stronger separation between each class of digits. Middle: the nodal counts for all 312
eigenvectors. Right: the nodal counts for the first 50 eigenvectors. Unlike in the Euclidean, none of these
eigenvectors (beyond the second) have 2 nodal domains, suggesting the 2-Wasserstein distance better detects
the underlying manifold structure of the MNIST data manifold.

into more domains as compared to the Euclidean construction (Figure 4.24, right two plots). Indeed, plotting

the first four eigenvectors shows that, as in the Euclidean setting, the second eigenvector localizes to the

cluster of data objects labeled 1. Unlike the Euclidean case, however, the third and fourth eigenvectors behave

as the third eigenvectors of a 3-interval graph in two distinct ways. This suggests that there is interesting

structure using the 2-Wasserstein metric not detected by the Euclidean metric, and that nodal counts can be

used to detect whether a metric is more or less intrinsic to the data.

4.4 Discussion

In this chapter a number of numerical examples were presented, illustrating the behaviour of the graph

spectral flow for a number of simple graphs, and then transitioning to the study of nodal counts for all graph

Laplacian eigenvectors for random graphs, as well as graphs arising in data contexts. The nodal counts

seems to capture intrinsic structure in the data: in Section 4.2.2 and Section 4.2.3, the underlying structure
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Figure 4.25: The first four eigenvectors of the self-tuning heat kernel Laplacian for the MNIST digits dataset,
using 2-Wasserstein distances. Top row, left to right: eigenvectors 1 and 2. Bottom row, left to right:
eigenvectors 3 and 4. Height corresponds to eigenvector value, and edges are coloured red if they connect
two positive vertices, or blue if they connect two negative vertices; sign-change edges are not displayed.
Also, vertex labels are drawn on the plane z = 0. The first eigenvector is constant, the second eigenvector
seems to localize on the cluster of digits labeled 1, as in the Euclidean case, though the next two eigenvectors
behave similar to eigenvectors of the 3-interval graph. Of particular note is that there seem to be two intrinsic
3-interval graphs captured by the eigenvectors and their nodal domains.

of a 5-interval graph and continuum interval, respectively, were effectively detected by the nodal counts.

In Section 4.3 we took the same construction and applied it to real data, and saw that graphs constructed

using intrinsic metrics saw nodal counts that more accurately captured intrinsic structure. Of course what

the intrinsic structure of the MNIST data actually is remains open to debate, these examples do suggest that

nodal counts can be an effective tool for detecting the presence of intrinsic structure.

We note that all of these examples saw relatively small graphs used in the analysis. One aspect of future

work, discussed next, is extending these tools to work for larger, messier, data sets.
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CHAPTER 5

Future Directions

In this final chapter we comment on a few ongoing avenues of research related to the graph spectral flow,

including considerations theoretical and applied.

5.1 Eigenvalue Multiplicity

While the eigenvalues for weighted networks will generically be simple, the case of random geometric

graphs suggests that, as more points are added to the graph, the spectrum of the graph Laplacian will converge

to the spectrum of the continuum Laplacian; see Section 5.3 for a discussion of results in this direction. Hence

if the underlying domain has eigenvalues with multiplicity, the graph Laplacian will have distinct eigenvalues

that converge to the same value. Thus, care should be taken when studying nodal counts for eigenvectors

with eigenvalues that are close in value. One possibility is to incorporate a spectral gap into the analysis. This

is the subject of ongoing work.

5.2 Nodal Counts as a Statistical Tool

As suggested in Section 4.2, the first ≈ N/4 nodal counts for a random geometric graph seem to encode

information about the nodal counts for the corresponding continuum eigenfunctions. If we want to use graph

nodal counts as an effective approximation for continuum nodal counts, and interpret these counts in a data

context, then some sort of thresholding should occur. Higher eigenvectors for graphs tend to behave like

indicator functions for individual vertices, explaining the trend to ν(ψ) = 2 for the nodal counts of random

geometric graphs.

Despite this, using the first few nodal counts can still be an effective statistic when studying graphs

Gi, especially graphs of different sizes. One should normalize the counts to ensure they serve as a robust

statistical tool, of which two possibilities stand out:

1. for a family of networks, retain the first k nodal counts and normalize the vectors by subtracting the

mean and dividing by standard deviations (similar to Section 2.4.1), or

2. transform the nodal count vectors into piecewise-linear curves γGi : [0, 1] → R such that γGi(0) =
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0, γGi(
1
|V | ) = 1

|V | , and γGi(1) =
ν(φ|V |)
|V | .

The former requires a choice of k dominant eigenvectors and is adapted to specific families of graphs, but

is easier to work with numerically. The latter is independent of the specific family of graphs, but general

properties of the construction are less clear. Note that the former preserves the fact that complete graphs have

ν(φk) = 2 for k ≥ 2, whereas the latter will have γKn → 0 pointwise as n→ ∞. The utility of each of these

approaches is the subject of ongoing work.

5.3 Consistency

Finally, we address the aspect of consistency. Consistency in our framework refers to the convergence of

graph-based operators to their continuum counterparts, and has seen extensive use in the machine learning

community. In the statistics community the term consistency has been used since the 1920s [66], and

generally refers to an assumption that performing a statistical procedure with unlimited data will illuminate

the underlying truth. As an interesting example of our type of consistency, a continuum analogue of the

well-known PageRank algorithm is proposed in [67]. Here a possibly degenerate, elliptic PDE is given as a

continuum analogue to the PageRank equation, and various convergence properties are discussed.

More generally, consistency aspects of graph Laplacians are well understood [68, 69]. Let Ω ⊂ Rd be an

open, bounded, connected domain (with Lipschitz boundary) with d ≥ 2, and suppose we have point clouds

Xn = {x1, ..., xn} sampled from Ω uniformly. Let εn be a sequence of positive numbers converging to 0 such

that

lim
n→∞

(log n)1/d

n1/d

1
εn

= 0.

This requirement arises from optimal transport conditions on matching empirical measures νn = 1
n
∑

i δxi

to the uniform measure on Ω, though the results hold as well when points are sampled with respect to a

(possibly non-uniform measure) µ. We also note that the original results treated εn differently depending on

if d = 2 or d ≥ 3, but such dependence on dimension was alleviated in recent work [70]. We note that the

Suppose η : [0,∞)→ [0,∞) is a kernel function that satisfies

1. η(0) > 0 and η is continuous at 0,

2. η is non-increasing, and

3.
∫ ∞

0 η(r)rd+1dr < ∞.

Set ση =
∫
Rd η(h)|h1|

2dh, where h = (h1, ..., hd), let λ(n)
k denote the kth eigenvalue of the graph Laplacian Ln,εn
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for the geometric graph built on the sampled points Xn with edge weights wi j := η( ‖xi−x j‖

εn
), and let λk be the

kth eigenvalue of the Laplacian ∆ on Ω.

Theorem 5.3.1 ([68]). As n→ ∞,

1. for each k,

lim
n→∞

2λ(n)
k

nε2
n

= σηλk,

and

2. for each k, if {u(n)
k } is a sequence of unit norm eigenvectors of Ln,εn associated to the eigenvalue λ(n)

k ,

then there exists a sub-sequence that converges to u, a λk eigenfunction of ∆.

Convergence in the above theorem is in the T L2 framework: for a domain Ω define

T L2(Ω) = {(µ, f ) : µ ∈ P, f ∈ L2(Ω, µ)},

where P is the space of (Borel) probability measures on Ω. T L2(Ω) consists of pairs of probability measures

µ and L2 functions on Ω with respect to µ, and provides the right kind of space to compare geometric graphs,

and functions defined on them, with the underlying continuum and its functions. This space also comes with

a metric

dT L2((µ, f ), (ν, g)) := inf
π∈Γ(µ,ν)

(∫ ∫
Ω×Ω

|x − y|2 + | f (x) − g(y)|2dπ(x, y)
)1/2

;

Γ(µ, ν) is the collection of optimal transport plans between measures µ and ν, which can also be described

as the set of all (Borel) probability measures on Ω ×Ω that have marginals µ and ν on the first and second

variable respectively.

The utility of this framework is that graphs, corresponding to the empirical measures empirical measures

νn = 1
n
∑

i δxi , can be compared in an L2 framework to L2 functions on the domain Ω the graph was sampled

from, since δn and µ are both measures on the domain Ω. Moreover, the proof makes use of non-local energy

functionals that bridge the gap between the graph Dirichlet energy

〈u,Lv〉 =
∑

(i, j)∈E

wi j(ui − u j)(vi − v j)
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and the domain’s Dirichlet energy

E(u, v) :=
∫

Ω

∇u · ∇vdµ.

Recall the edge-based flow construction from Definition 3.3.4:

Bσ(u, v) =
∑

(i, j)∈E\E±

wi j(ui − u j)(vi − v j) +
∑
i∈V

Qiuivi

+
∑

(i, j)∈E±

wi j
1

1 + σ
(ui − u j)(vi − v j)

+
∑

(i, j)∈E±

wi j
σ

1 + σ

[
(1 + q ji)(ui − u0i j)(vi − v0i j)

+ (1 + qi j)(u j − u0i j)(v j − v0i j)
]

+ σ
∑
i∈Vgh

uivi.

By Theorem 5.3.1 we can argue that

∑
(i, j)∈E\E±

wi j(ui − u j)(vi − v j)→ C
∫

Ω\Γε

∇u · ∇vdµ

and ∑
(i, j)∈E±

wi j
1

1 + σ
(ui − u j)(vi − v j)→ C

1
1 + σ

∫
Γε

∇u · ∇vdµ

as more points are sampled from Ω for appropriate scaling constants C, where Γ is the nodal set of the limit

of the kth eigenvectors of Ln,εn and Γε := {x : d(x, Γ) < ε} is an ε neighborhood of Γ; the ε dependence here is

through geometric properties of the sign-change edges E±.

Of particular difficulty is the term

∑
(i, j)∈E±

wi j
σ

1 + σ

[
(1 + q ji)(ui − u0i j)(vi − v0i j) + (1 + qi j)(u j − u0i j)(v j − v0i j)

]
.

Note that the differences in the sum are based at the nodal set Γ, and hence the limiting energy may not

necessarily be a Dirichlet energy on Γε . Moreover, the coefficients 1 − ψi
ψ j

pose an issue in that harmonic

functions have polynomial expansions near nodal sets [71]. Indeed, one candidate for such a non-local energy
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functional is

∫
Γ

∫
Γ+
ε

∫
Γ−ε

(
1 −

ψ(y)
ψ(x)

)
(u(x) − u(z))(v(x) − v(z)) +

(
1 −

ψ(x)
ψ(y)

)
(u(y) − u(z))(v(y) − v(z))dxdydz,

where Γ±ε := Γε ∩ {±ψ > 0}. Bounding such functionals to incorporate the Γ-convergence framework, which

is a technique that is often used in consistency proofs, does not seem viable due to the presence of 1
ψ in the

integrands, without further assumptions on the geometry of Γε and the space of functions from which u, v are

taken from.

Another approach would be to re-weight the edges appearing in the construction of Gψ,σ Definition 3.3.1

with a regularizing term, such as ci j = −ψiψ j for each sign-change edge (i, j) ∈ E±. This would result in the

bilinear form

Bσ(u, v) =
∑

(i, j)∈E\E±

wi j(ui − u j)(vi − v j) +
∑
i∈V

Qiuivi

+
∑

(i, j)∈E±

wi jai j,σ(ui − u j)(vi − v j)

+
∑

(i, j)∈E±

wi j(−ψiψ j)
σ

1 + σ

[
(1 + q ji)(ui − u0i j)(vi − v0i j)

+ (1 + qi j)(u j − u0i j)(v j − v0i j)
]

+ σ
∑
i∈Vgh

uivi,

where ai j,σ := 1+(1−(−ψiψ j))σ
1+σ is chosen so that ψ is still in the spectrum of Bσ for all σ.

While this seems like a viable approach, one major difficulty arises. Note that Bσ corresponds to the graph

Laplacian of a ψ-subdivision with edge-weights bi j,σ =
(1+q ji)(−ψiψ j)σ

1+σ for each ghost vertex edge (i, 0i j), and

edge-weights ai j,σ =
1+(1−(−ψiψ j))σ

1+σ for each sign-change edge (i, j). A key feature of the original vertex-based

construction was that as σ→ ∞, the edge-weights for each sign-change edge went to 0, and the topology of

the underlying graph was precisely that of the desired nodal domains with Dirichlet boundary conditions. In

this altered construction though, as σ → ∞, the sign-change edge edge-weights do not tend to zero; thus

while Bσ behaves as we want it to in a spectral manner, the underlying combinatorics, which our proofs relied

on, do not.

This discussion motivates the search for purely spectral characterizations of nodal counts that do not rely
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on the “correct” underlying graph topology. Indeed, such characterizations would make this tool more readily

usable for data, and is the subject of ongoing work.
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