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ABSTRACT

Michael Evan Conroy: Rare Event Analysis For Branching Processes and Interacting Particle Systems
(Under the direction of Amarjit Budhiraja and Mariana Olvera-Cravioto)

This dissertation is concerned with the asymptotic analysis and simulation of rare events for two types of stochastic

models, each studied with a different mode of analysis. Roughly the first half is a look at tail events for solutions to

max-type stochastic fixed point equations that are constructed on weighted Galton-Watson processes, which are also

describable as the all-time maximum of a branching random walk with perturbation. The asymptotic analysis of these

tail events is approached from the lens of direct renewal-theoretic arguments after a suitable change of measure in the

tradition of Cramér-Lundberg theory. In particular, an asymptotic expression for the tail events, known from implicit

renewal theoretic arguments, is re-established with the intention of elucidating its connection with the underlying

branching process. Also in the same spirit, the representation after change of measure derived in the analysis allows for

an importance sampling approach to efficiently estimate the rare events. Related to spine changes of measure often

used in the branching process literature, the new measure induces a structure on the underlying branching process that

suggests even more efficient algorithms to approximate tail events for branching random walks, which are also pursued

herein.

The second half concerns large deviation asymptotics for several weakly interacting particle models described

through systems of stochastic differential equations. In particular, large deviation principles are established for empirical

distributions of particle sates in the infinite particle limit. The underlying models include interaction between the

particles that is either both weak and through small common driving noise of Freidlin-Wentzell type, or where the noise

is small, but the only interaction is mean-field. In the case of interaction through correlated noise, the rate at which

the common Brownian motion term becomes small determines a bifurcation in the form of the large deviation rate

functions, with each regime corresponding to whether the correlated or uncorrelated driving noise dominates in the limit.

Particle approximations to Feynman-Kac functionals are also considered in the context of these models, as are certain

Sobolev-space valued maps called stochastic currents that are functionals of the particle states and are convenient to

describe the asymptotic behavior of the corresponding empirical measures. The proofs of the large deviation principles

employ weak convergence methods, and they are based on control representations of Laplace functionals of Brownian

motion, which correspondingly lead to control representations of the large deviation rate functions.
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CHAPTER 1

Introduction

This dissertation has two distinct parts, differentiated by the models considered, the types of results proved, and

also the analytical techniques used. The first two chapters deal with branching process solutions to certain stochastic

fixed point equations (SFPEs), and the final two concern stochastic differential equation (SDE) models of weakly

interacting particle systems. However, a common theme between the chapters of this dissertation is that the results

involve the approximation, simulation, and asymptotic analysis of rare events—events that occur with small probability.

In particular, a fundamental question is precisely how small the chance of a rare event occuring is for different stochastic

models. The approaches used to answer this question herein lie under the historical umbrellas of two well-formulated

areas related to the analysis of rare events: Cramér-Lundberg theory and the unified formulation of large deviations due

to Varadhan [98].

Included here is an overview of the models and problems studied both in historical and modern contexts, as well as

a description of the contributions of the work presented in this dissertation. We begin with some relevant background in

Camér-Lundberg theory, renewal theory, and large deviation theory. A more comprehensive background on these topics

can be found in [7, 35, 21].

1.1 Tail Events for Stochastic Fixed Point Equations

The Lindley process, or reflected random walk, is one of the most fundamental stochastic models in queueing theory

and applied probability. For {Xn : n ≥ 1} i.i.d., it is defined recursively by

Wn+1 = (Wn +Xn)+, n ≥ 1, (1.1.1)

with some starting value W1. As a canonical example of such a process, consider i.i.d. arrival times {τn : n ≥ 1}

independent of i.i.d. service times {χn : n ≥ 1} for the customers in a single server queue with a first-in-first-out

service criterion. When Xn = χn− τn, then Wn represents the waiting time for the nth customer to arrive in the queue.
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Suppose W1 ≡ 0 and define S0 = 0 and Sn = X1 + · · ·+Xn for n ≥ 1, so that Sn is the associated random walk

on R with increment distribution given by X1. Note that for each n,

Wn +Xn = (Wn−1 +Xn−1)+ +Xn

= max{Wn−1 +Xn−1 +Xn, Xn}.

Consequently, Wn+1 = max{Wn−1 + Sn − Sn−2, Sn − Sn−1, 0}. The calculation above can be iterated to yield that

Wn = max{Sn, Sn − S1, . . . , Sn − Sn−1, 0}
D
= max

k≤n
Sk

.
= Mn,

for all n ≥ 1, where D= indicates equality in distribution. Here, Wn
D
= Mn in the sense of one-dimensional distributions,

not as processes. Indeed, Mn is nondecreasing in n while Wn is not. Because Mn is nondecreasing, it has an a.s. limit

M , which is the all-time maximum of the random walk Sn. When E[|X1|] < ∞ and E[X1] < 0, the law of large

numbers n−1Sn → E[X1] ensures that Sn → −∞ and hence M < ∞ a.s. Clearly, Wn ⇒ M , where⇒ denotes

convergence in distribution, and hence M is a finite solution to the stochastic fixed point equation (SFPE)

W
D
= (W +X)+, (1.1.2)

where X is a copy of X1 independent of W . (1.1.2) is the limiting version of (1.1.1) known as the Lindley equation,

and it is an equation of probability measures. That is, W satisfies the Lindley equation when P (W ∈ A) =

P ((W +X)+ ∈ A) for all Borel sets A ⊂ R+ = [0,∞).

The solution to (1.1.2) describes the stationary waiting time distribution of the queue described above, and it also

shows up in the theory of insurance risk. In the latter context, it is of practical interest to know the values of so-called

ruin probabilities P (W > t), which for large t > 0 are rare events for the distributional solution to the Lindley equation.

These probabilities can be described by the Cramér-Lundberg asymptotic for the maximum of a random walk, namely

P (W > t) ∼ He−αt as t→∞, (1.1.3)

for some H ≥ 0, when α exists such that m(α)
.
= E

[
eαX

]
= 1 and E

[
XeαX

]
> 0. Here and throughout,

f(x) ∼ g(x) as x→∞ means that limx→∞ f(x)/g(x) = 1. This result is straightforward to prove with some basic

renewal theory.
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1.1.1 Some Renewal Theory

Here we introduce some basic ideas in renewal theory that show up in subsequent chapters. First is the concept of a

directly Riemann integrable function.

Definition 1.1.1. A nonnegative function f : R+ → R+ is said to be directly Riemann integrable (d.R.i.) if

lim
ε↓0

ε
∑
n∈N

sup
nε<x≤(n+1)ε

f(x) = lim
ε↓0

ε
∑
n∈N

inf
nε<x≤(n+1)ε

f(x) ∈ (−∞,∞).

A function f : R→ [0,∞) is d.R.i. if the above holds with N replaced by Z.

Loosely, a function is d.R.i. if it does not “fluctuate” too much at infinity. As a consequence of f : R+ → R+

being d.R.i., it is also integrable, and

∫ ∞
0

f(x) dx = lim
ε↓0

ε
∑
n∈N

sup
nε<x≤(n+1)ε

f(x) = lim
ε↓0

ε
∑
n∈N

inf
nε<x≤(n+1)ε

f(x).

Direct Riemann integrability is often a condition that is needed to be checked to apply theorems in renewal theory,

however checking the definition directly can be tedious. The following lemma provides some useful alternate criteria

(see [7, Proposition V.4.1] for a proof). Let Cb(R+) denote the set of bounded and continuous functions on R+, and let

Ca.e.
b (R+) be the set of functions on R+ that are continuous and bounded a.e. with respect to Lebesgue measure. If a

function f is d.R.i. then necessarily f ∈ Ca.e.
b (R+).

Lemma 1.1.1. Sufficient conditions for f : R+ → R+ to be d.R.i. are

(i) f ∈ Ca.e.
b (R+) and ∑

n∈N
sup

nε<x≤(n+1)ε

f(x) <∞

for some ε > 0,

(ii) f ∈ Ca.e.
b (R+) and f ≤ g where g is d.R.i.,

(iii) f is nonincreasing and
∫∞

0
f(x) dx <∞.

A sufficient condition for f : R→ R+ to be d.R.i. is for both f(x) and f(−x) to be d.R.i. on R+.

Here and in the sequel, it will be useful to have results about so-called renewal equations, which are convolution

equations of the form

K(t) = g(t) + F ∗K(t) = g(t) +

∫ t

0

K(t− s)F (ds), (1.1.4)
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for a function F : R+ → R+ that is nondecreasing and right continuous, usually a cumulative distribution function

(CDF) of some random variable. We understand integration against F (ds) as integration against the Borel measure µF

induced by F in the usual way, namely

µF ((a, b]) = F (b)− F (a), (a, b] ⊂ R.

Given such an F , we define the renewal measure U by

U(dx) =

∞∑
n=0

F ∗n(dx),

where F ∗n denotes the nth-fold convolution of F , i.e.

F ∗n(t) =

∫ t

0

F ∗(n−1)(t− s)F (ds) =

∫ t

0

F (t− s)F ∗(n−1)(ds)

for all n ≥ 1. Note that by iterating (1.1.4), we can write

K(t) = U ∗ g(t) =

∫ t

0

g(t− s)U(ds).

For the following theorem and throughout, the measure induced by F is said to be lattice if it is concentrated on a

set {nθ : n ∈ N} for some θ > 0.

Theorem 1.1.2 (Key Renewal Theorem). Suppose that F : R+ → R+ is nonlattice, nondecreasing, right continous

function with
∫∞

0
F (dx) = 1. Let µ =

∫∞
0
xF (dx). If (1.1.4) holds for g that is d.R.i., then

lim
t→∞

K(t) = lim
t→∞

U ∗ g(t) =
1

µ

∫ ∞
0

g(s) ds.

In the case that F is the CDF of nonnegative Xi’s with E[X1] = µ, the theorem says that

lim
t→∞

E

[ ∞∑
n=0

g(t− Sn)

]
=

1

µ

∫ ∞
0

g(s) ds

when g is d.R.i.

The idea of proving limit theorems for renewal processes is to formulate a renewal equation to which a renewal

theorem can be applied. In later chapters, it will be useful to employ the following version of the renewal theorem for

the whole real line due to Athreya, McDonald, and Ney [9, Theorem 4.2].
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Corollary 1.1.3. If {Sn : n ≥ 0} is a nonlattice random walk on R (i.e. its increment distribution is nonlattice) with

µ = E[S1] > 0 and g : R→ R+ is d.R.i., then

lim
t→∞

E

[ ∞∑
n=0

g(t− Sn)

]
=

1

µ

∫ ∞
−∞

g(s) ds.

1.1.2 The Cramér-Lundberg Asymptotic

The Cramér-Lundberg Asymptotic (1.1.3) can be seen as a direct consequence of the key renewal theorem applied

to a random walk after a suitable change of measure. Much of Chapters 1 and 2 employs a branching generalization

of exponential tilting in its analysis, and this is also the basis for Cramér-Lundberg theory. If Sn =
∑n
i=1Xi is a

random walk with increment moment generating function m(θ) = E
[
eθX1

]
<∞, then let κ(θ) = logm(θ) and note

that {eθSn−nκ(θ) : n ≥ 1} defines a positive, mean-one martingale for all θ for which κ(θ) <∞. For such θ, m′(θ)

exists and it is equal to E
[
X1e

θX1
]
, a fact which follows from standard results about convergent sums once m(θ) is

expanded as a Taylor series. Letting Fn = σ(X1, . . . , Xn) be the filtration generated by the increments {Xn}, we can

define a new probability measure Pθ on σ(Xi : i ≥ 1) by

Pθ(A) = E
[
1(A)eθSn−nκ(θ)

]
, A ∈ Fn. (1.1.5)

Under this new measure, the law of the random walk is “tilted” in the sense that its new mean is

Eθ[X1] = E
[
X1e

θX1−κ(θ)
]

=
m′(θ)

m(θ)
= κ′(θ).

The amount that the tilting changes the drift of the random walk can be selected for various applications by choose an

appropriate value of θ.

One needs to be careful that (1.1.5) indeed defines a legitimate (unique) measure on σ(Xi : i ≥ 1). Consider,

for example, the events A = {n−1Sn → E[X1]} and Aθ = {n−1Sn → κ′(θ)} for θ > 0. Clearly A and Aθ are

disjoint, however P (A) = 1 and Pθ(Aθ) = 1 by the strong law of large numbers, ensuring the nonexistence of the

Radon-Nikodym derivative dPθ/dP . However, it is clear from the formula (1.1.5) that absolute continuity is present up

to each finite time step n. Indeed, as the next theorem shows, the time step can also be random. Its proof is standard

and can be found in the appendix.

Theorem 1.1.4. Let (Ω,F , P ) be a probability space with a filtration {Fn : n ∈ N}, and let F∞ = σ (
⋃∞
n=0 Fn).
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α

1

θ

m(θ)

Figure 1.1: A typical moment generating function

(i) If {Ln : n ∈ N} is a nonnegative martingale with respect to Fn such that E[Ln] = 1 for all n, then there exists a

unique probability measure P ∗ on (Ω,F∞) such that

P ∗(A) = E[1(A)Ln] for A ∈ Fn.

(ii) If τ is an Fn-stopping time and A ∈ Fτ such that A ⊂ {τ <∞}, then

P (A) = E∗
[
1(A)L−1

τ

]
,

where E∗ denotes expectation on (Ω,F∞, P ∗).

The main assumption for (1.1.3) to hold, namely that there exists α > 0 such thatE
[
eαX

]
= 1 andE

[
XeαX

]
> 0,

is known as the Cramér condition, and while limiting the scope to light-tailed distributions it is fairly general in that

context. Indeed, let m(θ) = E
[
eθX

]
denote the moment generating function of X , and so that we have a finite solution

to the Lindley equation, suppose E[X] < 0. From observing the Lindley equation, it is clear that for its solution,

W ≥ 0 a.s., and so to avoid triviality, let us assume that P (X > 0) > 0, which in turn implies that there is some ε > 0

such that P (X > ε) > 0. For θ such that m(θ) <∞, we have that m′(θ) = E
[
XeθX

]
, and in particular m(0) = 1

and m′(0) = E[X] < 0. Also, by Jensen’s inequality,

lim inf
θ→∞

m(θ) ≥ lim inf
θ→∞

E
[
eθX1(X > ε)

]
≥ lim inf

θ→∞
eθεP (X > ε) =∞.

This together with the continuity and convexity of m(θ) ensures the existence of α > 0 such that m(α) = 1 and

m′(α) > 0. This typical situation is illustrated in Figure 1.1.
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If we choose this α to induce the change of measure (1.1.5), then in particular

Eα[X1] =
m′(α)

m(α)
= E

[
XeαX

]
> 0, (1.1.6)

and analysis of the rare event P (W > t) can now be reformulated into the analysis of a random walk with positive

drift, for which the tail event is not rare. In fact, Pα(W > t) = 1. Because of the importance of this particular

tilted measure, we will denote it P̃ = Pα when α is fixed. Letting τ(t) = inf{n ≥ 0 : Sn > t}, we note that

{supn≥0 Sn > t} = {τ(t) <∞}. Theorem 1.1.4(ii) then allows us to write

P (W > t) = P (τ(t) <∞) = Ẽ
[
1(τ(t) <∞)e−αSτ(t)

]
.

Furthermore, the law of large numbers and (1.1.6) imply that limn→∞ n−1Sn > 0 P̃ -a.s. and hence P̃ (τ(t) <∞) =

P̃ (supn≥0 Sn > t) = 1. Hence,

P (W > t) = Ẽ
[
e−αSτ(t)

]
. (1.1.7)

This is the starting point for the following theorem. Again, see the appendix for its proof.

Theorem 1.1.5 (Cramér-Lundberg Asymptotic). Let W be the (unique) solution to (1.1.2) given as the maximum of a

random walk {Sn : n ≥ 0} starting from 0 with nonlattice increment distribution X with E[X] < 0. If there exists

α > 0 such that m(α) = 1 and m′(α) > 0, then

P (W > t) ∼
Ẽ
[
1− e−αSτ+

]
αm′(α)Ẽ [τ+]

e−αt as t→∞.

where τ+ = inf{n ≥ 0 : Sn > 0} and Ẽ denotes expectation wth respect to P̃ .

Often the asymptotic approximation above is established by noting that the overshoot B(t) = Sτ(t) − t has a finite

weak limit point

B(t)⇒ B(∞) (1.1.8)

as t→∞ (see for example [7, Theorem VIII.2.1]), and since B(t) ≥ 0, therefore eαtP (W > t) = Ẽ
[
e−αB(t)

]
→

Ẽ
[
e−αB(∞)

]
, giving an alternate description of the asymptotic constant.

More generally, Goldie [49] used implicit renewal theory to study the tail behavior of solutions to a variety of

SFPEs, including the Lindley equation generalization

W
D
= ξ ∨ (W +X),
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whereW is independent of (ξ,X), which has arbitrary joint distribution. Here, the solutionW is given as the supremum

of a perturbed random walk Sn + ξn =
∑n
i=1Xi + ξn, where {(ξi−1, Xi) : i ≥ 1} are i.i.d. copies of (ξ,X). When

E
[
eαξ
]
<∞ and X is nonlattice and satisfies the Cramér condition for α > 0,

P (W > t) ∼
E
[
eαξ ∨ eα(W+X) − eα(W+X)

]
αE [XeαX ]

e−αt as t→∞, (1.1.9)

where in the expectation, W is independent of (ξ,X). Taking ξ ≡ 0 gives an alternate expression for the asymptotic

constant for the random walk—one that is “implicit” in the sense that it is computed in terms of the distribution of W

itself.

1.1.3 Siegmund’s Algorithm

The naive Monte Carlo approach to estimating probabilities is by relative frequencies: an estimate of p = P (A) is

given as the average of n independent realizations of the indicator random variable 1(A). Under P , each single estimate

has a Bernoulli distribution with P (1(A) = 1) = p and

Var(1(A)) = p(1− p).

This procedure is not ideal when the event A is rare (i.e. p is small). Indeed, the number of realizations needed until the

first occurance of {1(A) = 1} has a Geometric(p) distribution, and hence one expects that the very large number of

p−1 iterations are needed to obtain a nonzero estimate. Additionally, since an accurate estimate of a small probability is

desired, the relevant measure of accuracy is relative error. However,

Var(1(A))

E[1(A)]2
=
p(1− p)
p2

=
1

p
− 1→∞

as p → 0. This approach to estimating p may require a prohibitively large number of iterations n, a number which

depends on how small p is, which is generally unknown a priori.

If there is some probability measure Q and a likelihood ratio L such that P (A) =
∫
A
LdQ, then importance

sampling is a technique that can be used to skirt these issues. Motivated by estimating error probabilities in sequential

hypothesis testing, Siegmund [92] developed an importance sampler for tail events of the maximum of a random walk

based on the representation (1.1.7), namely

P (W > t) = P (τ(t) <∞) =

∫
{τ(t)<∞}

e−αSτ(t) dP̃ = Ẽ
[
e−αSτ(t)

]
.

8



This suggests performing Monte Carlo simulation using the likelihood ratio estimator Z(t) = e−αSτ(t) sampled under P̃ .

A single copy of Z(t) is generated by simulating the positive drift random walk {Sn} until the first n such that Sn > t,

then setting Z(t) = e−αSn . Note that on each iteration, one is guaranteed to see a nonzero estimate. Furthermore, using

Theorem 1.1.5,

Ṽar(Z(t))

P (W > t)2
≤
Ẽ
[
e−2αSτ(t)

]
P (W > t)2

∼
Ẽ
[
e−2α(Sτ(t)−t)

]
Ẽ
[
e−αB(∞)

]2 →
Ẽ
[
e−2αB(∞)

]
Ẽ
[
e−αB(∞)

]2 <∞
as t→∞, where Ṽar denotes variance with respect to P̃ and B(∞) is the limiting overshoot defined in (1.1.8). Hence

the estimator Z(t) has bounded relative error, ensuring that a smaller number of iterations is suitable in the Monte

Carlo procedure.

1.1.4 Branching Recursions

Chapters 2 and 3 concern the tail behavior of solutions to the branching generalization of (1.1.2), known as the high

order Lindley equation:

W
D
= max

{
Y, max

1≤i≤N
(Xi +Wi)

}
, (1.1.10)

where {Wi : i ≥ 1} are independent copies of W independent of the vector (Y,N,X1, X2, . . .), which takes values in

R× N× R∞. Note that when we replace Y with 0 and N with 1 in (1.1.10), we obtain the Lindley equation (1.1.2).

Although Lindley’s equation has a unique solution whenever E[X1] < 0, there is no uniqueness in the branching case,

as shown in [68]. As the work in [12] shows, the solutions to (1.1.10) can be constructed using one special solution,

known as the endogenous solution [3]. The endogenous solution can be explicitly constructed on a structure known as a

weighted branching process [11, 90, 62], and other solutions can be obtained by adding different “terminal” values to

the leaves of a finite tree (see [12] and Section 2.1 for more details). From an applications point of view (e.g., the models

in [68, 87]), it is usually the special endogenous solution that is of interest. If W = logR, Xi = logCi, Y = logQ,

equation (2.0.1) is equivalent to the random extremal equation

R
D
= Q ∨

(
N∨
i=1

CiRi

)
, (1.1.11)

where the {Ri} are i.i.d. copies of R, independent of the vector (Q,N, {Ci}), where N ∈ N ∪ {∞}, Q, {Ci} ≥ 0 and

P (Q > 0) > 0. These types of distributional equations and their simulation have received considerable attention in

the recent literature, although most of it has centered around the affine version of the equation considered here; see

[23, 27, 28, 40, 49, 55, 62, 63, 64]. We refer to the overview on this topic given in [31, 61].
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To define the endogenous solution, we adopt the notation from [63] to define a marked Galton-Watson process.

To this end, let N+ = {1, 2, 3, . . . } be the set of positive integers and let U =
⋃∞
k=0(N+)k be the set of all finite

sequences i = (i1, i2, . . . , in), where by convention N0
+ = {∅} contains the null sequence ∅. To ease the exposition,

for a sequence i = (i1, i2, . . . , ik) ∈ U we write

i|n = (i1, i2, . . . , in),

provided k ≥ n, and i|0 = ∅ to denote the index truncation at level n, n ≥ 0. Also, for i ∈ A1 we simply use the

notation i = i1, skipping the parenthesis. Similarly, for i = (i1, . . . , in) we will use

(i, j) = (i1, . . . , in, j)

to denote the index concatenation operation, and if i = ∅, then write (i, j) = j. Let |i| be the length of index i, i.e.,

|i| = k if i = (i1, . . . , ik) ∈ Nk+. We order U according to a length-lexicographic order ≺: i ≺ j if either |i| < |j|, or

|i| = |j| and ir = jr for r = 1, . . . , t− 1, and it < jt for some t ≤ |i|.

To iteratively construct the weighted branching tree T , let {ψi}i∈U denote a sequence of i.i.d. random elements

in N × R∞, where ψi = (Ni, Qi, C(i,1), C(i,2), . . . ). For simplicity we denote ψ = (N,Q,C1, C2, . . . ) = ψ∅ to

represent a generic element of the sequence {ψi}. The random integers {Ni}i∈U herein define the structure of the tree

as follows. Let A0 = {∅},

A1 = {i ∈ N : 1 ≤ i ≤ N∅}, and

An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}, n ≥ 2, (1.1.12)

be the set of individuals in the nth generation. Thus to each node i in the tree different from the root we assign the

weight Ci, and a cumulative weight Πi computed according to

Πi1 = Ci1 , Π(i1,...,in) = C(i1,...,in)Π(i1,...,in−1), n ≥ 2,

where Π = Π∅ ≡ 1 is the cumulative weight of the root node. See Figure 1.2.

The random variable

R =
∨
i∈T

ΠiQi (1.1.13)
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Π = 1

Π1 = C1 Π2 = C2 Π3 = C3

Π(1,1) = C(1,1)C1

Π(1,2) = C(1,2)C1

Π(2,1) = C(2,1)C2

Π(3,1) = C(3,1)C3

Π(3,2) = C(3,2)C3

Π(3,3) = C(3,3)C3

Figure 1.2: A weighted branching tree

is known as the special endogenous solution to (1.1.11). It is a relatively straight-forward exercise to check that indeed

this R satisfies (1.1.11). Equivalently, the endogenous solution to the high order Lindley equation (1.1.10) is given by

W = logR =
∨
i∈T

(Si + Yi) , (1.1.14)

where Yi = logQi and

Si = log Πi =

|i|∑
j=1

Xi|j ,

with Xi = logCi for each i ∈ T . The above display is recognizable as a branching random walk, i.e. the endogenous

solution to the high order Lindley equation is given as the maximum of a branching random walk with a pertubation

described by Y . As mentioned earlier, the high-order Lindley equation has in general multiple solutions, but before we

discuss those it is convenient to focus first on the so-called regular case, which corresponds to the existence of a unique

α > 0 satisfying

E

 N∑
j=1

Cαj

 = E

 N∑
j=1

eαXj

 = 1 and E

 N∑
j=1

Cαj logCj

 = E

 N∑
j=1

Xje
αXj

 ∈ (0,∞). (1.1.15)

As the work in [12] shows, other solutions to (1.1.11) can be constructed by using “terminal" values. More precisely,

consider the finite tree T (n) = {i ∈ T : |i| ≤ n}, and construct the random variable

Rn(B) =

 ∨
i∈T (n−1)

ΠiQi

 ∨( ∨
i∈An

ΠiBi

)
,

where the {Bi} are i.i.d. nonnegative random variables, independent of all other branching vectors in T (n−1). Then,

provided

lim
x→∞

xαP (B > x) = γ ≥ 0,
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the random variable R(B) = limn→∞Rn(B) is a solution to (2.0.3) (see Theorem 1(ii) in [12]). Note that the special

endogenous solution R given by (2.0.4) corresponds to taking the terminal values {Bi} identically equal to zero, and

is known to be the minimal solution in the usual stochastic order sense (see Proposition 5 in [12]). Moreover, by

Theorem 1(i) in [12], R is finite a.s. whenever

sup
x≥1

xα(log x)1+εP (Q > x) <∞

for some ε > 0.

Besides observing that in applications [68, 87] it is usually the special endogenous solution that is of interest, it

is worth mentioning that it plays an important role in characterizing all the solutions defined through R(B), whose

distributions are given by

P (R(B) ≤ x) = E
[
1(R ≤ x) exp(−γW (α)x−α)

]
, (1.1.16)

where W (α) is the a.s. limit of the martingale Wn(α) :=
∑

i∈An Πα
i (see Theorem 1(ii) in [12]). The martingale

{Wn(θ) : n ≥ 1} defined via

Wn(θ) := ρ−nθ

∑
i∈An

Πθ
i , (1.1.17)

where ρθ := E
[∑N

j=1 C
θ
j

]
, is known as the Biggins-Kyprianou martingale [11, 72], and it plays an important role in

much of the weighted branching processes literature. Moreover, under additional technical conditions, all the solutions

to (1.1.11) can be characterized through (1.1.16) (see Theorem 1(iii) in [12]).

As an example illustrating the multiplicity of solutions to (1.1.11), consider the case when N ≡ 2, Ci ≡ 1
2 for

i = 1, 2 and Q ≡ 1
2 , whose endogenous solution is given by

R =
∨
i∈T

ΠiQi =

∞∨
n=0

(
1

2

)n+1

=
1

2
.

Now note that if R′ = (T ∨ 1)/2 where T has a Frechet distribution with shape/scale parameters (1, s), i.e., P (T ≤

x) = e−s/x for x > 0, then R′ is a (non-endogenous) solution since

Q ∨
N∨
i=1

CiR
′
i =

1

2
∨

2∨
i=1

1

2
· (Ti ∨ 1)

2
=

1

2
max

{
1,
T1 ∨ T2

2

}
D
=

1

2
(1 ∨ T ) = R′.

Furthermore, by setting B = T/2 we can identify R′ with

R(B) = lim
n→∞

Rn(B) = lim
n→∞

1

2
∨

( ∨
i∈An

Bi

2n

)
= lim
n→∞

1

2
max

{
1,
∨

i∈An

Ti
2n

}
D
=

1

2
(1 ∨ T ) = R′.
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The condition (1.1.15) is the branching version of the Cramér condition on the moment generating function

discussed in Section 1.1.2. Under this condition (among others), a tail asymptotic analogous to the Cramér-Lundberg

asymptotic was established in [62, 64] for the endogenous solution to (1.1.10). In particular, the methods of Goldie

[49] we extended to give the following generalization of (1.1.9).

Theorem 1.1.6. Let W be the endogenous solution to (1.1.10) given by (1.1.14) for some (Y,N, {Xi}) with N ∈

N ∪ {∞}, Xi ∈ R for each i and P (Y > −∞) > 0. Suppose there exists j ≥ 1 with P (N ≥ j) > 0 such that the

measure P (Xj ∈ dx,N ≥ j) is nonlattice, and that (1.1.15) holds for some α > 0 such that

(i) E
[
eαY

]
<∞, and

(ii) E
[(∑N

i=1 e
Xi
)α]

<∞ if α > 1 or E
[(∑N

i=1 e
αXi/(1+ε)

)1+ε
]
<∞ for some 0 < ε < 1 if α ≤ 1.

Then,

P (W > t) ∼ He−αt as t→∞,

where 0 < H <∞ is given by

H =
E
[
eαY ∨

∨N
i=1 e

α(Xi+Wi) −
∑N
i=1 e

α(Xi+Wi)
]

αE
[∑N

i=1XieαXi
] ,

where in the expectation in the numerator, {Wi} are independent copies of W independent of (Y,N, {Xi}).

If we consider the Laplace transform

ρθ = E

[
N∑
i=1

eθXi

]

as a generalized version of the moment generating function in the nonbranching case, then the condition (1.1.15) says

that for some α > 0, ρα = 1 and d
dθρθ

∣∣
θ=α

> 0. Note that unlike with a moment generating function, ρ0 = E[N ] 6= 1

in general. By convexity of ρ, the condition then says that ρθ = 1 for exactly two values of θ, the larger of which is the

α in the theorem. See Figure 1.3 for an illustration of a typical situation. In particular, there is some 0 < β < α for

which ρβ < 1, which in turn implies that

E

[
max

1≤i≤N
Xi

]
=

1

β
E

[
log

(
N∨
i=1

eβXi

)]
≤ 1

β
logE

[
N∑
i=1

eβXi

]
< 0 (1.1.18)

by Jensen’s inequality. Hence, W is the maximum of a (perturbed) branching random walk with negative drift on each

of its branches, which explains why the tail events {W > t} are rare.
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α

1

E[N ]

θ

ρθ

Figure 1.3: The relevant situation for the branching Laplace transform

1.2 Large Deviations For Interacting Particle Models

The models studied in Chapters 4 and 5 are refered to as interacting particle systems. Here we discuss some foundational

asymptotic results about such systems and motivate the extensions of these basic models to those studied in subsequent

chapters.

1.2.1 Large Deviation and Laplace Principles

In this section we provide some basic definitions and examples in the theory of large deviations. In Chapters 4 and 5,

we prove large deviations principles for certain classes of interacting particle systems via weak convergence methods,

and here we motivate the methods therein.

Suppose {Xn}n∈N is a sequence of random variables taking values in a Polish space S. Here and throughout, by a

Polish space, we mean a complete, separable metric space. We say that a function I : S → [0,∞] is a rate function if

it has compact level sets, that is, {x ∈ S : I(x) ≤ c} is compact in S for all c ∈ [0,∞). Often in the literature, I is

called a rate function if it is lower semi-continuous, i.e. the level sets are closed, and it is called a good rate function if

furthermore the level sets are compact. We will not be working with rate functions that are not “good,” and so we will

stick with the former terminology. The following gives the definition of a large deviation principle (LDP).

Definition 1.2.1. The sequence {Xn}n∈N is said to satisfy a large deviation principle on S with rate function I and

speed an →∞ if both of the following hold.

(a) The large deviation upper bound: for each closed F ⊂ S,

lim sup
n→∞

1

an
logP (Xn ∈ F ) ≤ − inf

x∈F
I(x),
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(b) The large devation lower bound: for each open G ⊂ S,

lim inf
n→∞

1

an
logP (Xn ∈ G) ≥ − inf

x∈G
I(x).

Formally, such a result says that, for large n and Borel sets A ⊂ S,

P (Xn ∈ A) ≈ e−n infx∈A I(x).

That is, the rate function quantifies the exponential rate of decay of the probabilities P (Xn ∈ A) as n→∞. A large

deviation principle can be seen as a refinement of a law of large numbers (LLN) in the sense that it quantifies the rate of

convergence to the law of large numbers limit.

In Chapters 4 and 5, we are interested in LDPs for empirical measure processes, i.e. sequences

µn =
1

n

n∑
i=1

δXi ,

where {Xi} take values in a space S and δx denotes the Dirac measure at x, i.e. δx(A) = 1(x ∈ A) for measurable sets

A. For the simple case of an i.i.d. sequence {Xi}, the LLN behavior of such objects is governed by the well-known

Glivenko-Cantelli lemma. For a Polish space S, let P(S) denote the space of probability measures on S with the

topology of weak convergence.

Theorem 1.2.1 (Glivenko-Cantelli). If {Xn : n ∈ N} are i.i.d. random variables taking values in a Polish space S,

each with distribution µ, then, as n→∞,

1

n

n∑
i=1

δXi → µ a.s. in P(S).

Recalling the definition of convergence in P(S), the above says that

1

n

n∑
i=1

f(Xi)→
∫
S

f dµ

for all continuous and bounded f : S → R. See [21, Lemma 3.2] for a proof.

In the theory of large deviations, particularly that for empirical measures, one of the basic objects is the relative

entropy function. For µ ∈ P(S), the relative entropy R(·‖µ) : P(S)→ [0,∞] is given by

R(γ‖µ) =


∫
S

log
(
dγ
dµ

)
dγ if γ � µ,

∞ otherwise,
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where γ � µ denotes absolute continuity of γ with respect to µ, and dγ
dµ denotes the Radon-Nikodym derivative of γ

with respect to µ. It is easy to check that, in fact, R(γ‖µ) ≥ 0 for γ, µ ∈ P(S). The following result, known as Sanov’s

theorem, is one of the fundamental results in large deviations theory.

Theorem 1.2.2 (Sanov). If {Xn : n ∈ N} are i.i.d. random variables taking values in a Polish space S, each with

distribution µ, then the sequence
1

n

n∑
i=1

δXi , n ∈ N,

satisfies the large deviation principle on P(S) with rate function I(·) = R(·‖µ) and speed n.

Chapters 4 and 5 uses weak convergence methods to prove large deviation principles for certain interacting particle

models. A reformulation of a large deviation principle, called a Laplace principle, is particularly convenient for the

application of weak convergence methods. Let I be a rate function on S. A sequence {Xn} taking values in S is said

satisfy the Laplace principle on S with rate function I if, for all bounded continous functions F : S → R,

lim
n→∞

1

an
logE

[
e−anF (Xn)

]
= − inf

x∈S
(F (x) + I(x)) . (1.2.1)

It is well known [98] that for a given rate function I , a sequence {Xn} satisfies the Laplace principle with rate function

I if and only if it satisfies both the large deviation upper bound and the large deviation lower bound with rate function I ,

However for completeness we provide a proof in the Appendix.

Theorem 1.2.3. A sequence {Xn} satisfies a large deviation principle on a Polish space (S, d) with rate function I

and speed an if and only if (1.2.1) holds for all F ∈ Cb(S).

1.2.2 Weakly Interacting Diffusions

Here we motivate the models studied in Chapters 4 and 5 by describing some special, simple cases. Consider a particle

whose state is subject to some driving force and a random disturbance and can be described by an SDE of the form

dX(t) = b(X(t)) dt+ σ(X(t)) dW (t), t ≥ 0, (1.2.2)

where X(t) indicates the state of the particle at time t and W is a Brownian motion of appropriate dimension. A system

of n particles could be described by a system of n equations of the type in (1.2.2), driven by mutually independent noise

terms, however to describe real physical systems of multiple particles, the interaction between particles is natural to

consider. As noted by Tanaka and Hitsuda in [97], certain second order partial differential equations (PDEs) that describe

physical systems, such as Boltzmann’s famous equation in the kinetic theory of monatomic gases [66], are related to

certain nonlinear Markov processes that are described through the mean field limit of a collection of weakly interacting
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particles. By the mean field or weak interaction of n particles whose states are described by X1(t), X2(t), . . . , Xn(t),

we mean an interaction that is given through the empirical measure process

µn(t)
.
=

1

n

n∑
i=1

δXi(t), t ≥ 0, (1.2.3)

where δx is the Dirac measure on the appropriate measure space. For a measurable setA, µn(t, A) is then the proportion

of particles that are in a particular state described by A at time t. The contribution of each particle to the sum in (1.2.3)

diminishes as n becomes large, and it is in this sense that the interaction is considered “weak.”

When considering a weakly interacting particle system, one is usually interested in the asymptotics of µn(t) as

n→∞. In the case of n particles each described by (1.2.2) with mutually independent Brownian motions W1, . . . ,Wn,

the states of the particles are independent, and the LLN asymptotics of µn(t) are governed by the Glivenko-Cantelli

Lemma given in the previous section. The rate of convergence, as given by the corresponding LDP, is described by

Sanov’s theorem.

Extending (1.2.2) to include a weak interaction leads to the system of SDEs

dXi(t) = b(Xi(t), µ
n(t)) dt+ σ(Xi(t), µ

n(t)) dWi(t), t ≥ 0, 1 ≤ i ≤ n, (1.2.4)

where {Wi} are mutually independent Brownian motions. That is, the dynamics of each particle at time t depends on

the state of that particle and the states of the other particles through µn(t). Models like these (as well as those studied

in Chapters 4 and 5 are often referred to as weakly interacting particle systems and have been extensively studied,

see [82, 18, 32, 33, 96, 85, 94, 51, 91, 83] and many others. Originally motivated by problems in statistical physics,

in recent years such systems have arisen in many applied probability problems such as stochastic networks [5, 52],

information theory [15, 16], mathematical neuroscience [10], population opinion dynamics [50], nonlinear filtering

[71, 34], and mathematical finance [46, 47], among others.

As an example, we consider the model in [33] on Rd:

dXi(t) = b(Xi(t), µ
n(t)) dt+ σ(Xi(t)) dWi(t), t ≥ 0, 1 ≤ i ≤ n, (1.2.5)

where µn(t) is the empirical measure of X1(t), . . . , Xn(t) and {Wi : i ∈ N} are mutually independent Brownian

motions on Rd. Under the condition that µn(0)→ µ0 in P(Rd) for some µ0, there is a deterministic P(Rd)-valued

process µ(·) such that

µn(·)⇒ µ(·),
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and this limit can be characterized as a weak solution to the Mckean-Vlasov equation

d

dt
µ(t) = L∗(µ(t))µ(t), µ(0) = µ0. (1.2.6)

where L∗ denotes the formal adjoint of the operator

L(µ)f(x) =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
f(x) +

d∑
i=1

bi(x, µ)
∂

∂xi
f(x), a(x) = σ(x)σ(x)T,

for smooth f : Rd → R. The PDE (1.2.6) is interpreted in the weak sense. That is, for smooth test functions f with

compact support, ∫ t

0

〈f, µ(s)〉 ds = 〈f, µ0〉+

∫ t

0

〈L(µ(s))f, µ(s)〉 ds,

where 〈f, µ〉 denotes
∫
f dµ.

In Chapter 4, we consider the case where the system is driven by a common noise. Consider for simplicity

the following elementary model where the limiting dynamics are described by Freidlin-Wentzell asymptotics: let

{Xε : ε > 0} be the family of processes on a Polish space S (typically Rd for some d) described by

dXε(t) = b(Xε(t)) dt+
√
ε dW (t), t ≥ 0. (1.2.7)

We are interested in the asymptotics as ε→ 0, and for this reason we say the noise is “small.” The rate at which the size

of the noise decreases is governed by
√
ε, however we note that as long as the size goes to zero, the LLN limit is not

changed by different rates. Indeed, suppose Xε(0) = x0 ∈ S for each ε > 0. Then rewriting (1.2.7) as

Xε(t) = x0 +

∫ t

0

b(Xε(s)) ds+
√
εW (t),

one can show that if b satisfies appropriate conditions (e.g. it is a Lipschitz map), then {Xε : ε > 0} is tight, and along

every subsequence, Xε ⇒ x, where x is the unique solution to the ordinary differential equation

d

dt
x(t) = b(x(t)), x(0) = x0. (1.2.8)

While the
√
ε rate does not affect the law of large numbers limit, one expects that the rate at which the driving noise

gets small changes the rate at which that limit is reached, which can be made precise by establishing a large deviation

principle for {Xε}.
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To illustrate what a large deviation principle looks like when there is interaction in the system through a small

noise, let C([0, T ],Rd) denote the space of continuous functions from [0, T ]→ Rd for some T, d <∞ equipped with

the supremum norm. It is well known that the sequence {Xε} satisfies the large deviation principle (as ε → 0) on

C([0, T ],Rd) with speed ε−1 rate function

I(ϕ) =
1

2

∫ T

0

∥∥∥∥ ddtϕ(t)− b(ϕ(t))

∥∥∥∥2

dt.

Consider now the setting where instead of a single SDE one has a system of n equations as in (1.2.5) where each

equation has in addition a common small Brownian motion, i.e. a term of the form κ(n)dB(t) where B is Brownain

motion and κ(n) → 0 as n → ∞. Once again one expects that the law of large number behavior of the associated

empirical measure does not depend on the manner in which κ(n) → 0, but that the rate at which this convergence

occurs, as quantified by a large deviation principle, does depend crucially on the properties of κ. Chapter 4 addresses

such questions by establishing large deviation principles for a broad family of weakly interacting diffusions with small

common noise under various types of conditions on κ.

1.2.3 Control Representations

The starting point for the work in Chapters 4 and 5 are certain variational representations for exponential functionals

of Brownian motion established in [17]. The above models are driven by a finite-dimensional Brownian motion

{W (t) : 0 ≤ t ≤ T}, and so, with proving a Laplace principle in mind, we are interested in a representation of the

quantity

− logE
[
e−f(W )

]
,

where f : C([0, T ],Rd) → R is a bounded and measurable function. Suppose that {F(t) : 0 ≤ t ≤ T} is a usual

filtration on a space (Ω,F , P ) (namely it is right continuous and has all null sets) relative to whichW is s d-dimensional

Brownian motion on [0, T ]. A process {X(t) : 0 ≤ t ≤ T} is said to be progressively measurable with respect to F(t)

if for each t, the map from ([0, t]× Ω,B([0, t])⊗F(t)) to (Rd,B(Rd)) given by

(s, ω) 7→ X(s, ω)

is measurable. Denote by Ad the set of all F(t)-progressively measurable Rd-valued processes {v(t) : 0 ≤ t ≤ T}

such that

E

[∫ T

0

‖v(s)‖2 ds

]
<∞.

We refer to Ad as a space of controls. We then have the following (see [17, 20]).
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Theorem 1.2.4. If f : C([0, T ],Rd)→ R is a bounded and Borel-measurable function, then

− logE
[
e−f(W )

]
= inf
v∈Ad

E

[
1

2

∫ T

0

‖v(s)‖2 ds+ f

(
W +

∫ ·
0

v(s) ds

)]
.

To illustrate the usefulness of the above theorem, consider the generalization of the model in (1.2.5) analyzed in

[22], where for each n ∈ N, the particles (Xn
1 , X

n
2 , . . . , X

n
n ) are are driven by the independent Brownian motions

{Wi} on Rd:

dXn
i (t) = b(Xn

i (t), µn(t)) dt+ σ(Xn
i (t), µn(t)) dWi(t), t ∈ [0, T ], 1 ≤ i ≤ n.

Suppose for each n ∈ N, existence and uniqueness holds in the strong sense for the above model. Then there is some

Borel-measurable map hn = (hn1 , . . . , h
n
n) such that for each 1 ≤ i ≤ n, a solution is given by

Xn
i (·, ω) = hni (W (·, ω)) for a.e. ω,

where W = (W1, . . . ,Wn). Hence, if F : P(Rd)→ R is bounded and continuous, and

fn(·) = F

(
1

n

n∑
i=1

δhni (·)

)
,

then (nfn) : C([0, T ],Rd)→ R is bounded and Borel-measurable, and

− 1

n
logE

[
e−nF (µn)

]
= − 1

n
logE

[
e−nf

n(W )
]
.

The limit in n of the left hand side above is what we want to analyze to establish a Laplace principle for µn, and the

right hand side is the subject of Theorem 1.2.4. Then under some change of measure, an application of Girsanov’s

theorem says further that if ui ∈ Ad, 1 ≤ i ≤ n,

Wi +

∫ ·
0

ui(s) ds, 1 ≤ i ≤ n,

is a d-dimensional Brownian motion. Hence the controlled system

dX̄n
i (t) = b(X̄n

i (t), µ̄n(t)) dt+ σ(X̄n
i (t), µ̄n(t)) dWi(t) + σ(X̄n

i (t), µ̄n(t))ui(t) dt, t ∈ [0, T ], 1 ≤ i ≤ n,
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where µ̄n(t) denotes the empirical measure of (X̄n
1 (t), . . . , X̄n

n (t)), has a unique strong solution that satisfies

X̄n
i (·, ω) = hni

(
W (·, ω) +

∫ ·
0

u(s, ω) ds

)
for a.e. ω,

where u = (u1, . . . , un) ∈ And. Furthermore, for F and fn as before,

E

[
fn
(
W +

∫ ·
0

u(s) ds

)]
= E [F (µ̄n)] ,

and so, applying Theorem 1.2.4,

− 1

n
logE

[
e−nF (µn)

]
= inf
u∈And

E

[
1

2n

n∑
i=1

∫ T

0

‖ui(s)‖2 ds+ F (µ̄n)

]
.

Now a Laplace principle can be obtained by analyzing the weak limit points of the processes on the right hand side of

the above display. Such a representation is the basis of the proofs in Chapters 4 and 5.

Large deviation proof methods based on control representations naturally result in corresponding control represen-

tations for the large deviation rate functions. In order to motivate the representations of the rate functions that show up

in Chapters 4 and 5, we begin with the following elementary setting. For fixed x ∈ Rm consider the empirical measure

µn =
1

n

n∑
i=1

δ{x+Wi}

for independent m-dimensional Brownian motions {Wi} on the time interval [0, T ]. By Sanov’s theorem, {µn} satisfies

a large deviation principle on P(C([0, T ],Rm)) with rate function I given as

I(γ) = R(γ‖θx), γ ∈ P(C([0, T ],Rm)), (1.2.9)

where C([0, T ],Rm) is the space of continuous functions from [0, T ] to Rm equipped with the uniform topology, θx

denotes the Wiener measure with initial value x, and the quantity R(γ‖θx) denotes the relative entropy of γ with respect

to θx, defined in Section 1.2.1

The corresponding control representation for the rate function, although notationally more demanding, is useful

when studying more general settings. For a Polish space S, we will denote by B(S) the Borel σ-field on S. Let R

denote the set of all finite measures r on B(Rm × [0, T ]) such that r(Rm × [0, t]) = t for all t ∈ [0, T ]. This space is

equipped with the topology of weak convergence. LetR1 ⊂ R be defined as

R1
.
=

{
r ∈ R :

∫
Rm×[0,T ]

‖y‖ r(dy, dt) <∞

}
.
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ThenR1 is a Polish space when equipped with the the Wasserstein-1 metric. Under this metric, rn → r inR1 if and

only if rn → r as a sequence inR and
∫
Rm×[0,T ]

y rn(dy, dt)→
∫
Rm×[0,T ]

y r(dy, dt). Let

Z1
.
= X ×R1 ×W, where X =W = C([0, T ],Rm),

and denote by (X, ρ,W ) the three coordinate maps on this space, namely

X(ξ, r, w) = ξ, ρ(ξ, r, w) = r, W (ξ, r, w) = w, (ξ, r, w) ∈ Z1.

Define

P2(Z1)
.
=

{
Θ ∈ P(Z1) : EΘ

[∫
Rm×[0,T ]

‖y‖2 ρ(dy, dt)

]
<∞

}
,

where EΘ denotes expectation on (Z1,B(Z1),Θ). Let E1 denote the subset of P2(Z1) consisting of probability

measures Θ such that, under Θ, W (t) is a standard Brownian motion with respect to the canonical filtration Ft
.
=

σ{X(s),W (s), ρ(A× [0, s]);A ∈ B(Rm), s ≤ t}, and a.s.

X(t) = x+

∫
Rm×[0,t]

y ρ(dy, ds) +W (t), 0 ≤ t ≤ T. (1.2.10)

Then the rate function I in (1.2.9) has the following alternative representation:

I(γ) = inf
Θ∈E1:[Θ]1=γ

EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2ρ(dy, ds)

]
, (1.2.11)

where [Θ]1 is the marginal of Θ on the first coordinate. Viewing ρ as a (relaxed) control, the right side of the above

display gives a representation for the rate function as the value function of a stochastic control problem in which the

goal is to produce a state process X with a specified law γ using the state dynamics (1.2.10) and a (nonanticipative)

control process ρ which has the least cost, where the cost is given by the expectation on the right side of (1.2.11).

The above interpretation is a useful point of view and analogous stochastic control representations can be given

more generally. Consider for example the case where we are given an i.i.d. collection of d-dimensional diffusions

{Xi : i ∈ N} described through the stochastic differential equations

Xi(t) = x+

∫ t

0

b(Xi(s)) ds+

∫ t

0

σ(Xi(s)) dWi(s), (1.2.12)
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where x ∈ Rd is an initial condition, and where for simplicity we assume that the coefficients b : Rd → Rd and

σ : Rd → Rd×m are Lipschitz functions so that the equations have a unique pathwise solution. Letting

µn =
1

n

n∑
i=1

δXi , (1.2.13)

the rate function associated with the LDP for µn on P(C([0, T ],Rd)) takes the same form as (1.2.11) except X =

C([0, T ],Rd) and the class E1 is now the collection of all probability measures in P2(Z1) under which W is as before

and (X, ρ,W ) are related as

X(t) = x+

∫ t

0

b(X(s)) ds+

∫ t

0

σ(X(s)) dW (s) +

∫
Rm×[0,t]

σ(X(s))y ρ(dy, ds).

Note that the system of equations in (1.2.12) has no interaction between particles. The models considered in

Chapter 4 concern particles that interact partly through a driving Brownian motion that is common to all particles. We

can introduce this small amount of coupling between the equations to the model (1.2.12) as follows:

Xn
i (t) = x+

∫ t

0

b(Xn
i (s)) ds+

∫ t

0

σ(Xn
i (s)) dWi(s) + κ(n)

∫ t

0

α(Xn
i (s)) dB(s), (1.2.14)

where B is a k-dimensional standard Brownian motion independent of {Wi}, α : Rd → Rd×k is a Lipschitz map, and

κ(n)→ 0 as n→∞. In this case, since {Xn
i : 1 ≤ i ≤ n} are not independent, the large deviation behavior of

µn =
1

n

n∑
i=1

δXni (1.2.15)

cannot be deduced from Sanov’s theorem, and in fact this behavior crucially depends on the manner in which κ(n)→ 0.

The measures µn in (1.2.13) and in (1.2.15) converge to the same LLN limit but the rates of convergence as measured

by the large deviation rate function are different. Indeed, as an elementary corollary of Theorems 4.1.1 and 4.1.3 in

Chapter 4, the convergence rate for different choices of the small noise coefficient κ(n) can be characterized (see

Remark 4.1.3). Specifically, when κ(n) = n−1/2 the rate function is governed by a different type of stochastic control

problem than (1.2.11) that can be described as follows. For ϕ ∈ L2([0, T ],Rk), the space of square-integrable functions

from [0, T ] into Rk, let E1[ϕ] denote the subset of P2(Z1) consisting of all probability measures under which W is, as

before, a m-dimensional Brownian motion with respect to the canonical filtration {Ft}, and the coordinate processes

X, ρ, and W are related to ϕ through the equation

X(t) = x+

∫ t

0

b(X(s)) ds+

∫ t

0

σ(X(s)) dW (s) +

∫
Rm×[0,t]

σ(X(s))y ρ(dy, ds)

23



+

∫ t

0

α(X(s))ϕ(s) ds.

Then the rate function I(·) associated with the empirical measures µn in (1.2.15), with κ(n) = n−1/2, is given as

I(γ) = inf
ϕ∈L2([0,T ],Rk)

{
inf

Θ∈E1[ϕ]:[Θ]1=γ
EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy, dt)

]
+

1

2

∫ T

0

‖ϕ(t)‖2 dt

}
, (1.2.16)

where L2([0, T ],Rk) denotes the space of square integrable functions ϕ : [0, T ] → Rk. The right side of (1.2.16) is

once more the value function of a stochastic control problem, however this time there are two types of controls. One

of the controls, represented by ρ, is random and nonanticipative and arises from the aggregated contributions of the

individual Brownian noises, whereas the second control, represented by ϕ, is nonrandom and corresponds to the small

common Brownian noise that impacts all particles.

1.3 Contributions

The results of Chapter 2 can be viewed as a generalization of the Cramér-Lundberg asymptotic and Siegmund’s

algorithm in two directions, the main one being to the case of branching random walks. Historically, the asymptotic

derived in terms of ladder heights for the random walk predates the use of Goldie’s implicit renewal theory, which is a

more robust method in the sense that it allows for a perturbation and is applicable to branching recursions other than

Lindley’s equation. For the branching case, the asymptotic was established (along with that for other recursions) by

extending implicit renewal theory as discussed in the previous section. The main goal of Chapter 2 then is not to prove

the asymptotic result, but rather to approach the problem by deriving a representation (2.1.5) that generalizes (1.1.7),

which can be analyzed via direct renewal theoretic arguments, obtaining an alternate expression for the asymptotic

constant. The other, potentially more important consequence of such a representation is that out of it falls an importance

sampling estimator for the branching recursion in the spirit of Siegmund’s algorithm. While there exist methods for

approximating branching recursions with non-branching ones to arrive at simulation schemes (see e.g. [29]), previous

analysis, including the asymptotic result itself, does not allow for an unbiased, strongly efficient (in the sense of bounded

relative error) sampler for the tail probabilities P (W > t).

The use of a spine change of measure on the underlying weighted Galton-Watson process is a natural way to arrive

at a representation that mimics the non-branching scenario, since such a change of measure results in “tilting” a single

path down the tree. While the formulation of the product martingale used to construct the change of measure in Chapter

2 is non-standard, the work of Lyons [76] suggests that there is a connection with the standard Biggins-Kyprianou

martingale [11, 72] used frequently in the branching process literature. Change of measures that tilt a single branch of
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a Galton-Watson process have been used also in other contexts [77], however they have not been exploited to obtain

efficient rare event samplers as is done here.

The second generalization of the classical Cramér-Lundberg theory that appears in Chapter 2 is to the case of the

perturbed random walk, both non-branching and branching. The inclusion of the perturbation precludes the use of ladder

height analysis in the renewal-theoretic results, and we opt instead to use the Markovian nature of the branching process

to apply a suitable Markov renewal theorem. While the asymptotic behavior of tail events of the perturbed random

walk on R have been studied and correct asymptotic decay rates have been established [6], as noted in Remark 2.1.2(b),

the change of measure has been applied incorrectly in the literature. Hence, a more minor contribution of Chapter 2

is that it provides the equivalent representation to (1.1.7) for the perturbed random walk as well as the corresponding

importance sampling estimator.

The representation (2.1.5) and the structure of the tree under the change of measure (namely that it tilts one path

while leaving the distribution elsewhere invariant) opens up the possibility for even more efficient rare event sampling

schemes to be developed. In fact, this is what is done in Chapter 3. In particular, a sampling scheme is developed

therein with computational complexity that does not depend on the offspring distribution of the Galton-Watson process,

where complexity is measured in terms of the number of input random vectors to the high order Lindley equation that

need to be generated. The unbiased algorithm in Chapter 2 requires the simulation of a tree up to a generation on the

order of t for a single estimate of P (W > t), resulting in a computational complexity that is exponential in t. On the

other hand, the biased algorithm in Chapter 3 has complexity that is linear in t, enabling efficient sampling even when t

or the mean of the offspring distribution is very large.

The large deviation analysis of Chapter 4 is done for an interacting particle system that is a combination of models

that have been previously studied. In particular, the model concerns weakly-interacting Brownian particles that are

driven by both independent and small, common sources of noise. Such systems with a “common factor” arise in many

fields, including in neuroscience, where they model systematic noise in the external input to neuronal ensembles [43],

and in mathematical finance, where they model global sources of risk [30]. Additionally, an interacting particle model

approximation of Feynman-Kac functionals is considered. The main contribution of Chapter 4 is to specify the large

deviation rate function in terms of those for each of the two contributing models, and describe how it changes with the

rate at which the common noise vanishes.

The large deviation principles are proved for the empirical measures of the particles as n, the number of particles,

increases, and the rate function is shown to take qualitatively different forms when the small noise scales as n−r for

r < 1/2, r = 1/2, and r > 1/2. In particular, in the r < 1/2 regime, the rate function corresponds to that for the model

dominated by the independent sources of noise, and when r > 1/2, the rate function looks like the rate function that

appears in Friedlin-Wentzell small-noise asymptotic results. The r = 1/2 case is balanced and yields a rate function

that is the sum of each contributing part.
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The model in Chapter 5 is simpler, consisting of a weakly-interacting particle model driven by independent, small

sources of noise. In addition to considering the large deviation behavior of the empirical measures of the particles,

a large deviation principle is also established for certain functionals of the particle states called stochastic currents,

which a.s. take values in certain negative fractional-order Sobolev spaces. A joint large deviation principle for the

empirical measures and stochastic currents for a simpler version of this model was already established in [88], but the

contributions of Chapter 5 are improvements upon this result in several ways.

The first is that weak convergence proof techniques are employed to significantly reduce the length of the proof.

These techniques also easily allow us to consider a more general version of the model that includes a non-constant

diffusion coefficient that includes interaction among the particles. In particular, this also allows for degeneracy of the

diffusion coefficient, unlike in [88]. Additionally, the LDP in [88] for the stochastic currents is proved in the weak-∗

topology on the appropriate Sobolev space, and we use Sobolev embedding techniques to establish the LDP in the

much stronger norm topology. The main technical challenge to this last improvement lies in using weak convergence

arguments when Sobolev spaces with the norm topology lack certain compactness properties that usually hold in this

context. This is overcome with the standard technique of slightly widening the time domain and proving auxiliary

compact embedding lemmas.
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CHAPTER 2

Importance Sampling For Maxima on Trees

This chapter concerns the SFPE

W
D
= max

{
Y, max

1≤i≤N
(Xi +Wi)

}
, (2.0.1)

where the {Wi} are i.i.d. copies of W , independent of the vector (Y,N, {Xi}), with N ∈ N, which is known in the

literature as the high-order Lindley equation [12, 64, 68, 87]. The special case of N ≡ 1 and Y ≡ 0, known as the

Lindley equation,

W
D
= max {0, X +W} , (2.0.2)

is perhaps one of the best studied recursions in applied probability, since it describes the stationary distribution of the

waiting time in a single-server queue fed by a renewal process and having i.i.d. service times; see the discussion in

the Introduction, and see Asmussen [7] and Cohen [25] for a more comprehensive overview. If we replace the zero in

(2.0.2) with a random Y we obtain a recursion satisfied by the all-time supremum of a “perturbed" random walk, where

the Y denotes the perturbation. This type of distributional recursion was analyzed, for example, in [6, 53, 61]. The

branching form (2.0.1) appears in the study of queueing networks with synchronization requirements [68, 87] and in

the analysis of the maximum displacement of a branching random walk [12].

Given both the theoretical and practical importance of the special endogenous solution to (2.0.1), the focus of this

paper is the study of its asymptotic tail behavior, i.e., P (W > t) for large t. Recall from Theorem 1.1.6 in Section 1.1.4

that tail events for the endogenous solution to (2.0.1) decay exponentially, i.e., provided there exists α > 0 such that

E

[
N∑
i=1

eαXi

]
= 1 and 0 < E

[
N∑
i=1

eαXiXi

]
<∞,

then

P (W > t) ∼ He−αt, t→∞,

as established in [64] using implicit renewal theory [49, 62, 63]. However, the constant H provided by the theorem

is implicitly defined in terms of W itself, making its interpretation even less obvious than in the non-branching case.
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Hence, the goal of this chapter is to provide an alternative representation for P (W > t) yielding: 1) an unbiased

and easy to simulate algorithm for P (W > t) for all values of t, and 2) an alternative expression for H that better

reflects the behavior of the underlying weighted branching random walk leading to the event {W > t}. The main

tool enabling our first goal is a new interpretation of the measure E
[∑N

i=1 e
αXi1(Xi ∈ dx)

]
appearing in the renewal

theoretic approaches for establishing the existence of H [31, 60, 74, 75, 12, 62, 63] in terms of a distinguished path

of the branching process, with which we form a change of measure. The second goal, that of obtaining an alternative

representation for H , is attained by applying the Markov renewal theorem from [4] to our representation. The proposed

simulation algorithm yields an unbiased and strongly efficient estimator for the probability P (W > t), much in the

spirit of the importance sampling approach provided by Siegmund’s algorithm for the Lindley equation (see Section

1.1.3). Importance samplers were also constructed in [14, 27] for the tail distribution of the solution of an affine version

of the equation (when N ≡ 1), in [92] in the context of sequential analysis, in [48] for Markov chains and semi-Markov

processes, and in [26] for Markov-modulated walks. For general review on rare-event simulation we refer the reader to

[13, 19].

The change of measure we propose is of independent interest, since it formally differs from the typical one

encountered in the weighted branching processes literature. It is constructed along a random path {Jr}r≥0 of the

underlying weighted branching process, which we refer to as the spine, and changes its drift while leaving all other

paths unchanged. The likelihood martingale Ln =
∏n−1
r=0 DJr used in our approach is constructed as a product of

certain random variables Di along the spine, and it is different from the Biggins-Kyprianou martingale Wn(α) defined

in (1.1.17), which is constructed along the ‘width’ of the tree. Finally, our change of measure approach also provides

important insights into the exponential asymptotics described by the implicit renewal theorem [49, 64].

Most of the analysis in this chapter is done in terms of the multiplicative version

R
D
= Q ∨

(
N∨
i=1

CiRi

)
(2.0.3)

of (2.0.1), where Y = logQ, Xi = logCi, and W = logR, and in terms of the corresponding multiplicative random

walk. Recall from Section 1.1.4 the construction of the weighted branching process and the tree T constructed from

i.i.d. copies

{ψi : i ∈ U} =
{

(Qi, Ni, {C(i,j)}j≥1) : i ∈ U
}
,

where U is the set of all finite strings of positive integers. Also recall that the endogenous solution to (2.0.3) is given by

R
.
=
∨
i∈T

ΠiQi, (2.0.4)
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where Πi =
∏k
j=1 Ci|j when |i| = k.

Our analysis ofRwill rely on a set of assumptions satisfied by the generic branching vectorψ = (N,Q,C1, C2, . . . ).

Condition 2.0.1. (N,Q,C1, C2, . . .) is nonnegative a.s. with N ∈ N+ ∪ {∞}, and P (Q > 0) > 0. Furthermore, for

some α > 0,

(a) E
[∑N

i=1 C
α
i

]
= 1 and E

[∑N
i=1 C

α
i logCi

]
∈ (0,∞),

(b) E
[∑N

i=1 C
β
i

]
< 1 for some 0 < β < α and E[Qα] <∞,

(c) P
(∑N

i=1 C
α
i = 0

)
= 0,

(d) The probability measure η(dx) = E
[∑N

i=1 C
α
i 1(logCi ∈ dx)

]
is nonlattice,

(e) E
[(∑N

i=1 C
α
i

)
log+

(
Qα ∨

∑N
i=1 C

α
i

)]
<∞.

Since the approach followed here is different from the one used in the implicit renewal theorem found in [64], our

assumptions for establishing the representation of the constant in Theorem 2.3.1 are slightly different. In particular,

conditions (c) and (e) are new. Condition (c) will be needed to ensure that our change of measure is well-defined, and

condition (e) will guarantee that the positive part of the perturbed branching random walk has finite mean under said

change of measure. On the other hand, the implicit renewal theorem requires the following assumption, which we use

only for the positivity of the constant in Theorem 2.3.1.

Condition 2.0.2. E
[(∑N

i=1 Ci

)α]
< ∞ if α > 1 and E

[(∑N
i=1 C

α/(1+ε)
i

)1+ε
]
< ∞ for some 0 < ε < 1 if

0 < α ≤ 1.

Observe that apart from these assumptions, the dependence structure in the vector ψ is arbitrary.

2.1 Change of Measure Along a Path

Note that for any path i originating at the root of T , we can define a random walk by setting Si = log Πi. Moreover, by

letting Yi = logQi, we obtain that

W
.
= logR =

∨
i∈T

(Si + Yi) (2.1.1)

represents the maximum of a perturbed branching random walk.

Since our goal is to analyze the tail distribution P (W > t) (equivalently, of P (R > t)) for all values of t, the key

idea of our analysis is to apply a change of measure to the perturbed branching random walk under which the event

{W > t} for large t is no longer rare. This is exactly the usual approach for studying the maximum of the standard

random walk under Cramér conditions (i.e., the existence of α > 0 such that E
[
eαX

]
= 1 and 0 < E

[
XeαX

]
<∞).

29



However, in the branching case the change of measure is not as straightforward as in the non-branching case, where we

use the exponential martingale to define it (see Section 1.1.2).

Note that under the condition E
[∑N

i=1 C
β
i

]
< 1 for some β > 0, the paths in the tree T have negative drift (see

the calculation (1.1.18)). The change of measure we seek is obtained by making the drift of one path positive. Starting

at the root, we will pick this chosen path by selecting one of its offspring at random, with a probability proportional to

its weight raised to the α power. This procedure will allow us to define a suitable mean one nonnegative martingale to

induce a change of measure on the entire tree. As we will show later, the change in the drift will not affect any subtrees

whose roots are not part of the chosen path, allowing us to isolate the (small) set of paths responsible for the rare event

{W > t}.

More precisely, let J0 = ∅ denote the root of T . We now recursively define the random indices along the chosen

path, {Jk : k ≥ 1}, as follows:

P
(
Jk = (Jk−1, i)

∣∣ψJk−1

)
=
Cα(Jk−1,i)

DJk−1

, 1 ≤ i ≤ NJk−1
, k ≥ 1,

where

Di =

Ni∑
r=1

Cα(i,r)

for any i ∈ U , with generic copy D =
∑N
i=1 C

α
i . From now on, we will refer to this chosen path along with its

offspring and sibling nodes as the spine. Note that the sequence of indexes {Jk : k ≥ 0} identifies all the nodes in the

spine, with node Jk denoting the one in the kth generation of T .

We now use the spine to define a mean one nonnegative martingale for our change of measure. To this end, define

L0 = 1, Lk =

k−1∏
r=0

DJr , k ≥ 1 ,

and note that if we let Fk = σ(ψi : i ∈ As, s < k) and Gk = σ(Fk ∪ σ(Js : s ≤ k)) for k ≥ 1 and F0 = G0 = σ(∅),

then

E [Lk| Gk−1] = Lk−1E
[
DJk−1

∣∣Gk−1

]
= Lk−1 .

Therefore {Lk : k ≥ 0} is a nonnegative martingale with mean one, measurable with respect to the filtration

{Gk : k ≥ 0}. Setting

P̃ (A) = E[1(A)Lk] , for A ∈ Gk and all k ≥ 0 , (2.1.2)
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we obtain a new probability measure on G = σ
(⋃

k≥1 Gk
)

(see Theorem 1.1.4(i)). Note in particular that ψ = ψ∅

satisfies

P̃ (ψ ∈ B) = E [1(ψ ∈ B)L1] = E [1(ψ ∈ B)D]

for Borel sets B.

Remark 2.1.1. (a) By Theorem 1.1.4(ii), P is absolutely continuous with respect to the measure induced by (2.1.2)

up to each finite time step k. Namely,

P (A) = Ẽ
[
1(A)L−1

k

]
, A ∈ Gk,

and so the support of ψ does not change under the new measure. In particular, we can write

P (L1 = 0) = Ẽ
[
1(L1 = 0)L−1

1

]
.

Since 1(L1 = 0)L−1
1 ∈ {0,∞}, it must be the case that P̃ (L1 = 0) = 0, which in turn must mean P (L1 = 0) = 0.

The corresponding assumption is given by Condition 2.0.1(c). In particular, we assume that P (N ≥ 1) = 1. It is

common for conditioning that the tree does not die to appear in the literature in the context of spine changes of

measure. See, for instance, [89].

(b) It is worth mentioning that both Goldie’s implicit renewal theorem [49] and the implicit renewal theorem on trees

[62, 64] allow P (L1 = 0) > 0, which is precluded by Condition 2.0.1. Our current setting is less general because

it clearly identifies the most likely path to the rare event {W > t} in cases where it is solely determined by the

behavior of the spine. However, the implicit renewal theorems cover cases where the most likely path to the rare

event is somewhat different than the one we will describe, which translates into the same exponential decay but

with a different constant.

As mentioned earlier, the change of measure defined above only affects the drift of the random walk and the

perturbation along the spine. Moreover, it preserves the branching property, i.e., the independence between the vectors

{ψi : i ∈ T }. The following result formalizes this statement; its proof is given in Section 2.5. Throughout, we use the

convention
∑b
i=a xi ≡ 0 whenever a > b.

Lemma 2.1.1. Suppose Condition 2.0.1(a) holds. For any measurable set B ∈ N× R∞, and any i ∈ Ak,

P̃ (Jk = i) =

k∏
r=1

E[Cαir1(N ≥ ir)],

P̃ (ψi ∈ B|i 6= Jk) = P ((N,Q,C1, C2, . . . ) ∈ B) ,
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P̃ (ψi ∈ B|i = Jk) = E

1 ((N,Q,C1, C2, . . . ) ∈ B)

N∑
j=1

Cαj

 .
Moreover, under P̃ , the vectors {ψi : i ∈ Ak} are conditionally independent given Gk−1 for any k ≥ 1.

Recall that by taking the logarithm of the weights we can define a perturbed random walk along every path i ∈ T .

The one along the spine will be special, since it is the one being affected by the change of measure, and will be the only

one guaranteed to eventually exceed any level t. To make this precise, let us define Xi = logCi and note that for any

i ∈ Ak,

Si = log Πi = Xi|1 + · · ·+Xi|k−1 +Xi,

where the {Xi|r}1≤r≤k are independent of each other, although not necessarily identically distributed. To identify the

spine we use the notation X̂k = XJk = logCJk , identify the random walk along the chosen path by

Vk = X̂1 + · · ·+ X̂k, V0 = 0, (2.1.3)

and use

ξk = YJk = logQJk , ξ0 = Y∅ = logQ∅,

for its perturbation. The following result establishes that {Vk : k ≥ 0} defines a random walk with i.i.d. increments and

positive drift.

Lemma 2.1.2. Suppose Condition 2.0.1(a) holds. For all k ≥ 1 and x1, . . . xk, y ∈ R ∪ {∞}, we have

P̃
(
X̂1 ≤ x1, . . . , X̂k ≤ xk, ξk ≤ y

)
= E

[
1(Q ≤ ey)

N∑
i=1

Cαi

]
k∏
r=1

G(xr),

where

G(x) =

∞∑
i=1

E [1(Ci ≤ ex, N ≥ i)Cαi ] = E

[
N∑
i=1

1(logCi ≤ x)Cαi

]
.

In particular, the {X̂i : i ≥ 1} are i.i.d. with common distribution G under P̃ , Ẽ
[
|X̂1|

]
<∞, and have mean

µ
.
= Ẽ

[
X̂1

]
= E

[
N∑
i=1

Cαi logCi

]
∈ (0,∞).

We now explain how to compute the probability P (W > t) using the change of measure described above. We

start by defining the hitting time of level t for the perturbed branching random walk defined by {(Si, Yi) : i ∈ T },

which we denote γ(t) = inf{i ∈ T : Si + Yi > t}, where the infimum is taken according to the length-lexicographic
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≺ order defined in Section 1.1.4. We use ν(t) = |γ(t)| to denote the generation in the weighted branching process

where the perturbed random walk along a path exceeds level t. Next, define the hitting time of level t along the spine,

τ(t) = inf{k ≥ 0 : Vk + ξk > t}.

Note that ν(t) + 1 and τ(t) + 1 are stopping times for the weighted branching process with respect to the filtration

{Gk : k ≥ 0}, and since it is possible for a path different from the spine to hit level t before the spine does, then

ν(t) ≤ τ(t),

with equality possible, e.g. if Jτ(t) = γ(t). Moreover, since W =
∨

i∈T (Si + Yi), it follows that

P (W > t) = P (ν(t) <∞).

The next step is to apply the change of measure and derive an alternative representation for P (ν(t) < ∞). To

this end, observe that on the set {γ(t) = i}, we have Ni|r−1 ≥ ir for all r = 1, . . . , k and that {γ(t) = i, Jk = i} =

{τ(t) = k, Jτ(t) = γ(t) = i}. Also note that for i ∈ Ak,

P (Jk = i| Fk) =

∏k
r=1 C

α
i|r1(Ni|r−1 ≥ ir)∏k−1
r=0 Di|r

.

Therefore, since P (Jk = i| Fk) = P (Jk = i| Fk+1), and since
∏k−1
r=0 Di|r > 0 a.s. for all i ∈ Ak and all k, we have

eαtP (W > t) = E

[ ∞∑
k=0

∑
i∈Ak

eαt1(γ(t) = i)

]

=

∞∑
k=0

E

[∑
i∈Ak

1(γ(t) = i)eαt
Πα

i

Πα
i

·
∏k−1
r=0 Di|r∏k−1
r=0 Di|r

]

=

∞∑
k=0

E

[∑
i∈Ak

1(γ(t) = i)e−α(Si−t) ·
k−1∏
r=0

Di|r · P (Jk = i| Fk+1)

]

=

∞∑
k=0

E

[
E

[ ∑
i∈Ak

1(γ(t) = i)e−α(Si−t)Lk1(Jk = i)

∣∣∣∣∣Fk+1

]]

=

∞∑
k=0

E
[
1(γ(t) = Jτ(t), τ(t) = k)e−α(Vτ(t)−t)Lk

]
. (2.1.4)

Now recall that although τ(t) and |γ(t)| are not stopping times with respect to {Gk : k ≥ 0}, τ(t) + 1 and |γ(t)|+ 1

are. Hence, multiplying and dividing by DJk we obtain

eαtP (W > t) =

∞∑
k=0

E
[
1(γ(t) = Jτ(t), τ(t) + 1 = k + 1)e−α(Vτ(t)−t)D−1

Jk
Lk+1

]
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= Ẽ
[
1(γ(t) = Jτ(t), τ(t) <∞)e−α(Vτ(t)−t)D−1

Jτ(t)

]
.

Since {Vk + ξk : k ≥ 0} is a perturbed random walk with positive drift under P̃ , we have the following.

Lemma 2.1.3. Under Condition 2.0.1(a)-(c), P̃ (τ(y) <∞) = 1 for any y ∈ R.

Hence, we obtain

eαtP (W > t) = Ẽ
[
1(Jτ(t) = γ(t))e−α(Vτ(t)−t)D−1

Jτ(t)

]
. (2.1.5)

Note that the right-hand-side of (2.1.5) is an explicit function of the first τ(t) generations of a weighted branching

process with a distinguished spine, which can be directly estimated using standard Monte Carlo methods, as discussed

in Section 2.4.

Remark 2.1.2. (a) Note that if Q is independent of (N,C1, C2, . . . ), then we can use the filtration F ′0 = σ(Q∅),

F ′k = σ (ψi : i ∈ As, s < k;Qj : j ∈ Ak) and its corresponding G′0 = F ′0, G′k = σ (F ′k ∪ σ(Js : s ≤ k)), with

respect to which both τ(t) and ν(t) are stopping times, and obtain the simpler expression

eαtP (W > t) = Ẽ
[
1(Jτ(t) = γ(t))e−α(Vτ(t)−t)

]
.

(b) In the non-branching case (N ≡ 1), equation (2.1.5) reduces to

P (W > t) = Ẽ
[
e−αVτ(t)+1

]
, (2.1.6)

which we point out is different from equation (3.4) in [6], since their expression has Vτ(t) instead of Vτ(t)+1.

As explained earlier, τ(t) is not a stopping time with respect to the natural filtration σ(X̂i : 1 ≤ i ≤ n) of the

martingale Ln, so the change of measure argument in [6] needs to be modified (see Theorem 3.2 in Chapter XIII of

[7]). Once we consider the augmented filtration Fk (which is equal to Gk in the non-branching case) and apply the

change of measure up to the stopping time τ(t) + 1, we obtain the expression given by (2.1.6).

(c) The case where the Q is bounded is also special in the sense of the theory needed for its analysis. In particular,

the exponential asymptotics of P (W > t) can be easily obtained without using the augmented filtration nor any

implicit renewal theory. To illustrate this we include in Section 2.5 (see Theorem 2.5.1) a very short proof of

Theorem 1 in [6], for the non-branching case. Since the focus of here is to obtain a more explicit representation for

the constant H obtained through the implicit renewal theorem on trees (Theorem 3.4 in [64]), we do not pursue the

bounded Q case separately in the branching setting.
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(d) Moreover in the case of a.s. bounded Q, say P (Q ≤ q) = 1, we can obtain a Cramér-Lundberg type of inequality

for P (W > t) by defining γ∗(t) = inf{i ∈ T : Si > t}, ν∗(t) = |γ∗(t)|, and τ∗(t) = inf{n ≥ 1 : Vn > t}, and

noting that both ν∗(t) and τ∗(t) are stopping times with respect to the filtration σ({(Ni, C(i,1), C(i,2), . . . ) : i ∈

As, s < k}, {Js : s ≤ k}). The same change of measure arguments used above yield for any t > c
.
= log q:

P (W > t) = P (ν∗(t− c) ≤ ν(t) <∞)

≤ P (ν∗(t− c) <∞)

= Ẽ
[
1(Jτ∗(t−c) = γ∗(t− c))e−αVτ∗(t−c)

]
≤ Ẽ

[
e−α(Vτ∗(t−c)−t+c)

]
e−α(t−c)

≤ qαe−αt.

This inequality for all t ≥ c holds under Assumption 2.0.1(a), and cannot be obtained using only the implicit

renewal theorem for trees in [64].

2.2 The Markov Renewal Theorem

As pointed out, the new expression provided by (2.1.5) can easily be estimated via simulation. however, it can also be

directly analyzed to obtain an alternative representation for the constant H in P (W > t) ∼ He−αt, t→∞. The idea

behind this analysis is the use of renewal theory on the expectation

Ẽ
[
1(Jτ(t) = γ(t))e−α(Vτ(t)−t)D−1

Jτ(t)

]
.

Note that although the exponential term inside the expectation depends only on the random walk {Vk : k ≥ 0} and its

hitting time of level t, the event {Jτ(t) = γ(t)} depends on the history of the tree T up to generation ν(t). Hence, any

renewal argument would need to include the latter, which complicates matters since its exponential growth (whenever

E[N ] > 1) implies it does not naturally renew at any point. However, intuitively, only the paths that branch out from

the spine close to the time when the spine is likely to reach level t are likely to reach level t at all. This means that it

should suffice to focus only on these paths, say a subtree of height m rooted at the spine that moves along the random

walk {Vk : k ≥ 0}; see Figure 2.1a. Since the sequence of such height-m subtrees forms a Harris chain, the key to our

main theorem is the use of the Markov renewal theorem in [4].

To formalize this idea, we define the subtrees of height m rooted at node Jk (the kth node along the spine)

according to:

T (m)
k =

m−1⋃
n=0

An,Jk , k ≥ 0, (2.2.1)
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∅

m
generations

(a) The spine of T .

∅

(b) The subtrees of height m rooted in the spine, T (m)
k ,

k ≥ 0.

Figure 2.1: The spine of T and the Markov chain consisting of subtrees.

where An,i = {(i, j) ∈ T : |j| = n} is the nth generation of the subtree rooted at node i (See Figure 2.1b). Focusing

on these subtrees rooted at the spine allows us to analyze the expectation Ẽ
[
1(Jτ(t) = γ(t))e−α(Vτ(t)−t)D−1

Jτ(t)

]
using

the Markov renewal theorem in [4]. Note that even in the non-branching case (N ≡ 1), the perturbations that the Q’s

represent make it difficult to identify clear regeneration epochs for the process {Vk + ξk : k ≥ 0}, which is a problem

that is solved by looking not only at the current value of Vn + ξn, but also at its m-step history. We give more details on

this idea and the intuition behind it in Section 2.5.

2.3 Main Result

Here we present the main theoretical result of this chapter. Recall µ = Ẽ[X̂1] = E
[∑N

i=1 C
α
i logCi

]
.

Theorem 2.3.1. If (N,Q,C1, C2, . . .) satisfies Condition 2.0.1 for some α > 0 and W = logR, where R is the

endogenous solution to (2.0.3) given by (2.0.4), then

P (W > t) ∼ He−αt as t→∞,

where

H = lim
m→∞

Ẽ

[(
eαξm − eα(

∨
i≺Jm

(Si+Yi)−Vm)
)+

D−1
Jm

]
αµ

.

If furthermore Condition 2.0.2 holds, then H > 0.

Remark 2.3.1. It it interesting to compare the expression for H in the theorem with its counterpart obtained through

the use of the implicit renewal theorem on trees (Theorem 1.1.6 in the Introduction and Theorem 3.4 in [64]), which
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written in terms of W under our current assumptions* becomes

E
[
eαY ∨

∨N
i=1 e

α(Xi+Wi) −
∑N
i=1 e

α(Xi+Wi)
]

αµ
, (2.3.1)

where the {Wi} are i.i.d. copies of W independent of the vector (N,Y,X1, X2, . . . ). As we can see, the two

representations are significantly different, despite the fact that they are necessarily equal to each other. However, the

representation given by Theorem 2.3.1 applies only to our setting where the rare event is determined by the spine,

which under P̃ behaves very differently than all other paths in the tree, while the constant obtained through the implicit

renewal theorem on trees also works for the case where P (L1 = 0) > 0.

Let Hm = (αµ)−1Ẽ

[(
eαξm − eα(

∨
i≺Jm

(Si+Yi)−Vm)
)+

D−1
Jm

]
. The rate of convergence of Hm → H can be

shown to be geometrically fast when we add a slightly stronger assumption on the distribution of N than in Condition

2.0.1. More precisely, as a consequence of the proof of Theorem 2.3 we have the following.

Corollary 2.3.1. Suppose Conditions 2.0.1 and 2.0.2 hold, and in addition suppose that

Ẽ[N ] = E

[
N

N∑
i=1

Cαi

]
<∞.

Then, there is a constant 0 < c < 1 such that

|H −Hm| = O (cm) .

2.4 An Importance Sampling Algorithm

As discussed in Section 1.1.3, the same exponential change of measure used to establish the Cramér-Lundberg

asymptotic in the non-branching case is well-known to provide an unbiased and strongly efficient estimator for the rare

event probability P (W > t) when t is large. Throughout this section we assume that N <∞ a.s.

To relate our estimator to the one used in the non-branching case, suppose first that the goal is to estimate the tail

distribution of the all-time maximum of the random walk Sn = X1 + · · · + Xn when E[X1] < 0. For large values

of t, estimating P (W > t) = P (supn Sn > t) using the naive estimator 1(W > t) would require prohibitively large

sample sizes, since its relative error grows unboundedly, i.e.,

Var(1(W > t))

P (W > t)2
=
P (W > t)P (W ≤ t)

P (W > t)2
→∞ as t→∞,

*Theorem 3.4 in [64] allows Q, and therefore R, to take negative values.
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However, whenever there exists α > 0 such that E
[
eαX1

]
= 1 and E

[
X1e

αX1
]
∈ (0,∞), Siegmund’s algorithm [92]

takes advantage of the representation

P (W > t) = Ẽ
[
e−αSτ(t)1(τ(t) <∞)

]
,

where the expectation is computed under the change of measure P̃ (A) = E
[
1(A)eαSn

]
for any set A measurable with

respect to σ(X1, . . . , Xn). Since under P̃ the random walk has positive drift, P̃ (τ(t) < ∞) = 1 and we obtain the

estimator:

Z(t) = e−αSτ(t) .

This estimator is known to be strongly efficient, in the sense that it has bounded relative error, i.e,

lim sup
t→∞

Ṽar(Z(t))

P (W > t)2
<∞,

where Ṽar(·) denotes the variance under P̃ . Furthermore, since it can be shown that t/τ(t)→ µ = E
[
X1e

αX1
]
P̃ -a.s.,

then computing Z(t) requires that we simulate around t/µ steps of the random walk. For further details we refer to

Section 1.1.3 herein and Chapter VI in [8].

Our proposed simulation approach for the branching case follows the same ideas described above. However, the

issues we encounter while using a naive Monte Carlo approach are considerably worse, since simulating k generations

of a tree requires, in general, an exponential in k number of random variables. Observe that in similar situations, the

population dynamics algorithm [3, 84, 86] has been used to construct dependent samples which still yield strongly

consistent estimators. However, our problem here is that we are interested in estimating the probability P (W > t) for

both moderate and large values of t, and in the latter case the size of such samples would again have to be prohibitively

large in order to obtain enough observations larger than t.

Alternatively, we could try to estimate the expectation in the asymptotic expression

P (W > t) ∼
E
[
eαY ∨

∨N
i=1 e

α(Xi+Wi) −
∑N
i=1 e

α(Xi+Wi)
]

αµ
· e−αt, t→∞,

provided by Theorem 3.4 in [64], since the population dynamics algorithm could be used to efficiently and accurately

estimate the expectation involved. However, we would still have a bias due to the limit in t that cannot be explicitly

computed, despite the availability of convergence rates in the implicit renewal theorem [65]. Instead, our proposed

estimator follows the idea behind Siegmund’s algorithm and is based on the representation

P (W > t) = Ẽ
[
1(Jτ(t) = γ(t))e−αVτ(t)D−1

Jτ(t)

]
,
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derived in Section 2.1. Note that by Lemma 2.1.3, under Condition 2.0.1(a)-(c) we have P̃ (ν(t) ≤ τ(t) < ∞) = 1,

which suggests the estimator

Z(t) = 1(Jτ(t) = γ(t))e−αVτ(t)D−1
Jτ(t)

, (2.4.1)

where the underlying tree T is simulated under the measure P̃ up to the stopping time τ(t) + 1.

Remark 2.4.1. By the discussion in Remark 2.1.2(a), when Q is independent of (N,C1, C2, . . .), the estimator

Z(t) = 1(Jτ(t) = γ(t))e−αVτ(t) (2.4.2)

is also unbiased for P (W > t). This is the prefered estimator in this case since the D−1
Jτ(t)

in (2.4.1) is an unnecessary,

independent source of variability. In the case that both N ≡ 1 and Q is independent of C1, (2.4.2) reduces to the

estimator in Siegmund’s algorithm.

As with the non-branching case, we expect the spine to reach level t in about t/µ steps, or equivalently, t/µ

generations of T . The precise result is stated below; note that its proof is not a straightforward consequence of the

strong law of large numbers due to the presence of the perturbations.

Lemma 2.4.1. Under Condition 2.0.1, τ(t)→∞ P̃ -a.s. as t→∞. In particular, τ(t) ∼ t/µ as t→∞ P̃ -a.s.

Just as the estimator in Siegmund’s algorithm, our proposed estimator is strongly efficient, although under a

strengthened moment condition due to the perturbations.

Lemma 2.4.2. Suppose Conditions 2.0.1 and 2.0.2 hold, so that H > 0. If E
[
Q2αD−1

]
<∞, then Z(t) as defined

by (2.4.1) has bounded relative error. If Q is independent of (N,C1, C2, . . .) and E
[
Q2α

]
<∞, then Z(t) in (2.4.2)

has bounded relative error.

In Table 2.1 we present an algorithm for simulating one copy of Z(t) for fixed t > 0. At the start, we assume we

have computed the value of α such that E
[∑N

i=1 C
α
i

]
= 1 as well as the corresponding tilted distribution for the nodes

along the spine under P̃ , and that we are capable of simulating (N,Q,C1, C2, . . . ) both under P and under the tilted

measure. To distinguish the two distributions, let ψ̃ = (Ñ , Q̃, C̃1, C̃2, . . . ) denote a vector having the tilted distribution:

P̃ (ψ̃ ∈ B) = P̃ (ψi ∈ B|i = Jk) = E

[
1(ψ ∈ B)

N∑
i=1

Cαj

]
, B ⊆ N× R∞,

and let ψ = (N,Q,C1, C2, . . . ) denote a vector having the original distribution under P ; the simulation of the tree T

will always be done under P̃ .
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Table 2.1: Importance Sampling Algorithm

1: Input: t > 0
2: Output: A single copy of Z = 1(Jτ(t) = γ(t))e−αVτ(t)D−1

Jτ(t)

3: Generate (N,Q,C1, . . . , CN )
D
= ψ̃

4: Choose j ∈ {1, . . . , N} w.p. Cαj /
∑N
i=1 C

α
i and set J1 ← j

5: Set Y = logQ and Sj ← logCj for j = 1, . . . , N
6: Initialize S∅ ← 0, Y∅ ← Y , i← ∅, J0 ← ∅
7: while Si + Yi ≤ t do
8: Update i← min{j : i ≺ j}
9: if i = J|i| then
10: Generate

(
Ni, Qi, C(i,1), . . . , C(i,Ni)

) D
= ψ̃

11: Choose j ∈ {1, . . . , Ni} w.p. Cα(i,j)/
∑Ni

i=1 C
α
(i,i), and set J|i|+1 ← (J|i|, j)

12: else
13: Generate

(
Ni, Qi, C(i,1), . . . , C(i,Ni)

) D
= ψ

14: end if
15: Set Yi ← logQi and S(i,j) ← Si + logC(i,j) for j = 1, . . . , Ni

16: end while
17: if i = J|i| then
18: Set Z ← e−αSi/

∑Ni

i=1 C
α
(i,i)

19: else
20: Set Z ← 0
21: end if
22: Output Z

2.4.1 Examples

We now illustrate the use of our proposed simulation algorithm by providing some examples for which both the random

vectors ψ and ψ̃ can be easily simulated. The particular form of the change of measure poses a simulation challenge

since the tilt introduces dependence between N and the {Ci} even if none exists under P . We start with three generic

approaches for simulating ψ̃ and then provide more concrete examples.

Example 2.4.1 (Acceptance-rejection for bounded C’s, part I). When the Ci are a.s. bounded, an acceptance-rejection

algorithm based on the original distribution of ψ under P can be employed to generate a sample of ψ̃. Suppose that

Ci ≤ bi a.s. for each i and note that

P̃ (Ñ = n) = E

[
1(N = n)

N∑
i=1

Cαi

]
= P (N = n)

n∑
i=1

E [Cαi |N = n] ,

so that

P̃ (Q̃ ∈ dy, Ñ = n, C̃1 ∈ dx1, . . . , C̃n ∈ dxn)
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= P (N = n)E

[
1(Q ∈ dy, C1 ∈ dx1, . . . , Cn ∈ dxn)

n∑
i=1

Cαi

∣∣∣∣∣N = n

]

= P (N = n)

(
n∑
i=1

E[Cαi |N = n]

)
·
E [ 1(Q ∈ dy, C1 ∈ dx1, . . . , Cn ∈ dxn)

∑n
i=1 C

α
i |N = n]∑n

i=1E[Cαi |N = n]

= P̃ (Ñ = n) ·
E [ 1(Q ∈ dy, C1 ∈ dx1, . . . , Cn ∈ dxn)

∑n
i=1 C

α
i |N = n]∑n

i=1E[Cαi |N = n]
.

Thus, the conditional density of (Q̃, C̃1, . . . , C̃n) given Ñ = n can be dominated as follows:

fQ̃,C̃1,...,C̃n|Ñ=n(y, x1, . . . , xn) =

∑n
i=1 x

α
i∑n

i=1E[Cαi |N = n]
fQ,C1,...,Cn|N=n(y, x1, . . . , xn)

≤
∑n
i=1 b

α
i∑n

i=1E[Cαi |N = n]
fQ,C1,...,Cn|N=n(y, x1, . . . , xn),

where fQ,C1,...,Cn|N=n denotes the conditional density of (Q,C1, . . . , Cn) givenN = nwith respect to P . Hence, after

obtaining Ñ = n by simulation, an observation of (Q̃, C̃1, . . . , C̃n) can be obtained by using an acceptance-rejection

procedure where we simulate U from a Uniform[0, 1] distribution and (Q,C1, . . . , Cn) according to fQ,C1,...,Cn|N=n,

independent of each other, and then set (Q̃, C̃1, . . . , C̃n) = (Q,C1, . . . , Cn) if

U ≤
∑n
i=1 C

α
i∑n

i=1 b
α
i

.

The acceptance probability given Ñ = n is (
∑n
i=1 b

α
i )
−1.

Example 2.4.2 (Acceptance-rejection for bounded C’s, part II). Suppose that rather than having each of the Ci

be bounded individually, we have that D =
∑N
i=1 C

α
i ≤ b a.s. Now let Z ∼ Pareto(a, 1) be independent of

(N,Q,C1, . . . , CN ), and let fQ,C1,...,Cn|N=n be the conditional density of (Q,C1, . . . , Cn) given N = n with respect

to P , as in Example 2.4.1. Now note that the conditional density of (Q̃, C̃1, . . . , C̃n) given Ñ = n satisfies

fQ̃,C̃1,...,C̃n|Ñ=n(y, x1, . . . , xn) dy dx1 · · · dxn

=
E [ 1(Q ∈ dy, C1 ∈ dx1, . . . , Cn ∈ dxn)D|N = n]

E[D|N = n]

=
E
[
1(Q ∈ dy, C1 ∈ dx1, . . . , Cn ∈ dxn)b−1D

∣∣N = n
]

E [b−1D|N = n]

=
E [ 1(Q ∈ dy, C1 ∈ dx1, . . . , Cn ∈ dxn)1(Za > b/D)|N = n]

P (Za > b/D|N = n)
,

where we have used the observation that P (Za > b/D|D) = D/b and P (Za > b/D|N = n) = E[D/b|N = n].

Therefore, after simulating Ñ = n, we can obtain (Q̃, C̃1, . . . , C̃n) by generating Z ∼ Pareto(a, 1) and (Q,C1, . . . , Cn)
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according to fQ,C1,...,Cn|N=n, independent of each other, and then setting (Q̃, C̃1, . . . , C̃n) = (Q,C1, . . . , Cn) if

Z > (b/D)1/a. The acceptance probability given Ñ = n is P (Z > (b/D)1/a) = b−1.

Example 2.4.3. [A mixture representation] The change of measure induces a mixture density in the following way. If

α > 0 is such that E
[∑N

i=1 C
α
i

]
= 1, then define the values {pi,n, i ≤ n, n ∈ N} by

pi,n =
E[Cαi |N = n]∑n
j=1E[Cαj |N = n]

∈ [0, 1].

Then,

P̃ (Ñ = n, Q̃ ∈ dy, C̃1 ∈ dx1, . . . , C̃n ∈ dxn)

= E

[
1(N = n,Q ∈ dy, C1 ∈ dx1, . . . , Cn ∈ dxn)

N∑
i=1

Cαi

]

= P (N = n)

n∑
i=1

E[1(Ci ∈ dxi)Cαi |N = n]P (Q ∈ dy, Cj ∈ dxj , j 6= i|Ci = xi, N = n)

= P̃ (Ñ = n)

n∑
i=1

pi,nf̃i,n(xi) dxi P (Q ∈ dy, Cj ∈ dxj , j 6= i|Ci = xi, N = n),

where

f̃i,n(x) dx =
E[1(Ci ∈ dx)Cαi |N = n]

E[Cαi |N = n]
=

xαfi,n(x) dx

E[Cαi |N = n]

is the tilted marginal density of C̃i conditional on Ñ = n, while fi,n is the marginal density of Ci conditional of N = n

under P .

Suppose now that f̃i,n specifies a distribution that can be efficiently simulated, and that it is possible to simulate

the vector (Q,C1, . . . , Ci−1, Ci+1, . . . Cn) given {Ci = x,N = n} under P . Then, conditional on Ñ = n, the tilted

vector (Q̃, C̃1, . . . , C̃n) can be simulated by picking i ∈ {1, . . . , n} according to the distribution {pi,n : 1 ≤ i ≤ n},

generating C̃i according to f̃i,n, and then generating {Q̃, C̃j , j 6= i} according to the conditional distribution of

{Q,Cj , j 6= i} given {Ci, N} under P .

Consider the special case when the {Ci} are i.i.d. and N , Q, and {Ci} are mutually independent. Then,

P̃ (Ñ = n) = E

1(N = n)

N∑
j=1

Cαj

 =
nP (N = n)

E[N ]
, n ≥ 1, (2.4.3)

since α is such that E[N ]E[Cα1 ] = 1. Hence, under the tilt, Ñ is the sized-biased version of N . Furthermore,

pi,n = 1/n, f̃i,n = f̃ and fi,n = f for all i and n and some densities f̃ , f . So upon simulating Ñ according to the

size-biased distribution, the {C̃1, . . . , C̃n} can be simulated by picking i ∈ {1, . . . , n} uniformly at random, simulating
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C̃i according to

f̃(x) =
xαf(x)

E[Cα1 ]
,

and simulating the rest of the {C̃j : j 6= i} according to f . In this case the distribution of Q is invariant under the tilt.

Having now described three general methods for simulating the generic branching vector ψ̃ under the tilt induced

by measure P̃ for nodes along the spine, we now give some more concrete examples that lead to explicit distributions

for both ψ and ψ̃.

Example 2.4.4. [The branching version of the M/M/1 queue] As mentioned earlier, the special case of (2.0.1) when

N ≡ 1 corresponds to the Lindley equation satisfied by the single-server queue. In particular, if we choose X = χ− τ

where χ and τ are exponentially distributed and independent of each other, we obtain the M/M/1 queue. This choice

of X is known to be closed under the change of measure induced by P̃ , in the sense that it remains a difference of two

exponentials (but with different rates). As one would expect, this canonical example for the non-branching case is also

valid in the branching one. Specifically, suppose that the {Ci : i ≥ 1} are i.i.d. and independent of N , with each of

the Ci = eχi−τi , where the {(χi, τi) : i ≥ 1} are i.i.d. copies of (χ, τ), with χ and τ exponentially distributed and

independent of each other.

Suppose τ has rate λ and χ has rate θ, for which we have

f(x) =
θλ

λ+ θ

(
xλ−11(x < 1) + x−θ−11(x ≥ 1)

)
, x ∈ (0,∞),

in Example 2.4.3. Then, we can simulate (Ñ , C̃1, . . . , C̃N ) under P̃ by first simulating Ñ according to the size-

biased distribution of N (2.4.3), then pick an index i ∈ {1, . . . , Ñ} uniformly at random, simulate each of the

{C̃j : j 6= i} D= {Cj : j 6= i} through an inversion transform for each of the τj and χj , and then simulate C̃i = eχi−τi

according to the tilted density given by:

f̃(x) =
xαf(x)

E[Cα1 ]
=

(θ − α)(λ+ α)

θ + λ

(
xα+λ−11(x < 1) + x−(θ−α)−11(x ≥ 1)

)
, x ∈ (0,∞),

which corresponds to simulating χi ∼ Exponential(θ − α) and τi ∼ Exponential(λ+ α), independent of each other.

Example 2.4.5 (Identical C’s). We now give three examples for which Ci ≡ C for all i ≥ 1.

(a) SupposeQ,N,C are mutually independent,C ∼ Pareto(a, b) with shape a and scale b, andE[N ] < b−α, where the

Cramér-Lundberg root α solves α = (1− E[N ]bα)a. Then under P̃ , Q̃ D= Q is invariant and remains independent

of (Ñ , C̃), the law of Ñ is the sized-biased distribution given by (2.4.3), and C̃ is again Pareto independent of Ñ

and Q̃, but with shape a− α and scale b.
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(b) Suppose Q is independent of (N,C), C ∼ Exponential(λ), and conditional on C, N ∼ Poisson(C) + 1. Then

after tilting, the law of Q̃ remains invariant, Q̃ remains independent of Ñ and C̃, Ñ has mass function

P̃ (Ñ = n) =
nλΓ(n+ α)

(n− 1)!(λ+ 1)n+α
, n ≥ 1,

and conditional on Ñ , we have C̃ ∼ Gamma(Ñ + α, λ+ 1).

(c) Suppose that Q ∼ Gamma(2, β), with shape 2 and rate β, and N ∼ Geometric(1/2) with support on N+, are

independent, and conditional on (N,Q), C ∼ Gamma(N + 1, 2Q). Under the tilt, Q̃ ∼ Gamma(2 − α, β),

conditional on Q̃, C̃ ∼ Gamma(α+ 2, Q̃), and conditional on (Q̃, C̃), Ñ ∼ Poisson(Q̃C̃) + 1.

Example 2.4.6. [C’s on the N -simplex] Let B ∼ Gamma(a, b), with shape a and rate b, let N have an arbitrary

distribution that is independent of B, and let N and (β1, . . . , βN ) be such that

N∑
i=1

βi = 1.

For example, conditional on N , (β1, . . . , βN ) ∼ Dirichlet(θ) for some concentration parameters θ = (θ1, . . . , θN ),

i.e., each βi has a marginal Beta
(
θi,
∑N
k=1 θk − θi

)
distribution. Then let α be such that E[Bα] = 1, let Ci = Bβ

1/α
i

for 1 ≤ i ≤ N , and let Q be arbitrarily distributed independent of everything else. Then α is the Cramér-Lundberg root

since

E

[
N∑
i=1

Cαi

]
= E

[
N∑
i=1

Bαβi

]
= E[Bα] = 1.

Under P̃ the vector ψ̃ = (Ñ , Q̃, C̃1, C̃2, . . . ) remains in the same family of distributions, i.e., the marginal laws of Ñ

and Q̃ are invariant, B is tilted to B̃ ∼ Gamma(a+ α, b), and the C̃i are constructed in the same way using the same

βi. In this case, it is the particular dependence of N on {Ci} that ensures the invariance of Ñ , since

P̃ (Ñ = n) = E

[
1(N = n)

N∑
i=1

Cαi

]
= E[1(N = n)Bα] = P (N = n).

Figure 2.2 shows how {Si : i ∈ T } behaves under P̃ . In this simulated walk, N ∼ Bernoulli(1/4)+1 independent

of {Ci}, which are exponentiated i.i.d. differences of exponentials as in Example 2.4.4 with θ = 5 and λ = 1/4, and

Q ≡ 1. On the tilted branch under P̃ , N has the size-biased distribution Bernoulli(6/7) + 1.

2.4.2 Numerical Experiments

Here we implement two examples of the importance sampling algorithm. The first is the branching M/M/1 queue of

Example 2.4.4, in which we let χ have rate 5 and τ have rate 1/4, and we let N be a truncated Poisson random variable
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Si Si

|i| |i|

Figure 2.2: A branching random walk (without a perturbation) simulated under both P (left) and P̃ (right).

with mean 2, i.e. N D
= K|K > 0, where K ∼ Poisson(2). In this case α = 4.374, and we include a perturbation

Y ∼ Exponential(9) independent of (N, {Ci}), so that Q is a Pareto random variable with enough moments to ensure

E
[
Q2α

]
< ∞ and provide our estimator with bounded relative error (see Lemma 2.4.2). Under the tilt, N has its

size-biased distribution Poisson(2) + 1, and the {Ci} are simulated as described in Example 2.4.3, by picking one

uniformly at random and applying an exponential tilt. Since Q is independent of (N, {Ci}), we use the estimator in

(2.4.2) (See Remarks 2.1.2(a) and 2.4.1). In Table 2.2 we show the numerical results, which include for a range of t

values the sample average Z̄(t) based on 10,000 copies of Z(t) and the standard error in the estimate. Additionally,

we give the average tree generation τ(t) + 1 at which the algorithm terminates, the value of t/µ for comparison, the

average time in seconds to generate one copy of Z(t), and the fraction of the estimates that are nonzero (i.e. the fraction

of iterations in which the algorithm terminated on the chosen path).

Figure 2.3a shows a plot of log Z̄(t) compared with the tail asymptotic log(He−αt) over the range of values

in the table, where H is computed using the population dynamics algorithm [86]. As can be seen, the distribution

becomes indistinguishable from the tail asymptotic somewhere in the middle of this range. The terminal generation

Table 2.2: Numerical results for the branching M/M/1 queue, sample size 10,000

Branching M/M/1 queue: α = 4.374, µ = 1.383
t Z̄(t) Std. Err. t/µ Terminal gen. Time Prop. nonzero

0.5 0.037774 0.001241 0.36 1.39 0.002610 0.967
1 0.003025 0.000123 0.72 1.78 0.007702 0.980

1.5 0.000354 1.07147e-05 1.08 2.16 0.017536 0.983
2 3.90110e-05 1.43477e-06 1.45 2.52 0.029310 0.983

2.5 4.11873e-06 1.16323e-07 1.81 2.90 0.065747 0.985

45



Table 2.3: Numerical results for C’s on the N -simplex, sample size 10,000

C’s on the N -simplex: α = 3.328, µ = 0.995
t Z̄(t) Std. Err. t/µ Terminal gen. Time Prop. nonzero

1.5 0.015785 0.000166 1.51 0.33 0.000235 0.998
2 0.003611 3.51666e-05 2.01 0.78 0.000311 0.994

2.5 0.000613 6.60663e-06 2.51 1.33 0.000439 0.994
3 0.000116 1.21042e-06 3.01 1.84 0.000671 0.994

3.5 2.29240e-05 2.35959e-07 3.52 2.33 0.001058 0.992

of each estimator does not converge to t/µ as quickly; the terminal generations listed are greater than t/µ despite the

perturbation Q ≥ 1 which in this case can only cause the process Si + Yi to reach the level t earlier than the random

walk Si. The large fraction of estimates that are nonzero in this example indicates that in almost all iterations, the level

t was first reached on the spine of the tree. In the case of i.i.d. C’s, only one offspring of each node on the spine is

chosen for the tilt, and this titled branch is then the most likely to be the next step in the spine, making the event that a

path off the spine hits t first unlikely.

The second experiment is for C’s on the N -simplex, as in Example 2.4.6. We choose B ∼ Gamma(1/4, 1), set α

so that E[Bα] = 1, and then let Ci = Bβ1α
i , where the {βi : 1 ≤ i ≤ N} are Dirichlet(1, . . . , 1) random variables

conditional onN . We letN be uniform over {1, 2, 3} independently ofB, and we takeQ = 2B, so that the perturbation

is positively correlated with the {Ci}. As noted in Example 2.4.6, the change of measure tilts B, the distribution of N

is the same, and (Q, {Ci}) is generated the same way through B and {βi}. Because of the dependence between Q and

{Ci}, the estimator we use is in its most general form (2.4.1). Table 2.3 gives the numerical results for a range of t

values and a sample size of 10,000 for each, and Figure 2.3b is a plot of log Z̄(t) and log(He−αt), where again H is

obtained using the population dynamics algorithm.

Again in this experiment, almost every estimator terminated on the spine of the tree. Unlike in the i.i.d. {Ci} case,

the tilted B influences the C’s of every offspring of a node on the spine, so one might expect a significant percentage of

estimators to terminate on nodes off the spine but which have the spine in their recent ancestry. We do not see this likely

because Q = 2B also is made larger by the tilt but only on the spine, and it seems that it is the perturbation Yi which is

causing the process Si + Yi to reach the level t in almost every iteration. This tilted perturbation is likely also causing

the terminal tree generation to be smaller than t/µ for these values of t, as it is greater than zero with high probability.

In each example, there is a range of t values in the tail of the distribution for which P (W > t) is not yet

indistinguishable from the asymptotic behavior. The importance sampling algorithm presented here provides an efficient

method of simulating tail probabilities for these intermediate values of t before the asymptotic behavior dominates.
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(a) Log probabilities for the branching M/M/1 queue,
H = 0.2390.

lo
g
P
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>
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t

(b) Log probabilities for C’s on the N -simplex, H =
2.5180.

Figure 2.3: Log probability plots estimated two ways: black lines are the logs of asymptotic approximations He−αt

and blue lines are the logs of the estimates Z̄(t).

2.5 Proofs

In this section we provide the proofs to all of our results. To ease its reading, we start first with the proofs of

Lemmas 2.1.1 and 2.1.2, which describe the distribution of the tree T under P̃ . We then give the proof of our main

theoretical result and its corollary, Theorem 2.3.1 and Corollary 2.3.1, followed by the proofs of Lemmas 2.4.1 and

2.4.2 which are related to our importance sampling estimator. Finally, we end the paper with a short proof of Theorem 1

in [6] for the non-branching, bounded Q case (Theorem 2.5.1). Throughout the remainder of the paper we assume that

Condition 2.0.1 holds for some α > 0.

2.5.1 The Distribution of T Under P̃

We start with the proof of Lemma 2.1.1, which provides the distribution of the generic branching vectors defining the

weighted tree T . The distribution for vectors on the spine is different under P̃ and P , whereas that of vectors off the

spine remains the same.

Proof of Lemma 2.1.1. We will start by deriving an expression for the joint distribution of the vectors ψi along then

spine. To do this, fix i ∈ Nk+ and let B0, B1, . . . , Bk ⊆ N × R∞ be measurable sets. Next, note that the event

{ψi|r ∈ Br , r = 0, . . . , k, Jk = i} is measurable with respect to Gk+1, and therefore,

P̃
(
ψi|r ∈ Br , r = 0, . . . , k, Jk = i

)
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= E
[
1
(
ψi|r ∈ Br , r = 0, . . . , k, Jk = i

)
Lk+1

]
= E

[
E
[
1
(
ψi|r ∈ Br , r = 0, . . . , k, Jk = i

)
Lk+1

∣∣Gk]]
= E

[
1
(
ψi|r ∈ Br , r = 0, . . . , k − 1, Jk = i

)
LkE [ 1 (ψi ∈ Bk)Di| Gk]

]
= E

[
1
(
ψi|r ∈ Br , r = 0, . . . , k − 1, Jk = i

)
Lk
]
E [1(ψ ∈ Bk)D]

= E
[
1
(
ψi|r ∈ Br , r = 0, . . . , k − 2, Jk−1 = (i|k − 1)

)
Lk−1

×E
[
1
(
ψi|k−1 ∈ Bk−1, Jk = i

)
DJk−1

∣∣Gk−1

]]
E [1(ψ ∈ Bk)D] .

Now note that by letting j = (i|k − 1) we obtain

E
[
1
(
ψi|k−1 ∈ Bk−1, Jk = i

)
DJk−1

∣∣Gk−1

]
= E [1(ψj ∈ Bk−1, offspring ik of j is chosen)Dj ]

= E

[
1(ψj ∈ Bk−1, Nj ≥ ik) ·

Cα(j,ik)

Dj
·Dj

]
= E

[
1(ψ ∈ Bk−1, N ≥ ik)Cαik

]
.

It follows that

E
[
1
(
ψi|r ∈ Br , r = 0, . . . , k − 1, Jk = i

)
Lk
]

= E
[
1
(
ψi|r ∈ Br , r = 0, . . . , k − 2, Jk−1 = (i|k − 1)

)
Lk−1

]
E
[
1(ψ ∈ Bk−1, N ≥ ik)Cαik

]
= E [1 (ψ∅ ∈ B0, J1 = i1)L1]

k∏
r=2

E
[
1(ψ ∈ Br−1, N ≥ ir)Cαir

]
=

k∏
r=1

E
[
1(ψ ∈ Br, N ≥ ir)Cαir

]
.

We conclude that

P̃
(
ψi|r ∈ Br , r = 0, . . . , k, Jk = i

)
= E [1(ψ ∈ Bk)D]

k∏
r=1

E
[
1(ψ ∈ Br−1, N ≥ ir)Cαir

]
. (2.5.1)

In particular, by setting Br = N×R∞ for all r = 0, 1, . . . , k, we obtain the first expression in the statement of the

lemma, i.e.,

P̃ (Jk = i) =

k∏
r=1

E[1(N ≥ ir)Cαir ].
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Similarly, by setting Bk = B and Br = N× R∞ for all r = 0, 1, . . . , k − 1, we obtain the third expression:

P̃ (ψi ∈ B|i = Jk) = E[1(ψ ∈ B)D] = E

1((N,Q,C1, C2, . . . ) ∈ B)

N∑
j=1

Cαj

 .
To obtain the corresponding expression for nodes off the spine (the second expression in the statement of the

lemma) note that the same conditioning approach used for a node on the spine gives, for any i ∈ Nk+ and any measurable

B ⊆ N× R∞,

P̃ (ψi ∈ B;Jk 6= i) = E [E [ 1 (ψi ∈ B;Jk 6= i)Lk+1| Gk]]

= E [LkE [ 1 (ψi ∈ B;Jk 6= i)DJk | Gk]]

= E [LkE[1(ψi ∈ B)|Gk]E [ 1 (Jk 6= i)DJk | Gk]]

= P (ψ ∈ B)E [1(Jk 6= i)Lk+1]

= P (ψ ∈ B)P̃ (Jk 6= i).

Therefore,

P̃ (ψi ∈ B|Jk 6= i) = P (ψ ∈ B) = P ((N,Q,C1, C2, . . . ) ∈ B).

The conditional independence of the vectors {ψi : i ∈ Ak} given Gk−1 follows from the branching property under P .

This completes the proof.

We now give the proof of Lemma 2.1.2, which gives the distribution of the random walk defined by the nodes

along the spine.

Proof of Lemma 2.1.2. Recall that X̂k = XJk = logCJk and ξk = YJk = logQJk . By conditioning on all possible

paths that could be chosen to define Jk we obtain

P̃
(
X̂1 ≤ x1, . . . , X̂k ≤ xk, ξk ≤ y

)
=
∑
i∈Nk+

P̃
(
X̂1 ≤ x1, . . . , X̂k ≤ xk, ξk ≤ y, Jk = i

)
=
∑
i∈Nk+

P̃
(
Ci|1 ≤ ex1 , . . . , Ci|k ≤ exk , Qi|k ≤ ey, Jk = i

)

=
∑
i∈Nk+

P̃ (Q ≤ ey)

k∏
r=1

E
[
1(Cir ≤ exr , N ≥ ir)Cαir

]
= P̃ (Q ≤ ey)

∞∑
i1=1

E
[
1(Ci1 ≤ ex1 , N ≥ i1)Cαi1

]
· · ·

∞∑
ik=1

E
[
1(Cik ≤ exk , N ≥ ik)Cαik

]
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= E

[
1(Q ≤ ey)

N∑
i=1

Cαi

]
k∏
r=1

G(xr),

where in the third equality we used (2.5.1) and the independence of Qi|k and ψi|k−1. To compute the mean of the X̂i’s

note that

Ẽ
[
|X̂1|

]
=

∫ ∞
−∞
|x|G(dx) =

∫ ∞
−∞
|x|E

[
N∑
i=1

1(logCi ∈ dx)Cαi

]
= E

[
N∑
i=1

Cαi | logCi|

]
.

Now choose 0 < β < α such that E
[∑N

i=1 C
β
i

]
< 1 and note that since log− Ci = 0 when Ci > 1,

Ẽ
[
X̂−1

]
= E

[
N∑
i=1

Cαi log− Ci

]
≤ sup

0≤x≤1
xα−β | log x|Ẽ

[
N∑
i=1

Cβi

]
<∞.

For the positive part note that by Condition 2.0.1(a) we have E
[∑N

i=1 C
α
i logCi

]
∈ (0,∞), and therefore

Ẽ
[
X̂+

1

]
= E

[
N∑
i=1

Cαi logCi

]
+ Ẽ

[
X̂−1

]
<∞.

Finally, since both Ẽ
[
X̂−1

]
and Ẽ

[
X̂+

1

]
are finite, we have Ẽ

[
X̂1

]
= E

[∑N
i=1 C

α
i logCi

]
∈ (0,∞).

2.5.2 Proof of Theorem 2.3.1

We now move on to the proof of our main theorem, which is obtained by applying renewal theory to compute the limit

of

Ẽ
[
1(Jτ(t) = γ(t))e−α(Vτ(t)−t)D−1

Jτ(t)

]
.

The proof will rely on several preliminary results, the first of which establishes the almost sure finiteness of τ(t) under

P̃ (Lemma 2.1.3). Throughout this subsection we assume all parts of Condition 2.0.1 hold.

Proof of Lemma 2.1.3. The sequence {Vk} satisfies the strong law of large numbers

Vn/n→ µ > 0 P̃ -a.s.

Note that Condition 2.0.1(c) ensures that ξ0 has the same support under P̃ that under P , hence, since P (Q > 0) > 0,

there must exist an ε > 0 such that P (Q > ε) > 0, and therefore, P̃ (Q > ε) > 0. Hence, under P̃ , the random

times T0 = inf{i ≥ 0 : ξi > log ε} and Tk+1 = inf{i > Tk : ξi > log ε} are finite P̃ -a.s. for all k ≥ 0; moreover,
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Tk → +∞ P̃ -a.s. as k →∞. Focusing on subsequences along the indexes {Tk : k ≥ 0} gives

lim inf
k→∞

VTk + ξTk
Tk

≥ lim inf
k→∞

VTk + log ε

Tk
= µ P̃ -a.s

Since

sup
n≥0

(Vn + ξn) ≥ sup
k≥0

(VTk + ξTk) P̃ -a.s.,

and P̃
(
supk≥0(VTk + ξTk) > y

)
= 1 for all y, the result follows.

The next thing we need to establish is an upper bound for Ẽ
[
e−α(Vτ(t)−t)D−1

Jτ(t)

]
, since this quantity will appear

in various places throughout the proof of Theorem 2.3.1.

Lemma 2.5.1. Under Condition 2.0.1, we have for any t ∈ R,

Ẽ
[
e−α(Vτ(t)−t)D−1

Jτ(t)

]
≤
∞∑
n=0

Ẽ [u(t− Vn)] , (2.5.2)

where u(x) = eαxP (Y > x) is d.R.i. on R. Moreover,

lim sup
t→∞

Ẽ
[
e−α(Vτ(t)−t)D−1

Jτ(t)

]
≤ E[Qα]

αµ
. (2.5.3)

Proof. Note that

Ẽ
[
e−α(Vτ(t)−t)D−1

Jτ(t)

]
= Ẽ

[
eαtD−1

J0
1(ξ0 > t)

]
+

∞∑
n=1

Ẽ

[
1

(
max

0≤k≤n−1
Vk + ξk ≤ t < Vn + ξn

)
e−α(Vn−t)D−1

Jn

]
= Ẽ

[
eαtD−1

J0
1(ξ0 > t)

]
+

∞∑
n=1

Ẽ

[
1

(
max

0≤k≤n−1
Vk + ξk ≤ t

)
e−α(Vn−t)Ẽ

[
1 (Vn + ξn > t)D−1

Jn

∣∣Gn]]

≤
∞∑
n=0

Ẽ [u(t− Vn)] ,

where

u(x) = eαxẼ
[
1(ξ0 > x)D−1

J0

]
= eαxP (Y > x).

We will now show that u is d.R.i. on (−∞,∞), and we start by proving that u is integrable. To see this note that

∫ ∞
−∞

u(x)dx = E

[∫ ∞
−∞

eαx1(Y > x) dx

]
=
E[Qα]

α
<∞.
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Now note that for any h > 0,

∞∑
n=−∞

sup
y∈(nh,(n+1)h]

u(y) ≤
∞∑

n=−∞
eα(n+1)hP (Y > nh)

≤
∞∑

n=−∞

∫ nh

(n−1)h

e2αheαxP (Y > x)dx

= e2αh

∫ ∞
−∞

u(x)dx <∞,

so by Lemma 1.1.1(i), u is d.R.i.

To complete the proof use the two-sided renewal theorem (see Corollary 1.1.3 in the Introduction or Theorem 4.2

in [9]), to obtain

lim
t→∞

∞∑
n=0

Ẽ [u(t− Vn)] =
1

µ

∫ ∞
−∞

u(x)dx =
E[Qα]

αµ
.

Corollary 2.5.2. There exists a constant 0 < B <∞ such that for any t ∈ R,

eαtP (W > t) ≤ B e−α(−t)+

.

Proof. By (2.5.3), there is a t0 > 0 such that supt≥t0 Ẽ
[
e−α(Vτ(t)−t)D−1

Jτ(t)

]
≤ 2E[Qα]/(αµ) < ∞. Since

for t ≤ 0 we have the trivial bound eαtP (W > t) ≤ e−α(−t)+

, and for t ≥ t0 we have eαtP (W > t) ≤

Ẽ
[
e−α(Vτ(t)−t)D−1

Jτ(t)

]
≤ 2E[Qα]/(αµ), we can take B = max {eαt0 , 2E[Qα]/(αµ)} to obtain the stated inequal-

ity.

We are now ready to move on to the application of the Markov renewal theorem. Let S(m) denote the state space

of weighted trees of height m having a path identified as its spine, and define the Markov chain {M (m)
n : n ≥ m} in

S(m) as follows:

M (m)
m =

{
ψi : i ∈

m−1⋃
k=0

Ak

}
∪ {J0,J1, . . . ,Jm} ,

and

M
(m)
m+n =

{
ψi : i ∈ T (m)

n

}
∪ {Jn,Jn+1, . . . ,Jn+m}

for n > 0. Recall that

T (m)
n =

m−1⋃
k=0

Ak,Jn and Ak,i = {(i, j) ∈ T : |j| = k}.
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Note that with this notation we can write

Ẽ
[
1(Jτ(t) = γ(t))e−α(Vτ(t)−t)D−1

Jτ(t)

]
=

m−2∑
n=0

Ẽ
[
1(|γ(t)| = n,Jτ(t) = γ(t))e−α(Vτ(t)−t)D−1

Jτ(t)

]
+ Ẽ

[
1(|γ(t)| ≥ m− 1,Jτ(t) = γ(t))e−α(Vτ(t)−t)D−1

Jτ(t)

]
=

m−2∑
n=0

Ẽ
[
1(Jn = γ(t))e−α(Vn−t)D−1

Jn

]
+ Ẽ

[
K
(
M (m)
m , t

)]
,

where

K
(
M (m)
m , t

)
:= Ẽ

[
1(|γ(t)| ≥ m− 1, γ(t) = Jτ(t))e

−α(Vτ(t)−t)D−1
Jτ(t)

∣∣∣M (m)
m

]
.

The key idea behind the proof of Theorem 2.3.1 is that Ẽ
[
K
(
M

(m)
m , t

)]
can be analyzed using the Markov

renewal theorem (Theorem 2.1 in [4]). However, the use of this theorem is not immediate, since, as mentioned earlier,

the perturbations make it difficult to identify clear regeneration points. In comparison, when the perturbations are

not random (i.e., Q’s are constant), it suffices to focus on the generations where the ladder heights of the random

walk {Vk : k ≥ 0} occur, since the crossing of level t can only happen at these times. To solve this problem,

our approach relies on the observation that although the crossing of level t does not need to coincide with a ladder

height of {Vk : k ≥ 0}, and the perturbed (branching) random walk does not regenerate when the ladder heights of

{Vk + ξk : k ≥ 0} occur, we can ignore the effect of the perturbations by looking at a long enough stretch of the history

of the branching random walk along its spine. This history is what the Markov chain {M (m)
m+n : n ≥ 0} includes.

Our first technical result in this section will define a function that will appear in the derivation of a lower bound for

Ẽ
[
K
(
M

(m)
m , t

)]
. Before we state it, we will need to define the following random variables. We use

Wi
.
=

∞∨
r=0

∨
(i,j)∈A|i|+r

(
S(i,j) − Si + Y(i,j)

)
, i ∈ T , (2.5.4)

to define the maximum of the perturbed branching random walk rooted at node i. Note that if i is not part of the spine,

then Wi has the same distribution under both P̃ and P . Now use the Wi to define

Zk
.
= ξk ∨ max

(Jk,i) 6=Jk+1

(
S(Jk,i) − Vk +W(Jk,i)

)
, k ≥ 0.

Note that the Zk is the maximum of the perturbation at the spine node Jk and all the branching random walks that are

rooted at sibling nodes of Jk. Intuitively, since under P̃ only the spine has positive drift, the probability that any path
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that coalesces with the spine outside of T (m)
k has a very small chance of ever reaching level t for sufficiently large t and

m. The function hm will be used to quantify how rare this event is.

Lemma 2.5.3. Under Condition 2.0.1, the function

hm(x) = Ẽ
[
1(Z0 > x)e−α(Vm+1−x)+

]

is d.R.i. on R for any m ≥ 2, and satisfies

∫ ∞
−∞

hm(x) dx = Ẽ

[
e−α(Vm+1−Z0)+

α
+ (Z0 − Vm+1)+

]
<∞.

Proof. We start by showing that hm is integrable, for which we note that

∫ ∞
−∞

hm(x) dx = Ẽ

[∫ Z0

−∞
e−α(Vm+1−x)+

dx

]
= Ẽ

[∫ ∞
Vm+1−Z0

e−αy
+

dy

]

= Ẽ

[∫ (Vm+1−Z0)+

Vm+1−Z0

dy +

∫ ∞
(Vm+1−Z0)+

e−αydy

]

= Ẽ

[
(Z0 − Vm+1)+ +

e−α(Vm+1−Z0)+

α

]
.

To see that Ẽ [(Z0 − Vm+1)+] is finite first note that

Ẽ
[
(Z0 − Vm+1)+

]
≤ Ẽ

[
Z+

0 + (−Vm+1)+
]
≤ Ẽ

[
Z+

0

]
+ (m+ 1)Ẽ

[
(−V1)+

]
.

By Lemma 2.1.2 we have Ẽ [(−V1)+] = Ẽ
[
X̂−1

]
<∞. For Ẽ

[
Z+

0

]
, recall Q = eξ0 and write

Ẽ
[
Z+

0

]
=

∫ ∞
0

Ẽ

P̃
ξ0 ∨ ∨

i 6=J1

(logCi +Wi) > t

∣∣∣∣∣∣ψ∅
 dt

=

∫ ∞
0

Ẽ

1(ξ0 > t) + 1(ξ0 ≤ t)P̃

 ∨
i6=J1

1(logCi +Wi > t)

∣∣∣∣∣∣ψ∅
 dt

≤
∫ ∞

0

Ẽ

1(ξ0 > t) + 1

Qα ≤ eαt < ∑
i6=J1

Cαi

 dt
+

∫ ∞
0

Ẽ

1

Qα ∨∑
i 6=J1

Cαi ≤ eαt
∑
i6=J1

P̃ ( logCi +Wi > t|Ci)

 dt
= Ẽ

ξ+
0 +

 1

α
log

∑
i 6=J1

Cαi

− ξ+
0

+ (2.5.5)
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+

∫ ∞
0

Ẽ

1

Qα ∨∑
i 6=J1

Cαi ≤ eαt
∑
i 6=J1

F (t− logCi)

 dt, (2.5.6)

where F (x) = P (W > x) and (2.5.5) is equal to Ẽ
[

1
α log+

(
Qα ∨

∑
i 6=J1

Cαi

)]
. By Corollary 2.5.2, there exists a

constant B <∞ such that F (x) ≤ Be−αx for x ≥ 0. It follows that (2.5.6) is bounded from above by

B

∫ ∞
0

Ẽ

1

Qα ∨∑
i 6=J1

Cαi ≤ eαt
∑
i 6=J1

e−α(t−logCi)

 dt
= BẼ

∑
i6=J1

Cαi

∫ ∞
1
α log+(Qα∨

∑
i6=J1

Cαi )
e−αtdt


=
B

α
Ẽ

∑
i6=J1

Cαi e
− log+(Qα∨

∑
i6=J1

Cαi )

 ≤ B

α
.

It follows that

Ẽ
[
Z+

0

]
≤ Ẽ

 1

α
log+

Qα ∨∑
i 6=J1

Cαi

+
B

α

≤ 1

α
E

[
N∑
i=1

Cαi log+

(
Qα ∨

N∑
i=1

Cαi

)]
+
B

α
<∞,

with finiteness provided by Condition 2.0.1(e).

It remains to show that hm is d.R.i., for which we note that for any h > 0,

∞∑
n=−∞

sup
y∈(nh,(n+1)h]

hm(y)

≤
∞∑

n=−∞
Ẽ
[
1(Z0 > nh)e−α(Vm+1−(n+1)h)+

]
≤

∞∑
n=−∞

∫ nh

(n−1)h

Ẽ
[
1(Z0 > x)e−α(Vm+1−x−2h)+

]
dx

= Ẽ

[
(Z0 − Vm+1 + 2h)+ +

e−α(Vm+1−2h−Z0)+

α

]
<∞,

so by Lemma 1.1.1(i), hm is d.R.i.

We are now ready to formulate the expression to which we will apply the Markov renewal theorem.

Lemma 2.5.4. For any t ∈ R and m ≥ 2 we have

∞∑
k=0

Ẽ
[
g
(
M

(m)
m+k, t− Vk

)]
≥ Ẽ

[
K
(
M (m)
m , t

)]
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≥
∞∑
k=0

Ẽ
[
g
(
M

(m)
m+k, t− Vk

)]
−B

∞∑
k=0

Ẽ [hm(t− Vk)] ,

where B <∞ is the constant from Corollary 2.5.2,

g
(
M (m)
m , t

)
= 1

(
max

i≺Jm−1

Si + Yi ≤ t < Vm−1 + ξm−1

)
e−α(Vm−1−t)D−1

Jm−1
, (2.5.7)

and

hm(x) = Ẽ
[
1(Z0 > x)e−α(Vm+1−x)+

]
.

Proof. Start by noting that

K
(
M (m)
m , t

)
= 1(|γ(t)| = m− 1, γ(t) = Jτ(t))e

−α(Vm−1−t)D−1
Jm−1

+ Ẽ
[

1(|γ(t)| ≥ m, γ(t) = Jτ(t))e
−α(Vτ(t)−t)D−1

Jτ(t)

∣∣∣M (m)
m

]
= g

(
M (m)
m , t

)
+ Ẽ

[
1
(
∆t,τ(t)

)
1(|γ(t)| ≥ m, γ(t) = Jτ(t))e

−α(Vτ(t)−t)D−1
Jτ(t)

∣∣∣M (m)
m

]
,

where the ∆t,τ(t) is the event that ξ0 ≤ t and no subtree rooted at any of the sibling nodes of J1 reaches level t before

the spine does. Simply ignoring the indicator 1(∆t,τ(t)) and regenerating at node J1 yields the inequality

Ẽ
[
K
(
M (m)
m , t

)]
≤ Ẽ

[
g
(
M (m)
m , t

)]
+ Ẽ

[
K
(
M

(m)
m+1, t− V1

)]
≤
n−1∑
k=0

Ẽ
[
g
(
M (m)
m , t− Vk

)]
+ Ẽ

[
K
(
M

(m)
m+n, t− Vn

)]
.

To further bound the last expectation, let s ∈ R, and note that on {γ(s) = Jτ(s)}, no random walk on a path other

than the chosen one reaches level s before Vk + ξk. Hence by ignoring these branches up to level m and restarting the

branching process at Jm with initial value Vm, we have that

K
(
M (m)
m , s

)
= Ẽ

[
1(|γ(s)| ≥ m− 1, γ(s) = Jτ(s))e

−α(Vτ(s)−s)D−1
Jτ(s)

∣∣∣M (m)
m

]
≤ Ẽ

[
1(γ(s− Vm) = Jτ(s−Vm))e

−α(Vτ(s−Vm)−(s−Vm))
∣∣∣Vm]

= eα(s−Vm)F (s− Vm),
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where F (x) = P (W > x) and we used (2.1.5). Moreover, by Corollary 2.5.2 we have that eα(s−Vm)F (s − Vm) ≤

Be−α(Vm−s)+

, so we obtain for any s ∈ R,

K
(
M (m)
m , s

)
≤ Be−α(Vm−s)+

. (2.5.8)

Now replace Vm with Vm+n − Vn and s = t− Vn in (2.5.8) to obtain that

Ẽ
[
K
(
M

(m)
m+n, t− Vn

)]
≤ BẼ

[
e−α(Vm+n−t)+

]
.

To obtain a lower bound note that ∆c
t,τ(t) ⊆ {Z0 > t}, since the event {Z0 > t} states that either ξ0 > t or at least

one of the subtrees rooted at a sibling node of J1 reaches level t at some point (even if this happens after the spine

does). Hence, we obtain the following lower bound:

Ẽ
[
K
(
M (m)
m , t

)]
≥ Ẽ

[
g
(
M (m)
m , t

)]
+ Ẽ

[
K
(
M

(m)
m+1, t− V1

)]
− Ẽ

[
1(Z0 > t)K

(
M

(m)
m+1, t− V1

)]
≥ Ẽ

[
g
(
M (m)
m , t

)]
+ Ẽ

[
g
(
M

(m)
m+1, t− V1

)]
+ Ẽ

[
K
(
M

(m)
m+2, t− V2

)]
− Ẽ

[
1(Z1 > t− V1)K

(
M

(m)
m+2, t− V2

)]
− Ẽ

[
1(Z0 > t)K

(
M

(m)
m+1, t− V1

)]
≥
n−1∑
k=0

Ẽ
[
g
(
M

(m)
m+k, t− Vk

)]
+ Ẽ

[
K
(
M

(m)
m+n, t− Vn

)]
−
n−1∑
k=0

Ẽ
[
1(Zk > t− Vk)K

(
M

(m)
m+k+1, t− Vk+1

)]
.

To provide a bound for the last sum, note that by replacing Vm with Vm+k+1 − Vk+1 and s = t− Vk+1 in (2.5.8) we

obtain

Ẽ
[
1(Zk > t− Vk)K

(
M

(m)
m+k+1, t− Vk+1

)]
≤ Ẽ

[
1(Zk > t− Vk)Be−α(Vm+k+1−t)+

]
= BẼ [hm(t− Vk)] ,

where hm(x) = Ẽ
[
1(Z0 > x)e−α(Vm+1−x)+

]
.

We have thus shown that for any n ≥ 1

−B
n−1∑
k=0

Ẽ [hm(t− Vk)] ≤ Ẽ
[
K
(
M (m)
m , t

)]
−
n−1∑
k=0

Ẽ
[
g
(
M

(m)
m+k, t− Vk

)]
≤ BẼ

[
e−α(Vm+n−t)+

]
.
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Monotone convergence and the observation that Vn →∞ P̃ -a.s. immediately yields

Ẽ
[
K
(
M (m)
m , t

)]
≤
∞∑
k=0

Ẽ
[
g
(
M

(m)
m+k, t− Vk

)]
.

To obtain the lower bound note that by Lemma 2.5.3 we have that hm is nonnegative and d.R.i. on R, and therefore,∑∞
k=0 Ẽ [hm(t− Vk)] <∞ for all t ∈ R. It follows that

Ẽ
[
K
(
M (m)
m , t

)]
≥
∞∑
k=0

Ẽ
[
g
(
M

(m)
m+k, t− Vk

)]
−B

∞∑
k=0

Ẽ [hm(t− Vk)] .

This completes the proof.

In order to connect our framework with the notation in the Markov renewal theorem from [4], recall that the

X̂n = Vn − Vn−1, n ≥ 1,

define the increments of the random walk along the spine, and note that {(M (m)
m+n, X̂n) : n ≥ 0} is a time-homogeneous

Markov process that only depends on the past through {M (m)
m+n : n ≥ 0}. Hence, we can define a transition kernel P

according to

P
(
M

(m)
m+n, A×B

)
.
= P̃

(
M

(m)
m+n+1 ∈ A, X̂n+1 ∈ B

∣∣∣M (m)
m+n, X̂n

)
for any measurable sets A ⊆ S(m) and B ⊆ R. Thus, {(M (m)

m+n, Vn) : n ≥ 0} is a Markov random walk in the sense of

[4]. Furthermore, by the way the process {M (m)
m+n : n ≥ 0} was constructed, it is mth-order stationary, in the sense that

for each n ≥ 0 the law under P̃ of
(
M

(m)
m+n, . . . ,M

(m)
2m+n

)
is the same as that of

(
M

(m)
m , . . . ,M

(m)
2m

)
, from which it

follows that the unique stationary distribution for the chain {M (m)
m+n : n ≥ 0} is given by

ηm(·) .
= Ẽ

[
1

m

m−1∑
n=0

1
(
M

(m)
m+n ∈ ·

)]
= P̃

(
M (m)
m ∈ ·

)
. (2.5.9)

The idea is now to use Theorem 2.1 in [4], which states that provided that

(i) {(M (m)
m+n, Vn) : n ≥ 0} is a non-arithmetic and Harris recurrent Markov random walk, and

(ii) g : S(m) × R→ R is a measurable function such that g(M, ·) is Lebesgue-a.e. continuous for ηm-a.e. M , and g

is d.R.i. in the sense that ∫
S(m)

∞∑
n=−∞

sup
y∈(n,n+1]

|g(M,y)| ηm(dM) <∞,
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then, it will follow that

lim
t→∞

Ẽ

[ ∞∑
n=0

g
(
M

(m)
n+m, t− Vn

)]
=

1

Ẽ
[
X̂1

] ∫
S(m)

∫
R
g(M,x) dx ηm(dM).

The non-arithmeticity of {(M (m)
m+n, Vn) : n ≥ 0} follows from the non-arithmeticity of {Vn : n ≥ 1}, which is

ensured by Assumption 2.0.1(d) (see Lemma 2.1.2). To see that {M (m)
m+n : n ≥ 0} is Harris recurrent note that by

construction, M (m)
m+n is independent of {M (m)

n+2m,M
(m)
n+2m+1, . . . } for all n ≥ 0, and therefore, by letting Q denote the

transition kernel of {M (m)
m+n : n ≥ 0} and Qr its corresponding r-step transition kernel, we have

Qm
(
M

(m)
m+n, A

)
= P̃

(
M

(m)
n+2m ∈ A

∣∣∣M (m)
m+n

)
= P̃

(
M (m)
m ∈ A

)
= ηm(A),

which satisfies the definition of a Harris chain (see Chapter VII Section 3 in [7]) with regeneration set R = S(m),

probability measure λ = ηm and ε = 1.

The last ingredient before applying the Markov renewal theorem of [4] to our situation is to show that the function

g defined by (2.5.7) satisfies the necessary conditions. The corresponding result is given by the following lemma.

Lemma 2.5.5. Let g : S(m) × R → R be defined by (2.5.7). Then, under Condition 2.0.1, g(M, ·) is Lebesgue-

a.e. continuous for ηm-a.e. M , and g is d.R.i. Moreover,

∫
S(m)

∫ ∞
−∞

g(M,x) dx ηm(dM) =
1

α
Ẽ

[
D−1

Jm−1

(
eαξm−1 − eα(maxi≺Jm−1

(Si+Yi)−Vm−1)
)+
]

<∞.

Proof. We start by showing that g(M, ·) is Lebesgue-a.e. continuous. To see this, let M ∈ S(m), identify its m

generations, all its weights, and its spine. Then note that

g (M, t) = 1(a(M) ≤ t ≤ b(M))c(M)eαt

for some fixed numbers a(M), b(M) and c(M). Therefore, it is Lebesgue-a.e. continuous.

It remains to show that g is d.R.i., for which we note that for any M ∈ S(m) for which we have identified its

generations, weights, and spine, we have

∞∑
n=−∞

sup
y∈(n,n+1]

|g(M,y)|

=

∞∑
n=−∞

sup
y∈(n,n+1]

1

(
max

i≺Jm−1

Si + Yi ≤ y < Vm−1 + ξm−1

)
e−α(Vm−1−y)D−1

Jm−1
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≤ D−1
Jm−1

e−αVm−1

∞∑
n=−∞

1

(
Vm−1 + ξm−1 > n, max

i≺Jm−1

Si + Yi ≤ n+ 1

)
eα(n+1)

≤ D−1
Jm−1

e−αVm−1

∞∑
n=−∞

∫ n+2

n+1

1

(
Vm−1 + ξm−1 + 2 > x, max

i≺Jm−1

Si + Yi ≤ x
)
eαx dx

= D−1
Jm−1

e−αVm−1

∫ ∞
−∞

1

(
max

i≺Jm−1

Si + Yi ≤ x < Vm−1 + ξm−1 + 2

)
eαx dx

= D−1
Jm−1

e−αVm−1
1

α

(
eα(Vm−1+ξm−1+2) − eα(maxi≺Jm−1

Si+Yi)
)+

=
1

α
D−1

Jm−1

(
eα(ξm−1+2) − eα(maxi≺Jm−1

Si+Yi−Vm−1)
)+

.

It follows that

∫
S(m)

∞∑
n=−∞

sup
y∈(n,n+1]

|g(M,y)| ηm(dM)

≤ 1

α
Ẽ

[
D−1

Jm−1

(
eα(ξm−1+2) − eα(maxi≺Jm−1

(Si+Yi)−Vm−1)
)+
]

≤ 1

α
Ẽ
[
D−1

Jm−1
eα(ξm−1+2)

]
=
e2α

α
E[Qα] <∞,

which implies that g is d.R.i.

To complete the proof, note that essentially the same steps followed above give that

∫
S(m)

∫ ∞
−∞

g(M,x) dx ηm(dM) =
1

α
Ẽ

[
D−1

Jm−1

(
eαξm−1 − eα(maxi≺Jm−1

(Si+Yi)−Vm−1)
)+
]

and that the right hand side is finite.

We are finally ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. From the derivations at the beginning of the subsection and Lemma 2.5.4 we have that for any

m ≥ 2,

Ẽ
[
1(γ(t) = Jτ(t))e

−α(Vτ(t)−t)D−1
Jτ(t)

]
≤
m−1∑
k=0

Ẽ
[
1(|γ(t)| = k, γ(t) = Jτ(t))e

−α(Vk−t)D−1
Jk

]
+

∞∑
n=0

Ẽ
[
g
(
M

(m)
m+n, t− Vn

)]
.

To see that each of the first m expectations converges to zero as t→∞, note that

Ẽ
[
1(|γ(t)| = k, γ(t) = Jτ(t))e

−α(Vk−t)D−1
Jk

]
≤ Ẽ

[
1(Vk + ξk > t)e−α(Vk−t)D−1

Jk

]
= Ẽ [u(t− Vk)] ,
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where u(x) = eαxẼ
[
1(ξ0 > x)D−1

J0

]
= eαxP (Y > x). Since u is bounded and integrable on (−∞,∞), it follows

from the bounded convergence theorem that

lim sup
t→∞

Ẽ
[
1(|γ(t)| = k, γ(t) = Jτ(t))e

−α(Vk−t)D−1
Jk

]
≤ Ẽ

[
lim sup
t→∞

u(t− Vk)

]
= 0.

Now use the Markov renewal theorem (Theorem 2.1 in [4]) and Lemma 2.5.5 to obtain that

lim sup
t→∞

Ẽ
[
1(γ(t) = Jτ(t))e

−α(Vτ(t)−t)D−1
Jτ(t)

]
≤
m−1∑
k=0

lim
t→∞

Ẽ
[
1(|γ(t)| = k, γ(t) = Jτ(t))e

−α(Vk−t)D−1
Jk

]
+

1

Ẽ
[
X̂1

] ∫
S(m)

∫ ∞
−∞

g(M,x) dx ηm(dM)

=
1

αµ
Ẽ

[
D−1

Jm−1

(
eαξm−1 − eα(maxi≺Jm−1

(Si+Yi)−Vm−1)
)+
]
.
= Hm−1,

(2.5.10)

where µ = Ẽ
[
X̂1

]
= E

[∑N
i=1 C

α
i logCi

]
> 0.

To obtain a lower bound use Lemma 2.5.4 again to obtain that

Ẽ
[
1(γ(t) = Jτ(t))e

−α(Vτ(t)−t)D−1
Jτ(t)

]
≥
∞∑
n=0

Ẽ
[
g
(
M

(m)
m+n, t− Vn

)]
−B

∞∑
n=0

Ẽ [hm(t− Vn)] .

Now use the two-sided renewal theorem (Lemma 1.1.3) and Lemma 2.5.3 to obtain that

lim
t→∞

∞∑
n=0

Ẽ [hm(t− Vn)] =
1

µ

∫ ∞
−∞

hm(x) dx

=
1

µ
Ẽ

[
e−α(Vm+1−Z0)+

α
+ (Z0 − Vm+1)+

]
<∞.

It follows that

lim inf
t→∞

Ẽ
[
1(γ(t) = Jτ(t))e

−α(Vτ(t)−t)D−1
Jτ(t)

]
≥ Hm−1

− B

µ
Ẽ

[
e−α(Vm+1−Z0)+

α
+ (Z0 − Vm+1)+

]
.

(2.5.11)

Since Vm →∞ P̃ -a.s., we have that

lim
m→∞

Ẽ

[
e−α(Vm+1−Z0)+

α
+ (Z0 − Vm+1)+

]
= 0,
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and we conclude that

lim
t→∞

eαtP (W > t) = lim
t→∞

Ẽ
[
1(γ(t) = Jτ(t))e

−α(Vτ(t)−t)D−1
Jτ(t)

]
= lim
m→∞

Hm
.
= H.

The positivity of H under Condition 2.0.2 follows from representation (2.3.1) and Theorem 3.4 in [64].

2.5.3 Proof of Corollary 2.3.1

Here we provide a proof of Corollary 2.3.1, which relies on the following lemma.

Lemma 2.5.6. For any 0 < γ < α,

Ẽ

 ∨
i 6=J1

eγ(Si−V1)

 ≤ Ẽ[N ].

Proof. Recall that Ẽ[N ] = E
[
N
∑N
i=1 C

α
i

]
. If F1 = σ(ψ∅), then for 1 ≤ j ≤ N ,

P (J1 = j| F1) =
Cαj∑N
i=1 C

α
i

.

For any x ∈ R, we have that

P̃

( ∨
i∈B1

Si − V1 > x

)
=

∞∑
j=1

P̃

∨
i 6=j

Si − Sj > x, j ≤ N,J1 = j


= E

 N∑
j=1

1

(∨
i6=j Ci

Cj
> ex,J1 = j

) N∑
i=1

Cαi


= E

 N∑
j=1

1

(∨
i6=j Ci

Cj
> ex

)
P (J1 = j| F1)

N∑
i=1

Cαi


= E

 N∑
j=1

1

(∨
i6=j Ci

Cj
> ex

)
Cαj

 .
Then,

Ẽ
[
eγ(

∨
i∈B1

Si−V1)
]

=

∫ ∞
0

P̃
(
eγ(

∨
i∈B1

Si−V1) > x
)
dx

=

∫ ∞
0

P̃

( ∨
i∈B1

Si − V1 >
log x

γ

)
dx

=

∫ ∞
0

E

 N∑
j=1

1

(∨
i 6=j Ci

Cj
> x1/γ

)
Cαj

 dx
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= E

 N∑
j=1

Cαj

∫ ∨
i6=j C

γ
i /C

γ
j

0

dx


= E

 N∑
j=1

Cα−γj

∨
i 6=j

Cγi


≤ E

 N∑
j=1

N∨
i=1

Cαi

 ≤ E [N N∑
i=1

Cαi

]
= Ẽ[N ],

where in the last line we used the fact that if Ci ≥ Cj , then Cα−γj Cγi =
(
Cj
Ci

)α−γ
Cαi ≤ Cαi and hence

Cα−γj

∨
i6=j

Cγi ≤ C
α−γ
j

N∨
i=1

Cγi = Cα−γj

(
N∨
i=1

Ci

)γ
≤

N∨
i=1

Cαi .

We now complete the proof of Corollary 2.3.1.

Proof of Corollary 2.3.1. From (2.5.10) and (2.5.11) in the Proof of Theorem 2.3.1, it suffices to quantify the conver-

gence

lim
m→∞

Ẽ

[
e−α(Vm+1−Z0)+

α
+ (Z0 − Vm+1)+

]
= 0.

If α > 1, let (α/2) ∨ 1 < β < α such that ρβ = E
[∑N

i=1 C
β
i

]
< 1, and if 0 < α ≤ 1, let α/(1 + ε) < β < α such

that ρβ < 1, where ε is as in Condition 2.0.2. We have that

Ẽ
[
e−α(Vm+1−Z0)+

]
≤ Ẽ

[
e−(α−β)(Vm+1−Z0)+

]
≤ Ẽ

[
e−(α−β)(Vm+1−Z0)

]
= Ẽ

[
e−(α−β)(Vm+1−V1)e(α−β)(Z0−V1)

]
= ρmβ Ẽ

[
e(α−β)(Z0−V1)

]
,

since Vm+1 − V1 is independent of Z0 − V1 and Ẽ
[
e−(α−β)(Vm+1−V1)

]
= Ẽ

[
e−(α−β)Vm

]
= ρmβ . Also,

Ẽ
[
(Z0 − Vm+1)+

]
≤
Ẽ
[
e(α−β)(Z0−Vm+1)

]
α− β

=
ρmβ
α− β

Ẽ
[
e(α−β)(Z0−V1)

]
.

Showing that Ẽ
[
e(α−β)(Z0−V1)

]
<∞ will imply the result with c = ρβ .

To that end, first note that

Ẽ
[
e(α−β)(Z0−V1)

]
≤ Ẽ

[
e(α−β)(ξ0−V1)

]
+ Ẽ

[ ∨
i∈B1

e(α−β)(Si−V1+Wi)

]
. (2.5.12)
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For the first term on the right hand side, note that since P (J1 = i|ψ∅) = Cαi /D∅ for any i ≤ N∅ and D∅ = L1,

Ẽ
[
e(α−β)(ξ0−V1)

]
= E

[
N∑
i=1

e(α−β)(Y−Xi)1(J1 = i)L1

]

= E

[
Qα−β

N∑
i=1

Cβ−αi P (J1 = i|ψ∅)L1

]

= E

[
Qα−β

N∑
i=1

Cβi

]

≤ (E [Qα])
(α−β)/α

E
( N∑

i=1

Cβi

)α/ββ/α

,

where the last line follows from Hölder’s inequality. In the case that α > 1 and (α/2)∨ 1 < β < α, in particular β > 1

implies that

E

( N∑
i=1

Cβi

)α/β ≤ E [( N∑
i=1

Ci

)α]
<∞.

When α ≤ 1 and β > α/(1 + ε), we have that (1 + ε)β/α > 1 and hence

E

( N∑
i=1

Cβi

)α/β = E

( N∑
i=1

(
C
α/(1+ε)
i

)(1+ε)β/α
)α/β ≤ E

( N∑
i=1

C
α/(1+ε)
i

)1+ε
 <∞.

In either case, Ẽ
[
e(α−β)(ξ0−V1)

]
<∞.

For the second term in (2.5.12), let γ = 2(α− β), and note that by assumption β > α/2 and so γ < α. We then

have that

Ẽ

[ ∨
i∈B1

e(α−β)(Si−V1+Wi)

]
≤ Ẽ

[ ∨
i∈B1

e(α−β)(Si−V1)
∨
i∈B1

e(α−β)Wi

]

≤

(
Ẽ

[ ∨
i∈B1

eγ(Si−V1)

])1/2(
Ẽ

[ ∨
i∈B1

eγWi

])1/2

≤
(
Ẽ[N ]

)1/2 (
Ẽ[N ]E

[
eγW

])1/2

= Ẽ[N ]
(
E
[
eγW

])1/2
<∞,

where E
[
eγW

]
<∞ since γ < α, and we used Lemma 2.5.6.

2.5.4 The Importance Sampling Estimator Z(t)

The last part of the paper contains the proofs of Lemmas 2.4.1 and 2.4.2 in Section 2.4. The first of these establishes the

asymptotic behavior of τ(t) as t→∞, and the second one proves the strong efficiency of our proposed estimator.
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Proof of Lemma 2.4.1. Since τ(y) is monotone nondecreasing in y, limy→∞ τ(t) = supy τ(y) exists, and for any

k > 0 and x ∈ R,

P̃

(
lim
y→∞

τ(y) > k

)
≥ P̃ (τ(x) > k) = P̃

(
max
j≤k

Vj + ξj ≤ x
)
.

Letting x → ∞, we see that P̃ (limy→∞ τ(y) > k) = 1, and since this is true for all k, limy→∞ τ(y) = ∞ P̃ -a.s.

It remains to show that τ(t)/t → 1/µ P̃ -a.s. provided Ẽ
[
ξ+
0

]
< ∞ and P̃ (ξ0 > −∞) > 0, which are implied by

Condition 2.0.1.

Start by noting that for any t > 0,

1

τ(t) + 1
max

0≤k<τ(t)
(Vk + ξk) ≤ t

τ(t) + 1
≤
Vτ(t) + ξτ(t)

τ(t) + 1
.

To obtain an upper bound for t/(τ(t) + 1) note that

lim sup
t→∞

t

τ(t) + 1
≤ lim sup

n→∞

Vn + ξ+
n

n
≤ µ+ lim sup

n→∞

ξ+
n

n
= µ,

where lim supn→∞ ξ+
n /n = 0 P̃ -a.s. since Ẽ[ξ+

0 ] <∞ and lim supn→∞ Vn/n = µ P̃ -a.s. by the strong law of large

numbers since Ẽ[|V1|] <∞. To obtain a lower bound let mn = n/ log n and note that since t/(τ(t) + 1) > 0 we have

lim inf
t→∞

t

τ(t) + 1
≥ lim inf

n→∞

(
1

n
max

0≤k<n
(Vk + ξk)

)+

≥ lim inf
n→∞

1

n
max

mn≤k<n
(Vk + ξk)+

≥ lim inf
n→∞

1

n
max

mn≤k<n

(
(µk + ξk)+ − (µk − Vk)+

)
≥ lim inf

n→∞

1

n
max

mn≤k<n
(µk + ξk)+ − lim sup

n→∞

1

n
max

mn≤k<n
(µk − Vk)+

≥ lim inf
n→∞

1

n
max

mn≤k<n
(µk + ξk)+ − lim sup

n→∞

(
µ− Vn

n

)+

.

Since the strong law of large numbers gives that lim supn→∞(µ− Vn/n)+ = 0 P̃ -a.s., it only remains to show that

lim infn→∞ n−1 maxmn≤k<n(µk + ξk)+ ≥ µ P̃ -a.s. To show that this is indeed the case, fix 0 < ε < µ, define

Mε = de(1−ε/2)−1e, and note that

∞∑
n=3

P̃

(
1

n
max

mn≤k<n
(µk + ξk)+ − µ < −ε

)

=

∞∑
n=3

P̃

(
max

mn≤k<n
(µk + ξk)+ < (µ− ε)n

)

≤Mε +

∞∑
n=Mε+1

P̃

(
max

d(1−ε/2)ne≤k<n
(µk + ξk)+ < (µ− ε)n

)
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≤Mε +

∞∑
n=Mε+1

n∏
k=d(1−ε/2)ne

P̃ (µk + ξk < (µ− ε)n)

≤Mε +

∞∑
n=Mε+1

n∏
k=d(1−ε/2)ne

P̃ (ξ0 < −(ε/2)n)

≤Mε +

∞∑
n=Mε+1

P̃ (2ξ0 < −εn)(ε/2)n−1.

Since by assumption we have that P̃ (ξ0 > −∞) > 0, then there exists n0 > Mε such that P̃ (2ξ0 < −εn) < 1 for all

n ≥ n0, which shows that the series above converges. Finally, use the Borel-Cantelli lemma to conclude that

lim inf
n→∞

1

n
max

mn≤k<n
(µk + ξk)+ − µ = 0 P̃ -a.s.,

which in turn implies that

lim
t→∞

t

τ(t)
= µ P̃ -a.s.

Proof of Lemma 2.4.2. From Theorem 2.3.1,

P (W > t)2 ∼ H2e−2αt as t→∞

for H2 > 0, and so

lim sup
t→∞

Ṽar(Z(t))

P (W > t)2
≤ lim sup

t→∞

Ẽ
[
1(Jτ(t) = γ(t))e−2αVτ(t)D−2

Jτ(t)

]
H2e−2αt

≤ H−2 lim sup
t→∞

Ẽ
[
e−2α(Vτ(t)−t)D−2

Jτ(t)

]
.

Now, by an argument analogous to that in the proof of Lemma 2.5.1, we have that

Ẽ
[
e−2α(Vτ(t)−t)D−2

Jτ(t)

]
≤
∞∑
n=0

Ẽ [v(t− Vn)] ,

where v(x) = e2αxE[1(Y > x)D−1], which is integrable since

∫ ∞
−∞

v(x) dx =

∫ ∞
−∞

e2αxE
[
1(Y > x)D−1

]
dx

= E

[∫ Y

−∞
e2αxD−1 dx

]
=

1

2α
E
[
Q2αD−1

]
<∞.
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Then, v is d.R.i. by the same argument as in the proof of Lemma 2.5.1 for the function u, and hence

lim sup
t→∞

Ẽ
[
e−2α(Vτ(t)−t)D−2

Jτ(t)

]
≤ lim sup

t→∞

∞∑
n=0

Ẽ [v(t− Vn)] =

∫ ∞
−∞

v(x) dx <∞.

The proof is the same for the estimator 1(Jτ(t) = γ(t))e−αVτ(t) in the case of independent Q.

2.5.5 The Bounded Perturbations in the Non-Branching Case

We end the paper with a short proof of Theorem 1 in [6] for the non-branching case N ≡ 1 and bounded Q, which

establishes the exponential asymptotic behavior of P (W > x). As mentioned earlier, a similar approach could be

used for the branching case with bounded Q, however, since our goal was not to establish the exponential asymptotic

itself (for which the implicit renewal theorem on trees in [64] can be used), but rather shed some light into the event

leading to the constant, we do not pursue this idea any further. In the N ≡ 1 case, W is the maximum of a negative

drift perturbed random walk, that is

W
D
= sup
n≥0

(Vn + ξn) .

Theorem 2.5.1 (Theorem 1 in [6]). Suppose that N ≡ 1 and one of the following holds:

(a) {(ξi−1, X̂i) : i ≥ 1} are i.i.d., or,

(b) {ξi : i ≥ 0} is a stationary sequence, independent of the i.i.d. sequence {X̂i : i ≥ 1}.

In either case, assume that P (ξ0 ≤ c) = 1 for some constant c and P (ξ0 > 0) > 0; we allow the possibility that

P (ξ0 = −∞) > 0 but assume that P (X̂1 = −∞) = 0. Assume further that E
[
eαX̂1

]
= 1 andE

[
X̂1e

αX̂1

]
∈ (0,∞)

for some α > 0, and that the measure P (X̂1 ∈ dx) is non-arithmetic. Then,

P (W > x) ∼ He−αx, x→∞,

for some constant 0 < H <∞.

Proof. Define the filtration Hn = σ(X̂i : 1 ≤ i ≤ n) for n ≥ 0 and H0 = σ(∅). Let T (x) = inf{n ≥ 1 : Vn > x}

and note that it is a stopping time with respect to {Hn : n ≥ 0}. Also let τ(x) = inf{n ≥ 1 : Vn + ξn > x}. Since the

perturbations are bounded, we have τ(x) ≥ T (x− c), and since the drift of Vn = X̂1 + · · ·+ X̂n is positive under P̃ ,

then P̃ (T (t) <∞) = 1 for all t ≥ 0. Now let y = x− c and write,

P (W > x)

= P (T (y) ≤ τ(x) <∞)
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= P

(
T (y) <∞, sup

k≥0

(
VT (y)−1 + VT (y)+k + ξT (y)+k

)
> x

)
= E

[
1(T (y) <∞)E

[
1

(
VT (y) + max

{
ξT (y), sup

k≥1

(
VT (y)+k + ξT (y)+k

)}
> x

)∣∣∣∣HT (y)

]]
.

Since max
{
ξT (y), supk≥1(VT (y)+k + ξT (y)+k)

}
is independent ofHT (y) and has the same distribution as W , we have

that

E

[
1

(
VT (y) + max

{
ξT (y), sup

k≥1

(
VT (y)+k + ξT (y)+k

)}
> x

)∣∣∣∣HT (y)

]
= F (x− VT (y)),

where F (t) = P (W > t). Hence,

eαxP (W > x) = eαxE
[
1(T (y) <∞)F (x− VT (y))

]
= eαxE

[
1(T (y) <∞)F (x− VT (y))e

−αVT (y)LT (y)

]
= eαxẼ

[
1(T (y) <∞)F (x− VT (y))e

−αVT (y)
]

= Ẽ
[
F (x− VT (y))e

−α(VT (y)−x)
]

= Ẽ
[
F (c−B(x− c))e−αB(x−c)

]
eαc,

where B(t) = VT (t) − t ≥ 0 is the overshoot process of the random walk {Vn : n ≥ 1}. Since P (X̂1 ∈ dx) is

non-arithmetic, so is P̃ (X̂1 ∈ dx) = E[1(X̂1 ∈ dx)eαX̂1 ], and hence by Theorem 2.1 in Chapter VIII of [7], B(t)

converges in P̃ -distribution as t→∞ to an a.s. finite limit B(∞), and therefore,

lim
x→∞

Ẽ
[
F (c−B(x− c))e−αB(x−c)

]
eαc = Ẽ

[
F (c−B(∞))e−αB(∞)

]
.
= H.

To see that H > 0, note that F (t) ≥ supn≥0 P (Vn + ξn > t, ξn > 0) ≥ supn≥0 P (Vn > t)P (ξ0 > 0). The condition

E[X̂1e
αX̂1 ] > 0 implies that P (X̂1 > 0) > 0, and in particular there must be some ε > 0 such that P (X̂1 > ε) > 0.

For any t > 0, if k > t/ε, then

P (Vk > t) ≥ P
(
X̂1 >

t

k
, . . . , X̂k >

t

k

)
≥ P (X̂1 > ε)k > 0.

Since P (ξ0 > 0) > 0 as well, we the have F (t) > 0 for each t > 0. In particular, since B(∞) ≥ 0 a.s.,

F (c−B(∞)) ≥ F (c) > 0. Therefore, B(∞) <∞ a.s. and F (c−B(∞)) > 0 a.s. imply together that H > 0.
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CHAPTER 3

Efficient Hybrid Estimation for Tail Events on Trees

In this chapter, we again consider the max-type distributional recursion

R
D
= Q ∨

N∨
i=1

CiRi, (3.0.1)

where the random vector ψ .
= (Q,N, {Ci}) has arbitrary dependence with Q ≥ 0, Ci ≥ 0 for all i, and N ∈ N+ =

{1, 2, . . .}, and {Ri} are i.i.d. copies of R. Letting Y = logQ, Xi = logCi, and W = logRi, this is equivalent to

what is known as the high-order Lindley equation

W
D
= max

{
Y, max

1≤i≤N
(Xi +Wi)

}
, (3.0.2)

where {Wi} are i.i.d. copies of W . Its special endogenous solution can be constructed through a marked Galton-Watson

process that lives on a tree T constructed as in Section 1.1.4. We recall that T is constructed from the collection

{ψi = (Qi, Ni, C(i,1), C(i,2), . . .) : i ∈ U} of i.i.d. copies ofψ, where U =
⋃∞
k=0 Nk+ is the collection of finite strings

of positive integers endowed with length-lexicographic ordering. An denotes the set of nodes in the nth generation, as

determined by {Ni : i ∈ U}. Each note i 6= ∅ in the tree T is assigned the weight Ci and the cumulative weight Πi,

where

Π∅ = 1, Πi = Ci, i ∈ A1, and Πi = Πi|n−1Ci, i ∈ An, n ≥ 2.

Recall that the special endogenous solution to (3.0.1) is then given by

R =
∨
i∈T

ΠiQi. (3.0.3)

Letting Si = log Πi and Yi = logQi for each i ∈ T , the endogenous solution to (3.0.2) satisfies

W =
∨
i∈T

(Si + Yi) . (3.0.4)
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Setting Xi = logCi, the increments X(i|1), X(i|2), . . . , Xi of Si are independent (but not necessarily identically

distributed), and hence W is the maximum of a branching random walk with perturbation. The previous chapter was

partially devoted to showing that

P (W > t) ∼ He−αt, t→∞, (3.0.5)

for some H ≥ 0, whenever α > 0 can be found such that

E

[
N∑
i=1

Cαi

]
= E

[
N∑
i=1

eαXi

]
= 1 and E

[
N∑
i=1

Cαi logCi

]
= E

[
N∑
i=1

eαXiXi

]
∈ (0,∞), (3.0.6)

among other assumptions. This result was also established using implicit renewal theory in [62, 64]. Also key to

establishing (3.0.5) is the contraction condition

ρβ = E

[
N∑
i=1

Cβi

]
= E

[
N∑
i=1

eβXi

]
< 1 for some 0 < β < α. (3.0.7)

When this holds, the random walk Si has negative drift along its branches (see (1.1.18)). This in particular ensures that

R <∞ a.s. and hence W <∞ a.s. (see Lemma 3.1 in [64]).

It is of practical interest to estimate the tail probabilities P (W > t), and in Chapter 2, a strongly efficient

importance sampling algorithm for simulating the tail probabilities P (W > t) is proposed, which significantly

generalizes Siegmund’s algorithm [92] for rare event simulation for the maximum of a negative-drift random walk on

R. The algorithm is based on defining a new probability measure P̃ that tilts the weights and perturbations on one

randomly chosen path down the tree and its nodes’ immediate offspring while leaving the distribution of the weights

and perturbations on all other branches unchanged. We will refer to this special set of nodes as the spine of T .

The algorithm in Chapter 2 proceeds by constructing an unbiased estimator for P (W > t) by generating the tree

T under the change of measure until the random time

γ(t) = inf {i ∈ T : Si + Yi > t} ,

where the infimum is taken according to ≺ and where |γ(t)| is guaranteed to be finite because Si restricted to the spine

is a positive-drift random walk. In fact, if τ(t) denotes the generation at which Si + Yi restricted to the spine first

reaches the level t, then τ(t) ∼ t/µ P̃ -a.s. as t→∞, where µ = E
[∑N

i=1 e
αXiXi

]
, a result analogous to the case of

a random walk on R (See Lemma 2.4.1 in Chapter 2 and Lemma 5.7 in Chapter XIII of [7]).

While this algorithm has many nice properties, obtaining a sample of size n of estimates of P (W > t) requires

the construction of n trees up to generation approximately t/µ, a task that necessitates generating on the order of

n(E[N ])t/µ copies of the random vector ψ. When E[N ] and t are large, this may be prohibitively slow. However, the
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Figure 3.1: The tree T under P̃ decomposed as the spine (black) and independent copies of T under P .

fact that the change of measure P̃ applies a tilt only to the spine of T suggests that this is the path on which Si + Yi is

most likely to hit the level t first. The idea of the algorithm presented herein is that the rare event probability P (W > t)

can be approximated by only generating the spine and then accounting for the other (untilted) branches using some

approximation method. Figure 3.1 shows the spine decomposition of T and gives visual intuition for this idea. We

present the resulting “hybrid” estimator for P (W > t) in terms of general (simulated, random) approximations F̂k for

the CDFs P (W (k) ≤ ·), where W (k) = max|i|≤k(Si + Yi) is endogenous solution W truncated at some finite level of

T .

The main theoretical result of this chapter (Theorem 3.1.5) concerns the rate of convergence to zero of the relative

bias of this estimator with respect to P (W > t). In Section 3.1.2, we give an example of efficient approximations

{F̂k : k ≥ 0} generated with the population dynamics algortihm analyzed in [3, 24, 84, 86]. We remark that with this

particular hybrid estimator, the number of copies of ψ that need to be generated for an estimate of P (W > t) is linear

in t, importantly with no dependence on the distribution of N either under P or P̃ (see Remark 3.1.2).

Throughout, we assume that ψ = (Q,N, {Ci}) satisfies the following conditions.

Condition 3.0.1. For some α > 0,

E

[
N∑
i=1

Cαi

]
= 1 and 0 < E

[
N∑
i=1

Cαi logCi

]
<∞.

Furthermore, for this α,

(a) The probability measure η(dx) = E
[∑N

i=1 C
α
i 1(logCi ∈ dx)

]
is nonlattice,
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(b) P
(∑N

i=1 C
α
i = 0

)
= 0,

(c) For some α/2 < β < α, ρβ = E
[∑N

i=1 C
β
i

]
< 1,

(d) N ≥ 1 a.s., E[N ] <∞, and E
[
N
∑N
i=1 C

α
i

]
<∞,

(e) P (Q > 0) > 0 and E[Qα] <∞.

For the inclusion of conditions (a) and N ≥ 1 a.s., see the discussion in Remark 2.1.1(a). Note that the other

conditions in part (d) included here are absent from the previous chapter. Having E
[
N
∑N
i=1 C

α
i

]
<∞ in particular

ensures that Ẽ[N ] < ∞ under the change of measure. Generally, having finite mean of the offspring distribution is

desirable when simulating Galton-Watson processes. However, in the analysis of this chapter, these finite moments are

used explicitly.

We recall the change of measure P̃ defined in Chapter 2. Namely, we start from the root node of T and construct

a chosen path by selecting one offspring at random with probability proportional to their weights to the power of α,

and then proceed in this manner down the tree. We begin to choose the path by J0 = ∅ and then recursively define the

indices by

Jk = (Jk−1, i) w.p.
Cα(Jk−1,i)∑NJk−1

j=1 Cα(Jk−1,j)

, 1 ≤ i ≤ NJk−1
, k ≥ 1.

The sequence {Jk : k ≥ 0} gives the nodes in the spine of the tree T , with Jk denoting the chosen node in the kth

generation.

Now define the process {Lk : k ≥ 0} by

L0 = 1, Lk =

k−1∏
r=0

DJr , k ≥ 1,

where Di =
∑Ni

j=1 C
α
(i,j) for i ∈ T with generic copy D, and define the filtration

G0 = σ (∅) , Gk = σ ({ψi : i ∈ Aj , j < k} ∪ {Jj : j ≤ k}) , k ≥ 1.

Recall that Lk is a mean-one nonnegative martingale with respect to Gk, and P̃ is defined by

P̃ (A) = E [1(A)Lk] , A ∈ Gk, k ≥ 0,

on the σ-field G∞, the smallest σ-field containing all of {Gk : k ≥ 0}. Here we recall the properties of the measure P̃

given in Lemma 2.1.1 of Chapter 2
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To identify the random walk restricted to the chosen path, define

X̂k = XJk = logCJk , ξk = YJk = logQJk , k ≥ 0

and let V0 = 0 and Vk = X̂1 + · · ·+ X̂k for k ≥ 1. As we recall from Lemma 2.1.2 of Chapter 2, {Vk : k ≥ 0} is a

positive-drift random walk with i.i.d. increments under P̃ , and for each k, Vk is independent of ξk. Furthermore,

µ
.
= Ẽ

[
X̂1

]
= E

[
N∑
i=1

Cαi logCi

]
∈ (0,∞).

3.1 A Hybrid Importance Sampler

In Chapter 2, we derived the representation

P (W > t) = Ẽ
[
1(γ(t) = Jτ(t))e

−αVτ(t)D−1
Jτ(t)

]
, (3.1.1)

where τ(t) = inf{k ≥ 1 : Vk + ξk > t} is the first generation of the random walk along the spine that exceeds the

level t. This suggests estimating P (W > t) by

Z(t) = 1(γ(t) = Jτ(t))e
−αVτ(t)D−1

Jτ(t)
,

which is unbiased when sampled under P̃ . Generating a single copy of Z(t) requires simulating the entire tree T in

length-lexicographic order until the node γ(t) to determine whether or not the event {γ(t) = Jτ(t)} occurs. Note

that the remaining part of the estimator, namely e−αVτ(t)D−1
Jτ(t)

, only depends on the spine of T , and the change of

measure P̃ was constructed so that the branch to most likely reach the level t first is part of the spine. Our approach to

reducing the complexity of this agorithm is therefore to appropriately condition on the spine in (3.1.1) in order to find a

representation that will allow us to generate only the spine of T , while accounting for the probability that γ(t) is not on

the spine with some available approximation. The new estimator will be biased, but the computational complexity will

be significantly reduced.

It was shown in Chapter 2 that the estimator Z(t) has bounded relative error, namely

lim sup
t→∞

Ṽar (Z(t))

P (W > t)2
<∞,

where Ṽar denotes variance under the measure P̃ , when Condition 5.1.1 holds along with the following (see Lemma

2.4.2).
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Condition 3.1.1. With α > 0 as in Condition 5.1.1, E
[
Q2α

(∑N
i=1 C

α
i

)−1
]
<∞.

Let W (k) = max|j|≤k (Sj + Yj) for each k ≥ 0, that is, W (k)
i is a copy of W truncated at the kth generation.

Denote its CDF with respect to P by

Fk(x) = P
(
W (k) ≤ x

)
.

Note in particular that F0(x) = P (Y ≤ x). For each k ≥ 1 let

B≺k = {i ∈ Ak : (i|k − 1) = Jk−1, i ≺ Jk} ,

B�k = {i ∈ Ak : (i|k − 1) = Jk−1, i � Jk} ,

and let Bk = B≺k ∪B
�
k . Because the distribution of the branching vector on nodes off the spine is unchanged by the

change of measure (Lemma 2.1.1), we can obtain the following result that gives a representation for P (W > t) in terms

of the expectation of something that only depends on the spine and the functions {Fk : k ≥ 0}.

Theorem 3.1.1. For any t > 0,

P (W > t) = Ẽ

e−αVτ(t)D−1
Jτ(t)

τ(t)∏
j=1

∏
i∈B≺j

Fτ(t)−j(t− Si)
∏

j∈B�j

Fτ(t)−j−1(t− Sj)

 ,
with the conventions F−1(x) ≡ 1 and

∏0
j=1 xj ≡ 1 for any values {xj}.

If the functions {Fk : k ≥ 0} were known, the above representation would give an unbiased conditional Monte

Carlo estimator for P (W > t) that only requires computation of the spine up to generation τ(t) + 1. In the case that

approximations to these CDFs can be generated, one can form an estimator to approximate P (W > t).

Suppose there exist estimators

{F̂k : k ≥ 0}

for the CDFs {Fk : k ≥ 0}. Based on Theorem 3.1.1, it is then natural to consider the estimator

Ẑ(t) = e−αVτ(t)D−1
Jτ(t)

τ(t)∏
j=1

∏
i∈B≺j

F̂τ(t)−j(t− Si)
∏

j∈B�j

F̂τ(t)−j−1(t− Sj), (3.1.2)

where again we use the conventions F̂−1(x) ≡ 1 and
∏0
j=1 xj ≡ 1. Let ψ̃ denote the distribution of the random vector

ψ under the tilted measure P̃ on the spine, that is

ψ̃ ∼ P̃
(
ψi ∈ ·|J|i| = i

)
= E

[
1 (ψ ∈ ·)

N∑
i=1

Cαi

]
.
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Then Table 3.1 gives the algorithm for generating one copy of Ẑ conditional on knowing {F̂k : k ≥ 0}.

Remark 3.1.1. By Lemma 2.4.1 in Chapter 2, τ(t) ∼ t/µ as t→∞ P̃ -a.s. Hence the computational complexity of

generating a copy of Ẑ(t) conditional on knowing {F̂k : k ≥ 0}, measured by the number of independent copies of ψ̃

required to be generated, is asymptotically of order t/µ. Notably, this does not depend on E[N ] or Ẽ[N ].

Of course, in implementation there is the practical consideration that in general it is not possible to have a countably

infinite collection {F̂k : k ≥ 0} simulated a priori. Considering that τ(t) ∼ t/µ a.s., a natural solution is to choose

some K > t/µ and generate {F̂k : 0 ≤ k ≤ K}, then set

F̂j = F̂K for j ≥ K.

We require the collection of estimators {F̂k : k ≥ 0} to satisfy certain properties.

Condition 3.1.2. (a) For any x ∈ R and k ≥ 0, F̂k(x) ≤ P (Y ≤ x) a.s.

(b) For some 0 < λ < α,

δλ = sup
k≥0

E
[
d1

(
Fλ,k, F̂λ,k

)]
= sup

k≥0
E

[∫ 1

0

∣∣∣F−1
λ,k(x)− F̂−1

λ,k(x)
∣∣∣ dx]

can be made arbitrarily small, where

Fλ,k(x) = Fk
(
λ−1 log x

)
and F̂λ,k(x) = F̂k

(
λ−1 log x

)
,

and where d1 denotes the Wasserstein-1 distance.

Part (a) of the above condition says that the estimators preserve the stochastic ordering P (Y > x) ≤ P (W (k) > x)

for any k. Part (b) says that they are consistent in the sense that the Wasserstein-1 distance between (R(k))λ and (R̂(k))λ

vanishes uniformly in k for some λ, where R(k) = eW
(k)

and R̂(k) = eŴ
(k)

, Ŵ (k) ∼ F̂k. One reason to consider the

Wasserstein distance after this transformation is that moments are not guaranteed otherwise, however we do have the

following.

Lemma 3.1.2. If W solves (3.0.2) and 0 < γ < α, then E
[
eγW

]
<∞.

Additionally, when ργ = E
[∑N

i=1 e
γXi
]
< 1, the map

Φγ(q, n, {ci}, {xi}) = qγ ∨
n∨
i=1

cγi xi
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Table 3.1: Hybrid Importance Sampling Algorithm

1: Input: t > 0 and {F̂k : k ≥ 0}
2: Output: A single copy of Ẑ
3: Generate (N,Q,C1, . . . , CN )

D
= ψ̃

4: Choose j ∈ {1, . . . , N} w.p. Cαj /D and set J1 ← j
5: Set Sj ← logCj for j = 1, . . . , N
6: Initialize V0 ← 0, V1 ← SJ1

, ξ0 ← logQ, k ← 0, J0 ← ∅
7: while Vk + ξk ≤ t do
8: Update k ← k + 1

10: Generate (NJk , QJk , C(Jk,1), . . . , C(Jk,NJk
))
D
= ψ̃

11: Choose j ∈ {1, . . . , NJk} w.p. Cα(Jk,j)/DJk and set Jk+1 ← (Jk, j)

12: Set ξk ← logQJk and S(Jk,j) ← SJk + logC(Jk,j) for j = 1, . . . , NJk

13: Set Vk+1 ← SJk+1

14: end while
15: if k = 0 then
16: Set Ẑ ← 1/D
17: else
18: Compute F̂k−j(t− Si) for i ∈ B≺j , j = 1, . . . , k

19: Compute F̂k−j−1(t− Si) for i ∈ B�j , j = 1, . . . , k − 1

20: Set Ẑ ← (e−αVk/DJk)
∏k
j=1

∏
i∈B≺j

F̂k−j(t− Si)
∏

j∈B�j
F̂k−j−1(t− Sj)

21: end if
22: Output Ẑ

has contractive properties that make the uniformity condition reasonable (see Section 3.1.2). Note that Rλ = eλW

solves the stochastic recursion

Rλ
D
= Φλ

(
Q,N, {Ci}, {Rλi }

)
when W solves (3.0.2).

Using estimates in place of the CDFs {Fk} introduces bias into the estimate for P (W > t) that ideally can be

controlled. Since we seek an estimate of a rare event probability, the relevant measure is relative bias.

Definition 3.1.1. The relative bias in an estimate Ẑ(t) sampled under P̃ for the probability P (W > t) is given by

Rel. Bias
(
Ẑ(t)

)
=

∣∣∣∣∣∣
Ẽ
[
Ẑ(t)

]
− P (W > t)

P (W > t)

∣∣∣∣∣∣ .

3.1.1 Properties

In the following results as well as in their proofs, the functions u, v : R→ [0,∞) will be important, where

u(x) = eαxP (Y > x), v(x) = e2αxE
[
1(Y > x)D−1

]
. (3.1.3)
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The function u and v have the following properties, the proofs of which can be found in Chapter 2.

Lemma 3.1.3. Let u and v be as in (3.1.3).

(i) Under Condition 5.1.1, u is d.R.i. on R. Futhermore, if hn(x) = Ẽ [u(x− Vn)] for each n ∈ N and x ∈ R, then

Bh
.
= sup

x∈R

∞∑
n=0

hn(x) <∞.

(ii) Under Conditions 5.1.1 and 3.1.1, v is d.R.i. on R. Futhermore, if gn(x) = Ẽ [v(x− Vn)] for each n ∈ N and

x ∈ R, then

Bg
.
= sup

x∈R

∞∑
n=0

gn(x) <∞.

Additionally, we note the following result.

Lemma 3.1.4. Under Condition 5.1.1 and the additional condition that
[(∑N

i=1 Ci

)α]
< ∞ if α > 1 and

E

[(∑N
i=1 C

α/(1+ε)
i

)1+ε
]
<∞ for some 0 < ε < 1 if 0 < α ≤ 1, we have

inf
t≥0

eαtP (W > t) > 0.

To bound the relative bias in Ẑ(t), we assume the tilted density of the random walk increments along the spine are

sufficiently nice. Namely, we have the following assumption.

Condition 3.1.3. The density ϕ(x) dx = P̃
(
X̂1 ∈ dx

)
exists and is bounded on R.

The following is the main theoretical result of this chapter, which gives a bound on the relative bias in the estimate

Ẑ(t) for arbitrary estimators {F̂k : k ≥ 0} that satisfy Condition 3.1.2.

Theorem 3.1.5. Assume Condtions 5.1.1, 3.1.1, and 3.1.3, and let {F̂k : k ≥ 0} be estimators for {Fk : k ≥ 0} that

satisfy Condition 3.1.2 with δλ for some 0 < λ < α.

Let t > 0 and α/2 < β < α be such that ρβ < 1. Recall that Y = logQ. If Ẽ [(Y −)p] <∞ for p ∈ {1, 2}, then

for any M , ε, and η > 0,

Rel. Bias
(
Ẑ(t)

)
≤ Cp,β

((
µ−1t+ 1

)p/2
Mp/2

+

(
δλ
εη

+ P (Q ≤ η)

)
M + ε

)
,

where

Cp,β =

[
2(2− ρβ)E

[
Qβ
]
Ẽ[N ]

√
c(γ, β)

(1− ρβ)2
sup
x∈R

e−(α−β)xϕ(x)

]
∨
[
2BhẼ[N ]

(
2 ∨ β−1

)]
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∨

[√
Bg

(
2p/2 ∨

((
1 + e−θ

)(p−1)/2

(1− e−θ)p/2
+
√

2

p∑
r=1

(
Ẽ
[(

3µ−1Y −
)r])1/2

))]
· sup
t>0

e−αt

P (W > t)
<∞,

θ =
µ2(α− β)2

24
(
µ(α− β) + 3ρβeµ(α−β)

) ,
c(γ, β) =


(
(1− ρβ)−1E

[
Qβ
])γ/β

if γ ≤ β,

(1− ργ)−1E [Qγ ] if γ > β,

γ = 2(α− β).

It is clear from the above theorem that the relative bias in the estimate Ẑ(t) can be made arbitrarily small uniformly

in t on any bounded interval [0, T ] since

lim sup
M→∞

lim sup
ε,η→0

lim sup
δλ→∞

sup
0≤t≤T

Rel. Bias
(
Ẑ(t)

)
= 0.

3.1.2 The Population Dynamics Algorithm

The population dynamics algorithm provides a way to efficiently generate dependent samples from the distribution

of W (k), and hence provide approximate empirical distribution functions with which to approximate Fk. We provide

a brief description of the algorithm here as it pertains to the recursion (3.0.2), however it is applicable to many other

recursions with a branching structure. For a more detailed analysis see [86]. The algorithm uses a bootstrapping

approach to produce a sample Ŵ (j,m)
1 , . . . , Ŵ

(j,m)
m of size m of random variables approximately distributed according

to Fj for all 0 ≤ j ≤ k, and it proceeds as in Table 3.2.

If we are able to simulate P(k,m) = {Ŵ (k,m)
i : 1 ≤ i ≤ m} according to this algorithm, then we can use the

empirical CDFs

F̂k,m(x)
.
=

1

m

m∑
i=1

1(Ŵ
(k,m)
i ≤ x).

The idea is to generate the functions F̂0,m, F̂1,m, . . . , F̂K,m for some K ≥ 1, and since τ(t) may be any positive integer

with positive P̃ -probability, we will approximate Fk with F̂k∧K,m. Additionally, it makes sense to choose the inititial

distribution µ0 = P (Y ∈ ·). Then by construction, each Ŵ (k,m)
i is lower bounded by a copy of Y = logQ, and

hence for any m and K the collection {F̂k∧K,m : k ≥ 0} satisfies Condition 3.1.2(a). Note that the empirical CDFs

{F̂k∧K,m : k ≥ 0} are stored as the samples {P(k∧K,m) : k ≥ 0}, and given any x ∈ R, F̂k∧K,m(x) can be calculated

by

F̂k∧K,m(x) =
1

m
·
∣∣∣{w ∈ P(k∧K,m) : w ≤ x

}∣∣∣ .
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Table 3.2: Population Dynamics Algorithm

1: Input: k,m ∈ N and a probability distribution µ0 on R
2: Output: Samples P(j,m) = {Ŵ (j,m)

i : 1 ≤ i ≤ m} of size m approximately
from the law of W (j), for 1 ≤ j ≤ k

3: Generate an i.i.d. sample {Ŵ (0,m)
i : 1 ≤ i ≤ m} from µ0

4: Output P(0,m)

5: Initialize j ← 1
7: while j ≤ k do
8: Generate an i.i.d. sample {(Q(j)

i , N
(j)
i , C

(j)
(i,1), . . . , C

(j)

(i,N
(j)
i )

) : 1 ≤ i ≤ m}
from the law of ψ

9: Initialize i← 1
10: while i ≤ m do
11: Sample {Ŵ (j−1,m

(i,r) : 1 ≤ r ≤ N (j)
i } uniformly with replacement from P(j−1,m)

12: Set Ŵ (j,m)
i ← logQ

(j)
i ∨

∨N(j)
i

r=1 (logC
(j)
(i,r) + Ŵ

(j−1,m)
(i,r) )

13: end while
14: Output P(j,m)

15: end while

Remark 3.1.2. Generating the samples P(0,m), . . . ,P(K,m) has a computational complexity of Km, measured in

terms of the number of the number of copies of the branching vector ψ that need to be simulated. The bootstraping

procedure eliminates dependence on E[N ]. Consequently, by Remark 3.1.1, the complexity of generating a sample of

size n of the estimator Ẑ(t) using the population dynamics approximation is asymptotically of order

Km+
nt

µ
.

Notably, there is no dependence on the distribution of N .

For 0 < λ < α such that ρλ = E
[∑N

i=1 C
λ
i

]
< 1, we have

δλ = δλ(K,m) = sup
r≥0

E
[
d1

(
eλW

(r)

, eλŴ
(r∧K,m)

)]
,

where W (r) ∼ Fr and Ŵ (r∧K,m) ∼ F̂r∧K,m. By the following lemma, {F̂k∧K,m : k ≥ 0} also satisfy Condition

3.1.2(b).

Lemma 3.1.6. Suppose α/2 < λ < α is such that ρλ < 1, and suppose there exists λ < λ′ < α such that ρλ′ < 1.

Then for some κ = κ(λ, λ′),

δλ(K,m) ≤
(1 + ρλ)E

[
Qλ
]

+ ρλ

1− ρλ
· ρKλ +

κ
(
E
[
Qλ
′
])λ/λ′

(1− ρλ)2(1− ρλ′)λ/λ′
·m−1/2
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In the case that {F̂k} = {F̂k∧K,m} are generated using the population dynamics algorithm, denote the estimator

Ẑ(t) = Ẑ(K,m)(t). The following is a refinement of Theorem 3.1.5 to the case when the population dynamics algorithm

is used to approxiamte the CDFs {Fk}.

Theorem 3.1.7. Let α/2 < λ, β < α such that ρλ, ρβ < 1, and suppose λ < λ′ < α such that ρλ′ < 1. Suppose

Ẽ [(Y −)p] <∞ for p ∈ {1, 2}. Let Cp,β be the constant in Theorem 3.1.5 and κ = κ(λ, λ′) be the constant in Lemma

3.1.6. Let

C̃p,β,λ,λ′ = 2Cp,β ·

1 ∨
(1 + ρλ)E

[
Qλ
]

+ ρλ

1− ρλ
∨

κ
(
E
[
Qλ
′
])λ/λ′

(1− ρλ)2(1− ρλ′)λ/λ′

 .
(i) If P (Q ≤ q) = 0 for som q > 0 (e.g. if Q ≡ 1), then

Rel. Bias
(
Ẑ(K,m)(t)

)
≤ C̃p,β,λ,λ′

q̃ ∧ 1
·

((
t

µ
+ 1

)p/2
m−ω1p/2 +mω2ρKλ +m−min{ 1

2−ω1−ω2,ω2}

)

for any ω1, ω2 > 0 such that ω1 + ω2 < 1/2 and any 0 < q̃ < q.

(ii) If P (Q ≤ η) ≤ cηζ1(− log η)−ζ2 for some c > 0 and ζ1, ζ2 ≥ 0, then

Rel. Bias
(
Ẑ(K,m)(t)

)
≤ C̃p,β,λ,λ′(c ∨ 1)

ωζ23

·

((
t

µ
+ 1

)p/2
m−ω1p/2 +mω2+ω3ρKλ

+m−(ζ1ω3−ω1)(logm)−ζ2 +m−min{ 1
2−ω1−ω2−ω3,ω2}

)

for any ω1, ω2, ω3 > 0 such that ω1 + ω2 + ω3 < 1/2 and ω1 < ζ1ω3.

3.2 Proofs

Here we give the proofs of all previous results. We start with the proofs of Theorem 3.1.1 and Lemma 3.1.4, followed

by some auxiliary lemmas and the proof of Theorem 3.1.5. At the end are the proofs of the results pertaining to the

Population Dynamics Algorithm, Lemma 3.1.6 and Theorem 3.1.7.

Proof of Theorem 3.1.1. Start by noting that we can write the event {Jτ(t) = γ(t)} as

{
Jτ(t) = γ(t)

}
=

 ∨
i≺Jτ(t)

(Si + Yi) ≤ t


=

{
max

0≤k<τ(t)−1
Vk + Ξ

(τ(t)−k)
k ≤ t

}
∩

{
max

i∈B≺
τ(t)

Si + Yi ≤ t

}
,
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where

Ξ
(r)
k =

 ∨
i∈B≺k+1

Si − Vk +W
(r−1)
i

 ∨
 ∨

i∈B�k+1

Si − Vk +W
(r−2)
i

 , r ≥ 2,

and the W (r)
i are i.i.d. copies of

W (r) =

r∨
k=0

∨
i∈Ak

(Si + Yi),

under the probability P , independent of everything else. In other words, the W (r)
i are i.i.d. with common distribution

Fr. Next, letHn = σ
(
(Jk, QJk , C(Jk,1), C(Jk,2), . . . ) : 0 ≤ k ≤ n

)
and note that

P (W > t) = Ẽ
[
1(Jτ(t) = γ(t))e−αVτ(t)D−1

Jτ(t)

]
= Ẽ

[
e−αVτ(t)D−1

Jτ(t)
P̃
(
Jτ(t) = γ(t)

∣∣Hτ(t)

)]
.

To complete the proof note that since the {W (r)
i } are independent ofHn for all n, then

P̃
(
Jτ(t) = γ(t)

∣∣Hτ(t)

)
=

τ(t)−2∏
k=0

P̃
(
Vk + Ξ

(τ(t)−k)
k ≤ t

∣∣∣Hτ(t)

) ∏
i∈B≺

τ(t)

P̃
(
Si + Yi ≤ t|Hτ(t)

)

=

τ(t)−1∏
k=0

∏
i∈B≺k+1

P̃
(
Si +W

(τ(t)−k−1)
i ≤ t

∣∣∣Hτ(t)

) τ(t)−2∏
j=0

∏
j∈B�j+1

P̃
(
Sj +W

(τ(t)−j−2)
j ≤ t

∣∣∣Hτ(t)

)

=

τ(t)∏
k=1

∏
i∈B≺k

Fτ(t)−k(t− Si)
∏

j∈B�k

Fτ(t)−k−1(t− Sj),

where F−1(x) ≡ 1 and
∏0
j=1 xj ≡ 1 for any values {xj}.

Proof of Lemma 3.1.4. By Theorem 3.4 in [64],

P (W > t) ∼ He−αt as t→∞

for H > 0. The only way that eαtP (W > t) = 0 for finite t is for P (W > t) = 0, i.e. W is bounded, and since which

would contradict the above asymptotic. Since eαtP (W > t) is positive at infinity, eαtP (W > t) must be uniformly

lower bounded.

3.2.1 Auxiliary Results

Here we collect some lemmas that will be useful in the proof of Theorem 3.1.5. For all that follows in this section and

the next, fix β ∈ (α/2, α) such that ρβ < 1. Note that the following lemma implies Lemma 3.1.2.
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Lemma 3.2.1. Let γ ∈ (0, α). If γ > β, then ργ < 1. Furthermore,

E
[
eγW

]
≤ c(γ, β) <∞,

where

c(γ, β) =


(
(1− ρβ)−1E

[
Qβ
])γ/β

if γ ≤ β,

(1− ργ)−1E [Qγ ] if γ > β.

Proof. First note that eβW = Rβ and

E
[
Rβ
]

= E

[∨
i∈T

Qβi Πβ
i

]
≤
∞∑
k=0

E

[∑
i∈Ak

Qβi Πβ
i

]
=

∞∑
k=0

E
[
Qβ
]
ρkβ =

E
[
Qβ
]

1− ρβ
, (3.2.1)

since ρβ < 1. Then, when γ ≤ β,

E
[
eγW

]
≤
(
E
[
eβW

])γ/β ≤ (E [Qβ]
1− ρβ

)γ/β
.

When γ > β, the convexity of θ 7→ ρθ and the fact that ρα = 1 imply that ργ < 1. Then, the calculation in (3.2.1)

completes the proof.

The next lemma is a version of Bernstein’s inequality that only has moment conditions of the positive parts of the

random variables involved.

Lemma 3.2.2. If {ζi} are i.i.d. with E[ζ1] = 0 and E
[(
ζ+
1

)n] ≤ bcn−2n!/2 for each n ≥ 2 for some b, c > 0, then

Sk =
∑k
i=1 ζi satisfies

P (Sk ≥ xk) ≤ exp

(
− kx2

2(b+ cx)

)
for all x ≥ 0.

Proof. By Chernoff’s inequality, for any λ > 0,

P (Sk ≥ xk) ≤ e−λxkE
[
eλSk

]
= e−λxk

(
E
[
eλζ1

])k
.

Note that for any y ∈ R,

eλy = 1 + λy +

∞∑
n=2

λnyn

n!
≤ 1 + λy +

∞∑
n=2

λn(y ∨ 0)n

n!
,
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and hence since E[ζ1] = 0, for each λ ∈ (0, c−1),

E
[
eλζ1

]
≤ 1 +

∞∑
n=2

λnE
[(
ζ+
1

)n]
n!

≤ 1 +

∞∑
n=2

λnbcn−2

2
= 1 +

bλ2

2

∞∑
n=0

(λc)n

= 1 +
bλ2

2(1− λc)
.

Using 1 + y ≤ ey we have

P (Sk ≥ xk) ≤ e−λxk
(

1 +
bλ2

2(1− λc)

)k
≤ exp

(
−k
(
λx− bλ2

2(1− λc)

))
.

Since the result is trivial when x = 0, suppose x > 0 and choose

λ =
x

b+ cx
=

1

b/x+ c
<

1

c

to obtain the result.

Lemma 3.2.3. Let β ∈ (0, α) such that ρβ <∞. Then there are constants b, c > 0 such that for any x ≥ 0,

P̃ (µk − Vk ≥ xk) ≤ exp

(
− kx2

2(b+ cx)

)

Proof. For each n ∈ N+, we have that

Ẽ
[
((µ− V1)+)n

]
=

∫ ∞
0

P̃
(
µ− V1 > t1/n

)
dt ≤

∫ ∞
0

Ẽ
[
e−(α−β)V1

]
e−(α−β)(t1/n−µ)dt

= ρβ

∫ ∞
0

e−(α−β)(t1/n−µ)dt = ρβ
n

(α− β)n
eµ(α−β)

∫ ∞
0

un−1e−udu

= ρβ
n!

(α− β)n
eµ(α−β).

Hence, for any n ≥ 2,

Ẽ
[
((µ− V1)+)n

]
≤ n!bcn−2

2

for b = ρβe
µ(α−β)(α− β)−2 and

c =
1

α− β
sup
n≥3

21/(n−2) =
2

α− β
.
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The result then follows by the previous lemma.

Lemma 3.2.4. Let p ∈ {1, 2}. If Ẽ [(Y −)p] <∞, then

Ẽ [τ(t)p] ≤
(
2µ−1t

)p
+

(
1 + e−θ

)p−1

(1− e−θ)p
+ 2

p∑
r=1

Ẽ
[(

3µ−1Y −
)r]

,

where

θ =
µ2(α− β)2

24
(
µ(α− β) + 3ρβeµ(α−β)

) .
Proof. Let ε, δ > 0 be small such that ε+ δ < µ., and let γ = µ− δ − ε ∈ (0, µ). Then for all k ≥ tδ−1,

P̃ (τ(t) > k) ≤ P̃ (Vk + ξk ≤ kδ)

≤ P̃ (Vk ≤ k(δ + ε)) + P̃ (ξk ≤ −kε)

≤ P̃ (kµ− Vk ≥ kγ) + P̃
(
Y − ≥ kε

)
.

First let p = 1, and note that
∞∑
k=0

P̃
(
Y − ≥ kε

)
≤ Ẽ [Y −]

ε
+ 1.

Using the previous lemma,

Ẽ [τ(t)] =

∞∑
k=0

P̃ (τ(t) > k)

≤ t

δ
− 1 +

∞∑
k=btδ−1c

P̃ (kµ− Vk ≥ kγ) +

∞∑
k=btδ−1c

P̃
(
Y − ≥ kε

)
≤ t

δ
+

∞∑
k=0

exp

(
− kγ2

2(b+ cγ)

)
+
Ẽ [Y −]

ε

=
t

δ
+

(
1− exp

(
− γ2

2(b+ cγ)

))−1

+
Ẽ [Y −]

ε
. (3.2.2)

For p = 2, we use the tail sum formula

E
[
ζ2
]

=

∞∑
k=0

(2k + 1)P (ζ > k)

for a nonnegative discrete random variable ζ. Note that

∞∑
k=0

(2k + 1)P̃
(
Y − ≥ kε

)
= 1 +

∞∑
k=1

(2k + 1)P̃
(
Y − ≥ kε

)
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= 1 +

∞∑
k=0

(2k + 3)P̃
(
Y − > kε

)
= 1 +

∞∑
k=0

(2k + 1)P̃
(
Y − > kε

)
+ 2

∞∑
k=0

P̃
(
Y − > kε

)
= 1 +

Ẽ
[
(Y −)2

]
ε2

+
2Ẽ [Y −]

ε
.

Since
∑n−1
k=0(2k + 1) = n2 − 1, we have

Ẽ
[
τ(t)2

]
=

∞∑
k=0

(2k + 1)P̃ (τ(t) > k)

≤
btδ−1c−1∑
k=0

(2k + 1) +

∞∑
k=btδ−1c

(2k + 1)P̃ (kµ− Vk ≥ kγ) +

∞∑
k=btδ−1c

(2k + 1)P̃
(
Y − ≥ kε

)
≤ t2

δ2
− 1 +

∞∑
k=0

(2k + 1) exp

(
− kγ2

2(b+ cγ)

)
+

∞∑
k=0

(2k + 1)P̃
(
Y − ≥ kε

)
=
t2

δ2
+

1 + e−γ
2/(2(b+cγ))(

1− e−γ2/(2(b+cγ))
)2 +

Ẽ
[
(Y −)2

]
ε2

+
2Ẽ [Y −]

ε
. (3.2.3)

Letting δ = µ/2, ε = µ/3, and b and c have their values from Lemma 3.2.3 in (3.2.2) and (3.2.3) gives the result.

Lemma 3.2.5. Suppose that the density ϕ(x) = P̃
(
X̂1 ∈ dx

)
exists and is bounded on all of R, and that β ∈ (0, α)

such that ρβ < 1. Let

ϕ(∞)(x) =

∞∑
k=0

ϕ∗(k)(x).

Then,

(i) sup
x∈R

e−(α−β)xϕ(x) <∞, and

(ii) sup
x∈R

e−(α−β)xϕ(∞)(x) ≤ 2− ρβ
1− ρβ

sup
x∈R

e−(α−β)xϕ(x).

Proof. For part (i), note that

∫ ∞
−∞

e−(α−β)xϕ(x) dx = Ẽ
[
e−(α−β)X̂1

]
= ρβ <∞,

and so the boundedness ofϕ(x) implies that e−(α−β)xϕ(x) is finite everywhere, hence integrability implies boundedness

of e−(α−β)xϕ(x).

For part (ii), first note that

∫ ∞
−∞

e−(α−β)xϕ(∞)(x) dx =

∞∑
k=0

∫ ∞
−∞

e−(α−β)xϕ∗(k)(x) dx
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=

∞∑
k=0

Ẽ
[
e−(α−β)Vk

]
=

∞∑
k=0

ρkβ =
1

1− ρβ
.

The form of ϕ(∞) allows us to write

ϕ(∞) ∗ ϕ(x) =

∞∑
k=0

ϕ∗(k) ∗ ϕ(x) =

∞∑
k=0

ϕ∗(k+1)(x) = ϕ(∞)(x)− ϕ(x).

hence for any x ∈ R,

e−(α−β)xϕ(∞)(x) = e−(α−β)xϕ(x) + e−(α−β)x

∫ ∞
−∞

ϕ(∞)(x− y)ϕ(y) dy

= e−(α−β)xϕ(x) +

∫ ∞
−∞

e−(α−β)(x−y)ϕ(∞)(x− y)e−(α−β)yϕ(y) dy

≤ sup
y∈R

e−(α−β)yϕ(y) +

∫ ∞
−∞

e−(α−β)(x−y)ϕ(∞)(x− y) dy · sup
y∈R

e−(α−β)yϕ(y)

=

(
1 +

1

1− ρβ

)
sup
y∈R

e−(α−β)yϕ(y)

=
2− ρβ
1− ρβ

sup
y∈R

e−(α−β)yϕ(y).

3.2.2 Proof of Theorem 3.1.5

We start by defining a tree coupling as follows. For k ≥ 0 let

Xk = (Jk+1,ψJk) = (Jk+1, QJk , NJk , C(Jk,1), C(Jk,2), . . .)

denote the spine process, i.e. the chosen path along with the associated copy of the branching vector. Let

{χk,i : k ≥ 0, i ∈ U} , {χ̂k,i : k ≥ 0, i ∈ U}

be independent i.i.d. collections of uniform random variables on [0, 1]. Furthermore, for each k ≥ 0 let

{F̂k,i : i ∈ U}

be an i.i.d. collection of copies of F̂k independent of everything else. Then for each k ≥ 0 and i ∈ U , set

W
(k)
i = F−1

k (χk,i), Ŵ
(k)
i = F̂−1

k,i (χ̂k,i).
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In addition, let {χ∞,i : i ∈ U} be an i.i.d. collection of uniform on [0, 1] random variables independent of everything

else and for each i ∈ U , set

Wi = W
(∞)
i = F−1(χ∞,i).

By this construction, for each note i ∈ U , we have independent copies of W (k), W , and the approximation Ŵ (k)

according to F̂k, and all these copies are mutually independent. We suppose that these collections of random variables

are constructed on the original probability space, so that once the measure is changed to P̃ , they retain their distribution

under P , i.e.

P̃
(
W

(k)
i ∈ ·

)
= P

(
W (k) ∈ ·

)
, P̃

(
Ŵ

(k)
i ∈ ·

)
= P

(
Ŵ (k) ∈ ·

)
, and P̃ (Wi ∈ ·) = P (W ∈ ·)

for each i ∈ U . Furthermore, we have that

δλ = sup
k≥0

E
[
|eλW

(k)
i − eλŴ

(k)
i |
]

= sup
k≥0

Ẽ
[
|eλW

(k)
i − eλŴ

(k)
i |
]

for any i ∈ U .

Remark 3.2.1. There is a technical note to make about the space on which the probability measure P̃ is defined.

The σ-field σ (
⋃∞
k=0 Gk) needs to be augmented to ensure the measurability of all random variables defined above.

However, this does not show up in calculations because of their independence with the collection of branching vectors

{ψi : i ∈ U}. It will be convenient later in the proof to also assume that we have copies {X̂ ′k : k ≥ 0} of {X̂k : k ≥ 0}

equal in distribution under P̃ . The measurability of this collection can be dealt with similarly.

Now, abusing notation, use {Xk : k ≥ 0} to define

Z(t) = e−αVτ(t)D−1
Jτ(t)

τ(t)∏
j=1

∏
i∈B≺j

Fτ(t)−j(t− Si)
∏

j∈B�j

Fτ(t)−j−1(t− Sj).

Furthermore, again abusing notation let

F̂k(x) = P̃
(
Ŵ

(k)
i ≤ x

)
for any i ∈ U , and define

Ẑ(t) = e−αVτ(t)D−1
Jτ(t)

τ(t)∏
j=1

∏
i∈B≺j

P̃
(
Ŵ

(τ(t)−k)
i ≤ t− Si

∣∣∣X0, . . . ,Xτ(t)

)
×
∏

j∈B�j

P̃
(
Ŵ

(τ(t)−j−1)
j ≤ t− Sj

∣∣∣X0, . . . ,Xτ(t)

)
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= e−αVτ(t)D−1
Jτ(t)

τ(t)∏
j=1

∏
i∈B≺j

F̂τ(t)−j(t− Si)
∏

j∈B�j

F̂τ(t)−j−1(t− Sj).

It is clear from this construction that Ẽ[Z(t)] = P (W > t) by Theorem 3.1.1 and that Ẑ(t) has the same distribution

under P̃ as the estimator in (3.1.2). The key to this construction is that the random variables Z(t) and Ẑ(t) are coupled

in the sense that they depend on the same spine process. We then can write

Rel. Bias
(
Ẑ(t)

)
=

∣∣∣∣∣∣
Ẽ
[
Ẑ(t)

]
− P (W > t)

P (W > t)

∣∣∣∣∣∣
≤
Ẽ
[
|Ẑ(t)− Z(t)|

]
P (W > t)

≤ eαtẼ
[
|Ẑ(t)− Z(t)|

]
· sup
y≥0

1

eαyP (W > y)
, (3.2.4)

where supy≥0 (eαyP (W > y))
−1

<∞ by Lemma 3.1.4.

Theorem 3.1.5 will be proved with a series of lemmas to follow. For the first, define

G0(x,Xk−1) =
∏

i∈B≺k

F0 (x− Si) , and

Ĝ0(x,Xk−1) =
∏

i∈B≺k

F̂0 (x− Si) ,

and for r ≥ 1:

Gr(x,Xk−1) =
∏

i∈B≺k

Fr (x− Si)
∏

j∈B�k

Fr−1(x− Sj), and

Ĝr(x,Xk−1) =
∏

i∈B≺k

F̂r (x− Si)
∏

j∈B�k

F̂r−1(x− Sj),

Lemma 3.2.6. For any integer M > 0,

eαtẼ
[
|Ẑ(t)− Z(t)|

]
≤
M−1∑
k=0

M−k∑
n=1

Ẽ
[
u(t− V ′k − Vn)

∣∣∣Gn−1(t− V ′k,X0)− Ĝn−1(t− V ′k,X0)
∣∣∣]

+ Ẽ
[
e−α(Vτ(t)−t)D−1

Jτ(t)
1(τ(t) > M)

]
,
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where u is given in (3.1.3) and {V ′k : k ≥ 0} is a copy of {Vk : k ≥ 0} equal in distribution under P̃ and independent

of everything else (see Remark 3.2.1).

Proof. For 0 ≤ j ≤M , define

fj(t)

= Ẽ

e−α(Vτ(t)−t)D−1
Jτ(t)

∣∣∣∣∣∣
τ(t)∏
j=1

Ĝτ(t)−j(t− Vj−1,Xj−1)−
τ(t)∏
j=1

Gτ(t)−j(t− Vj−1,Xj−1)

∣∣∣∣∣∣ 1(τ(t) ≤ j)

 .
We then have that

eαtẼ
[
|Ẑ(t)− Z(t)|

]
= Ẽ

e−α(Vτ(t)−t)D−1
Jτ(t)

∣∣∣∣∣∣
τ(t)∏
j=1

Ĝτ(t)−j(t− Vj−1,Xj−1)−
τ(t)∏
j=1

Gτ(t)−j(t− Vj−1,Xj−1)

∣∣∣∣∣∣


≤ fM (t) + Ẽ
[
e−α(Vτ(t)−t)D−1

Jτ(t)
1(τ(t) > M)

]
.

Next, let

Iτ(t)(X0, . . . ,Xτ(t)) =

∣∣∣∣∣∣
τ(t)∏
j=1

Ĝτ(t)−j(t− Vj−1,Xj−1)−
τ(t)∏
j=1

Gτ(t)−j(t− Vj−1,Xj−1)

∣∣∣∣∣∣
and note that

fM (t) = Ẽ
[
1(τ(t) = 1)e−α(V1−t)D−1

J1

∣∣∣Ĝ0(t,X0)−G0(t,X0)
∣∣∣]

+ Ẽ
[
1(1 < τ(t) ≤M)e−α(Vτ(t)−t)D−1

Jτ(t)
Iτ(t)(X0, . . . ,Xτ(t))

]
= Ẽ

[
1(τ(t) = 1)e−α(V1−t)D−1

J1

∣∣∣Ĝ0(t,X0)−G0(t,X0)
∣∣∣]

+ Ẽ
[
Ẽ
[

1(1 < τ(t) ≤M)e−α(Vτ(t)−t)D−1
Jτ(t)

Iτ(t)(X0, . . . ,Xτ(t))
∣∣∣X0

]]
,

and

Ẽ
[

1(1 < τ(t) ≤M)e−α(Vτ(t)−t)D−1
Jτ(t)

Iτ(t)(X0, . . . ,Xτ(t))
∣∣∣X0

]
≤ Ẽ

[
1(1 < τ(t) ≤M)e−α(Vτ(t)−t)D−1

Jτ(t)

× Gτ(t)−1(t− V0,X0)

∣∣∣∣∣∣
τ(t)−1∏
j=1

Gτ(t)−j−1(t− Vj ,Xj)−
τ(t)−1∏
j=1

Ĝτ(t)−j−1(t− Vj ,Xj)

∣∣∣∣∣∣
∣∣∣∣∣∣X0


+ Ẽ

[
1(1 < τ(t) ≤M)e−α(Vτ(t)−t)D−1

Jτ(t)

89



×
∣∣∣Gτ(t)−1(t− V0,X0)− Ĝτ(t)−1(t− V0,X0)

∣∣∣ τ(t)−1∏
j=1

Ĝτ(t)−j−1(t− Vj ,Xj)

∣∣∣∣∣∣X0


≤ Ẽ

[
1(1 < τ(t) ≤M)e−α(Vτ(t)−t)D−1

Jτ(t)

×

∣∣∣∣∣∣
τ(t)−1∏
j=1

Gτ(t)−j−1(t− Vj ,Xj)−
τ(t)−1∏
j=1

Ĝτ(t)−j−1(t− Vj ,Xj)

∣∣∣∣∣∣
∣∣∣∣∣∣X0


+ Ẽ

[
1(1 < τ(t) ≤M)e−α(Vτ(t)−t)D−1

Jτ(t)

∣∣∣Gτ(t)−1(t,X0)− Ĝτ(t)−1(t,X0)
∣∣∣∣∣∣X0

]
= 1(ξ0 ≤ t)fK−1(t− V1)

+ Ẽ
[

1(1 < τ(t) ≤M)e−α(Vτ(t)−t)D−1
Jτ(t)

∣∣∣Gτ(t)−1(t,X0)− Ĝτ(t)−1(t,X0)
∣∣∣∣∣∣X0

]
≤ fM−1(t− V1) + Ẽ

[
1(1 < τ(t) ≤M)e−α(Vτ(t)−t)D−1

Jτ(t)

∣∣∣Gτ(t)−1(t,X0)− Ĝτ(t)−1(t,X0)
∣∣∣∣∣∣X0

]
.

Now for 1 ≤ j ≤M define

gj(t) = Ẽ
[
1(τ(t) = 1)e−α(V1−t)D−1

J1

∣∣∣G0(t,X0)− Ĝ0(t,X0)
∣∣∣]

+ Ẽ
[
1(1 < τ(t) ≤ j)e−α(Vτ(t)−t)D−1

Jτ(t)

∣∣∣Gτ(t)−1(t,X0)− Ĝτ(t)−1(t,X0)
∣∣∣]

= Ẽ
[
1(1 ≤ τ(t) ≤ j)e−α(Vτ(t)−t)D−1

Jτ(t)

∣∣∣Gτ(t)−1(t,X0)− Ĝτ(t)−1(t,X0)
∣∣∣] ,

and note that we have shown that

fM (t) ≤ gM (t) + Ẽ [fM−1(t− V1)] .

Since f0(t) = 0, iterating we obtain

fM (t) ≤
M−1∑
k=0

Ẽ [gM−k(t− Vk)] .

We can bound gj as follows:

gj(t) =

j∑
n=1

Ẽ
[
1(τ(t) = n)e−α(Vn−t)D−1

Jn

∣∣∣Gn−1(t,X0)− Ĝn−1(t,X0)
∣∣∣]

=

j∑
n=1

Ẽ

[
1

(
max

0≤k<n
Vk + ξk ≤ t < Vn + ξn

)
e−α(Vn−t)D−1

Jn

∣∣∣Gn−1(t,X0)− Ĝn−1(t,X0)
∣∣∣]

≤
j∑

n=1

Ẽ
[
u(t− Vn)

∣∣∣Gn−1(t,X0)− Ĝn−1(t,X0)
∣∣∣] .
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It follows that when {V ′k : k ≥ 0} is an independent copy of {Vk : k ≥ 0} then

fM (t) ≤
M−1∑
k=0

Ẽ

[
M−k∑
n=1

Ẽ
[
u(t− V ′k − Vn)

∣∣∣Gn−1(t− V ′k,X0)− Ĝn−1(t− V ′k,X0)
∣∣∣∣∣∣V ′k]

]

=

M−1∑
k=0

M−k∑
n=1

Ẽ
[
u(t− V ′k − Vn)

∣∣∣Gn−1(t− V ′k,X0)− Ĝn−1(t− V ′k,X0)
∣∣∣] .

For the next lemma define, for r, s ≥ 1, the random variables

Z(r)
s =

∨
i∈B≺s+1

(Si +W
(r)
i ) ∨

∨
j∈B�s+1

(Sj +W
(r−1)
j ),

Ẑ(r)
s =

∨
i∈B≺s+1

(Si + Ŵ
(r)
i ) ∨

∨
j∈B�s+1

(Sj + Ŵ
(r−1)
j ),

and for r = 0 define similarly

Z(0)
s =

∨
i∈B≺1

(Si +W
(0)
i ),

Ẑ(0)
s =

∨
i∈B�1

(Si + Ŵ
(0)
i ).

Lemma 3.2.7. For any ε > 0, k ≥ 0, and n ≥ 1,

∣∣∣Gn−1(t− V ′k,X0)− Ĝn−1(t− V ′k,X0)
∣∣∣

≤ 2 (Gn−1(t+ ε− V ′k,X0)−Gn−1(t− ε− V ′k,X0)) + P̃
(
|Z(n−1)

0 − Ẑ(n−1)
0 | > ε

∣∣∣X0

)
.

Proof. Define

U
(n)
k = V ′k + Z

(n−1)
0 and Û

(n)
k = V ′k + Ẑ

(n−1)
0 ,

and note that

Gn−1(t− V ′k,X0) = P̃
(
Z

(n−1)
0 ≤ t− V ′k

∣∣∣X0, V
′
k

)
= P̃

(
U

(n)
k ≤ t

∣∣∣X0, V
′
k

)
,

and

Ĝn−1(t− V ′k,X0) = P̃
(
Ẑ

(n−1)
0 ≤ t− V ′k

∣∣∣X0, V
′
k

)
= P̃

(
Û

(n)
k ≤ t

∣∣∣X0, V
′
k

)
.

Observe that for any two random variables ζ1 and ζ2, we can write

|1(ζ1 ≤ t)− 1(ζ2 ≤ t)| = 1(ζ1 ≤ t < ζ2) + 1(ζ2 ≤ t < ζ1).
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Hence,

∣∣∣1(U (n)
k ≤ t

)
− 1

(
Û

(n)
k ≤ t

)∣∣∣ = 1
(
U

(n)
k ≤ t < Û

(n)
k , |U (n)

k − Û (n)
k | ≤ ε

)
+ 1

(
Û

(n)
k ≤ t < U

(n)
k , |U (n)

k − Û (n)
k | ≤ ε

)
+ 1

(
|U (n)
k − Û (n)

k | > ε
)

≤ 1
(
U

(n)
k ≤ t < U

(n)
k + ε

)
+ 1

(
U

(n)
k − ε ≤ t < U

(n)
k

)
+ 1

(
|U (n)
k − Û (n)

k | > ε
)

≤ 2 · 1
(
U

(n)
k − ε ≤ t < U

(n)
k + ε

)
+ 1

(
|U (n)
k − Û (n)

k | > ε
)

≤ 2
(

1
(
U

(n)
k − ε ≤ t

)
− 1

(
U

(n)
k + ε ≤ t

))
+ 1

(
|U (n)
k − Û (n)

k | > ε
)

≤ 2
(

1
(
U

(n)
k ≤ t+ ε

)
− 1

(
U

(n)
k ≤ t− ε

))
+ 1

(
|Z(n−1)

0 − Ẑ(n−1)
0 | > ε

)
.

Consequently,

∣∣∣Gn−1(t− V ′k,X0)− Ĝn−1(t− V ′k,X0)
∣∣∣

=
∣∣∣Ẽ [1

(
U

(n)
k ≤ t

)
− 1

(
Û

(n)
k ≤ t

)∣∣∣X0, V
′
k

]∣∣∣
≤ 2

(
P̃
(
U

(n)
k ≤ t+ ε

∣∣∣X0, V
′
k

)
− P̃

(
U

(n)
k ≤ t− ε

∣∣∣X0, V
′
k

))
+ P̃

(
|Z(n−1)

0 − Ẑ(n−1)
0 | > ε

∣∣∣X0

)
= 2 (Gn−1(t+ ε− V ′k,X0)−Gn−1(t− ε− V ′k,X0)) + P̃

(
|Z(n−1)

0 − Ẑ(n−1)
0 | > ε

∣∣∣X0

)
.

Lemma 3.2.8. Suppose the density ϕ(x) = P̃
(
X̂1 ∈ dx

)
is bounded and β ∈ (α/2, α) such that ρβ < 1. Then for

any ε > 0,

M−1∑
k=0

M−k∑
n=1

Ẽ [u(t− V ′k − Vn) (Gn−1(t+ ε− V ′k,X0)−Gn−1(t− ε− V ′k,X0))]

≤
2(2− ρβ)E

[
Qβ
]
Ẽ[N ]

√
c(γ, β)

(1− ρβ)
2 sup

x∈R
e−(α−β)xϕ(x) · ε,

where γ = 2(α− β) and c(γ, β) <∞ is as in Lemma 3.2.1.

Proof. First note that

Ẽ [u(t− V ′k − Vn)|X0] = Ẽ [u(t− V ′k − (Vn − V1)− V1)|V ′k,X0]

= hn−1(t− V ′k − V1),
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where hn−1 is as in Lemma 3.1.3. Consequently, we have that

M−1∑
k=0

M−k∑
n=1

Ẽ [u(t− V ′k − Vn) (Gn−1(t+ ε− V ′k,X0)−Gn−1(t− ε− V ′k,X0))]

≤
M−1∑
k=0

M−k∑
n=1

Ẽ
[
u(t− V ′k − Vn)P̃

(
t− ε ≤ V ′k + Z

(n−1)
0 ≤ t+ ε

∣∣∣V ′k,X0

)]
=

M−1∑
k=0

M−k∑
n=1

Ẽ
[
Ẽ [u(t− V ′k − Vn)|V ′k,X0] P̃

(
t− ε ≤ V ′k + Z

(n−1)
0 ≤ t+ ε

∣∣∣V ′k,X0

)]
=

M−1∑
k=0

M−k∑
n=1

Ẽ
[
hn−1(t− V ′k − V1)P̃

(
t− ε ≤ V ′k + Z

(n−1)
0 ≤ t+ ε

∣∣∣V ′k,X0

)]
=

M−1∑
k=0

M−k∑
n=1

Ẽ
[
hn−1(t− V ′k − V1)1

(
t− ε ≤ V ′k + Z

(n−1)
0 ≤ t+ ε

)]

=

M−1∑
k=0

M−k∑
n=1

Ẽ

[∫ t+ε−Z(n−1)
0

t−ε−Z(n−1)
0

hn−1(t− x− V1)ϕ∗(k)(x) dx

]

=

M−1∑
k=0

M−k∑
n=1

Ẽ

[∫ ε

−ε
hn−1(−x+ Z

(n−1)
0 − V1)ϕ∗(k)(x) dx

]
.

Now, note that for β ∈ (0, α) such that ρβ < 1,

u(x) = eαxP (Y > x) ≤ E
[
Qβ
]
e(α−β)x,

and so

hn(x) = Ẽ [u(x− Vn)] ≤ E
[
Qβ
]
e(α−β)xẼ

[
e−(α−β)Vn

]
= E

[
Qβ
]
e(α−β)xρβ .

It follows that, since Z(n−1)
0 is monotone a.s. in n,

Ẽ

[∫ ε

−ε
hn−1(−x+ Z

(n−1)
0 − V1)ϕ∗(k)(x) dx

]
≤ E

[
Qβ
]
ρn−1
β Ẽ

[
e(α−β)(Z

(n−1)
0 −V1)

] ∫ ε

−ε
e−(α−β)xϕ∗(k)(x) dx

≤ E
[
Qβ
]
ρn−1
β Ẽ

[
e(α−β)(Z

(∞)
0 −V1)

] ∫ ε

−ε
e−(α−β)xϕ∗(k)(x) dx.

Now let γ = 2(α− β), and note that γ ∈ (0, α) since β ∈ (α/2, α). Also recall that

Z
(∞)
0 =

∨
i∈B1

(Si +W
(∞)
i ),
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where P̃
(
W

(∞)
i ≤ x

)
= P

(
W

(∞)
i ≤ x

)
= P (W ≤ x) for each i and x ∈ R. Then, using Wald’s identity,

Ẽ
[
e(α−β)(Z

(∞)
0 −V1)

]
= Ẽ

[ ∨
i∈B1

e(α−β)(Si−V1+W
(∞)
i )

]

≤ Ẽ

[ ∨
i∈B1

e(α−β)(Si−V1)

N∅∨
i=1

e(α−β)W
(∞)
i

]

≤

(
Ẽ

[ ∨
i∈B1

eγ(Si−V1)

])1/2

·

(
Ẽ

[
N∅∑
i=1

eγW
(∞)
i

])1/2

≤
(
Ẽ[N ]

)1/2

·
(
Ẽ[N ]E

[
eγW

])1/2

≤ Ẽ[N ]
√
c(γ, β),

where we used Lemma 2.5.6 and Lemma 3.2.1 (which defines c(γ, β)). Furthermore, from Lemma 3.2.5,

sup
x∈R

∞∑
k=0

e−(α−β)xϕ∗(k)(x) ≤ 2− ρβ
1− ρβ

sup
x∈R

e−(α−β)xϕ(x) <∞.

Finally, we have that

M−1∑
k=0

M−k∑
n=1

Ẽ

[∫ ε

−ε
hn−1(−x+ Z

(n−1)
0 − V1)ϕ∗(k)(x) dx

]

≤ E
[
Qβ
]
Ẽ[N ]

√
c(γ, β)

M∑
k=0

M−k∑
n=1

ρn−1
β

∫ ε

−ε
e−(α−β)xϕ∗(k)(x) dx

≤ E
[
Qβ
]
Ẽ[N ]

√
c(γ, β) · 1

1− ρβ
·
∫ ε

−ε

M∑
k=0

e−(α−β)xϕ∗(k)(x) dx

≤
E
[
Qβ
]
Ẽ[N ]

√
c(γ, β)

1− ρβ
· 2− ρβ

1− ρβ
sup
x∈R

e−(α−β)xϕ(x) · 2ε.

Lemma 3.2.9. Recall the function hn(x) and Bh = supx∈R
∑∞
n=0 hn(x) <∞ from Lemma 3.1.3. For any ε > 0 and

η > 0,

M−1∑
k=0

M−k∑
n=1

Ẽ
[
u(t− V ′k − Vn)P̃

(
|Z(n−1)

0 − Ẑ(n−1)
0 | > ε

∣∣∣X0

)]
≤ 2BhẼ[N ]

(
2 ∨ β−1

)( δ

ηε
+ P (Q ≤ η)

)
M.
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Proof. Note that

|Z(n−1)
0 − Ẑ(n−1)

0 | ≤
∨
∈B≺1

|W (n−1)
i − Ŵ (n−1)

i |+
∨
i∈B�1

|W (n−2)
i − Ŵ (n−2)

i |,

and hence for any η > 0,

P̃
(
|Z(n−1)

0 − Ẑ(n−1)
0 | > ε

∣∣∣X0

)
≤ 2 sup

r≥0
P̃

(
N∅∨
i=1

|W (r)
i − Ŵ (r)

i |

∣∣∣∣∣X0

)

≤ 2N∅ sup
r≥0

P
(
|W (r) − Ŵ (r)| > ε

)
≤ 2N∅

[
sup
r≥0

P
(
|W (r) − Ŵ (r)| > ε, R̂(r) ∧R(r) > η

)
+ sup

r≥0
P
(
R̂(r) ∧R(r) ≤ η

)]
.

Since log(x) is Lipschitz on x > η with Lipschitz constant η−1, on {R̂(r) ∧R(r) > η} we have

|Ŵ (r) −W (r)| = 1

β
| log(R̂(r))β − log(R(r))β | ≤ 1

βη
|(R̂(r))β − (R(r))β |.

Furthermore, since R(r) is increasing in r, R(r) ≥ R(0) D= Q. By Condition 3.1.2(a), R̂(r) is also lower bounded by

copy of Q independent R(0). If Q̃ is an independent copy of Q, then

P
(
R̂(r) ∧R(r) ≤ η

)
≤ P

(
Q ∧ Q̃ ≤ η

)
≤ 2P (Q ≤ η).

Hence,

P̃
(
|Z(n−1)

0 − Ẑ(n−1)
0 | > ε

∣∣∣X0

)
≤ 2N∅

(
sup
r≥0

P
(
|(R̂(r))β − (R(r))β | > βηε

)
+ 2P (Q ≤ η)

)
≤ 2N∅

(
1

βηε
sup
r≥0

E
[
|(R̂(r))β − (R(r))β |

]
+ 2P (Q ≤ η)

)
= 2N∅

(
δ

βηε
+ 2P (Q ≤ η)

)
.

Then, recalling the function hn in Lemma 3.1.3(ii),

M−1∑
k=0

M−k∑
n=1

Ẽ
[
u(t− V ′k − Vn)P̃

(
|Z(n−1)

0 − Ẑ(n−1)
0 | > ε

∣∣∣X0

)]
≤ 2

(
δ

βηε
+ 2P (Q ≤ η)

) M∑
k=0

M−k∑
n=1

Ẽ [u(t− V ′k − Vn)N∅]
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= 2

(
δ

βηε
+ 2P (Q ≤ η)

) M∑
k=0

M−k∑
n=1

Ẽ
[
Ẽ [u(t− V ′k − (Vn − V1)− V1)|X0, V

′
k]N∅

]
= 2

(
δ

βηε
+ 2P (Q ≤ η)

) M∑
k=0

M−k∑
n=1

Ẽ [hn−1(t− V ′k − V1)N∅]

≤ 2

(
δ

βηε
+ 2P (Q ≤ η)

) M∑
k=0

Ẽ

[
N∅

∞∑
n=0

hn(t− V ′k − V1)

]

≤ 2

(
δ

βηε
+ 2P (Q ≤ η)

)
MẼ [N ]Bh,

where Bh = supx
∑∞
n=0 hn(x) <∞. This completes the proof.

Lemma 3.2.10. Let p ∈ {1, 2}. If Ẽ [(Y −)p] <∞, then

Ẽ
[
e−α(Vτ(t)−t)D−1

Jτ(t)
1(τ(t) > M)

]
≤
√
Bg

(
2p/2 ∨

((
1 + e−θ

)(p−1)/2

(1− e−θ)p/2
+

p∑
r=1

(
Ẽ
[(

3µ−1Y −
)r])1/2

))
·
(
µ−1t

)p/2
+ 1

Mp/2
.

Proof. Recall the functions v and g from Lemma 3.1.3. By the Cauchy Schwarz inequality and Markov’s inequality,

Ẽ
[
e−α(Vτ(t)−t)D−1

Jτ(t)
1(τ(t) > M)

]
≤
(
Ẽ
[
e−2α(Vτ(t)−t)D−2

Jτ(t)

])1/2

P̃ (τ(t) > M)
1/2

≤
√
Bg ·

(
Ẽ [τ(t)p]

)1/2

Mp/2
,

where we used the fact that

Ẽ
[
e−2α(Vτ(t)−t)D−2

Jτ(t)

]
=

∞∑
n=0

Ẽ
[
1(τ(t) = n)e−2α(Vn−t)D−2

Jn

]
≤
∞∑
n=0

Ẽ
[
e−2α(Vn−t)Ẽ

[
1(Vn + ξn > t)D−2

Jn

∣∣Gn]]
=

∞∑
n=0

Ẽ [v(t− Vn)] ≤ sup
x∈R

∞∑
n=0

gn(x) = Bg.

By Lemma 3.2.4,

(
Ẽ [τ(t)p]

)1/2

≤

((
2µ−1t

)p
+

(
1 + e−θ

)p−1

(1− e−θ)p
+ 2

p∑
r=1

Ẽ
[(

3µ−1Y −
)r])1/2

≤

(
2p/2 ∨

((
1 + e−θ

)(p−1)/2

(1− e−θ)p/2
+
√

2

p∑
r=1

(
Ẽ
[(

3µ−1Y −
)r])1/2

))(
t

µ
+ 1

)p/2
,

which gives the result.
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We can now complete the proof of Theorem 3.1.5.

Proof of Theorem 3.1.5. The result follows on combining (3.2.4) with Lemmas 3.2.6, 3.2.7, 3.2.8, 3.2.9, and 3.2.10

3.2.3 The Population Dynamics Case

Finally, we prove the results pertaining to the use of the population dynamics in the approximation of the {Fk}, namely

Lemma 3.1.6 and Theorem 3.1.7.

Proof of Lemma 3.1.6. First write

δλ(K,m) ≤ sup
r≥0

E
[
d1

(
Fλ,r∧K , F̂λ,r∧K,m

)]
+ sup
r≥0

E [d1 (Fλ,r, Fλ,r∧K)] .

We start with the first term.

LetR = eW ,R(r) = eW
(r)

, and R̂(r,m) = eŴ
(r,m)

. Rλ satsfies the fixed point equationRλ D= Φλ(Q,N, {Ci}, {Rλi }),

where Ri are i.i.d. copies of R, for the map

Φλ(q, n, {ci}, {xi}) = qλ ∨
n∨
i=1

cλi xi.

If {(Xi, Yi) : i ≥ 1} is an i.i.d. sequence of vectors in R+ × R+ independent of (Q,N, {Ci}), then

E

[∣∣∣∣∣Qλ ∨
N∨
i=1

Cλi Xi −Qλ ∨
N∨
i=1

Cλi Yi

∣∣∣∣∣
]
≤ E

[
N∑
i=1

Cλi |Xi − Yi|

]
= ρλE [|X1 − Y1|] .

Hence, applying Theorem 2.8 in [86] with p = 1 and q = λ′/λ and noting that α2 < λ < λ′ < α implies that q < 2,

there exists some κ = κ(λ, λ′) such that

E
[
d1

(
(R(r))λ, (R̂(r,m))λ

)]
≤ κ

 r∑
j=0

ρjλ

 r∑
j=0

ρr−jλ

(
E
[
|R(j)|λ

′
])λ/λ′ ·m−min{1−λ/λ′,1/2}.

Note that for all j,

E
[
|R(j)|λ

′
]
≤ E

[ ∞∑
k=0

∑
i∈Ak

Qλ
′

i Πλ′

i

]
= E

[
Qλ
′
] ∞∑
k=0

ρkλ′ =
E
[
Qλ
′
]

1− ρλ′
.

Since λ′/λ < 2, min{1− λ/λ′, 1/2} = 1/2, and so

E
[
d1

(
(R(r))λ, (R̂(r,m))λ

)]
≤ κ

 ∞∑
j=0

ρjλ


 ∞∑
j=0

ρjλ

E
[
Qλ
′
]

1− ρλ′

λ/λ′
 ·m−1/2
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=
κ
(
E
[
Qλ
′
])λ/λ′

(1− ρλ)2(1− ρλ′)λ/λ′
·m−1/2,

and the bound is uniform in r.

For the other term, let U be a uniform random variable over [0, 1] and let R(r) =
(
F−1
λ,r (U)

)1/λ

for each r ≥ 0

and R =
(
F−1
λ,∞(U)

)1/λ

, i.e. R D= eW where W solves (3.0.2). Note that R(r) are increasing in r to R. Then we have

sup
r≥0

E [d1 (Fλ,r, Fλ,r∧K)] = sup
r≥0

E
[
|(R(r))λ − (R(r∧K))λ|

]
= E

[
|(R(K))λ −Rλ|

]
.

By Theorem 2.5 in [86] and its proof,

E
[
|(R(K))λ −Rλ|

]
≤
ρλE

[
Qλ
]

+ E
[
Qλ ∨

∨N
i=1 C

λ
i

]
1− ρλ

ρKλ ≤
(1 + ρλ)E

[
Qλ
]

+ ρλ

1− ρλ
ρKλ .

This completes the proof.

Proof of Theorem 3.1.7. When P (Q ≤ q) = 0 for some q > 0, choose some 0 < q̃ < q and set η = q̃ in the bound in

Theorem 3.1.5. The result then follows by Lemma 3.1.6 and choosing M = mω1 and ε = m−ω2 .

When P (Q ≤ η) ≤ Kηζ1(− log η)−ζ2 , the result follows by Lemma 3.1.6 and choosing M = mω1 , ε = m−ω2 ,

and η = m−ω3 .
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CHAPTER 4

Large Deviations for Interacting Diffusions with Common Small Noise

In this chapter we study large deviation properties of interacting particle systems that are described through a

certain collection of stochastic differential equations. Our main interest is in diffusions interacting through the empirical

measure of the particle system with both individual and common sources of noises, given by a system of equations of

the following form:

dXn
i (t) = b(Xn

i (t), µn(t)) dt+ σ(Xn
i (t), µn(t)) dWi(t) + κ(n)α(Xn

i (t), µn(t)) dB(t),

Xn
i (0) = xni , µn(t) =

1

n

n∑
i=1

δXni (t), 1 ≤ i ≤ n, t ∈ [0, T ],
(4.0.1)

where {Wi, i ∈ N} are independent m-dimensional Brownian motions, B is a k-dimensional Brownian motion,

independent of {Wi, i ∈ N}, b : Rd × P(Rd) → Rd, σ : Rd × P(Rd) → Rd×m, and α : Rd × P(Rd) → Rd×k are

appropriate maps, and {xni }1≤i≤n ⊂ Rd (see Section 4.1.1 for precise conditions on the coefficients and the initial

conditions).

We will also study large deviation asymptotics for a second class of models that are given as particle approximations

for Feynman-Kac functionals of the form

E
[
e
∫ T
0
c(X1(s))dsg(X1(T ))

]
, (4.0.2)

where g and c are bounded and continuous functions and X1 is given by (1.2.12) (with i = 1). Denote byM+(Rd) the

space of finite measures on Rd equipped with the topology of weak convergence, and consider the C([0, T ] :M+(Rd))-

valued random variables νn defined as

νn(t) =
1

n

n∑
i=1

e
∫ t
0
c(Xni (s))ds+κ(n)

∫ t
0
β(Xni (s))dB(s)δXni (t), t ∈ [0, T ], (4.0.3)

where {Xn
i } are given by (1.2.14) and β is a bounded and continuous function. Then, as n → ∞, 〈g, νn(T )〉 .=∫

g(x) νn(T )(dx) converges to the Feynman-Kac functional in (4.0.2) for all choices of sequences κ(n) → 0. As a

special case of Theorems 4.1.2 and 4.1.4 we obtain large deviation principles for νn, for different choices of κ(n).
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The law of large number behavior of such systems of particles outlined above is described by nonlinear equations

of McKean-Vlasov type (cf. [82, 94]). The large deviation behavior of the associated empirical measure process is

governed by two types of scaling, one corresponding to mean field asymptotics (as the number of particles n→∞)

and the other to the Freidlin-Wentzell small noise asymptotics (as the noise intensity κ(n)→ 0).

In the setting where there is no common Brownian motion, i.e. κ(n) = 0, large deviation principles for the

empirical measure have been studied in [33]. A different approach, based on certain variational representations for

exponential functionals of finite dimensional Brownian motions [17] and weak convergence arguments, was taken in

[22]. The latter paper, in contrast to [33], allowed for degenerate diffusion coefficients and for a mean field interaction

in the diffusion coefficient. Large deviation properties of a system related to (4.0.1) were studied recently in [88], in

which there is no common noise term but the independent Brownian motions {Wi} are made to be small and vanish in

the limit. In the systems with common noise that are considered in the current work, one needs to analyze the interplay

between the contributions of two distinct sources of noise to non-typical behavior of the empirical measures. In the

rate function (see (4.1.3)), this interplay is manifested through certain stochastic control problems in which there are

two types of controls that play somewhat different roles in the dynamics. As already noted below (1.2.16) in a simpler

setting, the control that arises from the individual noises is random and nonanticipative whereas the control from the

common Brownian motion is nonrandom. In game theoretic terminology, the first control arises from the aggregated

actions of the n individual players whereas the second control corresponds to the action of a single major agent that

impacts the dynamics of all n players.

Our results give a complete characterization of the asymptotic behavior for different choices of κ(n). Specifically,

taking κ(n) = n−1/2, Theorems 4.1.1 and 4.1.3 show that rates of decay of P (µn ∈ A) for non-typical events A are of

the form e−nI(A), where the exponent I(A) is described through a stochastic control problem with controls for both

the aggregated player and the major agent. However, when κ(n)n1/2 → 0, the contribution of the common Brownian

motion to deviations in the empirical measure becomes negligible and the rate function only involves the aggregated

player control. Finally, when κ(n)n1/2 → ∞, the decay rates of P (µn ∈ A) are slower , given as e−κ(n)−2I(A),

and this time the dominating contribution to deviations to the empirical measure are due to the common Brownian

motion and the corresponding stochastic control problem is described in terms of nonlinear Markov processes with

deterministic controls.
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In order to study rates of convergence of Feynman-Kac functionals analogous to those in (4.0.2), we consider the

following system of coupled equations:

dXn
i (t) = b(Xn

i (t), µn(t)) dt+ σ(Xn
i (t), µn(t)) dWi(t) + κ(n)α(Xn

i (t), µn(t)) dB(t),

dAni (t) = Ani (t)c(Xn
i (t), µn(t)) dt+Ani (t)γT (Xn

i (t), µn(t)) dWi(t) + κ(n)Ani (t)βT (Xn
i (t), µn(t)) dB(t),

Xn
i (0) = xni , Ani (0) = ani , µn(t) =

1

n

n∑
i=1

θ(Ani (t))δXni (t), 1 ≤ i ≤ n, t ∈ [0, T ],

(4.0.4)

where c : Rd × P(Rd) → R, γ : Rd × P(Rd) → Rm, and β : Rd × P(Rd) → Rk are suitable maps and

{(xni , ani )}1≤i≤n ⊂ Rd × R+ (see Section 4.1.2 for precise conditions). Note that in the special case where θ(x) = x,

γ(x, µ) = 0, and the coefficients do not depend on the empirical measure (i.e. b(x, µ) = b(x), and similarly for

σ, α, c, β), µn reduces to (4.0.3) (with c replaced by c−κ(n)2βTβ/2). In the general case the finite weighted empirical

measures µn(t) take the form

µn(t) =
1

n

n∑
i=1

θ
(
e
∫ t
0
cn(Xni (s),µn(s))ds+

∫ t
0
γT (Xni (s),µn(s)) dWi(s)+κ(n)

∫ t
0
βT (Xni (s),µn(s)) dB(s)

)
δXni (t), (4.0.5)

where cn = c− γT γ/2− κ(n)2βTβ/2, which covers a broad family of interacting particle models for Feynman-Kac

distribution flows (cf. [34]). Our main result is Theorem 4.1.2, which gives a large deviation principle for {µn} in

C([0, T ] :M+(Rd)) under appropriate conditions on the coefficients and the initial conditions.

The LDP results herein have a somewhat similar flavor to those for two-scale stochastic systems, see for example

the recent works [58, 93] which analyze the large deviations behavior of reaction-diffusion equations with slow and fast

time scales in a particular limiting regime of the parameters, as well as [38] which considers multiple regimes in a finite

dimensional problem. As in the problems studied here, in two-scale systems as well there are two natural parameters

of interest, one (denoted as δ) representing the speed of the fast system, and the other (denoted as ε) representing the

magnitude of the noise in the slow system. Depending on the manner in which δ and ε approach 0 in relation to each

other, one expects different forms of large deviation behavior. Specifically the papers [58, 93] considered the regime

δ/
√
ε→ 0 while the other regimes, namely δ/

√
ε→ c ∈ (0,∞) and δ/

√
ε→∞ were left open and are expected to

be more challenging. Although there are formal similarities with the problem studied here, it is not immediately clear

whether the methods developed in the current paper can be directly used to study the harder regimes that were left

unaddressed in [58, 93].

We now make some comments on proof techniques. For an LDP for µn associated with the system in (4.0.1),

the goal is to characterize the asymptotics of Laplace functionals of the form on the left side of (4.2.4). Since µn is a

functional of individual Brownian motions Wi and the common Brownian motion B, using the variational formula for

exponential functionals of finite dimensional Brownian motions [17], one can give a stochastic control representation
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for the Laplace functional of interest (see Theorem 4.2.1) that involves two types of controls. The first type, denoted

as uni , captures the deviations from the individual Brownian motions Wi (one control for each i) and the other type,

denoted as vn, is associated with the common Brownian motion B. The two types of controls are scaled differently in

the representation, and the analysis of this scaling, which depends on κ(n), is key to understanding the different types

of large deviation behavior for various choices of κ(n). In proving the large deviation upper bound one needs to argue

the convergence of the cost on the right side of (4.2.4) associated with near optimal choices of control sequences and to

characterize the limits. For this, following [22], we consider certain augmented empirical measures Qn that include,

in addition to particle states, the associated controls and the driving individual noises. The convergence of the costs

(along subsequences) is shown by establishing the tightness of the collection (Qn, vn). Tightness properties depend

crucially on the rate at which κ(n)→ 0, and the forms of the limit points under different conditions on κ(n) reveal

the different types of large deviation behavior. Next step is to characterize the form of the limit cost. This is done by

establishing that the limit points of Qn solve certain nonlinear controlled martingale problems. The controls arise from

two sources, one is from the limits of vn (this is the control associated with the common noise); and the other is from

the second marginal of Qn. This characterization leads to the forms of rate functions described previously. In order to

prove the lower bound one needs to construct a suitable collection of controls for which the associated costs converge to

certain near optimal costs for the limiting stochastic control problems. This time tightness is not enough as one needs to

prove convergence of (augmented) empirical measures to a specific limiting measure. The key step in the proof of the

lower bound is establishing uniqueness of weak solutions of stochastic differential equations associated with certain

controlled nonlinear Markov processes. Such results are given in Lemmas 4.2.4 and 4.3.4. With such a uniqueness

result one can then construct the desired sequence of controls and controlled processes on certain infinite product path

spaces such that the associated state processes and costs converge in an appropriate manner.

Proofs for the large deviation asymptotics of Feynman-Kac measures as in (4.0.4) rely on analyzing the properties

of θ. One may attempt to deduce this result as a corollary of large deviation results for (4.0.1) by first establishing an

LDP for the empirical measure of (Xn
i (·), Ani (·)). However, with this approach, the conditions needed appear to be too

restrictive (see Remark 4.1.2(a)). We will instead analyze the weighted empirical measure µn in (4.0.5) directly via

variational representations for Laplace functionals associated with µn. We prove the result under two different types of

conditions. The first set of conditions requires in particular that γ = 0 and θ is a Lipschitz function (e.g. θ(x) = x).

When θ(x) = x, and γ = 0 is violated, a large deviation principle is not available even in the most elementary settings

(see Remark 4.1.2(c)). The second set of conditions allows γ to be more general but imposes logarithmic growth

conditions on θ.

The paper is organized as follows. Section 4.1 introduces the models, gives our precise assumptions, and presents

the main results. In particular, Section 4.1.1 considers the empirical measure problem while Section 4.1.2 presents

results for interacting particle models for Feynman-Kac functionals. The first two sections consider the case where

102



the common noise intensity κ(n) is of order n−1/2, and in section 4.1.3 we present results for other choices of κ(n)

(i.e. of larger or smaller order than n−1/2). Sections 4.2 through 4.4 contain the proofs of our main results. The two

appendices contain proofs of some auxiliary results.

The following are some notational conventions followed throughout this chapter. We will denote by C([0, T ] : Rd)

the space of continuous functions from [0, T ] to Rd, equipped with the sup-norm topology corresponding to the distance

d(ψ1, ψ2) = sup
0≤t≤T

‖ψ1(t)− ψ2(t)‖ for ψ1, ψ2 ∈ C([0, T ] : Rd).

For a Polish space S, C(S) will denote the space of continuous functions from S into R, and Cb(S) will denote the

space of continuous and bounded functions from S into R. We denote by L2([0, T ],Rk) the space of functions from

[0, T ] into Rk that are square integrable with respect to Lebesgue measure. Let P(S) denote the space of all probability

measures on S equipped with the usual weak convergence topology. If S is a product space of the form S1 × · · · × Sk,

then for Θ ∈ P(S) and i = 1, . . . , k, we denote by [Θ]i the ith marginal of Θ, which is a probability measure on Si.

Notations [Θ](i1,...,ir), for 1 ≤ r ≤ k and 1 ≤ i1 < i2 < · · · < ir ≤ k, will be interpreted in a similar manner. Let

M+(S) denote the space of finite positive measures on S, also with the topology of weak convergence. In particular, for

γn, γ ∈M+(S), γn → γ under this topology if and only if for every f ∈ Cb(S),
∫
f dγn →

∫
f dγ. For γ ∈M+(S)

and a γ-integrable function f : S → R, we will denote
∫
S
f(x) γ(dx) as 〈f, γ〉. Ck(Rd) [resp. Ckc (Rd)] will denote the

space of functions [resp. functions with compact support] from Rd to R that are continuously differentiable up to order

k. For a bounded map f : S → R, we denote supx∈S |f(x)| as ‖f‖∞.

4.1 Main Results

In this section we introduce the models of interest, state our precise assumptions, and present the main results.

4.1.1 Diffusions Interacting Through the Empirical Distribution

Consider a filtered probability space (Ω,F , P, {Ft}) where the filtration satisfies the usual conditions. Let {Wi}∞i=1 be

an iid collection of m-dimensional Brownian motions on this space. Also, let B be a k-dimensional Brownian motion

that is independent of the collection {Wi}∞i=1 . We assume that, for every s, {Wi(t)−Wi(s), B(t)−B(s), i ≥ 1, t ≥ s}

is independent of Fs, so that Wi and B are {Ft}-martingales.

Consider, for n ∈ N, a collection of stochastic processes {Xn
i }ni=1 with sample paths in C([0, T ] : Rd) given by

the system of equations in (4.0.1) where κ : N → R+ satisfies κ(n) → 0 as n → ∞, and b, σ, and α are suitable

coefficients.

We will make the following assumption on the initial conditions.
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Condition 4.1.1. There exists ξ0 ∈ P(Rd) such that for all ξ0-integrable f : Rd → R,

lim
n→∞

1

n

n∑
i=1

f(xni ) = 〈f, ξ0〉.

Furthermore, supn≥1
1
n

∑n
i=1 ‖xni ‖2 <∞.

We will require the coefficients b, α, and σ to be Lipschitz continuous. In order to state this condition precisely,

we recall the bounded-Lipschitz metric on the space of measures. Recall thatM+(Rd) denotes the space of positive

measures on Rd equipped with the weak topology. This topology can be metrized by the bounded Lipschitz metric

dBL(ν1, ν2) = sup
f∈BL(Rd)

|〈f, ν1〉 − 〈f, ν2〉| , νi ∈M+(Rd), i = 1, 2,

where

BL(Rd) =
{
f ∈ C(Rd) : ‖f‖∞ ≤ 1 and f is Lipschitz with Lipschitz constant bounded by 1

}
.

The following is the main condition on the coefficients.

Condition 4.1.2. The map b is Lipschitz and the maps σ, α are bounded and Lipschitz from Rd ×M+(Rd) to Rd,

Rd×m, and Rd×k respectively. Namely, there is a K ∈ (0,∞) such that for each x, y ∈ Rd and µ, ν ∈M+(Rd),

(a) ‖σ(x, µ)‖2 + ‖α(x, µ)‖2 ≤ K2, and

(b) ‖b(x, µ)− b(y, ν)‖+ ‖σ(x, µ)− σ(y, ν)‖+ ‖α(x, µ)− α(y, ν)‖ ≤ K (‖x− y‖+ dBL(µ, ν)).

For Theorem 4.1.1 we can replace M+(Rd) with P(Rd) in the above condition, however it is convenient to

formulate the condition as above in order to have a common set of conditions for Theorems 4.1.1 and 4.1.2. For the

LDP we will assume in addition that the diffusion coefficient σ depends on the state of the system only through the

empirical measure:

Condition 4.1.3. For x ∈ Rd and µ ∈M+(Rd), σ(x, µ) = σ(µ).

Under Condition 4.1.2 it follows by standard arguments that for each n there is a unique pathwise solution of

(4.0.1). Abusing notation, let µn be a random variable with values in P(C([0, T ] : Rd)) defined as µn .
= 1

n

∑n
i=1 δXni .

Note that µn(s) is the (random) marginal distribution at time instant s associated with µn. We will occasionally denote

the map t 7→ µn(t), as µn(·) which is viewed as a P(Rd)-valued stochastic process with continuous sample paths or,

equivalently, a random variable with values in C([0, T ] : P(Rd)).
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Our first main result gives a large deviation principle for µn in P(C([0, T ] : Rd)). We begin by introducing the

associated rate function. This function will be described in terms of solutions to certain controlled McKean-Vlasov

equations which we now introduce. Recall the Polish spacesR andR1 of relaxed controls from the Introduction.

Given ϕ ∈ L2([0, T ] : Rk) and a continuous map ν : [0, T ] → P(Rd), consider the controlled nonlinear SDE

S1[ϕ, ν], on some filtered probability space (Ω̄, F̄ , P̄ , {F̄t}), equipped with an m-dimensional F̄t-Brownian motion

W :

S1[ϕ, ν]
.
=



dX̄(t) = b(X̄(t), ν(t)) dt+

(∫
Rm

σ(X̄(t), ν(t))y ρt(dy)

)
dt+ σ(X̄(t), ν(t)) dW (t)

+ α(X̄(t), ν(t))ϕ(t) dt,

X̄(t) ∼ ν(t), t ∈ [0, T ], ν(0) = ξ0,

(4.1.1)

where ξ0 ∈ P(Rd) is as in Condition 4.1.1. In the above equation ρ is an R1-valued random variable such that

ρ([0, t]×A) is F̄t-measurable for every A ∈ B(Rm) and t ∈ [0, T ], and X̄ is an F̄t-adapted stochastic process with

sample paths in C([0, T ] : Rd). The notation X̄(t) ∼ ν(t) signifies that X̄(t) has probability distribution ν(t), i.e.

P̄ ◦ X̄(t)−1 = ν(t). We note that S1[ϕ, ν] is driven by two types of controls, the control ϕ is a deterministic function

whereas ρ represents a random control in the dynamics.

A triple (X̄, ρ,W ) that solves S1[ϕ, ν] for a given ϕ and ν can be viewed as a Z1-valued random variable, where

Z1
.
= X ×R1 ×W, X .

= C([0, T ] : Rd), andW .
= C([0, T ] : Rm).

The distribution of (X̄, ρ,W ) on Z1 is an element of P(Z1) and is called a weak solution of the controlled SDE

S1[ϕ, ν]. Define

P2(Z1)
.
=

{
Θ ∈ P(Z1) : EΘ

[∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
<∞

}
,

where in the above display EΘ denotes expectation on (Z1,B(Z1),Θ) and, abusing notation, ρ is the second coordinate

map on (Z1,B(Z1)), i.e.

ρ(x, r, w)
.
= r, (x, r, w) ∈ Z1.

Note that, the above expectation can be written as

EΘ

[∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
=

∫
R1

∫
Rm×[0,T ]

‖y‖2 r(dy dt) [Θ]2(dr).
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For Θ ∈ P(Z1), let νΘ : [0, T ]→ P(Rd) be defined as

νΘ(t)(B)
.
= Θ {(x, r, w) ∈ Z1 : x(t) ∈ B} , B ∈ B(Rd).

Note that if Θ is a weak solution of S1[ϕ, ν], then ν(t) = νΘ(t) for all t ∈ [0, T ]. For a given ϕ ∈ L2([0, T ] : Rk), let

E1[ϕ] denote the subset of P2(Z1) given as

E1[ϕ]
.
= {Θ ∈ P2(Z1) : Θ is a weak solution to S1[ϕ, νΘ]} . (4.1.2)

Then the candidate rate function for the LDP for µn is

I1(ν)
.
= inf
ϕ∈L2([0,T ]:Rk)

{
inf

Θ∈E1[ϕ]:[Θ]1=ν
EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt

}
, (4.1.3)

for ν ∈ P(X ), where λ ∈ (0,∞) is introduced below.

The following is the first main result of this work. It gives an LDP in the case κ(n) is of the order n−1/2. Later in

Section 4.1.3 we will consider the large deviation behavior when κ(n) is of smaller or higher order than n−1/2. Part

1 below gives a law of large numbers result while part 2 establishes a large deviation principle. Denote the element

δ{0}(dy) dt ofR as ro.

Theorem 4.1.1. Suppose that Conditions 4.1.1, 4.1.2 hold and that κ(n)→ 0 as n→∞.

(i) There is a µ∗ ∈ P(X ) such that µn → µ∗ in probability. Furthermore, µ∗ can be characterized as the first

marginal [Θ]1 of Θ, where Θ is the unique element in P(Z1) that is a weak solution of S1[0, νΘ] and satisfies

[Θ]2 = δro .

(ii) Suppose in addition that Condition 4.1.3 is satisfied and that
√
nκ(n)→ λ ∈ (0,∞). Then {µn}n∈N satisfies a

large deviation principle on P(X ) with speed n and rate function I1.

Proof of Theorem 4.1.1 will be given in Section 4.2.

Remark 4.1.1. Since the map ν 7→ {t 7→ ν(t)} from P(X ) to C([0, T ] : P(Rd)) is a continuous map, we have by the

contraction principle that µn(·) regarded as a sequence of random variables with values in C([0, T ] : P(Rd)) satisfies

an LDP as well.

4.1.2 Interacting Particle Systems for Feynman-Kac Functionals

In this section we consider a setting where the interaction term is given in terms of a weighted empirical measure of the

states of the particles and where the weights are governed by another system of stochastic equations. Let (Ω,F , P, {Ft}),
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{Wi}, B be as in Section 4.1.1. Consider for n ∈ N, a collection of stochastic processes {(Xn
i , A

n
i )}ni=1 with sample

paths in C([0, T ] : Rd × R+) given by the system of equations in (4.0.4). Here θ : R+ → R+, κ : N → R+, and

b, σ, α, c, γ, and β are suitable maps. Note that µn(t) in this set of equations can also be represented as on the right side

of (4.0.5). In addition to Condition 4.1.2 on the coefficients, we will assume the following condition.

Condition 4.1.4. The maps c, γ, β are bounded and Lipschitz from Rd ×M+(Rd) to Rd, Rm, and Rk respectively.

Namely, there is a K ∈ (0,∞) such that for each x, y ∈ Rd and µ, ν ∈M+(Rd),

(a) ‖c(x, µ)‖2 + ‖γ(x, µ)‖2 + ‖β(x, µ)‖2 ≤ K2, and

(b) ‖c(x, µ)− c(y, ν)‖+ ‖γ(x, µ)− γ(y, ν)‖+ ‖β(x, µ)− β(y, ν)‖ ≤ K (‖x− y‖+ dBL(µ, ν)).

The weights in the random measure µn(t) are determined through the map θ on which we make the following

assumption.

Condition 4.1.5. Either one of the following hold:

(a) θ ∈ C2(R+) and

sup
x∈R+

|θ′(x)x|+ sup
x∈R+

|θ′′(x)x2| <∞. (4.1.4)

(b) There is a L ∈ (0,∞) such that |θ(x)− θ(y)| ≤ L|x− y| for all x, y ∈ R+.

Condition 4.1.5(b) simply says that θ is a Lipschitz function. It is easily checked that under Condition 4.1.5(a), θ is

Lipschitz as well. The latter condition, in addition, implies an (at most) logarithmic growth on θ.

Under Conditions 4.1.2, 4.1.4, and 4.1.5, there is a unique pathwise solution to the system of equations in (4.0.4).

Although the proof is standard, we provide a sketch in Appendix 4.6. The object of interest is the stochastic process

{µn(t)}t∈[0,T ] which is regarded as a random variable with values in C([0, T ] : M+(Rd)). Our second main result

gives a large deviation principle for µn(·) in this path space. We introduce two additional conditions that will be needed

for this result. For the initial values {(ani , xni )} in (4.0.4) we will assume the following in addition to Condition 4.1.1:

Condition 4.1.6. There exists η0 ∈ P(Rd × R+) such that for all η0-integrable g : Rd × R+ → R,

lim
n→∞

1

n

n∑
i=1

g(xni , a
n
i ) = 〈g, η0〉.

Furthermore,

sup
n≥1

1

n

n∑
i=1

(ani )2 <∞ and sup
n≥1

1

n

n∑
i=1

(log ani )− <∞.

Note that when both Conditions 4.1.1 and 4.1.6 hold, we have [η0]1 = ξ0, where [η0]1 is the marginal distribution of η0

on Rd.

107



Finally, for the large deviations result, in addition to Condition 4.1.3, we will assume that the diffusion coefficient

γ depends on the state of the system only through the empirical measure, namely:

Condition 4.1.7. For x ∈ Rd and µ ∈M+(Rd), γ(x, µ) = γ(µ).

We now present the rate function that will govern the LDP for {µn(·)}. Given ϕ ∈ L2([0, T ] : Rk) and

ν ∈ C([0, T ] :M+(Rd)) as in Section 4.1.1, consider the controlled nonlinear SDE S2[ϕ, ν] given on some filtered

probability space (Ω̄, F̄ , P̄ , {F̄t}), equipped with an m-dimensional F̄t-Brownian motion W :

S2[ϕ, ν]
.
=



dX̄(t) = b(X̄(t), ν(t)) dt+

(∫
Rm

σ(X̄(t), ν(t))y ρt(dy)

)
dt+ σ(X̄(t), ν(t)) dW (t)

+ α(X̄(t), ν(t))ϕ(t) dt,

dĀ(t) = Ā(t)c(X̄(t), ν(t)) dt+

(∫
Rm

Ā(t)γT (X̄(t), ν(t))y ρt(dy)

)
dt

+ Ā(t)γT (X̄(t), ν(t)) dW (t) + Ā(t)βT (X̄(t), ν(t))ϕ(t) dt,

〈f, ν(t)〉 = Ē[θ(Ā(t))f(X̄(t))] for every f ∈ Cb(Rd), t ∈ [0, T ], (X̄(0), Ā(0)) ∼ η0,

(4.1.5)

where Ē denotes expectation with respect to P̄ . Here ρ is as in Section 4.1.1, and X̄ and Ā are F̄t-adapted stochastic

processes with sample paths in C([0, T ] : Rd) and C([0, T ] : R+), respectively, such that

Ē

[
sup

0≤t≤T
θ(Ā(t))

]
<∞.

A quadruple (X̄, Ā, ρ,W ) that solves S2[ϕ, ν] is a Z2-valued random variable, where

Z2
.
= X × Y ×R1 ×W, Y .

= C([0, T ] : R+),

and X ,W,R1 are as before. The distribution of (X̄, Ā, ρ,W ) on Z2 is an element of P(Z2) and is called a weak

solution of S2[ϕ, ν]. Let

P2(Z2)
.
=

{
Θ ∈ P(Z2) : EΘ

[∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
<∞, EΘ

[
sup

0≤t≤T
θ(Ā(t))

]
<∞

}
.

Note that if Θ ∈ P2(Z2) then νΘ ∈ C([0, T ] :M+(Rd)), where νΘ is defined as

〈f, νΘ(t)〉 .= EΘ

[
θ(Ā(t))f(X̄(t))

]
for f ∈ Cb(Rd), t ∈ [0, T ], (4.1.6)
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and if such a Θ is a weak solution of S2[ϕ, ν], then, for every t ∈ [0, T ], ν(t) = νΘ(t). Given ϕ ∈ L2([0, T ] : Rd), let

E2[ϕ]
.
= {Θ ∈ P2(Z2) : Θ is a weak solution to S2[ϕ, νΘ]}.

The candidate rate function is given as

I2(ν)
.
= inf
ϕ∈L2([0,T ]:Rk)

{
inf

Θ∈E2[ϕ]:νΘ=ν
EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt

}
, (4.1.7)

for ν ∈ C([0, T ] :M+(Rd)). The following is the second main result of this work. As in Section 4.1.1 here we only

consider the case where κ(n) is of order n−1/2. Values of κ(n) of higher or lower order than n−1/2 will be considered

in Section 4.1.3.

Once more, the first part of the theorem below gives a law of large numbers (LLN) and the second part establishes

an LDP. The proof is given in Section 4.3.

Theorem 4.1.2. Suppose that Conditions 4.1.1, 4.1.2, 4.1.4, 4.1.5, and 4.1.6 hold and that κ(n)→ 0 as n→∞.

(i) There is a µ∗ ∈ C([0, T ] :M+(Rd)) such that µn → µ∗ in probability. Furthermore, µ∗ can be characterized as

the map t 7→ νΘ(t), where Θ is the unique element in P(Z2) that is a weak solution of S2[0, νΘ] and satisfies

[Θ]3 = δro .

(ii) Suppose that σ and γ satisfy Conditions 4.1.3 and 4.1.7, and either (i) θ satisfies Condition 4.1.5(a), or (ii) θ

satisfies Condition 4.1.5(b) and γ ≡ 0. Also suppose that
√
nκ(n) → λ ∈ (0,∞). Then {µn}n∈N satisfies a

large deviation principle on C([0, T ] :M+(Rd)) with speed n and rate function I2.

Remark 4.1.2. (a) Consider the empirical measure of {Xn
i (s), Ani (s)} on Rd × R+, given as

µ̂n(s)
.
=

1

n

n∑
i=1

δ(Xni (s),Ani (s)).

Then the system in equation (4.0.4) can be written in form of a system as in (4.0.1) in which Xn
i is replaced by

the pair (Xn
i , A

n
i ). With such a rewriting, one may attempt to deduce Theorem 4.1.2 as a corollary of Theorem

4.1.1. However, with this reformulation, the conditions needed for Theorem 4.1.1 are too restrictive. In particular,

conditions assumed in the statement of Theorem 4.1.2 will, in general, not imply the conditions of Theorem 4.1.1

(with the new coefficients obtained through the reformulation). Specifically, requiring Conditions 4.1.2 and 4.1.3

for the reformulated system will say that θ is bounded and γ ≡ 0.

(b) A minor modification of the proof of Theorem 4.1.2 shows in fact that the joint empirical measure 1
n

∑n
i=1 δ(Xni ,Ani )

satisfies an LDP on P(C([0, T ] : Rd × R+)). Note that since θ may be unbounded, the map Θ 7→ νΘ is not
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continuous (in fact in general not even well defined) on all of P(C([0, T ] : Rd × R+)) and so one cannot deduce

an LDP for µn from that of the joint empirical measure by a direct application of the contraction principle. In any

case, the amount of work needed to establish the LDP for µn is about the same as that needed for the LDP for the

joint empirical measure.

(c) In Theorem 4.1.2, for the case where θ satisfies Condition 4.1.5(b), we require that γ ≡ 0. The reason for this

restrictive requirement on γ can be seen as follows. Consider the simplest example of a θ satisfying Condition

4.1.5(b), namely θ(x) = x. Consider also the simplest form of a non-zero γ in (4.0.4), namely γ(x, µ) = γ ∈

Rm \ {0}. Also suppose that β ≡ 0, c(x, µ) ≡ c ∈ R, and that ani = 1 for all i, n. Then the second set of equations

in (4.0.4) reduces to

dAni (t) = cAni (t) dt+ γAni (t) dWi(t), Ani (0) = 1, 1 ≤ i ≤ n.

Namely,

Ani (t) = exp

{(
c− γ2

2

)
t+ γWi(t)

}
.

In this case, an LDP for µn(·) will in particular say (by the contraction principle) that the sequence {µn(1)(Rd)}

satisfies an LDP. However the latter is just an LDP for the empirical mean of iid random variables, {Ani (1)},

namely 1
n

∑n
i=1A

n
i (1), which is the subject of Cramér’s theorem. However the key condition for this theorem,

namely the finiteness of the moment generating function in a neighborhood of the origin, fails to hold in this case.

4.1.3 Intensity of the Common Noise

The LDP in Theorems 4.1.1 and 4.1.2 are established under the condition that the common noise intensity κ(n) is

O(1/
√
n). If this intensity approaches 0 at a different rate, the form of the rate function is expected to be different. In

this section we discuss such results. We will consider two cases: Case I:
√
nκ(n)→ 0, and Case II:

√
nκ(n)→∞.

Let E1[ϕ] for a given ϕ ∈ L2([0, T ] : Rk) be as in Section 4.1.1. In order to define the rate function in the second case,

we consider, for a ϕ as above and a ν ∈ C([0, T ] : P(Rd)), the controlled nonlinear SDE S̃1[ϕ, ν], on some filtered

probability space (Ω̄, F̄ , P̄ , {F̄t}), equipped with a m-dimensional F̄t-Brownian motion W :

S̃1[ϕ, ν]
.
=


dX̄(t) = b(X̄(t), ν(t)) dt+ σ(X̄(t), ν(t)) dW (t) + α(X̄(t), ν(t))ϕ(t) dt,

X̄(t) ∼ ν(t), t ∈ [0, T ], ν(0) = ξ0.

(4.1.8)

The difference between the above equation and the equation in (4.1.1) is the absence of the control term ρt on the right

side of (4.1.8). The distribution, on X ×W , of a pair (X̄,W ) that solves (4.1.8) for a given ϕ and ν will be called a

weak solution of S̃1[ϕ, ν].
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For a ϕ ∈ L2([0, T ] : Rk), let

Ẽ1[ϕ]
.
=
{

Θ ∈ P(X ×W) : Θ is a weak solution to S̃1[ϕ, νΘ]
}
. (4.1.9)

For ν ∈ P(C([0, T ] : Rd)), we denote the map t 7→ ν(t), once more as ν. The following result gives an LDP when κ(n)

is different from O(1/
√
n). Recall that we assume κ(n)→ 0 as n→∞. Also recall the space X = C([0, T ] : Rd).

Theorem 4.1.3. Let {µn}n∈N be as in Section 4.1.1. Suppose that Conditions 4.1.1 and 4.1.2 hold.

(i) Suppose in addition that Condition 4.1.3 is satisfied. If
√
nκ(n)→ 0 as n→∞, then {µn} satisfies an LDP on

P(X ) with speed n and rate function Ĩ1,0 given as

Ĩ1,0(ν)
.
= inf

Θ∈E1[0]:[Θ]1=ν
EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
, ν ∈ P(X ). (4.1.10)

(ii) If
√
nκ(n) → ∞ as n → ∞, then {µn} satisfies an LDP on P(X ) with speed κ(n)−2 and rate function Ĩ1,∞

given as

Ĩ1,∞(ν)
.
= inf
ϕ∈L2([0,T ]:Rk)

{
inf

Θ∈Ẽ1[ϕ]:[Θ]1=ν

1

2

∫ T

0

‖ϕ(t)‖2 dt

}
, ν ∈ P(X ). (4.1.11)

The proof of Theorem 4.1.3 is very similar to that of Theorem 4.1.1 and therefore we will only provide a sketch

and leave the details to the reader. This sketch is given in Section 4.4.

Remark 4.1.3. Consider the special case discussed in the Introduction (see (1.2.14)) in which the interaction only

comes through the common Brownian motion. For this special case the results in Theorems 4.1.1 and 4.1.3 (by some

minor proof modifications) say the following. Suppose that the coefficients b, σ and α in (1.2.14) are Lipschitz. Also,

suppose first that
√
nκ(n)→ λ ∈ (0,∞). Then {µn} as introduced in (1.2.15) satisfies an LDP in P(X ) with speed n

and rate function I defined in (1.2.16). If
√
nκ(n) → 0, then {µn} satisfies an LDP with speed n and rate function

Ĩ1,0 as in (4.1.10) and where E1[·] is as introduced below (1.2.15). Finally, when
√
nκ(n)→∞, then {µn} satisfies

an LDP with speed κ(n)−2 and rate function Ĩ1,∞ given simply as

Ĩ1,∞(ν) = inf
ϕ

{
1

2

∫ T

0

‖ϕ(t)‖2 dt

}
,

where the infimum is taken over all ϕ ∈ L2([0, T ] : Rk) such that the solution {X} of the controlled SDE

X(t) = x+

∫ t

0

b(X(s)) ds+

∫ t

0

σ(X(s)) dW (s) +

∫ t

0

α(X(s))ϕ(s) ds, t ∈ [0, T ],
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has probability law ν.

One can also give an analogue of Theorem 4.1.3 for Feynman-Kac weighted measures of the form in Section 4.1.2.

We state such a result and leave proof details to the reader.

Consider, for a ϕ ∈ L2([0, T ] : Rk) and a ν ∈ C([0, T ] : M+(Rd)), the controlled nonlinear SDE S̃2[ϕ, ν], on

some filtered probability space (Ω̄, F̄ , P̄ , {F̄t}), equipped with a m-dimensional F̄t-Brownian motion W :

S̃2[ϕ, ν]
.
=


dX̄(t) = b(X̄(t), ν(t)) dt+ σ(X̄(t), ν(t)) dW (t) + α(X̄(t), ν(t))ϕ(t) dt,

dĀ(t) = Ā(t)c(X̄(t), ν(t)) dt+ Ā(t)γT (X̄(t), ν(t)) dW (t) + Ā(t)βT (X̄(t), ν(t))ϕ(t) dt,

〈f, ν(t)〉 = Ē[θ(Ā(t))f(X̄(t))] for every f ∈ Cb(Rd), t ∈ [0, T ], (X̄(0), Ā(0)) ∼ η0,

(4.1.12)

where Ē denotes expectation with respect to P̄ . The distribution, on X × Y ×W , of (X̄, Ā,W ) that solves (4.1.12)

for a given ϕ and ν will be called a weak solution of S̃2[ϕ, ν]. For a ϕ ∈ L2([0, T ] : Rk), let

Ẽ2[ϕ]
.
=
{

Θ ∈ P(X × Y ×W) : Θ is a weak solution to S̃2[ϕ, νΘ]
}
.

Theorem 4.1.4. Let {µn}n∈N be as in section 4.1.2. Suppose that Conditions 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.6, and 4.1.7

hold. Also suppose that, either (i) θ satisfies Condition 4.1.5(a), or (ii) θ satisfies Condition 4.1.5(b) and γ ≡ 0.

(i) If
√
nκ(n)→ 0 as n→∞, then {µn} satisfies an LDP on C([0, T ] :M+(Rd)) with speed n and rate function

Ĩ2,0 given as

Ĩ2,0(ν)
.
= inf

Θ∈E2[0]:νΘ=ν
EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
, ν ∈ C([0, T ] :M+(Rd)). (4.1.13)

(ii) If
√
nκ(n) → ∞ as n → ∞, then {µn} satisfies an LDP on C([0, T ] :M+(Rd)) with speed κ(n)−2 and rate

function Ĩ2,∞ given as

Ĩ2,∞(ν)
.
= inf
ϕ∈L2([0,T ]:Rk)

{
inf

Θ∈Ẽ2[ϕ]:νΘ=ν

1

2

∫ T

0

‖ϕ(t)‖2 dt

}
, ν ∈ C([0, T ] :M+(Rd)). (4.1.14)

4.2 Proof of Theorem 4.1.1.

Part 1 follows by a standard argument (cf. [95]), however for completeness we give a sketch in the Appendix. We now

consider part 2.

From the well known equivalence between an LDP and a Laplace principle (cf. [37]) it suffices to show that the

function I1 introduced in (4.1.3) is a rate function and for every F ∈ Cb(P(X )) the following upper and lower bounds
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are satisfied: the Laplace upper bound

lim inf
n→∞

− 1

n
logE

[
e−nF (µn)

]
≥ inf
ν∈P(X )

[F (ν) + I1(ν)] , (4.2.1)

and the Laplace lower bound

lim sup
n→∞

− 1

n
logE

[
e−nF (µn)

]
≤ inf
ν∈P(X )

[F (ν) + I1(ν)] . (4.2.2)

The upper bound is shown in Section 4.2.1 and the lower bound is treated in Section 4.2.2. The upper bound proof

does not require Condition 4.1.3 and we present an argument assuming only Conditions 4.1.1 and 4.1.2. The proof of

the statement that I1 is a rate function is very similar to that of the upper bound and thus we only give a brief sketch

which appears in Section 4.2.3. Proofs rely on a certain stochastic control representation for the Laplace functional on

the left side of (4.2.1) and (4.2.2) which we now present.

Given some filtered probability space (Ω̄, F̄ , P̄ , {F̄t}) that supports iidm-dimensional Brownian motions {Wi}∞i=1

and a k-dimensional Brownian motion B that is independent of the collection {Wi}∞i=1 and such that for every s,

{Wi(t) −Wi(s), B(t) − B(s), i ≥ 1, t ≥ s} is independent of F̄s, denote by A1,n the class of F̄t-progressively

measurable processes u : [0, T ]× Ω→ Rnm such that

Ē

[∫ T

0

‖u(s)‖2 ds

]
<∞.

For u ∈ A1,n, we will write u = (u1, . . . , un), where ui is the ith component of u and is m-dimensional. For

M ∈ (0,∞), let

SM
.
=

{
v ∈ L2([0, T ] : Rk) :

∫ T

0

‖v(s)‖2 ds ≤M

}
.

This space will be equipped with the weak topology under which it is a compact space. Note that

⋃
M∈N

SM = L2([0, T ] : Rk).

Also let

A2
M

.
=
{

Progressively measurable Rk-valued processes v such that v ∈ SM P̄ -a.s.
}
,

and

A2 .
=

{
Progressively measurable Rk-valued processes v such that Ē

[∫ T

0

‖v(s)‖2 ds

]
<∞

}
.
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For (u, v) ∈ A1,n ×A2, consider the controlled analogue of the system in (4.0.1), driven by controls (u, v):

dX̄n
i (t) = b(X̄n

i (t), µ̄n(t)) dt+ σ(X̄n
i (t), µ̄n(t))ui(t) dt+ α(X̄n

i (t), µ̄n(t))v(t) dt

+ σ(X̄n
i (t), µ̄n(t)) dWi(t) + κ(n)α(X̄n

i (t), µ̄n(t)) dB(t),

X̄n
i (0) = xni , 1 ≤ i ≤ n,

(4.2.3)

where µ̄n(t) = 1
n

∑n
i=1 δX̄ni (t). Using the Lipschitz and boundedness conditions on the coefficients it is easy to check

that the above system of equations has a unique solution. We also consider the empirical measure µ̄n = 1
n

∑n
i=1 δX̄ni

which is a P(X )-valued random variable. A form of the following representation was first shown in [17]. The

representation given below, that allows for an arbitrary filtered probability space on the right side was given in [20] (see

also [22]). All expectations will be denoted by E unless specified otherwise.

Theorem 4.2.1. For any F ∈ Cb(P(X )) and for each n ∈ N,

− 1

n
logE

[
e−nF (µn)

]
= inf

(u,v)∈A1,n×A2
E

[
1

2n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖v(t)‖2 dt+ F (µ̄n)

]
. (4.2.4)

Furthermore, for every δ > 0, there is an M <∞ such that for each n ∈ N,

− 1

n
logE

[
e−nF (µn)

]
≥ inf

(u,v)∈A1,n×A2
M

E

[
1

2n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖v(t)‖2 dt+ F (µ̄n)

]
− δ.

(4.2.5)

We now use the above result to complete the proof of (4.2.1) and (4.2.2).

4.2.1 Laplace Upper Bound

Throughout this section we assume that Conditions 4.1.1 and 4.1.2 are satisfied. As noted previously, the upper bound

proof does not require Condition 4.1.3 and so this condition will not be used in this section.

Fix F ∈ Cb(P(X )) and δ ∈ (0, 1). From Theorem 4.2.1 there is an M < ∞ such that for each n ∈ N, one can

find (un, vn) ∈ A1,n ×A2
M such that

− 1

n
logE

[
e−nF (µn)

]
≥ E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]
− δ, (4.2.6)

114



where µ̄n = 1
n

∑n
i=1 δX̄ni and X̄n

i are given by (4.2.3) (repalcing (u, v) with (un, vn)). We will next show that

lim inf
n→∞

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

≥ inf
ϕ∈L2([0,T ]:Rk)

inf
Θ∈E1[ϕ]

(
EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt+ F ([Θ]1)

)
.

(4.2.7)

Since δ ∈ (0, 1) is arbitrary, the inequality in (4.2.1) is immediate from (4.2.7) on using the definition of I1 in (4.1.3).

We now prove (4.2.7). From (4.2.6) it follows that

sup
n∈N

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt

]
≤ 2‖F‖∞ + 1. (4.2.8)

The following lemma shows that under such a uniform boundedness property, one has the tightness of certain key

occupation measures.

Lemma 4.2.2. Suppose for some M ∈ (0,∞), {(un, vn)}n∈N is a sequence with (un, vn) ∈ A1,n ×A2
M for each n,

and suppose {un}n∈N satisfies, for some L ∈ (0,∞),

sup
n∈N

E

[
1

n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt

]
≤ L. (4.2.9)

Define P(Z1)-valued random variables

Qn(A×R× C)
.
=

1

n

n∑
i=1

δX̄ni (A)δρni (R)δWi
(C), A×R× C ∈ B(Z1), (4.2.10)

where X̄n
i is defined as in (4.2.3) (repalcing (u, v) with (un, vn)), and

ρni (E ×B)
.
=

∫
B

δuni (t)(E) dt, E ∈ B(Rm), B ∈ B([0, T ]). (4.2.11)

Then {(Qn, vn)}n∈N is tight as a sequence of P(Z1)× SM -valued random variables.

Proof. Since SM is compact, tightness of {vn} is immediate. The third marginals of Qn are clearly tight since Wi

are iid. The first marginal of Qn, namely [Qn]1, equals µ̄n. For each n let γn = E[µ̄n]. For tightness of {µ̄n}n∈N, it

suffices to prove that the family {γn}n∈N of measures on X is relatively compact.

By using the growth properties on the coefficients it follows that, for some c1 ∈ (0,∞) and all n ∈ N,

E

[
sup

0≤s≤T
‖X̄n

i (s)‖2
]
≤ c1

(
1 + ‖xni ‖2 + E

[∫ T

0

‖uni (s)‖2 ds

])
. (4.2.12)
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Thus,

sup
n∈N

∫
X

sup
0≤t≤T

‖ψ(t)‖2 dγn(ψ) = sup
n∈N

1

n

n∑
i=1

E

[
sup

0≤t≤T
‖X̄n

i (t)‖2
]

≤ c1 sup
n∈N

(
1 +

1

n

n∑
i=1

‖xni ‖2 + E

[
1

n

n∑
i=1

∫ T

0

‖uni (s)‖2 ds

])
<∞, (4.2.13)

where the last inequality is from (4.2.9) and Condition 4.1.1.

Next note that for any ε ∈ (0, 1) and t ∈ [0, T − ε],

‖X̄n
i (t+ ε)− X̄n

i (t)‖2 ≤ c2

(∥∥∥∥∫ t+ε

t

b(X̄n
i (s), µ̄n(s)) ds

∥∥∥∥2

+

∥∥∥∥∫ t+ε

t

σ(X̄n
i (s), µ̄n(s))uni (s) ds

∥∥∥∥2

+

∥∥∥∥∫ t+ε

t

α(X̄n
i (s), µ̄n(s))vn(s) ds

∥∥∥∥2

+

∥∥∥∥∫ t+ε

t

σ(X̄n
i (s), µ̄n(s)) dWi(s)

∥∥∥∥2

+κ(n)2

∥∥∥∥∫ t+ε

t

α(X̄n
i (s), µ̄n(s)) dB(s)

∥∥∥∥2
)
.

Thus for any stopping time τ taking values in [0, T − ε], using the Cauchy-Schwarz inequality, the linear growth of b,

and the boundedness of α and σ,

E
[∥∥X̄n

i (τ + ε)− X̄n
i (τ)

∥∥2
]
≤ c3ε

(
1 + E

[
sup

0≤s≤T
‖X̄n

i (s)‖2
]

+ E

[∫ T

0

‖uni (s)‖2 ds

])
,

where the constant c3 does not depend on n, ε, or the stopping time τ . Denoting by Tε the collection of all stopping

times τ , with respect to the canonical filtration generated by the coordinate process on X , taking values in [0, T − ε],

we now have

sup
τ∈Tε

∫
X
‖ϕ(τ + ε)− ϕ(τ)‖2 dγn(ϕ)

≤ c3ε

(
1 +

1

n

n∑
i=1

E

[
sup

0≤s≤T
‖X̄n

i (s)‖2
]

+ E

[
1

n

n∑
i=1

∫ T

0

‖uni (s)‖2 ds

])

≤ c3ε
(

1 +

∫
X

sup
0≤t≤T

‖ψ(t)‖2 dγn(ψ) + L

)
.

Using (4.2.13) in the above display,

lim sup
ε→0

sup
n∈N

sup
τ∈Tε

∫
X
‖ϕ(τ + ε)− ϕ(τ)‖2 dγn(ϕ) = 0.

Thus from the Aldous-Kurtz tightness criterion, we have that the collection γn is relatively compact which, as noted

previously, gives the tightness of the collection {µ̄n} = {[Qn]1}.
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Finally we consider the second marginals of Qn. Define

g(r)
.
=

∫
Rm×[0,T ]

‖y‖2 r(dy dt), r ∈ R1.

We note that g has compact level sets. Indeed, for c ∈ R+, let Lc = {r ∈ R1 : g(r) ≤ c} denote the corresponding

level set. By Chebyshev’s inequality,

sup
r∈Lc

r
({
y ∈ Rd : ‖y‖ > M

}
× [0, T ]

)
≤ sup
r∈Lc

g(r)

M2
≤ c

M2
→ 0

as M →∞. This shows that Lc is relatively compact inR. Let {rn} ⊂ Lc be a sequence that converges inR to some

r∗. By Fatou’s lemma, g(r∗) ≤ c, and so r∗ ∈ Lc. Also, by the uniform integrability that follows from

sup
n≥1

∫
Rm×[0,T ]

‖y‖2 rn(dy dt) = sup
n≥1

g(rn) ≤ c,

the moments of rn also converge to the moments of r∗. Thus rn → r∗ inR1, establishing compactness of Lc inR1.

Let G : P(R1)→ [0,∞] be given as

G(θ)
.
=

∫
R1

g(r) θ(dr).

Then G is a tightness function on P(R1) (namely it has relatively compact level sets), and thus to establish the tightness

of the second marginals {[Qn]2}, it suffices to show that

sup
n≥1

E[G([Qn]2)] <∞. (4.2.14)

For each n ∈ N,

E[G([Qn]2)] = E

[∫
R1

g(r) [Qn]2(dr)

]
= E

[
1

n

n∑
i=1

∫
Rm×[0,T ]

‖y‖2 ρni (dy dt)

]

= E

[
1

n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt

]
≤ L.

This proves (4.2.14) and completes the proof of the tightness of {[Qn]2}. The result follows.

The next lemma characterizes the weak limit points of the sequence (Qn, vn). Recall the collection E1[ϕ] from

(4.1.2).
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Lemma 4.2.3. Suppose, for some M ∈ (0,∞), {(un, vn)}n∈N is a sequence with (un, vn) ∈ A1,n × A2
M for each

n, and such that {un}n∈N satisfies (4.2.9) with some L ∈ (0,∞). Let Qn be defined as in Lemma 4.2.2. If (Qn, vn)

converges in distribution, along some subsequence, to (Q, v), then Q ∈ E1[v] a.s.

Proof. Let (Q, v) be a weak limit point of (Qn, vn) given on some probability space (Ω∗,F∗, P ∗). Note that by

Fatou’s lemma,

E∗

[∫
R1

∫
Rm×[0,T ]

‖y‖2 r(dy dt) [Q]2(dr)

]
≤ lim inf

n→∞
E

[
1

n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt

]
≤ L, (4.2.15)

Thus Q ∈ P2(Z1), P ∗-a.s. Also, since
∫ T

0
‖v(s)‖2ds ≤ M , v ∈ L2([0, T ] : Rk) P ∗-a.s. To complete the proof, we

need to argue that for P ∗-a.e. ω ∈ Ω∗, Q(ω) is a weak solution to S1[v(ω), νQ(ω)].

Denote the canonical coordinate variables on Z1 by (z, r, w). By Condition 4.1.1, [Qn]1 ◦ (z(0))−1 → ξ0 weakly,

which shows that, for P ∗-a.e. ω, under Q(ω), z(0) has distribution ξ0. Denote by {Ht}0≤t≤T the canonical filtration

on (Z1,B(Z1)), namely

Ht
.
= σ{z(s), w(s), r(A× [0, s]), A ∈ B(Rm), s ≤ t}. (4.2.16)

For f ∈ C2
c (Rd × Rm), ϕ ∈ L2([0, T ] : Rk), and Θ ∈ P(Z1), consider the process {MΘ

f,ϕ(t)}0≤t≤T defined on the

probability space (Z1,B(Z1),Θ) by

MΘ
f,ϕ(t, (z, r, w))

.
= f(z(t), w(t))− f(z(0), 0)−

∫ t

0

∫
Rm
LΘ
s (f)(z(s), y, w(s)) rs(dy) ds

−
∫ t

0

〈α(z(s), νΘ(s))ϕ(s),∇xf(z(s), w(s))〉 ds,
(4.2.17)

where

LΘ
s (f)(x, y, w)

.
= 〈b(x, νΘ(s)) + σ(x, νΘ(s))y,∇xf(x,w)〉

+
1

2

d∑
j,j′=1

(σσT )jj′(x, νΘ(s))
∂2f

∂xj∂xj′
(x,w) +

1

2

m∑
j=1

∂2f

∂w2
j

(x,w)

+

d∑
j=1

m∑
j′=1

σjj′(x, νΘ(s))
∂2f

∂xj∂wj′
(x,w)

(4.2.18)

for x ∈ Rd and y, w ∈ Rm. Let, for B ∈ (0,∞), ζB : Rm → Rm be such that ζB is a continuous function with

compact support satisfying ζB(y) = y for ‖y‖ ≤ B and ‖ζB(y)‖ ≤ ‖y‖+ 1 for every y ∈ Rm. It will be convenient

to also consider, along with LΘ
s , the operator LΘ,B

s which is defined by replacing y on the right side of (4.2.18) with

ζB(y). Similarly, define MΘ,B
f,ϕ by replacing LΘ

s in (4.2.17) with LΘ,B
s .
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It suffices to show that for each f ∈ C2
c (Rd × Rm), any time instants 0 ≤ t0 < t1 ≤ T , and any Ψ ∈ Cb(Z1) that

is measurable with respect to the sigma fieldHt0 , we have,

EQ(ω)

[
Ψ
(
M

Q(ω)
f,v(ω)(t1)−MQ(ω)

f,v(ω)(t0)
)]

= 0 for P ∗-a.e. ω ∈ Ω∗. (4.2.19)

In the rest of the proof we suppress ω from the notation. Fix a choice of (t0, t1,Ψ, f) and define Φ : P(Z1)×SM → R

by

Φ(Θ, ϕ) = EΘ

[
Ψ
(
MΘ
f,ϕ(t1)−MΘ

f,ϕ(t0)
)]
. (4.2.20)

Also, for every B ∈ (0,∞), define ΦB by replacing MΘ
f,ϕ with MΘ,B

f,ϕ in the definition of Φ. We will now show that (a)

for everyB ∈ (0,∞), ΦB is a bounded and continuous map onP(Z1)×SM , (b) supnE
∗|ΦB(Qn, vn)−Φ(Qn, vn)| →

0 and E∗|ΦB(Q, v)− Φ(Q, v)| → 0 as B →∞, and (c) Φ(Qn, vn)→ 0 in probability as n→∞. The statement in

(4.2.19) is an immediate consequence of (a)-(c).

We first show (a). Let (Θn, ϕn) → (Θ, ϕ) in P(Z1) × SM as n → ∞. Note that this means
∫ T

0
〈ϕn(s) −

ϕ(s), h(s)〉 ds→ 0 for all h ∈ L2([0, T ] : Rk). Thus,

|ΦB(Θ, ϕn)− ΦB(Θ, ϕ)| ≤ ‖Ψ‖∞EΘ

∣∣∣∣∫ t1

t0

〈α(z(s), νΘ(s))(ϕn(s)− ϕ(s)),∇xf(z(s), w(s))〉 ds
∣∣∣∣

= ‖Ψ‖∞EΘ

∣∣∣∣∣
∫ T

0

1[t0,t1](s)
〈
(ϕn(s)− ϕ(s)), αT (z(s), νΘ(s))∇xf(z(s), w(s))

〉
ds

∣∣∣∣∣
→ 0

(4.2.21)

as n → ∞, where the last convergence follows from the dominated convergence theorem upon observing that

h(·) = αT (z(·), νΘ(·))∇xf(z(·), w(·))1[t0,t1](·) is in L2([0, T ] : Rk). Next note that

sup
ϕ̄∈SM

∣∣∣EΘn

[
Ψ ·
(
MΘ,B
f,ϕ̄ (t1)−MΘ,B

f,ϕ̄ (t0)
)]
− EΘ

[
Ψ ·
(
MΘ,B
f,ϕ̄ (t1)−MΘ,B

f,ϕ̄ (t0)
)]∣∣∣→ 0 (4.2.22)

as n → ∞. This convergence is a consequence of the following facts: (i) Continuity and boundedness of the map

(z, r, w) 7→ f(z(t), w(t)) −
∫ t

0

∫
Rm L

Θ,B
s (f)(z(s), y, w(s)) rs(dy) ds, (ii) the continuity and boundedness of the

map (z, w) 7→ αT (z(s), νΘ(s))∇xf(z(s), w(s)), (iii) the property that supϕ̄∈SM
∫ T

0
‖ϕ̄(s)‖2ds ≤ M , and Cauchy-

Schwarz inequality. Next, for some c1 ∈ (0,∞) (possibly depending on B), and all t ∈ [0, T ], ϕ̄ ∈ SM

∣∣∣MΘn,B
f,ϕ̄ (t)−MΘ,B

f,ϕ̄ (t)
∣∣∣ ≤ ∫ T

0

∫
Rm

∣∣LΘn,B
s (f)(z(s), y, w(s))− LΘ,B

s (f)(z(s), y, w(s))
∣∣ rs(dy) ds

+

∫ T

0

|〈(α(z(s), νΘn(s))− α(z(s), νΘ(s))ϕ̄(s),∇xf(z(s), w(s))〉| ds
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≤ c1

(∫ T

0

dBL(νΘn(s), νΘ(s))2 ds

)1/2

.

Since, for every s ∈ [0, T ], νΘn(s)→ νΘ(s), we now have

sup
ϕ̄∈SM

∣∣∣EΘn

[
Ψ ·
(
MΘn,B
f,ϕ̄ (t1)−MΘn,B

f,ϕ̄ (t0)
)]
− EΘn

[
Ψ ·
(
MΘ,B
f,ϕ̄ (t1)−MΘ,B

f,ϕ̄ (t0)
)]∣∣∣→ 0 (4.2.23)

as n→∞. Combining (4.2.22) and (4.2.23)

sup
ϕ̄∈SM

|ΦB(Θn, ϕ̄)− ΦB(Θ, ϕ̄)| → 0

as n→∞. Together with (4.2.21), the above display completes the proof of (a).

In order to see (b), note that, for some c2 ∈ (0,∞), and every n ∈ N,

E|ΦB(Qn, vn)− Φ(Qn, vn)| ≤ c2E

[
EQn

[∫ T

0

∥∥∥∥∫
Rm

(y − ζB(y)) rs(dy)

∥∥∥∥ ds
]]

= c2E

[
1

n

n∑
i=1

∫ T

0

‖uni (s)− ζB(uni (s))‖ds

]

≤ c2
B
E

[
1

n

n∑
i=1

∫ T

0

2(‖uni (s)‖+ 1)‖uni (s)‖ds

]
≤ 4c2(L+ T )

B
. (4.2.24)

The first statement in (b) is now immediate. The second statement in (b) is shown similarly by using (4.2.15).

Finally we consider (c). By the definition of Qn and since νQn(s) = µ̄n(s),

Φ(Qn, vn)

= EQn
[
Ψ
(
MQn

f,vn(t1)−MQn

f,vn(t0)
)]

=
1

n

n∑
i=1

Ψ(X̄n
i , ρ

n
i ,Wi) ·

(
MQn

f,vn(t1, (X̄
n
i , ρ

n
i ,Wi))−MQn

f,vn(t0, (X̄
n
i , ρ

n
i ,Wi))

)
=

1

n

n∑
i=1

Ψ(X̄n
i , ρ

n
i ,Wi) ·

(
f(X̄n

i (t1),Wi(t1))− f(X̄n
i (t0),Wi(t0))

−
∫ t1

t0

LQ
n

s (f)(X̄n
i (s), uni (s),Wi(s)) ds−

∫ t1

t0

〈
α(X̄n

i (s), µ̄n(s))vn(s),∇xf(X̄n
i (s),Wi(s))

〉
ds

)
,

By Itô’s formula, for each i, a.s.

f(X̄n
i (t1),Wi(t1))− f(X̄n

i (t0),Wi(t0))

=

∫ t1

t0

LQ
n

s (f)(X̄n
i (s), uni (s),Wi(s)) ds+

∫ t1

t0

〈
α(X̄n

i (s), µ̄n(s))vn(s),∇xf(X̄n
i (s),Wi(s))

〉
ds
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+

∫ t1

t0

[
∇xf(X̄n

i (s),Wi(s))
]T
σ(X̄n

i (s), µ̄n(s)) dWi(s) +

∫ t1

t0

[
∇wf(X̄n

i (s),Wi(s))
]T

dWi(s)

+ κ(n)

∫ t1

t0

[
∇xf(X̄n

i (s),Wi(s))
]T
α(X̄n

i (s), µ̄n(s)) dB(s)

+
κ(n)2

2

∫ t1

t0

tr
(
(ααT )(X̄n

i (s), µ̄n(s))D2
xf(X̄n

i (s),Wi(s))
)
ds.

Writing Ψn
i = Ψ(X̄n

i , ρ
n
i ,Wi), we then have

Φ(Qn, vn) =
1

n

n∑
i=1

Ψn
i

∫ t1

t0

[
∇xf(X̄n

i (s),Wi(s))
]T
σ(X̄n

i (s), µ̄n(s)) dWi(s)

+
1

n

n∑
i=1

Ψn
i

∫ t1

t0

[
∇wf(X̄n

i (s),Wi(s))
]T

dWi(s) + T n1 ,

where using the fact that κ(n)→ 0 as n→∞, we have that T n1 → 0 in probability as n→∞.

Denote the first two terms on the right side of above display as J1
n and J2

n respectively. Using the boundedness of

Ψn
i , σ, ∇xf , the independence of the Wi, the fact that Ψn

i areHt0 measurable, and Itô’s isometry, E[(J1
n)2] ≤ c3/n

for some c3 ∈ (0,∞) and all n ∈ N. Thus J1
n → 0 in probability as n → ∞. Similarly, J2

n → 0 in probability as

n→∞. Combining the above observations we have that Φ(Qn, vn)→ 0 in probability, completing the proof of (c)

and therefore of the lemma.

Finally we complete the proof of the Laplace upper bound (4.2.1) by proving (4.2.7). By the definition of Qn,

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

= E

[∫
R1

(
1

2

∫
Rm×[0,T ]

‖y‖2 r(dy dt)

)
[Qn]2(dr) +

1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F ([Qn]1)

]
.

Recall the uniform bound (4.2.8). Then from Lemmas 4.2.2 and 4.2.3, (Qn, vn) is tight and if (Q, v) is a weak limit

point then Q ∈ E1[v] a.s. Assume without loss of generality that (Qn, vn)→ (Q, v) along the full sequence. Then by

Fatou’s lemma and since
√
nκ(n)→ λ,

lim inf
n→∞

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

≥ E

[∫
R1

(
1

2

∫
Rm×[0,T ]

‖y‖2 r(dy dt)

)
[Q]2(dr) +

1

2λ2

∫ T

0

‖v(t)‖2 dt+ F ([Q]1)

]

≥ inf
ϕ∈L2([0,T ]:Rk)

inf
Θ∈E1[ϕ]

(
EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt+ F ([Θ]1)

)
,

where the last inequality uses the fact that Q ∈ E1[v] a.s. This completes the proof of the Laplace upper bound.
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4.2.2 Laplace Lower Bound

Throughout this section we assume that Conditions 4.1.1, 4.1.2, and 4.1.3 are satisfied. Fix ε > 0 and F ∈ Cb(P(X )).

Choose a ϕ ∈ L2([0, T ] : Rk) and a Θ ∈ E1[ϕ] such that

1

2
EΘ

[∫
Rm×[0,T ]

‖y‖2ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt+ F ([Θ]1) ≤ inf
ν∈P(X )

[F (ν) + I1(ν)] + ε. (4.2.25)

We will show that there is an M ∈ (0,∞) and a sequence (un, vn) with un ∈ A1,n and vn ∈ A2
M constructed on some

filtered probability space such that

lim sup
n→∞

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

≤ 1

2
EΘ

[∫
Rm×[0,T ]

‖y‖2ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt+ F ([Θ]1).

(4.2.26)

The Laplace lower bound (4.2.2) is then immediate from Theorem 4.2.1 on noting that ε > 0 is arbitrary. The key

ingredient in the proof of (4.2.26) is the following uniqueness result. Define the map ϑ : Z1 → Zϑ1
.
= Rd×R1×W as

ϑ(z, r, w)
.
= (z(0), r, w). For Θ ∈ P(Z1), let Θϑ

.
= Θ ◦ ϑ−1 be the probability measure on Zϑ1 induced by Θ under ϑ.

We will say that weak uniqueness holds for (4.1.1) if, for any given ϕ ∈ L2([0, T ] : Rk) and Θ(1),Θ(2) ∈ E1[ϕ],

whenever Θ
(1)
ϑ = Θ

(2)
ϑ , we have that Θ(1) = Θ(2).

Lemma 4.2.4. Weak uniqueness holds for (4.1.1).

Proof. Fix ϕ ∈ L2([0, T ] : Rk) and Θ(1),Θ(2) ∈ E1[ϕ]. Suppose that Θ
(1)
ϑ = Θ

(2)
ϑ

.
= Λ. Note that Θ(i), i = 1, 2 can

be disintegrated as

Θ(i)(dx, dr, dw) = Θ̃(i)(r, w, x0, dx)Λ(dx0, dr, dw).

Consider Ẑ1 = X × X × Rd ×R1 ×W . Define Θ̂ ∈ P(Ẑ1) as

Θ̂(dx(1), dx(2), dx0, dr, dw)
.
= Θ̃(1)(r, w, x0, dx

(1))Θ̃(2)(r, w, x0, dx
(2))Λ(dx0, dr, dw)

and denote the coordinate maps on Ẑ1 as (X(1), X(2), X0, ρ,W ). Note that the process W is a Brownian motion with

respect to the canonical filtration

Ĥt
.
= σ

{
X(1)(s), X(2)(s), ρ(A× [0, s]),W (s), A ∈ B(Rm), s ∈ [0, t]

}
, t ∈ [0, T ],

and for i = 1, 2, X(i) satisfy (4.1.1) with X̄ replaced with X(i) and ν(t) replaced with ν(i)(t)
.
= νΘ(i)(t). Also,

X(i)(0) = X0 for i = 1, 2. In order to prove the lemma it suffices to show that X(1) = X(2) a.s. Let u(t)
.
=
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∫
Rm yρt(dy), t ∈ [0, T ]. Then EΘ̂

∫ T
0
‖u(t)‖2dt < ∞. By the Lipschitz properties of b, α, and σ, the property that

σ(x, v) ≡ σ(v), and since ϕ ∈ L2([0, T ] : Rk), we have that, for some c1 ∈ (0,∞) and for any t ∈ [0, T ],

EΘ̂

[
sup

0≤s≤t
‖X(1)(s)−X(2)(s)‖2

]
≤ c1

∫ t

0

(
EΘ̂‖X

(1)(s)−X(2)(s)‖2 + dBL(ν(1)(s), ν(2)(s))2
)
ds

+ c1EΘ̂

(∫ T

0

dBL(ν(1)(s), ν(2)(s)) · ‖u(s)‖ ds

)2

.

(4.2.27)

Since

EΘ̂

(∫ t

0

dBL(ν(1)(s), ν(2)(s)) · ‖u(s)‖ ds
)2

≤
∫ t

0

dBL(ν(1)(s), ν(2)(s))2 ds · EΘ̂

[∫ T

0

‖u(s)‖2 ds

]

and EΘ̂

∫ T
0
‖u(s)‖2 ds <∞, we have, for all t ∈ [0, T ],

EΘ̂

[
sup

0≤s≤t
‖X(1)(s)−X(2)(s)‖2

]
≤ c2

∫ t

0

(
EΘ̂‖X

(1)(s)−X(2)(s)‖2 + dBL(ν(1)(s), ν(2)(s))2
)
ds.

Furthermore, for each t,

dBL(ν(1)(t), ν(2)(t)) = sup
f∈BL(Rd)

∣∣∣∣∫
Ẑ1

f(X(1)(t)) dΘ̂−
∫
Ẑ1

f(X(2)(t)) dΘ̂

∣∣∣∣ ≤ EΘ̂‖X
(1)(t)−X(2)(t)‖.

Thus, for some c3 ∈ (0,∞), we have, for all t ∈ [0, T ],

EΘ̂

[
sup

0≤s≤t
‖X(1)(s)−X(2)(s)‖2

]
≤ c3

∫ t

0

EΘ̂

[
sup

0≤s≤τ
‖X(1)(s)−X(2)(s)‖2

]
dτ.

By Gronwall’s inequality, this shows that X(1) and X(2) are indistinguishable on [0, T ] and completes the proof of the

lemma.

Now we return to the construction of (un, vn) that satisfy (4.2.26), where recall that Θ and ϕ are chosen to satisfy

(4.2.25). Let (X̄, ρ,W ) be the coordinate maps on the space (Z1,B(Z1),Θ) equipped with the canonical filtrationHt,

defined in (4.2.16), namely

Ht = σ {X(s), ρ(A× [0, s]),W (s) : A ∈ B(Rm), s ≤ t} .

Since Θ ∈ E1[ϕ], equation (4.1.1) is satisfied with ν(t) = νΘ(t) and νΘ(0) = ξ0.

Disintegrate Θϑ as

Θϑ(dx, dr, dw) = ξ0(dx) [Θ]3(dw) Λ̂0(x,w, dr).
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Let V .
= C([0, T ] : Rk) and define

Ω′
.
= (R1 ×W)∞ × V, F ′ .= B(Ω′).

Elements of Ω′ are of the form (r, w, β), where β ∈ V , r = (r1, r2, . . .), w = (w1, w2, . . .), ri ∈ R1 and wi ∈ W for

each i ∈ N. On the measurable space (Ω′,F ′) define the random variables

Wi(t, (r, w, β))
.
= wi(t), B(t, (r, w, β))

.
= β(t), ρi(r, w, β)

.
= ri,

for each t ∈ [0, T ] and i ∈ N. Let Γ be the standard Wiener measure on V . Recall the initial values {xni } introduced in

Section 4.1.1. For each n ∈ N, define the probability measure Pn on (Ω′,F ′) by

dPn(r, w, β) =

[
n⊗
i=1

[Θ]3(dwi) Λ̂0(xni , wi, dri)

∞⊗
i=n+1

[Θ](2,3)(dri, dwi)

]
⊗ Γ(dβ).

Under Pn, {Wi}1≤i≤n and B are mutually independent Brownian motions. Define the sequence {Λn}n∈N of P(Rd ×

R1 ×W)-valued random variables on (Ω′,F ′) by

Λn(A×R× C) =
1

n

n∑
i=1

δxni (A)δρi(R)δWi
(C), A×R× C ∈ B(Rd ×R1 ×W).

Then by Condition 4.1.1,

Pn ◦ (Λn)−1 → δΘϑ . (4.2.28)

Let, for n ∈ N, vn .
= ϕ. Denoting

∫ T
0
‖ϕ(s)‖2ds .

= M , we have that vn ∈ SM for every n. Next, for each i ∈ N, let

ui(t)
.
=

∫
Rm

y (ρi)t(dy), t ∈ [0, T ], (4.2.29)

where (ρi)t(dy) dt = ρi(dy dt), and for each n ∈ N, let (X̄n
1 , . . . , X̄

n
n ) be the solution on (Ω′,F ′, Pn) of the system

(4.2.3), where µ̄n(t) = 1
n

∑n
i=1 δX̄ni (t) for each t ∈ [0, T ]. Unique solvability of the above equation is a consequence

of our assumptions on the coefficients, namely Condition 4.1.2.

For each n, define the occupation measure Qn by (4.2.10), replacing ρni with ρi. That is,

Qn(B ×R×D)
.
=

1

n

n∑
i=1

δX̄ni (B)δρi(R)δWi
(D), B ×R×D ∈ B(Z1).

124



Let En denote expectation over the probability measure Pn. Then

lim sup
n→∞

En

[
1

n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt

]

= lim sup
n→∞

1

n

n∑
i=1

∫
R1×W

∫ T

0

∥∥∥∥∫
Rm

y rt(dy)

∥∥∥∥2

dt Λ̂(xni , w, dr) [Θ]3(dw)

= EΘ

[∫ T

0

∥∥∥∥∫
Rm

y ρt(dy)

∥∥∥∥2

dt

]
≤ EΘ

[∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
<∞, (4.2.30)

where the second equality is from Condition 4.1.1. It follows from Lemma 4.2.2 that {(Qn, vn)}n∈N is tight. If (Q, v)

is a limit point of this sequence defined on some probability space (Ω̃, F̃ , P̃ ), then v = ϕ P̃ -a.s., and, by Lemma 4.2.3,

Q ∈ E1[v] = E1[ϕ] P̃ -a.s. Recall that Θ ∈ E1[ϕ] as well. By (4.2.28), for P̃ -a.e. ω ∈ Ω̃, Qϑ(ω) = Θϑ. Thus by the

weak uniqueness established in Lemma 4.2.4, Q = Θ P̃ -a.s., and so Qn → Θ in probability. Finally,

lim sup
n→∞

En

[
1

2n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

= lim sup
n→∞

En

[
1

2n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F ([Qn]1)

]

≤ 1

2
EΘ

[∫
Rm×[0,T ]

‖y‖2ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt+ F ([Θ]1),

(4.2.31)

which follows from (4.2.30), the equality vn = ϕ, the weak convergence Qn → Θ, and the assumption that
√
nκ(n)→

λ. This proves (4.2.26) and completes the proof of the lower bound.

4.2.3 Rate Function Property

In this section we sketch the proof of the fact that I1 defined in (4.1.3) is a rate function. The proof is very similar to the

Laplace upper bound and so some details are left to the reader. We will assume Conditions 4.1.1 and 4.1.2 are satisfied.

Like with the proof of the upper bound, Condition 4.1.3 is not needed.

Fix L ∈ (0,∞), let ΓL
.
= {ν ∈ P(X ) : I1(ν) ≤ L}, and let {νn} be a sequence in ΓL. We need to show that the

sequence has a limit point that lies in ΓL. From the definition of I1, we can find, for each n, a ϕn ∈ L2([0, T ] : Rk)

and a Θn ∈ E1[ϕn] with [Θn]1 = νn such that

EΘn

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕn(t)‖2 dt ≤ L+
1

n
. (4.2.32)

In particular, {ϕn} ⊂ SM where M = 2(L+ 1)λ2. An argument similar to the proof of Lemma 4.2.2 shows that the

sequence (Θn, ϕn) is relatively compact in P(Z1)× SM . Suppose that (Θn, ϕn)→ (Θ, ϕ) along some subsequence.
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Then (along the subsequence) νn → ν
.
= [Θ]1. Sending n→∞ and using lower semicontinuity,

EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt ≤ L.

Furthermore, since Θn ∈ E1[ϕn], Φ(Θn, ϕn) = 0 for each n, where Φ is as in (4.2.20). As shown in Lemma 4.2.3, for

each B <∞, ΦB(Θn, ϕn)→ ΦB(Θ, ϕ). Also a similar argument as in (4.2.24) shows that, as B →∞,

sup
n∈N
|ΦB(Θn, ϕn)− Φ(Θn, ϕn)| → 0, |ΦB(Θ, ϕ)− Φ(Θ, ϕ)| → 0.

It then follows that Φ(Θ, ϕ) = 0, proving that Θ ∈ E1[ϕ]. Thus, since ν = [Θ]1,

I1(ν) ≤ EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt ≤ L.

The result follows.

4.3 Proof of Theorem 4.1.2.

In this section we prove Theorem 4.1.2. Proof of part 1 follows by standard arguments and is therefore left to the

Appendix. Proof of part 2 follows similar steps as that for Theorem 4.1.1. Namely, we prove the Laplace upper and

lower bounds and show that the function I2 introduced in (4.1.7) is a rate function. The upper bound is established in

Section 4.3.1 while the lower bound is given in Section 4.3.2. The rate function property is verified in Section 4.3.3.

For (un, vn) ∈ A1,n ×A2
M , we consider the following system of controlled SDEs:

dX̄n
i (t) = b(X̄n

i (t), µ̄n(t)) dt+ σ(X̄n
i (t), µ̄n(t))uni (t) dt+ α(X̄n

i (t), µ̄n(t))vn(t) dt

+ σ(X̄n
i (t), µ̄n(t)) dWi(t) + κ(n)α(X̄n

i (t), µ̄n(t)) dB(t),

dĀni (t) = Āni (t)c(X̄n
i (t), µ̄n(t)) dt+ Āni (t)γT (X̄n

i (t), µ̄n(t))uni (t) dt+ Āni (t)βT (X̄n
i (t), µ̄n(t))vn(t) dt

+ Āni (t)γT (X̄n
i (t), µ̄n(t)) dWi(t) + κ(n)Āni (t)βT (X̄n

i (t), µ̄n(t)) dB(t),

X̄n
i (0) = xni , Āni (0) = ani , 1 ≤ i ≤ n,

(4.3.1)

where µ̄n(t) is the weighted empirical measure

µ̄n(t) =
1

n

n∑
i=1

θ(Āni (t))δX̄ni (t). (4.3.2)

The existence and uniqueness of strong solutions of the above system of equations is argued in the same way as for the

uncontrolled system in (4.0.4) (see Appendix 4.6).
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The following representation follows along the lines of Theorem 4.2.1. Let K .
= C([0, T ] :M+(Rd)).

Theorem 4.3.1. For any F ∈ Cb(K) and for each n ∈ N,

− 1

n
logE

[
e−nF (µn)

]
= inf

(u,v)∈A1,n×A2
E

[
1

2n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2

∫ T

0

‖v(t)‖2 dt+ F (µ̄n)

]
. (4.3.3)

Furthermore, for every δ > 0, there is an M <∞ such that for each n ∈ N,

− 1

n
logE

[
e−nF (µn)

]
≥ inf

(u,v)∈A1,n×A2
M

E

[
1

2n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2

∫ T

0

‖v(t)‖2 dt+ F (µ̄n)

]
− δ. (4.3.4)

4.3.1 Laplace Upper Bound

In this section we show that for every F ∈ Cb(K)

lim inf
n→∞

− 1

n
logE

[
e−nF (µn)

]
≥ inf
ν∈K

[F (ν) + I2(ν)] , (4.3.5)

where I2 is as in (4.1.7). Throughout the section we assume that Conditions 4.1.1, 4.1.2, 4.1.4, 4.1.5, and 4.1.6 are

satisfied. We will not make use of Conditions 4.1.3 and 4.1.7 for the upper bound proof.

Fix F ∈ Cb(K) and δ ∈ (0, 1). From Theorem 4.3.1, there is an M < ∞ and, for each n ∈ N, (un, vn) ∈

A1,n ×A2
M such that

− 1

n
logE

[
e−nF (µn)

]
≥ E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]
− δ. (4.3.6)

We will next show that

lim inf
n→∞

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

≥ inf
ϕ∈L2([0,T ]:Rk)

inf
Θ∈E2[ϕ]

(
EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt+ F (νΘ)

)
,

(4.3.7)

where νΘ is as in (4.1.6). Since δ ∈ (0, 1) is arbitrary, the desired bound in (4.3.5) is immediate from the above

inequality on recalling the definition of I2 in (4.1.7). In the rest of this section we prove (4.3.7).

We begin by observing that from (4.3.6) we have, as in Section 4.2.1, that (4.2.8) is satisfied. The next two lemmas

are analogues of Lemmas 4.2.2 and 4.2.3. In Lemma 4.3.2 below, the result under Condition (ii) in (4.3.10) will be used

for the proof of the LLN sketched in the Appendix.
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Lemma 4.3.2. Suppose for some M ∈ (0,∞), {(un, vn)}n∈N is a sequence with (un, vn) ∈ A1,n ×A2
M for each n,

and suppose {un}n∈N satisfies, for some L ∈ (0,∞),

sup
n∈N

E

[
1

n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt

]
≤ L. (4.3.8)

Define the P(Z2)-valued random variable Qn as

Qn(A×R× C) =
1

n

n∑
i=1

δ(X̄ni ,Āni )(A)δρni (R)δWi
(C), A×R× C ∈ B(Z2), (4.3.9)

where ρni is as in (4.2.11). Suppose that

either (i) γ ≡ 0, or (ii) uni ≡ 0 for all i, n, or (iii) Condition 4.1.5(a) holds. (4.3.10)

Then {(Qn, vn)}n∈N is tight as a sequence of P(Z2)× SM -valued random variables.

Proof. Tightness of {vn} is immediate from the compactness of SM . The tightness of [Qn]3 and [Qn]4 follows as in

the proof of Lemma 4.2.2. Finally we show the tightness of [Qn]1,2. If (i) or (ii) in (4.3.10) hold, this tightness follows

as the proof of the tightness of [Qn]1 in Lemma 4.2.2 on recalling Condition 4.1.6, the linear growth property of θ, and

using the following estimate instead of (4.2.12):

E

[
sup

0≤s≤T

(
‖X̄n

i (s)‖2 + (Āni (s))2
)]
≤ c1

(
1 + ‖xni ‖2 + (ani )2 + E

[∫ T

0

‖uni (s)‖2 ds

])
. (4.3.11)

For case (iii) in (4.3.10), we cannot ensure the above square integrability property. However, one can proceed as follows.

By Itô’s formula,

θ(Āni (t)) = θ(ani ) +

∫ t

0

θ′(Āni (s))Āni (s) dDn
i (s)

+
1

2

∫ t

0

θ′′(Āni (s))Āni (s)2
(
‖γ(X̄n

i (s), µ̄n(s))‖2 + κ(n)2‖β(X̄n
i (s), µ̄n(s)‖2

)
ds,

where

Dn
i (t) =

∫ t

0

c(X̄n
i (s), µ̄n(s)) ds+

∫ t

0

γT (X̄n
i (s), µ̄n(s)) dWi(s) + κ(n)

∫ t

0

βT (X̄n
i (s), µ̄n(s)) dB(s)

+

∫ t

0

γT (X̄n
i (s), µ̄n(s))uni (s)ds+

∫ t

0

βT (X̄n
i (s), µ̄n(s))vn(s)ds.
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By the boundedness of the coefficients and using (4.1.4), i.e. supx |θ′(x)x|+ supx |θ′′(x)x2| <∞, we then have, for

some c2 ∈ (0,∞),

E

[
sup

0≤s≤T

(
‖X̄n

i (s)‖2 + (θ(Āni (s)))2
)]
≤ c2

(
1 + ‖xni ‖2 + (ani )2 + E

[∫ T

0

‖uni (s)‖2 ds

])
. (4.3.12)

Using the above integrability, the tightness of [Qn]1 follows as in the proof of Lemma 4.2.2. In order to show

the tightness of [Qn]2 we will use the fact that the map φ(·) 7→ eφ(·) is a continuous map from C([0, T ] : R) to

C([0, T ] : R+). With this fact, it suffices to show that the collection { 1
n

∑n
i=1 δlog Āni (·), n ∈ N} is tight as a sequence

of P(C([0, T ] : R))-valued random variables. This tightness follows, once again as in the proof of Lemma 4.2.2, from

Condition 4.1.6 and the estimates

E

[
sup

0≤s≤T

∣∣log(Āni (s))
∣∣] ≤ c3(1 + | log ani |+ E

[∫ T

0

‖uni (s)‖2 ds

])
(4.3.13)

and

E
[∣∣log Āni (τ + ε)− log Āni (τ)

∣∣2] ≤ c3ε(1 + E

[∫ T

0

‖uni (s)‖2 ds

])
,

where τ is a stopping time taking values in [0, T − ε], and the constant c3 does not depend on n, i, ε, or the stopping

time τ .

Lemma 4.3.3. Let {(un, vn)}n∈N be as in Lemma 4.3.2. Suppose that one of the conditions in (4.3.10) is satisfied.

Also suppose that (Qn, vn) converges, in distribution, along a subsequence to a P(Z2)× SM -valued random variable

(Q, v). Then Q ∈ E2[v] a.s.

Proof. Suppose that (Q, v) is given on the probability space (Ω∗,F∗, P ∗). In a similar manner as in the proof of

Lemma 4.2.3 (in particular using (4.3.11) and (4.3.12)) we see that Q ∈ P2(Z2) P ∗-a.s. We need to show that Q(ω) is

a weak solution to S2[v(ω), νQ(ω)] for P ∗-a.e. ω ∈ Ω∗. Note that [Qn]1,2 ◦ (z(0), ς(0))−1 → η0 weakly, which shows

that, for P ∗-a.e. ω, under Q(ω), (z(0), ς(0)) has distribution η0, where (z, ς, r, w) denote the canonical coordinate

variables on Z2.

Thus to prove the result it suffices to show that for every f ∈ C2
c (Rm×R+×Rd), for a.e. ω,MQ(ω)

f,v(ω) is a martingale

under Q(ω) with respect to the canonical filtration H̃t
.
= σ{z(s), ς(s), w(s), r(A × [0, s]), A ∈ B(Rm), s ≤ t},

t ∈ [0, T ], where for each ϕ ∈ L2([0, T ] : Rk) and Θ ∈ P2(Z2), the process {MΘ
f,ϕ(t), 0 ≤ t ≤ T} is defined on
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(Z2,B(Z2),Θ) by

MΘ
f,ϕ(t, (z, ς, r, w)) = f(z(t), ς(t), w(t))− f(z(0), ς(0), 0)−

∫ t

0

∫
Rm
LΘ
s (f)(z(s), ς(s), y, w(s)) rs(dy) ds

−
∫ t

0

〈α(z(s), νΘ(s))ϕ(s),∇xf(z(s), ς(s), w(s))〉 ds

−
∫ t

0

ς(s)βT (z(s), νΘ(s))ϕ(s)
∂f

∂a
(z(s), ς(s), w(s)) ds,

(4.3.14)

and where

LΘ
s (f)(x, a, y, w)

= 〈b(x, νΘ(s)) + σ(x, νΘ(s))y,∇xf(x, a, w)〉+
(
ac(x, νΘ(s)) + aγT (x, νΘ(s))y

) ∂f
∂a

(x, a, w)

+
1

2

d∑
j,j′=1

(σσT )jj′(νΘ(s))
∂2f

∂xj∂xj′
(x, a, w) +

1

2
a2‖γ(x, νΘ(s))‖2 ∂

2f

∂a2
(x, a, w)

+
1

2

d∑
j=1

a(σγ)j(x, νΘ(s))
∂2f

∂xj∂a
(x, a, w) +

1

2

m∑
j=1

∂2f

∂w2
j

(x, a, w)

+

d∑
j=1

m∑
j′=1

σjj′(x, νΘ(s))
∂2f

∂xj∂wj′
(x, a, w) +

m∑
j=1

aγj(x, νΘ(s))
∂2f

∂a∂wj
(x, a, w),

(4.3.15)

for (x, a, y, w) ∈ Rd × R+ × Rm × Rm.

In order to prove the martingale property, as previously, it suffices to show that for any time instants 0 ≤ t0 < t1 ≤

T , and any Ψ ∈ Cb(Z2) that is measurable with respect to the sigma field H̃t0 , we have,

EQ(ω)

[
Ψ
(
M

Q(ω)
f,v(ω)(t1)−MQ(ω)

f,v(ω)(t0)
)]

= 0, for P ∗-a.e. ω ∈ Ω∗. (4.3.16)

We suppress ω in the notation of the remaining proof. Fix a choice of (t0, t1,Ψ, f) and define Φ : P2(Z2)× SM → R

by

Φ(Θ, ϕ) = EΘ

[
Ψ
(
MΘ
f,ϕ(t1)−MΘ

f,ϕ(t0)
)]
. (4.3.17)

Fix B ∈ (0,∞). For Θ ∈ P2(Z2), define LΘ,B
s by replacing y on the right side of (4.3.15) by ζB(y) and νΘ by νBΘ ,

where ζB is as in the proof of Lemma 4.2.3 and νBΘ ∈ K is defined as

〈f, νBΘ (t)〉 .= EΘ [(θ(ς(t)) ∧B)f(z(t))] , t ∈ [0, T ], f ∈ Cb(Rd). (4.3.18)

Similarly define MΘ,B
f,ϕ by replacing LΘ

s with LΘ,B
s and νΘ with νBΘ in (4.3.14). Finally, define ΦB by replacing MΘ

f,ϕ

with MΘ,B
f,ϕ on the right side of (4.3.17). Then, as before, we will argue (a) for every B ∈ (0,∞), ΦB is a bounded and
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continuous map onP2(Z2)×SM , (b) supnE[|ΦB(Qn, vn)−Φ(Qn, vn)|∧1]→ 0 andE∗[|ΦB(Q, v)−Φ(Q, v)|∧1]→

0 as B →∞, (c) Φ(Qn, vn)→ 0 in probability as n→∞. The statement in (4.3.16) is immediate from (a)-(c).

Part (a) is shown exactly as in the proof of Lemma 4.2.3. Next consider (b). Using the Lipschitz property of the

coefficients, for some c1 ∈ (0,∞) and all n ∈ N,

|ΦB(Qn, vn)− Φ(Qn, vn)| ≤ c1 sup
0≤t≤T

dBL
(
νQn(t), νBQn(t)

)(
1 +

1

n

n∑
i=1

∫ T

0

‖uni (s)‖ ds

)

+
c1
n

n∑
i=1

∫ T

0

‖uni (s)− ζB(uni (s))‖ ds.
(4.3.19)

Also,

sup
0≤t≤T

dBL
(
νQn(t), νBQn(t)

)
≤ 1

n

n∑
i=1

sup
0≤t≤T

θ(Āni (t))1{sup0≤t≤T θ(Ā
n
i (t))>B} ≤

1

nB

n∑
i=1

sup
0≤t≤T

[
θ(Āni (t))

]2
.

(4.3.20)

Combining this with the bounds in (4.3.11), (4.3.12), we have, for some c2 ∈ (0,∞) and every B <∞,

sup
n∈N

E

[
sup

0≤t≤T
dBL

(
νQn(t), νBQn(t)

)]
≤ c2
B
.

Fix ε ∈ (0, 1) and using (4.3.8) choose m1 ∈ (0,∞) such that

sup
n∈N

P

(
1

n

n∑
i=1

∫ T

0

‖uni (s)‖ds > m1

)
< ε.

Then using the inequality E[(UV )∧ 1] ≤ P (V > m1 + 1) + (m1 + 1)E[U ] for non-negative random variables U and

V , we have

E

[{
c1 sup

0≤t≤T
dBL

(
νQn(t), νBQn(t)

)(
1 +

1

n

n∑
i=1

∫ T

0

‖uni (s)‖ds

)}
∧ 1

]
≤ ε+

(m1 + 1)c1c2
B

.

Using this estimate in (4.3.19), for some c3 ∈ (0,∞),

sup
n∈N

E [|ΦB(Qn, vn)− Φ(Qn, vn)| ∧ 1] ≤ c3(1 +m1)

B
+ ε.

Sending B →∞ and since ε is arbitrary, we have the first statement in (b). The second statement in (b) follows in a

similar manner on noting the properties

E∗
[
EQ

[
sup

0≤t≤T
θ(ς(t))2

]]
<∞, E∗

[
EQ

[∫ T

0

∥∥∥∥∫
Rm

y rs(dy)

∥∥∥∥2

ds

]]
<∞,
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which follow from analogous (uniform in n) bounds when Q is replaced by Qn and E∗ by E.

Finally we consider (c). For each n ∈ N,

Φ(Qn, vn)

= EQn
[
Ψ
(
MQn

f,vn(t1)−MQn

f,vn(t0)
)]

=
1

n

n∑
i=1

Ψ(X̄n
i , Ā

n
i , ρ

n
i ,Wi)

(
MQn

f,vn(t1, (X̄
n
i , Ā

n
i , ρ

n
i ,Wi))−MQn

f,vn(t0, (X̄
n
i , Ā

n
i , ρ

n
i ,Wi))

)
=

1

n

n∑
i=1

Ψ(X̄n
i , Ā

n
i , ρ

n
i ,Wi)

(
f(X̄n

i (t1), Āni (t1),Wi(t1))− f(X̄n
i (t0), Āni (t0),Wi(t0))−

∫ t1

t0

Un(s) ds

)
,

where, noting that νQn(s) = µ̄n(s),

Un(s)
.
= LQ

n

s (f)(X̄n
i (s), Āni (s), uni (s),Wi(s)) + [∇xf(X̄n

i (s), Āni (s),Wi(s))]
Tα(X̄n

i (s), µ̄n(s))vn(s)

+ Āni (s)βT (X̄n
i (s), µ̄n(s))vn(s)

∂f

∂a
(X̄n

i (s), Āni (s),Wi(s)).

By Itô’s formula, for each i and n, we have a.s. that

f(X̄n
i (t1), Āni (t1),Wi(t1))− f(X̄n

i (t0), Āni (t0),Wi(t0))

=

∫ t1

t0

Un(s) ds+

∫ t1

t0

[∇xf(X̄n
i (s), Āni (s),Wi(s))]

Tσ(X̄n
i (s), µ̄n(s)) dWi(s)

+ κ(n)

∫ t1

t0

[∇xf(X̄n
i (s), Āni (s),Wi(s))]

Tα(X̄n
i (s), µ̄n(s)) dB(s)

+

∫ t1

t0

∂f

∂a
(X̄n

i (s), Āni (s),Wi(s))Ā
n
i (s)γT (X̄n

i (s), µ̄n(s)) dWi(s)

+ κ(n)

∫ t1

t0

∂f

∂a
(X̄n

i (s), Āni (s),Wi(s))Ā
n
i (s)βT (X̄n

i (s), µ̄n(s) dB(s)

+

∫ t1

t0

[∇wf(X̄n
i (s), Āni (s),Wi(s))]

T dWi(s) + T ni ,

where, for some c1 ∈ (0,∞), |T ni | ≤ c1κ(n)2 for all n, i. Letting Ψn
i = Ψ(X̄n

i , Ā
n
i , ρ

n
i ,Wi) and fni (s) =

f(X̄n
i (s), Āni (s),Wi(s)), and using similar notation for derivatives of f , we have a.s. that

Φ(Qn, vn)

=
1

n

n∑
i=1

Ψn
i

[∫ t1

t0

[∇xfni (s)]Tσ(X̄n
i (s), µ̄n(s)) dWi(s) +

∫ t1

t0

∂fni (s)

∂a
Āni (s)γT (X̄n

i (s), µ̄n(s)) dWi(s)

+

∫ t1

t0

[∇wfni (s)]T dWi(s)

]
+ T n,
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where, as in the proof of Lemma 4.2.3, T n → 0 in probability. Now by the same argument as in Lemma 4.2.3,

Φ(Qn, vn)→ 0 in probability, proving (c). Thus we have Φ(Q, v) = 0 a.s., which proves (4.3.16) and completes the

proof.

We now complete the proof of (4.3.7). In addition to the standing assumptions of this section (namely Conditions

4.1.1, 4.1.2, 4.1.4, 4.1.5 and 4.1.6 ) suppose that if Condition 4.1.5(a) is not satisfied then γ = 0.

Since µ̄n = νQn , we have

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

= E

[∫
R1

(
1

2

∫
Rm×[0,T ]

‖y‖2 r(dy dt)

)
[Qn]2(dr) +

1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (νQn)

]
,

where [Qn]2 denotes the second marginal of Qn. Recalling the bound (4.2.8), we have from Lemmas 4.3.2 and 4.3.3

that, (Qn, vn) is tight and if (Q, v) is a weak limit point then Q ∈ E2[v] a.s. Assume without loss of generality

that (Qn, vn) → (Q, v) along the full sequence. We claim that (Qn, vn, νQn) → (Q, v, νQ), in distribution, in

P(Z2)× SM ×K. For Θ ∈ P(Z2) and B ∈ (0,∞), define νBΘ ∈ K as in (4.3.18), i.e.

νBΘ (t)(C)
.
= EΘ [(θ(ς(t)) ∧B) 1C(z(t))] , C ∈ B(Rd).

Then it is easy to check that, since θ(·) ∧B is a bounded Lipschitz function, Θ 7→ νBΘ is a continuous map from P(Z2)

to K for every B. Also, from (4.3.20), for some c1 ∈ (0,∞),

sup
n∈N

E

[
sup

0≤t≤T
dBL

(
νQn(t), νBQn(t)

)]
≤ c1
B

sup
n∈N

E

[
1

n

n∑
i=1

sup
0≤t≤T

(
θ(Āni (t))

)2]→ 0

as B →∞, since supn∈NE[ 1
n

∑n
i=1 sup0≤t≤T (θ(Āni (t)))2] <∞, which follows from (4.3.11) and linear growth of

θ when property (i) of (4.3.10) holds and from (4.3.12) when property (iii) in (4.3.10) is satisfied. Combining the above

uniform convergence with the fact that (Qn, vn, νBQn)⇒ (Q, v, νBQ ) for every B proves the claim.

Finally by Fatou’s lemma and since
√
nκ(n)→ λ,

lim inf
n→∞

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

≥ E

[∫
R1

(
1

2

∫
Rm×[0,T ]

‖y‖2 r(dy dt)

)
[Q]2(dr) +

1

2λ2

∫ T

0

‖v(t)‖2 dt+ F (νQ)

]

≥ inf
ϕ∈L2([0,T ]:Rk)

inf
Θ∈E2[ϕ]

(
EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt+ F (νΘ)

)
.
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This proves (4.3.7) and completes the proof of the Laplace upper bound.

4.3.2 Laplace Lower Bound

Throughout this section we assume that Conditions 4.1.1-4.1.7 are satisfied. Additionally we assume that if Condition

4.1.5(a) does not hold then γ = 0. We will proceed as in Section 4.2.2.

Fix ε > 0 and F ∈ Cb(K). Choose a ϕ ∈ L2([0, T ] : Rk) and a Θ ∈ E2[ϕ] such that

1

2
EΘ

[∫
Rm×[0,T ]

‖y‖2ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt+ F (νΘ) ≤ inf
ν∈K

[F (ν) + I2(ν)] + ε.

We will show that there is a M ∈ (0,∞) and a sequence (un, vn) with un ∈ A1,n and vn ∈ A2
M constructed on some

filtered probability space such that

lim sup
n→∞

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

≤ 1

2
EΘ

[∫
Rm×[0,T ]

‖y‖2ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt+ F (νΘ).

(4.3.21)

The Laplace lower bound

lim sup
n→∞

− 1

n
logE

[
e−nF (µn)

]
≤ inf
ν∈K

[F (ν) + I2(ν)]

is then immediate from Theorem 4.3.1 on noting that ε > 0 is arbitrary. We begin with the following uniqueness result.

Analogous to Section 4.2.2, define the map ϑ : Z2 → Zϑ2
.
= Rd × R+ ×R1 ×W as ϑ(z, ς, r, w)

.
= (z(0), ς(0), r, w).

For Θ ∈ P(Z2), let Θϑ
.
= Θ ◦ ϑ−1 be the probability measure on Zϑ2 induced by Θ under ϑ. We will say that weak

uniqueness holds for (4.1.5) if, for any given ϕ ∈ L2([0, T ] : Rk) and Θ(1),Θ(2) ∈ E2[ϕ], whenever Θ
(1)
ϑ = Θ

(2)
ϑ , we

have that Θ(1) = Θ(2).

Lemma 4.3.4. Weak uniqueness holds for (4.1.5).

Proof. Fix ϕ ∈ L2([0, T ] : Rk) and Θ(1),Θ(2) ∈ E2[ϕ]. Suppose that Θ
(1)
ϑ = Θ

(2)
ϑ

.
= Λ. Note that Θ(i), i = 1, 2 can

be disintegrated as

Θ(i)(dx, da, dr, dw) = Θ̃(i)(dx, da, x0, a0, r, w)Λ(dx0, da0, dr, dw).

Consider Ẑ2 = X × Y × X × Y × Zϑ2 , and define Θ̂ ∈ P(Ẑ2) as

Θ̂(dx(1), da(1), dx(2), da(2), dx0, da0, dr, dw)

.
= Θ̃(1)(dx(1), da(1), x0, a0, r, w) Θ̃(2)(dx(2), da(2), x0, a0, r, w) Λ(dx0, da0, dr, dw),
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and denote the coordinate maps on Ẑ2 as (X(1), A(1), X(2), A(2), X0, A0, ρ,W ). Note that {W (t), t ∈ [0, T ]} is a

Brownian motion with respect to the canonical filtration

Ĥt
.
= σ

{
X(i)(s), A(i)(s), ρ(A× [0, s]),W (s), i = 1, 2, A ∈ B(Rm), s ∈ [0, t]

}
, t ∈ [0, T ],

and for i = 1, 2, (X(i), A(i)) satisfy (4.1.5) with (X̄, Ā) replaced with (X(i), A(i)) and ν(t) replaced with ν(i)(t)
.
=

νΘ(i)(t). In order to prove the lemma it suffices to show that (X(1), A(1)) = (X(2), A(2)) a.s. Let u(t)
.
=
∫
Rm y ρt(dy),

t ∈ [0, T ]. Then, EΘ̂

∫ T
0
‖u(t)‖2 dt <∞. By similar estimates as in the proof of Lemma 4.3.2 we see that

when Condition 4.1.5(a) is satisfied, EΘ̂

[
sup

0≤s≤T

(
‖X(i)(s)‖2 + (θ(A(i)(s)))2

)]
<∞ for i = 1, 2, (4.3.22)

and

when γ = 0, EΘ̂

[
sup

0≤s≤T

(
‖X(i)(s)‖2 + (A(i)(s))2

)]
<∞ for i = 1, 2. (4.3.23)

Consider first the case γ = 0. For t ∈ [0, T ], define

g(t) = EΘ̂

[
sup

0≤s≤t
‖X(1)(s)−X(2)(s)‖2

]
, h(t) =

(
EΘ̂

[
sup

0≤s≤t
|A(1)(s)−A(2)(s)|

])2

.

Since θ is a Lipschitz function under Condition 4.1.5, we have

dBL

(
ν(1)(s), ν(2)(s)

)
≤ sup
f∈BL(Rd)

EΘ̂

∣∣∣θ(A(1)(s))f(X(1)(s))− θ(A(2)(s))f(X(2)(s))
∣∣∣

≤ EΘ̂

[
θ(A(1)(s))‖X(1)(s)−X(2)(s)‖

]
+ LEΘ̂

∣∣∣A(1)(s)−A(2)(s)
∣∣∣ ,

where L is the Lipschitz constant for θ. Then by the Cauchy-Schwarz inequality and (4.3.23), for some c1 ∈ (0,∞),

sup
0≤s≤t

dBL

(
ν(1)(s), ν(2)(s)

)2

≤ c1(g(t) + h(t)) for all t ∈ [0, T ]. (4.3.24)

By the Lipschitz properties of b, σ, and α, the property σ(x, ν) = σ(ν), the Burkholder-Davis-Gundy and Cauchy-

Schwarz inequalities, and the fact that
∫ T

0
‖ϕ(s)‖2 ds <∞, there are c2, c3 ∈ (0,∞) such that, for all t ∈ [0, T ],

g(t) ≤ c2EΘ̂

[∫ t

0

sup
0≤τ≤s

(
‖X(1)(τ)−X(2)(τ)‖2 + dBL

(
ν(1)(τ), ν(2)(τ)

)2
)
ds

]
+ c2EΘ̂

[(∫ t

0

sup
0≤τ≤s

dBL

(
ν(1)(τ), ν(2)(τ)

)
· ‖u(s)‖ ds

)2
]

≤ c3
∫ t

0

(g(s) + h(s)) ds. (4.3.25)
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Furthermore, since γ = 0, for j = 1, 2, A(j)(t) = eY
(j)(t), where

Y (j)(t) = Y (j)(0) +

∫ t

0

c(X(j)(s), ν(j)(s)) ds+

∫ t

0

βT (X(j)(s), ν(j)(s))ϕ(s) ds.

Using the inequality |ex − ey| ≤ (ex ∨ ey)|x − y|, the Lipschitz property of c and β, (4.3.24) and (4.3.23), and the

Cauchy-Schwarz inequality, there is c4 ∈ (0,∞) such that

h(t) ≤
(
EΘ̂

[
sup

0≤s≤t
(A(1)(s) ∨A(2)(s))|Y (1)(s)− Y (2)(s)|

])2

≤ EΘ̂

[
sup

0≤s≤t
(A(1)(s) ∨A(2)(s))2

]
EΘ̂

[
sup

0≤s≤t
|Y (1)(s)− Y (2)(s)|2

]
≤ c4

∫ t

0

(g(s) + h(s)) ds.

(4.3.26)

Thus,

g(t) + h(t) ≤ (c3 + c4)

∫ t

0

(g(s) + h(s)) ds for every t ∈ [0, T ],

and hence by Gronwall’s inequality, g(T ) + h(T ) = 0, from which it follows that (X(1), A(1)) and (X(2), A(2)) are

indistinguishable on [0, T ].

Consider now the case where Condition 4.1.5(a) is satisfied. Define

h̃(t) =

(
EΘ̂

[
sup

0≤s≤t
| logA(1)(s)− logA(2)(s)|

])2

.

Since c5
.
= supx∈R+

|θ′(x)x| <∞, we have

|θ(ex)− θ(ey)| ≤ sup
z∈R+

|θ′(z)z| · |x− y| = c5|x− y| for all x, y ∈ R.

Thus,

dBL

(
ν(1)(s), ν(2)(s)

)
≤ sup
f∈BL(Rd)

EΘ̂

∣∣∣θ(A(1)(s))f(X(1)(s))− θ(A(2)(s))f(X(2)(s))
∣∣∣

≤ EΘ̂

[
θ(A(1)(s))‖X(1)(s)−X(2)(s)‖

]
+ c5EΘ̂

∣∣∣logA(1)(s)− logA(2)(s)
∣∣∣ .

Hence, using (4.3.22), for some c6 ∈ (0,∞),

sup
0≤s≤t

dBL

(
ν(1)(s), ν(2)(s)

)2

≤ c6(g(t) + h̃(t)) for all t ∈ [0, T ].
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Now exactly as in (4.3.25), we have that for some c7 ∈ (0,∞),

g(t) ≤ c7
∫ t

0

(g(s) + h̃(s)) ds for every t ∈ [0, T ].

Note that, for some c8 ∈ (0,∞),

(
EΘ̂

[∫ t

0

(
γ(ν(1)(s))− γ(ν(2)(s))

)T
u(s) ds

])2

≤ c8
∫ t

0

dBL

(
ν(1)(s), ν(2)(s)

)2

ds.

Using this estimate and Lipschitz properties of c, γ, and β, we now have that, for some c9 ∈ (0,∞)

h̃(t) ≤ c9
∫ t

0

(g(s) + h̃(s)) ds for every t ∈ [0, T ].

Thus

g(t) + h̃(t) ≤ (c7 + c9)

∫ t

0

(g(s) + h̃(s)) ds for every t ∈ [0, T ],

which shows the indistinguishability of (X(1), logA(1)) and (X(2), logA(2)) and hence the indistinguishability of

(X(1), A(1)) and (X(1), A(1)) on [0, T ].

We now complete the proof of the lower bound by constructing (un, vn) that satisfy (4.3.21). Let (X̄, Ā, ρ,W ) be

the coordinate maps on the space (Z2,B(Z2),Θ) equipped with the canonical filtration H̃t defined as in the proof of

Lemma 4.3.3. Since Θ ∈ E2[ϕ], equation (4.1.5) is satisfied with ν(t) = νΘ(t). Disintegrate Θϑ as

Θϑ(dx, da, dr, dw) = η0(dx, da) [Θ]4(dw) Λ̂0(x, a, w, dr).

Let V,Ω′,F ′ and coordinate processses Wi, B, ρi be as introduced in Section 4.2.2. As before, let Γ be the standard

Wiener measure on V . Next, for each n ∈ N, define the probability measure Pn on (Ω′,F ′) by

Pn(dr, dw, dβ) =

[
n⊗
i=1

[Θ]4(dwi) Λ̂0(xni , a
n
i , wi, dri)

∞⊗
i=n+1

[Θ](3,4)(dri, dwi)

]
⊗ Γ(dβ).

Under Pn, {Wi}1≤i≤n and B are mutually independent Brownian motions. Define the sequence {Λn}n∈N of P(Rd ×

R+ ×R1 ×W)-valued random variables by

Λn(A×B ×R× C) =
1

n

n∑
i=1

δxni (A)δani (B)δρi(R)δWi(C), A×B ×R× C ∈ B(Rd × R+ ×R1 ×W).

Then by Condition 4.1.6,

Pn ◦ (Λn)−1 → δΘϑ . (4.3.27)

137



Let, for n ∈ N, vn .
= ϕ. Then vn ∈ SM for every n, where M .

=
∫ T

0
‖ϕ(s)‖2ds. Next, define ui by (4.2.29) and for

each n ∈ N let (X̄n
1 , Ā

n
1 . . . , X̄

n
n , Ā

n
n) be the solution on (Ω′,F ′, Pn) of the system in (4.3.1) (with uni replaced with

ui).

Define the occupation measure Qn by the right side of (4.3.9), replacing ρni with ρi. Let En denote expectation

over the probability measure Pn. Then, as in (4.2.30) (using Condition 4.1.6 instead of 4.1.1), we see that

lim sup
n→∞

En

[
1

n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt

]
= EΘ

[∫ T

0

∥∥∥∥∫
Rm

y ρt(dy)

∥∥∥∥2

dt

]
<∞. (4.3.28)

It now follows from Lemma 4.3.2 that {(Qn, vn)}n∈N is tight. If (Q, v) is a limit point of this sequence defined on some

probability space (Ω̃, F̃ , P̃ ), then v = ϕ P̃ -a.s., and, by Lemma 4.3.3, Q ∈ E2[v] = E2[ϕ] P̃ -a.s. Also, Θ ∈ E2[ϕ]. By

(4.3.27), for P̃ -a.e. ω ∈ Ω̃, Qϑ(ω) = Θϑ. Thus by the weak uniqueness established in Lemma 4.3.4, Q = Θ P̃ -a.s.

Thus we have Qn → Θ in probability. A similar argument as in Lemma 4.3.3 now shows that (Qn, νQn)→ (Θ, νΘ) in

probability. Finally,

lim sup
n→∞

En

[
1

2n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

= lim sup
n→∞

En

[
1

2n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (νQn)

]

≤ 1

2
EΘ

[∫
Rm×[0,T ]

‖y‖2ρ(dy dt)

]
+

1

2λ2

∫ T

0

‖ϕ(t)‖2 dt+ F (νΘ),

which follows from (4.3.28), the equality vn = ϕ, the convergence (Qn, νQn) → (Θ, νΘ), and the assumption that
√
nκ(n)→ λ. This proves (4.3.21) and completes the proof of the lower bound.

4.3.3 Rate Function Property of I2

The proof is very similar to the argument in Section 4.2.3 and so we omit the details and note only that we use the

argument in Lemma 4.3.3 to show that if for Θn,Θ ∈ P2(Z2), Θn → Θ, and a bound as in (4.2.32) is satisfied for

every n, then under the conditions of Theorem 4.1.2, νΘn → νΘ in K.

4.4 Proof Sketch of Theorem 4.1.3.

In Section 4.4.1 we sketch the proof of part (i) of the theorem while part (ii) is sketched in Section 4.4.2.
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4.4.1 The Case
√
nκ(n)→ 0

Recall that we assume Conditions 4.1.1, 4.1.2, and 4.1.3 hold. For the Laplace upper bound we start with the inequality

in (4.2.6) for some (un, vn) ∈ A1,n × A2
M . This inequality gives the uniform bound in (4.2.8). With this uniform

bound, the tightness of the sequence of P(Z1)-valued random variables Qn defined in (4.2.10) is shown as in Lemma

4.2.2.

Furthermore, the inequality in (4.2.8) also shows that

E

[∫ T

0

‖vn(t)‖2dt

]
≤ 2nκ(n)2(2‖F‖∞ + 1)→ 0 as n→∞,

since nκ(n)2 → 0. Thus vn → 0 in L2([0, T ] : Rk), in probability.

Now a similar argument as in Lemma 4.2.3 shows that if Q is a weak limit point of Qn, then Q ∈ E1[0] a.s. Finally,

with (un, vn) as above and µ̄n defined as below (4.2.3), taking the limit as n→∞ along any convergent subsequence

of {(Qn, vn)},

lim inf
n→∞

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

≥ lim inf
n→∞

E

[
1

2n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+ F (µ̄n)

]

≥ E

[∫
R1

(
1

2

∫
Rm×[0,T ]

‖y‖2 r(dy dt)

)
[Q]2(dr) + F ([Q]1)

]

≥ inf
Θ∈E1[0]

(
EΘ

[
1

2

∫
Rm×[0,T ]

‖y‖2 ρ(dy dt)

]
+ F ([Θ]1)

)
,

where the last inequality uses the fact that Q ∈ E1[0] a.s. Since δ ∈ (0, 1) in (4.2.6) is arbitrary, recalling the definition

of Ĩ1,0 in (4.1.10), the above inequality completes the proof of the Laplace upper bound.

For the proof of the lower bound we proceed as follows. Fix ε > 0 and F ∈ Cb(P(X )). Choose Θ ∈ E1[0] such

that

1

2
EΘ

[∫
Rm×[0,T ]

‖y‖2ρ(dy dt)

]
+ F ([Θ]1) ≤ inf

ν∈P(X )

[
F (ν) + Ĩ1,0(ν)

]
+ ε. (4.4.1)

Using this Θ, define (Ω′,F ′, Pn), as in Section 4.2.2. Also, take vn = 0 for every n. Then with ui defined as in

(4.2.29) and µ̄n and Qn constructed as below (4.2.29), we have exactly as in (4.2.31) that

lim sup
n→∞

− 1

n
logE

[
e−nF (µn)

]

139



≤ lim sup
n→∞

En

[
1

2n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2nκ(n)2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

= lim sup
n→∞

En

[
1

2n

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+ F ([Qn]1)

]

≤ 1

2
EΘ

[∫
Rm×[0,T ]

‖y‖2ρ(dy dt)

]
+ F ([Θ]1).

In particular, in obtaining the last equality we have used the uniqueness result in Lemma 4.2.4 (applied to the case

where ϕ = 0). Combining the above inequality with (4.4.1) and since ε > 0 is arbitrary, we have the desired lower

bound.

Finally, the proof that Ĩ1,0 is a rate function can be carried out as in Section 4.2.3. We omit the details.

4.4.2 The Case
√
nκ(n)→∞

For this case we assume Conditions 4.1.1 and 4.1.2. Condition 4.1.3 is not needed. In a similar manner to Theorem

4.2.1 it can be shown that for any F ∈ Cb(P(X )) and for each n ∈ N,

− κ(n)2 logE
[
e
− 1
κ(n)2

F (µn)
]

= inf
(u,v)∈A1,n×A2

E

[
κ(n)2

2

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2

∫ T

0

‖v(t)‖2 dt+ F (µ̄n)

]
,

(4.4.2)

where µ̄n is as introduced below (4.2.3). Furthermore, for every δ > 0, there is an M <∞ such that for each n ∈ N,

− κ(n)2 logE
[
e
− 1
κ(n)2

F (µn)
]

≥ inf
(u,v)∈A1,n×A2

M

E

[
κ(n)2

2

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2

∫ T

0

‖v(t)‖2 dt+ F (µ̄n)

]
− δ.

(4.4.3)

Fix F ∈ Cb(P(X )) and δ ∈ (0, 1). Select, for each n ∈ N, (un, vn) ∈ A1,n ×A2
M such that

− κ(n)2 logE
[
e
− 1
κ(n)2

F (µn)
]
≥ E

[
κ(n)2

2

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]
− 2δ, (4.4.4)

where µ̄n = 1
n

∑n
i=1 δX̄ni and X̄n

i is given by (4.2.3) (repalcing (u, v) with (un, vn)). The uniform bound in (4.2.8)

now gets replaced by

sup
n∈N

E

[
κ(n)2

2

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2

∫ T

0

‖vn(t)‖2 dt

]
≤ 2(‖F‖∞ + 1). (4.4.5)
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This in particular says that

E

[
1

n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt

]
≤ 4(‖F‖∞ + 1)

nκ(n)2
→ 0 as n→∞, (4.4.6)

since nκ(n)2 → ∞. Define Qn by (4.2.10), where ρni are as in (4.2.11). The tightness of (Qn, vn) is shown as in

Lemma 4.2.2. Let (Q, v) be a weak limit point (along some subsequence) given on some probability space (Ω∗,F∗, P ∗).

Then using (4.4.6) we see that

E∗

[∫
R1

∫
Rm×[0,T ]

‖y‖2 r(dy dt) [Q]2(dr)

]
≤ lim inf

n→∞
E

[
1

n

n∑
i=1

∫ T

0

‖uni (t)‖2 dt

]
= 0.

Thus we have that [Q]2 = δro , where we recall that ro(dy dt) = δ{0}(dy) dt. Also, as in Lemma 4.2.3, it can be seen

that Q ∈ E1[v] a.s. Combining this fact with [Q]2 = δro and recalling the definition of Ẽ1 given in Section 4.1.3, we

now see that [Q](1,3) ∈ Ẽ1[v] P ∗-a.s. Taking the limit as n→∞ along a convergent subsequence

lim inf
n→∞

E

[
κ(n)2

2

n∑
i=1

∫ T

0

‖uni (t)‖2 dt+
1

2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]

≥ E∗
[

1

2

∫ T

0

‖v(t)‖2 dt+ F ([Q]1)

]

≥ inf
ϕ∈L2([0,T ]:Rk)

inf
Θ∈Ẽ1[ϕ]

(
1

2

∫ T

0

‖ϕ(t)‖2 dt+ F ([Θ]1)

)
,

where the last inequality uses the fact that [Q](1,3) ∈ Ẽ1[v] P ∗-a.s. Combining this with (4.4.4) and recalling that

δ ∈ (0, 1) is arbitrary completes the proof of the Laplace upper bound.

Now we consider the lower bound. Fix ε > 0 and F ∈ Cb(P(X )). Choose a ϕ ∈ L2([0, T ] : Rk) and a Θo ∈ Ẽ1[ϕ]

such that

1

2

∫ T

0

‖ϕ(t)‖2 dt+ F ([Θo]1) ≤ inf
ν∈P(X )

[
F (ν) + Ĩ1,∞(ν)

]
+ ε, (4.4.7)

where Ĩ1,∞ is as in (4.1.11). Define Θ on (Z1,B(Z1)) as Θ(dz, dr, dw) = Θo(dz, dw) δro(dr). Using this Θ, define

(Ω′,F ′, Pn) as in Section 4.2.2. Also, let vn = ϕ for every n. Note that ui defined through (4.2.29) satisfies ui = 0

Pn-a.s. Now with µ̄n and Qn constructed as below (4.2.29), we have as in (4.2.31) that

lim sup
n→∞

−κ(n)2 logE
[
e
− 1
κ(n)2

F (µn)
]

≤ lim sup
n→∞

En

[
κ(n)2

2

n∑
i=1

∫ T

0

‖ui(t)‖2 dt+
1

2

∫ T

0

‖vn(t)‖2 dt+ F (µ̄n)

]
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= lim sup
n→∞

(
1

2

∫ T

0

‖ϕ(t)‖2 dt+ En [F ([Qn]1)]

)

=
1

2

∫ T

0

‖ϕ(t)‖2 dt+ F ([Θ]1).

The last equality uses a uniqueness result of the type in Lemma 4.2.4 which is shown in the same manner. In particular,

since [Θ]2 = δro , the proof does not require Condition 4.1.3 since the analogue of the last term on the right side of

(4.2.27), namely

EΘ̂

(∫ T

0

(
‖X(1)(s)−X(2)(s)‖+ dBL(ν(1)(s), ν(2)(s))

)
‖u(s)‖ ds

)2
 ,

is simply zero. Combining the above inequality with (4.4.7) and since ε > 0 is arbitrary, we have the desired lower

bound.

Finally, the proof that Ĩ1,∞ in (4.1.11) is a rate function is carried out as before and is omitted.

4.5 Proof Sketch of Theorem 4.1.1(i)

Let ρni = ro for all i = 1, . . . n and n ∈ N. With this choice of ρni , define Qn by (4.2.10) by replacing X̄n
i with Xn

i .

By Lemmas 4.2.2 and 4.2.3, {Qn} is tight and any weak limit point Q satisfies Q ∈ E1[0]. This in particular shows that

the nonlinear SDE

dX̃(t) = b(X̃(t), µ̃(t)) dt+ σ(X̃(t), µ̃(t)) dW (t),

X̃(t) ∼ µ̃(t), t ≥ 0, µ̃(0) = ξ0,

(4.5.1)

has a weak solution, namely on some filtered probability space (Ω̄, F̄ , P̄ , {F̄t}) equipped with an m-dimensional

F̄t-Brownian motion W , there is an F̄t-adapted process X̃ with sample paths in C([0, T ] : Rd) which satisfies the

above equation. Furthermore, using standard Lipschitz estimates, martingale inequalities, and Gronwall’s lemma, we

see that pathwise uniqueness holds for (4.5.1). Thus, by the Yamada-Watanabe results (cf. [59, Chapter IV]) there

is a unique weak solution to (4.5.1). Denote this weak solution (namely the probability law of (X̃,W ))) as Θ∗(1,3).

Let Θ∗ ∈ P(Z1) be defined as Θ∗(dx, dr, dw) = Θ∗(1,3)(dx, dw) δro(dr). Then any weak limit point Q of Qn must

equal Θ∗ a.s. As argued above, Θ∗ is the unique element in P(Z1) that is a weak solution of S1[0, νΘ] and satisfies

[Θ∗]2 = δro . The result follows.
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4.6 Proof Sketch of Theorem 4.1.2(i)

It was noted in Section 4.1.2, that the system of equations in (4.0.4) has a unique strong solution under Conditions 4.1.1,

4.1.2, 4.1.4, 4.1.5, and 4.1.6. This can be seen as follows. Note that, with ζ = b, σ, α, the maps

(x, a) = (x1, . . . , xn, a1, . . . , an) 7→ (ζ(x1, µ(x, a)), . . . , ζ(xn, µ(x, a))),

and with ς = c, γT , βT , the maps

(x, a) 7→ (a1ς(x1, µ(x, a)), . . . , anς(xn, µ(x, a))),

where µ(x, a) = 1
n

∑n
i=1 θ(ai)δxi , are locally Lipschitz functions with (at most) linear growth from Rnd × Rn+ to

appropriate Euclidean spaces. For example, for (x, a), (x̃, ã) ∈ Rnd × Rn+,

|b(xi, µ(x, a))− b(x̃i, µ(x̃, ã))| ≤ K(‖xi − x̃i‖+ dBL(µ(x, a), µ(x̃, ã)))

≤ K

(
‖xi − x̃i‖+

1

n

n∑
i=1

(|θ(ai)− θ(ãi)|+ θ(ai)‖xi − x̃i‖)

)
.

The local Lipschitz property of (x, a) 7→ b(x1, µ(x, a)) is immediate from the above estimate on recalling that under

Conditon 4.1.5, θ is a Lipschitz function. Properties on other coefficients can be verified in a similar manner. Existence

and uniqueness of strong solutions of (4.0.4) follows from this.

We are interested in the asymptotic behavior of t 7→ µn(t) regarded as a sequence of C([0, T ] :M+(Rd))-valued

random variables, where µn(t) is defined as in (4.0.4). In order to characterize the limit of µn, we consider the nonlinear

SDE S2[0, µ̃] in (4.1.5) with ρ(dy dt) = ro(dy) dt, namely the following equation given on some filtered probability

space (Ω̄, F̄ , P̄ , {F̄t}), equipped with an m-dimensional F̄t-Brownian motion W :

dX̃(t) = b(X̃(t), µ̃(t)) dt+ σ(X̃(t), µ̃(t)) dW (t)

dÃ(t) = Ã(t)c(X̃(t), µ̃(t)) dt+ Ã(t)γT (X̃(t), µ̃(t)) dW (t),

〈f, µ̃(t)〉 = Ē[θ(Ã(t))f(X̃(t))], f ∈ Cb(Rd), t ≥ 0, (X̃(0), Ã(0)) ∼ η0.

(4.6.1)

Let Z̃2
.
= X × Y × W , and denote the canonical coordinate maps on this space as (X̃, Ã,W ). Let H̃t

.
=

σ{X̃(s), Ã(s),W (s), s ≤ t} be the canonical filtration on this space. By a weak solution of (4.6.1) we mean a

probability measure Θ on Z̃2 such that, under Θ, W is a standard H̃t-Brownian motion and the system of equations

(4.6.1) are satisfied a.s.

143



As before, let ρni = ro for all i = 1, . . . , n and n ∈ N. DefineQn by (4.3.9) by replacing (X̄n
i , Ā

n
i ) with (Xn

i , A
n
i ).

By Lemmas 4.3.2 and 4.3.3, {Qn} is tight and any weak limit point Q satisfies Q ∈ E2[0] (we use (4.3.10)(ii) here). In

particular, this shows that [Q]1,2,4 is a weak solution of (4.6.1). The following result shows the equation in fact has a

unique weak solution.

Lemma 4.6.1. Under Conditions 4.1.1, 4.1.2, 4.1.4, 4.1.5, and 4.1.6, equation (4.6.1) has a unique weak solution.

Proof. It sufices to show that the equation has a unique pathwise solution, namely that if (X̃(i), Ã(i), µ̃(i)), i = 1, 2

are two solutions of (4.6.1) given on some filtered probability space (Ω̄, F̄ , P̄ , {F̄t}) equipped with an m-dimensional

F̄t-Brownian motion W (namely, (X̃(i), Ã(i)) are continuous {F̄t} adapted processes and (4.6.1) is satisfied with

(X̃, Ã, µ̃) replaced with (X̃(i), Ã(i), µ̃(i)), i = 1, 2), and such that (X̃(1)(0), Ã(1)(0)) = (X̃(2)(0), Ã(2)(0)) P̄ -a.s.,

then

(X̃(1), Ã(1), µ̃(1)) = (X̃(2), Ã(2), µ̃(2)) P̄ -a.s. (4.6.2)

Using Conditions 4.1.1 and 4.1.6 on the initial random variables and Conditions 4.1.2 and 4.1.4 on the coefficients, it is

easy to check by Gronwall’s inequality that

Ē

[
sup

0≤t≤T

(
‖X̃(i)(t)‖2 + Ã(i)(t)2

)]
<∞ for i = 1, 2. (4.6.3)

Let

g(t) = Ē

[
sup

0≤s≤t
‖X̃(1)(s)− X̃(2)(s)‖2

]
and h(t) =

(
Ē

[
sup

0≤s≤t
|Ã(1)(s)− Ã(2)(s)|

])2

.

Then, exactly as for (4.3.24), there is a c1 ∈ (0,∞) such that for all 0 ≤ s ≤ t ≤ T ,

dBL

(
µ̃(1)(s), µ̃(2)(s)

)2

≤ c1(g(t) + h(t)).

By the Lipschitz property of b and σ, we then have that for some c2 ∈ (0,∞) and all 0 ≤ t ≤ T ,

g(t) ≤ c2
∫ t

0

(g(s) + h(s)) ds.

Writing Ã(i)(t) = eỸ
(i)(t) for i = 1, 2 and using the bounded Lipschitz properties of c and γ, we see as in (4.3.26) that

for some c3 ∈ (0,∞) and all 0 ≤ t ≤ T ,

h(t) ≤ c3
∫ t

0

(g(s) + h(s)) ds.
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Thus, g(t) + h(t) ≤ (c2 + c3)
∫ t

0
(g(s) + h(s)) ds for all t ∈ [0, T ] which, by Gronwall’s inequality, then shows that

g(T ) + h(T ) = 0 . Thus (X̃(1), Ã(1)) and (X̃(2), Ã(2)) are indistinguishable on [0, T ] which proves (4.6.2).

We now complete the proof of Theorem 4.1.2(1). Denoting the unique weak solution of (4.6.1) as Q∗(1,2,4) we now

have that [Qn](1,2,4) → Q∗(1,2,4) in probability as n → ∞. Let Q∗(dx, da, dr, dw)
.
= Q∗(1,2,4)(dx, da, dw)δro(dr).

Then Qn → Q∗ in probability. Note that Q∗ is the unique element Θ in P(Z2) that is a weak solution of S2[0, νΘ] and

satisfies [Θ]3 = δro . Using the estimate

sup
n∈N

E

[
1

n

n∑
i=1

sup
0≤t≤T

Ani (t)2

]
<∞,

which follows by the argument in (4.3.11), it now follows exactly as in the proof of the Laplace upper bound (see

arguments below the proof of Lemma 4.3.3) that νQn → νQ∗ in K, in probability, where for Θ ∈ P2(Z2), νΘ is defined

as in (4.1.6).
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CHAPTER 5

Large Deviations For Stochastic Currents with Mean Field Interaction and Vanishing Noise

In this chapter we consider the interacting particle system described through a collection of SDEs on Rd given as

dXN
j (t) = b

(
XN
j (t), V N (t)

)
dt+ εNσ

(
XN
j (t), V N (t)

)
dWj(t), 1 ≤ j ≤ N, N ∈ N, (5.0.1)

on some finite time horizon 0 ≤ t ≤ T , where εN ↓ 0 as N →∞ and {Wj , j ∈ N} are independent m-dimentional

Brownian motions on [0, T ]. Here V N (t) is the empirical measure of the particle states at time t, namely

V N (t) =
1

N

N∑
j=1

δXNj (t), 0 ≤ t ≤ T,

and thus the interaction among the particles is of the mean-field type and influences both the drift and diffusion

coefficients of each particle. The law of large numbers and fluctuation results for such mean-field systems have been

widely studied, see for instance [18, 32, 71, 82, 83, 85, 91]. In particular, when N → ∞, under conditions on the

coefficients and the initial data, {V N (t), 0 ≤ t ≤ T} converges to the solution of the Vlasov equation

∂

∂t
V +∇ · b(·, V )V = 0,

which can be formally written as
∂

∂t
V +∇ · J = 0, (5.0.2)

where J .
= b(·, V )V is the nonlinear current given as the limit of the stochastic currents

JN (ϕ) =
1

N

N∑
j=1

∫ T

0

ϕ
(
t,XN

j (t)
)
◦ dXN

j (t), (5.0.3)

defined for arbitrary smooth and compactly supported ϕ : (0, T )×Rd → Rd, where ◦ denotes the Stratonovich integral.

Currents and their stochastic counterparts are key objects in geometric measure theory and play an important role in

the theory of rough paths (cf. [44, 80, 54, 78]). In the current context they provide a convenient way to describe the

asymptotics of the empirical measure process V N .
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In this chapter we are interested in studying the asymptotics of probabilities of significant deviations of the

empirical measure V N , for the N -particle microscopic stochastic evolution described by (5.0.1), from its macroscopic

hydrodynamic limit described by the first order Vlasov equation in (5.0.2). A common approach to such a study

is by establishing a general LDP on an appropriate abstract space from which the information on probabilities of

deviations for specific events involving the N -particle system (5.0.1) can be obtained by a suitable application of

the contraction principle. In view of the representation of the hydrodynamic limit of V N in terms of the nonlinear

current functional J , a natural candidate for an LDP are the pairs (V N , JN ) regarded as random elements of an

appropriate space. Under the conditions on the coefficients considered in this work (see Condition 5.1.1), V N will

take values in V .
= C([0, T ],P1(Rd)), namely, the space of continuous functions from [0, T ] to the space P1(Rd) of

probability measures on Rd with finite first moment, equipped with the Wasserstein-1 distance (see Section 5.1 for

precise definitions). The identification of an appropriate space for JN requires a bit more work (cf. [42, 88]). In

particular, note that (5.0.3) describes an uncountably infinite collection of identities in which the right side is defined in

an almost sure sense for each fixed ϕ. Thus a basic problem is to provide a pathwise representation for the collection

ϕ 7→ 1

N

N∑
j=1

∫ T

0

ϕ
(
t,XN

j (t)
)
◦ dXN

j (t)

 , (5.0.4)

which defines a continuous, linear map on a suitable function space. This problem was studied in [42] (see also

[88]) where it was shown that there is a random variable JN with values in a certain negative Sobolev space H−s of

distributions (see Section 5.1.2), which gives a pathwise representation for the collection in (5.0.4) in the sense that

〈JN , ϕ〉 =
1

N

N∑
j=1

∫ T

0

ϕ
(
t,XN

j (t)
)
◦ dXN

j (t) a.s.,

for every smooth ϕ with compact support. Thus the stochastic currents JN can be viewed as random elements of the

Hilbert space H−s, and the basic problem of interest is then to establish a large deviation principle for (V N ,JN ) in

V ×H−s.

This large deviation problem in the setting where m = d and σ = Id was studied in [88] by direct change of

measure arguments. Specifically, [88] treats the large deviation upper bound by first establishing an estimate for compact

sets by considering an explicit tilt of the measure and then extends the estimate to all closed sets by establishing certain

exponential tightness estimates. The lower bound is proved by exploiting connections between large deviations and

Γ-convergence from [81], in particular the key idea is to construct a suitable ‘recovery sequence’ using results from [79].

One important aspect of the results and proof methods in [88] is that the LDP is established with the weak topology on

the Hilbert space H−s. Indeed, both the proofs of the upper and lower bounds rely on the use of the weak topology in
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important ways, e.g. since bounded sets are relatively compact under the weak topology in H−s, in proving exponential

tightness it suffices to estimate the probability that JN takes values in the complement of a bounded ball.

In the current work we take a different approach to the study of the large deviation principle that is based on

methods from stochastic control, the theory of weak convergence of probability measures, and Laplace asymptotics.

This approach allows us to avoid establishing exponential tightness estimates of the form in [88] and enables us to treat

diffusion coefficients that are state dependent and possibly degenerate (see Section 5.1.1). In addition, since in this

approach one needs to establish ordinary tightness rather than exponential tightness, by appealing to certain compact

embedding results for Sobolev spaces, we are able to establish an LDP with the norm topology on H−s instead of the

weak topology considered in [88]. In fact, we establish a somewhat more general large deviation principle than the one

considered in [88] from which the LDP for (V N ,JN ) can be deduced by the contraction principle. Specifically, we

consider path empirical measures µN associated with the interacting particle system in (5.0.1) defined as

µN =
1

N

N∑
j=1

δXNj .

Under the conditions of this work it follows that µN is a random variable with values in P1(C([0, T ],Rd)), namely

the space of probability measures, on the Banach space of Rd-valued continuous trajectories on [0, T ], with integrable

norm (equipped with the Wasserstein-1 metric). Our main result, Theorem 5.1.3, gives an LDP for (µN ,JN ) in

P1(C([0, T ],Rd))×H−s. Using the continuity of the map ν 7→ {t 7→ ν ◦ π−1
t } from P1(C([0, T ],Rd)) into V , where

πt is the projection map on C([0, T ],Rd) giving the evaluation at time t, we then deduce an LDP for the sequence

(V N ,JN ) in V ×H−s in Corollary 5.1.4. The rate function, in the general setting of a state dependent diffusion

coefficient, is given as a value function of a certain deterministic mean field control problem with a quadratic cost (see

(5.1.11) and (5.1.16)). In Proposition 5.1.5 we show that in the special case where σ = Id, this representation of the

rate function simplifies to a more explicit form given in terms of certain controlled Vlasov equations (see (5.1.17))

which was obtained in [88].

As noted previously, proof techniques here are quite different from [88]. The starting point of our analysis is a

certain variational representation for exponential functionals of finite dimensional Brownian motions (see [17, 20]),

using which the proof of the large deviation principle reduces to a study of tightness and convergence properties of

certain controls and controlled analogues of the state processes {XN
j , 1 ≤ j ≤ N}, state empirical measures V N , path

occupation measures µN , and stochastic currents JN , denoted as {X̄N
j , 1 ≤ j ≤ N}, V̄ N , µ̄N , and J̄N , respectively.

For the upper bound proof we introduce certain joint empirical measures, denoted as QN (see (5.2.7)), of particle

trajectories and associated control processes. The main step in the proof of the upper bound is to establish the tightness

of the sequence {(µ̄N , QN , J̄N ), N ∈ N} and to provide a suitable characterization of the weak limit points of this

sequence. In particular, the tightness of the controlled stochastic currents {J̄N} is established with the norm topology
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on H−s and relies on approximations of {J̄N} by distributions with compact support as well as certain compact

embedding results for Sobolev spaces (see Lemma 5.3.4). The lower bound proof is constructive in that, given a near

optimal measure µ on C([0, T ],Rd) and a near optimal current J in a certain variational problem associated with the

rate function, we construct a sequence of controls and controlled variables (µ̄N , J̄N ) that converge to (µ,J ) in a

suitable manner. The key ingredients in the proof here are a weak uniqueness (i.e. uniqueness in probability laws)

property of certain equations associated with the controlled versions of the Vlasov equation (5.0.2) (see Lemma 5.2.4)

and certain infinite product space constructions.

Large deviation principles for weakly interacting diffusions as in (5.0.1) with non-vanishing noise (i.e. εN = 1)

have been studied in [33]. A different approach, based on weak convergence methods of the form used in the current

work, was taken in [22]. The latter paper, in contrast to [33], allowed for degenerate diffusion coefficients and for a

mean field interaction in the diffusion coefficient. There have also been several works (in addition to the paper [88]

discussed above) that have studied large deviation problems for weakly interacting diffusions with small noise. In

particular, see [56], [36], and references therein, for large deviations results for McKean-Vlasov equations in the small

noise limit; and see [57] for an analysis of interchanging of mean-field limit with the small noise limit at the level of

rate function convergence.

This chapter is organized as follows. In Section 5.1, we specify our model, describe the space on which the large

deviation principle will hold, define the rate function, and present our main large deviation result. Section 5.2 provides

the proof of this result, with the proofs of its key lemmas given in Section 5.3. The proofs of some auxiliary results are

given at the end.

The following notation will be used throughout. We use C(R,S), Cc(R,S), and Ck(R,S), k ∈ N∪{∞}, to denote

the spaces of continuous, continuous and compactly supported, and k-times continuously differentiable functions from

R into S, respectively. Also, Ckc (R,S) = Cc(R,S)∩ Ck(R,S) for k ∈ N∪ {∞}. We denote by L2(µ,R, S) the space

of µ-square integrable functions from R into S. When µ is the Lebesgue measure, we will occasionally suppress it in

the notation and write L2(µ,R, S) as L2(R,S). The evaluation of a distribution F on a test function ϕ will be denoted

by 〈F,ϕ〉, and integration of a function f with respect to a measure µ will be denoted by 〈µ, f〉. B(S) denotes the

collection of all Borel sets on S. For a Polish space (S, dS), P(S) denotes the space of probability measures on S,

endowed with the topology of weak convergence. A convenient metric on this space is the bounded Lipschitz metric

given as

dbl(µ, ν)
.
= sup
f∈Lb(S)

|〈µ, f〉 − 〈ν, f〉| , µ, ν ∈ P(S), where

Lb(S)
.
=

{
f ∈ C(S,R) : sup

x 6=y

|f(x)− f(y)|
dS(x, y)

≤ 1, sup
x
|f(x)| ≤ 1

}
.
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When θ ∈ P(S), the notation Eθ will be used to denote expectation on the probability space (S,B(S), θ). For two

spaces S1 and S2 and θ ∈ P(S1 × S2), θ(1) and θ(2) will denote the marginal distributions on S1 and S2, respectively.

Similar notation will be used when more than two spaces are involved. Euclidean norms will be denoted by | · |. For a

Polish space (S, dS), the space C([0, T ], S) will be equipped with the metric

d(x, y) = sup
0≤t≤T

dS(x(t), y(t)),

under which it is a Polish space as well. On C([0, T ],Rd), we define the norm ‖x‖∞
.
= sup0≤t≤T |x(t)|, and the

metric above becomes d(x, y) = ‖x− y‖∞. We will use⇒ to denote convergence in distribution, and P→ to denote

convergence in P -probability. Infimum over an empty set, by convention, is taken to be +∞. For a metric space S, a

function I : S → [0,∞] is called a rate function if {x ∈ S : I(x) ≤ l} is a compact set for every l <∞.

5.1 Preliminaries and Main Result

Let (Ω,F , P, {F(t), 0 ≤ t ≤ T}) be a filtered probability space where the filtration satisfies the usual conditions

(see [69, Definition 21.22]). Fix m ∈ N, and let {Wj , j ∈ N} be a sequence of independent m-dimensional {F(t)}-

Brownian motions on the time horizon 0 ≤ t ≤ T . For each N ∈ N, we consider the following system of stochastic

differential equations in Rd:

XN
j (t) = XN

j (0) +

∫ t

0

b
(
XN
j (s), V N (s)

)
ds+ εN

∫ t

0

σ
(
XN
j (s), V N (s)

)
dWj(s), 1 ≤ j ≤ N, (5.1.1)

where V N (t) denotes the P(Rd)-valued empirical measure

V N (t)
.
=

1

N

N∑
j=1

δXNj (t), 0 ≤ t ≤ T, (5.1.2)

and {εN , N ∈ N} is some sequence in R+ such that εN ↓ 0 as N →∞. Without loss of generality, we will assume

that supN εN ≤ 1 throughout. Denote X .
= C([0, T ],Rd), and define P(X )-valued random variables, given as the

empirical measure of (XN
1 , . . . , X

N
N ), by

µN
.
=

1

N

N∑
j=1

δXNj . (5.1.3)

Note that the marginal of µN at time t is V N (t), that is, defining πt : C([0, T ],Rd) → Rd as the projection map

πt(x) = x(t), we have

µN ◦ π−1
t = V N (t), 0 ≤ t ≤ T.
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We will view each µN as a random variable taking values in the Wasserstein-1 space which is defined as follows. For a

Polish space (S, dS), define the space P1(S) by

P1(S)
.
=

{
µ ∈ P(S) :

∫
S

dS(x, x0)µ(dx) <∞
}
,

for some choice of x0 ∈ S (the space does not depend on the choice of x0). Then P1(S) is a Polish space under the

Wassertstein-1 distance given by

d1(µ, ν)
.
= sup
f∈L(S)

|〈µ, f〉 − 〈ν, f〉| , L(S)
.
=

{
f ∈ C(S,R) : sup

x 6=y

|f(x)− f(y)|
dS(x, y)

≤ 1

}
. (5.1.4)

For further details on Wassertstein spaces, we refer to [99]. The particular cases of interest here are the spaces P1(Rd)

and P1(X ), and the notation d1 will be used for the metric on both spaces, with the distinction being clear from context.

Noting that (under Condition 5.1.1 given below)

∫
X
dX (x, 0)µN (dx) =

∫
X
‖x‖∞ µN (dx) =

1

N

N∑
j=1

∥∥XN
j

∥∥
∞ <∞ a.s.,

we see that indeed µN is a P1(X )-valued random variable. Similarly, it can be checked that V N is a C([0, T ],P1(Rd))-

valued random variable. Throughout, we will denote V .
= C([0, T ],P1(Rd)).

5.1.1 Main Conditions.

The following is our main assumption on the coefficients.

Condition 5.1.1. There is some L <∞ such that for all x, y ∈ Rd and µ, ν ∈ P1(Rd),

|b(x, µ)− b(y, ν)|+ |σ(x, µ)− σ(y, ν)| ≤ L (|x− y|+ d1(µ, ν)) ,

and |σ(x, µ)| ≤ L.

Note that the above condition implies in particular that for all x ∈ Rd and µ ∈ P1(Rd),

|b(x, µ)| ≤ L
(

1 + |x|+
∫
Rd
|y|µ(dy)

)
. (5.1.5)

with possibly a larger choice of L than in Condition 5.1.1. By standard arguments, Condition 5.1.1 implies that there

exists a unique pathwise solution to (5.1.1) for each N ∈ N.

We assume the following on the initial conditions of (5.1.1).
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Condition 5.1.2. For each N ∈ N and 1 ≤ j ≤ N , XN
j (0) = xNj ∈ Rd is deterministic. The collection of initial

conditions satisfies the following.

(i) There exists some µ0 ∈ P(Rd) such that, dbl

(
V N (0), µ0

)
→ 0.

(ii) sup
N≥1

1

N

N∑
j=1

∣∣xNj ∣∣2 <∞.

Note that (i) and (ii) above imply that
∫
Rd |x|

2 µ0(dx) <∞ from the observation

∫
Rd

(
|x|2 ∧K

)
µ0(dx) = lim

N→∞

1

N

N∑
j=1

(∣∣xNj ∣∣2 ∧K) ≤ sup
N≥1

1

N

N∑
j=1

∣∣xNj ∣∣2
for any K ∈ (0,∞), and applying Fatou’s lemma. The above condition also gives that, as N →∞,

d1

(
V N (0), µ0

)
→ 0.

In order to prove the Laplace lower bound, we will make a stronger assumption given below on the diffusion

coefficient σ which says that it depends on the state of the system only through the empirical measure. We will also

require the convergence of the initial data in a somewhat stronger sense.

Condition 5.1.3. (i) For each x ∈ Rd and µ ∈ P1(Rd), σ(x, µ) = σ(µ).

(ii) For all µ0-integrable f : Rd → R,

〈
V N (0), f

〉
→ 〈µ0, f〉 as N →∞

We are interested in the large deviations behavior of µN and V N as well as a collection of random linear functionals,

referred to as stochastic currents, associated with the sequence of processes {XN
j (t)}. We now introduce these objects.

For each N and ϕ ∈ C∞c ([0, T ]× Rd,Rd) define

JN (ϕ)
.
=

1

N

N∑
j=1

∫ T

0

ϕ
(
t,XN

j (t)
)
◦ dXN

j (t), (5.1.6)

where the above is a Stratanovich stochastic integral. The relationship between Stratanovich and Itô integrals gives the

following formula for JN (ϕ):

JN (ϕ) =
1

N

N∑
j=1

(∫ T

0

ϕ
(
t,XN

j (t)
)
· dXN

j (t) +
1

2

〈
ϕ
(
·, XN

j (·)
)
, XN

j (·)
〉
T

)
,
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where 〈Y,Z〉t denotes the quadratic variation at time t of two continuous semimartingales Y and Z. From results in

[42], JN can be viewed as a random linear functional on a suitable Sobolev space. We now briefly describe these results

and make precise the space in which these random linear functionals take values.

5.1.2 Stochastic Currents

Recall that for k ∈ N, Hk(Rd,Rd) is the Hilbert space of functions f ∈ L2(Rd,Rd) such that the distributional

derivatives Dαf are also L2 functions for all |α| ≤ k, where α = (α1, . . . , αd) denotes a multi-index. More generally,

for any s ∈ R+, Hs(Rd,Rd) is defined as the space of functions f ∈ L2(Rd,Rd) such that

‖f‖2s
.
=

∫
Rd
|f̂(ξ)|2(1 + |ξ|2)s dξ <∞, (5.1.7)

where f̂(ξ) =
∫
e−2πiξ·xf(x) dx is the Fourier transform on Rd. We refer the reader to [1, 45, 39] for details on these

spaces.

In order to describe the linear space associated with the map ϕ 7→ JN (ϕ), we will need to consider a suitable

Sobolev space of functions of time and space. Following [73, 42, 88], a natural choice in this regard is the space

Hs1
(
(0, T ), Hs2

(
Rd,Rd

))
,

where s = (s1, s2) ∈
(

1
2 , 1
)
×
(
d
2 + 1,∞

)
(see [88] for a precise description of the space). However in order to apply

certain compact embedding results (see e.g. the proof of Lemma 5.2.3) we will consider a slight modification of these

spaces defined as follows.

Fix a, b ∈ R such that a < 0 < T < b and define U .
= (a, b) and Od

.
=
(

1
2 , 1
)
×
(
d
2 + 1,∞

)
. Then define

Hs .
= Hs1

(
U,Hs2

(
Rd,Rd

))
, s ∈ Od,

as the space of functions f : U × Rd → Rd satisfying

‖f‖2s
.
= ‖f‖2L2(U,Hs2 (Rd,Rd)) + [f ]2s

.
=

∫
U

‖f(u, ·)‖2s2 du+

∫
U

∫
U

‖f(u, ·)− f(v, ·)‖2s2
|u− v|1+2s1

du dv <∞,
(5.1.8)

where ‖ · ‖s2 is as in (5.1.7). The norm ‖ · ‖s is usually referred to as a Gagliardo norm, and in fact corresponds to

an inner product which makes Hs a separable Hilbert space (see [39, Section 3]). The topological dual of the Hilbert

space Hs will be denoted as H−s, namely

H−s
.
= (Hs)

′
.
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The norm on this space is given as

‖F‖−s
.
= sup
ϕ∈C∞c (U×Rd,Rd)

|〈F,ϕ〉|
‖ϕ‖s

.

For ϕ ∈ C∞c (U × Rd,Rd), abusing notation, we let

JN (ϕ)
.
=

1

N

N∑
j=1

∫ T

0

ϕ
(
t,XN

j (t)
)
◦ dXN

j (t).

Note that if ϕres denotes the restriction of ϕ to [0, T ]×Rd, then JN (ϕ) = JN (ϕres). Also, any ϕ ∈ C∞c ([0, T ]×Rd,Rd)

can be extended to a ϕext ∈ C∞c (U × Rd,Rd) where once more JN (ϕ) = JN (ϕext). By a pathwise realization of the

collection {ϕ 7→ JN (ϕ)} on C∞c ([0, T ]× Rd,Rd)}, we mean a random variable JN with values in H−s such that for

any ϕ ∈ C∞c ([0, T ]× Rd,Rd) and any extension ϕext of ϕ in C∞c (U × Rd,Rd), 〈JN , ϕext〉 = JN (ϕ) a.s.

The following result, giving the existence of a pathwise realization, follows along the lines of [88] . The proof is an

immediate consequence of Lemma 5.2.1 below (on taking uNj = 0 in the lemma), the proof of which is given in the

Appendix.

Theorem 5.1.1. Suppose Conditions 5.1.1 and 5.1.2 hold. Then for each N ∈ N and s ∈ Od, there is an H−s-valued

random variable JN on (Ω,F , P ) such that for every ϕ ∈ C∞c (U × Rd,Rd), 〈JN (ω), ϕ〉 = [JN (ϕ)](ω) for a.e.

ω ∈ Ω. Namely, JN is a pathwise realization of {ϕ 7→ JN (ϕ)}.

Note that the pathwise realizations {JN} are a.s. compactly supported in the first coordinate. Namely, if U0 ⊂ U

is an open set such that U0∩ [0, T ] = ∅, then for all ϕ with compact support in U0×Rd, 〈JN , ϕ〉 = 0 a.s. In particular,

JN is a distribution a.s. supported in [0, T ]× Rd.

In this work we will prove a large deviation principle for the pair (µN ,JN ) in the space P1(X )×H−s for each

s ∈ Od, from which a LDP describing the asymptotics of V N will follow by the contraction principle. We begin by

introducing the rate function that will govern the large deviation behavior.

5.1.3 Rate Function

Let R denote the set of positive measures r on B([0, T ] × Rm) such that r([0, t] × Rm) = t for all 0 ≤ t ≤ T , and

define

R1
.
=

{
r ∈ R :

∫
[0,T ]×Rm

|y| r(dt, dy) <∞

}
.

The space R1 is a Polish space under the Wasserstein-1 metric (defined as in (5.1.4) with S = [0, T ] × Rm). Each

r ∈ R1 can be decomposed as r(dt, dy) = rt(dy) dt, where rt ∈ P(Rm). For an R1-valued random variable ρ,
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consider the McKean-Vlasov equation

dX(t) = b(X(t), V (t)) dt+

∫
Rm

σ(X(t), V (t))y ρt(dy) dt,

V (t) = P ◦X(t)−1, V (0) = µ0,

(5.1.9)

where X is stochastic process with sample paths in X , ρ(dt, dy) = ρt(dy) dt is the disintegration of ρ, and µ0 is the

measure in Condition 5.1.2(i). The distribution of a pair (X, ρ) that solves (5.1.9), which is a probability measure on

Z .
= X ×R1, is called a weak solution of (5.1.9). Let S(Z) ⊂ P(Z) denote the set of all such weak solutions. With

an abuse of notation, we will denote the canonical coordinate maps on (Z,B(Z)) by (X, ρ) once more. That is,

X(ξ, r) = ξ, ρ(ξ, r) = r, (ξ, r) ∈ Z.

Note that if Θ ∈ S(Z), then (X, ρ) satisfy (5.1.9) Θ-a.s. For each Θ ∈ P(Z) and 0 ≤ t ≤ T , define the measure

νΘ(t)
.
= Θ ◦X(t)−1,

which is an element of P(Rd). When Θ ∈ S(Z), it is easy to check that Condition 5.1.1 and Gronwall’s lemma imply

that EΘ [|X(t)|] <∞, and hence νΘ(t) ∈ P1(Rd) for each 0 ≤ t ≤ T . Letting νΘ denote the map t 7→ νΘ(t), in fact

we have that νΘ ∈ V . For each ϕ ∈ C∞c (U × Rd,Rd), define the map Gϕ : S(Z)→ R by

Gϕ(Θ)
.
= EΘ

[∫ T

0

ϕ (t,X(t)) · dX(t)

]

= EΘ

[∫ T

0

ϕ (t,X(t)) · b(X(t), νΘ(t))dt

]

+ EΘ

[∫
[0,T ]×Rm

ϕ (t,X(t)) · σ(X(t), νΘ(t))y ρ(dt, dy)

]
.

(5.1.10)

Now let

P2(Z)
.
=

{
Θ ∈ P(Z) : EΘ

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
<∞

}
,

and for J ∈ H−s, define

P∗(J )
.
=
{

Θ ∈ S(Z) ∩ P2(Z) : 〈J , ϕ〉 = Gϕ(Θ) for all ϕ ∈ C∞c
(
U × Rd,Rd

)}
.
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Define I : P1(X )×H−s → [0,∞] as

I(µ,J )
.
= inf

{
EΘ

[
1

2

∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
: Θ(1) = µ,Θ ∈ P∗(J )

}
, (5.1.11)

where we recall that Θ(1) denotes the marginal of Θ on X .

Remark 5.1.1. Note that the domain of the function I depends on s ∈ Od. However, it turns out (see Lemma 5.3.7)

that if I(µ,J ) <∞ for some s ∈ Od and (µ,J ) ∈ P1(X )×H−s, then J ∈ H−s
′

for all s′ ∈ Od, and the value of

I(µ,J ) is independent of s.

5.1.4 Main Results

In this section we present the main results. For each N ∈ N, let µN , V N and JN be as in (5.1.3) , (5.1.2), and Theorem

5.1.1 respectively. Our first main result is a law of large numbers for (µN , V N ,JN ).

By using the Lipschitz property of b it can be checked that for µ0 as in Condition 5.1.2 and any Rd valued random

variable ξ0 on (Ω,F , P ) with distribution µ0, there is an a.s. unique solution ξ, with sample paths in X , to the equation

ξ(t) = ξ0 +

∫ t

0

b (ξ(s), V ∗(s)) ds, V ∗(t) = P ◦ ξ(t)−1, 0 ≤ t ≤ T. (5.1.12)

Let

µ∗ = P ◦ ξ−1. (5.1.13)

Using the linear growth of b and Condition 5.1.2(ii) it can be checked that µ∗ ∈ P1(X ).

The following theorem gives the law of large numbers. Its proof is given in Section 5.2.6.

Theorem 5.1.2 (LLN). Assume Conditions 5.1.1 and 5.1.2 hold and let s ∈ Od. Then,

(
µN , V N ,JN

) P→ (µ∗, V ∗,J ∗) as N →∞,

in P1(X )× V ×H−s, where V ∗ and µ∗ are as in (5.1.12) and (5.1.13) and J ∗ is characterized as

〈J ∗, ϕ〉 =

∫ T

0

〈V ∗(t), ϕ(t, ·) · b (·, V ∗(t))〉 dt, (5.1.14)

for ϕ ∈ C∞c (U × Rd,Rd).

Remark 5.1.2. The pair (V ∗,J ∗) can alternatively be characterized as the unique solution of the equation

∂

∂t
V +∇ · b(·, V )V = 0, J = b(·, V )V, V (0) = µ0, (5.1.15)

156



in the distributional sense on (0, T )× Rd, by which we mean that for all ϕ ∈ C∞c ((0, T )× Rd,R),

∫ T

0

〈
V (t),

∂

∂t
ϕ(t, ·)

〉
dt+

∫ T

0

〈V (t),∇ϕ(t, ·) · b(·, V (t))〉 dt = 0,

and for all ϕ ∈ C∞c ((0, T )× Rd,Rd),

〈J , ϕ〉 =

∫ T

0

〈V (t), ϕ(t, ·) · b(·, V (t))〉 dt.

Recall the function I defined in (5.1.11), and for each N ∈ N let aN
.
= N/ε2

N . Our main large deviation result is

as follows.

Theorem 5.1.3 (LDP). Assume Conditions 5.1.1 and 5.1.2 hold. For each s ∈ Od, I is a rate function on P1(X )×H−s.

Furthermore,

(i) The sequence {(µN ,JN ), N ∈ N} satisfies the large deviation upper bound on P1(X )×H−s with speed aN

and rate function I . Namely, for all closed sets F in P1(X )×H−s,

lim sup
N→∞

1

aN
logP

((
µN ,JN

)
∈ F

)
≤ − inf

(µ,J )∈F
I(µ,J ).

(ii) If in addition Condition 5.1.3 holds, then {(µN ,JN ), N ∈ N} satisfies the large deviation lower bound on

P1(X )×H−s with speed aN and rate function I . Namely, for all open sets G in P1(X )×H−s,

lim inf
N→∞

1

aN
logP

((
µN ,JN

)
∈ G

)
≥ − inf

(µ,J )∈G
I(µ,J ).

The proof of Theorem 5.1.3(i) is in Section 5.2.3, and the proof of Theorem 5.1.3(ii) is in Section 5.2.4. The rate

function property of I is proved in Section 5.2.5. The proof of Theorem 5.1.2 is saved for Section 5.2.6, since it follows

along the lines of the proof of the large deviation upper bound.

It is easy to verify that the map ν 7→ {t 7→ ν ◦π−1
t } is a continuous map from P1(X ) into V , and recall from above

that each Θ ∈ S(Z) induces νΘ ∈ V . From this and the contraction principle we immediately have a large deviation

principle for {(µN , V N ,JN )}. In particular, we have the following corollary. Define Ĩ : V ×H−s → [0,∞] as

Ĩ(V,J )
.
= inf

{
EΘ

[
1

2

∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
: νΘ = V,Θ ∈ P∗(J )

}
. (5.1.16)

Corollary 5.1.4. Assume Conditions 5.1.1 and 5.1.2 hold. For each s ∈ Od, Ĩ is a rate function on V × H−s.

Furthermore,
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(i) The sequence {(V N ,JN ), N ∈ N} satisfies the large deviation upper bound on V ×H−s with speed aN and

rate function Ĩ .

(ii) If in addition Condition 5.1.3 holds, then {(V N ,JN ), N ∈ N} satisfies the large deviation lower bound on

V ×H−s with speed aN and rate function Ĩ .

When m = d and σ = Id ∈ Rd×d, one can give a more explicit representation for the rate function Ĩ as follows.

(A similar representation can be found in [88].) For V ∈ V , define V ∈ P([0, T ]× Rd) as V(dt, dx)
.
= V (t, dx) dt.

Define Ĩ0 : V ×H−s → [0,∞] as

Ĩ0(V,J )
.
= inf

{
1

2

∫ T

0

|〈V (t), h(t, ·)− b(·, V (t))〉|2 dt

}
, (5.1.17)

where the infimum is taken over all (h,Θ) ∈ L2(V, [0, T ]×Rd,Rd)× (S(Z)∩P2(Z)) such that V = νΘ and (V,J )

is a distributional-sense solution of the equation

∂

∂t
V +∇ · hV = 0, J = hV, V (0) = µ0, (5.1.18)

on (0, T )× Rd. Namely, for all ϕ ∈ C∞c ((0, T )× Rd,R),

∫ T

0

〈
V (t),

∂

∂t
ϕ(t, ·)

〉
dt+

∫ T

0

〈V (t),∇ϕ(t, ·) · h(t, ·)〉 dt = 0,

and for all ϕ ∈ C∞c ((0, T )× Rd,Rd),

〈J , ϕ〉 =

∫ T

0

〈V (t), ϕ(t, ·) · h(t, ·)〉 dt.

The following result shows that Ĩ = Ĩ0. The proof is given in Section 5.2.7.

Proposition 5.1.5. Suppose that m = d, σ = Id ∈ Rd×d, and Condition 5.1.1 is satisfied. Then Ĩ = Ĩ0.

5.2 Laplace Asymptotics and Variational Representation

Using the well-known equivalence (cf. [21, 37]) between the large deviation upper bound (resp. lower bound) and the

Laplace upper bound (resp. lower bound), we will prove Theorem 5.1.3 by establishing a Laplace principle on the space

P1(X )×H−s. Specifically, Theorem 5.1.3(i) will follow from the upper bound

lim inf
N→∞

− 1

aN
logE

[
e−aNF(µN ,JN)

]
≥ inf

(µ,J )∈P1(X )×H−s
(F (µ,J ) + I(µ,J )) , (5.2.1)
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and Theorem 5.1.3(ii) will follow from the lower bound

lim sup
N→∞

− 1

aN
logE

[
e−aNF(µN ,JN)

]
≤ inf

(µ,J )∈P1(X )×H−s
(F (µ,J ) + I(µ,J )) , (5.2.2)

where F is any bounded, continuous function on P1(X )×H−s.

The inequality (5.2.1) will be proved in Section 5.2.3 (under Conditions 5.1.1 and 5.1.2), and the inequality (5.2.2)

will be proved in Section 5.2.4 (under Conditions 5.1.1, 5.1.2, and 5.1.3). The rate function property of I is shown in

Section 5.2.5. The starting point for both upper and lower bounds is the following variational representation.

5.2.1 Variational Representation

Let AN denote the class of RNm-valued F(t)-progressively measurable processes u such that E
[∫ T

0
|u(t)|2 dt

]
<∞.

For uN = (uN1 , . . . , u
N
N ) ∈ AN , with each uNj (t) taking values in Rm, consider the controlled version of (5.1.1) given

as

dX̄N
j (t) = b

(
X̄N
j (t), V̄ N (t)

)
dt+ εNσ

(
X̄N
j (t), V̄ N (t)

)
dWj(t) + σ

(
X̄N
j (t), V̄ N (t)

)
uNj (t) dt, (5.2.3)

where X̄N
j (0) = xNj and

V̄ N (t)
.
=

1

N

N∑
j=1

δX̄Nj (t), 0 ≤ t ≤ T.

Analogous to (5.1.3), µ̄N will denote the empirical measure of (X̄N
1 , . . . , X̄

N
N ), so that µ̄N ◦π−1

t = V̄ N (t) for each 0 ≤

t ≤ T . We will also need a controlled analogue of the stochastic current in Theorem 5.1.1. For ϕ ∈ C∞c (U × Rd,Rd),

define

J̄Nj (ϕ)
.
=

∫ T

0

ϕ
(
t, X̄N

j (t)
)
◦ dX̄N

j (t), J̄N (ϕ)
.
=

1

N

N∑
j=1

J̄Nj (ϕ). (5.2.4)

The proof of the following result, which is given in the Appendix, is similar to that of Theorem 5.1.1.

Lemma 5.2.1. Suppose that Conditions 5.1.1 and 5.1.2 hold. Then, for each N ∈ N, 1 ≤ j ≤ N , and s ∈ Od, there is

a nonnegative square-integrable random variable CNj,s such that for all ϕ ∈ C∞c (U × Rd,Rd),

∣∣J̄Nj (ϕ)
∣∣ ≤ CNj,s‖ϕ‖s a.s.
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In particular, the collection {ϕ 7→ J̄N (ϕ)} has a pathwise realization J̄N on (Ω,F , P ), namely J̄N is an H−s-valued

random variable such that 〈J̄N (ω), ϕ〉 = [J̄N (ϕ)](ω) for a.e. ω ∈ Ω and all ϕ ∈ C∞c (U × Rd,Rd). Furthermore, if

sup
N≥1

E

 1

N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt

 <∞, (5.2.5)

then supN≥1E
[

1
N

∑N
j=1

(
CNj,s

)2]
<∞. In particular, if CNs

.
= 1

N

∑N
j=1 C

N
j,s, then supN≥1E

[(
CNs
)2]

<∞.

The following variational representation follows from [17, 20] (see also [22]). Specifically, the case where {F(t)}

is the filtration generated by the m-dimensional Brownian motions {Wj} is covered in [17], while the setting of a

general filtration is treated in [20]. Recall that aN = N/ε2
N .

Theorem 5.2.2 (Variational Representation). Suppose that Conditions 5.1.1 and 5.1.2 hold. Let s ∈ Od and let F be a

real-valued, bounded, continuous function on P1(X )×H−s. Then for each N ∈ N,

− 1

aN
logE

[
e−aNF(µN ,JN)

]
= inf
uN∈AN

E

 1

2N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt+ F

(
µ̄N , J̄N

) . (5.2.6)

5.2.2 Tightness Properties.

The following lemma gives a key tightness property that will be needed in the proofs of both upper and lower Laplace

bounds. The proof is given in Section 5.3.1.

Lemma 5.2.3. Suppose Conditions 5.1.1 and 5.1.2 hold. Fix s ∈ Od, and let {uN , N ∈ N} with uN ∈ AN for each

N be such that

sup
N≥1

E

 1

N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt

 <∞.
Let X̄N

j , µ̄N , and J̄N be the controlled sequences corresponding to sequence of controls {uN} as defined in Section

5.2.1. For each j and N , let ρNj be theR1-valued random variable given as

ρNj (dt, dy)
.
= δuNj (t)(dy) dt,

and consider the sequence of P(Z)-valued random variables defined as

QN
.
=

1

N

N∑
j=1

δ(X̄Nj ,ρNj ), N ∈ N. (5.2.7)

Then,
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(i) The sequence {(µ̄N , QN , J̄N ), N ∈ N} is tight in P1(X )× P(Z)×H−s,

(ii) If (µ̄N , QN , J̄N )⇒ (µ̄, Q, J̄ ) as N →∞ in P1(X )× P(Z)×H−s, then Q(1) = µ̄ and Q ∈ P∗(J̄ ) a.s.

5.2.3 Proof of the Upper Bound

In this section we prove part (i) of Theorem 5.1.3 by showing that (5.2.1) holds. Assume Conditions 5.1.1 and 5.1.2.

Fix s = (s1, s2) ∈ Od, and a real-valued, bounded, continuous function F on P1(X )×H−s. Let ε ∈ (0, 1), and using

Theorem 5.2.2 choose {uN , N ∈ N} with uN ∈ AN for each N such that

− 1

aN
logE

[
e−aNF(µN ,JN)

]
≥ E

 1

2N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt+ F

(
µ̄N , J̄N

)− ε, (5.2.8)

where (µ̄N , J̄N ) are controlled variables corresponding to the control uN as defined in Section 5.2.1. From the

boundedness of F it follows that

sup
N≥1

E

 1

2N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt

 ≤ 2 sup
(µ,J )∈P1(X )×H−s

|F (µ,J )|+ 1 <∞.

By Lemma 5.2.3, (µ̄N , QN , J̄N ) is tight in P1(X ) × P(Z) ×H−s. Thus the sequence (µ̄N , QN , J̄N ) has a weak

limit point (µ̄, Q, J̄ ) along some subsequence, and once again by Lemma 5.2.3, Q ∈ P∗(J ) andQ(1) = µ̄ a.s. Assume

without loss of generality that (µ̄N , QN , J̄N )⇒ (µ̄, Q, J̄ ) along the full sequence. Noting that QN(1) = µ̄N , we have,

by (5.2.8),

− 1

aN
logE

[
e−aNF(µN ,JN)

]
≥ E

[
1

2

∫
R1

∫
[0,T ]×Rm

|y|2 r(dt, dy)QN(2)(dr) + F
(
QN(1), J̄

N
)]
− ε.

By Fatou’s lemma and lower semicontinuity of the map r 7→
∫

[0,T ]×Rm |y|
2 r(dt, dy) onR1,

lim inf
N→∞

− 1

aN
logE

[
e−aNF(µN ,JN)

]
≥ E

[
1

2

∫
R1

∫
[0,T ]×Rm

|y|2 r(dt, dy)Q(2)(dr) + F
(
Q(1), J̄

)]
− ε

= E

[
EQ

[
1

2

∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
+ F

(
µ̄, J̄

)]
− ε

≥ inf
(µ,J )∈P1(X )×H−s

(I(µ,J ) + F (µ,J ))− ε,

where the last line follows on recalling the definition of I and the facts that Q ∈ P∗(J ) and Q(1) = µ̄ a.s. Since

ε ∈ (0, 1) is arbitrary, this completes the proof of the upper bound in (5.2.1) and thus that of Theorem 5.1.3(i).
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5.2.4 Proof of the Lower Bound

In this section we prove part (ii) of Theorem 5.1.3 by showing (5.2.2). Fix s = (s1, s2) ∈ Od. We assume Conditions

5.1.1, 5.1.2, and 5.1.3 hold. Let ε ∈ (0, 1) and choose (Θ0,J0) ∈ P(Z)×H−s such that Θ0 ∈ P∗(J0) and

EΘ0

[
1

2

∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
+ F

(
(Θ0)(1),J0

)
≤ inf

(µ,J )∈P1(X )×H−s
(I(µ,J ) + F (µ,J )) + ε. (5.2.9)

To prove the lower bound we will construct a sequence {uN} of controls on some filtered probability space such that

uN ∈ AN for each N and

lim sup
N→∞

E

 1

2N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt+ F

(
µ̄N , J̄N

)
≤ EΘ0

[
1

2

∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
+ F

(
(Θ0)(1),J0

)
,

(5.2.10)

where µ̄N and J̄N are the controlled processes corresponding to {uN}. It will then follow by Theorem 5.2.2 and

(5.2.9) that

lim sup
N→∞

− 1

aN
logE

[
e−aNF(µN ,JN)

]
≤ lim sup

N→∞
E

 1

2N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt+ F

(
µ̄N , J̄N

)
≤ inf

(µ,J )∈P1(X )×H−s
(I(µ,J ) + F (µ,J )) + ε.

Since ε > 0 is arbitrary, the lower bound follows.

The construction of a sequence {uN} such that the inequality in (5.2.10) holds will need the following uniqueness

property.

Definition 5.2.1. Let θ : Z → Rd ×R1 denote the map θ(ξ, r) = (ξ(0), r). We say that weak uniqueness of solutions

of (5.1.9) holds if Θ1,Θ2 ∈ S(Z) ∩ P2(Z) and Θ1 ◦ θ−1 = Θ2 ◦ θ−1 implies that Θ1 = Θ2.

The following lemma is key to the proof of the lower bound. The proof is provided in Section 5.3.3. Recall that in

this section we assume that Conditions 5.1.1, 5.1.2 and 5.1.3 hold.

Lemma 5.2.4. Weak uniqueness of solutions holds for (5.1.9).

We now construct the sequence {uN} that satisfies (5.2.10). Because Θ0 ∈ S(Z), we can disintegrate

Θ0 ◦ θ−1(dx dr) = µ0(dx) Λ0(x, dr),
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for some measurable map Λ0 : Rd → P(R1). LetW .
= C([0, T ],Rm), and let γ be the standard Wiener measure on

W . Define a measurable map Λ : Rd → P(R1 ×W) as

Λ(x, dr, dw)
.
= Λ0(x, dr)⊗ γ(dw), x ∈ Rd.

Define the measurable space (Ω̃, F̃) by

Ω̃ = (R1 ×W)∞, F̃ = B
(
Ω̃
)
,

where an element (r, w) ∈ Ω̃ has the coordinates r = (r1, r2, . . .) and w = (w1, w2, . . .) with rj ∈ R1 and wj ∈ W

for each j. Consider the canonical filtration {F̃(t)} on (Ω̃, F̃) defined as

F̃(t)
.
= σ (wj(s), rj([0, s]×A), j ∈ N, A ∈ B(Rm), s ≤ t) , 0 ≤ t ≤ T,

and define the sequence {PN , N ∈ N} of probability measures on (Ω̃, F̃) by

PN (dr, dw) =
⊗
j≤N

Λ
(
xNj , drj , dwj

) ⊗
j>N

(
(Θ0)(2) ⊗ γ

)
(drj , dwj),

where {xNj } are as in Condition 5.1.2. Next define the sequence {ΛN , N ∈ N} of P(Rd×R1)-valued random variables

on (Ω̃, F̃) by

ΛN
.
=

1

N

N∑
j=1

δ(xNj ,ρj)
,

where for each j ∈ N, ρj is the R1-valued random variable on (Ω̃, F̃) defined as ρj(r, w) = rj . Using Condition

5.1.3(ii), we see by a standard argument that

PN ◦ (ΛN )−1 → δΘ0◦θ−1 as N →∞, (5.2.11)

in P(P(Rd ×R1)).

Now, for each j ∈ N, disintegrating ρj as ρj(dt, dy) = (ρj)t(dy) dt, define

uj(t)
.
=

∫
Rm

y (ρj)t(dy), 0 ≤ t ≤ T,

and define uN .
= (u1, . . . , uN ) for each N ∈ N. Furthermore, for each j and (r, w) ∈ Ω̃, let

Wj(t, (r, w))
.
= wj(t), 0 ≤ t ≤ T.
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Then for each N , W1, . . . ,WN are mutually independent {F̃(t)}-Brownian motions on (Ω̃, F̃ , PN ). Recall that in this

section we are assuming Condition 5.1.3, and so σ(x, ν) = σ(ν) for (x, ν) ∈ Rd × P1(Rd). Let (X̄N
1 , . . . , X̄

N
N ) be

the unique pathwise solution (which is guaranteed due to Conditions 5.1.1 and 5.1.2) on (Ω̃, F̃ , PN ) of the system

X̄N
j (t) = xNj +

∫ t

0

b
(
X̄N
j (s), V̄ N (s)

)
ds+ εN

∫ t

0

σ
(
V̄ N (s)

)
dWj(s) +

∫ t

0

σ
(
V̄ N (s)

)
uj(s) ds,

V̄ N (t) =
1

N

N∑
j=1

δX̄Nj (t), 0 ≤ t ≤ T, 1 ≤ j ≤ N.

Also let µ̄N = 1
N

∑N
j=1 δX̄Nj . Now define the sequence {QN} of P(Z)-valued random variables as

QN
.
=

1

N

N∑
j=1

δ(X̄Nj ,ρj)
, N ∈ N.

Letting EN denote expectation on (Ω̃, F̃ , PN ), we note that for a measurable f : R1 → R+,

∫
R1

f(r) (Θ0)(2)(dr) <∞ implies EN

 1

N

N∑
j=1

f (ρj)

→ ∫
R1

f(r) (Θ0)(2)(dr). (5.2.12)

Indeed, if g(x) =
∫
R1
f(r) Λ0(x, dr) for x ∈ Rd, then

EN

 1

N

N∑
j=1

f (ρj)

 =
1

N

N∑
j=1

∫
R1

f(r) Λ0

(
xNj , dr

)
=

1

N

N∑
j=1

g
(
xNj
)
,

and

∫
Rd
g(x)µ0(dx) =

∫
Rd

∫
R1

f(r) Λ0(x, dr)µ0(dx)

=

∫
Rd×R1

f(r) Θ0 ◦ θ−1(dx, dr) =

∫
R1

f(r) (Θ0)(2)(dr) <∞.

Thus, from Condition 5.1.3(ii),

lim
N→∞

EN

 1

N

N∑
j=1

f (ρj)

 = lim
N→∞

1

N

N∑
j=1

g
(
xNj
)

=

∫
Rd
g(x)µ0(dx) =

∫
R1

f(r) (Θ0)(2)(dr),
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which proves (5.2.12). Now, we have

lim sup
N→∞

EN

 1

N

N∑
j=1

∫ T

0

|uj(t)|2 dt

 ≤ lim sup
N→∞

EN

 1

N

N∑
j=1

∫
[0,T ]×Rm

|y|2 ρj(dt, dy)


= EΘ0

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
<∞,

(5.2.13)

where the convergence on the second line follows from (5.2.12) on observing that, since Θ0 ∈ P2(Z),

f(r) =

∫
[0,T ]×Rm

|y|2 r(dt, dy), r ∈ R1,

satisfies ∫
R1

f(r) (Θ0)(2)(dr) = EΘ0

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
<∞.

Next, for each ϕ ∈ C∞c (U × Rd,Rd) define

J̄N (ϕ)
.
=

1

N

N∑
j=1

∫ T

0

ϕ
(
t, X̄N

j (t)
)
◦ dX̄N

j (t), N ∈ N.

From Lemma 5.2.1, the collection {ϕ 7→ J̄N (ϕ)} has a pathwise realization J̄N in H−s. Using Lemma 5.2.3 and

the moment bound in (5.2.13), we now see that {(µ̄N , QN , J̄N ), N ∈ N} is tight in P1(X )×P(Z)×H−s. Suppose,

without loss of generality, that (µ̄N , QN , J̄N ) ⇒ (µ̄, Q, J̄ ) in P1(X ) × P(Z) × H−s. By Lemma 5.2.3 again,

Q ∈ P∗(J̄ ) and Q(1) = µ̄ a.s. Since QN ◦ θ−1 = ΛN , (5.2.11) implies that Q ◦ θ−1 = Θ0 ◦ θ−1 a.s., and hence by

the weak uniqueness established in Lemma 5.2.4, Q = Θ0 a.s. Furthermore, from the definition of P∗(J̄ ),

〈
J̄ , ϕ

〉
= Gϕ(Q) = Gϕ(Θ0) = 〈J0, ϕ〉

for every ϕ, a.s., and hence J̄ = J0 a.s. by separability of C∞c (U × Rd,Rd) and its denseness in H−s.

It follows that (QN , J̄N )⇒ (Θ0,J0). Finally,

lim sup
N→∞

EN

 1

2N

N∑
j=1

∫ T

0

|uj(t)|2 dt+ F
(
µ̄N , J̄N

)
= lim sup

N→∞
EN

 1

2N

N∑
j=1

∫ T

0

|uj(t)|2 dt+ F
(
QN(1), J̄

N
)

≤ EΘ0

[
1

2

∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
+ F

(
(Θ0)(1),J0

)
,
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where the last inequality is from (5.2.13) and since F is a bounded continuous function. This shows (5.2.10) and

completes the proof of the lower bound in (5.2.2), and part (ii) of Theorem 5.1.3 follows.

5.2.5 Rate Function Property

In this section we show that the function I : P1(X )×H−s → [0,∞] defined in (5.1.11) has compact sublevel sets for

every s ∈ Od. Fix s, and for each l < ∞ consider the level set Γl
.
= {(µ,J ) ∈ P1(X )×H−s : I(µ,J ) ≤ l}. The

proof of the following lemma is given in Section 5.3.2.

Lemma 5.2.5. Suppose Conditions 5.1.1 and 5.1.2 hold. Let s ∈ Od and let {(µk,Θk,Jk), k ∈ N} be a sequence in

P1(X )× P(Z)×H−s such that for each k, Θk ∈ P∗(Jk), (Θk)(1) = µk, and

sup
k≥1

EΘk

[
1

2

∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
<∞. (5.2.14)

Then the sequence {(µk,Θk,Jk), k ∈ N} is relatively compact in P1(X )× P(Z)×H−s.

Now we prove the compactness of Γl. Let {(µk,Jk), k ∈ N} be a sequence in Γl. From the definition of I , for

each k ∈ N there is a Θk ∈ P∗(Jk) with (Θk)(1) = µk such that

EΘk

[
1

2

∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
≤ l +

1

k
. (5.2.15)

From Lemma 5.2.5, {(µk,Θk,Jk)} is relatively compact in P1(X )×P(Z)×H−s. It is easily checked that if (µ,Θ,J )

is a limit point along some subsequence, then Θ(1) = µ and along the same subsequence Gϕ(Θk) → Gϕ(Θ) and

〈Jk, ϕ〉 → 〈J , ϕ〉 for every ϕ ∈ C∞c (U × Rd,Rd). This shows that Θ ∈ P∗(J ). Sending k → ∞ in (5.2.15) and

using lower semicontinuity of the map r 7→
∫

[0,T ]×Rm |y|
2 r(dt, dy) onR1, we obtain

EΘ

[
1

2

∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

]
≤ l,

and hence (µ,J ) lies in Γl. Compactness of Γl follows.

5.2.6 Law of Large Numbers

Here we prove Theorem 5.1.2. The model (5.1.1) can be viewed as the controlled equation (5.2.3) with the controls

taken to be uNj ≡ 0 for all 1 ≤ j ≤ N and N ∈ N. From Lemma 5.2.3 it then follows that (µN , QN ,JN ) is tight in

P1(X )×P(Z)×H−s. Suppose that along some subsequence (µN , QN ,JN )⇒ (µ,Q,J ). Then, once again from

Lemma 5.2.3, Q(1) = µ and Q ∈ P∗(J ) a.s. Furthermore, since uNj ≡ 0 for all 1 ≤ j ≤ N and N ∈ N we see that
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the second coordinate variable on Z satisfies Q(ρ = 0) = 1 a.s., and thus, under Q, the first coordinate variable on Z

satisfies

X(t) = X(0) +

∫ t

0

b(X(s), V (s)) ds, V (t) = Q ◦X(t)−1, V (0) = µ0,

for all 0 ≤ t ≤ T . Then, from the unique solvability of (5.1.12), it follows that µ = µ∗ a.s., and hence we have that µN

converges in probability in P1(X ) (along the full sequence) to µ∗. Since V N (t) = µN ◦ π−1
t and V ∗(t) = µ∗ ◦ π−1

t

for each 0 ≤ t ≤ T , we also have that V N → V ∗ in probability in V . Finally, since Q ∈ P∗(J ) a.s.,

Gϕ(Q) = 〈J , ϕ〉

for all ϕ ∈ C∞c (U × Rd,Rd), a.s., and note that

Gϕ(Q) = EQ

[∫ T

0

ϕ (t,X(t)) · dX(t)

]

= EQ

[∫ T

0

ϕ (t,X(t)) · b(X(t), V ∗(t)) dt

]

=

∫ T

0

〈V ∗(t), ϕ(t, ·) · b (·, V ∗(t))〉 dt.

Thus 〈J , ϕ〉 is (a.s.) uniquely characterized for all ϕ ∈ C∞c (U × Rd,Rd). From the separability of C∞c (U × Rd,Rd)

and its denseness in H−s we now see that JN converges (along the full sequence) in probability, in H−s, to the

nonrandom limit J ∗ characterized as

〈J ∗, ϕ〉 =

∫ T

0

〈V ∗(t), ϕ(t, ·) · b (·, V ∗(t))〉 dt.

The result follows.

5.2.7 Equivalent Formulation of the Rate Function

In this section we give the proof of Proposition 5.1.5. Let m = d and σ = Id. We first argue that Ĩ0 ≤ Ĩ . Fix

(V,J ) ∈ V ×H−s such that Ĩ(V,J ) < ∞. Fix δ > 0 and let Θ ∈ P∗(J ) with νΘ = V be δ-optimal for Ĩ(V,J ),

namely

EΘ

[
1

2

∫
[0,T ]×Rd

|y|2 ρ(dt, dy)

]
≤ Ĩ(V,J ) + δ. (5.2.16)

Disintegrate ρ(dt, dy) = ρt(dy) dt and define

v(t)
.
=

∫
Rd
y ρt(dy), 0 ≤ t ≤ T. (5.2.17)

167



Also let ηt
.
= Θ ◦ (X(t), v(t))−1 ∈ P(R2d). Then ηt can be disintegrated as ηt(dx, dy) = V (t, dx) η̂t(x, dy) for some

η̂t : Rd → P(Rd). Define the functions u and h on [0, T ]× Rd by

u(t, x)
.
=

∫
Rd
y η̂t(x, dy), (5.2.18)

h(t, x)
.
= u(t, x) + b(x, V (t)).

It is easily verified that h ∈ L2(V, [0, T ]× Rd,Rd). Under Θ, V (0) = µ0 and

X(t) = X(0) +

∫ t

0

b(X(s), V (s)) ds+

∫
[0,t]×Rd

y ρs(dy) ds, a.s., (5.2.19)

for each t, and so for ϕ ∈ C∞c ((0, T )× Rd,R),

0 = ϕ(T,X(T ))− ϕ(0, X(0))

=

∫ T

0

(
∂

∂t
ϕ(t,X(t)) +∇ϕ(t,X(t)) · b(X(t), V (t)) +∇ϕ(t,X(t)) · v(t)

)
dt,

where v is as in (5.2.17). Taking expectations with respect to Θ,

0 =

∫ T

0

〈
V (t),

∂

∂t
ϕ(t, ·) +∇ϕ(t, ·) · b(·, V (t))

〉
dt+

∫ T

0

∫
R2d

∇ϕ(t, x) · y ηt(dx, dy) dt

=

∫ T

0

〈
V (t),

∂

∂t
ϕ(t, ·) +∇ϕ(t, ·) · (b(·, V (t)) + u(t, ·))

〉
dt (5.2.20)

=

∫ T

0

〈
V (t),

∂

∂t
ϕ(t, ·) +∇ϕ(t, ·) · h(t, ·)

〉
dt.

Similarly it is seen that for ϕ ∈ C∞c ((0, T )× Rd,Rd),

〈J , ϕ〉 =

∫ T

0

〈V (t), ϕ(t, ·) · h(·, t)〉 dt.

Since V = νΘ and u(t, x) = h(t, x)− b(x, V (t)), we now see from the above two identities that

Ĩ0(V,J ) ≤ 1

2

∫ T

0

|〈V (t), u(t, ·)〉|2 dt =
1

2

∫ T

0

∣∣∣∣∫
R2d

y η̂t(x, dy)V (t, dx)

∣∣∣∣2 dt
≤ 1

2

∫ T

0

EΘ

[
|v(t)|2

]
dt ≤ 1

2
EΘ

[∫
[0,T ]×Rd

|y|2 ρ(dt, dy)

]
≤ Ĩ(V,J ) + δ,

where the last inequality is from (5.2.16). Since δ > 0 is arbitrary, the inequality Ĩ0(V,J ) ≤ Ĩ(V,J ) follows.
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We now prove the reverse inequality, namely Ĩ(V,J ) ≤ Ĩ0(V,J ). Once more fix δ > 0 and (V,J ) ∈ V ×H−s

such that Ĩ0(V,J ) <∞, and let (h,Θ) ∈ L2(V, [0, T ]× Rd)× (S(Z) ∩ P2(Z)) be δ-optimal for Ĩ0(V,J ), namely

1

2

∫ T

0

|〈V (t), h(t, ·)− b(·, V (t))〉|2 dt ≤ Ĩ0(V,J ) + δ, (5.2.21)

V = νΘ, and (V,J ) solves (5.1.18). Under Θ, (5.2.19) is satisfied for the coordinate variable X , and so we have, as in

(5.2.20), that for all ϕ ∈ C∞c ((0, T )× Rd,R),

0 =

∫ T

0

〈
V (t),

∂

∂t
ϕ(t, ·) +∇ϕ(t, ·) · (b(·, V (t)) + u(t, ·))

〉
dt, (5.2.22)

for the random variable u on (Z,B(Z)) defined as in (5.2.18). Similarly, for all ϕ ∈ C∞c ((0, T )× Rd,Rd),

〈J , ϕ〉 =

∫ T

0

〈V (t), ϕ(t, ·) · (b(·, V (t)) + u(t, ·))〉 dt. (5.2.23)

However, since (V,J ) solves (5.1.18) with the δ-optimal h chosen as above we must also have

〈J , ϕ〉 =

∫ T

0

〈V (t), ϕ(t, ·) · h(·, t)〉 dt.

This says that for V-a.e. (t, x) ∈ [0, T ]× Rd,

h(t, x) = b(x, V (t)) + u(t, x). (5.2.24)

Now define anR1-valued random variable ρ̃ on (Z,B(Z)) as

ρ̃(dt, dy) = δv(t)(dy) dt,

where v is defined in terms of the coordinate variable ρ as in (5.2.17). Defining Θ̃ ∈ P(Z) as Θ̃
.
= Θ ◦ (X, ρ̃)−1,

we have that νΘ̃ = νΘ = V , and it can be seen from (5.2.19) that Θ̃ ∈ S(Z). Also, observing that for any

ϕ ∈ C∞c ((0, T )× Rd,Rd),

〈V (t), ϕ(t, ·) · u(t, ·)〉 =

〈
V (t), ϕ(t, ·) ·

∫
Rd
y η̂t(·, dy)

〉
=

∫
R2d

ϕ(t, x) · y ηt(dx, dy)

= EΘ [ϕ(t,X(t)) · v(t)] = EΘ̃

[
ϕ(t,X(t)) ·

∫
Rd
y ρt(dy)

]
,
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we see from (5.2.23) and (5.1.10) that 〈J , ϕ〉 = Gϕ(Θ̃) for every ϕ ∈ C∞c ((0, T ) × Rd,Rd). Thus, Θ̃ ∈ P∗(J ).

Finally,

Ĩ(V,J ) ≤ EΘ̃

[
1

2

∫
[0,T ]×Rd

|y|2 ρ(dt, dy)

]
= EΘ

[
1

2

∫ T

0

|v(t)|2 dt

]
=

1

2

∫ T

0

|〈V (t), u(t, ·)〉|2 dt

=
1

2

∫ T

0

|〈V (t), h(t, x)− b(x, V (t))〉|2 dt ≤ Ĩ0(V,J ) + δ,

where we used (5.2.24) and (5.2.21). Since δ > 0 is arbitrary, the inequality Ĩ(V,J ) ≤ Ĩ0(V,J ) follows and completes

the proof of the lemma.

5.3 Proofs of Key Lemmas

In this section we provide proofs of the results used in showing the Laplace upper and lower bounds. First we establish

two estimates that will be used in subsequent sections.

Lemma 5.3.1. Suppose Conditions 5.1.1 and 5.1.2 are satisfied. Let uN = (uN1 , . . . , u
N
N ) ∈ AN and let X̄N be as

defined in (5.2.3). Then, for each N ∈ N,

1

N

N∑
j=1

E
[∥∥X̄N

j

∥∥2

∞

]
≤ c

1 +
1

N

N∑
j=1

∣∣xNj ∣∣2 + E

 1

N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt

 , (5.3.1)

and for any ε > 0 and any {F(t)}-stopping time τ taking values in [0, T − ε],

1

N

N∑
j=1

E
[∣∣X̄N

j (τ + ε)− X̄N
j (τ)

∣∣2] ≤ cε
1 +

1

N

N∑
j=1

∣∣xNj ∣∣2 + E

 1

N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt

 .

where c <∞ does not depend on N , uN , or ε.

Proof. Condition 5.1.1 (see (5.1.5)) implies

∣∣b (X̄N
j (t), V̄ N (t)

)∣∣2 ≤ 3L2

1 +
∣∣X̄N

j (t)
∣∣2 +

1

N

N∑
j=1

∣∣X̄N
j (t)

∣∣2 ,

and so from (5.2.3) and since |σ| ≤ L and εN ≤ 1, we have

∣∣X̄N
j (t)

∣∣2 ≤ 4
∣∣xNj ∣∣2 + 4

∣∣∣∣∫ t

0

b
(
X̄N
j (s), V̄ N (s)

)
ds

∣∣∣∣2 + 4

∣∣∣∣εN ∫ t

0

σ
(
X̄N
j (s), V̄ N (s)

)
dWj(s)

∣∣∣∣2
+ 4

∣∣∣∣∫ t

0

σ
(
X̄N
j (s), V̄ N (s)

)
uNj (s) ds

∣∣∣∣2
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≤ 4
∣∣xNj ∣∣2 + 12L2T

1 +

∫ t

0

sup
0≤r≤s

∣∣X̄N
j (r)

∣∣2 ds+
1

N

N∑
j=1

∫ t

0

sup
0≤r≤s

∣∣X̄N
j (r)

∣∣2 ds


+ 4 sup
0≤r≤t

∣∣∣∣∫ r

0

σ
(
X̄N
j (s), V̄ N (s)

)
dWj(s)

∣∣∣∣2 + 4L2T

∫ T

0

∣∣uNj (s)
∣∣2 ds.

Hence by The Burkholder-Davis-Gundy inequality, and using boundedness of σ once more,

1

N

N∑
j=1

E

[
sup

0≤s≤t

∣∣X̄N
j (s)

∣∣2] ≤ 4

N

N∑
j=1

∣∣xNj ∣∣2 + 24L2T

1 +

∫ t

0

1

N

N∑
j=1

E

[
sup

0≤r≤s

∣∣X̄N
j (r)

∣∣2] ds


+ 16L2T + 4L2TE

 1

N

N∑
j=1

∫ T

0

∣∣uNj (s)
∣∣2 ds

 .
The first statement in the lemma then follows by Gronwall’s inequality (see [41, Theorem A.5.1] ) with c = 24(L2T +

1)e24L2T 2

.

Next, for any t ∈ [0, T − ε], the linear growth of b, boundedness of σ, and the Cauchy-Schwarz inequality give

∣∣X̄N
j (t+ ε)− X̄N

j (t)
∣∣2 ≤ 4

∣∣∣∣∫ t+ε

t

b
(
X̄N
j (s), V̄ N (s)

)
ds

∣∣∣∣2 + 4

∣∣∣∣εN ∫ t+ε

t

σ
(
X̄N
j (s), V̄ N (s)

)
dWj(s)

∣∣∣∣2
+ 4

∣∣∣∣∫ t+ε

t

σ
(
X̄N
j (s), V̄ N (s)

)
uNj (s) ds

∣∣∣∣2

≤ 12TL2ε

1 + sup
0≤s≤T

∣∣X̄N
j (s)

∣∣2 +
1

N

N∑
j=1

sup
0≤s≤T

∣∣X̄N
j (s)

∣∣2
+ 4

∣∣∣∣∫ t+ε

t

σ
(
X̄N
j (s), V̄ N (s)

)
dWj(s)

∣∣∣∣2 + 4L2ε

∫ T

0

∣∣uNj (s)
∣∣2 ds.

Since τ is a bounded stopping time, the optional sampling theorem gives

E

∣∣∣∣∫ τ+ε

τ

σ
(
X̄N
j (s), V̄ N (s)

)
dWj(s)

∣∣∣∣2 ≤ L2ε,

and so

1

N

N∑
j=1

E
[∣∣X̄N

j (τ + ε)− X̄N
j (τ)

∣∣2]

≤ 24(T + 1)L2ε

1 + E

 1

N

N∑
j=1

∥∥X̄N
j

∥∥2

∞

+ E

 1

N

N∑
j=1

∫ T

0

∣∣uNj (s)
∣∣2 ds

 .

The second estimate in the lemma now follows (with a possibly larger choice of c).
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5.3.1 Proof of Lemma 5.2.3

The following general lemma will be useful in proving the tightness of {J̄N}. The proof is standard (see e.g. [41,

Exercise 3.11.18]) and is therefore omitted.

Lemma 5.3.2. Let {Zk, k ∈ N} be a sequence of random variables taking values in a separable Banach space with

norm ‖ · ‖. Suppose that for each ε > 0 we can write Zk = Zεk +Rεk for each k ∈ N, where {Zεk, k ∈ N} is tight and

supk≥1E [‖Rεk‖] ≤ ε. Then {Zk} is tight.

To prove tightness for the controlled stochastic currents, we will make use of a collection of test functions

{gM ,M <∞} defined as follows.

Definition 5.3.1. Let {gM ,M < ∞} be a collection of functions in C∞c (Rd,R) that satisfy 0 ≤ gM (x) ≤ 1 for all

M <∞ and x ∈ Rd, and have the following properties

(i) For each M , gM (x) = 1 on |x| ≤M ,

(ii) For each M , gM (x) = 0 on |x| ≥M + 1, and

(iii) For every k ∈ N, there is a constant B(k) <∞ such that |DαgM (x)| ≤ B(k) for all x ∈ Rd, all M <∞, and

all |α| ≤ k.

Note that if {gM ,M <∞} is a collection as in Definition 5.3.1 then for every k ∈ N, there is a constant L(k) <∞

such that

|DαgM (x)−DαgM (y)| ≤ L(k)|x− y| (5.3.2)

for all x, y ∈ Rd, all M <∞, and all |α| ≤ k. We will need the following property of the collection {gM ,M <∞}.

Proof of the lemma is given in the Appendix.

Lemma 5.3.3. For any s > 0, there is a constant K = K(s) <∞ such that for any f ∈ Hs(Rd,Rd),

sup
M<∞

‖gMf‖s ≤ K‖f‖s.

The following is a simple extension of the well-known compact embedding result for Sobolev spaces on Rd known

as Rellich’s Theorem (see [45, Theorem 9.22]). Although the proof is standard, we provide details in the Appendix.

For s ∈ Od, F ∈ H−s, and open U0 ⊂ U , we say F = 0 on U0 if for all ϕ ∈ C∞c (U × Rd,Rd) with support in U0,

〈F,ϕ〉 = 0. The support of F is the complement of the union of all open sets in U on which F = 0.

Lemma 5.3.4. Let s = (s1, s2) and s′ = (s′1, s
′
2) in Od be such that s′1 < s1 and s′2 < s2. Suppose A ⊂ H−s

′
is such

that for some compactK ⊂ U×Rd, every F ∈ A has support contained inK. Suppose also that supF∈A ‖F‖−s′ <∞.

Then A is relatively compact in H−s.
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Finally, the lemma below establishes the required tightness for the controlled currents.

Lemma 5.3.5. Suppose Conditions 5.1.1 and 5.1.2 are satisfied. Let {gM ,M <∞} be the collection of functions in

C∞c (Rd,R) as in Definition 5.3.1. For each N ∈ N, M <∞, and ϕ ∈ C∞c (U × Rd,Rd), define

J̄N,M (ϕ)
.
= J̄N (gMϕ), J̄N,Mc (ϕ)

.
= J̄N (ϕ)− J̄N,M (ϕ).

Then, the collections {ϕ 7→ J̄N,M (ϕ)} and {ϕ 7→ J̄N,Mc (ϕ)} have pathwise realizations J̄N,M , J̄N,Mc in H−s for all

s ∈ Od. Furthermore, if

sup
N≥1

E

 1

N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt

 <∞,
then for all s ∈ Od,

sup
M<∞

sup
N≥1

E
[∥∥J̄N,M∥∥−s] <∞

and

lim
M→∞

sup
N≥1

E
[∥∥J̄N,Mc

∥∥
−s

]
= 0.

In particular, {J̄N , N ∈ N} is tight in H−s for all s ∈ Od.

Proof. Fix s = (s1, s2) ∈ Od, and for each N and 1 ≤ j ≤ N , let CNj,s be the square-integrable random variable

from Lemma 5.2.1, so that |J̄N (ϕ)| ≤ CNs ‖ϕ‖s a.s. for all ϕ ∈ C∞c (U × Rd,Rd), where CNs = 1
N

∑N
j=1 C

N
j,s. As

a consequence of Lemma 5.3.3, for some constant K = K(s2) < ∞, we have, for all ϕ ∈ C∞c (U × Rd,Rd) and

M <∞,

‖gMϕ‖2s =

∫
U

‖gMϕ(u, ·)‖2s2 du+

∫
U

∫
U

‖gM (ϕ(u, ·)− ϕ(v, ·))‖2s2
|u− v|1+2s1

du dv ≤ K2‖ϕ‖2s . (5.3.3)

Hence, ∣∣J̄N,M (ϕ)
∣∣ ≤ CNs ‖gMϕ‖s ≤ KCNs ‖ϕ‖s a.s.,

and ∣∣J̄N,Mc (ϕ)
∣∣ =

∣∣J̄N ((1− gM )ϕ)
∣∣ ≤ CNs ‖(1− gM )ϕ‖s ≤ (1 +K)CNs ‖ϕ‖s a.s.

From [42, Lemma 5] it then follows that, for every M <∞, there are H−s-valued random variables J̄N,M and J̄N,Mc

such that, for every ϕ ∈ C∞c (U × Rd,Rd) and M <∞,

〈
J̄N,M (ω), ϕ

〉
=
[
JN,M (ϕ)

]
(ω) and

〈
J̄N,Mc (ω), ϕ

〉
=
[
JN,Mc (ϕ)

]
(ω), a.e. ω ∈ Ω.
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Then, from Lemma 5.2.1,

sup
M<∞

sup
N≥1

E
[∥∥J̄N,M∥∥2

−s

]
≤ K2 sup

N≥1
E
[(
CNs
)2]

<∞. (5.3.4)

Let J̄Nj be as in (5.2.4) and define the stopping times τN,Mj = inf{t > 0 : |X̄N
j (t)| ≥M}. Then,

J̄N,Mc (ϕ) =
1

N

N∑
j=1

J̄Nj ((1− gM )ϕ) =
1

N

N∑
j=1

1{τN,Mj <T}J̄
N
j ((1− gM )ϕ),

and by Lemma 5.2.1, ∣∣J̄Nj ((1− gM )ϕ)
∣∣ ≤ CNj,s‖(1− gM )ϕ‖s ≤ (1 +K)CNj,s‖ϕ‖s.

Thus, ∣∣J̄N,Mc (ϕ)
∣∣ ≤

1 +K

N

N∑
j=1

1{τN,Mj <T}C
N
j,s

 ‖ϕ‖s .
= C̃Ns ‖ϕ‖s. (5.3.5)

Also, by the Cauchy-Schwarz inequality,

E

[(
C̃Ns

)2
]
≤ (1 +K)2

N

 N∑
j=1

P
(
τN,Mj < T

) 1

N

N∑
j=1

E
[(
CNj,s

)2] .

By Lemma 5.3.1, Condition 5.1.2, and the assumption that supN∈NE
[

1
N

∑N
j=1

∫ T
0

∣∣uNj (t)
∣∣2 dt] < ∞, there is a

constant K̃ <∞ such that

sup
N≥1

1

N

N∑
j=1

P
(
τN,Mj < T

)
≤ sup
N≥1

1

N

N∑
j=1

P
(∥∥X̄N

j

∥∥
∞ ≥M

)
≤ K̃

M2
.

Thus,

E
[∥∥J̄N,Mc

∥∥2

−s

]
≤ E

[(
C̃Ns

)2
]
≤ K̃(1 +K)2

M2
sup
N≥1

1

N

N∑
j=1

E
[(
CNj,s

)2]
,

and therefore, from Lemma 5.2.1,

lim
M→∞

sup
N≥1

E
[∥∥J̄N,Mc

∥∥2

−s

]
= 0. (5.3.6)

Note that (5.3.4) and (5.3.6) are satisfied for every s ∈ Od. Now for an arbitrary s ∈ Od, choose s′ = (s′1, s
′
2) ∈ Od

such that s′1 < s1 and s′2 < s2. Then applying (5.3.4) for s′ and observing that {J̄N,M , N ∈ N} are compactly

supported on [0, T ]×{|x| ≤M+1} ⊂ U×Rd, we see from Lemma 5.3.4 and Markov’s inequality that for each fixedM ,
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{J̄N,M , N ∈ N} is a tight collection of H−s-valued random variables. Finally, observing that J̄N = J̄N,M + J̄N,Mc

for each M and applying (5.3.6) and Lemma 5.3.2, we obtain that {J̄N , N ∈ N} is tight in H−s.

The following general lemma will be useful in proving tightness of {µ̄N}.

Lemma 5.3.6. Let (S, dS) be a Polish space. If {γk, k ∈ N} is a tight sequence of P(S)-valued random variables and

for some x0 ∈ S

sup
k∈N

E

[∫
S

dS(x, x0)2 γk(dx)

]
<∞, (5.3.7)

then {γk} is tight as a sequence of P1(S)-valued random variables.

Proof. Suppose that γk converges in distribution, along a subsequence, in P(S) to some γ, and denote the convergent

subsequence once more as {γk}. From (5.3.7) it follows that each γk is in P1(S) a.s. Furthermore, by lower

semicontinuity of the map µ 7→
∫
S
dS(x, x0)2 µ(dx) on P(S) and Fatou’s lemma, we see that

E

[∫
S

dS(x, x0)2 γ(dx)

]
≤ E

[
lim inf
k→∞

∫
S

dS(x, x0)2 γk(dx)

]
≤ sup

k≥1
E

[∫
S

dS(x, x0)2 γk(dx)

]
<∞,

and so in particular γ ∈ P1(S) a.s. By appealing to Skorohod’s representation theorem we can assume that γk → γ a.s.

in P(S). Recalling from Section ?? the metric dbl on the space P(S), we have that dbl(γk, γ)→ 0 a.s.

It suffices now to show that γk converges in probability in P1(S) to γ. Take f ∈ L(S) such that f(x0) = 0. Fix

1 < M <∞ and define

fM (x)
.
=

(
f(x)

M
∨ (−1)

)
∧ 1,

which is a function bounded by 1 in absolute value whose Lipschitz constant is also bounded by 1. Then,

∣∣∣∣∫
S

f(x) γk(dx)−
∫
S

f(x) γ(dx)

∣∣∣∣
≤M

∣∣∣∣∫
S

fM (x) γk(dx)−
∫
S

fM (x) γ(dx)

∣∣∣∣+

∫
S

|MfM (x)− f(x)| γk(dx) +

∫
S

|MfM (x)− f(x)| γ(dx)

≤Mdbl(γk, γ) +

∫
S

2|f(x)|1{|f(x)|>M} γk(dx) +

∫
S

2|f(x)|1{|f(x)|>M} γ(dx).

Since the Lipschitz constant of f is bounded by 1 and f(x0) = 0, we have that |f(x)| ≤ dS(x, x0), and so

∫
S

|f(x)|1{|f(x)|>M} γk(dx) ≤ 1

M

∫
S

dS(x, x0)2 γk(dx),
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and the equivalent inequality holds for γ. Now, since 〈µ, f〉 − 〈ν, f〉 = 〈µ, f − f(x0)〉 − 〈ν, f − f(x0)〉 for any

µ, ν ∈ P1(S) and f ∈ L(S), the supremum in the definition of d1 can be restricted to f such that f(x0) = 0. Thus,

E [d1(γk, γ)] = E

[
sup

f∈L(S),f(x0)=0

∣∣∣∣∫
S

f(x) γk(dx)−
∫
S

f(x) γ(dx)

∣∣∣∣
]

≤ME [dbl(γk, γ)] +
2

M
sup
l∈N

E

[∫
S

dS(x, x0)2 γl(dx)

]
+

2

M
E

[∫
S

dS(x, x0)2 γ(dx)

]
.

Sending first k →∞ and then M →∞, we have that limk→∞E [d1(γk, γ)] = 0 which completes the proof.

We can now complete the proof of Lemma 5.2.3.

5.3.1.1 Proof of Lemma 5.2.3(i) We begin by arguing that {µ̄N} is a tight sequence of P(X )-valued random variables.

For this it suffices to show (see [21, Theorem 2.11]) that {γN , N ∈ N} is a relatively compact set in P(X ), where

γN
.
= E

[
µ̄N
]

=
1

N

N∑
j=1

P
(
X̄N
j ∈ ·

)
.

Note that ∫
X
‖ψ‖2∞ γN (dψ) =

1

N

N∑
j=1

E
[∥∥X̄N

j

∥∥2

∞

]
,

and so by Lemma 5.3.1 and the assumption on the controls in Lemma 5.2.3, we see that

sup
N≥1

∫
X
‖ψ‖2∞ γN (dψ) = sup

N≥1

1

N

N∑
j=1

E
[∥∥X̄N

j

∥∥2

∞

]
<∞. (5.3.8)

Next, for ε > 0 let Tε denote the collection of all {σ(X(s) : s ≤ t)}-stopping times on (X ,B(X )) taking

values in [0, T − ε] where {X(t)} is the canonical coordinate process on X . Then for each N ∈ N, there are

{σ(X̄N
j (s) : s ≤ t)}-stopping times {τNj , 1 ≤ j ≤ N} on (Ω,F) with values in [0, T − ε], such that

∫
X
|ψ(τ + ε)− ψ(τ)|2 γN (dψ) =

1

N

N∑
j=1

E
[∣∣X̄N

j

(
τNj + ε

)
− X̄N

j

(
τNj
)∣∣2] .

Applying Lemma 5.3.1, we then have

∫
X
|ψ(τ + ε)− ψ(τ)|2 γN (dψ) ≤ cε

1 + sup
N≥1

1

N

N∑
j=1

∣∣xNj ∣∣2 + sup
N≥1

E

[
1

N

N∑
J=1

∫ T

0

∣∣uNj (t)
∣∣2 dt]

 ,

and hence

lim
ε→0

sup
N≥1

sup
τ∈Tε

∫
X
|ψ(τ + ε)− ψ(τ)|2 γN (dψ) = 0. (5.3.9)
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The relative compactness of {γN , N ∈ N} in P(X ) is immediate from (5.3.8) and (5.3.9) (see [21, Theorem D.4]),

which as noted previously shows {µ̄N} is a tight sequence of P(X )-valued random variables. The tightness of {µ̄N}

as a sequence of P1(X )-valued random variables now follows from Lemma 5.3.6 and the uniform moment estimate

in (5.3.8). Note also that since µ̄N = QN(1), we have the tightness of the first marginals of {QN} (as a sequence of

P(X )-valued random variables).

That the second marginals {QN(2)} is a tight sequence of P(R1)-valued random variables follows by an argument

similar to [22, Lemma 5.1] however we provide the details. Note that the function

h(r) =

∫
[0,T ]×Rm

|y|2 r(dt, dy)

has compact level sets onR1 (recall thatR1 is equipped with the Wasserstein-1 metric). It then follows that

H(θ) =

∫
R1

h(r) θ(dr)

has relatively compact level sets on P(R1) (see [21, Lemma 2.10]). It now suffices to show supN≥1E[H(QN(2))] <∞

(see [21, Lemmas 2.9]). However this is immediate as

sup
N≥1

E
[
H
(
QN(2)

)]
= sup
N≥1

E

 1

N

N∑
j=1

∫
[0,T ]×Rm

|y|2ρNj (dt, dy)

 = sup
N≥1

E

 1

N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt

 <∞.
(5.3.10)

Thus we have shown that the second marginals of {QN} are also tight, which in turn shows that {µ̄N , QN} is a tight

sequence of P1(X )× P(Z)-valued random variables. Together with Lemma 5.3.5, this finishes the proof of Lemma

5.2.3(i).

5.3.1.2 Proof of Lemma 5.2.3(ii) Suppose now that (µ̄N , QN , J̄N ) ⇒ (µ̄, Q, J̄ ) in P1(X ) × P(Z) × H−s,

where (µ̄, Q, J̄ ) is defined on some probability space. By appealing to Skorokhod’s representation theorem, we

can assume that {(µ̄N , QN , J̄N )} and (µ̄, Q, J̄ ) are defined on a common probability space (Ω̃, F̃ , P̃ ) and that

(µ̄N , QN , J̄N )→ (µ̄, Q, J̄ ) a.s. Let Ẽ denote expectation on this space. The property Q(1) = µ̄ is immediate from

the identity QN(1) = µ̄N for every N ∈ N. We will complete the remainder of the proof in three steps: step 1 will

establish that Q ∈ P2(Z), step 2 that Q ∈ S(Z), and step 3 that Q ∈ P∗(J̄ ), from which the result will follow.
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Step 1. By Fatou’s lemma,

Ẽ

[
EQ

[∫
Rm×[0,T ]

|y|2ρ(dy dt)

]]
≤ lim inf

N→∞
Ẽ

[
EQN

[∫
Rm×[0,T ]

|y|2ρ(dy dt)

]]

= lim inf
N→∞

E

 1

N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt

 <∞, (5.3.11)

and hence Q ∈ P2(Z) a.s.

Step 2. We now show that a.s. Q ∈ S(Z), namely it is a weak solution to (5.1.9). Define the generator A as

follows. For each f ∈ C2
c (Rd,R), let

Af(ν, x, y) = (b(x, ν) + σ(x, ν)y) · ∇f(x), (ν, x, y) ∈ P1

(
Rd
)
× Rd × Rm.

Now fix an f ∈ C2
c (Rd,R) and and define, for each V ∈ V , the R-valued process {MV (t), 0 ≤ t ≤ T} on the

measurable space (Z,B(Z)) by

MV (t, (ξ, r)) = f(ξ(t))− f(ξ(0))−
∫

[0,t]×Rm
Af (V (s), ξ(s), y) r(ds, dy), (ξ, r) ∈ Z. (5.3.12)

Let V̄ .
= νQ. Since f is arbitrary, to establish that Q ∈ S(Z) a.s., it suffices to show that for each fixed 0 ≤ t ≤ T and

a.e. ω ∈ Ω̃,

M V̄ (ω)(t, (ξ, r)) = 0, Q(ω)-a.e. (ξ, r) ∈ Z. (5.3.13)

We will supress ω from the notation for the remainder of the proof.

For each 1 ≤ B < ∞, let ψB ∈ Cc(Rm,Rm) be such that ψB(y) = y on {|y| ≤ B} and |ψB(y)| ≤ |y| + 1

everywhere. Note that since B ≥ 1, this definition implies that

|y − ψB(y)| ≤ |y|(2|y|+ 1)

B
1{|y|>B} ≤

3|y|2

B
. (5.3.14)

Also let ηB ∈ Cc(Rd,Rd) be such that ηB(x) = x on {|x| ≤ B} and |ηB(x)| ≤ |x|+ 1 everywhere. As with ψB , we

have that

|x− ηB(x)| ≤ 3|x|2

B
. (5.3.15)

Now define the ‘truncated generator’ AB

ABf(ν, x, y) = (ηB(b(x, ν)) + σ(x, ν)ψB(y)) · ∇f(x), (ν, x, y) ∈ P1

(
Rd
)
× Rd × Rm,
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and for each V ∈ V , let {MV
B (t)} be the corresponding process defined as in (5.3.12) with AB in place of A. Let

K
.
= sup
x∈Rd

(
|f(x)|+ |∇f(x)|+ |D2f(x)|

)
<∞,

and note that for all V ∈ V , 0 ≤ s ≤ t, and (x, y) ∈ Rd × Rm,

|Af(V (s), x, y)−ABf(V (s), x, y)| ≤ K

(
3 |b(x, V (s))|2

B
+

3L|y|2

B

)

≤ 12K(L+ 1)2

B

(
1 + |x|2 +

∫
Rd
|x′|2 V (s, dx′) + |y|2

)
.

(5.3.16)

Now fix t, and define the maps Φ and ΦB on P(Z)× V by

Φ(Θ, V ) = EΘ

[∣∣MV (t)
∣∣] , ΦB(Θ, V ) = EΘ

[∣∣MV
B (t)

∣∣] .
Note that V̄ N = νQN , were V̄ N is as in Section 5.2.1. We proceed by showing that

(a) ΦB is bounded and continuous on P(Z)× V ,

(b) supN≥1 Ẽ
[∣∣Φ(QN , V̄ N )− ΦB(QN , V̄ N )

∣∣]→ 0 and
∣∣Φ(Q, V̄ )− ΦB(Q, V̄ )

∣∣ P̃→ 0 as B →∞, and

(c) Φ(QN , V̄ N )
P̃→ 0 as N →∞.

The convergence (QN , V̄ N ) → (Q, V̄ ) then yields that Φ(Q, V̄ ) = 0 a.s., from which the statement in (5.3.13) is

immediate.

We first show (a). Boundedness of ΦB follows from the boundedness of ηB , ψB , σ, f , and ∇f . The continuity of

ΦB follows from the continuity of the map (V, z) 7→MV
B (t, z) on V × Z .

For (b), note from (5.3.16) that

Ẽ
[∣∣Φ (QN , V̄ N)− ΦB

(
QN , V̄ N

)∣∣] ≤ Ẽ [EQN [∣∣∣M V̄ N (t)−M V̄ N

B (t)
∣∣∣]]

≤ 12K(L+ 1)2

B
Ẽ

[
EQN

[∫ T

0

(
1 + |X(s)|2 +

∫
Rd
|x|2 V̄ N (s, dx) +

∫
Rm
|y|2 ρs(dy)

)
ds

]]

≤ 12K(L+ 1)2

B
sup
N≥1

E

T +
2T

N

N∑
j=1

∥∥X̄N
j

∥∥2

∞ +
1

N

N∑
j=1

∫ T

0

∣∣uNj (s)
∣∣2 ds

 . (5.3.17)

From Lemma 5.3.1 and the assumption on the controls in Lemma 5.2.3, we see that the last term in the above display

converges to 0 as B →∞. Similarly, since Q ∈ P2(Z) a.s., the estimate

∣∣Φ(Q, V̄ )− ΦB(Q, V̄ )
∣∣ ≤ EQ [∣∣∣M V̄ (t)−M V̄

B (t)
∣∣∣]
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≤ 12K(L+ 1)2

B

(∫ T

0

(
1 + 2

∫
Rd
|x|2 V̄ (s, dx)

)
ds+ EQ

[∫
[0,T ]×Rm

|y|2 ρ(ds, dy)

])

implies that ∣∣Φ (Q, V̄ )− ΦB
(
Q, V̄

)∣∣→ 0 a.s., as B →∞. (5.3.18)

This completes the proof of (b).

We now turn to (c). Note that

Φ
(
QN , V̄ N

)
= EQN

[∣∣∣M V̄ N (t)
∣∣∣] =

1

N

N∑
j=1

∣∣∣M V̄ N
(
t,
(
X̄N
j , ρ

N
j

))∣∣∣
=

1

N

N∑
j=1

∣∣∣∣f (X̄N
j (t)

)
− f

(
xNj
)
−
∫ t

0

Af
(
V̄ N (s), X̄N

j (s), uNj (s)
)
ds

∣∣∣∣ .
By Itô’s lemma, for each 1 ≤ j ≤ N ,

f
(
X̄N
j (t)

)
− f

(
xNj
)

=

∫ t

0

Af
(
V̄ N , X̄N

j (s), uNj (s)
)
ds

+ εN

∫ t

0

∇f
(
X̄N
j (s)

)
· σ
(
X̄N
j (s), V̄ N (s)

)
dWj(s)

+
ε2
N

2

∫ t

0

Tr
[
D2f

(
X̄N
j (s)

) (
σσT

) (
X̄N
j (s), V̄ N (s)

)]
ds.

Hence,

Φ
(
QN , V̄ N

)
=

1

N

N∑
j=1

∣∣∣∣εN ∫ t

0

∇f
(
X̄N
j (s)

)
· σ
(
X̄N
j (s), V̄ N (s)

)
dWj(s)

+
ε2
N

2

∫ t

0

Tr
[
D2f

(
X̄N
j (s)

) (
σσT

) (
X̄N
j (s), V̄ N (s)

)]
ds

∣∣∣∣ .
From the boundedness of∇f , D2f , and σ, it follows that

Ẽ
[
Φ
(
QN , V̄ N

)]
≤
(
KLT 1/2

)
εN +

KL2Tε2
N

2
→ 0 as N →∞.

This completes (c), which as noted previously proves the statement in (5.3.13) and which in turn shows that Q is a.s. a

weak solution to (5.1.9).

Step 3. To complete the proof of Lemma 5.2.3, it only remains to establish that

Gϕ(Q) = 〈J̄ , ϕ〉 for all ϕ ∈ C∞c (U × Rd,Rd), P̃ -a.s. (5.3.19)
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By considering a countable, dense subset of C∞c (U×Rd,Rd), it suffices to show that for each fixedϕ ∈ C∞c (U×Rd,Rd),

we have Gϕ(Q) = J̄ (ϕ) a.s.

Fix ϕ, and let

Kϕ
.
= sup

(t,x)∈[0,T ]×Rd

|ϕ(t, x)|+
d∑

k,l=1

∣∣∣∣∂ϕk∂xl
(t, x)

∣∣∣∣
 <∞.

Then, a.s.,

〈
J̄N , ϕ

〉
=

1

N

N∑
j=1

∫ T

0

ϕ
(
t, X̄N

j (t)
)
◦ dX̄N

j (t)

=
1

N

N∑
j=1

∫ T

0

ϕ
(
t, X̄N

j (t)
)
· dX̄N

j (t) +
1

2N

N∑
j=1

〈
ϕ
(
·, X̄N

j (·)
)
, X̄N

j (·)
〉
T

=
1

N

N∑
j=1

∫ T

0

ϕ
(
t, X̄N

j (t)
)
· dX̄N

j (t)

+
ε2
N

2N

N∑
j=1

∫ T

0

d∑
k,l=1

∂ϕk
∂xl

(
t, X̄N

j (t)
)

(σσT)lk
(
X̄N
j (t), V̄ N (t)

)
dt.

Define

G∗ϕ
(
QN
) .

=
1

N

N∑
j=1

∫ T

0

ϕ
(
t, X̄N

j (t)
)
· dX̄N

j (t).

Since |σ| ≤ L,

∣∣〈J̄N , ϕ〉−G∗ϕ (QN)∣∣ =

∣∣∣∣∣∣ ε
2
N

2N

N∑
j=1

∫ T

0

d∑
k,l=1

∂ϕk
∂xl

(
t, X̄N

j (t)
)

(σσT)lk
(
X̄N
j (t), V̄ N (t)

)
dt

∣∣∣∣∣∣ ≤ KϕL
2Tε2

N

2
,

and hence |〈J̄N , ϕ〉 −G∗ϕ(QN )| → 0 in L1 as N →∞. Also, by the dominated convergence theorem,

lim
N→∞

E
[∣∣〈J̄ , ϕ〉− 〈J̄N , ϕ〉∣∣ ∧ 1

]
= 0.

Next, writing

∣∣〈J̄ , ϕ〉−Gϕ(Q)
∣∣ ∧ 1 ≤

∣∣〈J̄ , ϕ〉− 〈J̄N , ϕ〉∣∣ ∧ 1 +
∣∣〈J̄N , ϕ〉−G∗ϕ (QN)∣∣+

∣∣G∗ϕ (QN)−Gϕ(Q)
∣∣ ,

we see that to prove (5.3.19) and thus to complete the proof it suffices to argue that the third term on the right side of

the above display converges to 0 in probability.
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To this end, define the maps G̃ϕ and G̃Bϕ on {Θ ∈ P2(Z) : νΘ ∈ V} × V by

G̃ϕ(Θ, V )
.
= EΘ

[∫ T

0

ϕ(t,X(t)) · b(X(t), V (t)) dt+

∫
[0,T ]×Rm

ϕ(t,X(t)) · σ(X(t), V (t))y ρ(dt, dy)

]
,

G̃Bϕ (Θ, V )
.
= EΘ

[∫ T

0

ϕ(t,X(t)) · ηB (b(X(t), V (t))) dt

]

+ EΘ

[∫
[0,T ]×Rm

ϕ(t,X(t)) · σ(X(t), V (t))ψB(y) ρ(dt, dy)

]
,

for each 1 ≤ B <∞. Note by (5.1.10) that G̃ϕ(Θ, νΘ) = Gϕ(Θ) whenever Θ ∈ S(Z), and hence since V̄ = νQ and

Q ∈ S(Z) a.s., we have that G̃ϕ(Q, V̄ ) = Gϕ(Q) a.s. Also, since

G̃ϕ
(
QN , V̄ N

)
=

1

N

N∑
j=1

∫ T

0

ϕ
(
t, X̄N

j (t)
)
· b
(
X̄N
j (t), V̄ N (t)

)
dt

+
1

N

N∑
j=1

∫ T

0

ϕ
(
t, X̄N

j (t)
)
· σ
(
X̄N
j (t), V̄ N (t)

)
uNj (t) dt

and εN → 0, we see that |G̃ϕ(QN , V̄ N )−G∗ϕ(QN )| P̃→ 0 as N →∞. Thus it remains to argue that

∣∣∣G̃ϕ (QN , V̄ N)− G̃ϕ (Q, V̄ )∣∣∣ P̃→ 0 as N →∞. (5.3.20)

Now, since

G̃Bϕ
(
QN , V̄ N

)
=

1

N

N∑
j=1

∫ T

0

ϕ
(
t, X̄N

j (t)
)
· ηB

(
b
(
X̄N
j (t), V̄ N (t)

))
dt

+
1

N

N∑
j=1

∫ T

0

ϕ
(
t, X̄N

j (t)
)
· σ
(
X̄N
j (t), V̄ N (t)

)
ψB
(
uNj (t)

)
dt,

and the map

(ξ, r, V ) 7→
∫ T

0

ϕ (t, ξ(t)) · ηB(b(ξ(t), V (t))) dt+

∫
[0,T ]×Rm

ϕ (t, ξ(t)) · σ(ξ(t), V (t))ψB(y) r(dt, dy)

is bounded and continuous on Z × V , the a.s. convergence (QN , V̄ N )→ (Q, V̄ ) in P(Z)× V implies that

G̃Bϕ
(
QN , V̄ N

)
→ G̃Bϕ

(
Q, V̄

)
a.s., as N →∞, (5.3.21)
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for each B. Also, using (5.3.14) and (5.3.15), as in the proof of (5.3.17), we see

∣∣∣G̃Bϕ (QN , V̄ N)− G̃ϕ (QN , V̄ N)∣∣∣
≤ 18KϕL

2T

B

1 +
1

N

N∑
j=1

∥∥X̄N
j

∥∥2

∞

+
3KϕL

BN

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt,

which in view of Lemma 5.3.1 and the assumption on the controls in Lemma 5.2.3 shows that

sup
N≥1

Ẽ
[∣∣∣G̃Bϕ (QN , V̄ N)− G̃ϕ (QN , V̄ N)∣∣∣]→ 0 as B →∞. (5.3.22)

Finally, along the same lines as in the proof of (5.3.18),

∣∣∣G̃Bϕ (Q, V̄ )− G̃ϕ (Q, V̄ )∣∣∣→ 0 a.s., as B →∞.

Combining the above convergence with (5.3.21) and (5.3.22) shows (5.3.20), which as noted previously establishes that

Q ∈ P∗(J̄ ) a.s. and thus completes the proof of the lemma.

5.3.2 Proof of Lemma 5.2.5

We first prove an estimate similar to that in Lemma 5.3.1 for the coordinate process X(t) on the space (Z,B(Z),Θ)

for each Θ ∈ P2(Z) ∩ S(Z). By the definition of S(Z), the coordinate maps (X, ρ) satisfy

dX(t) = b (X(t), νΘ(t)) dt+

∫
Rm

σ (X(t), νΘ(t)) y ρt(dy) dt Θ-a.s., (5.3.23)

with X(0) ∼ µ0. By Condition 5.1.1,

|b (X(t), νΘ(t))|2 ≤ 3L2

(
1 + |X(t)|2 +

∫
Rd
|x|2 νΘ(t, dx)

)
= 3L2

(
1 + |X(t)|2 + EΘ

[
|X(t)|2

]) (5.3.24)

Applying the above bound in (5.3.23), taking expectation, using |σ| ≤ L, and applying Gronwall’s inequality, we have

EΘ

[
‖X‖2∞

]
≤ c̃

(
1 +

∫
Rd
|x|2 µ0(dx) + EΘ

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
<∞, (5.3.25)

for some c̃ = c̃(L, T ) <∞.
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Now fix s ∈ Od and let {(µk,Θk,Jk)} be a sequence in P1(X )× P(Z)×H−s that satisfies the hypotheses of

the lemma. Note that, by (5.3.25),

sup
k≥1

∫
X
‖ψ‖2∞ µk(dψ) = sup

k≥1

∫
X
‖ψ‖2∞ (Θk)(1)(dψ) = sup

k≥1
EΘk

[
‖X‖2∞

]
≤ c̃

(
1 +

∫
Rd
|x|2 µ0(dx) + sup

k≥1
EΘk

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
<∞.

(5.3.26)

If τ is a {σ(X(s), s ≤ t)}-stopping time on (Z,B(Z)) taking values in [0, T − ε], then for any ε > 0,

|X(τ + ε)−X(τ)|2 ≤ 2

∣∣∣∣∫ τ+ε

τ

b(X(t), νΘk(t)) dt

∣∣∣∣2 + 2

∣∣∣∣∫ τ+ε

τ

∫
Rm

σ(X(t), νΘk(t))y ρt(dy) dt

∣∣∣∣2
≤ 6L2ε

∫ T

0

(
1 + |X(t)|2 + EΘk

[
|X(t)|2

])
dt+ 2L2ε

∫ T

0

∫
Rm
|y|2 ρt(dy) dt,

Θk-a.s. for each k. Hence, using the bound in (5.3.25),

EΘk

[
|X(τ + ε)−X(τ)|2

]
≤ 12L2(1 + c̃)ε

(
1 +

∫
Rd
|x|2 µ0(dx) + sup

k≥1
EΘk

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
.

If Tε denotes the collection of all such stopping times τ , it follows that

sup
k≥1

sup
τ∈Tε

∫
X
|ψ(τ + ε)− ψ(τ)|2 µk(dψ) = sup

k≥1
sup
τ∈Tε

∫
X
|ψ(τ + ε)− ψ(τ)|2 (Θk)(1)(dψ)

= sup
k≥1

sup
τ∈Tε

EΘk

[
|X(τ + ε)−X(τ)|2

]
→ 0

as ε→ 0. This and (5.3.26) prove relative compactness of {µk} (and hence of {(Θk)(1)}) in P(X ). By Lemma 5.3.6

and (5.3.26), we in fact get relative compactness of {µk} in P1(X ) .

For the second marginals {(Θk)(2)}, we recall from the proof of Lemma 5.2.3 that

H(θ) =

∫
R1

∫
[0,T ]×Rm

|y|2 r(dt, dy) θ(dr)

has relatively compact level sets on P(R1). Hence, we have relative compactness of {(Θk)(2)} in P(R1) on observing

that

sup
k≥1

H
(
(Θk)(2)

)
= sup

k≥1
EΘk

[∫
[0,T ]×Rm

|y|2ρ(dt, dy)

]
<∞.

This establishes that {Θk} is relatively compact in P(Z).

For {Jk}, we employ the following lemma, the proof of which is saved for the Appendix.
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Lemma 5.3.7. Suppose Conditions 5.1.1 and 5.1.2 are satisfied. Also suppose that for some s ∈ Od and (µ,J ) ∈

P1(X )×H−s, I(µ,J ) <∞. Then, for each s′ ∈ Od, there is a constant Cs′ <∞ such that for any Θ ∈ P∗(J ) with

Θ(1) = µ, and for all ϕ ∈ C∞c (U × Rd,Rd),

|〈J , ϕ〉|2 ≤ EΘ

∣∣∣∣∣
∫ T

0

ϕ(t,X(t)) · dX(t)

∣∣∣∣∣
2
 ≤ Cs′

(
1 + EΘ

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
‖ϕ‖2s′ ,

where Cs′ does not depend on J , ϕ, or Θ. In particular, J ∈ H−s
′

for all s′ ∈ Od.

Recall the collection of test functions {gM ,M <∞} from Definition 5.3.1, which by Lemma 5.3.3 (see (5.3.3))

satisfy

‖gMϕ‖s ≤ K‖ϕ‖s, (5.3.27)

for all ϕ ∈ C∞c (U × Rd,Rd) and s ∈ Od, with K < ∞ depending only on s. For each k ≥ 1 and M < ∞, define

JMk ,JM,c
k ∈ H−s by

〈
JMk , ϕ

〉 .
= 〈Jk, gMϕ〉 ,

〈
JM,c
k , ϕ

〉
.
= 〈Jk, ϕ〉 −

〈
JMk , ϕ

〉
, ϕ ∈ C∞c (U × Rd,Rd).

Fix some s′ ∈ Od such that s′1 < s1 and s′2 < s2. Since Θk ∈ P∗(Jk) for each k and (5.2.14) holds, I(µk,Jk) <∞

for each k, so by Lemma 5.3.7, Jk ∈ H−s
′

for each k. Then for each k and M , in view of (5.3.27), JMk and JM,c
k are

in H−s
′

as well, and furthermore,

∣∣〈JMk , ϕ
〉∣∣2 ≤ Cs′

(
1 + EΘ

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
‖gMϕ‖2s′

≤ Cs′K
2

(
1 + EΘk

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
‖ϕ‖2s′ ,

and hence

sup
M<∞,k≥1

∥∥JMk ∥∥2

−s′ ≤ Cs′K
2

(
1 + sup

k≥1
EΘk

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
<∞. (5.3.28)

Noting that for eachM , {JMk } are all supported on [0, T ]×{|x| ≤M+1} ⊂ U×Rd, by Lemma 5.3.4, {JMk , k ≥ 1}

is relatively compact in H−s. Now define the collection of stopping times {τM ,M < ∞} on (Z,B(Z)) by τM .
=

inf{t > 0 : |X(t)| ≥M}. Note that

〈
JM,c
k , ϕ

〉
= EΘk

[∫ T

0

(1− gM (X(t)))ϕ(t,X(t)) · dX(t)

]

= EΘk

[
1{τM<T}

∫ T

0

(1− gM (X(t)))ϕ(t,X(t)) · dX(t)

]
,
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and so by Lemma 5.3.7 and (5.3.27),

∣∣∣〈JM,c
k , ϕ

〉∣∣∣2 ≤ Θk

(
τM < T

)
EΘk

∣∣∣∣∣
∫ T

0

(1− gM (X(t)))ϕ(t,X(t)) · dX(t)

∣∣∣∣∣
2


≤ Θk

(
τM < T

)
Cs

(
1 + EΘk

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
‖(1− gM )ϕ‖2s

≤ 2Θk

(
τM < T

)
Cs

(
1 +K2

)(
1 + EΘk

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
‖ϕ‖2s ,

and hence

sup
k≥1

∥∥∥JM,c
k

∥∥∥2

−s
≤ 2 sup

k≥1
Θk

(
τM < T

)
Cs

(
1 +K2

)(
1 + sup

k≥1
EΘk

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])

≤ 2

M2
sup
k≥1

EΘk

[
‖X‖2∞

]
Cs

(
1 +K2

)(
1 + sup

k≥1
EΘk

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])

→ 0

(5.3.29)

as M → ∞, by (5.3.25). Then by Lemma 5.3.2 (applied to the constant random variables Jk = JMk + JM,c
k on

(Z,B(Z))), we obtain from (5.3.28) and (5.3.29) that {Jk} is relatively compact in H−s. Lemma 5.2.5 now follows

on combining the above with the relative compactness of {(µk,Θk)} in P1(X )× P(Z) shown previously.

5.3.3 Proof of Lemma 5.2.4

Recall that we assume that Conditions 5.1.1, 5.1.2 and 5.1.3 hold. In particular, σ(x, µ) = σ(µ). Let Θ1,Θ2 ∈

S(Z)∩P2(Z) be such that Θ1 ◦ θ−1 = Θ2 ◦ θ−1, and let Λ = Θ1 ◦ θ−1. Then for j = 1, 2, we can disintegrate Θj as

Θj(dx, dr) = Θ̃j(x0, r, dx) Λ(dx0, dr)

for some measurable map Θ̃j : Rd ×R1 → P(X ). Define the probability measure Ξ on the space Rd ×R1 ×X × X

as

Ξ(dx0, dr, dx1, dx2) = Θ̃1(x0, r, dx1) Θ̃2(x0, r, dx2) Λ(dx0, dr),

and let (ξ0, ρ,X1, X2) denote the coordinate maps on this space. Then, X1(0) = X2(0) = ξ0, and to prove the lemma

it suffices to show that X1 = X2 Ξ-a.s.

Letting u(t) =
∫
Rm y ρt(dy) and Vj(t) = Ξ ◦ (Xj(t))

−1, we have that EΞ

[∫ T
0
|u(t)|2 dt

]
<∞ and

Xj(t) = ξ0 +

∫ t

0

b (Xj(s), Vj(s)) ds+

∫ t

0

σ (Vj(s))u(s) ds, j = 1, 2.
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By the Lipschitz property of the coefficients and the fact that

d1 (V1(s), V2(s))
2 ≤ (EΞ [|X1(s)−X2(s)|])2 ≤ EΞ

[
sup

0≤r≤s
|X1(r)−X2(r)|2

]
,

it follows from Condition 5.1.1 that for every 0 ≤ t ≤ T ,

|X1(t)−X2(t)|2 ≤ 2T

∫ t

0

|b (X1(s), V1(s))− b (X2(s), V2(s))|2 ds

+ 2

(∫ T

0

|u(s)|2 ds

)∫ T

0

|σ (V1(s))− σ (V2(s))|2 ds

≤ 2L2T

∫ t

0

(|X1(s)−X2(s)|+ d1 (V1(s), V2(s)))
2
ds

+ 2L2

(∫ t

0

|u(s)|2 ds
)∫ T

0

d1 (V1(s), V2(s))
2
ds

≤ 4L2T

∫ t

0

sup
0≤r≤s

|X1(r)−X2(r)|2 ds

+ 2L2

(
2T +

∫ T

0

|u(t)|2 dt

)∫ t

0

EΞ

[
sup

0≤r≤s
|X1(r)−X2(r)|2

]
ds.

Then taking expectation with respect to Ξ, for all 0 ≤ t ≤ T ,

EΞ

[
sup

0≤s≤t
|X1(s)−X2(s)|2

]
≤ 2L2

(
4T + EΞ

[∫ T

0

|u(s)|2 ds

])∫ t

0

EΞ

[
sup

0≤r≤s
|X1(r)−X2(r)|2

]
ds.

Gronwall’s inequality now shows that EΞ

[
‖X1 −X2‖2∞

]
= 0, which completes the proof.

5.4 Proofs of Sobolev Space Results

In this section we provide proofs of some Sobolev space results that are used in our work. It will be convenient to

introduce an alternate norm on Hs equivalent to (5.1.8), and which is similar to norms used in [73] and [88]. Let

{e1, . . . , ed} denote the canonical basis in Rd, recall that U = (a, b) ⊃ [0, T ], let I .
= Z×Rd×{1, . . . , d}, and define

the functions ekn,ξ : U × Rd → Rd for (n, ξ, k) ∈ I by

ekn,ξ(t, x) =
1

b− a
e2πint/(b−a)e2πiξ·xek.
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Consider the Fourier coefficients of ϕ ∈ C∞c (U × Rd,Rd) given by

ϕ̂(n, ξ) = (ϕ̂1(n, ξ), . . . , ϕ̂d(n, ξ)) , ϕ̂k(n, ξ) =

∫
U

∫
Rd
ek−n,−ξ(t, x) · ϕ(t, x) dx dt. (5.4.1)

Then an equivalent norm on Hs, s = (s1, s2) ∈ R2
+, is given by

‖ϕ‖2∗,s =
∑
n∈Z

∫
Rd
|ϕ̂(n, ξ)|2

(
1 + n2

)s1 (
1 + |ξ|2

)s2
dξ. (5.4.2)

5.4.1 Proof of Lemma 5.2.1

From the equivalence of the norms, it suffices to prove the statement in the lemma with ‖ · ‖s replaced with ‖ · ‖∗,s. In

what follows, we will abuse notation and denote ‖ · ‖∗,s once more as ‖ · ‖s. Recall that for N ∈ N, 1 ≤ j ≤ N , and

ϕ ∈ C∞c (U × Rd,Rd),

J̄Nj (ϕ) =

∫ T

0

ϕ
(
t, X̄N

j (t)
)
◦ dX̄N

j (t).

Any such ϕ can be written in terms of its Fourier coefficients as

ϕ(t, x) =

d∑
k=1

∑
n∈Z

∫
Rd
ϕ̂k(n, ξ)ekn,ξ(t, x) dξ.

As in [42, Lemma 8] it follows that

J̄Nj (ϕ) =

d∑
k=1

∑
n∈Z

∫
Rd
ϕ̂k(n, ξ)ZNj,k(n, ξ) dξ,

where

ZNj,k(n, ξ)
.
=

∫ T

0

ekn,ξ
(
t, X̄N

j (t)
)
◦ dX̄N

j (t).

Note that

ZNj,k(n, ξ) =

∫ T

0

ekn,ξ
(
t, X̄N

j (t)
)
· dX̄N

j (t) +
1

2

〈
ekn,ξ

(
·, X̄N

j (·)
)
, X̄N

j (·)
〉
T

=

∫ T

0

ekn,ξ
(
t, X̄N

j (t)
)
· b
(
X̄N
j (t), V̄ N (t)

)
dt+

∫ T

0

ekn,ξ
(
t, X̄N

j (t)
)
· σ
(
X̄N
j (t), V̄ N (t)

)
uNj (t) dt

+ εN

∫ T

0

ekn,ξ
(
t, X̄N

j (t)
)
· σ
(
X̄N
j (t), V̄ N (t)

)
dWj(t)

+ πiε2
Nξk

∫ T

0

(
ekn,ξ

)
k

(
t, X̄N

j (t)
) (
σσT

)
kk

(
X̄N
j (t), V̄ N (t)

)
dt,
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since the kth component (ekn,ξ)k is the only nonzero component of ekn,ξ. By the Cauchy-Schwarz inequality, for all

ϕ ∈ C∞c (U × Rd,Rd),

∣∣J̄Nj (ϕ)
∣∣2 ≤ ‖ϕ‖2s d∑

k=1

∑
n∈Z

∫
Rd

∣∣∣ZNj,k(n, ξ)
∣∣∣2

(1 + n2)
s1 (1 + |ξ|2)

s2 dξ = ‖ϕ‖2s
(
CNj,s

)2
, (5.4.3)

where

CNj,s
.
=

 d∑
k=1

∑
n∈Z

∫
Rd

∣∣∣ZNj,k(n, ξ)
∣∣∣2

(1 + n2)
s1 (1 + |ξ|2)

s2 dξ


1/2

.

Since |ekn,ξ| ≤ T−1 and |σ| ≤ L, the Burkholder-Davis-Gundy inequality gives

E
[∣∣ZNj,k(n, ξ)

∣∣2] ≤ 4E

[∫ T

0

∣∣b (X̄N
j (t), V̄ N (t)

)∣∣2 dt]+
4L2

T
E

[∫ T

0

∣∣uNj (t)
∣∣2 dt]+

4ε2
NL

2

T

+
4π2ε4

NL
4ξ2
k

T
.

(5.4.4)

By the linear growth property of b from Condition 5.1.1,

∣∣b (X̄N
j (t), V̄ N (t)

)∣∣2 ≤ 3L2

(
1 +

∣∣X̄N
j (t)

∣∣2 +
1

N

N∑
l=1

∣∣X̄N
l (t)

∣∣2) ,
and from Lemma 5.3.1, E

[
‖X̄N

j ‖2∞
]
<∞ for each N ∈ N and 1 ≤ j ≤ N . Using the last two estimates and (5.4.4),

we see that

sup
(n,ξ,k)∈I

E
[∣∣ZNj,k(n, ξ)

∣∣2] <∞.
Thus, for each N ∈ N and 1 ≤ j ≤ N , E[|CNj,s|2] <∞ for any s ∈ Od. Following [42], we now have from (5.4.3) the

existence of a pathwise realization J̄N of {ϕ 7→ J̄N (ϕ)} in H−s for every N ∈ N and any s ∈ Od. This proves the

first part of the lemma.

For the second part, note that by Lemma 5.3.1,

E
[∣∣b (X̄N

j (t), V̄ N (t)
)∣∣2] ≤ 4L2(c+ 1)

(
1 +

∣∣xNj ∣∣2 + E

[∫ T

0

∣∣uNj (t)
∣∣2 dt]+

1

N

N∑
l=1

∣∣xNl ∣∣2
+ E

[
1

N

N∑
l=1

∫ T

0

∣∣uNl (t)
∣∣2 dt]) .

Thus for some constant K <∞ depending only on d, T , and L,

1

N

N∑
j=1

d∑
k=1

E
[∣∣ZNj,k(n, ξ)

∣∣2] ≤ K
1 + |ξ|2 +

1

N

N∑
j=1

∣∣xNj ∣∣2 + E

 1

N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt

 .
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Letting CNs = 1
N

∑N
j=1 C

N
j,s, we have from (5.4.3) that, for all ϕ ∈ C∞c (U × Rd,Rd),

∣∣J̄N (ϕ)
∣∣ ≤ 1

N

N∑
j=1

∣∣J̄Nj (ϕ)
∣∣ ≤ CNs ‖ϕ‖s.

Finally,

E
[(
CNs
)2] ≤ 1

N

N∑
j=1

E
[(
CNj,s

)2]

≤
∑
n∈Z

∫
Rd

K

(1 + n2)
s1 (1 + |ξ|2)

s2

1 + |ξ|2 + sup
N≥1

1

N

N∑
j=1

∣∣xNj ∣∣2 + sup
N≥1

E

 1

N

N∑
j=1

∫ T

0

∣∣uNj (t)
∣∣2 dt

 dξ,

which is finite by Condition 5.1.2 and (5.2.5) since s ∈ Od.

5.4.2 Proof of Lemma 5.3.7

As in the proof of Lemma 5.2.1, it suffices to prove the statement in the lemma with ‖ · ‖s replaced with ‖ · ‖∗,s, and

once again, abusing notation, we will denote ‖ · ‖∗,s as ‖ · ‖s. Suppose that s ∈ Od and (µ,J ) ∈ P1(X )×H−s are

such that I(µ,J ) <∞. Then there is some Θ ∈ P∗(J ) such that Θ(1) = µ and

〈J , ϕ〉 = Gϕ(Θ) = EΘ

[∫ T

0

ϕ(t,X(t)) · dX(t)

]
,

for all ϕ ∈ C∞c (U × Rd,Rd). Furthermore, the estimate (5.3.25) holds for this Θ. By an argument as in the proof of

Lemma 5.2.1, ∫ T

0

ϕ(t,X(t)) · dX(t) =

d∑
k=1

∑
n∈Z

∫
Rd
ϕ̂k(n, ξ)Zk(n, ξ) dξ Θ-a.s.,

where ϕ̂k is defined in (5.4.1) and

Zk(n, ξ)
.
=

∫ T

0

ekn,ξ (t,X(t)) · dX(t)

=

∫ T

0

ekn,ξ (t,X(t)) · b (X(t), νΘ(t)) dt+

∫
[0,T ]×Rm

ekn,ξ (t,X(t)) · σ (X(t), νΘ(t)) y ρ(dt, dy)

Θ-a.s. Since |ekn,ξ| ≤ T−1, using (5.3.24) we have

|Zk(n, ξ)|2 ≤ 6L2

T

∫ T

0

(
1 + |X(t)|2 + EΘ

[
|X(t)|2

])
dt+

2L2

T

∫
[0,T ]×Rm

|y|2 ρ(dt, dy),
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and then the bound in (5.3.25) gives

sup
(n,ξ,k)∈I

EΘ

[
|Zk(n, ξ)|2

]
≤ c′

(
1 +

∫
Rd
|x|2 µ0(dx) + EΘ

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
,

for some c′ <∞. Thus by the Cauchy-Schwarz inequality, for any s′ = (s′1, s
′
2) ∈ Od and ϕ ∈ C∞c (U × Rd,Rd),

|〈J , ϕ〉|2 ≤ EΘ

∣∣∣∣∣
∫ T

0

ϕ(t,X(t)) · dX(t)

∣∣∣∣∣
2


≤ EΘ

[
d∑
k=1

∑
n∈Z

∫
Rd

|Zk(n, ξ)|2

(1 + n2)
s′1 (1 + |ξ|2)

s′2
dξ

]
‖ϕ‖2s′

≤ c′
∑
n∈Z

∫
Rd

dξ

(1 + n2)
s′1 (1 + |ξ|2)

s′2

(
1 +

∫
Rd
|x|2 µ0(dx) + EΘ

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
‖ϕ‖2s′

≤ C2
s′

(
1 + EΘ

[∫
[0,T ]×Rm

|y|2 ρ(dt, dy)

])
‖ϕ‖2s′

where

C2
s′
.
= c′

(
1 +

∫
Rd
|x|2 µ0(dx)

)∑
n∈Z

∫
Rd

dξ

(1 + n2)
s′1 (1 + |ξ|2)

s′2
<∞,

since s′ = (s′1, s
′
2) ∈ Od. The result follows.

5.4.3 Proof of Lemma 5.3.3

We will only consider the case where s is not an integer, the proof for the case when s is an integer is a simpler version

of the proof given below. An equivalent norm to ‖ · ‖s in (5.1.7) can be given as follows (see [39, page 527]): write

s = k + r where k ∈ N and r ∈ (0, 1). Then, for h ∈ Hs(Rd,Rd), define

‖h‖2∗,s
.
= ‖h‖2k +

∑
|α|=k

‖Dαh‖2r,

where ‖ · ‖k is the usual integer Sobolev norm

‖h‖2k =
∑

0≤|α|≤k

‖Dαh‖2L2 ,

and ‖ · ‖r is the fractional Gagliardo-type Sobolev norm

‖h‖2r = ‖h‖2L2 + [h]2r =

∫
Rd
|h(x)|2 dx+

∫
Rd

∫
Rd

|h(x)− h(y)|2

|x− y|d+2r
dx dy. (5.4.5)
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The norm ‖ · ‖∗,s is equivalent to the norm ‖ · ‖s in (5.1.7) and thus it suffices to prove Lemma 5.3.3 with ‖ · ‖s replaced

with ‖ · ‖∗,s. Henceforth, abusing notation, we will denote this new norm once more as ‖ · ‖s. Now let f and gM

be as in the statement of the lemma. With B(k) as in Definition 5.3.1(iii), the Leibniz product formula gives, for a

multi-index α with |α| ≤ k,

|DαgM (x)f(x)| =

∣∣∣∣∣∣
∑
β≤α

(
α

β

)
Dα−βgM (x)Dβf(x)

∣∣∣∣∣∣ ≤ B(k)
∑
β≤α

(
α

β

) ∣∣Dβf(x)
∣∣ ,

and hence for all M <∞

‖gMf‖2k =
∑

0≤|α|≤k

∫
Rd
|DαgM (x)f(x)|2 dx ≤ c1

∑
0≤|α|≤k

∫
Rd

∣∣Dβf(x)
∣∣2 dx = c1‖f‖2k, (5.4.6)

for some c1 = c1(k) < ∞. For the r term we follow the proof of [39, Lemma 5.3]. If ψ ∈ C∞c (Rd,R) is such that

0 ≤ ψ ≤ Bψ <∞ and h ∈ Hr(Rd,Rd) for some 0 < r < 1, then ‖ψh‖2L2 ≤ B2
ψ‖h‖2L2 . If Lψ denotes the Lipschitz

constant of ψ, then

[ψh]2r =

∫
Rd

∫
Rd

|ψ(x)h(x)− ψ(y)h(y)|2

|x− y|d+2r
dx dy

≤ 2

∫
Rd

∫
Rd

|ψ(x)h(x)− ψ(x)h(y)|2

|x− y|d+2r
dx dy + 2

∫
Rd

∫
Rd

|ψ(x)h(y)− ψ(y)h(y)|2

|x− y|d+2r
dx dy

≤ 2B2
ψ

∫
Rd

∫
Rd

|h(x)− h(y)|2

|x− y|d+2r
dx dy + 2

∫
Rd

∫
Rd

|ψ(x)− ψ(y)|2|h(y)|2

|x− y|d+2r
dx dy

≤ 2B2
ψ[h]2r + 2L2

ψ

∫
Rd

∫
{|x−y|≤1}

|h(y)|2

|x− y|d+2(r−1)
dx dy + 8B2

ψ

∫
Rd

∫
{|x−y|>1}

|h(y)|2

|x− y|d+2r
dx dy

≤ 2B2
ψ[h]2r + 2

(
L2
ψ + 4B2

ψ

)
c2‖h‖2L2 ,

for c2 = c2(r) <∞. In the last line, we used the fact that for some c3, c4 <∞ depending on r,

∫
Rd

∫
{|x−y|≤1}

|h(y)|2

|x− y|d+2(r−1)
dx dy ≤

∫
Rd

(∫
{|z|≤1}

1

|z|d+2(r−1)
dz

)
|h(y)|2 dy ≤ c3‖h‖2L2 ,

since d+ 2(r − 1) < d, and

∫
Rd

∫
{|x−y|>1}

|h(y)|2

|x− y|d+2r
dx dy ≤

∫
Rd

(∫
{|z|>1}

1

|z|d+2r
dz

)
|h(y)|2 dy ≤ c4‖h‖2L2 ,

since d+ 2r > d. Thus we have that

‖ψh‖2r ≤ 8
(
B2
ψ + L2

ψ

)
(c2 + 1)‖h‖2r.
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Then, with B(k) as in Definition 5.3.1 and L(k) as in (5.3.2), we obtain that for |α| = k,

‖DαgMf‖2r =

∥∥∥∥∥∥
∑
β≤α

(
α

β

)
Dα−βgMD

βf

∥∥∥∥∥∥
2

r

≤ 2α!
∑
β≤α

(
α

β

)2 ∥∥Dα−βgMD
βf
∥∥2

r

≤ 2α!8
(
B(k)2 + L(k)2

)
(c2 + 1)

∑
β≤α

(
α

β

)2 ∥∥Dβf
∥∥2

r
.

Next, for |β| < k and some constant c5 = c5(r) <∞, we have that

∥∥Dβf
∥∥2

r
≤ c5

∥∥Dβf
∥∥2

1
= c5

∥∥Dβf
∥∥2

L2 + c5
∑
|α|=1

∥∥DαDβf
∥∥2

L2 ≤ c5
∥∥Dβf

∥∥2

L2 + c5
∑

|α|=|β|+1

‖Dαf‖2L2 ,

and hence for some c6 = c6(k, r) <∞ and all M <∞,

∑
|α|=k

‖DαgMf‖2r ≤ c6
∑
|α|=k

‖Dαf‖2r + c6‖f‖2k. (5.4.7)

Finally, from (5.4.6) and (5.4.7), for all M <∞,

‖gMf‖2s = ‖gMf‖2k +
∑
|α|=k

‖DαgMf‖2r ≤ (c1 + c6)‖f‖2k + c6
∑
|α|=k

‖Dαf‖2r ≤ K‖f‖
2
s,

where K = c1 + c6.

5.4.4 Proof of Lemma 5.3.4

Let s, s′, A and K be as in the statement of the lemma. In particular A ⊂ H−s
′

is such that

B
.
= sup
F∈A
‖F‖−s′ <∞, (5.4.8)

and every F ∈ A has support contained in K. Recall the functions ekn,ξ for (n, ξ, k) ∈ I introduced above (5.4.1). Let

{F l}l∈N be a sequence in A, and for l ∈ N and (n, ξ) ∈ Z× Rd, let

F̂ l(n, ξ)
.
=
(
F̂ l1(n, ξ), . . . , F̂ ld(n, ξ)

)
, F̂ lk(n, ξ)

.
=
〈
F l, ek−n,−ξ

〉
, 1 ≤ k ≤ d. (5.4.9)

Since F l has compact support, the evaluation on the right side of the second equality above is indeed meaningful (see

e.g. [45, Theorem 9.8]) and for each l ∈ N and n ∈ Z, ξ 7→ F̂ l(n, ξ) is in C∞(Rd,Rd). Also, using (5.4.8) and the
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compact support property, one can verify (see [45, Theorem 9.22]) that for each n ∈ Z,

sup
l≥1

sup
ξ∈Rd

∣∣∣F̂ l(n, ξ)∣∣∣ <∞ and sup
l≥1

sup
ξ∈Rd

∣∣∣DξF̂
l(n, ξ)

∣∣∣ <∞.
Thus, for each n ∈ Z, {F̂ l(n, ·), l ∈ N} is relatively compact in C(Rd,Rd). By a standard diagonalization procedure,

we can pick a subsequence {lj} such that {F̂ lj (n, ·), j ∈ N} converges in C(Rd,Rd) for every n to a limit. We will

now show that F lj is Cauchy in H−s which will complete the proof.

By an argument similar to [45, Proposition 9.16], there are constants c1(t,K), c2(t,K) <∞ for t = s, s′ such

that for any F ∈ H−s
′ ⊂ H−s supported on the compact set K and both t = (t1, t2) = s, s′,

c1(t,K) ‖F‖2−t ≤
∑
n∈Z

∫
Rd

∣∣∣F̂ (n, ξ)
∣∣∣2 (1 + n2

)−t1 (
1 + |ξ|2

)−t2
dξ ≤ c2(t,K) ‖F‖2−t , (5.4.10)

where F̂ (n, ξ) is defined as in (5.4.9). In particular, for j,m ∈ N,

c1(s,K)
∥∥F lj − F lm∥∥2

−s ≤
∑
n∈Z

∫
Rd

∣∣∣F̂ lj (n, ξ)− F̂ lm(n, ξ)
∣∣∣2 (1 + n2

)−s1 (
1 + |ξ|2

)−s2
dξ.

Fix M ∈ N. Then, using (1 + |ξ|2)−s2 ≤ (1 + |ξ|2)−s
′
2 , we have

c1(s,K)
∥∥F lj − F lm∥∥2

−s ≤
∑

−M≤n≤M

∫
Rd

∣∣∣F̂ lj (n, ξ)− F̂ lm(n, ξ)
∣∣∣2 (1 + n2

)−s1
(1 + |ξ|2)−s2 dξ

+
∑
|n|>M

∫
Rd

∣∣∣F̂ lj (n, ξ)− F̂ lm(n, ξ)
∣∣∣2 (1 + n2

)−s1 (
1 + |ξ|2

)−s2
dξ

≤
∑

−M≤n≤M

∫
Rd

∣∣∣F̂ lj (n, ξ)− F̂ lm(n, ξ)
∣∣∣2 (1 + n2

)−s1 (
1 + |ξ|2

)−s2
dξ

+ c2(s′,K)
∥∥F lj − F lm∥∥2

s′

1

(1 + (M + 1)2)
s1−s′1

≤
∑

−M≤n≤M

∫
Rd

∣∣∣F̂ lj (n, ξ)− F̂ lm(n, ξ)
∣∣∣2 (1 + n2

)−s1 (
1 + |ξ|2

)−s2
dξ

+
4B2c2(s′,K)

(1 + (M + 1)2)
s1−s′1

.

Next, for each |n| ≤M and R <∞, there is a C(R) <∞ such that

∫
Rd

∣∣∣F̂ lj (n, ξ)− F̂ lm(n, ξ)
∣∣∣2 (1 + n2

)−s1 (
1 + |ξ|2

)−s2
dξ

=

∫
{|ξ|≤R}

∣∣∣F̂ lj (n, ξ)− F̂ lm(n, ξ)
∣∣∣2 (1 + n2

)−s1 (
1 + |ξ|2

)−s2
dξ
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+

∫
{|ξ|>R}

∣∣∣F̂ lj (n, ξ)− F̂ lm(n, ξ)
∣∣∣2 (1 + n2

)−s1 (
1 + |ξ|2

)−s2
dξ

≤ C(R) sup
|ξ|≤R

∣∣∣F̂ lj (n, ξ)− F̂ lm(n, ξ)
∣∣∣2 +

c2(s′,K)

(1 +R2)
s2−s′2

∥∥F lj − F lm∥∥2

s′

≤ C(R) sup
|ξ|≤R

∣∣∣F̂ lj (n, ξ)− F̂ lm(n, ξ)
∣∣∣2 +

4B2c2(s′,K)

(1 +R2)
s2−s′2

.

Combining the above estimates and sending j,m→∞, since {F̂ lj (n, ·)} converges for every n, we get

lim sup
j,m→∞

∥∥F lj − F lm∥∥2

s
≤ 4B2(2M + 1)c2(s′,K)

c1(s,K) (1 +R2)
s2−s′2

+
4B2c2(s′,K)

c1(s,K) (1 + (M + 1)2)
s1−s′1

.

The result now follows on first sending R→∞ and then M →∞.
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APPENDIX

Some supplementary results related to this dissertation work are presented below for completeness.

A.1 Proofs of Background Theorems

Here we provide the proofs of Theorems 1.1.4, 1.1.5, and 1.2.3 from the Introduction.

Proof of Theorem 1.1.4. The proof of part (i) relies on an application of Komolgorov’s extension theorem (see [69,

Theorems 14.32 and 14.35]), which in its simplest form says that if {(Ωi,Gi) : i ∈ N} is a collection of Borel spaces

and {Pi : i ∈ N} is collection of probability measures that is consistent in the sense that

Pi(A) = Pj(A× Ωi+1 × · · · × Ωj)

whenever i ≤ j and A ∈
⊗i

k=0 Gk, the product σ-field of G0, . . . ,Gi, then there exists a unique probability measure

P∞ such that

P∞

(
A×

∞×
k=i+1

Ωk

)
= Pi(A)

for A ∈
⊗i

k=0 Gk.

For each n ∈ N, define P ∗n on (Ω,Fn) by P ∗n(A) = E[1(A)Ln]. The martingale property implies consistency in

this case: if k ≤ n and A ∈ Fk, then

P ∗n(A) = E[1(A)Ln] = E [1(A)E [Ln| Fk]] = E[1(A)Lk] = P ∗k (A).

This completes (i).

For part (ii), fix n ∈ N and suppose first that A ⊂ {τ ≤ n}. By the martingale property,

Lτ1(τ ≤ n) = E[Ln|Fτ ]1(τ ≤ n),

and hence

P (A) = E
[
1(A)LτL

−1
τ

]
= E

[
1(A)E[Ln|Fτ ]L−1

τ

]
= E

[
1(A)LnL

−1
τ

]
= E∗

[
1(A)L−1

τ

]
by the construction of P ∗. Now, for arbitrary Fτ -measurable A ⊂ {τ <∞}, the monotone convergence theorem gives

P (A) = lim
n→∞

P (A ∩ {τ ≤ n}) = lim
n→∞

E∗
[
1(A ∩ {τ ≤ n})L−1

τ

]
= E∗

[
1(A)L−1

τ

]
.
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Proof of Theorem 1.1.5. The idea is to use the representation (1.1.7) to derive a renewal equation and apply Theorem

1.1.2. Note first that for t > 0, τ+ ≤ τ(t) and τ+ = τ(t) on {Sτ+ > t}. In particular, since the increments of the

random walk are independent, Sτ(t) − Sτ+ is independent of Sτ+ and for any s ≤ t, (Sτ(t) − Sτ+ |Sτ+ = s)
D
= Sτ(t−s)

under P̃ . Letting K(t) = eαtP (W > t), we have

K(t) = Ẽ
[
e−α(Sτ(t)−t)

]
= Ẽ

[
e−α(Sτ+−t)1(Sτ+ > t)

]
+ Ẽ

[
e−α(Sτ(t)−t)1(Sτ+ ≤ t)

]
= Ẽ

[
e−α(Sτ+−t)1(Sτ+ > t)

]
+

∫ t

0

Ẽ
[
e−α(Sτ(t)−t)

∣∣∣Sτ+ = s
]
P̃
(
Sτ+ ∈ ds

)
= Ẽ

[
e−α(Sτ+−t)1(Sτ+ > t)

]
+

∫ t

0

Ẽ
[
e−α(Sτ(t−s)−(t−s)

]
P̃
(
Sτ+ ∈ ds

)
= Ẽ

[
e−α(Sτ+−t)1(Sτ+ > t)

]
+

∫ t

0

K(t− s) P̃
(
Sτ+ ∈ ds

)
.

Consequently, the key renewal theorem gives

lim
t→∞

eαtP (W > t) =
1

Ẽ
[
Sτ+

] ∫ ∞
0

Ẽ
[
e−α(Sτ+−s)1(Sτ+ > s)

]
ds =

Ẽ
[
1− e−αSτ+

]
αẼ

[
Sτ+

] .

Finally, by Wald’s identity, Ẽ
[
Sτ+

]
= Ẽ[τ+]Ẽ[X1] = m′(α)Ẽ[τ+].

Proof of Theorem 1.2.3. First assume that {Xn} satisfies the LDP. Fix F ∈ Cb(S) and let M = supx∈S |F (x)| ∈

(0,∞). Let δ > 0 and L > 0. Because F is continuous and I is lower semi-continuous, for each x such that I(x) ≤ L,

we can find r > 0 such that

sup
y∈B(x,r)

(−F (y)) ≤ −F (x) +
δ

2
(A.1.1)

and

inf
y∈B(x,r)

I(y) ≥ I(x)− δ

2
, (A.1.2)

where B(x, r) = {y ∈ S : d(x, y) < r} is the open ball around x with radius r in S. let B(x, r) denote the closure of

B(x, r) in S. Then, since {Xn} satisfies the large deviation upper bound,

lim sup
n→∞

1

an
logE

[
e−anF (Xn)1(Xn ∈ B(x, r))

]
≤ lim sup

n→∞

1

an
log
(
ean(−F (x)+δ)P (Xn ∈ B(x, r))

)
≤ −F (x) +

δ

2
+ lim sup

n→∞

1

an
logP

(
Xn ∈ B(x, r)

)
≤ −F (x) +

δ

2
− inf
y∈B(x,r)

I(y)

≤ −(F (x) + I(x)) + δ.
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Now, since {x ∈ S : I(x) ≤ L} is compact, we can let {B(xj , rj) : 1 ≤ j ≤ k} be a finite cover such that (A.1.1) and

(A.1.2) hold for each (xj , rj) pair. Let A =
⋂k
j=1B(xj , rj)

c and note that A is a closed set and I(y) > L for every

y ∈ A. Then,

lim sup
n→∞

1

an
logE

[
e−anF (Xn)

]
≤ lim sup

n→∞

1

an
log

 k∑
j=1

E
[
e−anF (Xn)1(Xn ∈ B(xj , rj))

]
+ E

[
e−anF (Xn)1 (Xn ∈ A)

]
≤ lim sup

n→∞

1

an
log

(
(k + 1) max

1≤j≤k
E
[
e−anF (Xn)1(Xn ∈ B(xj , rj))

]
∨ E

[
e−anF (Xn)1 (Xn ∈ A)

])
= lim sup

n→∞

(
max

1≤j≤k

1

an
logE

[
e−anF (Xn)1(Xn ∈ B(xj , rj))

])
∨ 1

an
logE

[
e−anF (Xn)1 (Xn ∈ A)

]
≤ max

1≤j≤k
(−(F (xj) + I(xj)) + δ) ∨

(
M − inf

y∈A
I(y)

)
≤
(
− inf
x∈S

(F (x) + I(x)) + δ

)
∨ (M − L) . (A.1.3)

In the above estimates, we used the fact that for a finite collection {f1, . . . , fk} of functions

lim sup
n→∞

max
1≤j≤k

fj(n) = max
1≤j≤k

lim sup
n→∞

fj(n).

Sending δ → 0 and L→∞ in (A.1.3) gives that

lim sup
n→∞

1

an
logE

[
e−anF (Xn)

]
≤ − inf

x∈S
(F (x) + I(x)). (A.1.4)

For the reverse inequality, let x ∈ S and δ > 0. Since F is continuous, we can find r > 0 such that

inf
y∈B(x,r)

(−F (y)) ≥ −F (x)− δ.

Then, since {Xn} satisfies the large deviation lower bound,

lim inf
n→∞

1

an
logE

[
e−anF (Xn)

]
≥ lim inf

n→∞

1

an
logE

[
e−anF (Xn)1(Xn ∈ B(x, r))

]
≥ −F (x)− δ lim inf

n→∞

1

an
logP (Xn ∈ B(x, r))

≥ −F (x)− δ − inf
y∈B(x,r)

I(y)

≥ −(F (x) + I(x))− δ.
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Taking the supremum over x and letting δ → 0 we obtain

lim inf
n→∞

1

an
logE

[
e−anF (Xn)

]
≥ − inf

x∈S
(F (x) + I(x)),

which along with (A.1.4) establishes that {Xn} satisfies the Laplace principle.

Now suppose that {Xn} satisfies the Laplace principle. We want to show that it also satisfies the large deviation

upper and lower bounds. We begin with the former. Given a closed set A, define the function

ϕ(x) =

 0 if x ∈ A

+∞ if x /∈ A,

and note that ϕ is nonnegative and lower semi-continuous. For j ∈ N let

Fj(x) = j(d(x,A) ∧ 1),

where d(x,A) = infy∈A d(x, y), so that Fj is a bounded continuous function and Fj increases to ϕ pointwise as

j →∞. It follows by the Laplace upper bound that for each j,

lim sup
n→∞

1

an
logP (Xn ∈ A) = lim sup

n→∞

1

an
logE

[
e−anϕ(Xn)

]
≤ lim sup

n→∞

1

an
logE

[
e−anFj(Xn)

]
≤ − inf

x∈S
(Fj(x) + I(x)). (A.1.5)

Note that for each j,

inf
x∈S

(Fj(x) + I(x)) ≤ inf
x∈S

(ϕ(x) + I(x)) = inf
x∈S

I(x). (A.1.6)

Furthermore, if infx∈S I(x) = 0, then trivially infx∈S(Fj(x) + I(x)) ≥ infx∈S I(x). If infx∈S I(x) > 0, then

lim inf
j→∞

inf
x∈Ac

(Fj(x) + I(x)) ≥ inf
x∈A

I(x). (A.1.7)

To see why, suppose not, that is, for some L < infx∈A I(x) we have lim infj→∞ infx∈Ac(Fj(x) + I(x)) < L. In

particular, this implies the existence of a subsequence {j} ⊂ N and 0 < ε < L such that or each j there is xj ∈ Ac

such that

Fj(xj) + I(xj) ≤ L− ε. (A.1.8)
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(A.1.8) implies that d(xj , A)→ 0 as j →∞ along the subsequence, since otherwise there would exist a subsubsequence

on which Fj(xj) = j(d(xj , A) ∧ 1)→∞, a contradiction.

Now, d(xj , A)→ 0 implies the existence of a sequence {yj} ⊂ A such that d(xj , yj)→ 0 as j →∞, and since

supj I(xj) ≤ L − ε from (A.1.8) and the fact that I has compact level sets, there must be a further subsequence

{x′j} ⊂ {xj} and

x∗ ∈ {x ∈ S : I(x) ≤ L− ε} (A.1.9)

such that d(x′j , x
∗)→ 0. This in turn implies that d(yj , x

∗)→ 0, and since {yj} ⊂ A and A is a closed set, x∗ ∈ A.

Consequently, I(x∗) ≥ infy∈A I(y), however by (A.1.9) and the fact thatL < infx∈A I(x), this leads to a contradiction,

establishing the inequality (A.1.7).

Then, since Fj(x) = 0 when x ∈ A,

inf
x∈S

(Fj(x) + I(x)) = inf
x∈A

I(x) ∧ inf
x∈Ac

(Fj(x) + I(x)),

and from (A.1.7),

lim inf
j→∞

inf
x∈S

(Fj(x) + I(x)) ≥ inf
x∈A

I(x),

which establishes the large deviation upper bound when combined with (A.1.5) and (A.1.6).

It remains to show that {Xn} satisfies the large deviation lower bound. Let G ⊂ S be open and suppose that

infx∈G I(x) <∞, since otherwise the bound is trivial. Let x ∈ G such that I(x) <∞ and let M > I(x). Choose r

small enough so that B(x, r) ⊂ G, which can be done since G is open. Let

F (y) = M

(
d(x, y)

r
∧ 1

)
,

which defines a bounded, continuous function. In particular, 0 ≤ F ≤M and F (y) = M for y /∈ B(x, r), so

E
[
e−anF (Xn)

]
≤ e−anM + P (Xn ∈ B(x, r)),

and hence

logE
[
e−anF (Xn)

]
≤ log

(
e−anM + P (Xn ∈ B(x, r))

)
≤ (−M) ∨ logP (Xn ∈ B(x, r)).

The Laplace principle then implies that

(−M) ∨ lim inf
n→∞

1

an
logP (Xn ∈ B(x, r)) ≥ lim inf

n→∞

1

an
logE

[
e−anF (Xn)

]
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= − inf
y∈S

(F (y) + I(y))

≥ −(F (x) + I(x))

= −I(x),

since F (x) = 0 by construction. Since M > I(x) It follows that

lim inf
n→∞

1

an
logP (Xn ∈ G) ≥ lim inf

n→∞

1

an
logP (Xn ∈ B(x, r)) ≥ −I(x).

taking the supremum over all x such that I(x) <∞ completes the proof.

A.2 Useful Lemmas

The following four results are used frequently in Chapters 4 and 5, and we state them here for reference.

Lemma A.2.1 (Grönwall’s Inequality). For T ≤ ∞, suppose u : [0, T ]→ R is nondecreasing and v : [0, T ]→ R is

continuous. If f : [0, T ]→ R is continuous and satisfies

f(t) ≤ u(t) +

∫ t

0

v(s)f(s) ds, 0 ≤ t ≤ T,

then

f(t) ≤ u(t)e
∫ t
0
v(s) ds, 0 ≤ t ≤ T.

For a proof of the following, see [67, Theorem 3.28].

Lemma A.2.2 (Burkholder-Davis-Gundy Inequality). Let p ≥ 1. There exist positive constants cp and Cp such that for

any local martingale {Xt : t ≥ 0} with X0 = 0 a.s. and any stopping time τ ,

cpE
[
〈X〉p/2τ

]
≤ E

[
sup

0≤t≤τ
|Xt|p

]
≤ CpE

[
〈X〉p/2τ

]
,

where 〈X〉t denotes the quadratic variation of X at time t.

The next result is due to Aldous [2]. For a proof, see [70, Theorem 2.7].

Lemma A.2.3 (Aldous-Kurtz Criterion). Let D([0, T ], S) be the space of right continuous functions with finite left

limits from [0, T ] into a Polish space (S, d). Let {Xn : n ∈ N} be a sequence of processes with paths in D([0, T ], S),

and for each n let Fn(t) = σ(Xn(s) : 0 ≤ s ≤ t). If

(a) {Xn(t) : n ∈ N} is tight in S for each rational t ∈ [0, T ], and
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(b) for any sequence {τn : n ∈ N} such that τn is an Fn(t)-stopping time bounded by T and any nonnegative sequence

{δn : n ∈ N} such that δn → 0 as n→∞,

d (Xn(τn + δn), Xn(τn))
P→ 0

as n→∞,

then {Xn : n ∈ N} is tight in D([0, T ], S). The result is also true when D([0, T ], S) is replaced with C([0, T ], S).

The following is a corollary of the above lemma which gives the form of the criterion employed in Chapters 4 and

5.

Corollary A.2.4. Let (S, ‖ · ‖S) be a separable Banach space (i.e. a normed Polish space), let C = C([0, T ], S), and

let {µn : n ∈ N} be a P(C)-valued sequence of random variables. Recall the norm ‖ψ‖∞ = sup0≤t≤T ‖ψ(t)‖S on C,

and let νn = E[µn] for each n. Let {X(t) : 0 ≤ t ≤ T} denote the coordinate process on the space (C,B(C)), namely

X(t, ψ) = ψ(t), ψ ∈ C,

let F(t) = σ(X(s) : 0 ≤ s ≤ t), and for each δ > 0 let Tδ be the set of F(t)-stopping times bounded by T − δ. If

(a) sup
n≥1

∫
C
‖ψ‖∞ νn(dψ) <∞, and

(b) lim
δ→0

sup
n≥1

sup
τ∈Tδ

∫
C
‖ψ(τ + δ)− ψ(τ)‖S ∧ 1 νn(dψ) = 0,

then {µn} is tight.

Proof. By [21, Theorem 2.11], tightness of {µn} as random variables follows from relative compactness of {νn} in

P(C), which is equivalent to tightness of the C-valued process {Xn}, where Xn ∼ νn for each n. From (a),

sup
n≥1

νn (‖ψ(t)‖S > M) ≤ 1

M
sup
n≥1

∫
C
‖ψ‖∞ νn(dψ)→ 0

as M →∞, and hence {Xn(t)} is tight in S for each t, which satisfies part (a) of Lemma A.2.3.

Now note that for any sequence {Ym} of nonnegative random variables, Ym
P→ 0 if and only if E[Ym ∧ 1]→ 0.

Then, if {δm} is a sequence such that δm ↓ 0 and {τm} is a squence of F(t) stopping times such that τm ≤ T − δm for

each m, then from (b),

E [‖Xm(τm + δm)−Xm(τm)‖S ∧ 1] ≤ sup
n≥1

sup
τ∈Tδm

E [‖Xn(τ + δm)−Xn(τ)‖S ∧ 1]

= sup
n≥1

sup
τ∈Tδm

∫
C
‖ψ(τ + δ)− ψ(τ)‖S ∧ 1 νn(dψ)

202



→ 0

as m→∞, which satisfies part (b) of Lemma A.2.3.

A.3 The Space Hs

Here we give an alternate characterization of the Hilbert Sobolev space Hs defined in Chapter 5. As the next lemma

shows, when s ∈ (0, 1)× R+, we can identify

Hs = Hs1
(
U,Hs2

(
Rd,Rd

))
= Hs1 (U,R)⊗Hs2

(
Rd,Rd

)
,

where ⊗ denotes the Hilbert tensor product. When we identify two Hilbert spaces H = K, we mean that there exists

an isomorphism Φ : H → K, i.e. a one-to-one and onto map that preserves inner product, also called a unitary

transformation.

This characterization also verifies that the norm ‖ · ‖∗,s defined in (5.4.2) is equivalent to the norm ‖ · ‖s used in

most of Chapter 5 when s ∈ (0, 1)× R+, since ‖ · ‖∗,s is the tensor product norm.

Lemma A.3.1. Let K be a Hilbert space over R with inner product 〈·, ·〉K , and for s ∈ (0, 1) and any domain U ⊂ R,

let Hs(U,K) be the Hilbert space of functions in L2(U,K) with inner product

〈f, g〉Hs(U,K) =

∫
U

〈f(u), g(u)〉K du+

∫
U

∫
U

〈f(u)− f(v), g(u)− g(v)〉K
|u− v|1+2s

du dv.

Also let Hs(U,R) be the Hilbert space of functions in L2(U,R) with the inner product the same as above with 〈·, ·〉K

replaced with the standard product on R. Then we can identify

Hs(U,K) = Hs(U,R)⊗K,

where ⊗ denotes the Hilbert tensor product.

Proof. It suffices to find a unitary transformation Ψ : Hs(U,R) ⊗ K → Hs(U,K). For a pure tensor f ⊗ x ∈

Hs(U,R)⊗K, let

Ψ(f ⊗ x) = f(·)x ∈ Hs(U,K).

The bilinearity of ⊗ implies that Ψ is linear on the span of all the pure tensors, i.e. all finite linear combinations of

the form
∑n
j=1 fj ⊗ xj , and this is a dense subset of Hs(U,R)⊗K. To see that Ψ is an isometry, note that for any
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f ⊗ x, g ⊗ y ∈ Hs(U,R)⊗K,

〈Ψ(f ⊗ x),Ψ(g ⊗ y)〉Hs(U,K)

= 〈f(·)x, g(·)y〉Hs(U,K)

=

∫
U

〈f(u)x, g(u)y〉K du+

∫
U

∫
U

〈f(u)x− f(v)x, g(u)y − g(v)y〉K
|u− v|1+2s

du dv

=

(∫
U

f(u)g(u) du

)
〈x, y〉K +

(∫
U

∫
U

(f(u)x− f(v))(g(u)− g(v))

|u− v|1+2s
du dv

)
〈x, y〉K

= 〈f, g〉Hs(U,R)〈x, y〉K

= 〈f ⊗ x, g ⊗ y〉Hs(U,R)⊗K .

By linearity, this extends to all finite linear combinations of pure tensors.

Now, we can approximate any function in Hs(U,K) ⊂ L2(U,K) by an elementary function of the form h =∑n
j=1 1Uj (·)xj for Uj ⊂ U measurable and xj ∈ K. Note that

h =

n∑
i=1

1Uj (·)xj =

n∑
j=1

Ψ(1Uj ⊗ xj) = Ψ

 n∑
j=1

1Uj ⊗ xj

 ,

and hence the range of Ψ on a dense subset of Hs(U,R)⊗K is dense in Hs(U,K). Thus Ψ can be extended to an

isometry on the whole space which is one-to-one and onto.

At various points in Chapter 5, the fact that C∞c (U × Rd,Rd) is dense in Hs when s ∈ R2
+ is used. The

characertization of the previous lemma allows this to be verified from the well-known dense inclusions C∞c (U,R) ⊂

Hs1(U,R) and C∞c (Rd,Rd) ⊂ Hs2(Rd,Rd), as shown in the following lemma.

Lemma A.3.2. C∞c (U × Rd,Rd) is dense in Hs for s1, s2 > 0.

Proof. Since Hs = Hs1(U,R)⊗Hs2(Rd,Rd), for any f ∈ Hs and ε ∈ (0, 1), there are n ∈ N, {uj} ⊂ Hs1(U,R)

and {vj} ⊂ Hs2(Rd,Rd) such that ∥∥∥∥∥∥f −
n∑
j=1

ujvj

∥∥∥∥∥∥
s

<
ε

2
.

Let

M =

(
max

1≤j≤n
‖uj‖s1 + max

1≤j≤n
‖vj‖s2

)
∨ 1 <∞,

where, with some abuse of notation, ‖ · ‖s1 is the norm on Hs1(U,R) and ‖ · ‖s2 is the norm on Hs2(Rd,Rd). Since

C∞c (U,R) is dense in Hs1(U,R) and C∞c (Rd,Rd) is dense in Hs2(Rd,Rd), for each j there are gj ∈ C∞c (U,R) and
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hj ∈ C∞c (Rd,Rd) such that

‖uj − gj‖s1 <
ε

6nM
and ‖vj − hj‖s2 <

ε

6nM
.

Then,

∥∥∥∥∥∥f −
n∑
j=1

gjhj

∥∥∥∥∥∥
s

≤

∥∥∥∥∥∥f −
n∑
j=1

ujvj

∥∥∥∥∥∥
s

+

∥∥∥∥∥∥
n∑
j=1

ujvj −
n∑
j=1

gjhj

∥∥∥∥∥∥
s

<
ε

2
+

n∑
j=1

‖ujvj − gjhj‖s

≤ ε

2
+

n∑
j=1

‖uj‖s1‖vj − hj‖s2 +

n∑
j=1

‖uj − gj‖s1‖hj‖s2

<
ε

2
+
ε

6
+

ε

6nM

n∑
i=1

(‖vj − hj‖s2 + ‖vj‖s2)

<
2ε

3
+

ε

6M

( ε

6nM
+M

)
≤ ε.

Noting that
∑n
j=1 gjhj ∈ C∞c (U × Rd,Rd) completes the proof.

The tensor product characterization of Hs when s ∈ R2
+ also allows for an alternate, more general proof of the

compact embedding result of Lemma 5.3.4, which uses the explicit form of the norm on Hs. Rellich’s theorem [45,

Theorem 9.22] says that Hs1(U,R) is compactly embedded in Hr(U,R) when r < s1 and Hs2(Rd,Rd) is compactly

embedded in Hr(Rd,Rd) when r < s2. Hence, the following theorem proves the compact embedding Hs ⊂ Hr

whenever s1 > r1 > 0 and s2 > r2 > 0.

Theorem A.3.3. Let H1 ⊂ K1 and H2 ⊂ K2 be continuous embeddings of Hilbert spaces, and let H1 ⊗ H2 and

K1 ⊗K2 be their tensor product spaces. If every bounded sequence in H1 has a convergent subsequence in K1 and

every bounded sequence in H2 has a convergent subsequence in K2, then every bounded sequence in H1 ⊗H2 has a

convergent subsequence in K1 ⊗K2.

This result follows from the following applied to the inclusion operators ι1 : H1 → K1 and ι2 : H2 → K2. A

compact operator between two Banach spaces is a linear operator such that its image of any bounded set is relatively

compact. For two Hilbert space linear, bounded operators S : H1 → K1 and T : H2 → K2, the tensor product operator

S ⊗ T is the unique linear, bounded operator from H1 ⊗H2 into K1 ⊗K2 such that S ⊗ T (x⊗ y) = S(x)⊗ T (y) for

all x ∈ H1 and y ∈ H2.
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Lemma A.3.4. LetH1, H2,K1, andK2 be Hilbert spaces, and letH = H1⊗H2 andK = K1⊗K2. If S : H1 → K1

and T : H2 → K2 are compact linear operators, then S ⊗ T : H → K is compact.

Proof. We assume that the Hilbert spaces are infinite dimensional, since any finite-rank operator is compact. We use

the fact that operator-norm limits of finite-rank operators are compact, and also the fact that R : A → B for two

infinite-dimensional Hilbert spaces A and B is compact if and only if it can be written in the form

R(x) =

∞∑
i=1

ai〈ei, x〉fi, x ∈ A,

where {ei} is a complete orthonormal set in A and {fi} is a complete orthonormal set in B. Noting that R(ej) = ajfj

for any j, we see that when i 6= j, 〈R(ei), R(ej)〉 = aiaj〈fi, fj〉 = 0, and hence R preserves the orthogonality of {ei}.

Furthermore, the partial sums RN =
∑n
i=1 ai〈ei, ·〉fi converge to R in the operator norm. As usual, the operator norm

is given by

‖R‖op = sup
x6=0

‖R(x)‖B
‖x‖A

.

Hence, there exist finite-rank linear operators {Sn} and {Tn} such that Sn → S and Tn → T as n→∞ in the

operator norm, and there exists some M <∞ such that

‖S‖op + ‖T‖op + sup
n≥1
‖Sn‖op + sup

n≥1
‖Tn‖op ≤M.

It suffices to show that Sn ⊗ Tn → S ⊗ T in the operator norm.

Let ε > 0, and consider a nonzero pure tensor x⊗ y ∈ H . Since Sn → S and Tn → T , for all n large enough we

have

‖Sn − S‖op ≤
ε

2M
and ‖Tn − T‖op ≤

ε

2M
.

Then,

‖Sn ⊗ Tn(x⊗ y)− S ⊗ T (x⊗ y)‖K = ‖Sn(x)⊗ Tn(y)− S(x)⊗ T (y)‖K

≤ ‖Sn(x)− S(x)‖K1‖Tn(y)‖K2 + ‖S(x)‖K1‖Tn(y)− T (y)‖K2

≤ ‖Sn − S‖op‖x‖H1
· ‖Tn‖op‖y‖H2

+ ‖S‖op‖x‖H1
· ‖Tn − T‖op‖y‖H2

≤ ε‖x‖H1
‖y‖H2

= ε‖x⊗ y‖H .
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Now let z ∈ H be arbitrary. Then we can write

z =

∞∑
i=1

∞∑
j=1

aijei ⊗ fj ,

where {ei} is a complete orthonormal system in H1 and {fj} is a complete orthonormal system in H2, so that

{ei ⊗ fj} is a complete orthonormal system in H , and {aij} ⊂ R are unique. Note that Parseval’s identity gives

‖z‖2H =
∑
i

∑
j a

2
ij < ∞. Because of the discussion above, we may assume that {S(ei)} is orthogonal in K1

and {T (fj)} is orthogonal in K2, and hence {S ⊗ T (ei ⊗ fj)} = {S(ei) ⊗ T (fj)} is orthogonal in K. Similarly,

{Sn ⊗ Tn(ei ⊗ fj)} is orthogonal in K. By the above calculation for pure tensors, for all n large enough,

‖Sn ⊗ Tn(ei ⊗ fj)− S ⊗ T (ei ⊗ fj)‖K ≤ ε‖ei ⊗ fj‖H = ε for all i, j.

Then,

‖Sn ⊗ Tn(z)− S ⊗ T (z)‖2K =

∥∥∥∥∥∥
∞∑
i=1

∞∑
j=1

aij (Sn ⊗ Tn(ei ⊗ fj)− S ⊗ T (ei ⊗ fj))

∥∥∥∥∥∥
2

K

=

∞∑
i=1

∞∑
j=1

a2
ij‖Sn ⊗ Tn(ei ⊗ fj)− S ⊗ T (ei ⊗ ej)‖2K

≤ ε2‖z‖2K .

Since the choice of z was arbitrary, ‖Sn ⊗ Tn − S ⊗ T‖op ≤ ε.

Finally, from the following we get the compact embedding Hs ⊂ Hr whenever s1 > r1 and s2 > r2 for any

s ∈ R2.

Lemma A.3.5. Let E1 ⊂ E2 be Banach spaces with norms ‖ · ‖1 and ‖ · ‖2, respectively, such that the closed unit ball

{x : ‖x‖1 ≤ 1} is compact in E2. Let E′2 ⊂ E′1 be their dual spaces equipped with the operator norms

‖T‖′i = sup
x∈Ei\{0}

|T (x)|
‖x‖i

= sup
x∈Ei:‖x‖i=1

|T (x)|, i = 1, 2.

Then, every bounded sequence in E′2 has a subsequence that converges in E′1.

Proof. Let {Tk} ⊂ E′2 such that M = supk ‖Tk‖′2 <∞. For any x, y ∈ E2, we have that

|Tk(x)− Tk(y)| ≤M‖x− y‖2,
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and hence {Tk} is equicontinuous and pointwise bounded. The Arzela-Ascoli lemma then guarantees that there is a

subsequence {Tkj} that converges uniformly on compact sets in E2. Since {‖x‖1 ≤ 1} is compact in E2,

‖Tkj − Tkm‖′1 = sup
x∈E1:‖x‖1=1

|Tkj (x)− Tkm(x)| ≤ sup
x∈E2:‖x‖1≤1

|Tkj (x)− Tkm(x)| → 0

as k,m→∞. Hence {Tkj} is Cauchy and thus convergent in the complete space E′1.
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