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ABSTRACT 

Pranav Chandrakant Khandelwal: How do animals glide in their natural habitat? 
 A holistic approach using the flying lizard Draco dussumieri  

(Under the direction of Tyson L. Hedrick) 

 

Gliding is a common form of aerial locomotion used by a diverse set of animals to 

perform behaviors essential for their survival. Behaviors like foraging, avoiding predators, 

seeking mates, and/or territorial aggression are influenced by selective pressures that can lead to 

differences in glide performance. Furthermore, the glide performance is dictated by the physics 

of the animal’s morphology and the environment in which it is performed. To understand the 

complex interplay between the animal’s morphology, behavior, and the environment and how it 

shapes glide performance, I ask an overarching question, how do animals glide in their natural 

habitat? I answer this question using a non-invasive motion capture technique in the natural 

habitat of the flying lizard Draco dussumieri.  

In Chapter 2, I describe in detail the gliding aerodynamics and the performance envelope 

used by Draco. In doing so, I discover a potential aerodynamic strategy that maximizes glide 

performance in terms of distance traveled and height lost. Chapter 3 extends the kinematic and 

aerodynamic analysis to an individual level looking at the influence of sex and body size on 

gliding performance. It shows the expected detrimental effects of isometric scaling of body size 

on aerodynamics but reveals compensatory changes in glide behavior to account for larger body 

size. Furthermore, I also show subtle glide performance differences within and among sexes, 

suggesting influences of selective pressure and ontogeny. Finally, I describe how gliding is 
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actually implemented in the natural habitat. In Chapter 4, I focus on the sensory and 

environmental context looking at how Draco account for spatial complexity and tune their glide 

execution to reach their desired target. In doing so, I show that Draco primarily rely on vision to 

gather environmental information and use a path planning strategy to navigate their spatially 

cluttered environment.  

Overall, my findings provide the first holistic analysis of gliding showing how various 

intrinsic (sex, size, behavior) and extrinsic (environment) factors influence glide execution and 

performance. It presents a more biologically relevant picture of gliding than most studies 

conducted thus far and emphasizes the importance of observing behavior in the animal’s natural 

habitat.  
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CHAPTER 1: INTRODUCTION 

My dissertation focuses on gliding behavior in the flying lizard Draco dussumieri in its 

natural habitat. It aims to present a holistic perspective on how flying lizards generate and 

manipulate aerodynamic forces to execute glides, how glide execution varies with body size and 

the sex of the individual, and finally how gliding is implemented in the lizard’s spatially 

cluttered environment. In doing so, I present a case for using Draco as a convenient system to 

study gliding animals and highlight the importance of studying locomotory behavior in the 

animal’s natural habitat. Finally, I also present a novel methodology to collect high quality real-

world data to study animal locomotion in the wild that has wide applicability in field behavioral 

data collection. In this introductory chapter, I provide background information on gliding 

locomotion in general, an overview of Draco with a focus on morphology and behavior related 

to Draco, a description of the field site where the data for this dissertation were collected, and an 

overview of the field videography camera and kinematic data analysis methods that are common 

to Chapters 2-4. 

1.1 What is gliding? 

Gliding can be defined as a fluid-based form of locomotion in which the animal covers 

horizontal distance without generating power, and instead trades height (potential energy) for 

kinetic energy for movement [1]. A large and diverse assemblage of animals take to the air via 

gliding flight, with vertebrates represented by flying squirrels, flying lemurs, sugar gliders, 

gliding frogs, flying fish, and even flying snakes, among others [1]. Invertebrates are also 
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represented through gliding squid [2] and gliding ants, though the small body size typical of 

terrestrial invertebrates works against most aerodynamic performance attributes [3]. Gliding in 

terrestrial vertebrates including mammals, reptiles, and amphibians has evolved at least 30 times 

[4] and is actually a sophisticated adaptation that involves changes in anatomy, sensing, 

behavior, and judgement of the animal [5]. The motivation to glide by these individuals has been 

ascribed to a number of ecological roles that are essential for the individual’s survival, including 

anti-predatory response, fall injury prevention, intraspecific interaction, expedited horizontal 

transit, and avoiding potential contact with surfaces [1].  

Across all forms of gliding flight, terrestrial gliders have garnered considerable interest 

within the scientific community in three broad areas – the evolution of flight [4,6,7], gliding 

ecology [8–12], and mechanics of gliding [13–24]. The arguments put forth for the evolution of 

flight largely stem from fossil records and studies on the ecology and mechanics of gliding, 

making it especially important to study extant gliders. Studies on gliding ecology have been 

limited in number mostly because of the logistical difficulty of tracking animals in the wild. 

Conversely, the mechanics of gliding has been extensively studied due to the availability of lab 

specimens and advances in computer vision techniques to study motion. However, studies on 

gliding mechanics have been restricted to a few gliding taxa including flying squirrels, sugar 

gliders, and flying snakes. Nonetheless, each of the broad areas mentioned above provided key 

insights into the gliding behavior of animals. For example, flapping flight in bats has been shown 

to evolve from an arboreal gliding ancestor similar to extant gliding mammals [25]. Ecological 

studies on gliding have shown sex-specific behaviors such as territoriality in males of colugos 

and flying lizards and suggested that gliders might rarely reach terminal velocity for efficient 

gliding in their natural habitat. Studies on glide biomechanics have provided kinematic data for 
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various morphologies and described overall glide performance to draw comparisons with other 

biological flyers and engineered aircraft.  

Two areas that have received relatively less attention are the use of computational 

techniques to model gliding flight and gliding performance studies in the animal’s natural 

habitat. Both are important in understanding how gliders generate and control aerodynamic 

forces to stay aloft and how gliding performance varies in an ecological context. Current 

physical models of gliding behavior have treated gliders as static airfoils drawing parallels from 

fixed-wing aircraft (but see Yeaton et al. [26] and Willis et al. [27]). Such models are more 

relevant to describe equilibrium gliding where the animal descends at terminal velocity, and do 

not account for animals actively modulating their aerodynamic forces, as is imperative in 

controlling glide trajectory to navigate spatially cluttered environments. However, to develop 

and validate biologically relevant models, quantifying natural glide performance is necessary to 

provide crucial real-world data. Furthermore, studying natural gliding behavior provides the 

sensory, spatial, and behavioral framework that shapes the animals’ glide performance 

landscape. That is, the performance envelope in which the glider operates, the influence of 

specific behaviors on glide performance, and the use of sensory information from the 

environment to control the glide trajectory, ultimately providing novel insights which are not 

possible in a lab setting.  

1.1.1 Parts of a terrestrial glide 

To glide and not fall, the animal must generate aerodynamic forces that will counter the 

pull of gravity and slow its descent. Simultaneously, the glider must actively control the direction 

and magnitude of the aerodynamic forces to safely descend and not crash into obstacles on the 

way or on the ground/landing tree. Most proficient gliders are also able to cover a substantial 
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amount of horizontal distance during the descent, order(s) of magnitude greater than their body 

length. The animal generates aerodynamic forces by combining surface area and speed, using its 

body to increase its surface area, and trading potential energy to acquire kinetic energy or speed. 

Together, this helps the animal generate lift and drag force which help partially counter the 

animal’s body weight in air to slow its descent and cover horizontal distance. 

So how does an animal execute a glide? In terrestrial vertebrates, a glide can be broken 

down into at least four parts. The first is the takeoff jump where the animal pushes itself from an 

arboreal substrate using its hindlimbs or posterior part of the body to gain initial speed. Once 

airborne, the animal deploys its wing membrane (patagium) or modifies its body shape to 

increase the surface area relative to the direction of motion to generate aerodynamic forces to 

slow its descent. During this morphological transition, the animal experiences a ballistic dive 

phase where the motion is dominated more by the animal’s body weight rather than the 

aerodynamic forces produced by its airfoil. Once the animal gains sufficient flight speed, the 

glide trajectory transitions into a shallowing glide phase where the animal increases the 

horizontal distance traveled compared to the vertical height lost. Finally comes the landing 

maneuver in which the glider expends part of its kinetic energy in the form of drag to slow its 

descent and potentially gain some altitude. Previous studies have also noted a fifth part in glide 

execution which occurs after the shallowing phase and before the landing maneuver - the 

equilibrium glide phase. In this phase, the animal no longer accelerates in any direction, i.e., 

flight speed and direction are unchanging and the upward aerodynamic forces from the 

combination of lift and drag acting on the animal perfectly balance its weight. However, to 

achieve such a state, the animal would require a sufficiently long obstacle-free glide which is 

rarely possible in its natural habitat. 
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1.1.2 Aerodynamics 

The aerodynamics of gliding is deceptively simple, and early efforts at understanding the 

aerodynamic characteristics and performance of gliding animals focused on so-called 

equilibrium gliding, the point at which a gliding animal or object no longer accelerates in any 

direction. While many descent angles can produce equilibrium gliding, the minimum descent 

angle is given by the maximum of the ratio of the coefficient of lift and coefficient of drag, non-

dimensional numbers that quantify how effective the airfoil is at producing these forces and, 

when combined with air density, flight speed, and wing area, can be used to calculate the 

aerodynamic forces themselves. An equilibrium glide at the minimum descent angle provides the 

most horizontal transport for the least loss in height and therefore presents an attractive single 

number for comparing glide performance of animals and human-designed crafts ranging from 

flying snakes to sailplanes. However, a complicating factor is that there is little evidence that 

gliding animals commonly achieve equilibrium gliding. Instead, as described above, real-world 

glides contain several separate phases, none of which is necessarily equilibrium gliding. How 

various gliding animals combine these glide components while also maintaining aerial stability, 

maneuvering to avoid obstacles, selecting landing sites, and possibly tuning their aerodynamics 

to both travel the necessary distance to landing while also arriving with little remaining kinetic 

energy is unknown, especially in the context of a natural environment. 
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Figure 1.1 Draco in mid-glide phase. Note how the compliant wing results in a slightly convex 
curvature. 

Biological airfoils also tend to differ in their mechanical and aerodynamic properties 

from their human-engineered counterparts. Human engineered airfoils are mostly rigid and have 

a fixed geometry, whereas biological airfoils are composed of compliant control surfaces that can 

be rapidly modified during the glide. For example, mammalian gliders and flying lizards have 

specialized wing membrane (patagium) which can be actively oriented to achieve different 

angles of attack (wing position with respect to relative motion) like a fixed-wing aircraft but can 

also actively change shape to operate at various degrees of camber (the curvature of the wing 

membrane) (Figure 1.1). The angle of attack is one of the simplest ways to increase overall lift 
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force in traditional airfoils, however, when traditional airfoils reach or cross a certain angle of 

attack (a typical value is 15°), there is airflow separation between the top and bottom surface of 

the airfoil leading to a drastic drop in lift and increase in drag, technically referred to as the onset 

of stall [28]. Gliding animals are also known to change their angle of attack to increase lift 

production and have to deal with extremely high angles of attack, especially during the landing 

maneuver (upwards of 40°)  [19]. Surprisingly, gliding animals have not been observed to reach 

stall during the glide, a situation that can have dire consequences for the glider. It is hypothesized 

and shown by modeling [29] that gliding animals can use their compliant wings to reach higher 

lift and drag forces at relatively low angles of attack compared to similarly shaped rigid wings. 

Furthermore, they might use wing camber to delay the onset of stall at high angles of attack, 

allowing the animal to maintain sufficient lift while landing. Though such hypotheses are 

plausible, the implications of a compliant wing on the gliding performance of animals is 

unknown and requires a detailed experimental study of the aerodynamics of the complete glide 

trajectory of the animal.  

1.1.3 Flying lizards of the genus Draco 

The genus Draco of the family Agamidae is comprised of lizards capable of gliding 

flight. These lizards are often referred to as flying lizards, gliding lizards, or flying dragons, and 

are common in parts of Southeast Asia and southwest India [20]. The genus Draco is composed 

of at least 45 species with body mass varying between 3 gm to upwards of 22 gm and with a 

snout vent length ranging from 6 cm to 14 cm [30]. They are strictly arboreal except when 

females climb down to lay eggs on the ground [10]. Gliding flight is their primary mode of 

locomotion, used to move through their natural habitat consisting of mostly dipterocarp-

dominated forests [20]. To glide, Draco use a unique primary wing design consisting of a 
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patagium supported by a set of 5-7 elongated ribs which are rotated laterally outwards to stretch 

the patagium and form an inverted delta wing.  

Draco, though cryptic, can be recognized by the combination of a slender body with a 

patagium, throat fan (or dewlap) and a tail 1.5 to 2 times the snout vent length. The patagium 

remains tucked along the longitudinal axis when the Draco is on the tree and is occasionally 

partially opened by males and females during mating displays. In most Draco species there is 

female-biased dimorphism with females larger than males, especially in head and body width. 

Distinguishing the sexes is rather convenient, with male dewlap being almost two to three times 

longer than that of the females (Figure 1.2). Recently, it has been shown that male dewlaps are 

relatively translucent compared to that of females, making them more conspicuous in the day 

[31]. Sreekar et al. (2013) also showed that the number of blotches on the ventral surface of the 

patagium was significantly higher in females compared to males [32]. 

 

Figure 1.2 Ventral view of adult male (top panel) and female (bottom panel) lizard of the species 
Draco dussumieri. Males have significantly longer dewlaps; females are larger in body size. 



9 
 

1.1.4 Draco gliding apparatus 

Unlike mammalian gliders, Draco possess a unique primary wing capable of active 

control during glide and unconstrained limb movement while climbing and during takeoff and 

landing. The primary wing consists of a patagium supported by elongated thoracic ribs and a 

specialized musculature [33–35]. The opening and closing of the patagium are controlled by the 

combination of highly modified external and internal intercostal muscles, external oblique 

muscles, and a system of ligaments spanning the individual elongated thoracic ribs [20]. The 

muscle actuation to rotate the ribs laterally is greatest for the first two anterior ribs. The large 

actuation to pull the first rib forward is achieved by the iliocostalis muscle extending far 

anteriorly to its insertion on the anterior ribs and vertebrae. The large length of the muscle is 

necessary to allow a degree of contraction sufficient to rotate the ribs far out to completely 

stretch the patagium [33]. The anteriorly located second rib has a similar but less extensive 

development of the intercostal muscle. The remaining ribs are pulled anteriorly more by the 

ligaments interconnecting the ribs and less by the musculature to complete the anterior extension 

of the ribs and consequently stretching the patagium open. The tension in the musculature is 

modulated to partially open the wings during mating displays and to completely open to glide. 

Just before touchdown from a glide, the tension on the ribs (and thus the patagium) is released by 

relaxing the strong iliocostalis muscles attached to the first two sets of ribs folding the wings 

back longitudinally [33]. Interestingly, due to the specialization of the intercostal muscle in 

Draco to deploy the primary wing, which otherwise is used for lung ventilation in other lizards, 

Draco rely on the pectoralis muscle to perform lung ventilation [34].  

Finally, it should be noted that the patagium alone is not responsible for making Draco a 

proficient glider. Various other body parts of the Draco, including the head, lappets, and body 
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width along with a mostly flat body, are significant contributors, at least in increasing surface 

area of the overall gliding apparatus employed by Draco to glide. However, apart from an 

increase in surface area, it remains to be investigated if the other body parts have specific 

contributions towards controlling and/or stabilizing the glide trajectory. For example, it has been 

hypothesized that the lappets act as additional lift generating surfaces along with enhancing 

stability, much like canards on some fixed-wing aircraft [36]. Rapid tail movements during 

takeoff can be thought of as a mechanism to induce body roll without apparent spine bending as 

seen in flat-tailed house geckos [37]. Lastly, the forelimbs of the Draco might act as leading-

edge slots to delay stall at high angles of attack during landing. 

1.1.5 Behavior 

Draco behavior can be categorized into foraging, evading predators, mate seeking, and 

territoriality. Foraging and evading predators are present throughout the life cycle of the 

individual whereas mate seeking, and territoriality are characteristic of the mating season. The 

mating season is likely species specific but has been poorly reported in the literature. Mating 

season in Draco dussumieri spans the month of February through May [10,38], and the season 

for Draco v. sumatranus has been previously reported to include at least December and January 

[9]. 

Foraging. All Draco primarily feed on ants [8,39,40] (Figure 1.3). However, John (1962) did 

report that a gravid female Draco dussumieri that was caught and placed in a cage to study egg-

laying and hatching began to feed on small grasshoppers and other insects after refusing food for 

the first two days [41]. Furthermore, the availability of ants in the natural habitat has been 

reported to be in plenty and is not considered a defended resource, at least in Draco v. 

sumatranus [8]. 
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Figure 1.3 Feeding and sleeping behavior in Draco. Left panel shows a female Draco dussumieri 
feeding on an ant on the areca nut tree at the field site. Right panel shows a male Draco sleeping 
on the tree. 
 

Territoriality. Draco are known to actively defend their territories to get sole access to receptive 

females and increase their mating probability (Figure 1.4). Territorial displays include opening 

and folding the dewlap more frequently than normal, and at times extending and holding the 

dewlap such that it extends past the anterior tip along with partially opening the patagium ([9] 

and personal observation). Frequent territorial interactions also included males chasing each 

other up a tree, with the chase transitioning into multiple quick glides from one tree to the other 

(from personal observation and video footage).  
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Figure 1.4 Territoriality in males. Top panel sequence 1 to 4 shows a territorial fight between 
two male Draco dussumieri. In 1 the resident male (left) approaches the non-resident male 
(right), followed by biting the left lappet of the non-resident male in 2. In 3, both Draco lose 
balance and tumble (4), ultimately maneuvering and landing back lower on the same tree. The 
lower panel shows a separate Draco territorial fight where the resident male chased the non-
resident male resulting in the resident male biting the left hindlimb of the non-resident mid-glide 
and both falling down to the ground. Both males were on the ground for more than 20 minutes 
without the resident male letting go of the other male.  
 
Mating. Draco mating behavior has been described in [8–10], however, the most recent study 

was conducted by Mori et al. in 1994. Courtship behavior begins with the male gliding to the tree 

with a female. The male generally lands lower with respect to the female position on the tree and 

approaches the female from below. Once the male is relatively close to the female, the male lifts 

its body anteriorly, holding the dewlap at complete extension and with its stiff tail lifted circles 

around the female using a characteristic jerky gait. John (1967) had observed circling in the 
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clockwise direction in Draco dussumieri [10]; however, we did not see a preference for circling 

direction in the same species (Figure 1.5 shows circling in the anti-clockwise direction). The 

female partially extends its patagium during the courtship ritual. Mori et al. (1994) ascribed 

female wing opening to rejection and the male stopping its display [9]; however, we saw the 

male continuing its ritual even after the female partially extended its patagium. We did record 

male rejection where the female used its tail to push the male away when the male attempted to 

touch the pelvic region of the female (personal observation and video footage). At this point, the 

male glided away from the female, possibly in search of another female or to continue courtship 

at a later point. 

Evading predators. Until now, there has not been documentation of predatory evasion using 

gliding in Draco. Snakes and birds are thought to be the main predators of Draco. On the 

contrary, high mortality rates have been attributed to females coming to the ground to oviposit 

and in males that exhibit territoriality [30]. John (1962) had noted Draco dussumieri to be 

relatively helpless on the ground in terms of their movement and agility [41]. Overall, previous 

observations suggest that Draco coloration and cryptic nature is the main way by which they 

evade predators.  
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Figure 1.5 A sequential shot of the mating behavior in Draco dussumieri. The male Draco lands 
on the tree with the female and approaches the female from below. The female partially opens 
her patagium in response to the male. The male keeps its dewlap extended and stiffens its tail 
circling around the female in sequences 2 to 6. The male can continue circling the female based 
on if the female is receptive or not. 

1 2 3 

4 5 6 
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1.1.6 Draco as a system to study gliding behavior 

Studies in gliding behavior, like most locomotory behavior, make a tradeoff between the 

behavior and the resolution at which it can be captured. That is, locomotory behavior takes place 

in space, and is often constrained based on data collection techniques, typically either on-body 

sensors or motion capture systems. Aerial behavior deals with movement in three dimensions, 

further constraining the scope of the study. For example, bird migration has been studied using 

GPS data sampled at regular intervals in time, whereas bird takeoff has been investigated at high 

spatial and temporal resolution in a lab setting. Both present drastically different resolutions of 

data acquisition answering more specific to broader questions in locomotory behavior. Gliding 

behavior presents a more approachable case where the glide distance is limited by the height of 

takeoff, making it possible to collect data for the complete glide instead of parts of it. However, 

most gliding animals that have been studied, including gliding squirrels, sugar gliders, and 

colugos, are nocturnal making it difficult to collect data in the animal’s natural habitat. Instead, 

these studies typically employ laboratory experiments to investigate certain aspects of the gliding 

behavior in detail. For example, takeoff and landing kinematics during a glide have been looked 

at independently and independent of the overall glide trajectory. Furthermore, such studies 

cannot link the behavioral context to the glide outcome. Many unanswered questions in gliding 

locomotion, including gliding performance in the wild, the link between behavior and 

performance, and variation in gliding behavior based on the intrinsic attributes of an individual 

like body mass and sex require high quality data collection in the animal’s natural surroundings. 

 Following Krogh’s principle, Draco fulfill the criteria of providing a system that can be 

used to answer some or all of the questions mentioned above. First, unlike mammalian gliders, 

Draco are diurnal, making it convenient to observe their behavior and use regular portable light 
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camera systems to record gliding locomotion. Second, Draco have distinct behaviors between 

males and females, making it possible to test hypotheses based on individuals rather than the 

entire species. Third, anthropogenic changes in the natural habitat over the past century have led 

to Draco inhabiting areca nut plantations making it possible to capture a wide variety of glide 

behaviors and intra-species interaction in the resident Draco population. Lastly, and potentially 

the most important aspect, Draco glide frequently during the day, especially males during the 

mating season, providing ample opportunities to collect high-quality data. 

1.2 Camera methods 

Throughout this study, we used field-portable, battery-powered, high-speed cameras to 

record flight behavior and reconstruct the 3D trajectory and kinematics of gliding Draco lizards. 

Cameras and 3D videography have a long history in the study of comparative biomechanics, in 

large part because they offer a non-invasive means for quantitative measurement of animal 

movement. Other methods such as on-animal inertial measurement units have also been applied 

to the study of locomotion and flight but were not considered appropriate here since the smallest 

units available at the time of this study were approximately 1 gram in mass, a substantial fraction 

of the 6 to 8 gram body mass of the lizards. Inertial measurement units also provide only a single 

point measurement and require the capture of the animal and recovery of the measurement unit 

before any data can be collected. In contrast, camera measurements can collect data from animals 

that are never handled by the researchers, can record multiple points on the body to measure pose 

and configuration, and also record other aspects of the context of the behavior such as the 

presence of other animal(s), location of nearby trees, and many other relevant factors in 

understanding behavior. For these reasons, cameras have been used as the primary measurement 

approach in most studies of gliding biomechanics. However, the application of multi-camera 
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videography and 3D kinematic reconstruction data in the field is challenging for many reasons. 

Most field sites lack access to power sources other than batteries (but see Bahlman et al. [23]), 

placing restrictions on the power available for cameras and making use of high-speed cameras 

designed for indoor, laboratory use impossible. However, recent and rapid increases in the 

capabilities of small, low power camera sensors driven by intensive efforts to improve the 

photography capabilities of mobile phones also resulted in the development of “action cameras” 

such as the GoPro series (The GoPro Inc.) which pair a small but high-quality camera sensor 

with a fixed lens, a battery, and hardware package designed to survive mistreatment and remain 

usable in outdoor environments. These cameras were ideal in many respects for recording Draco 

glides in the field, but also bring with them several challenges inherent in their design for 

consumer rather than laboratory use. These include challenges with inter-camera 

synchronization, lens distortion, and thermal management during recording stints. 

The mathematics underlying reconstruction of a 3D location from the information in two 

or more 2D images requires that the 2D images be captured at the same instant in time. For this 

reason, cameras designed for laboratory use typically include specialized circuits and software 

for synchronizing their shutters. GoPros and other consumer cameras lack such features. Instead, 

we used a combination of audio tones and visual cues to identify the closest frames among a set 

of cameras, leaving a temporal uncertainty of ± 0.5 frames among the cameras. This degree of 

uncertainty increases the uncertainty in the 3D measurements, and in cases where this increase 

was detrimental to the analysis, we linearly interpolated the 2D time-series recorded from each 

camera to a virtual temporal offset of 0 frames before performing the 3D reconstruction step. 

GoPros and many other consumer video cameras also do not scan the entire imaging sensor at 

once. Instead, the top row of pixels is scanned before the bottom row, sometimes in a smooth 
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row-by-row linear fashion and sometimes in blocks of several rows together, depending on 

camera settings. The error associated with this is small since the scan requires much less than the 

duration of one frame but cannot be mathematically removed. 

GoPro cameras and similar action cameras use a wide-angle lens that exhibits non-linear 

distortion. Unless accounted for, this distortion makes 3D reconstruction impossible. While more 

recent GoPro cameras have a hardware option to remove distortion, this also crops the view and 

partially defeats the point of using a wide-angle lens in the first place, which is to record a larger 

spatial volume. The GoPro Hero4 Black cameras that we used did not have this option, and 

instead we used the fisheye camera lens distortion approach described in [42,43] to model and 

remove the distortion. 

Although designed for use outdoors, GoPro cameras turn out to overheat when run for 

more than a few minutes in temperatures of around 35° C or more without active cooling, 

especially when recording at relatively high video frame rate and resolution. Some examples of 

frame rate and resolution combination include 240 frames per second at 480p resolution and 120 

frames per second at 1440p resolution. This random shutdown of cameras during recording was 

unexpected, though perhaps obvious in hindsight, but was accommodated by either designing 

recording methods that did not require the cameras to be left on for more than a few minutes or 

setting up active cooling with external, battery powered fans (see Chapter 2). 

1.2.1 Camera calibration 

Reconstructing 3D coordinates from multiple 2D camera images requires knowing the 

lens and sensor properties of the camera, information measurable under controlled circumstances 

in the lab, and knowing the relative position and orientation of the cameras in their field location. 

Determining this information is referred to as camera calibration [44]. We used the software 
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provided with the fisheye lens distortion model papers and the Argus suite of camera calibration 

software developed in the Hedrick lab to measure the lens and sensor properties [45]. We 

measured the relative position and orientation of the cameras using a structure-from-motion 

approach, which is to say the “structure” of the scene, or the camera positions and orientations, 

was recovered by tracking the motion of an object through the scene. The necessary information 

for such an approach is a large number of corresponding images where the pixel location of the 

object is known for all the cameras being calibrated. Depending on the distribution of known 

locations and the number of cameras anywhere from approximately 50 to several thousand 

corresponding pixel locations is required. We also enhanced this approach by simultaneously 

tracking two ends of a moving rod, adding the additional mathematical constraint that the 

distance between the two ends of the rod should remain constant throughout the scene. This 

information served as input to the open source sparse bundle adjustment library [46], so named 

according to the algorithm used to solve the calibration problem, using a MATLAB layer 

developed for community use by the Hedrick lab [47]. In the 2015 field season, we used these 

techniques to calibrate a set of three GoPro Hero4 Black cameras that were uniquely positioned 

for each naturally occurring glide event. In the 2017 field season, we used seven Hero4 Black 

cameras, positioned at mostly fixed locations in a flight arena constructed at the field site. 

1.2.2 Scene alignment 

Following camera calibration, it is possible to compute a 3D location from 2D 

observations in two or more cameras. However, the resulting 3D location, i.e. an [x,y,z] 

coordinate is not necessarily in a useful reference frame. Thus, we took a final calibration step of 

aligning the Z axis to gravity. In 2015, we used a tree trunk to identify this direction and in 2017 

we made an alignment recording by tossing a ball into the air in the scene and computed the 
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second derivative of its trajectory, revealing the direction of gravitational acceleration and 

providing a measure of its magnitude to be compared to the known value of 9.81 ms-2. 

1.2.3 Kinematic data acquisition 

Acquiring 3D kinematic data from video recordings means tracking the position of the 

object or feature of interest through the video sequence. We had hoped to use Deep Learning 

methods to train a neural network to identify the features we planned to track, thereby 

automating this otherwise tedious step. Unfortunately, the varied nature of the jungle forest 

scenes coupled with the small size of the Draco and its changing appearance with position and 

orientation with respect to the camera prevented current Deep Learning methods from producing 

sufficiently high-quality outputs. Instead, the video data were processed manually using a custom 

MATLAB software package developed in the Hedrick lab [48]. This package uses the camera 

calibration information, expressed as the epipolar lines, to aid in the data acquisition process. 

Marking a feature or location in one video defines a ray that passes through the camera sensor 

and the 3D location of the feature. This ray can then be visualized in other cameras that are part 

of the calibrated set, and this visualization is the epipolar line. For well-calibrated cameras, the 

epipolar line will pass through the feature being tracked, helping the user locate the feature in the 

other videos (Figure 1.6). 
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Figure 1.6 3D tracking of natural gliding behavior. (a) Overhead view of the Agumbe Rainforest 
Research Station (ARRS) showing the field site highlighted by the rectangular white box. The 
black circle (○) represents the location of the cameras for the recorded glide shown in panel (b) 
and insets. (b) Panel showing a snapshot of the lizard mid-glide across the three camera views. 
The dotted black line represents the complete glide track and the red rectangle shows the location 
of the lizard. Insets. Zoomed in views of the snapshots in panel b after scene calibration. (b.i) 
The lizard marked for 3D tracking in camera 1. (b.ii and b.iii) The marked lizard point in camera 
1 defines the epipolar line shown in blue in the insets for cameras 2 and 3; this line is the ray 
from the camera 1 sensor passing through the clicked location as seen in cameras 2 and 3. A 
point marked on this ray in either camera 2 or 3 will have zero reconstruction error. However, 
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only one point (the lizard) will create a 3D coordinate with a 2D projection that falls on the lizard 
in all 3 camera views. After clicking the lizard in camera views 2 and 3, we get a reprojection 
error of ~0.30 pixels i.e., the difference between the marked camera points and the computed 3D 
point reprojected onto each 2D camera view. 
 
1.2.4 Kinematic data smoothing 

In a set of calibrated cameras, a 3D location can be thought of as the intersection of two or 

more epipolar lines. However, due to calibration uncertainties, the discretization of images into 

pixels, and other factors, the epipolar lines never precisely intersect. Instead, the 3D location is 

computed as the location that minimizes the distance to all the epipolar lines. The distance to the 

lines is a measure of the digitization error or uncertainty. We used this uncertainty to smooth the 

resulting time series of 3D position data. We first used a resampling approach to convert the 

pixel uncertainty given by the 3D reconstruction operation to uncertainty in the position of the 

[x,y,z] coordinate, providing a 95% confidence interval for the location of the 3D point. We then 

used a quintic smoothing spline to find the smoothest path through the time series that remained 

within the 95% confidence interval range for each point. In this case smoothest means the 

smallest value for the 3rd derivative of position with respect to time. Thus, the spline smoothing 

approach also provided the means to compute mutually consistent smoothed first and second 

derivatives of position with respect to time (i.e., velocity and acceleration) by differentiating the 

spline polynomial. These smoothed position, velocity and acceleration time-series were used as 

the basis for further kinematic analysis. 

1.3 Field site 

The field site was an abandoned areca nut plantation located within the premises of the 

Agumbe Rainforest Research Station (ARRS) in Karnataka, India (13°31’04” N, 75°05’18” E). 

The research station is located at an elevation of approximately 650 m above sea level within the 

central Western Ghats and has a distinctive tract of tropical moist evergreen forest. The areca nut 
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plantation was enclosed by open habitat on the east, and a mix of open habitat and tropical 

rainforest on the other sides. The site contained ~912 areca nut trees (~13 trees per 100 m2) 

mixed with scattered local flora. The trees were ~10 cm to ~ 20 cm in diameter, ~5 m to ~23 m 

tall and had an inter-tree distance of ~1.5 m to ~8 m, providing areas of varying tree clutter. A 

population of flying lizards (Draco dussumieri) inhabited the plantation during the breeding 

season (February - May). Previous observations from the ARRS personnel at the field site 

described a sharp increase in the number of Draco sightings during the mating season. Potential 

reasons could include mating and territorial displays making lizards more conspicuous, and an 

untested hypothesis that the areca nut plantation provides relatively open spaces compared to 

dense surrounding forests, allowing male Draco to effectively display to attract females. 

 Overall, the flight arena provided a naturally constrained spatial setting with a consistent 

Draco population of male and female individuals to study the gliding behavior and biomechanics 

of flying lizards. 

Ethics statement. The ARRS campus is privately owned and does not fall within a 

protected area, exempting us from requiring government permits. The study was conducted with 

permission from the local ARRS authorities and as per UNC Institutional Animal Care and Use 

Committee guidelines.  

1.4 Concluding remarks 

In the following chapters, I will describe detailed gliding aerodynamics in the flying lizard 

Draco dussumieri, behavior and body size effects on gliding performance, and how glides are 

executed in the animal’s natural habitat. 
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Chapter 2 will describe in detail the aerodynamic performance envelope used by Draco 

while gliding. It will focus on the aerodynamic forces generated during the complete glide and 

the physical mechanisms by which they are produced. Chapter 3 will extend the performance 

analysis to an individual specific level and show how variation in body size and gliding 

motivations/behavior can manifest in the overall gliding performance. In Chapter 4, I will 

describe how Draco actually implement their previously described gliding ability (Chapter 2 and 

3) in their natural habitat, focusing on the sensory and environmental context. Together, these 

chapters aim to provide a biologically relevant holistic understanding of gliding in Draco with 

applicability to other gliding taxa.  
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CHAPTER 2: AERODYNAMICS OF GLIDING 

2.1 Introduction 

Gliding terrestrial locomotion is often considered a relatively simple form of aerial motion 

[1]. Unlike flapping flyers, gliding animals are incapable of muscle-powered flight and 

consequently cannot stay aloft for extended durations. They also use a mostly static airfoil with 

fewer degrees of freedom than the flapping wings of birds and bats. The airfoil is deployed after 

jumping and generates aerodynamic forces as the glider trades its height above the ground (i.e., 

potential energy) for kinetic energy and power to overcome drag. During the glide, the 

magnitude and direction of aerodynamic forces vary as the animal gains or loses speed but also 

may be actively modulated by the animal to control its trajectory and reach its desired target [1–

3]. Aerodynamic control is critical in allowing the animal to execute a variety of glide 

trajectories, accommodating different goals and the habitat’s spatial complexity [1,4], but the 

airfoil performance envelope used by gliders in their natural habitat remains unknown.  

The first step towards understanding the physical limits governing the airfoil performance 

of the animal is quantification of the relationship between the non-dimensional coefficients of lift 

and drag with respect to one another and to the angle of attack (i.e., the angle between the airfoil 

surface and the airflow). The coefficients, in combination with knowledge of the airfoil speed 

and area, allow one to estimate the dimensional lift and drag forces and thus the real-world 

performance of the glider. Furthermore, the ratio of the two coefficients determines the 

equilibrium glide angle and the minimum amount of potential energy required to cover a given 
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horizontal distance. However, these coefficients are not a fixed property of the animal. 

Modulating angle of attack (AoA) is the simplest means for changing the aerodynamic 

performance of airfoils [5] and is accessible to animal gliders through mid-air changes to body 

orientation. Animal gliders also modify other aspects of their airfoil. For example, changing the 

curvature of the airfoil (i.e., camber), can directly change the coefficients of lift and drag [6,7]. 

Animals can also vary the dihedral angle, or the angle made by the airfoil above or below the 

horizontal plane, influencing the proportion of aerodynamic lift that is oriented in support of 

body weight [6]. Finally, animals may directly modify the effective area of the airfoil, thereby 

influencing dimensional lift and drag performance even if the underlying non-dimensional 

coefficients remain constant. For example, Draco extend their airfoil as they leap from a tree and 

begin to fold in the airfoil just before landing [4]. Mammalian gliders such as flying squirrels, 

sugar gliders, and the colugos have a patagium joining the forelimb and the hindlimbs which also 

permits area changes of the airfoil [8–10]. Gliding snakes flatten their body dorsoventrally, 

enhancing the surface area and altering airfoil camber [3,11]. All these examples demonstrate 

that gliding animals are well able to alter airfoil characteristics in mid-air to achieve different 

aerodynamic outcomes and vary their overall gliding performance. 

Prior studies of gliding animals have taken a variety of approaches, all subject to some 

limitations that have hindered quantifying the aerodynamic performance envelope. The study of 

the gliding kinematics of live animals in the laboratory permits detailed quantification of 

aerodynamic performance, but not all gliding species are amenable to captivity, and the 

performance of captive animals may not be reflective of natural behavior due to changes in 

motivation and diet brought about by captive life. Furthermore, lab studies have been limited to 

quantifying parts of the glide and therefore may not be representative of the overall aerodynamic 
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performance of the animal. For example, lab studies on flying squirrels and sugar gliders have 

calculated the aerodynamic performance for a small continuous glide duration of 0.12 to 0.38 s 

for a glide distance of 4 to 4.5 m [9,10], but in the wild, flying squirrels are known to travel 

greater than 14 m on average in a single glide [12,13]. However, for limbless gliding, Yeaton et 

al. (2020) have performed high speed motion tracking of 11 to 17 landmarks on flying snake 

over complete glides to describe and model in detail the undulatory gliding motion [14]. 

Studies of live animals in the field have typically been handicapped by experimental 

design constraints such as a few low-resolution cameras or the use of on-animal technologies like 

accelerometers that can precisely record whole-animal trajectory kinematics but provide no other 

context for the measurements [8,15]. Bahlman et al. (2013) used a two camera system to record 

parts of a glide of wild flying squirrels departing from a feeder in a semi-natural setting but 

lacked multiple body point tracking to calculate metrics of camber and dihedral angle and 

morphometric data including mass, all essential for accurate aerodynamic performance 

measurements [2]. Overall, quantifying complete glide performance has been mostly limited to 

using average metrics for the whole glide such as speed, glide ratio, and glide angle [16]. These 

measures fail to capture the variety of aerodynamic and morphological modifications undertaken 

by the animal during the glide and, although they describe the observed glide performance, are 

an inadequate basis for revealing how an animal might use gliding to traverse varied natural 

environments.  

Finally, physical models of gliding animals tested in a wind tunnel can also provide 

detailed information on aerodynamic performance, but such models are typically static and 

cannot probe all the means by which animals might modify or control their force production 

mid-air. Furthermore, absent a high-quality ground-truth dataset from live animal studies, it 
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remains uncertain how differences in material properties and other aerodynamic factors affect 

performance.  

 Here we address these questions by constructing a well-calibrated 7-camera gliding flight 

test arena in the animal’s habitat and using it to record the 3D kinematics of complete glides of 

wild Draco. Gliding kinematics derived from 5 separate body landmarks allowed measurement 

of body orientation, wing orientation, and wing camber in addition to the overall glide trajectory. 

Furthermore, the measured glide trajectories along with known masses and surface areas of the 

individuals allowed calculation of instantaneous accelerations, aerodynamic forces, and lift and 

drag coefficients. Using these metrics, we tested the following hypotheses. We hypothesized that 

in Draco the relationship between the coefficient of lift, coefficient of drag and AoA follow 

those of a typical airfoil but operate closer to the range previously observed in mammalian 

gliders [2,5,10]. Overall, we expect that the highest lift to drag ratio (but smallest coefficient 

values) occur at low AoA and that the airfoil transitions to stall with an increasing coefficient of 

drag, and constant or declining coefficient of lift at higher angles of attack. Furthermore, we 

hypothesized that the lift to drag ratio is consistent with average whole-glide angles quantified 

here and previously reported by earlier studies of Draco [16]. Finally, the Draco wing anatomy 

restricts wing movement outside the sagittal plane of the body and the maximum possible wing 

area due to the orientation and extension of the intercostal musculature. Therefore, we 

hypothesized that in Draco, the aerodynamic forces are primarily controlled by varying the body 

orientation (i.e., body pitch) and consequently the AoA to enable a high lift to drag ratio during 

the mid-glide to cover horizontal distance, and high lift and drag forces at landing to enable 

minimal loss of elevation while also reducing kinetic energy before landing. 
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2.2 Materials and Methods 

2.2.1 Field Site and Motion capture arena 

The field site was an abandoned areca nut plantation located within the Agumbe 

Rainforest Research Station campus (ARRS), Karnataka, India (13°31’04” N, 75°05’18” E) and 

previously described in Khandelwal et al. 2020 (also see Chapter 1) [4]. We conducted our field 

data collection from February to April 2017 during which we uniquely identified 33 individuals 

(16 males and 17 females) inhabiting the plantation. The sexes were identified based on their 

dewlap length (see section 1.1.3). Glide data from these individuals was collected by setting up a 

motion capture arena in the plantation. 

The motion capture arena was constructed on an approximately 6 m x 7 m patch of the 

plantation containing two areca nut trees 5.5 m apart (Figure 2.1a and 2.1c). The patch was 

selected to represent the average glide distance (~5 m) observed in our previous study describing 

natural gliding behavior at the field site [4]. The patch was enclosed by a mix of shrubs and 

rainforest on the south and areca nut trees on all other sides. The two trees within the patch were 

designated as the takeoff and landing tree for glide recordings. The arena was constructed by 

cordoning off the two trees from the rest of the plantation using white sheets on all sides except 

the south. The white sheets spanned almost the entire tree height and were also spread on the 

ground between the takeoff and the landing tree. The sheets encouraged the lizard to glide 

towards the designated landing tree by eliminating other tree options and provided a high 

contrast background for video recording and 3D motion tracking. We used an array of seven 

GoPro Hero4 Black cameras (GoPro, Inc) in wide field of view (FOV) mode, which together 

recorded the complete glide of the lizard between the takeoff and landing tree. The seven 

cameras were categorized into three groups based on their position between the takeoff and the 
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landing tree. The camera mounted on the takeoff tree and on the pole adjacent to the takeoff tree 

formed the takeoff camera group. They were used to record close-up recordings of the takeoff 

phase. Three cameras on the ground recorded the glide between the takeoff and landing tree and 

formed the glide camera group. The camera mounted on the landing tree along with the one 

placed adjacent to it formed the landing camera group. They were used for close-up recordings 

of the landing phase. Reconstructing 3D kinematics required that the animal be seen 

simultaneously by at least two cameras.  
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Figure 2.1 Motion capture arena set up in the areca nut plantation at ARRS. (a) A scaled 
illustration of the motion capture arena showing 23 glides and seven cameras used to collect 3D 
kinematic data. The seven cameras are divided into three groups (color coded) based on the part 
of the glide they record. The takeoff cameras are marked by purple discs, glide cameras with 
orange and landing cameras with red. (b) Illustration showing the body points tracked per frame 
for each glide. The mid-body point was used as a proxy for center of mass and whole glide 
kinematic calculations including velocity and acceleration. (c) Enlarged view of one glide closer 
to the landing tree showing the tracked 3D points in space. (d) Side view photograph of the 
motion capture arena in the field with all seven cameras marked. The tree adjacent to camera 1 is 
the takeoff tree and the tree adjacent to camera 7 is the landing tree. Cameras 1 and 2 formed the 
takeoff group, cameras 3, 4 and 5 formed the glide group, and cameras 6 and 7 formed the 
landing group. 
 
Takeoff camera group. The group consisted of two cameras. One was mounted close to the top of 

the takeoff tree looking downwards towards the ground and capturing close-up top view 

recordings of the takeoff phase. The second camera was mounted on a pole adjacent to the 

takeoff tree and a similar height as the first camera. The second camera was tilted at an angle to 

capture the side view of the takeoff phase. Both cameras recorded video at 240 frames per 

second (fps) and 480p resolution (purple discs in Figure 2.1a and cameras 1 and 2 in Figure 2.1c; 

also see Figure 2.2b). 

Glide camera group. The group consisted of three cameras placed on the ground in a staggered 

formation between the takeoff and landing tree. The first camera was placed closer to takeoff tree 

looking upwards with part of the sky as the backdrop. The FOV captured the complete glide. The 

second camera was placed approximately midway between the takeoff and landing tree and had 

the white sheets as the backdrop. It also captured the complete glide. The last camera was placed 

closer to the landing tree and captured part of the mid-glide phase and the complete landing 

phase. All three cameras recorded at 120 fps and 1080p resolution (orange discs in Figure 2.1a 

and cameras 3, 4, and 5 in Figure 2.1c). 
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Landing camera group. The group consisted of two cameras. The first camera was mounted on 

the landing tree looking downwards towards the ground. This allowed close-up recordings of the 

top view of the landing maneuver. The second camera was placed adjacent to the landing tree on 

the ground and provided a side view of the landing phase. Both cameras recorded at 120 fps and 

1080p resolution (red discs in Figure 2.1a and cameras 6 and 7 in Figure 2.1c; also see Figure 

2.2c).  

 
Figure 2.2 Close-up view of the camera setup. (a) Close-up view of camera 3 in the motion 
capture arena. Each camera was equipped with a cooling fan and battery pack to prevent 
overheating and enable day long recording. The walkie-talkie was used for temporal alignment 
of video frames and taking audio field notes. (b) Close-up view of the takeoff cameras 1 and 2. 
Camera 1 was mounted on the takeoff tree and camera 2 was on a L shape pole erected next to 
the takeoff tree. A cooling fan was mounted at the back of both cameras and a single walkie-
talkie was used for both. (c) Close-up view of camera 7 mounted on the landing tree. The camera 
at the back of the camera was equipped with an external power switch which allowed us to turn 
off the fan as soon as the Draco landed to prevent any injury to the lizard.  

 

Each of the seven cameras was accompanied by an 80 mm cooling fan, a walkie talkie, 

and a 20000 mAh external battery pack (Figure 2.2a). The cooling fan was mounted 
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approximately 8 cm away from the back of the camera using a wire frame to damp vibrations 

during recording. The airflow was towards the camera and prevented it from overheating. The 

external battery charged the camera and powered the cooling fan during the recording duration. 

The walkie talkie was used to receive audio notes and beeps that were used for temporal 

alignment of the video frames from all cameras for 3D reconstruction. All seven cameras were 

connected to a Wi-Fi remote to start and stop recording. 

2.2.2 Data collection 

Prior to data collection, from 24 February until 8 March 2017, an extensive tree and 

Draco survey was carried out at the field site to uniquely identify individuals and their spatial 

distribution (see Chapter 3 for details). During the survey, all Draco lizards spotted in the 

plantation were captured, marked with a unique number, measured, and immediately released on 

the same tree from which they were caught.  

Glide data collection was performed from 9 March to 21 April 2017, during the Draco 

mating season. Four data collection breaks of two days each were uniformly interspersed during 

the data collection period to potentially reduce the influence of our presence on Draco behavior 

at the field site. Glides were recorded between 9 am and 4 pm each day based on previous 

observations of lizard activity at the field site [4]. A complete glide recording began with 

capturing a lizard from the plantation and releasing it at the bottom of the takeoff tree in the 

motion capture arena (Fig. 2.1c). After the lizard voluntarily climbed on top of the takeoff tree, 

all seven cameras were triggered to start video recording. Each recording duration ranged from 

~3 min to ~10 min, based on the time taken by the lizard to perform a voluntary glide. The glide 

event was followed by triggering 10 audio beeps on the walkie talkie and a scene calibration 

procedure of moving a wand of known length (1.04 m) through the common camera viewing 
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volume between the takeoff and the landing tree. The wand was constructed using a pipe of 1.8 

cm diameter and 1.04 m in length. Three distinct colored balls were placed on the wand. Orange 

ball on one end and red on the other end. A green ball was placed 26 cm from the red ball. The 

red and orange ball helped easily identify the two ends of the wand and the green ball was used 

to distinguish between the two ends for consistent digitization for scene calibration. Finally, a 

tennis ball was tossed upward and allowed to fall in the motion capture arena; this trajectory was 

used to align the vertical (Z) axis with gravity during 3D reconstruction of the glide and validate 

the camera calibration accuracy. After completion of the recording, the lizard was placed back on 

the takeoff tree or, if the individual already had three recordings on the same day, then it was 

ready to be released back on the tree from which it was captured. Before setting the lizard free, 

the mass of the lizard was measured on a digital balance (resolution +- 0.01 gm) and was 

followed by taking images of the lizard on a graph paper for morphometric measurements (see 

Chapter 3 for details). No lizard was held captive for more than the duration of the recording on 

a single day. If the Draco captured for recording was unmarked, the lizard was marked after 

completing all the glide recordings for that day to ensure that the fresh marking did not affect the 

gliding behavior in the arena. 

2.2.3 Data processing  

3D position data ([x,y,z] coordinate) was obtained using the MATLAB (The MathWorks, 

Natick, MA, USA) package DLTdv [17]. Because the lizards were unmarked, we chose five 

locations  on the dorsal side of the Draco for manual digitization in each frame of the complete 

glide (Figure 2.1b). The anterior point was identified as the place where the head of the lizard 

connected to the body. The posterior point was identified as the place where the tail joined the 

body. The left- and right-wing tips were the two extremities of the wing, clearly demarcated as 



40 
 

the two end points of the Draco along the lateral axis. The mid-body point was roughly the mid-

point between the anterior and posterior body point and corresponded to a distinct pattern on the 

dorsal side of the lizard. Each of the five body points were digitized in all camera views in which 

they were visible (at least two or more views for each frame throughout the complete glide). 

Therefore, each of the five body points resulted in five tracks corresponding to the complete 

glide trajectory. Each track was smoothed using a smoothing quintic spline weighted by the 95% 

confidence intervals of the 3D reconstruction uncertainty. There were no missing points or gaps 

in the digitized tracks used for data analysis. Each glide was rotated and translated to place the 

takeoff tree on the origin and the landing tree on the positive X axis. Glides were divided into 

phases (takeoff, mid-glide, and landing) based on criteria established for glides from freely 

behaving lizards (see Chapter 4). Briefly, the end of takeoff was marked by the momentary 

alignment of the resultant aerodynamic force vector with the velocity vector leading to a 

minimum in the centripetal acceleration curve. The start of the landing phase corresponded to the 

decrease in the horizontal speed of the Draco (Figure 2.3b and 2.3e). 
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Figure 2.3 Kinematics of single Draco glide. Panels (a), (d), and (g) show the side view profile 
of one of the 23 glides recorded along with the total speed and acceleration magnitude. The glide 
trajectory is divided into takeoff, mid-glide and landing phases based on the definitions followed 
in Khandelwal et al (2020) [4]. Panels (b), (e), and (h) show the x, y, and z components of the 
velocity vector during the glide. Note the drop in vx marking the start of the landing phase. 
Panels (c), (f), and (i) show the x, y, and z components of the acceleration vector during the 
glide. Note the start value of az close to 9.81 ms-2 indicating the ballistic dive phase of the 
takeoff. 
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2.2.4 Kinematic and aerodynamic parameters 

Yaw angle (o). The angle made by the line joining the anterior and posterior point (longitudinal 

axis) with the positive X axis at every instant of time (Figure 2.4b and 2.5a). 

𝑦𝑦𝑦𝑦𝑦𝑦 =  𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦  −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥  −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥

� 

where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 refer to the tracked points on the Draco’s body. 

Pitch angle (o). The angle made by the line joining the anterior and posterior points (longitudinal 

axis) on the lizard with the horizontal X-Y plane at each instant of time. A positive pitch angle 

raises the anterior point of the lizard and lowers the posterior point (Figure 2.4e and 2.5d). 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ =  𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧  −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑧𝑧
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥  −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥

� 

Roll angle (o). The angle made by the line joining the left-wing tip and right-wing tip (parallel to 

the lateral axis) with the horizontal X-Y plane at each instant of time. A positive roll angle raises 

the left-wing tip and lowers the right-wing tip (Figure 2.4g and 2.5g). 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦  −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥  −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥

� 

Instantaneous glide angle (𝜃𝜃, o). The angle defined by the inverse tangent of the ratio of the 

vertical component of velocity (𝑣𝑣𝑧𝑧) to the horizontal component of velocity (𝑣𝑣𝑥𝑥). 

𝜃𝜃 =  𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝑣𝑣𝑧𝑧
𝑣𝑣𝑥𝑥
� 

Angle of attack (o). The difference between the pitch angle and the instantaneous glide angle at 

each instant of time (Figure 2.4c and 2.5b). 
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Figure 2.4 An overhead view illustration of the axes of flight and aerodynamic parameters 
calculated for each glide  (a) The three axes about which the lizard can move in flight. 
Longitudinal axis (lo) about which the lizard rolls. Lateral axis (la) about which the lizard 
pitched. Vertical axis (ve) about which the lizard changed its yaw. (b) Yaw angle is the rotation 
about the ve from the X-Z plane, positive yaw is to the lizard’s right. (c) Angle of attack (AoA) 
is the angle made by the airfoil surface relative to the direction of motion (airflow). (e) Pitch 
angle is the rotation about the la from the X-Y plane, positive pitch raises the head upward. (f) 
Camber is the convexity of the airfoil from the leading to the trailing edge. (g) Roll angle is the 
rotation about the lo from the Z-Y plane, positive roll raises the left-wing tip. (h) Dihedral angle 
is the average of the upward angle made by either side of the wing with the X-Y plane. (d) 
Illustration showing the airfoil area used to calculate the aerodynamic force coefficients. The 
area was calculated by fitting a plane to the 17 3D points tracked around the lizard. 
 

percentage camber. The ratio of the perpendicular distance of the mid-body point from the 

longitudinal axis to the distance between the anterior and posterior body point (chord length). 

The ratio is multiplied by 100 to give the percentage camber (Figure 2.4f and 2.5e). 

Dihedral angle (o). After correcting for pitch and roll, the average of the angle made by the line 

joining the mid-body point to the left- and right-wing tip with the horizontal X-Y plane. A 
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positive dihedral angle raises the left- and right-wing tip above the horizontal X-Y plane (Figure 

2.4h and 2.5h). 

Airfoil area (m2). A single video frame from the complete glide trajectory was used to calculate 

airfoil area. The frame corresponded to the Draco in glide when the patagium was completely 

stretched open. A total of 17 points were 3D tracked around the body periphery and included the 

head, lappets and the hindlimbs but excluded the tail. These 17 points were used to define an 

airfoil representing the total body surface area used to generate aerodynamic forces (Figure 

2.4d). 

Lift and Drag (N). Aerodynamic lift and drag were calculated using the angle (𝜑𝜑) between the 

drag vector, i.e. opposite to the velocity vector (𝑽𝑽), and the resultant aerodynamic force vector 

(𝑹𝑹) [9].  

𝑹𝑹 = ax + ay + (az + 9.8)  

𝜑𝜑 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
−𝑽𝑽.𝑹𝑹
|𝑽𝑽||𝑹𝑹|�

  

The components of 𝑹𝑹 perpendicular and opposite to the Draco’s direction of travel were 

multiplied by the Draco’s mass (𝑚𝑚) to give the normalized lift and drag force, respectively. 

𝐿𝐿 =  |𝑹𝑹|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.𝑚𝑚; 𝐷𝐷 =  |𝑹𝑹|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑚𝑚 

Coefficients of lift and drag (n.d.). Instantaneous coefficients of lift and drag (i.e., CL and CD) 

were calculated from the kinematic and airfoil data from the following equations: 

𝐶𝐶𝐿𝐿  =  𝐿𝐿 �
1
2
𝜌𝜌𝜌𝜌𝑣𝑣2�

−1
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𝐶𝐶𝐷𝐷  =  𝐷𝐷 �
1
2
𝜌𝜌𝜌𝜌𝑣𝑣2�

−1

 

where 𝜌𝜌 is air density (1.225 kg m-3), 𝑆𝑆 is the airfoil area (Figure 2.4d), 𝑣𝑣 is instantaneous 

airspeed (Figure 2.3d), and 𝐿𝐿 and 𝐷𝐷 are the normalized lift and drag forces, respectively. Note 

that 𝑆𝑆 is assumed to be constant at the measured fully open value, so these instantaneous 

calculations will not produce accurate results for the beginning and end of the glide when the 

Draco patagium is incompletely deployed or being retracted (Figure 2.5c, 2.5f and 2.5i). 
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Figure 2.5 Draco orientation and aerodynamic parameters for a representative glide during the 
mid-glide and part of the landing phase. The takeoff phase and end of the landing phase was not 
considered since the Draco rapidly changes its orientation and wing shape during that time. 
Panels (a), (d), and (g) show the Draco orientation in flight. Panels (b), (e), and (h) show angle 
of attack (AoA), percentage camber, and dihedral angle, all parameters that are directly relevant 
for aerodynamic force generation. Panels (c), (f), and (i) show the variation in CL and CD and 
their ratio with glide progression.  
 

CL and CD polar plot. The set of corresponding values for CL, CD, and AoA were determined as 

follows from the instantaneous values by a sliding window approach applied to CD from 0.35 to 
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2.0 in increments of 0.1 (Figure 2.9). For each window mid-point, we identified all instantaneous 

CD values from the mid-point ± the increment of 0.1. Within this data subset we calculated the 

average CD, CL and AoA for each individual Draco represented. From this set of individual 

means we calculated the inter-individual mean, inter-individual standard deviation, and standard 

error at each of the CD window mid-points. Note that the values contributing to each mid-point 

overlap by 50%, for example, the mid-points at 0.35 includes the range from 0.25 to 0.45 while 

the mid-point at 0.45 includes the range from 0.35 to 0.55. The sliding window approach was 

performed to lessen the effect of the artificial and arbitrary window size on the resulting glide 

polar. Finally, instantaneous values from the first 50 (0.42 s) and last 20 (0.17 s) frames were not 

included in these calculations because the Draco patagium was typically seen to be incompletely 

extended during those intervals. 

Average glide parameters. The fixed takeoff and landing tree distance of 5.5 m established by 

the motion capture arena allowed us to quantify the behavior of each kinematic and aerodynamic 

parameter as the Draco moved towards the landing tree. To quantify the range of values used by 

the Draco, we used a sliding window of 0.1 m starting from 0.6 m to 5.2 m along the +X axis 

and identified all values for each parameter within each step of 0.1 m increment (Figure 2.6).  

For each window, the mean and standard deviation for each parameter was calculated. The first 

0.6 m and the last 0.3 m of the glide were excluded because they corresponded to the first 50 and 

last 20 frames of glide recording which were removed from the analysis as mentioned 

previously.  

2.2.5 Statistical methods 

In addition to the preceding calculations, univariate linear regression (ULR) and 

generalized linear mixed-effects models (GLME) were used to examine the data for significant 
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relationships among the individual Draco averages for coefficients of lift and drag, lift-to-drag 

ratio, camber, AoA and dihedral. These and all other calculations were performed in MATLAB 

version r2020a. 

2.3 Results 

A total of 23 glides from 7 different males and 6 different females were used for kinematic 

and aerodynamic analysis. Since the glides were recorded in the motion capture arena, the glide 

distance between the takeoff and the landing tree was fixed at 5.5 m. The average glide duration 

from the takeoff to the landing tree was 1.69 ± 0.06 s (mean ± std, n = 23). Lizards reached a 

maximum speed of 5.06 ± 0.32 ms-1 with an average overall glide angle of -28.86 ± 2.91°, 

corresponding to a theoretical equilibrium glide with a lift to drag ratio of approximately 1.8. 

However, none of the glides reached equilibrium; all showed continuous changes in acceleration 

in the X, Y and Z directions. For analysis, each glide was divided into takeoff, mid-glide and 

landing phases. The duration, distance covered, and the average glide angle observed for each 

phase is described in Table 2.1. 

Table 2.1 Duration, distance, and average glide angle for each glide phase across all 23 glides. 
The values reported are mean ± std. 

 Takeoff Mid-glide Landing 
Duration (s) 0.43 ± 0.03 0.75 ± 0.08 0.52 ± 0.10 

Horizontal distance (m) 0.79 ± 0.10 2.72 ± 0.29 2.00 ± 0.30 
Glide angleavg (°) -35.84 ± 3.88° -36.18 ± 3.17° -13.35 ± 4.35° 
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Figure 2.6 Parameter behavior for a horizontal glide distance of 5.5 m for all 23 glides performed 
in the flight arena. The solid black line shows the average value, and the shaded area shows the 
standard deviation. The orange shaded region represents the average mid-glide phase, and the red 
shaded region represents the average landing phase excluding the last 0.3 m of glide distance. 
The vertical dashed line denotes the start of the landing phase calculated as the average of start 
of landing phase for all glides. Panels (a), (d) and (g) show the overall variation in yaw, pitch, 
and roll angle. Yaw and role angle showed a variation of approximately 15° while pitch showed 
a narrow variation and a continuous increase as the glide progressed. Panels (b), (e) and (h) show 
the variation in angle of attack, percentage camber and dihedral angle. Note the sharp increase in 
angle of attack in the landing phase. Panels (c), (f) and (i) show the change in average force 
coefficients and their ratio with glide progression. Note the steep drop in lift-to-drag ratio during 
the landing phase.  
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2.3.1 Variation in roll, pitch, and yaw angle 

The first 50 frames (0.42 s) and the last 20 frames (0.17 s) of the glide were not 

considered for aerodynamic analysis since these instances corresponded to rapid changes in 

Draco posture, wing shape, and size. Yaw and roll angles were highly variable across glides, and 

the pitch angle increased at an average rate of 10.3 ± 0.2° m-1 (ULR, R2 = 0.99, p < 0.001) with 

the Draco transitioning into a more upright pose, with a more rapid increase of 26.1 ± 0.9° m-1 

(ULR, R2 = 0.98, p < 0.001) at the end of the glide during the landing maneuver (Figure 2.6a, 

2.6d and 2.6g).  

2.3.2 Variation in angle of attack, camber, and dihedral angle 

During the mid-glide, Draco used a percentage camber of 9.35 ± 3.62 and a dihedral 

angle of 8.7 ± 3.7°, i.e., the patagium was convex upwards with the camber height being 

approximately 10% of the chord length and the wing tips elevated at approximately 9° with 

respect to the body midpoint (Figure 2.6e and 2.6h). The AoA was held mostly constant at 25.9 ± 

3.7° during the mid-glide phase despite the continuous increase in body pitch angle at a rate of 

10.3 ± 0.2° m-1 (Figure 2.6b). The AoA then increased rapidly at a rate of 16.8 ± 0.8° m-1 (ULR, 

R2 = 0.97, p < 0.001) towards the end of the glide during the landing maneuver. Furthermore, the 

landing phase saw a steady increase in percentage camber with little variation in the dihedral 

angle. Overall, the Draco modulated its percentage camber and AoA during the glide with a 

steady dihedral angle of approximately 9° to cover a horizontal glide distance of 5.5 m. 
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2.3.3 Aerodynamic force coefficients 

Overall, Draco generated more lift than drag, CL was always greater than CD (Figure 2.6c 

and 2.6f, and Figure 2.9b). During the mid-glide phase, Draco used a CL of 1.47 ± 0.25 (mean ± 

std, n = 30) and CD of 0.55 ± 0.13. In the landing phase, the lift and drag coefficients both 

increased, but the rate of increase was higher for the drag coefficient at 0.53 ± 0.05 m-1 (ULR, R2 

= 0.90, p < 0.001) compared to 0.45 ± 0.05 m-1 (ULR, R2 = 0.85, p < 0.001) for the lift 

coefficient, leading to an overall decrease in the lift-to-drag ratio. The average maximum CL was 

2.42 ± 0.33 and the average maximum CD 1.51 ± 0.18; both these maxima occurred near the end 

of the landing phase after approximately 5.2 m of horizontal translation (0.3 m from the landing 

tree). However, the aerodynamic analysis could produce higher maximum CL and CD values than 

those reported here if the last 0.3 m of glide distance were included. The average maximum CL to 

CD ratio was 2.93 ± 0.38 and peaked early in the glide at around 2.1 m of horizontal travel 

(Figure 2.6i).  

2.3.4 Effect of angle of attack and percentage camber on aerodynamic force coefficients 

We fit three separate generalized linear mixed effects models with the coefficient of lift, 

coefficient of drag, and the lift-to-drag ratio as the outcome variable, with fixed effects of AoA 

and percentage camber, and an uncorrelated random effect of AoA and percentage camber 

grouped by position. Since the underlying data were generated by binning successive Draco 

measurements by horizontal position between the takeoff and landing tree, we included 

horizontal position (X) as the grouping variable in an attempt to remove any spatial association 

between the fixed effects and the outcome variable. 

In the mid-glide phase, percentage camber was significantly and positively correlated 

with the aerodynamic force coefficients, whereas AoA was not significantly correlated with them 
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and was approximately 26° throughout mid-glide (Table 2.2, Figure 2.7a and 2.8). However, 

AoA (and not percentage camber) was a significant and positive predictor of the lift-to-drag ratio 

during the mid-glide, though the small range of variation in AoA (25° to 27°) means that the 

overall effect on the lift to drag ratio was small (Table 2.2).  

During landing, both AoA and percentage camber were significantly correlated with the 

aerodynamic force coefficients. AoA was positively correlated and percentage camber was 

negatively correlated to each of the force coefficients (Table 2.3 and Figure 2.8). Like the mid-

glide phase, the landing phase showed a negative correlation of angle of attack with the lift-to-

drag ratio and non-significant relationship with percentage camber. However, it should be noted 

that towards the end of the observed landing phase, there is a steep drop in percentage camber as 

the Draco begins to position itself for tree contact that could lead to the negative non-significant 

effect on the lift-to-drag ratio (Table 2.3). 

 
 
Figure 2.7 Effect of average percentage camber in mid-glide phase for all glides. (a) Draco use a 
narrow range of AoA of approximately 2° but vary their percentage camber in mid-glide. (b) and 
(c) show average force coefficients increasing with increase in percentage camber during mid-
glide.  
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Figure 2.8 Variation of lift and drag coefficients with angle of attack and percentage camber. The 
orange markers denote values from the average mid-glide phase and the red markers represent 
values from the average landing phase. Panels (a), (c), and (e) show that Draco operate within a 
narrow range of approximately 2° angle of attack during the mid-glide phase but use a larger 
range during landing. Panels (b), (d), and (f) show that unlike the AoA, Draco use a range of 
percentage camber values throughout the mid-glide and the landing phase. The variation follows 
the expected trend of force coefficients individually increasing with percentage camber but their 
ratio decreasing with an increase in percentage camber.  
 



54 
 

Table 2.2 Generalized linear mixed effects for aerodynamic force coefficients and their ratio in 
the mid-glide phase. The significant effects are highlighted in bold.  
Model fit: Intercept + AoA + Camber + (AoA|X) + (Camber|X) 
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 Estimate SE 95% CI  t p SD 
(random 

effect) Lower Upper 
Intercept 0.42 0.41 -0.43 1.27 1.01 0.32  

AoA 0.02 0.01 -0.00 0.05 1.78 0.09    < 10-5 
Camber 0.04 0.01 0.03 0.06 5.31    < 10-4 0.00 
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 Estimate SE 95 % CI  t p SD  
(random 

effect) Lower Upper 
Intercept 0.64 0.25 0.13 1.15 2.56 0.02  

AoA -0.01 0.01 -0.03 0.00 -1.53 0.14    < 10-6 
Camber 0.02 0.00 0.01 0.04 4.69 < 10-4 0.00 

 

L
ift
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o-

dr
ag
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 Estimate SE 95% CI  t p SD  
(random 

effect) Lower Upper 
Intercept 0.24 0.96 -1.72 2.20 0.25 0.80  

AoA 0.11 0.03 0.04 0.17 3.52 <0.01 <0.0001 
Camber -0.03 0.02 -0.07 0.01 -1.71 0.10 0.01 

 
 
Table 2.3 Generalized linear mixed effects for aerodynamic force coefficients and their ratio in 
the landing phase. The significant effects are highlighted in bold. 
Model fit: Intercept + AoA + Camber + (AoA|X) + (Camber|X) 
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ift

 

 Estimate SE 95% CI t p SD 
(random 

effect) Lower Upper 
Intercept 1.38 0.15 1.06 1.70 9.36 < 10-6  

AoA 0.03 0.00 0.03 0.04 11.63 < 10-7 0.00 
Camber -0.06 0.02 -0.10 -0.02 -3.28 <0.01 < 10-6 
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 Estimate SE 95% CI t p SD  
(random 

effect) Lower Upper 
Intercept 0.39 0.08 0.22 0.56 4.95 < 0.001  

AoA 0.04 0.00 0.04 0.04 29.76 < 10-12 <0.001 
Camber -0.07 0.01 -0.09 -0.05 -7.75 < 10-5 < 10-6 

 

L
ift

-t
o-

dr
ag

 
ra

tio
 

 Estimate SE 95% CI t p SD  
(random 

effect) Lower Upper 
Intercept 3.71 0.11 3.46 3.96 32.29 < 10-13  

AoA -0.04 0.00 -0.04 -0.03 -18.92 < 10-10 <0.001 
Camber -0.02 0.01 -0.05 0.01 -1.70 0.11 < 10-6 
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2.3.5 Lift-drag polar 

The polar plot derived from the Draco glide data reveals a slightly concave downwards 

relationship between lift and drag, such that the highest lift to drag ratio occurred at low values 

of the observed coefficients (Figure 2.9a). Coefficient values at CD > 1.6 vary widely, with 

substantial differences in CL between individual lizards producing large standard errors. Taken as 

a whole (along with the large standard errors), the data show little change in CL for CD > 1.6. 

Variation in CL and CD with respect to AoA show a well-resolved middle range from AoA of 

approximately 26° to 45° where both coefficients increase steadily with increasing AoA. At the 

high AoA extreme, values are disorganized and typically represented by few data, both within 

and among individuals. Draco typically used these high AoA values during the landing phase 

(Fig. 2.9b), which is brief compared to the mid-glide. The low AoA extreme (< 25°), also 

exhibits an unusual pattern with an overlapping of CL and CD results suggesting wide variation in 

aerodynamic performance with minimal change in AoA (Figure 2.8a, 2.8c and 2.8e). These AoA 

values were used in the transition from takeoff to mid-glide and are also sparsely represented in 

the overall dataset. The highest lift-to-drag ratio was achieved at approximately 26° which 

corresponded to the steady AoA held by the Draco during the mid-glide phase (Figure 2.9c).  
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Figure 2.9 Aerodynamic force coefficients.  (a) A polar plot of the aerodynamic force 
coefficients; (b) their variation with the angle of attack. Note the expected gradual increase in the 
each of the force coefficients with the increase in angle of attack up to a value of approximately 
45⁰ (c) the ratio of CL and CD with respect to angle of attack shows a strong negative correlation 
(ULR, R2 = 0.94, p < 0.001). 
 

2.4 Discussion 

Our study provides the first real-world insight into how Draco actively modulate their 

orientation and posture to control aerodynamic forces to achieve near-optimal gliding 

performance in their natural environment. In doing so, we present the highest quality dataset of 

real-world aerodynamic performance currently available for complete glides in any gliding 

animal, which may serve as an input for detailed modeling of the behavioral and locomotor 

options available to Draco and other gliding species in complex natural environments. 

In our field flight arena, we saw that wild-caught Draco used an aerodynamic strategy 

that maintained their AoA at approximately 26° during mid-glide to achieve their maximum lift-

to-drag ratio while modulating camber to use different combinations of the coefficients of lift 

and drag.  In landing, Draco rapidly increased their AoA in excess of 40° without stalling, 

allowing them to minimize altitude loss while decelerating to land safely. 

2.4.1 Aerodynamic performance envelope  

Gliding animals need to produce aerodynamic forces to move in the air. These forces are 

generated and controlled by the intrinsic properties of the animal’s airfoil (coefficient of lift and 

drag) as well as the airfoil interaction with the surrounding medium (speed, orientation, exposed 

surface area, shape). Mammalian gliders, including gliding squirrels and sugar gliders, have been 

shown to glide at an average AoA of 42.5° and 44.2°, producing lift-to-drag ratios of 2.26 and 

1.39, respectively [9,10]. However, these measurements relate to a small portion of the entire 
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glide and represent an airfoil with a smaller aspect ratio (i.e., ratio of the wing span to mean 

chord length) of approximately 1 [7] compared to the Draco airfoil with an average aspect ratio 

of 1.42 (n = 23).  

We hypothesized that the relationship between the Draco coefficient of lift, coefficient of 

drag, and AoA would follow those of a typical airfoil but operate at higher ranges of AoA, with 

low values for coefficients but high lift to drag ratio at low AoA. Furthermore, the aerodynamic 

force coefficients would increase with increasing AoA and eventually reach a stall point where 

the coefficient of drag would continue to increase with increasing AoA, but the coefficient of lift 

would remain steady or decline. This hypothesis was supported, with Draco airfoil 

characteristics broadly matching our prediction, although Draco were not observed to glide at 

AoA lower than approximately 20° so the polar plot of results does not include any coefficient 

data near zero (Figure 2.9a). The absence of AoA below 20° could be an artifact of the flight 

arena setup with the takeoff height of the Draco restricted by the placement of the takeoff 

camera. In the flight arena, the observed takeoff heights varied between 4 to 5 m above the 

ground.  

Our data showed the expected distinction between the Draco data and typical engineered 

airfoil results – Draco operated at much higher angles of attack, apparently without stalling, than 

might naively be expected. For instance, the airfoil based on an albatross wing section [18] and 

simulated in [19] has a peak lift-to-drag ratio at an AoA of around 1° and experiences stall at 

AoA above 10°. In contrast, the Draco operated with an AoA of 20° to 55°, with stall like 

characteristics beginning to appear at 45° to 50° (Figure 2.9b). Our results are consistent with 

other gliding animals and the flapping wings of insects [20], all of which also use high angles of 

attack and only appear to stall at 40° or higher. This highlights the differences in fluid dynamics 
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between low Reynolds number biological airfoils and those of larger and higher Reynolds 

number human engineered systems. Additionally, we saw that Draco achieve higher lift-to-drag 

ratios between 2.5 and 3 (Figure 2.9c), greater than those seen in mammalian gliders and likely 

due to the higher aspect ratio of Draco airfoil, but similar to the lift-to-drag ratio measured in a 

model of flying snakes [21]. Finally, even above 50° of AoA we did not see clear stalling 

behavior (Figure 2.9b), implying that Draco can induce a soft stall (i.e., CL is maintained but 

does not increase while CD decreases), potentially through other physical mechanisms such as a 

compliant wing membrane [7] and/or by the position of their forelimbs at the leading edge of 

their patagium to form a leading edge slot [5]. 

A related observation from our study is that the calculation of the coefficients of lift and 

drag depends on the area of the airfoil. This is of course a simple mathematical statement, but it 

raises practical problems when applied to gliding animals that have small wings but may use 

much of their body surface in gliding. During initial analyses of our dataset, we used only the 

area of the patagium, extracted by hand during morphometric data collection, as the airfoil area. 

This resulted in implausibly high values for the coefficients, leading us to shift to using the 

planform area of the entire Draco, including head, body, patagium and proximal portions of the 

limbs for aerodynamic coefficient calculations, approximately doubling the area compared to the 

patagium alone. Comparison between this dataset and other studies of animal gliding should 

keep this methodological distinction of airfoil area in mind; it strongly influences the value of CL 

and CD but not their ratio since in that case the area terms cancel. Furthermore, this result 

emphasizes the significant contribution of the mostly flat body parts of the glider, apart from the 

primary wing surface, towards generating aerodynamic forces. 
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2.4.2 Compliant wing membrane 

Draco have a unique primary airfoil design where the aerodynamic surface is formed by 

rotating the ribs laterally outwards and stretching the patagium to form an inverted delta wing. 

The wing membrane is not rigid and adopts a cambered shape under aerodynamic load. 

Furthermore, a positive dihedral angle throughout the mid-glide implies that the tip of the Draco 

wing is held higher than the root of the wing where it extends from the body (Figure 2.6h). Song 

et al. (2008) showed that for a rectangular latex wing membrane of aspect ratio 1.4, camber 

induced by aerodynamic loading resulted in a significant enhancement in lift at low AoA 

compared to rigid wings and exhibited a soft stall at AoA of over 40° [7]. Our results show 

surprisingly similar characteristics for the Draco airfoil with an average aspect ratio of 1.41. In 

the mid-glide phase, we observed a significant rise in coefficient of lift at low AoA with 

percentage camber varying between 8 and 10 (Figure 2.7a) and a dihedral angle of 

approximately 9°. The coefficients of lift and drag were significantly correlated with percentage 

camber and increased both coefficients as expected (Table 2, Figure 2.7b and 2.7c). We believe 

this is the first demonstration of gliding animals modulating camber to influence aerodynamic 

force production. During the landing phase, the results are more difficult to interpret, with 

percentage camber, AoA and the aerodynamic coefficients all varying simultaneously and 

camber decreasing rapidly near the end of the landing. In our linear mixed-effects analysis of 

these results, percentage camber is significantly but negatively associated with the aerodynamic 

coefficients (Table 2.3). The negative relationship between percentage camber and aerodynamic 

coefficients may be an artifact of the multiple-linear analysis of non-linear results, or due to the 

dip in camber at the end of landing, or due to the post-stall aerodynamic regime reached at the 

end of the landing phase.  
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The proximity in position between the tip and the root of the wing also suggests the 

presence of tip vortices and their influence on the inboard portion of the wing [22]. In a low 

aspect ratio wing like Draco, the tip vortices can cover most of the wing area creating a low-

pressure region above the wing. Overall, these flow structures can play a role similar to the tip 

vortices on a delta wing providing vortex lift [22]. Such a characteristic allows for an increase in 

maximum lift force and lift coefficient, and a delay of stall at higher AoA. We see Draco 

exhibiting similar features showing the importance of a compliant wing and allowing Draco to 

have at its disposal a range of AoA and lift-to-drag ratios based on the demands of the habitat 

and behavior. 

2.4.3 Aerodynamic gliding strategy 

A favorable gliding strategy for an animal would be to operate at their maximum lift-to-

drag ratio to maximize their range and minimize energy losses during glide because the lift force 

is produced with minimal drag losses [23]. We saw strong support for such a strategy and for our 

hypothesis that Draco would vary their body orientation during the glide to enable a high lift to 

drag ratio during mid-glide and high lift and drag forces at landing. Draco steadily pitched 

upward throughout mid-glide, on average moving from a pitch orientation of -24° to 5° from 

beginning to end of mid-glide. In contrast, average AoA – the crucial parameter for determining 

airfoil performance – ranged between 25° to 27° during this portion of the glide. Lift to drag 

ratio was found to peak for Draco at about 26° (Figure 2.9c), implying that the in-air change in 

body orientation during mid-glide serves to keep the lizard at a nearly optimal configuration for 

maximizing glide distance. Draco were also found to pitch up sharply during the landing 

maneuver, reaching an average AoA of 35°; according to the aerodynamic analysis this 

approximately doubles the coefficient of drag and increases the coefficient of lift by 50% 
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compared to the 26° mid-glide AoA. These high coefficients along with the shallowing glide 

trajectory correspond to large upward and rearward forces, removing kinetic energy from the 

lizard through drag losses and by conversion of kinetic energy to potential energy and thus 

reducing the amount of remaining kinetic energy that would need to be absorbed by the body at 

landing. 

2.4.4 Average gliding mechanics 

We hypothesized that the lift to drag ratio revealed in the airfoil analysis would be 

consistent with the overall glide performance of Draco, recorded here and elsewhere. This 

hypothesis was also supported, in that the peak lift to drag ratio identified here was 2.9 whereas 

the average lift to drag ratio implied by the whole glide performance was 1.8. Because the whole 

glide includes the takeoff and landing maneuvers which we found were performed either without 

a fully extended airfoil, or while the lizard was pitching up to a landing position, or both, it is 

expected that the whole glide performance is less than the theoretical maximum performance. 

McGuire et al. (2005) reported an average glide angle range between 18° to 30° for 11 species of 

Draco for a glide distance of 9.3 m [16]. This corresponds to an average lift-to-drag ratio 

between 1.5 and 3 which is consistent with our results for a glide distance of 5.5 m. Bahlman et 

al. (2013) have reported lift-to-drag ratios in flying squirrels as high as 5 at glide distance of 15 

m, however, they caution on the measurement uncertainty since the cameras were placed at the 

beginning of the glide, producing much uncertainty in the overall distance measurement. For 

glide distances between 5 and 10 m, they reported a lift-to-drag ratio of approximately 2, similar 

to our study [2]. 
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2.5 Conclusion 

In summary, our study of the aerodynamic performance envelope of wild-caught Draco 

lizards revealed a drag polar consistent with the whole-glide performance of Draco and other 

gliding animals and with airfoil characteristics similar to more well understood human-

engineered airfoils in some respects and startlingly distinct in others. The overall shape of the 

drag polar was similar to engineered airfoils but occurred at much higher AoA. The magnitude of 

the force coefficients was high, reaching approximately 2 for lift before any indication of stall, 

but the maximum lift to drag ratio of approximately 2.9 was low by aircraft standards. These 

properties are shared with many low Reynolds number biological airfoils, including those of 

other gliding animals. Draco were found to use a broad aerodynamic performance envelope 

during even this limited and standardized field recording environment. Coefficients of lift and 

drag varied by a factor of 1.5 to 2 during each glide while AoA varied from approximately 25° to 

upwards of 50°. Draco proved unexpectedly adept at managing AoA during the glide, keeping it 

close to the 26° optimal value for horizontal transport throughout the mid-glide phase by 

changing body pitch to compensate for changes in flight direction. Finally, we showed support 

for Draco airfoil as a compliant wing revealing the likely role of airfoil camber on aerodynamic 

performance in a gliding animal. 
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CHAPTER 3: INDIVIDUAL VARIATION IN GLIDING BIOMECHANICS 
AND BEHAVIOR DUE TO BODY SIZE AND SEX 

 
3.1 Introduction 

Body size has a pervasive influence on the biomechanics of flying such that an increase in 

body size comes with the baggage of overcoming greater gravitational pull to stay aloft. 

Aerodynamic forces are produced through the interaction of the animal’s body surfaces with the 

surrounding fluid, air, and therefore the forces increase in proportion to the surface (wing) area 

[1,2]. However, in the absence of positive allometric change in wing area, an increase in body 

size can create a scaling mismatch such that, larger animals must support themselves in the air 

with relatively smaller wings, potentially compromising aerodynamic performance. This is in 

fact the case in powered flight, where isometric scaling of wing area with body mass is observed. 

Mechanical power required to stay aloft in flapping flyers is determined by muscle force output 

and contraction frequency which scales nearly independent of body mass (M0 – M1/6), but 

available power scales negatively to the one-third body mass (M-1/3) [3,4]. The tradeoff between 

the two scaling relationships sets an upper bound to the largest mass (12 – 14 kg) that a flapping 

flyer can attain to stay aloft under wing isometry. Thus, the overall flight performance of large 

birds is constrained by the limited power available for flight compared to smaller flyers that have 

a larger range of power output at their disposal, translating into greater flight capabilities [3]. 

However, because aerodynamic forces also depend on the square of airspeed [2], trade-

offs due to scaling mismatch can be circumvented by increasing flight speed. This is especially 

applicable for gliding animals since they may not be as strongly influenced by scaling effects as 
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flyers that support their weight in the air through muscle-powered wing flapping. In fact, the 

expected aerodynamic performance of a glider, expressed as its theoretically optimal descent 

angle (i.e., glide angle), is determined only by the ratio of two non-dimensional aerodynamic 

coefficients, the coefficient of lift and the coefficient of drag, and glide performance need not 

suffer at all from relatively smaller wings [1]. However, although going faster preserves 

aerodynamic performance, it carries consequences of its own. Faster moving animals have 

greater kinetic energy that must be dissipated at landing, potentially increasing the chance of 

injury; for this reason, larger animals might use less performant aerodynamics by operating at 

lower lift to drag ratios to fly more slowly and avoid hard landings. Achieving higher speeds also 

takes time, so larger gliders that require faster speeds may exhibit lower overall performance, 

especially over short distances where takeoff and landing phase are larger fractions of the overall 

glide duration.  

A single study on Draco by McGuire et al. (2005) has shown body size/mass to 

negatively affect glide performance [5]. However, these findings are based on three glide 

performance metrics, including maximum glide speed, average glide angle, and the total height 

lost for a fixed glide distance of 9.3 m. Though the results presented show strong support for 

larger sized Draco performing steeper glides, it did not show a significant relationship between 

glide speed and body size. Furthermore, it can be argued that total height lost and the average 

glide angle are two variations of the same metric. Over a fixed glide distance of 9.3 m, the 

average glide angle is equal to tan-1 �9.3
height lost� �. Therefore, it remains unclear if a larger 

body size negatively affects other gliding performance metrics and if its effect varies during the 

glide in the takeoff, mid-glide, and landing phase. Moreover, it is unknown if larger individuals 



67 
 

show a difference in glide behavior and use higher aerodynamic force coefficients to compensate 

for their increased body mass but still achieve similar glide performance. 

 Aside from effects due to the confluence of aerodynamics and scaling, the locomotor 

performance of animals can also be influenced by external selective pressures such as predation 

or environment (e.g., tree density, temperature) as well as intrinsic factors such as sex of the 

individual [6,7]. The latter is exemplified by the disparity seen in the energetic cost of rearing 

young between sexes [8]. In most species, females have a higher parental investment in their 

offspring in terms of bearing eggs and development, whereas male fitness is solely based on the 

number of receptive females they have access to. Similarly, in gliding, different locomotor 

strategies are seen to increase fitness during the mating season, particularly with males gliding 

more often, or covering larger areas to increase their probability of encountering females and 

establish territoriality [9,10]. Brynes et al. (2011) used sensors placed on wild colugos to show 

that daily gliding frequency in males was double that of females and that the mean glide distance 

was independent of body size and sex, even though female colugos are approximately 30% 

larger than males [7]. Furthermore, they reported that 60% of female glides resulted in foraging 

bouts compared to just 36% in males, with males using 45% of the glides merely as transit 

points. These results strongly suggest different selective pressures to glide between sexes. 

However, it remains unknown if and how behavioral differences between males and females can 

manifest as sex-specific differences in gliding performance.  

We test the effects of body size, behavior, and sex on gliding performance through a 

survey of the Draco lizards at the field site and by examining the aerodynamic performance 

dataset, described in Chapter 2. First, based on previous behavioral observations in Draco 

([9,11,12] and personal observations), we hypothesize that the spatial distribution of male Draco 
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in the plantation would indicate territoriality compared to the spatial distribution in females. 

Second, we hypothesize that within the constraints of geometric isometric wing area scaling with 

body mass, larger Draco will glide faster, but with the same lift and drag coefficients as smaller 

lizards and will do so by undertaking a steeper takeoff dive to rapidly gain speed. Alternatively, 

if larger lizards glide at the same speed as smaller lizards, they should do so with higher lift and 

drag coefficients and a lower lift to drag ratio. Finally, independent of effects of body size, male 

Draco employ a shallower overall glide angle than females based on the behavioral demands of 

seeking mates and establishing territories.  

3.2 Materials and Methods  

3.2.1 Tree marking 

During the survey period from 24 February until 8 March 2017, all trees in the areca nut 

plantation were marked with a unique letter and number combination (Figure 3.2a inset). The 

letters were the rows (short side of the plantation) and the numbers were the columns (long side 

of the plantation), together forming a grid like pattern. The markings were made with dark red 

ink on the tree and placed approximately 40 cm from the ground to reduce any potential 

influence that the markings might have on the behavior of animals in the vicinity. A total of 912 

trees were marked spanning the entire length and width of the plantation resulting in a tree 

density of approximately 13 trees per 100 m2. 

3.2.2 Draco marking 

Along with tree marking, Draco(s) spotted in the plantation were captured using a 

contraption. The contraption was made of a long aluminum pole (6 m) with a horseshoe shaped 

wire attached to a pliable tong at one end which was wrapped with a thick, soft padding and 

cloth hanging from it. The horseshoe shaped wire could be wrapped around the tree trunk above 
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the Draco and motivated the lizard to climb down on the tree or glide to a nearby tree. Once 

within reach, the Draco was caught by hand, and the tree location on which it was captured was 

recorded. The captured Draco was marked by painting a unique number using white correction 

ink (Kores Eraz-ex Aqua Fast Dry Correction Fluid) on the ventral side (Figure 3.1b). This was 

followed by measuring the mass of the lizard on an electronic balance (Figure 3.1a) and placing 

the lizard on a graph paper and recording images for morphometric measurements. For 

morphometric measurements, multiple images of the lizard were taken from the ventral and 

dorsal sides, with the limbs and tail almost flat on the graph paper (Figure 3.1b) and the camera 

lens mirror positioned parallel to the graph paper. An image was also taken with the wings 

spread for wing area calculations (Figure 3.1c). The lizard was then released on the same tree 

from which it was captured.  

During the course of the entire field season, there were instances when certain Draco had 

almost lost their markings over time or due to shedding of their skin. On such occasions, the 

Draco was recaptured and given the same unique number as before. The field study resulted in a 

total of 33 marked individuals consisting of 16 males and 17 females. 

3.2.3 Glide data collection 

The glide data were recorded as previously described in Chapter 2. After completing the 

glide recording for a Draco and before releasing it back on the tree from which it was captured, 

mass and images were taken for morphometric analysis. 

There were a few occasions when the Draco escaped the motion capture arena after 

completing a glide, and in those cases, we were not able to take morphometric measurements. In 

such cases, for data analysis, we took the measurements from the same Draco from another day 

which was closest to the day of the recording with the missing measurement. 
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3.2.4 Morphometrics 

A custom MATLAB GUI was used to take multiple 2D measurements from the images 

of the Draco on the graph paper. The measurements included head width, snout-vent length, 

hindlimb length, tail length, body width, and wing area. Each image in the set of clicked images 

was calibrated by scaling the pixel distance with the real-world distance (1 x 1 cm grid) on the 

graph paper. Following calibration, relevant images for each measurement were chosen, and 

consistent markers were identified for each measurement (Figure 3.1b and 3.1c). 

Head width. The distance between the two widest points on the head gave the head width 

measurement. 

Snout-vent length. A polyline (path consisting of a series of connected segments) was used to 

track the length from the anterior tip of the head, following the mid-line to the beginning of the 

tail marked by where the hindlimbs join the body. 

 Hindlimb length. A two-part line was used to track the start of the hindlimb from the body to the 

hindlimb joint and until the ankle joint. 

Tail length. A polyline was used to track the length of the tail from the vent at the posterior end 

of the Draco to the tail tip. 

Body width. The widest two points in the body, excluding the head, was used for the body width 

measurement. 

Wing area. A polyline was used to track the boundary of the stretched wing and form a closed 

area. The area included the body of the Draco but excluded the head, limbs, and tail. 
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Figure 3.1 Draco morphometric measurements. (a) Draco when placed on their dorsal side, lay 
still. This allowed for convenient measurement of their mass using an electronic balance 
(resolution +- 0.01 gm). (b) and (c) Images of Draco on a graph paper were used to measure 
head width, snout-vent length, body width, hind limb length, tail length, and wing area as shown. 
(b) also shows one of the unique number IDs given to each Draco using white correction ink. 
 

3.2.5 Territory identification 

During the period from 6 March to 21 April 2017, Draco sightings were recorded every 

day between 4 pm and 6 pm. This daily time window corresponded to when the lizards were 

least active and potentially present in their respective territories. We ran multiple transects 

parallel to the long edge of the plantation covering the width of the plantation. Using binoculars, 

the Draco ID was recorded along with its location (tree ID) and activity/behavior. Draco 

sightings were not uniform during the field season with most individuals not sighted every day. 

Draco with a single sighting were removed from the territory analysis resulting in a territory 

dataset from 13 males and 12 females out of a total of 33 individuals. 
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Territories for each Draco were calculated by superimposing the Draco sighting 

locations on the tree distribution in the plantation. For each Draco, the territory was described by 

a circle with the center as the median of all the X and Y positions of the individual sightings. The 

radius of the circle or territory size was determined by fitting a kernel distribution of bandwidth 5 

m to the distance of all Draco sightings from the territory center. From these territory centers and 

diameters, for each individual Draco we calculated the distance to the territory of the closest 

other same-sex individual and the number of same-sex individuals with overlapping territories.  

3.2.6 Statistical methods 

Univariate linear regression model (ULR) on log-transformed data was used to 

investigate the scaling relationship between various morphometric measurements and body size 

(i.e., mass). Morphometric measurements and spatial distribution across males and females were 

compared using a non-parametric Mann-Whitney U-test (MWU) to check for sexual dimorphism 

and territoriality, respectively. 

A generalized mixed-effects model (GLME) approach was used to investigate the effects 

of body size (i.e., mass) and behavior (sex) on various performance metrics. For each 

performance metric, we fit three separate GLME corresponding to fixed effects of mass, sex, and 

the interaction between the two, and an uncorrelated random effect of intercept grouped by 

individual (Draco ID). The model with the least AIC score was selected as the appropriate model 

for each performance metric. 

All statistical tests and calculations were performed in MATLAB version 2020a (The 

MathWorks, Natick, MA, USA). 
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Figure 3.2 Draco distribution in the areca nut plantation between 6 March to 21 April 2017. (a) 
Top view of the field site showing the location of the cottage, forest distribution within the 
plantation, and the flight arena location. Inset shows the unique alphabet-number marking for 
each areca nut tree which was used to map the plantation and track individual Draco location 
each day. (b) Male Draco distribution of 12 individuals in the plantation. (c) Female Draco 
distribution of 13 individuals in the plantation. (d) Bar plot showing the frequency of the closest 
distance between the territory centers of the same-sex Draco (MWU, male – female, p < 0.01). 
(e) Bar plot showing the frequency of territory overlap between Draco of the same sex (MWU, 
male - female, p< 0.01). 
 

3.3 Results 

3.3.1 Draco spatial distribution 

Male Draco (n = 12) were more spatially distanced than females (n = 13) in the areca nut 

plantation (Figure 3.2b, 3.2c and 3.2d). Closest neighbor distance, calculated using the territory 

center, ranged between 6 m to 22 m in males with a median distance of 11.51 m, and only 4 out 

of 12 individuals occupying territories within 6 m of each other. In females, the closest neighbor 

distance ranged between 2 m to 10 m with a median of 6 m, and 9 out of 13 individuals were 

located at a distance of 6 m from each other.  

Overlapping territories was used as another metric to examine the degree of spread across 

individuals within the same sex (Figure 3.2b, 3.2c and 3.2e). Male territory overlap was 

significantly lower than females and peaked with four individuals having a territory overlap with 

one other individual and three individuals having no overlap. All females showed territory 

overlap, with six females having territory overlap with two neighbors to a maximum of two 

females having territory overlap with six other individuals. 

3.3.2 Morphometric measurements 

Morphometric comparison between males and females was performed using two sample 

sizes. The first (Table 3.1) represented the individuals used in the performance metric analysis 

(23 glides, 7 males and 6 females) and the second (Table 3.2) represented the complete set of 33 
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individuals sampled at the field site (16 males and 17 females). Across both samples, males and 

females differed in dewlap length, head width, and body width, with males having longer 

dewlaps and females having a wider head and body. For the smaller sample, mass and wing area 

were marginally significant, with females being heavier and having larger wings than males. 

However, the complete dataset of all males and all females captured at the site did not show 

sexual size dimorphism in body mass or wing area. 

Table 3.1 Morphometric measurements (mean ± s.d.) of males and females and their comparison 
using a non-parametric Mann-Whitney U-test. The dataset used here included 13 individuals, 7 
males and 6 females, which were used in the glide performance analysis presented in Chapter 3 
and Chapter 4. The measurements in bold show measurements that are larger in females 
compared to males. 

Morphometric 
measurement 

Males  
♂ 

Females 
♀ 

p 

Dewlap (cm)  2.17 ± 0.09 0.86 ± 0.13 < 0.01 
Mass (gm) 5.68 ± 0.63 8.62 ± 2.52 0.05 

Snout-Vent (cm) 7.92 ± 0.19 8.36 ± 0.83 0.23 
Head width (cm) 1.06 ± 0.05 1.24 ± 0.10 < 0.01 
Body width (cm) 1.23 ± 0.09 1.65 ± 0.23 < 0.01 
Hind limb (cm) 2.31 ± 0.13 2.35 ± 0.34 0.84 

Tail (cm) 11.73 ± 1.37 12.91 ± 1.52 0.14 
Wing area (cm2) 21.39 ± 1.47 27.96 ± 8.16 0.05 

 
Table 3.2 Morphometric measurements (mean ± s.d.) of all males and females and their 
comparison using a non-parametric Mann-Whitney U-test. The dataset used here included 33 
individuals, 17 males and 16 females, which were marked and measured during the field season. 
The measurements in bold show measurements that are larger in females compared to males. 

Morphometric 
measurement 

Males  
♂ 

Females 
♀ 

p 

Dewlap (cm)  2.24 ± 0.19 0.81 ± 0.13 10-5 
Mass (gm) 5.86 ± 0.99 7.95 ± 3.23 0.16 

Snout-Vent (cm) 7.81 ± 0.52 7.99 ± 0.97 0.98 
Head width (cm) 1.10 ± 0.07 1.20 ± 0.13 0.02 
Body width (cm) 1.24 ± 0.11 1.46 ± 0.27 0.01 
Hind limb (cm) 2.14 ± 0.16 2.12 ± 0.24 0.92 

Tail (cm) 12.24 ± 0.83 12.12 ± 1.60 0.58 
Wing area (cm2) 24.00 ± 4.25 25.14 ± 8.05 0.79 
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3.3.3 Scaling with body size 

All 33 individuals were used to examine scaling relationships of various morphometric 

measurements with mass (body size). Isometric scaling was observed for wing area with body 

mass (Table 3.3). Head width and hind limb length showed strong negative allometry with mass. 

Tail length and snout-vent length showed slight negative allometry and body width had a slight 

positive allometry with mass. The dewlap is characteristically longer in males compared to 

females and had no relation with body mass overall but showed an isometric increase with 

respect to body mass within sexes.  

Table 3.3 Scaling relationship (log-log) of various morphometric measurements with body size 
(mass). The dataset used includes all 33 individuals identified and measured at the field site. ≈ 
indicates isometry between the morphometric measurement and body size. ↑ indicates positive 
allometry and ↓ indicates negative allometry of the measurement with body size. * Dewlap 
showed isometry within sexes. 

 

 

 

 

 

3.3.4 Body mass effects 

For many performance measures, the AIC indicated the data were best explained by a 

model with only mass as a fixed effect. Heavier and larger Draco used a higher average 

coefficient of lift and coefficient of drag during mid-glide but a lower lift-to-drag ratio for the 

flight arena glide distance of 5.5 m (Table 3.4, Figure 3.3a, 3.3b and 3.3c). They covered this 

horizontal distance using a steeper overall glide angle. Furthermore, heavier Draco entered the 

Morphometric 
measurement 

Estimate SE for isometry 
(≈) 

 

Dewlap (cm) -0.44 0.29 0.33 * 
Snout-Vent (cm) 0.27 0.02 0.33 ↓ 
Head width (cm) 0.22 0.03 0.33 ↓↓ 
Body width (cm) 0.40 0.05 0.33 ≈ 
Hind limb (cm) 0.19 0.04 0.33 ↓↓ 

Tail (cm) 0.28 0.03 0.33 ≈ 
Wing area (cm2) 0.64 0.07 0.67 ≈ 
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mid-glide phase at higher speeds, attained marginally higher maximum glide speed, and 

transitioned into the landing phase at slightly higher speeds compared to smaller Draco (Table 

3.4). Interestingly, the speed at touchdown was independent of body mass (p = 0.38) and sex (p = 

0.55) of the individual. The average AoA during mid-glide phase was 25.6 ± 2.9° (n = 23 glides) 

and consistent with the observation of Draco maintaining an AoA of approximately 26° to 

maximize their lift-to-drag ratio (see Chapter 2) but was very slightly higher for larger Draco. 

The AoA at the beginning of the landing phase was significantly higher for heavier Draco 

compared to smaller ones (Table 3.4). 

Table 3.4 Performance metrics with body mass as a significant predictor. The table shows the 
output from a GLME with body mass as a fixed effect and uncorrelated random effect of 
intercept grouped by individual. 
Model fit: Intercept + Mass + (Intercept|Draco ID) 

Metric Estimate SE 95% CI t p SD  
(random effect) Lower Upper 

𝜽𝜽� (°) 
Average glide angle 

-0.78 0.23 -1.27 -0.30 -3.34 <0.01 1.37 

        
𝑪𝑪𝑳𝑳��� 

Mid-glide 
0.07 0.02 0.04 0.12 4.71 <0.001 <10-4 

        
𝑪𝑪𝑫𝑫���� 

Mid-glide 
0.05 0.01 0.03 0.07 5.32 <10-4 0.02 

        
𝑪𝑪𝑳𝑳���

𝑪𝑪𝑫𝑫����
�  

Mid-glide 

-0.07 0.02 -0.12 -0.02 -2.76 0.01 0.16 

        
||v|| (ms-1) 
End of takeoff 

0.05 0.02 0.01 0.08 2.88 <0.01 <10-4 

        
||v||max (ms-1) 

Mid-glide 
0.06 0.03 <-10-4 0.11 2.08 0.05 0.07 

        
||v|| (ms-1) 

Start of landing 
0.05 0.02 0.00 0.10 2.19 0.04 0.06 

        
𝑨𝑨𝑨𝑨𝑨𝑨������ (°) 
Mid-glide 

0.58 0.28 -0.01 1.16 2.04 0.05 1.75 

        
𝑨𝑨𝑨𝑨𝑨𝑨 (°) 

Start of landing 
1.32 0.31 0.67 1.96 4.22 <0.001 1.69 
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Figure 3.3 Scatter plot of aerodynamic force coefficients and maximum speed variation with 
mass for all 23 glides. Males are denoted by ♂ and females by ♀. (a) and (c) show a positive 
correlation of coefficient of lift and coefficient of drag with an increase in body size. (b) Lift-to-
drag ratio decreases with an increase in body size. (d) shows a marginal positive association 
between with the maximum speed attained in the mid-glide phase with body size. 
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3.3.5 Sex specific effects 

For some performance measures, the AIC indicated the data were best explained by a 

model with only sex as a fixed effect. Females performed a steeper dive resulting in a steeper 

average takeoff phase angle compared to males (Figure 3.4a). The steeper takeoff angle 

transitioned into females entering the mid-glide phase at higher overall acceleration compared to 

males (Figure 3.4b). Interestingly, the speed and acceleration at takeoff were independent of 

mass and sex of the individual. Finally, the touchdown height on the landing tree was lower for 

females compared to males but had a larger variation than males (Table 3.5, Figure 3.4c). 

Table 3.5 Performance metrics with sex as a significant predictor. The table shows the output 
from a GLME with sex, categorized as ‘1’ for males and ‘0’ for females, as a fixed effect and 
uncorrelated random effect of intercept grouped by individual. 
Model fit: Intercept + Sex + (Intercept|Draco ID) 
 

Metric Estimate SE 95% CI t p SD 
 (random effect) Lower Upper 

𝜽𝜽� (°) 
Takeoff 

3.48 1.56 0.23 6.72 2.23 0.04 1.95 

        
||a|| (ms-2) 
End of takeoff 

-0.55 0.21 -1.00 -0.11 -2.62 0.02 <0.001 

        
Height (m) 

touchdown 
0.41 0.16 0.07 0.74 2.52 0.02 0.22 
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Figure 3.4 Performance metric comparison between sexes. (a) Males had shallower average 
takeoff angles compared to females. (b) Females entered the mid-glide phase with higher 
acceleration compared to males. (c) Males consistently landed higher on the landing tree within a 
small range of values compared to females. 
 

3.3.6 Sex and body mass effects 

For some performance measures, the AIC indicated the data were best explained by a 

model with only a sex*mass interaction as a fixed effect or indicated a combination of several 

fixed effects. Mid-glide phase showed an interesting relationship within sexes. Across sexes, 

males performed shallower mid-glides than females. However, within females, heavier 

individuals showed a steeper average mid-glide angle compared to smaller and lighter females 

but, in males, the relationship was inverted with larger and heavier males performing shallower 

mid-glides compared to smaller sized males (Table 3.6).  

In the landing phase, males used a shallower approach angle for landing compared to 

females, but within males and females, heavier individuals displayed steeper average landing 

angles compared to smaller individuals (Table 3.6). 

 

 



81 
 

Table 3.6 Performance metrics with mass-sex interaction term as the significant predictor. Table 
shows the output from a GLME with mass and sex interaction as a fixed effect and uncorrelated 
random effect of intercept grouped by individual. 
Model fit: Intercept + Mass*Sex + (Intercept|Draco ID) 

Metric Effect Estimate SE 95% CI t p SD 
 (random 

effect) Lower Upper 
𝜽𝜽� (°) 

Mid-glide 
Intercept -31.83 2.89 -37.88 -25.78 -11.02 <10-8 <0.001 

Sex -17.60 7.08 -32.43 -2.78 -2.48 0.02  
Mass -0.65 0.30 -1.29 -0.01 -2.13 0.05  

Sex:Mass 3.17 1.14 0.78 5.55 2.78 0.01  
         

𝜽𝜽� (°) 
Landing 

Intercept -10.34 4.22 -19.17 -1.50 -2.45 0.02 1.24 
Sex 21.60 10.29 0.07 43.12 2.10 0.05  

Mass -0.57 0.45 -1.52 0.38 -1.26 0.22  
Sex:Mass -3.26 1.66 -6.74 0.23 -1.95 0.06  

 

3.4 Discussion 

We hypothesized that although body size has a pervasive effect on the biomechanics of 

flight, individual differences in body size would have a limited effect on glide performance such 

that larger individuals would glide faster, but otherwise with similar aerodynamic performance. 

This hypothesis was partially supported in that larger individuals did glide faster, but a number 

of other effects were identified that act against this outcome (see below). We also hypothesized 

that differences between sexes in territoriality and behavior during the mating season would be 

reflected in differences in gliding behavior and biomechanics that would be better explained by 

sex than by body size, even in the presence of sexual dimorphism. This was also supported in 

part as described below. 

3.4.1 Morphometric scaling of Draco with respect to body mass 

Draco have been previously reported to follow isometric scaling of patagium area with 

body size/mass. This was extensively shown by McGuire (1998) by analyzing body size data 

from 886 specimens representing 29 species of Draco [13]. Our hypotheses relating size to 
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gliding performance assumed isometric scaling, which predicted that larger individuals have 

relatively smaller wings and, therefore, should have decreased glide performance [5]. Draco 

wing area was found to scale isometrically with body mass; however, during our aerodynamic 

analysis (Chapter 2) we realized that using the complete airfoil area which includes the head, 

lappets, and the hindlimb is a more appropriate estimation of the aerodynamic surface for glide 

performance calculations. Therefore, we investigated scaling relationships of head width, body 

width, snout vent length, hind limb length and for completeness included tail length. Though 

wing area, body width and tail length followed isometry, snout-vent length, head width and hind 

limb showed negative allometry with body size (Table 3.3), suggesting that the overall lifting 

surface of the Draco could exhibit slightly negative allometry even though the patagium itself 

scales isometrically. In our data set of 13 individuals for glide performance, a log-log ULR of 

airfoil area with body mass gave a regression coefficient of 0.43 ± 0.20 (slope ± s.d., n = 13) 

which is significantly smaller than 0.67, the expected slope for isometry. However, this deviation 

from expectations does not conflict with any other predictions, since in either scenario, isometry 

or slightly negative allometry, larger Draco have relatively smaller lifting surfaces.  

 It should be noted that our scaling analysis did not consider Draco age and the study 

population may include juveniles and subadults along with adults. This does not affect the 

overall interpretation since ontogenetic area-mass relationship in Draco has been previously 

reported in [5] and was shown to be consistent with isometry scaling of patagium area with body 

mass. Nonetheless, it does raise an interesting question – do adults behaviorally compensate for 

the expected improved gliding performance of juveniles and subadults? 
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3.4.2 Male territoriality and female home range 

Individual territory is defined as a spatial region that is defended against conspecifics for 

the purpose of using resources and access to mating opportunities [14]. A key indication of 

territoriality within a species can be the spatial separation of individuals in their natural habitat 

and the lack of spatial overlap of their territories. Territoriality in male Draco has been reported 

on several occasions; however, it has been limited to behavioral observations and to a few 

individuals [9,12,15]. For example, Mori et al. (1994) observed that few males (Draco 

Sumatranus) formed territories consisting of one to three adjacent trees and where one to three 

females were found to coexist [12]. We attempted to quantify, for the first time, territoriality in 

Draco and showed that indeed, males tend to occupy territories minimizing their spatial overlap 

with each other. The closest neighbor distance in males was twice that of females (Figure 3.2d) 

and males had reduced territory overlap with a maximum of 3 males having overlapping 

territories compared to 6 in females. In contrast to previous observations, we saw that Draco 

territory can span multiple trees (up to 12), but this observation might be unique to our field site 

since previous studies lack information on tree density for comparison.  

Females, as expected, were not observed to form territories based on our criteria and 

instead formed a home range with some home ranges having complete spatial overlap with other 

females. Each female home range could be associated with at least one male territory with a 

maximum number of 3 females seen within a single male territory. From personal observation, 

the male territory with 3 females was adjacent to the flight arena, and the male could be seen 

actively chasing away males throughout the field season; at times, voluntarily gliding to the 

takeoff tree in the flight arena to chase the male captured by us for video recordings. Four out of 
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12 male territories did not overlap with any female home range suggesting that these males could 

be ‘non-residents’ in search of a territory [9]. 

Quantifying territory size is an important first step to test the hypothesis based on the 

sexual selection model, which predict that smaller male size provide a locomotor performance 

advantage compared to larger males while defending territories and/or larger male size might 

provide increased bite force advantage during male-male competition [15]. Though our data does 

not show a correlation of male territory size with Draco size (body mass and head width), or 

locomotor performance (observed maximum glide speed in the flight arena), we believe our 

study lays the groundwork to test such a hypothesis using a more robust and direct measurement. 

3.4.3 Effect of body mass on glide performance 

Due to isometric and/or negative allometric scaling of airfoil area with body mass, 

aerodynamic theory dictates that larger individuals are poor gliders compared to smaller 

individuals [1]. That is, larger individuals would have less surface area available per unit mass to 

generate lift forces to stay aloft [13]. Therefore, it is reasonable to expect, in the absence of 

behavioral or physiological compensation, larger Draco would perform less well over a fixed 

glide distance [5]. 

 McGuire et al. (2005) showed that for a fixed glide distance of 9.3 m, larger Draco 

performed steeper glides, lost more height, and achieved higher maximum glide speed compared 

to smaller sized Draco [5]. Though this study showed larger individuals performing less 

favorable steeper glides, it lacked the resolution to investigate performance changes of body size 

with glide progression, aerodynamic performance, and variation in fundamental factors that 

influence aerodynamic performance such as AoA and camber.  
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Somewhat counter-intuitively, heavy gliders do not necessarily have worse aerodynamic 

performance than lighter gliders because the most common single expression for glide 

performance, the minimum glide angle (mathematically determined by the maximum lift to drag 

ratio) does not vary with size. However, to achieve this performance, heavier gliders must fly 

faster than lighter gliders [1] or undertake behavioral changes to affect other performance trade-

offs. We saw a combination of both strategies at play. Larger Draco attained higher speed during 

the transition from takeoff to mid-glide phase (Table 3.4). Since the speed and acceleration 

immediately after the takeoff jump was independent of body size, a higher speed at the end of 

takeoff could be achieved from a steeper ballistic dive or delaying wing opening to maintain a 

more streamlined body while using similar takeoff angles. It should be noted that both strategies 

are likely to lower the overall glide angle even while preserving mid-glide performance. Though 

we saw sex to be a better predictor for takeoff angles (Table 3.5), i.e., females performed steeper 

takeoff than males, we believe this also indicates that larger Draco undertake a relatively steeper 

takeoff since females did cover the upper end of the body mass spectrum in our data set. 

Furthermore, preliminary data on wing deployment timings in males and females indicated that 

females might actually achieve complete wing extension marginally before males, further 

supporting the idea of larger Draco using relatively steeper takeoff angles.  

In the mid-glide phase, as expected, the flight speed continued to increase, but 

surprisingly the maximum glide speed achieved was only marginally higher in larger Draco 

compared to smaller ones (p = 0.05), suggesting a potential behavioral compensation undertaken 

by larger Draco. We identified highly significant increases in the coefficient of lift and 

coefficient of drag with increasing body mass (Table 3.4). These effects act to increase the 

aerodynamic forces produced per unit airfoil area and allow larger individuals to support their 
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weight in the air at slower flight speeds. However, an increase in the lift and drag coefficients is 

also expected to decrease their ratio, an effect also significantly present in our data, along with a 

significant increase in AoA for larger individuals that explains how they might produce the 

higher force coefficients. 

Finally, larger Draco entered the landing phase at significantly higher AoA compared to 

smaller individuals (Table 3.4). Aerodynamic theory shows that at higher AoA, the coefficient of 

drag increases rapidly compared to the coefficient of lift [16] (also see Chapter 2). This translates 

to an overall lower lift-to-drag ratio with slower flight speeds and steeper descents (see 

discussion on mass and sex interaction). Interestingly, we saw touchdown speed to be 

independent of body size, potentially a consequence of larger Draco using higher AoA during 

landing and suggesting that landing safely may therefore be more of a constraint than expected 

on Draco glide performance. Previously, we had shown that Draco touchdown speed was 

independent of gliding distance [17] (also see Chapter 4). A similar observation was also noted 

by Byrnes et al. (2008) where they saw the landing force and the landing impulse duration in 

colugos to be independent of glide duration, suggesting that colugos modulate their aerodynamic 

forces prior to landing to have a safe impact [18].  

Thus, we find evidence that not only does increasing body size have the expected 

aerodynamic effect of increasing flight speed, but this effect also appears to produce a secondary 

response where larger Draco use higher but less optimal force coefficients to fly more slowly 

than their size would otherwise demand, potentially to land safely. 

3.4.4 Sex related effects on Draco glide performance 

Although our analysis of Draco territoriality supports the underlying reasoning for our 

hypotheses of differing glide behavior and biomechanics associated with sex, in practice few of 
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these metrics were most strongly associated with sex. This may be due in part to the trend toward 

female-biased dimorphism in our species of Draco [19]; because females are larger than males 

and because body size has pervasive effects on the biomechanics of flight it may be difficult to 

statistically support sex-related effects on top of the physically necessary size-related effects. 

Nevertheless, we saw that females used slightly steeper takeoff angles compared to males, which 

resulted in a significantly higher acceleration at the start of the mid-glide phase (Table 3.5). 

Intuitively, it makes sense to relate higher acceleration to higher overall glide speed. However, 

we saw that body mass was a better predictor of flight speed at the beginning of the mid-glide 

phase compared to sex. Such an effect may be attributed to sexual size dimorphism with females 

being heavier in our data set of 13 individuals used for glide performance analysis (Table 3.1). 

 During mid-glide, males performed shallower glides than females, further corroborating 

our intuition that gliding performance might be linked to the behavioral outcomes of the 

individual. That is, a shallower and therefore more efficient glide will facilitate males performing 

glides more frequently to seek mates and defend territories [12], which has also been 

hypothesized as one of the many reasons for the evolution of female-biased dimorphism in 

Draco [9,21]. Surprisingly, we saw a body size effect within sexes where body size was 

negatively correlated with average mid-glide angle in males but positively correlated in females. 

That is, bigger males performed shallower mid-glides than smaller males, but larger females 

performed steeper mid-glides than smaller females (Table 3.6). Though our inferences are drawn 

from a small sample size, it raises a few interesting insights which are worth pursuing in the 

future.  

First, since male body mass in our analysis data set ranged between 4.6 gm to 6.6 gm 

(5.68 ± 0.63 gm, mean ± s.d., n = 7) and female body mass was between 4.8 gm to 11.5 gm (8.62 
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± 2.52, mean ± s.d., n = 6), it is reasonable to expect that our sample size did include at least 

subadults if not juveniles. An opposite correlation between sexes for mid-glide angle with body 

mass might suggest that adult males behaviorally overcompensate, operating at higher AoA and 

flight speed than similarly sized females. Second, our finding may represent sex-specific 

ontogenetic variation in behavioral responses with body size; smaller (juveniles/subadults) males 

showing poorer behavioral response than larger males (adults) towards modulating glide 

performance. An alternate perspective is that our observations relate to the fundamental 

behaviors of foraging, mating, evading predators and territoriality in gliding animals [20]. For 

example, there may be selection for adult males to better compensate for large body size, 

allowing them to effectively seek mates and defend territories. On the other hand, females do not 

glide to actively seek mates ([11] and personal observation) and do not form territories ([9,11,12] 

and Figure 2), therefore not showing any behavioral overcompensation in their gliding 

performance.  

Finally, in the landing phase, we saw males using shallower average landing angles 

compared to females and in both sexes, larger individuals showed slightly steeper average 

landing angles. The height at touchdown was higher and less variable for males (1.75 ± 0.15 m, n 

= 7) compared to females (1.36 ± 0.38 m, n = 6). Although the higher landing height in males is 

a consequence of the physics of gliding, the smaller variation in landing height might imply that 

males prefer to land higher which will ultimately reduce their climbing and transition time into 

the next glide. The small variation in male landing height is in contrast with the findings of 

McGuire et al. (2005) which showed that smaller individuals had larger variation in landing 

heights, with the rationale that smaller individuals have greater flexibility with respect to glide 

performance compared to larger individuals for a given glide distance [5]. However, it should be 
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noted that McGuire et al. (2005) did not consider the sex of the individual and used only adult 

Draco in their study.  

3.5 Conclusion 

Overall, our study presents a compelling case for body size, behavior, and sex 

simultaneously influencing gliding performance in Draco. We show that gliding performance is 

driven by the evolutionary pressures acting on the individual while also operating within the 

individual’s physical limits dictated by aerodynamic theory. For example, we show that 

territoriality and mating behavior potentially lead to males performing shallower mid-glide and 

landing phases than females, but the overall glide angle is still influenced by the physics of 

scaling in both sexes, with larger individuals exhibiting steeper glides overall. We show that 

larger individuals compensate for the reduced glide performance by using higher AoA in 

combination with marginally higher flight speeds to operate at higher coefficients of lift and drag 

but lower lift-to-drag ratio. Moreover, adult males potentially overcompensate for their size 

compared to similarly sized females and outperform smaller males in the mid-glide phase, 

demonstrating the selective pressures that shape an individual’s locomotor performance. Finally, 

we hope that our study shows the importance of studying animal performance within the 

ecological and biomechanical context in which it resides. 
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CHAPTER 4: HOW BIOMECHANICS, PATH-PLANNING AND SENSING ENABLE 
GLIDING FLIGHT IN A NATURAL ENVIRONMENT 1 

 

Gliding animals traverse cluttered aerial environments when performing ecologically 

relevant behaviors. However, it is unknown how gliders execute collision-free flight over 

varying distances to reach their intended target. We quantified complete glide trajectories amid 

obstacles in a naturally behaving population of gliding lizards inhabiting a rainforest reserve. In 

this cluttered habitat, the lizards used glide paths with fewer obstacles than alternatives of similar 

distance. Their takeoff direction oriented them away from obstacles in their path and they 

subsequently made mid-air turns with accelerations of up to 0.5 g to reorient towards the target 

tree. These maneuvers agreed well with a vision-based steering model which maximized their 

bearing angle with the obstacle while minimizing it with the target tree. Nonetheless, negotiating 

obstacles reduced mid-glide shallowing rates, implying greater loss of altitude. Finally, the 

lizards initiated a pitch-up landing maneuver consistent with a visual trigger model, suggesting 

that the landing decision was based on the optical size and speed of the target. They subsequently 

followed a controlled-collision approach towards the target, ending with variable impact speeds. 

Overall, the visually guided path-planning strategy that enabled collision-free gliding required 

continuous changes in the gliding kinematics such that the lizards never attained theoretically 

ideal steady state glide dynamics. 

 

 
1 This chapter previously appeared as an article in the Proceedings of the Royal Society B. The original citation is as 
follows: Khandelwal Pranav C. and Hedrick Tyson L. 2020 How biomechanics, path planning and sensing enable 
gliding flight in a natural environment. Proc. R. Soc. B.28720192888  
http://doi.org/10.1098/rspb.2019.2888 
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4.1 Introduction 

Terrestrial habitats are complex spatial structures, frequently traversed by animals to 

perform behaviors essential for their survival. Different modes of locomotion necessitate that 

animals use varied biomechanical strategies and sensory inputs to precisely navigate their 

environment while maintaining physical stability and speed. For example, on land, scrub lizards 

normally use quadrupedal running but reduce their sprint speed to negotiate obstacles with 

occasional switches to bipedal running [1]. Cockroaches use a mechanically mediated strategy, 

taking advantage of their body shape and mechanical feedback from the environment to reorient 

their body while moving through clutter [2]. Unlike terrestrial locomotion, volant taxa have an 

added constraint of maintaining minimum lift to stay aloft, either from flapping and/or 

maintaining forward speed. To maneuver, flying birds reduce forward speed and increase 

flapping frequency to perform turns mid-air [3]. Altogether, such strategies involve generating 

directional forces, along with propulsive forces, to alter the animal’s path to either negotiate an 

obstacle or reorient towards the desired target. Gliding animals power flight by trading altitude 

for kinetic energy to ultimately generate lift for locomotion, facing the additional constraint of a 

finite energy supply for powering maneuvers. Furthermore, gliding taxa often have simpler wing 

anatomy with fewer degrees of freedom than flapping flyers such as birds or bats. Despite such 

limitations, gliders like colugos, squirrels, snakes, and lizards thrive in dense forests presenting 

complex 3D spatial geometries. They frequently glide to forage, seek mates, defend territories 

and avoid predators [4], behaviors that have direct fitness consequences. Collision-free flight is 

key to their survival, yet how animals execute such glides in their natural habitat remains 

unclear.  
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Among gliding terrestrial vertebrates, laboratory studies have described the mechanics of 

parts of the glide in detail, including takeoff and landing in flying squirrels and sugar gliders [5–

9]. These studies produced high-resolution kinematic data of the animal but lacked information 

of the behavioral context and entirety of the glide which might be crucial to understanding the 

observed outcomes. Additionally, captivity and a laboratory setting might limit or influence the 

animal’s behavior. Field studies have explored gliding behavior using animal-borne data loggers 

in colugos, providing takeoff and landing kinematics [10] and energetic costs of gliding [11]. 

Field recordings on flying lizards have described simple glide metrics such as glide angle and 

ratio in 2D along with speed and acceleration estimates [12]. Non-equilibrium gliding 

biomechanics of wild flying squirrels and snakes has been studied while departing from a single 

takeoff location with limited landing options [13,14]. While data loggers do not capture body 

shape changes undertaken by the animal or the environmental context, video recordings limit the 

spatial scale at which gliding can be observed. Furthermore, observational studies on Siberian 

flying squirrels have shown gliding patterns to be related to the forest structure, capturing the 

environmental context but lacking kinematic details [15,16]. Thus, the above studies look at 

specific aspects of the glide, but none offer a holistic view of gliding biomechanics in the 

animal’s natural habitat. We used an ultra-portable 3D stereo videography setup to study 

locomotory strategies employed by wild, freely behaving flying lizards (Draco dussumieri) 

traversing a naturally cluttered habitat. This video tracking approach captured the lizard’s motion 

covering the entire takeoff to landing duration along with the environmental features which it 

might have encountered while gliding. The resulting dataset incorporated the combined effect of 

behavior and the environment on the gliding biomechanics of the animal, allowing us to address 

the following hypotheses. 
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We hypothesized that in a natural environment, flying lizards would use a glide profile 

including a ballistic descent to gain speed followed by a non-equilibrium mid-glide to cover 

distance and negotiate obstacles, and finally a swoop-up landing maneuver to decelerate and 

reduce the energy dissipated at impact. Our expectation of non-equilibrium glide kinematics is in 

contrast to previously reported equilibrium glides in Draco between fixed takeoff and landing 

poles [12], but similar to observations in flying squirrels [4,13]. Next, a cluttered environment 

may present obstacles that will require flying lizards to execute lateral maneuvers. Producing 

such maneuvers requires either a reduction in upward force or an increase in total lift, both 

leading to a greater loss of altitude (energy) for a given glide distance. Hence, we hypothesized 

that lizards would preferentially use a path planning strategy to minimize the energetic losses due 

to maneuvering. Alternatively, lizards may simply avoid glides that require them to fly around an 

obstacle, restricting them to glide distances similar to the average spacing between trees in their 

habitat. Lastly, we assumed vision to be the primary sensory modality used by Draco to navigate 

their natural habitat. In this case, the spatial uncertainty of environmental features (obstacles and 

targets) increases with glide distance. Thus, we hypothesized that lizards control their heading 

direction based on an existing vision-based obstacle-avoidance steering model [17], but may 

reactively respond to potential obstacles mid-air during longer glides. Furthermore, we assumed 

that lizards use their optical flow field to derive the distance and approach speed to the landing 

tree. Therefore, we predicted that they initiate their landing approach based on a critical value of 

the optical size and speed of the target as described by the ‘relative retinal expansion velocity 

(RREV)’ model, as has been previously reported in groups as diverse as fruit flies and birds [18–

20].  
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4.2 Methods 

4.2.1 Field site  

The field site was a ~115 x ~60 m abandoned areca nut (Areca catechu) plantation 

located within the Agumbe Rainforest Research Station (ARRS) campus, Karnataka, India 

(13°31’04” N, 75°05’18” E). The site was enclosed by open habitat on the east, and a mix of 

open habitat and tropical rainforest on the other sides. The site contained ~912 areca nut trees 

(~13 trees per 100 m2) mixed with scattered local flora. The trees were ~10 cm to ~ 20 cm in 

diameter, ~5 m to ~23 m tall and had an inter-tree distance of ~1.5 m to ~8 m, providing areas of 

varying tree clutter. A population of flying lizards (Draco dussumieri) inhabited the plantation 

during the breeding season (February - May). The number of lizards at the field site during data 

collection was unknown, but a study at this site in 2017 identified 33 individuals (16 males), i.e. 

~4.7 lizards per 1000 m2 [21].  

4.2.2 Animals 

Our study species Draco dussumieri is a medium-sized flying lizard (max snout-vent 

length = 9.7 cm [22]), endemic to the Western Ghats region of southern India. They are found 

inhabiting plantations, secondary, and evergreen forests ranging from 80 to 1300 m elevation 

above sea level [23]. The lizards are diurnal and use gliding as the main mode of locomotion to 

traverse among trees in their natural habitat [24]. Unlike other gliding animals, Draco glide using 

a unique primary wing composed of membrane attached to a set of 5-7 elongated ribs on either 

side [25]. When gliding, the wings are stretched open by rotating the ribs laterally. Secondary 

force-generating structures include lappets on the lateral margins of the head along with almost 

planar fore and hind limbs. During the landing phase of the glide, the ribs collapse medially, 

folding the wings and facilitating movement on trees. Frequent glides can be observed by lizards 
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during the mating season (Feb-May) as the lizards forage, defend territories (male-male 

encounters) or seek mates (male-female encounters).   

4.2.3 Data collection 

Glides were recorded from freely behaving lizards moving about an abandoned plantation 

(Figure 4.1a). A stereo videography technique was used to record 33 voluntary glides from 10th 

to 14th March 2015 (9 am until 5 pm daily). Active lizards were identified, and their glide 

direction and timing were predicted based on their movement on a tree, dewlap activity, and 

presence of conspecifics in the vicinity. Male and female gliding lizards were identified based on 

their dewlap size, with males having longer dewlaps than females [1]. Three cameras (GoPro 

Hero4 Black, GoPro, Inc.) were placed in a staggered orientation with overlapping fields of view 

(diagonal FOV = 133.6o) covering the expected glide location of active lizards (Figure 4.1a). 

Recording durations ranged from ~1 min to ~9 min depending on how soon the glide was 

performed. The glide recording was followed by a scene calibration procedure of moving a wand 

of known length (0.97 m) through the common camera viewing volume to set the scale of the 

scene and measure the extrinsic camera parameters [2]. The trees or the corner of the cottage 

(Figure 4.1a) located on the field site were used to align the scene with gravity such that the Z 

axis was antiparallel to gravity. Finally, an audio synchronization tone was recorded to 

temporally align the individual camera frames [3]. We used a range of the possible temporal and 

pixel resolutions available in the cameras while seeking the best possible combination; glides 

were recorded at 120 fps (1920x1080p) on day 1, 80 fps (1920x1440p) on day 2 and 3, followed 

by 60 fps (2704x1520p) on day 4 and 5. The camera recording rate had no effect on the 

calculated maximum acceleration values (Wilcoxon rank sum test, p > 0.3). 
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4.2.4 Data processing and analysis 

3D data ([x,y,z] coordinates) for each glide were obtained by manually digitizing the 

body midpoint (Figure 4.2a) of the lizards using the MATLAB (The MathWorks, Natick, MA, 

USA) package DLTdv [4]. The glide tracks were smoothed and interpolated using a smoothing 

quintic spline weighted by their 95% confidence intervals. The interpolated points accounted for 

a total of 6.42% of the total clicked points (171 out of 2664 points). The 95% confidence 

intervals themselves were computed from the reprojection error of the 3D point with respect to 

the measured 2D points; the median confidence intervals for the x, y and z directions were 

0.0069, 0.0097 and 0.0108 m. The first and second derivatives with respect to time were 

computed by differentiating the spline polynomials. The smoothed digitized glide track was used 

to identify and mark surrounding treetops along the glide path. We overlaid the manually 

digitized glide track on top of the video from each camera. By visualizing the environment along 

with the complete glide track for each camera view, we were able to identify the trees along the 

glide path. The treetops of the identified trees were then tracked across all camera views to 

reconstruct the treetop point in 3D. The 3D points of all the identified treetops were used to 

identify the obstacle tree (based on the obstacle tree criteria) and also calculate the height of the 

tree. The [x,y] tree coordinates specified the location of the tree, and the [z] coordinate 

corresponded to the tree height. Each glide along with its surrounding trees was rotated and 

translated to place the takeoff tree on the origin and the landing tree on the positive X axis. The 

[x,y,z] track coordinates were used to calculate kinematic parameters of the glide including 

velocity, acceleration, instantaneous radius of curvature and centripetal acceleration. Basic glide 

metrics such as glide distance, glide ratio, average glide angle (𝜃̅𝜃) and instantaneous glide angle 
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(θ) were also calculated (Figure 4.2a). These metrics and others reported in the supplementary 

table were defined as follows –  

Average glide angle (o). The angle made with the horizontal in the X-Z plane, from the start to 

the end of each phase. A more negative glide angle corresponded to a steeper section of the glide 

along the vertically downward direction.  

Instantaneous glide angle (o). The angle made with the horizontal in the X-Z plane at every 

instant of time. 

Glide distance (m). The distance along a straight path in the X-Y plane, joining the takeoff and 

landing tree. 

Glide ratio. The ratio of the glide distance with loss in altitude for the complete glide. For 

example, a glide ratio of 2 would imply that the glider covers 2 units of distance for a loss of 1 

unit in altitude. 

Obstacle angle. The absolute angle made by the obstacle tree with the takeoff tree in the X-Y 

plane. 

4.2.5 Glide phases 

We developed consistent definitions for dividing complete glides into takeoff, mid-glide 

and landing phases based on characteristic changes in centripetal acceleration and horizontal 

speed (Figure 4.1b). 

Takeoff consisted of jumping from the takeoff tree followed by wing deployment. These 

morphological adjustments resulted in an increase in aerodynamic lift force with lizards 

transitioning from a mostly downwards to mostly forward motion. During this transition, the 

resultant aerodynamic force vector momentarily aligned with the velocity vector of the lizard, 

leading to a minimum in the centripetal acceleration curve. We used this centripetal acceleration 
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minima in each glide track to mark the end of takeoff. Mid-glide followed takeoff as the lizard 

proceeded towards the eventual landing tree. The mid-glide phase usually consisted of the 

highest overall glide speed and a continuously shallowing instantaneous glide angle. The end of 

the mid-glide phase was marked by the instant at which the lizard began to decelerate in the 

horizontal plane. Landing began with a decrease in horizontal speed and ended when the lizard 

reached the target tree. During landing, lizards continuously increased their body pitch and, just 

before contact, moved their forelimbs forward, their head back relative to their spine, and 

collapsed their wings. 

 

Figure 4.1 A scaled illustration of part of the field site, trajectories and glide phases. (a) An 
overview of part of the field site showing the distribution of trees and the trajectories of 11 out of 
26 glides along with a sample camera array and a schematic of the field site cottage. Each glide 
is color-coded based on the speed of the lizard and divided into takeoff, mid-glide and landing 
phases. (b) Panel shows the side profile of a representative glide along with the behavior and use 
of the kinematic parameters to divide each glide into takeoff, mid-glide and landing phases. The 
red arrows show the acceleration vectors in the X-Z plane at various instants of time along the 
glide path, transitioning from an almost vertically downwards (takeoff) to nearly horizontal in 
the forward direction (mid-glide) to vertically backwards for landing. The first minima in the 
centripetal acceleration (ac) curve corresponds to the end of the takeoff phase where the 
acceleration vector aligns with the velocity vector. The landing phase begins with deceleration in 
horizontal speed (vh). The part of glide between takeoff and landing forms the mid-glide phase. 
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4.2.6 Environmental effects - obstacles 

The surrounding trees along the glide path were analyzed as obstacles to locomotion. To 

simplify the analysis and modelling, the tree with the smallest orthogonal distance (dy) from a 

straight path between the takeoff and landing tree was defined as the obstacle for that glide 

(Figure 4.2c). The obstacle was quantified by defining the absolute angle (γ) subtended by the 

obstacle tree on the takeoff tree in the horizontal plane, as shown in Figure 4.2c. The effect of the 

obstacle on the lizard’s trajectory was quantified via takeoff direction (β, Figure 4.2c) and the 

lateral acceleration (ay) while passing the obstacle (ayO), each calculated in the horizontal plane. 

Furthermore, we modelled the lizard as a simple fixed-wing glider to calculate the roll angle 

(Equation 1) required to generate the observed ayO and thus infer losses in the aerodynamic lift 

force due to obstacles (Figure 4.2d).  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 � 𝑎𝑎𝑦𝑦𝑦𝑦
𝑎𝑎𝑧𝑧𝑧𝑧+9.81

�……………………….(1) 

where at the instant of passing the obstacle, ayO is the observed lateral acceleration and (azO + 

9.81) is the upward acceleration after accounting for body weight. 

Lastly, to understand the influence of γ on landing tree choice, we simulated a forest with 

a tree distribution representative of the field site and calculated γ’s for all possible combinations 

of takeoff and landing trees having a glide distance of less than 12 m. We then compared the 

recorded γ with the median of the simulated γ distribution for the observed glide distances to 

check for landing tree preferences in flying lizards. 
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Figure 4.2 An illustration of the calculated glide parameters. (a) Calculation of the average 
takeoff (𝜃̅𝜃takeoff), mid-glide (𝜃̅𝜃mid-glide) and landing (𝜃̅𝜃landing) angle. The instantaneous glide angle 
(θ) was used to calculate the shallowing rate of the mid-glide phase. (b) Overhead view (X-Y 
plane) of lizard approaching the target tree of radius ‘r’ at two instants of time separated by Δt. 
The retinal size of the target changes from αt to αt+Δt such that the retinal expansion velocity is 
ΩΔt at time instant (t + Δt). (c) Overhead view (X-Y plane) showing the calculation of obstacle 
angle (γ) and the instantaneous heading angle (ϕ). (d) Front view (Y-Z plane) of the lizard at the 
instant of crossing the obstacle, showing the calculation of the modelled roll angle and the 
orthogonal distance (dyO) from the obstacle tree. 
 

4.2.7 Visual landing control 

We used the RREV model, also known as the τ strategy, to predict the initiation of a 

landing response during the glide [19,20]. This model suggests a critical value of the ratio of 

retinal expansion velocity (Ω) to the retinal size (α) of the landing tree where lizards initiate a 

deceleration response. The required quantities were calculated as follows [20], 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝛺𝛺 𝛼𝛼� = 1 𝜏𝜏� …………………………(2) 

𝛼𝛼 = 2𝑠𝑠𝑠𝑠𝑠𝑠−1�𝑟𝑟 𝑑𝑑� �………………………(3) 

𝛺𝛺 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −2𝑣𝑣ℎ(𝑟𝑟/𝑑𝑑2 )
�1−(𝑟𝑟/𝑑𝑑)2

……………………(4) 

where r = 0.10 m (assumed radius of the landing tree), d is the distance of the lizard from the 

landing tree in the horizontal plane and vh is the horizontal speed (Figure 4.2b).  
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We implemented the model by aligning all glides greater than 2 m to begin their landing 

phase at t = 0 s, with t > 0 s corresponding to further into the landing phase (Figure 4.7a). Glides 

less than 2 m (n = 2) matched the average tree spacing in the field site and, due to their 

proximity, may not require a landing trigger. The critical RREV value was calculated as the 

minima in the coefficient of variation (c.v.) of RREV values between -0.5 s and 0.1 s across all 

glides (Figure 4.7a). 

4.2.8 Steering model 

We used an obstacle-avoidance steering model to understand how lizards adjusted their 

in-flight trajectory (heading direction, ∅, Figure 4.2b) to reach the landing tree. This steering 

model [17] characterized the goal (landing tree) as an attractor and obstacle(s) as repellers of 

heading acceleration, modulated by the distance to the goal and obstacle(s). A linear combination 

of the attractor and all the repellers produced a final heading acceleration function for the track. 

We modelled the glide tracks based on the simplest obstacle-avoidance case with one obstacle 

for each glide track (obstacle-aware model, Equation 5).  

∅̈𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = −𝑏𝑏∅̇ − 𝑘𝑘𝑔𝑔�∅ − 𝜑𝜑𝑔𝑔��𝑒𝑒−𝑐𝑐1𝑑𝑑𝑔𝑔 + 𝑐𝑐2� + 𝑘𝑘𝑜𝑜(∅ − 𝜑𝜑𝑜𝑜)(𝑒𝑒−𝑐𝑐3|∅−𝜑𝜑𝑜𝑜|)(𝑒𝑒−𝑐𝑐4𝑑𝑑𝑜𝑜)……..(5) 

where at any instant of time in the horizontal plane: ∅ is the lizard’s heading direction, 𝜑𝜑𝑔𝑔 and 

𝜑𝜑𝑜𝑜 are the angle subtended by the landing tree (goal) and the obstacle on the lizard’s position, 𝑑𝑑𝑔𝑔 

and  𝑑𝑑𝑜𝑜 are the lizard’s distance from the goal and the obstacle, (𝑏𝑏, 𝑘𝑘𝑔𝑔, 𝑘𝑘𝑜𝑜 and 𝑐𝑐1−4) are tuning 

parameters.  

By removing the obstacle term, we obtained the no-obstacle model, equation (6) 

∅̈𝑛𝑛𝑛𝑛−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = −𝑏𝑏∅̇ − 𝑘𝑘𝑔𝑔�∅ − 𝜑𝜑𝑔𝑔��𝑒𝑒−𝑐𝑐1𝑑𝑑𝑔𝑔 + 𝑐𝑐2�…………..(6) 
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To test the performance of each of these models, the observed heading direction data 

were fit to equation (5) and (6) using the fitnlm MATLAB function; the relative goodness of fit 

of the models were compared using the Akaike information criterion corrected for small sample 

size (AICc).  

4.2.9 Statistical analysis 

Linear relationships between glide and kinematic variables were tested using a least square 

regression model (LSR) performed with the fitlm function in MATLAB. 

4.3 Results 

 

Figure 4.3 2D and 3D views of all 26 glides divided into takeoff, mid-glide and landing phases.  
(a) 3D plot showing the variation in takeoff height, glide distance and path curvature. (b) Side 
profile (X-Z plane), with the aborted landing glide not following the stereotypical shallowing 
glide path. (c) Overhead view (X-Y plane) of glides grouped by the obstacle angles, highlighting 
the influence of obstacles on the glide path. Note the obstacle avoidance maneuvers, shown by 
the increasing path curvature with decreasing obstacle angle, also resulting in longer glide 
distances. 
 

A total of 33 glides were digitized (26 male and 7 female glides), out of which only 25 

male glides were used for analysis; one was not considered because the lizard flew past the 

apparent target tree to land on a nearby tree (Figure 4.3). These 25 male glides excluded any 
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known repeat glides from the same individual. Nevertheless, the local population density of ~4.7 

lizards per 1000 m2 (i.e., ~33 lizards at the recording site) makes it possible but not certain that 

some repeated sampling occurred; population exchange between the recording site and 

surrounding jungle preserve may have prevented even limited resampling. The 7 female glides 

were excluded because females might be at different stages of their reproductive cycle during the 

mating season, influencing their gliding behavior. Overall, male recorded glides varied in 

distance from ~2 m to ~10 m, with maximum glide speeds between ~3.6 - 7.9 ms-1 and glide 

durations of ~0.8 - 2.1 s. 

4.3.1 Takeoff phase 

Lizards jumped from a height of 7.40 ± 1.91 m (mean ± s.d., n = 25) above ground level, 

independent of the glide distance (LSR, p = 0.20, Figure 4.4a). In most cases, they did not take 

off directly towards the target tree, i.e., the takeoff direction (β) was not equal to 0o; β had an 

absolute value of 10.07 ± 9.46o and a maximum of 40.88o. Lizards directed their jumps farther 

away from obstacles more in line with the target tree (LSR, R2 = 0.22, p = 0.01, Figure 4.4a) and 

had higher lateral accelerations (ayO) of 1.74 ± 1.63 ms-2 (LSR, R2 = 0.39, p < 0.001) while 

passing the obstacle to reorient their glide towards the landing tree (Figure 4.4b). The maximum 

ayO observed was 6.34 ms-2 for a β of 40.88o and a γ of 5.69o. Average takeoff angles (𝜃̅𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

ranged from -63.90o to -30.78o; steeper 𝜃̅𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 was associated with longer glide distances 

(LSR, R2 = 0.16, p = 0.03, Figure 4.4b) and higher maximum glide speeds (LSR, R2 = 0.58, p < 

0.001). On average, the takeoff phase lasted for 0.38 ± 0.06 s, independent of the glide distance 

(LSR, p = 0.64). Overall, lizards tuned their takeoff angle and direction with respect to the 

obstacle and landing tree position but maintained similar takeoff durations across glide distances. 
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Figure 4.4 Takeoff phase. (a) Side view (X-Z plane) of takeoff phase for all 26 glides, showing 
variation in takeoff height and average takeoff angle (𝜃̅𝜃takeoff). The end of each takeoff phase is 
marked by a color-coded triangle denoting the corresponding glide distance. (b) Inverse 
correlation between the takeoff direction (β) and the obstacle angle (γ), showing that lizards 
direct their jump farther away from obstacles closer to a straight path between the takeoff and 
landing tree. (c) Correlation between the average takeoff angle and glide distance indicating 
steeper dives for longer glide distances. 
 
4.3.2 Mid-glide phase 

Longer glides had marginally shallower mid-glide angles (𝜃̅𝜃𝑚𝑚𝑚𝑚𝑚𝑚−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) (LSR, R2 = 0.15, p 

= 0.03); however, the average shallowing rate through mid-glide was 54.15 ± 14.29°s-1 and did 

not vary with glide distance (LSR, p = 0.11, Figure 4.5c). Thus, shallower and longer glides were 

achieved by extending the mid-glide duration, a quantity strongly associated with the final glide 

distance (LSR, R2 = 0.87, p < 0.001). Interestingly, the average glide angle from the initiation of 

landing (from the RREV cue, see Results section on Visual landing control) to the end of the 

mid-glide phase was correlated with the total glide distance (LSR, R2 = 0.71, p < 0.001).  

Obstacle position (angle γ) had no significant effect on the average mid-glide angle (LSR, p = 
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0.12) but corresponded to a marginally lower average shallowing rate (LSR, R2 = 0.13, p = 0.04). 

The roll angle model further emphasized the weak obstacle effects on the mid-glide phase 

kinematics. Across all glides, we calculated a maximum roll angle of 21.08o from a recording 

with a γ of 1.38o, corresponding to a loss of 6.69% in the modelled lift force (Figure 4.5b).  

 

Figure 4.5 Mid-glide phase. (a) Side view (X-Z plane) of mid-glide phase for all 26 glides, color 
coded with respect to their glide distance. Longer glides have extended mid-glide phases. (b) 
Model results simulating the roll angles for a fixed wing glider to generate observed ayO while 
passing the obstacle tree. The model shows a maximum roll angle of ~21° for an obstacle almost 
in line with the landing tree. (c) A scatter plot showing the mid-glide shallowing rate to be 
invariant across all glides. 
 
4.3.3 Landing phase 

With increasing glide distance, lizards entered the landing phase at higher horizontal 

speeds (LSR, R2 = 0.73, p < 0.001) and had longer landing durations (LSR, R2 = 0.41, p < 0.001). 

Furthermore, longer glides were associated with shallower landing angles (𝜃̅𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔)  (LSR, R2 = 

0.52, p < 0.001) and higher maximum deceleration in the horizontal plane (LSR, R2 = 0.26, p < 

0.01) (Figure 4.6b). The braking maneuver culminated in touchdown speeds of 0.83 to 5.74 ms-1, 

~1 to ~9 m (median height of 3.77 m) above the ground. The touchdown speed was slightly 

higher for longer glides (LSR, R2 = 0.20, p = 0.01) but independent of the average landing angle 

(LSR, p = 0.20) and the maximum horizontal deceleration achieved (LSR, p = 0.98). Overall, 
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with an increase in glide distance, lizards had extended landing durations and shallower landing 

angles with variable touchdown speeds. 

 

Figure 4.6 Landing phase. (a) Side view (X-Z plane) of landing phase for all 26 glides, color 
coded with respect to their glide distance. The dashed line shows an aborted landing, not 
following the stereotypical shallowing curve of other landing trajectories. (b) As expected, 
shallower average landing angles (𝜃̅𝜃landing) correspond to higher maximum deceleration in the 
forward direction. (c) The touchdown speed is independent of 𝜃̅𝜃landing, showing a range of impact 
speeds employed by lizards. 
 
4.3.4 Effect of obstacles 

Longer glides are expected to have smaller obstacle angles (γ) due to the distribution of 

trees at the field site (see Methods, γ with glide distance simulation) (Figure 4.7c). However, the 

observed γ were significantly larger than that predicted by the simulation (Wilcoxon signed-rank 

test, p < 0.001) (Figure 4.7c). Additionally, smaller γ’s corresponded to lizards performing high 

ayO maneuvers (LSR, R2 = 0.47, p < 0.001) when passing the obstacle while maintaining a 

minimum lateral distance (dyO) of 0.5 m from it. 
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Figure 4.7 Obstacle avoidance and path choice. (a) Overhead view of two representative glides 
portraying obstacle-avoidance, color coded to show the glide phases. Both glides show the lizard 
taking off in a direction away from the obstacle. The location of lateral acceleration (ayO) 
calculation is marked by  and  for each glide. (b) Magnitude of lateral acceleration (|ayO|) 
calculated while passing the obstacle decreases exponentially with an increase in obstacle angle 
(γ). (c) Probability density map of simulation of obstacle angles varying with glide distances in 
the topography of our field site. The dashed line shows that the median of simulated obstacle 
angles, marked by ‘x’, decreases exponentially as a function of glide distance. The observed γ’s 
for our recorded glides, marked by ‘●’, were higher for 22 out of 25 glides compared to the 
simulated γ of similar glide distance. 
 

4.3.5 Visual navigation 

The obstacle-aware (Equation 4) and no-obstacle (Equation 5) steering models were 

fitted to the observed heading data (see Methods, also Figure 4.8). The best fit for both models 

was obtained with a response lag of 67 ms, with the obstacle-aware model (non-linear LSR, R2 = 

0.60, F7,1889 = 402, p < 0.001) performing better than the no-obstacle model (non-linear LSR, R2 

= 0.57, ΔAICc = 101.12, F4,1892 = 641, p < 0.001).  
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Figure 4.8 Vision-based obstacle-avoidance model. Overhead view (X-Y plane) of 6 out of 25 
glides of varying glide distances and obstacle positions showing the observed glide path (solid 
black line) along with the glide paths predicted by the obstacle-avoidance model (dashed red 
line). The model agreed with most glides, excluding a few with γ < 20°. 
 
4.3.6 Visual landing control 

Lizards initiated their landing response at a mean RREV of ~1.39 s-1 (n = 23) observed at 

280 ms before the start of the landing phase, as shown in Figure 4.9a. During the landing phase, 

we found that τ (inverse of RREV value) varied uniformly with time (Fig 7b), i.e., 𝜏̇𝜏 was held 

constant with a value of -0.84 ± 0.08 (n = 23; LSR, mean R2 ~1.00, p < 0.001; Pearson 

Correlation Coefficient, mean r ~ -1.00, p < 0.001) indicating a ‘controlled collision’ approach 

undertaken by lizards to land [18,26]. 
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Figure 4.9 RREV model and the τ function. All glides were aligned to begin their landing phase 
at t = 0 s, with t > 0 s to be further into the landing phase. (a) The coefficient of variation (c.v.) 
reached a minimum at 280 ms before the start of the landing phase corresponding to a mean 
RREV value of 1.39 s-1. (b) The τ value for each glide calculated as 𝛼𝛼 Ω�  reduced at a constant 
rate of 0.84 ± 0.08, suggesting a controlled-collision landing approach. 
 
4.4 Discussion 

Our study examined behaviorally motivated, complete glides of male flying lizards over 

varying degrees of spatial complexities and glide distances. In this context, we found that flying 

lizards employ a visually guided path-planning strategy to traverse their aerially cluttered natural 

environment. Specifically, lizards performed non-equilibrium glides along paths with relatively 

less surrounding clutter and adjusted their takeoff to accommodate for topography and the 

desired glide distance. Furthermore, their glide trajectories were consistent with vision-based 

control models for navigation, obstacle-avoidance and landing.  

4.4.1 Equilibrium v/s non-equilibrium gliding 

To perform an equilibrium glide, the animal must hold a static gliding pose for an 

extended duration along a straight path to balance the gravitational and aerodynamic forces, 

yielding a constant glide velocity [4,27]. Equilibrium gliding as a common mode of glide 

execution has been described in colugos [10] and gliding lizards [12] but appears to be absent in 

flying snakes [14] and squirrels [13], questioning the prevalence and feasible conditions of 
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equilibrium gliding in nature. In Draco, McGuire et al. found that 48% of recorded glides (with 

complete speed profile) reached equilibrium [12]. However, the individuals were coaxed to glide 

between a fixed takeoff and landing pole, placed 9.3 m apart, with no other destination options 

(few landings were on the ground), and no obstacles.  

We hypothesized that most natural habitats provide little opportunity for animals to glide 

the distances required to achieve equilibrium gliding without adjusting their glide path or speed 

to negotiate obstacles. This implies that non-equilibrium gliding is the predominant mode of 

glide execution for Draco in their natural habitat. Our results support this hypothesis, as none of 

our quantified glides reached equilibrium. Furthermore, the highest probability for lizards to 

achieve equilibrium gliding is in the mid-glide phase where they are not accelerating or braking 

as observed in takeoff and landing. However, we found that flying lizards in mid-glide shallowed 

their trajectory at a rate of 54.15±14.29°s-1, much greater than rates observed in flying snakes 

[14,28] and sugar gliders [7]. Moreover, the average shallowing rate was independent of the glide 

distance (Figure 4.5c) but was marginally lower for glides with obstacles more in line with the 

target tree (smaller γ’s), suggesting that lizards exhibit steeper glide paths while performing in-

flight lateral maneuvers. To maneuver, the aerodynamic force vector is rotated about the roll axis 

of the body to cause lateral deviations, thus, reducing the upwardly directed lift force and 

resulting in a steeper glide path or lower shallowing rate. In our model for a fixed-wing glider 

generating identical lateral accelerations (ayO) while passing the obstacle, the roll angles varied 

between ~0 to 21° (Figure 4.5b) with a maximum loss in lift production of ~7%, further 

emphasizing the relationship between shallowing rate and the obstacle tree location. These 

results suggest that flying lizards actively manipulate body orientation and/or wing area to alter 

and direct aerodynamic forces while gliding, similar to mammalian gliders [7,8]. However, the 
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absence of equilibrium gliding in our study does not show Draco to be incapable of attaining 

constant velocity glides in natural settings, just that lizards might choose not to use equilibrium 

gliding, or that opportunities to attain steady state dynamics were rare or non-existent at our site. 

Our simulation of γ, the obstacle angle, as a function of glide distance in our field site yielded 

high probability of obstacle encounter for glide distances of 10 m or more (Fig 4.7c), roughly the 

fixed glide distance tested by McGuire et al. In comparison, the majority of our recorded glides 

were much shorter (median = 4.18 m). Nonetheless, it is also worth noting that McGuire et al. 

recorded glides in a 2D (X-Z) plane using a single video camera, which would slightly limit the 

ability to detect lateral variations along the glide path, thus increasing the chances of incorrectly 

identifying equilibrium glides. 

4.4.2 Path planning versus reactive in-flight maneuvers 

Reaching the target tree in an aerially cluttered environment can be achieved by 

implementing a pre-defined collision-free path (path planning) and/or reactively altering the path 

as and when an obstacle is encountered (reactive maneuvering). To maneuver, a glider must 

redirect the existing aerodynamic forces to generate centripetal acceleration, resulting in a 

decrease in upwardly directed force and an increase in gliding costs (energy). Thus, following 

the assertion of Caple et al. [29], we hypothesized that flying lizards would preferentially use a 

path planning strategy to minimize energetic costs of negotiating obstacles, or alternatively, 

perform shorter obstacle-free glides to altogether avoid encountering these issues. 

  We quantified lizards performing glides of ~2 to 10 m, with obstacle angles (γ) ranging 

between ~1.4° to 87°. For a given glide distance, lizards jumped in a direction with less 

surrounding clutter than alternatives, suggesting that they opt for glide paths, which will lead to 

relatively less loss of altitude due to in-flight maneuvering (see Results – Environmental effects, 
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Figure 4.7c). Furthermore, they modulated their takeoff to account for the expected glide 

distance and obstacles, using marginally steeper takeoff angles for longer glides and jumping 

farther away from obstacles directly in line with the target tree (Figure 4.4b). Though the takeoff 

angle and direction varied, the takeoff duration was independent of glide distance and obstacle 

presence. Takeoff duration may instead be related to a morphological constraint of time taken for 

complete wing and lappet deployment to generate lift. Nonetheless, the unique wing apparatus of 

Draco leads to a relatively streamlined pose immediately after jumping, allowing them to rapidly 

gain speed with their wings and appendages tucked close to their body. In a cluttered 

environment, the rapid gain in speed might facilitate maneuvering earlier in the glide compared 

to mammalian gliders that take an abducted body pose [6] to extend their wing surface, leading 

to increased overall drag.  

Together, these results show that flying lizards pre-select their target tree based on the 

topography and accordingly adjust their takeoff phase to successfully execute a glide. However, 

as glide distance increases, planning a collision-free path through a cluttered environment 

becomes increasingly less feasible, likely increasing the importance of reactive in-flight 

maneuvers. This was indeed the case, with 2 glides with γ < 10o and obstacles greater than 3 m 

from the takeoff tree exhibiting reactive in-flight maneuvers (Figure 4.7a, glide on the left), 

indicating that both strategies contribute towards lizards navigating their environment. Overall, 

we provide evidence for a path planning strategy used by flying lizards in a cluttered 

environment, with the increased possibility of reactive in-flight maneuvers for smaller γ and 

longer glide distances. 
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4.4.3 Visual navigation 

Vision is believed to be the primary sensory modality used by most gliders for flight 

control [4]. Canopy ants Cephalotes atratus use brightness cues to orient themselves during a fall 

and to land on the tree [30], highlighting the role of vision in glide navigation and control. The 

gliding lizard Draco sumatranus adjust their position on the tree relative to the sun to make their 

dewlap easily visible to conspecifics during social interactions [31], supporting that vision is 

likely the primary sensory input used by Draco to gather information from their surroundings. 

However, testing the contribution of vision to navigation and/or path control can be extremely 

challenging, requiring manipulating the visual field of the animal in real time during flight [4]. 

Instead, here we provide indirect support by fitting pre-existing visual control models to heading 

direction (navigation) and landing kinematics (control).  

We hypothesized that flying lizards navigate towards the landing tree by using an 

obstacle-avoidance steering model [17]. Even in cases where no obstacles were present, the 

lizards took off at an angle offset from a straight line between takeoff and landing trees (β > 0°), 

thus requiring some in-flight lateral maneuvers. We saw good agreement between the heading 

direction of lizards and that predicted by the model after incorporating a time shift of 67 ms, 

implying a visuomotor delay. The time delay was comparable to the minimum retinal integration 

time of ~67 ms reported in Anolis lizards (flicker fusion frequency in the 15-30 Hz range) [32] 

but short compared to visuomotor delays in other flying species [3], suggesting that our 

observations include feed-forward and feedback components. Next, we removed the obstacle 

component from the model and saw reduced predictive power (ΔAICc = 101.12, see Results 

4.3.5), suggesting that flying lizards indeed consider obstacles while gliding. Overall, the model 

suggests that flying lizards adjust their heading direction to align in the direction of their target 
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while maximizing the bearing angle to the obstacle. Nonetheless, we did observe reactive in-

flight maneuvers which were poorly replicated by the model. These maneuvers corresponded to 

obstacles farther away from the takeoff tree (> 3m), potentially making them less conspicuous at 

the time of takeoff (Figure 4.8).  

4.4.4 Visual landing control 

To land, we hypothesized that flying lizards use a RREV model, also known as the tau 

(𝜏𝜏) strategy. The 𝜏𝜏 strategy has been used to describe the onset of landing in flies [19,20] and 

pigeons [18]. In the wild, plummeting gannets were shown to use a 𝜏𝜏 strategy to trigger 

streamlining just before entering the water surface to forage [33]. Hence, in vision-based 

animals, the 𝜏𝜏 strategy could provide a simple way of integrating surrounding information to 

control the timing of certain locomotory behaviors. For Draco, the locomotory behavior is the 

initiation of the body pitch-up landing maneuver to decelerate. Our data fit exceptionally well 

with the RREV model and show 280 ms prior to the start of the landing phase as the decision 

point to initiate a body pitch-up braking maneuver. Interestingly, for glides less than 3 m, the 280 

ms response time corresponds to the start of the mid-glide phase, i.e., in shorter glides (< 3m), 

lizards prepare to land immediately after the takeoff phase, essentially using the mid-glide to 

initiate braking.  

By pitching up to land, flying lizards present more frontal area in the direction of motion, 

dissipating part of the accumulated kinetic energy as drag. However, the magnitude of 

deceleration is limited by the wing area; in other words, long glides with higher speeds require 

extended landing durations to reach a safe touchdown speed and thus, lizards should enter the 

landing phase farther away from the target tree. As expected, with an increase in glide distance 

and speed, lizards had longer landing durations corresponding to shallower landing angles and 
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higher maximum deceleration. Interestingly, the speed at touchdown was variable (0.83 - 5.74 

ms-1, Figure 4.6c) and lizards maintained a constant 𝜏̇𝜏 of 0.85±0.08 during landing, suggesting 

that they approach the target tree using a ‘controlled-collision procedure’ [18]. Here, flying 

lizards gradually increase their braking as the target gets closer, culminating in a non-zero 

touchdown velocity. For unpowered flight, such a strategy might allow maintaining lift during 

deceleration to alleviate the risk of stalling, or, facilitate evasive maneuvers if the landing site is 

unfavorable upon closer inspection (e.g., predator and/or a territorial male). We did record an 

aborted landing in one of our glides where the lizard turned away from the initial target tree to 

land instead on a nearby tree (Figure 4.6a and 4.3b).  

 Finally, pitching up also increases the upward force, potentially allowing lizards to regain 

some lost altitude by performing a terminal upswing, as noted previously in flying lizards [12] 

and squirrels [13]. From the lowest point in the glide trajectory, we saw marginally increasing 

gain in altitude of up to ~4.5% of the total height lost, with a maximum gain of 0.19 m for a glide 

distance of 6.21 m. This small gain increased with glide distance, suggesting that the terminal 

upswing is likely a feature of longer glides but still represents only a small fraction of the total 

height lost. 

4.5 Conclusion 

By integrating aspects of the environment, behavior, and the biomechanical capabilities of 

the glider, we show flying lizards using a visually guided path-planning strategy to perform 

collision-free flight in a naturally cluttered habitat. Furthermore, our study provides insight into 

how gliders use and process visual information from the environment, beginning from pre-

selecting the target tree, adjusting their heading direction, to initiating and controlling their 

braking to land. Together, these unique set of results reveal previously unknown capabilities in 
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gliding animals and demonstrate the importance of field studies in gaining a more 

comprehensive understanding of ecologically relevant locomotory behaviors.  
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CHAPTER 5: CONCLUSIONS 

In my dissertation, I ask the question, how do animals glide in their natural habitat? 

Although many studies on gliding mechanics and ecology have been conducted before, none 

have attempted to take a holistic approach to understand gliding performance in the animal’s 

natural habitat where the interplay between different behaviors, body sizes and the habitat can be 

seen, and their combined effect on the gliding performance can be recorded. Therefore, it 

remains unclear how and to what extent do each of these factors influence the animal’s gliding 

ability, ultimately affecting its performance and survival. 

 I attempted to answer these questions using the lesser studied flying lizard Draco 

dussumieri in the wilderness of the Western Ghats in India. I used a novel non-invasive motion 

capture technique to film them glide and also took qualitative observations of their behavior. 

Together, this approach allowed me to reveal the underlying kinematics and aerodynamics of 

gliding and link it to the morphology and behavior of Draco, all in its environmental context. My 

investigations revealed, for the first time, real-world strategies used by the Draco to both stay 

aloft and traverse its cluttered environment and evidence that evolutionary pressures influence 

performance among and within sexes.  

5.1 Aerodynamics 

 In Chapter 2, I investigated the underlying physical mechanism of gliding, which in the 

case of gliding animals deals with the aerodynamics to stay aloft. My study is the first to 

reconstruct an aerodynamic polar plot from actual glide data and provides the most detailed look 
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at Draco gliding aerodynamics currently available. In general, the results are consistent with 

prior work on mammalian gliders and, to some extent, flying snakes. By describing the 

aerodynamics, I also made some key advancements in our understanding of gliding flight 

mechanics.  

5.1.1 Angle of attack and camber 

I showed that Draco airfoil operate largely like a traditional airfoil but with the 

advantages of a compliant wing. The angle of attack (AoA) was positively correlated with the 

coefficient of lift and coefficient of drag yet was held surprisingly steady at approximately 26° 

during the mid-glide phase. The drag polar plot showed that the AoA of 26° corresponded to the 

maximum value of the lift-to-drag ratio observed in our field recordings. This translates to Draco 

operating at forces which minimize the loss in altitude per unit increase in horizontal distance 

covered. Though maximizing lift-to-drag ratio had been previously proposed as a favorable 

strategy to glide, my study is the first to show experimental support for it, with Draco 

impressively maintaining maximum lift-to-drag ratio by continuously changing body orientation 

in the air. Second, I showed that a compliant airfoil allowed for changes in percentage camber 

under aerodynamic load. The changes in percentage camber along with AoA were used by 

Draco to modulate the coefficient of lift and coefficient of drag. This was especially 

advantageous since it allowed Draco to achieve higher coefficients of forces at relatively low 

AoA, providing greater flexibility in terms of its gliding ability.  

These advantages were carried over to the landing phase where the Draco reached AoA 

upwards of 40°. Such high AoA are often seen in gliding taxa but represent an extraordinary 

aerodynamic feat. Where traditional airfoils experience stall (drastic loss of lift after a critical 

AoA) at an AoA of approximately 15°, gliding animals can achieve AoA almost thrice that 
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value. Previous simulation on a rectangular wing with the same aspect ratio of 1.4 as the primary 

Draco wing showed that increasing percentage camber to approximately 10 delayed the onset of 

stall to around 40°. My results were strikingly similar to the simulation and provide the first 

experimental evidence of how gliding animals might achieve higher AoA than traditionally 

possible using rigid wings. 

5.1.2 Composite airfoil 

Gliding taxa with a dedicated well-defined wing such as mammalian gliders and flying 

lizards are considered to rely largely on their primary wing to glide. Although this is partially 

true, my study showed that Draco body parts including the head, body, and the hindlimb along 

with the mostly flat body are significant contributors towards increasing the surface area by up to 

50% to generate aerodynamic forces. This fundamentally changes the perspective from 

considering only the primary wing for modelling for various aerodynamic analysis to considering 

a composite airfoil composed of the primary wing and the body parts. Furthermore, using a 

composite airfoil also changes the scaling relationships between body size (mass) and 

aerodynamic performance (surface area). Previously, it was believed that due to isometric scaling 

of wing area with body size, larger Draco would be less capable gliders. By considering the 

composite airfoil, I showed that larger gliders actually must accommodate negative allometric 

scaling of surface area with body size, further emphasizing the compensatory behavioral changes 

in larger Draco to reduce the detrimental aerodynamics effects of scaling that was reported in 

Chapter 3 and is mentioned in the next section. 

5.2 Body size and sex 

Chapter 3 built on the glide performance description in Chapter 2 by investigating the 

variation in performance in the context of body size and sex of the individual. Both are equally 
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important when describing glide performance. Variation in body size sets boundaries on the 

physical capabilities of the glider, whereas sex relates to different behaviors which ultimately 

influence the performance level of individuals. For example, behaviors like territoriality and 

foraging have distinct motivations which can lead to performance differences but must operate 

within the physical limits defined by the body size of the individual. Such influences though 

expected have mostly remained unstudied in gliding animals. In my study system there was a 

stark distinction between behaviors of males and females and a body size variation ranging 

between 3 gm to 11 gm, allowing me to investigate the effects of body size and sex on glide 

performance.  

 Overall, I saw that the effect of body size and sex on glide performance was not mutually 

independent because of female-biased size dimorphism in Draco. However, I was able to 

observe some key differences between and within males and females. 

5.2.1 Body size  

I saw the expected negative effects of body size on glide performance with larger Draco 

performing steeper overall glides. However, my analysis revealed compensatory behavior in 

larger individuals to reduce the detrimental effects of body size. I found that larger Draco 

achieve slightly higher maximum speeds and AoA to operate at higher coefficients of lift and 

coefficients of drag but lower lift-to-drag ratio. Such adjustments allowed larger individuals to 

slow their descent potentially to land safely since the speed at touchdown was independent of 

body size even though larger Draco started the landing phase at higher speeds. Therefore, instead 

of relying on significantly higher flight speeds to achieve similar glide performance as smaller 

individuals, larger Draco behaviorally compensated using higher AoA to slow their descent and 

potentially prioritized landing safety over glide performance. 



126 
 

5.2.2 Sex 

A major goal of Chapter 3 was to investigate if and how different evolutionary pressures 

manifest in the gliding performance of the individual. To this end, I found support for variation 

in performance among sexes, highlighting for the first time, how behavior might influence 

gliding performance. However, it should be noted that my data set was limited to a small sample 

size of 23 glides with 7 males and 6 females, where females represented the higher end of the 

body mass spectrum. After accounting for body size, males performed shallower and thus more 

efficient glides than females, reaching consistently higher landing spots with little variation in 

landing height. Conversely, females, along with their steeper glides showed large variation in 

landing height and landed lower than males. Such variation among sexes might represent how 

evolution has shaped overall glide performance. For example, glide performance in males might 

be tuned for frequent glides and reducing the transit time between them allowing them to 

effectively defend territories and seek mates. Conversely, females do not participate in 

territoriality or mate seeking and thus could afford greater variability in glide performance. 

Overall, this showed support for the evolution of reversed sexual dimorphism in Draco. 

An interesting outcome of performance comparison among sexes was the compensatory 

behavior observed for variation in body size. In the mid-glide phase, I saw opposite effects of 

body size on performance among sexes. Larger males overcompensated for their body size and 

performed shallower mid-glides compared to smaller males whereas larger females followed the 

expected outcome of having steeper glides than smaller females. This level of detail on 

differences of performance among and within sexes was unexpected but welcomed. It further 

suggested that glide performance is not only driven by selection pressures but also influenced by 

ontogenetic variation.  
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5.2.3 Male territoriality and female home range 

Fundamental differences in behavior between males and females, especially in the mating 

season should translate to differences in spatial distribution among sexes. This was the 

motivation for recording Draco sightings during the mating season and catered to two goals in 

my dissertation. First, it showed that males formed distinct territories maintaining spatial 

distancing of approximately 6 m from each other and mostly avoiding territorial overlap. 

Furthermore, 8 out of 12 male territories overlapped with at least one female home range 

suggesting that maintaining a territory might be important for gaining access to females. 

Conversely, females did not form territories and large overlap between their spatial distribution 

was observed, showing an obvious distinction between male and female behaviors. After 

quantifying the spatial distribution, I attempted to seek the second, more ambitious goal of my 

spatial distribution study – relating the territory size of males to their glide performance and 

morphology to understand what male characteristics influence territory size and access to 

females. Though this analysis did not lead to any significant relationships, it showed a possible 

approach to test such hypothesis in the future. 

 Overall, the spatial distribution analysis in my dissertation is the first quantitative 

representation of territoriality in gliding animals and cements the expectation that different 

evolutionary pressures indeed influence glide performance. On a more practical note, it also 

shows the value that a convenient field site can have on a study, which turned out to be 

particularly advantageous in the case of Draco inhabiting an abandoned areca nut plantation.  

5.3 Gliding in the natural habitat 

In Chapter 4, the focus was to broaden the scope of the dissertation to understand gliding 

behavior in the context of the environment. In doing so, I presented the first study elucidating 
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how gliding animals use and process information from the environment to modulate their glide 

trajectory and reach their desired target. This is by far the biggest leap in our understanding of 

how gliding animals traverse their spatially cluttered environment. 

 It should be noted that Chapter 4 presents a diverse data set of male Draco gliding over 

distances ranging from 2 m to 10 m with varying degrees of spatial complexities. Furthermore, 

this data set had minimal influence of the data collection setup compared to Chapters 2 and 3 

where the recordings were conducted in a flight arena constructed within the same field site. 

5.3.1 Path planning strategy  

Gliding animals must manage a fixed energy budget to reach their desired target and to 

power maneuvers to negotiate obstacles in their glide path. Therefore, it would make sense to 

execute a path planning strategy to minimize expensive energetic losses involved in performing 

reactive in-flight maneuvers to avoid obstacles in their path and safely reach their target. A path 

planning strategy requires that the final outcome (glide distance) is pre-determined at the very 

beginning of the glide (takeoff phase). My results strongly supported this reasoning where 

numerous takeoff characteristics were associated with the glide outcome. Male Draco used a 

steeper average takeoff angle to cover greater horizontal distance, independent of takeoff height. 

The direction of takeoff in the horizontal plane was dependent on the relative location of the 

obstacle with respect to the landing tree; with Draco jumping further away from obstacles 

directly in-line with their target tree. Even before jumping to glide, for a given glide distance, 

Draco chose a glide direction which exposed them to relatively less clutter and reduced the in-

flight maneuvering demands.  

 However, this is not to say that Draco did not perform reactive in-flight maneuvers or 

experience energetic losses associated with path planning. For glides where the obstacle was 
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more in-line with the target tree, the Draco had to execute a higher degree curved glide path by 

directing part of the resultant aerodynamic force vector sideways resulting in reduction of 

upward force that was used to counteract the body weight, leading to a marginally lower 

shallowing rate of the glide.  Furthermore, for longer glides, with obstacles further away from the 

takeoff tree, path planning became less feasible potentially due to difficulty in discerning 

obstacles and landing tree in a visually rich environment. Therefore, a few glides of more than 6 

m showed reactive in-flight maneuvers indicating that both strategies contribute towards lizards 

navigating their environment. 

5.3.2 Visual navigation and landing control 

After showing that the glide outcome influenced the takeoff characteristics of the glider, 

it was important to understand how animals actively controlled their glide trajectory once 

airborne. Note that active control has two types of interaction described in this dissertation. The 

first type, discussed in Chapters 2 and 3, deals with the animal and the surrounding fluid 

medium, air. It describes how the animal stays aloft and exhibits varying degrees of glide 

performance. The second, and the one discussed here, relates to how the environment influences 

the glide trajectory which ultimately also feeds into the first interaction. 

 Once airborne, the changes in Draco’s heading direction agreed well with a vision-based 

obstacle avoidance steering model which has been previously described in humans. The model 

showed that the Draco heading direction was modulated by the combined effect of its angular 

orientation in the horizontal plane with respect to the obstacle and the landing tree. At every 

instant of time, Draco maximized its angular orientation with respect to the obstacle while 

minimizing its orientation with respect to the target tree, until eventually the Draco passed the 

obstacle tree and perfectly aligned its heading direction towards the landing tree. 



130 
 

 Finally, landing initiation was described using a Relative Retinal Expansion Velocity 

(RREV) model which has been previously described in animals as diverse as plummeting 

gannets to fruit flies. It suggested that Draco initiated the breaking maneuver based on the ratio 

of its distance from the desired target and the speed at which it was approaching it. The distance 

from the target was derived from the retinal size of the target and the approach speed was 

derived from the rate at which the retinal size was changing. The RREV model suggested that 

Draco initiated its landing response 280 ms before the start of the landing phase. The delay of 

280 ms potentially corresponded to the time taken to increase drag and induce deceleration by 

increasing its body pitch.   

Overall, Chapter 4 showed how Draco were able to execute collision-free gliding on a 

daily basis to perform various behaviors. It revealed a vision-based path planning strategy 

employed by Draco to navigate their cluttered environment. This study also highlighted the 

maneuvering capabilities of Draco which were previously unknown and showed that collision-

free gliding required continuous changes in the gliding kinematics such that the lizards never 

attained theoretically ideal steady state glide dynamics. 

5.4 Gliding in a nutshell 

In a nutshell, my dissertation shows that gliding is a complex task and involves various 

factors at play, both intrinsic and extrinsic to the animal. In doing so, it provides a convincing 

example of how habitat, behavior, and morphology influence locomotory performance in 

animals.  I found that the Draco was aware of its environment and physical capabilities while 

performing well-choreographed glides in its natural habitat. The glide itself, was executed using 

a strategy that allowed it to efficiently cover horizontal distance while avoiding obstacles in its 

path. On a performance level, Draco airfoil properties were a surprisingly good match to the 
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expected properties of low-aspect ratio flexible airfoils, and the lizards made the most of their 

capabilities by continuously adjusting their posture throughout the glide. Overall, my 

investigations barely begin to reveal the interplay between locomotor capabilities and natural 

behavior, and I hope that further investigation in this species and others will continue to bridge 

the gap between theory, laboratory experiment, and field studies.  
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