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ABSTRACT

Marc Besson: Twisted affine Schubert varieties and twisted affine Demazure
modules

(Under the direction of Jiuzu Hong)

This work studies line bundles of level one on twisted affine Schubert varieties. Following work of Zhu,

we describe the restriction map from global sections of a level one line bundle to the Tσ-fixed subscheme. Our

technique uses global methods and studies this map using the associated map for untwisted affine Schubert

varieties. As a corollary we are able to describe the smooth locus of many twisted affine Schubert varieties.

iii



à mes parents

iv



ACKNOWLEDGEMENTS

First and foremost, I must acknowledge Professor Jiuzu Hong. As my adviser and mentor for four years,

he has spent a huge amount of his time and energy with me. He has fielded countless questions, and has

taught me his way of approaching mathematics. From him I have gained my mathematical abilities, and my

mathematical taste; I hope that I can also emulate his energy and vigor.

I must also thank the members on my committee, Professor Belkale, Professor Cherednik, Professor

Kumar and Professor Rimányi. They have taught me, in classes and office hours and conversations, for the

past six years and I owe them a great debt. Moreover they have kindly agreed to participate in this final stage

of my Ph.D., so I am triply grateful.

I must just as soon acknowledge my peers Sam Jeralds and Josh Kiers. My success in graduate school is

due almost entirely to our interminable "Ginzburg" seminars. In Josh and Sam I found collaborators with

whom I can talk for hours and hours. More than collaborators, I have also found true friends, and they were a

very important part of making grad school survivable.

I must also thank the other graduate students who have spent so much time with me, discussing math

and other things; my longtime officemate Michael Strayer and housemates Paul Kruse and Yiyan Shou

being friends of mine who endured countless basic questions (often the very same ones) asked repeatedly at

intervals of roughly two months.

All of my acknowledgements thus far has been of a mathematical nature more or less, but one does not

subsist on math alone for six years. I want to also deeply thank the people in life who made graduate school a

bearable experience, and who were able to pull me away from my books from time to time. I want to thank

Laryssa Abdala, Mack Krone, Audrey Morrow, and Aaron Taggart from the Princess Palace, as well as Ian

Von Wald, Seth Baldwin, Logan Tatham, Gonzalo Cazes-Nasitiqui, and Blake Keeler.

In a similar vein I want to thank my friends Omar Hyjek, Andrew Tolbert, Peter Sisson, Pat Horan and

Daivik Orth for their consistent friendship.

I must also of course thank Laurie and Sarah, without whom this department would surely cease to

function.

v



Going further back, I would like to thank Prof. Schaefer and Prof. Tesman; they played instrumental

roles in teaching and mentoring me during my undergraduate years.

Lastly, and yet really deserving true precedence, I must thank my family; my father, mother, and sister.

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: BASICS OF AFFINE GRASSMANNIANS . . . . . . . . . . . . . . . . . . . . . 5

2.1 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Affine Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Global Affine Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Global Arc Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Global Schubert Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Summary of some work of Zhu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Step 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Step 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.3 Step 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 3: ABSOLUTELY SPECIAL AUTOMORPHISMS . . . . . . . . . . . . . . . . . . 13

3.1 Twisted Affine Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Absolutely Special Automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Root Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 4: BASICS OF TWISTED AFFINE GRASSMANNIANS . . . . . . . . . . . . . . . 17

4.1 Group Schemes and first construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Twisted Affine Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



4.2.1 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Global Twisted Affine Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Global Twisted Schubert Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 5: CONSTRUCTION OF LINE BUNDLES OF LEVEL 1 . . . . . . . . . . . . . . 27

5.1 Conformal Blocks, Line Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Construction of level one line bundles on BunG . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 6: FLAT DEGENERATIONS AND SMOOTHNESS . . . . . . . . . . . . . . . . . 38

6.1 Flat Degeneration and Smoothness Results . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1 A duality isomorphism for twisted Schubert varieties . . . . . . . . . . . . . . . . . 40

6.1.2 Application: Smooth locus of twisted affine Schubert varieties . . . . . . . . . . . . 45

CHAPTER 7: PARTIAL RESULTS ON E6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 Partial Results on E6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Vω4,−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.1 Vω4,−3(ω4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.2 Vω4,−3(ω1 + ω6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.3 Vω4,−3(ω2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.4 Vω4,−3(0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 Vω2,−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3.1 Heisenberg Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3.2 Vω2,−2(0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3.3 Vω2,−2(ω2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



LIST OF FIGURES

7.1 This is the poset of extremal weights µ such that ω2 < µ ≤ ω4 and such that the support of
µ − ω2 is not a proper subdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



LIST OF TABLES

3.1 The semisimple types, the orders of their absolutely special automorphisms, and the fixed
subalgebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Coinvariants of fundamental groups. This also provides the number of components of GrG
for G adjoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Twisted affine algebras and their Dynkin diagrams. . . . . . . . . . . . . . . . . . . . . . . 21

x



CHAPTER 1

Introduction

A trois heures et demie, le docteur découvre la

valeur de x, l’inconnue cherchée; ce qui lui

cause une joie sans mélange. – Nous prions les

esprits superficiels de s’abstenir de toute

réflexion sur la valeur de x, et de ne point

prétendre que Zéphyrin a beaucoup travaillé

pour peu de chose.

— Christophe, L’Idée fixe du savant Cosinus

This work follows in a long tradition of studying homogeneous spaces for reductive groups. Over an

algebraically closed field, these are some of the most well-studied geometric objects available, and whose

geometry can almost completely be described using the combinatorics of Weyl groups and root systems

associated to the reductive group G.

This situation is largely paralleled when G is a reductive group over a local field; while slighly more

recent, this topic still dates back at least over half a century. When the local field in question is the field of

formal Laurent series, this topic is extremely closely related to the combinatorical and algebraic framework

of Kac-Moody groups and algebras.

An important feature in this case is the existence of line bundles of "level" one on these homogeneous

spaces. Let us introduce some notation. We will write K and O for the field of formal Laurent series and for

formal power series. We write G for a semisimple reductive group, and GrG for the homogeneous space in

question, whose C-points are G(K)/G(O). For simplicity in the introduction, we will discuss only the case

where G is simply-connected; in this case the affine Grassmannian has only one component. In this case,

Pic(GrG) ' Z. If L is the ample generator of Pic(GrG), then the space H0(GrG, L)∗ is usually called the basic

representation.

A beautiful structure of the basic representation associated to affine Kac-Moody groups of type A,D and E
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was exposed first by Frenkel-Kac and Segal, and later generalized by Kac-Peterson. Roughly, the Frenkel-Kac

formulation describes the branching of the basic representation over the homogeneous (infinite-dimensional)

Heisenberg subalgebra. A weak form of Frenkel-Kac states that the basic representation H decomposes into

a direct sum of Fock spaces

H =
⊕
λ∈X∗(T )

πλ

where πλ are Fock modules for the homogeneous Heisenberg subalgebra t̂.

Xinwen Zhu revisited this result in his paper [Zh1], reinterpreting it as a geometric statement about the

T -fixed subscheme of the affine Grassmannian GrG. The closed T -fixed points of GrG are easily described,

and they correspond precisely to coweights λ ∈ X∗(T ). However, the T -fixed subscheme GrT
G is a highly

non-reduced scheme. Zhu’s geometric interpretation of the Frenkel-Kac isomorphism involves interpreting

sections of the ample line bundle L restricted to a T -fixed subscheme supported over the point [tλ] as dual to

the Fock module πλ. Moreover, this result holds for very many affine Schubert varieties. Let Gr
λ
G be an affine

Schubert variety, and let I denote the ideal sheaf of the T -fixed subscheme (Gr
λ
G)T . We have a short exact

sequence of sheaves

0→ Iλ(1)→ L|
Gr

λ
G
→ O

(Gr
λ
G)T ⊗ L→ 0. (1.1)

Zhu shows that in very many situations for G of type ADE, upon taking global sections we have an

isomorphism

H0(Gr
λ
G, L)→ H0(Gr

λ
G,O(Gr

λ
G)T ⊗ L).

The dual of the left term is an affine Demazure module, and the term on the right corresponds to sections

over the T -fixed subscheme. After taking a limit over the poset of dominant weights, we recover the weak

form of Frenkel-Kac described above. Moreover in this form, we gain information about the singularities

of the affine Schubert varieties: if a projective variety X equipped with a T -action is smooth at a T -fixed

point, then the T -fixed subscheme will be reduced. Thus from Zhu’s result we obtain as a corollary that affine

Schubert varieties Gr
λ
G of type ADE are singular at all points [tµ] when µ < λ. Moreover, this implies that the

affine Schubert varieties are singular at all strata associated with µ < λ. This result was already known via

different methods, see [MOV].
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In this work we undertake an extension of this result. In the language of Kac-Moody theory, the Frenkel-

Kac isomorphism applies to the simply-laced affine types as well as the twisted affine types (but not the non-

simply-laced untwisted affines). So we may form twisted affine Grassmannians GrG which are homogeneous

spaces for twisted loop groups, and (usually) we may find line bundles L on these homogeneous spaces

which are of "level" one. These twisted affine Grassmannians are associated to automorphisms σ; just as

there is a natural T -action on GrG we have a natural Tσ-action on GrG , and we may examine the Tσ-fixed

subscheme of a twisted affine Schubert variety Gr
λ
G . The key construction is a global family of affine Schubert

varieties whose generic fiber is an untwisted affine Schubert variety and whose special fiber is a twisted affine

Schubert variety.

We now proceed with a discussion of the contents of each chapter.

In Chapter 2 we discuss the basics of affine Grassmannians in the untwisted setting. This material is

standard by now, and can be found in several detailed references. We require not only the classical affine

Grassmannians, but also a whole collection of "relative" or "global" affine Grassmannians, whose construction

is due to foundational work of Beilinson and Drinfeld [BD]. Moreover we give a summary of the work of

[Zh1], since it plays not only a motivational role, but the theorems found there for the untwisted affines are

crucial for our proofs of the twisted affines.

The twisted affine Grassmannians are constructed using certain automorphisms of loop groups G(K). In

fact these automorphisms must be chosen with some care. In Chapter 3 we discuss the "absolutely special"

automorphisms we use. This restricts the number of homogeneous spaces our result applies to; in particular

we must exclude a homogeneous space for A(2)
2n , for which our result cannot hold. The reason for this is

simple; we cannot construct a line bundle of level one on this homogeneous space. We spend Chapter 3

developing notation and combinatorics associated to these absolutely special automorphisms.

In Chapter 4 we essentially repeat the constructions of Chapter 2, but in this case we work explicitly with

the twisted affine Grassmannians. Chapter 4 is mostly devoted to results which have precise analogues with

the results for untwisted affine Grassmannians in Chapter 2, and the chapters are written to coincide with

each other as much as possible. Just as in Chapter 2, we must also construct several "global" versions of the

twisted affine Grassmannians. In this setting there is a new feature; we produce flat schemes over curves

whose generic fiber is an untwisted affine Schubert variety and whose special fiber is a twisted Schubert

variety. This enables us to transfer data from the untwisted case to the twisted case, which is critical to our

proof.
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In Chapter 5 we undertake the (rather technical) construction of line bundles of level one on our global

twisted affine Grassmannians. This construction uses recent results of Hong and Kumar (see [HK]) on twisted

conformal blocks. In particular line bundles are first constructed on BunG and are then pulled back to the

global twisted affine Grassmannians.

After many pages of constructions, in Chapter 6 we finally arrive at our results. At this point we have

a flat family over a curve, where the generic fiber is an untwisted affine Schubert variety and where the

special fiber is a twisted affine Schubert variety. Moreover, we have a global line bundle L of level one on

this flat family. Now flatness permits us to transfer Zhu’s isomorphism in the untwisted case to the twisted

case. Thus for many twisted affine Schubert varieties, we find that the space of global sections of the level

one line bundle is isomorphic to the space of sections of the line one level bundle restricted to the Tσ-fixed

subscheme. Theorem 6.1.5 is the main result of this work. As a corollary, we are also able to characterize the

smooth locus of twisted affine Schubert varieties in most cases. Additionally, our result proves most cases of

a conjecture of Haines-Richarz [HR].

Chapter 7 is a slight deviation from the main body of this work. As mentioned above, our proof of the

restriction isomorphism the twisted case relies on the results and methods in the untwisted case. Thus Zhu’s

isomorphism for Schubert varieties in the untwisted case is a prerequisite for us. While Zhu was able to prove

his isomorphism in all cases in types A and D, the result remains unfinished in type E. One particular case of

relevance to our work concerns the restriction isomorphism for the affine Schubert variety associated to ω̌4 in

type E6. Thus the analysis of the T -fixed subscheme of Gr
ω̌4
G remains incomplete, though we make progress in

this last Chapter. In fact, there are further unproven cases in E7 and E8, but these algebras have no nontrivial

diagram automorphisms, so they do not give rise to twisted affine algebras. Thus in Chapter 7 we present our

unfinished efforts to prove the restriction isomorphism for Gr
ω̌4
E6

. With our techniques, this becomes a delicate

but mostly doable problem in classical representation theory. Work in Chapter 7 narrows the problem of the

restriction isomorphism for E6 down to a question about the 0-weight space of the representation Vω4 of E6.

4



CHAPTER 2

Basics of Affine Grassmannians

In this chapter we review basic facts about affine Grassmannians and give a summary of Zhu’s work

on affine Demazure modules, which provides motivation and structure for the present work. All of the

constructions and basic theorems provided in this chapter are very standard at this point, and are introduced

without proof. This material is collected in the following sources: [MV], [Zh1], [Zh4], [BR] and [BD].

2.1 Basic Notation

Let G be a simply-connected semisimple algebraic group over C. We choose a maximal torus and Borel

subgroup T ⊂ B ⊂ G. We denote X∗(T ) the lattice of weights of T , and by X∗(T ) the lattice of coweights.

Their natural pairing is denoted by 〈, 〉. We let Φ denote the set of roots of G, and denote by Φ+ the set of

positive roots of G with respect to B. We let Φ̌ denote the set of coroots, so (Φ, X∗(T ), Φ̌, X∗(T )) is a root

datum for G, and write W for the Weyl group of G. We denote by {αi | i ∈ I} (respectively {α̌i | i ∈ I} the

set of simple roots in Φ (respectively coroots in Φ̌), where I is the set of vertices of the associated Dynkin

diagram of G. We choose a pinning {xαi , yαi | i ∈ I} of G. Let O = C[[t]] denote the formal power series in

t and K = C((t)) denote the formal Laurent series in t. A coweight λ ∈ X∗(T ) naturally defines a point of

T (K) ⊂ G(K) which we denote as tλ. We write g for Lie(G), b for Lie(B) and t for Lie(T ), though we may

also use h.

2.2 Affine Grassmannians

For G a reductive algebraic group over C, we may construct the loop group LG and the arc group L+G as

the following functors:

Definition 2.2.1. LG represents the following functor:

R 7→ G(R((t)))

for R a C-algebra.

5



L+G represents the following functor:

R 7→ G(R[[t]])

for R a C-algebra.

The first is represented by an ind-scheme, the second represented by a scheme of infinite type over C.

Definition 2.2.2. We define the affine Grassmannian as the fpqc quotient

GrG = LG/L+G.

Remark 2.2.3. From this description we can see that the C-points are GrG(C) = G(K)/G(O).

There is also the Beauville-Laszlo interpretation of the affine Grassmannian in terms of G-torsors on the

formal disc. We denote by DR = Spec R[[t]] and D∗R = Spec R((t)).

Theorem 2.2.4. Let F be a G-torsor over D = SpecC[[t]], and denote by F̊ the trivial G-torsor on D. We

then have

GrG(R) =

{
(F, β)

∣∣∣∣∣ β : F|D∗R
∼
−→ F̊|D∗R

}
. (2.1)

This description of the affine Grassmannian is due to Beauville-Laszlo [BL] in type A and due to [DS]

for arbitrary types.

2.2.1 Stratification

We have the Cartan decomposition

G(K) =
⊔

λ∈X∗(T )+

G(O)tλG(O) (2.2)

which induces a stratification of GrG by left G(O)-orbits. Moreover, each orbit has finitely many TC-fixed

points (namely twλ for all w ∈ W).

We define the affine Schubert varieties to be the closures of cells.

Definition 2.2.5. GrλG = G(O).[tλ]

We can also easily describe the closure relations. For λ, µ ∈ X∗(T ), let us write µ ≤ λ if GrµG ⊆ Gr
λ
T .

6



Lemma 2.2.6. We have µ ≤ λ if and only if λ − µ is a non-negative integral linear combination of simple

coroots α̌i.

2.2.2 Components

The components of GrG can be parametrized by the elements in π1(G), where π1(G) = X∗(T )/Q∨. Denote

by G̃ the simply-connected cover of G. Then we have an explicit decomposition

GrG =
⊔

γ∈π1(G)

G̃K/Adtλγ G̃O. (2.3)

If G is simply-connected, then GrG has only one component, GrG = Gr◦G.

2.3 Global Affine Grassmannians

We form "global" versions of the affine Grassmannian, with respect to a curve C. Let C be a fixed

smooth curve over C and let F̊ = G × C be the trivial G-torsor on C. Given an R point p ∈ C(R), we write

Γp ⊂ Spec(R) ×C for the graph of the inclusion p→ C.

Definition 2.3.1. We define the global affine Grassmannian

GrG,C(R) :=

 (p, F, β)

∣∣∣∣∣∣∣∣∣∣
p ∈ C(R)

β : F|CR\Γp ' F̊|CR\Γp

 . (2.4)

When we wish to fix a closed point p ∈ C(C), we write GrG,p.

We have an isomorphism, for closed points p ∈ C,

GrG,p ' GrG .

This isomorphism may be described in the following (non-canonical) way; denote byKp the field of fractions

of the completed local ring at p, which we write as Op. There is a non-canonical isomorphism Kp ' K

which is essentially is a choice of uniformizer. Then we certainly have an isomorphism G(Kp)/G(Op) '

G(K)/G(O).

We produce two more generalizations of the global affine Grassmannian, both originally due to Beilinson

and Drinfeld. Again, let F be a G-torsor.

7



Definition 2.3.2. We define the Beilinson-Drinfeld Grassmannian:

GrG,C2(R) :=

 (p1, p2, F, β)

∣∣∣∣∣∣∣∣∣∣
pi ∈ C(R)

β : F|CR\Γp1∪Γp2
' F̊|CR\Γp1∪Γp2

 . (2.5)

and the convolution Grassmannian

Definition 2.3.3.

ConvG,C2(R) :=


(p1, p2, F1, F2, β1, β2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
pi ∈ C(R)

β2 : F2|CR\Γp2
' F1|CR\Γp2

β1 : F1|CR\Γp1
' F̊|CR\Γp1


. (2.6)

Notice that we have a natural map

ConvG,C2(R)→ GrG,C2(R)

(p1, p2, F1, F2, β1, β2) 7→ (p1, p2, F2, β1 ◦ β2).
(2.7)

These and more general global affine Grassmannians were first carefully studied by Beilinson and

Drinfeld, and they provide important examples of factorization spaces. In our work, subvarieties of these

ind-varieties will be the main objects of interest. In fact, the Beilinson-Drinfeld Grassmannian GrG,C2 is the

more central object, and the convolution Grassmannian is mainly used as a tool to prove things about GrG,C2 ;

in this work we introduce it mostly for the sake of completeness.

2.3.1 Global Arc Groups

Given the curve C, we define a global version of the arc group as follows. If p ∈ C(R), we denote by Γ̂p

the formal completion of Γp in Spec(R) ×C.

Definition 2.3.4. The global arc group is defined as follows:

L+GC(R) :=

 (p, β)

∣∣∣∣∣∣∣∣∣∣
p ∈ C(R)

β : F̊|Γ̂p
' F̊|Γ̂p

 . (2.8)

We have a left action
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L+GC × GrG,C → GrG,C

((p1, β), (p2, F, β2)) 7→ (p2, F′, β2)
(2.9)

where F′ is obtained by trivializing F along Γ̂p1 , composing this trivialization with β1, and regluing with β2.

One defines L+GC2 analogously by admitting two points p1, p2 and β a trivialization of the trivial G-torsor

along Γ̂p1 ∪ Γ̂p2 .

2.3.2 Global Schubert Varieties

Just as in the case of "local" affine Grassmannians, we will define various affine Schubert varieties as

closures of "L+G"-orbits of certain analogues of torus fixed points, for the correct global construction of GO

(namely L+GC).

In the case of a constant group scheme G ×C, we first construct the appropriate fixed points (which will

now be sections over C) sλ for a coweight λ ∈ X∗(T ) first using GrT,C as follows:

Definition 2.3.5. We define the section sλC(C) := (Id, F, β) ∈ GrT,C with the following condition on F and β:

for all weights µ of T , when we form the induced vector bundle F ×T Cµ, we have identifications

βµ : F ×T Cµ ' OC×C(〈λ, µ〉ΓId).

Note that ΓId is the graph of Id : C → C in C ×C, or in other words is the diagonal.

This T -torsor naturally gives rise to a G-torsor using the inclusion T → G.

Note moreover that we can recover something resembling the earlier data as follows. We describe the

situation for a closed point. Let i : SpecC→ C denote the inclusion of a C-point of C, also written p. Let F

and β be as defined. We have the pullback diagram

C × SpecC C

SpecC Ci

Id

Then i∗F is a T -torsor on SpecC ×C, i∗(Id) is the section i : SpecC→ C and i∗β is a trivialization of F

on C \ p such that

9



i∗βµ : i∗F ×T Cµ ' OC×SpecC(〈λ, µ〉p). (2.10)

A similar construction is used for the Beilinson-Drinfeld Grassmannian; here we define sections sλ1,λ2(C2).

Definition 2.3.6. We define sections of GrT,C2 as sλ1,λ2(C2) := ((pr1, pr2) ∈ Hom(C2,C), F, β) where for any

weight µ, β provides pole conditions along the associated divisors:

βµ : F ×T Cµ ' OC2×C(〈λ1, µ〉Γpr1 + 〈λ2, µ〉Γpr2)).

Exactly as before we transform this into a G-torsor using the inclusion T → G and we may recover a

more recognizable description of this section over a point p by pulling back along the inclusion i : pt → C.

We can then define global affine Schubert varieties as flat closures of L+GC or L+GC2 orbits on these

sections.

Definition 2.3.7. The global affine Schubert variety Gr
λ
G,C is the flat closure of the L+GC-orbit on sλ.

Analogously we make the definition

Definition 2.3.8. The Beilinson-Drinfeld affine Schubert variety Gr
λ,µ

G,C2 is the flat closure of the L+GC2-orbit

on sλ,µ. The convolution affine Schubert variety Conv
λ,µ

G,C2 is the flat closure of the L+GC2-orbit on sλ,µ.

Since we are taking the flat closure of orbits, these varieties are all flat over C or C2 by definition. The

more challenging task then becomes the description of the special fiber (and showing that the special fiber is

reduced).

2.4 Summary of some work of Zhu

We summarize some of the contents of [Zh1] in the untwisted case, which this work generalizes to the

twisted case. In the following, G will be a semisimple algebraic group of simply-laced type.

Theorem 2.4.1. Pic(Gr0
G) = Z. We denote the ample generator by L.

Recall that Kac-Moody groups are constructed as central extensions of loop groups. There is a homo-

morphism Pic(GrG) → Z called the central charge; when L ∈ Pic(GrG) is identified with a weight of the

associated Kac-Moody algebra, the central charge is the restriction of the weight to the central Gm.

Remark 2.4.2. We will be interested in line bundles of central charge 1, and we call them line bundles of

level 1. In the untwisted case, the ample generator L of Pic(GrG) is of level 1.
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Due to work of Beilinson and Drinfeld there exists a ("factorization") global line bundle LC2 on GrG,C2

with restrictions L |GrG,p1 ,p2
' L � L on GrG,p1,p2 ' GrG × GrG for p1 , p2 and L |G,p1,p1 ' L on GrG,p1,p1 '

GrG when p1 = p2. We write L for L and abuse notation by also writing L for the restriction L|
Gr

λ
G

.

Using the flatness of Conv
λ1,λ2
G,C2 over C2 and the descriptions of the fibers, Zhu proves a geometric form of

fusion:

Theorem 2.4.3. (Zhu) As g-modules,

H0(Gr
λ
G, L

k) ⊗ H0(Gr
µ
G, L

k) ' H0(Gr
λ+µ
G , Lk). (2.11)

Fixing a point o ∈ C, the fusion theorem is used to prove the existence of a family Gr
λ,µ
G,C which is flat over

C and whose fibers are Gr
λ,µ
G,p = Gr

λ
G × Gr

µ
G when p , 0 and Gr

λ,µ
G,o = Gr

λ+µ
G when p = o. The nontrivial part

of this proof is to demonstrate that the scheme structure on the special fiber is the reduced scheme structure

of the affine Schubert variety.

Next, Zhu examines the T -fixed subscheme of Gr
λ
G. Denote by Iλ the ideal sheaf of the T -fixed subscheme

of Gr
λ
G; in general (Gr

λ
G)T is a non-reduced scheme supported at a finite number of points (namely [twµ] for

w ∈ W and µ ≤ λ). Write Iλ(1) for Iλ ⊗ L on Gr
λ
G. We then have a short exact sequence of sheaves

0→ Iλ(1)→ L→ L ⊗ O
(Gr

λ
G)T → 0 (2.12)

inducing a long exact sequence in cohomology:

0→ H0(Gr
λ
G, I

λ(1))→ H0(Gr
λ
G, L)→ H0(Gr

λ
G,O(Gr

λ
G)T ⊗ L)

→ H1(Gr
λ
G, I

λ(1))→ . . .

(2.13)

The main theorem of [Zh1] is that in many cases, the map

H0(Gr
λ
G, L)→ H0(Gr

λ
G,O(Gr

λ
G)T ⊗ L) (2.14)

is an isomorphism. There are several steps to this proof.
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2.4.1 Step 1:

The map H0(Gr
λ
G, L) → H0(Gr

λ
G,O(Gr

λ
G)T ⊗ L) is shown to be surjective. It is sufficient to prove that

H0(GrG, L) → H0(GrG,OGrT ⊗ L) is surjective, and this is done by showing that both of these modules

(actually their duals) are modules over the homogeneous Heisenberg algebra t̂.

2.4.2 Step 2:

Next Zhu shows that if we have the isomorphism

H0(Gr
λ
G, L)

∼
−→ H0(Gr

λ
G,O(Gr

λ
G)T ⊗ L)

as well as

H0(Gr
µ
G, L)

∼
−→ H0(Gr

µ
G,O(Gr

µ
G)T ⊗ L)

for two different dominant coweights, then

H0(Gr
λ+µ
G , L)

∼
−→ H0(Gr

λ+µ
G ,O

(Gr
λ+µ
G )T ⊗ L).

2.4.3 Step 3:

Step 2 reduces the problem to showing that

H0(Gr
ω̌i
G , L)→ H0(Gr

ω̌i
G ,O(Gr

ω̌i
G )T ⊗ L)

for all fundamental coweights ω̌i ∈ X∗(T ) in the types A,D and E.

In type A this demonstration is easy since all fundamental coweights are minuscule coweights, which

provides Gr
ω̌i
An

with very strong geometric properties.

Type D is already much more complicated, requiring inductions and delicate information on the affine

Demazure module H0(Gr
ω̌i
Dn

) when ω̌i is not a miniscule coweight. However in [Zh1], Zhu succeeds in

proving the restriction isomorphism for all fundamental coweights in type D.

However (here using the Bourbaki notation), Zhu is unable to prove the isomorphism for Gr
ω̌4
E6

, though he

proves it for all other fundamental coweights for E6. More fundamental coweights are missing for E7 and E8

as well. These are challenging problems in classical representation theory; see Chapter 7 for partial results to

establishing the isomorphism for Gr
ω̌4
E6

.
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CHAPTER 3

Absolutely Special Automorphisms

We wish to extend the results of Zhu in the untwisted case to analogous results in the twisted case. There

is already a well-developed theory of general Kac-Moody algebras, their associated groups, and flag varieties,

see [Ka], [Ku]. Moreover, the construction of the "twisted" affine algebras, groups and flag varieties bears a

very close relationship with "untwisted" affine algebras, groups and flag varieties. This relationship arises due

to the fact that the twisted algebras can be constructed by taking fixed points under certain automorphisms.

This construction is closely connected with forms of algebras and groups over a ramified field extension. In

this section we describe the automorphisms of relevance to us. The main references for this chapter are [Ka]

and [HR2].

3.1 Twisted Affine Algebras

Recall the following construction in (Kac, 8.2). Let g be a semisimple Lie algebra and let σ be an

automorphism of g satisfying σm = 1. Kac then constructs Lie algebras L(g, σ,m) given by the fixed points

of the action of σ̃ where

σ̃(t j ⊗ x) = ξ− jt j ⊗ σ(x) (3.1)

for x ∈ g and ξ = exp(2πi/m).

Then, in the standard fashion, we can extend this Lie algebra:

Definition 3.1.1. L̂(g, σ,m) := L(g, σ,m) ⊕ CK′ ⊕ Cd′.

Kac then shows that for the pairs where σ an automorphism and g is a simple Lie algebra of type A,D, E,

we can construct twisted loop algebras; the twisted affine Lie algebras arise precisely from this construction..

This construction may be repeated on the group level, using central extensions, thus producing twisted

affine Kac-Moody groups. We do not really use this full construction since the affine Grassmannians one

constructs for loop groups are isomorphic to the affine Grassmanians one constructs as quotients of affine

Kac-Moody groups.
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3.2 Absolutely Special Automorphisms

We now produce a new set of automorphisms σ of simple g of type ADE which we call absolutely special.

This collection of automorphisms of g coincides almost exactly with those used in the construction of the

twisted affine Kac-Moody algebras except in the case A2n when our automorphism σ is distinct.

Let σ be an automorphism of order m on G preserving B and T . Let τ be a diagram automorphism

preserving B,T and a pinning {xαi , yαi | i ∈ I}. Let r be the order of τ.

When g is not A2`, we take σ to be τ. When g is A2`, by [Ka, Theorem 8.6] there exists a unique

automorphism σ of order m = 4 such that



σ(ei) = eτ(i), if i , `, ` + 1;

σ(ei) = ieτ(i), if i ∈ {`, ` + 1};

σ( fθ) = fθ,

(3.2)

where i is a square root of −1. One can check that



σ( fi) = fτ(i), if i , `, ` + 1;

σ( fi) = −i fτ(i), if i ∈ {`, ` + 1};

σ(eθ) = eθ

. (3.3)

In fact, σ = τ ◦ ih, where h ∈ t such that

αi(h) =


0, if i , `, ` + 1

1, if i = `, ` + 1
.

This automorphism induces a unique automorphism on G. We still call it σ.

We call these automorphisms on G or g absolutely special. Throughout this paper, we will only consider

absolutely special automorphisms.

The following table describes the fixed point Lie algebras for all absolutely special automorphisms:

where by convention C1 is A1 and ` ≥ 3 for D`+1. When (g,m) , (A2`, 4), the fixed point Lie algebra

gσ is well-known as listed in the above table. When (g,m) = (A2`, 4), the fixed Lie algebra gσ is of type C`,

which can follow from the twisted Kac-Moody theory, cf. [Ka, §8].
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(g,m) (A2`−1, 2) (A2`, 4) (D`+1, 2) (D4, 3) (E6, 2)

gσ C` C` B` G2 F4

Table 3.1: The semisimple types, the orders of their absolutely special automorphisms, and the fixed
subalgebra.

Remark 3.2.1. Note that our "absolutely special" automorphisms coincide with diagram automorphisms in

all cases except A2n. This discrepancy will be discussed in the context of twisted affine Grassmannians in

Chapter 4.

3.2.1 Root Systems

We develop some notation which yields compatible descriptions of the twisted and untwisted root systems

which are related to each other.

Recall that we follow the labelling of the vertices of the Dynkin diagram of g in [Ka, Table Fin, p.53]. Set



βi = αi|tσ , for i = 1, 2, · · · , `, when (g,m) = (A2`−1, 2), or (D`+1, 2)

β1 = α2|tσ , β2 = α1|tσ , when (g,m) = (D4, 3)

β1 = α6|tσ , β2 = α3|tσ , β3 = α2|tσ , β4 = α1|tσ , when (g,m) = (E6, 2)

βi = αi|tσ , for i = 1, 2, · · · , ` − 1; β` = (α` + α`+1)|tσ = 2α`|tσ , when (g,m) = (A2`, 4).

(3.4)

Let Iσ be the set of all subscript indices of βi. Then for each case, the set { β j | j ∈ Iσ } gives rise to

the set of simple roots of gσ. One can see easily that this labelling will coincide with the labelling of non

simply-laced Dynkin diagrams in [Ka, Table Fin, p.53].

We now define a map η : I → Iσ. When (g,m) , (A2`, 4), η is defined such that βη(i) = αi|tσ for any i ∈ I.

When (g,m) = (A2`, 4), set

η(i) = η(2` + 1 − i) = i, for any 1 ≤ i ≤ `.

Thus η : I → Iσ describes precisely how roots αi correspond to roots βi of gσ.

Let { β̌ j | j ∈ Iσ} be the set of simple coroots of gσ. We can describe β̌ j as follows:

β̌ j =
∑

i∈η−1( j)

α̌i. (3.5)

Let { λ j | j ∈ Iσ } be the set of fundamental weights of gσ, and let { λ̌ j | j ∈ Iσ } be the set of fundamental
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coweights of gσ. The fundamental weights can be described as follows:

λ j = ωi|tσ , for some i with η(i) = j. (3.6)

In the case of fundamental coweights, we need to describe them separately. When (g,m) , (A2`, 4),

λ̌ j =
∑

i∈η−1( j)

ω̌i. (3.7)

When (g,m) = (A2`, 4), we have

λ̌ j =


ω̌ j + ω̌2`+1− j, j = 1, 2, · · · , ` − 1

1
2 (ω̌` + ω̌`+1), j = `

. (3.8)

One checks that these definitions are the correct ones: if we are not in type A2l then it is clear that

〈λ̌ j, βi〉 = 〈
∑

k∈η−1( j) ω̌k, αi〉 = δi, j for i, j ∈ Iσ.

The verification in type A2l is similarly routine.

In conclusion, given simple roots αi, simple coroots α̌i, fundamental weights ωi and fundamental

coweights ω̌i for a root datum of type ADE, we associate simple roots βi, fundamental coroots β̌i, fundamental

weights λi and fundamental coweights λ̌i to the associated to the root system of gσ. Moreover we have a map

η which acts on the indices in the expected way.
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CHAPTER 4

Basics of Twisted Affine Grassmannians

This chapter focuses on the construction of the twisted affine Grassmannians which are the focus of this

work. Most of the constructions are analogous to those in Chapter 2, with the caveat that instead of taking a

constant group scheme G (over D or C, for instance), we first construct a non-constant group scheme. Many

of the results are very similar in form, and the structure of the chapter is similar. The main references for this

chapter are [PR], [Zh2], and [Ri1].

4.1 Group Schemes and first construction

We provide two descriptions of twisted affine Grassmannians, and describe some of their basic properties.

Given an automorphism σ which arises from a diagram automorphism τ (here we include all absolutely

special automorphisms and more, including τ for A2l), we can construct a twisted affine Grassmannian in

several ways.

We first construct some non-constant group schemes over the formal disc D = SpecO.

Let πn : D → D be the ramified cover of order n = |σ|, given by t 7→ tn. Given G a simple reductive

group, we form the constant group scheme G × D. We let σ act on O by acting trivially on C and sending

t 7→ ξ−1t where ξ is a primitive nth root of unity and t is a chosen uniformizer. Thus σ may be interpreted

as the generator of the Galois group Gal(D̃/D), where we denote the first copy of D by D̃. We make the

following definition:

Definition 4.1.1. G = ResD̃/D(G × D̃)σ.

Thus G represents the functor

R 7→ G(Õ ⊗O R)σ.

Moreover when G is simply conneced and semisimple, when we take the automorphisms σ or even τ in

the case of A2l, the group schemes G are parahoric group schemes.

We also define the twisted torus group scheme:
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Definition 4.1.2. T = (ResD̃/D(T × D̃)σ)◦.

Note that ResD̃/D(T × D̃)σ could be a disconnected scheme, and we take the neutral component.

Thus G (and T ) are non-constant group schemes over D; the fiber over the generic point is isomorphic

to G ⊗ K (respectively T ⊗ K), and the fiber over the closed point is a non-reductive group G(C[t]/tn)

(respectively T (C[t]/tn))◦).

4.2 Twisted Affine Grassmannians

We can now construct the twisted affine Grassmannian as an fpqc quotient.

Definition 4.2.1. We define the twisted affine Grassmannian as the fpqc quotient

GrG = LG /L+G .

Remark 4.2.2. From this description we can see that the C-points are GrG (C) = G(K)σ/G(O)σ.

We can also mimic the Beauville-Laszlo construction for twisted affine Grassmannians.

Theorem 4.2.3. Let F be a G -torsor over D, and denote by F̊ the trivial G -torsor. We then have

GrG (R) =

{
(F , β)

∣∣∣∣∣ β : F |D∗R
∼
−→ F̊ |D∗R

}
. (4.1)

Proof. See [Zh2]. �

4.2.1 Stratification

Recall that in the untwisted case, we have the Bruhat decomposition

G(K) = tλ∈X∗(T )+G(O)tλG(O)

which induces a stratification of GrG by left G(O)-orbits. Moreover, each orbit has finitely many TC-fixed

points twλ for w ∈ W, λ ∈ X∗(T ).

We have a similar structure on GrG which we explain as follows. First, we have the norm map

T (K)→ T (K)σ

tλ 7→ nλ =

n−1∏
i=0

σi(tλ).
(4.2)
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On the other hand, we have an identification

T (K)σ/T (O)σ = X∗(T )σ (4.3)

where X∗(T )σ is the lattice of coinvariants for the σ action on X∗(T ). Thus to λ ∈ X∗(T ), we assign two

elements: nλ ∈ T (K)σ and λ ∈ X∗(T )σ. This produces a bijection between these two sets, where the bijection

sends λ 7→ nλ.

After the inclusion T (K)σ → G(K)σ, we can view the nλ as points in G(K)σ, defining cosets [nλ] in

GrG . We define the affine Schubert varieties to be the reduced closures of the left G(O)σ-orbits on [nλ]; so

Definition 4.2.4. GrλG = G(O)σ.[nλ].

Thus we have the following stratification of the twisted affine Grassmannian.

Theorem 4.2.5. We have a stratification of the twisted affine Grassmannian in terms of G(O)σ-orbits:

GrG (C) =
⊔
λ∈X∗(T )+

σ
Grλ

G
.

Proof. See [Ri1]. �

For any λ̄, µ̄ ∈ X∗(T )+
σ, we write µ̄ � λ̄ if Grµ̄

G
⊆ Gr

λ̄
G . For any i ∈ I, let α̌i denote the image of α̌i in

X∗(T )σ. For any j ∈ Iσ, set

γ j = α̌i, if j = η(i). (4.4)

It is clear that γ j is well-defined.

The following lemma follows from [Ri1, Corollary 2.10].

Lemma 4.2.6. µ̄ � λ̄ if and only if λ̄ − µ̄ is a non-negative integral linear combination of { γ j | j ∈ Iσ }.

4.2.2 Components

As previously noted, there exists a natural bijection

T (K)σ/T (O)σ ' X∗(T )σ, (4.5)

where X∗(T )σ denotes the set of σ-coinvariants in X∗(T ). Any λ̄ ∈ X∗(T )σ corresponds to the coset nλT (O)σ,

where λ is a representative of λ̄. By Theorem [PR, Theorem 0.1], the components of GrG can be parametrized
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by elements in π1(G)σ, where π1(G) ' X∗(T )/Q̌, and (X∗(T )/Q̌)σ is the the set of coinvariants of σ in

X∗(T )/Q̌.

When G is of adjoint type, we describe (X∗(T )/Q̌)σ in the following table.

(G,m) (A2`−1, 2) (A2`, 4) (D2`+1, 2) (D2`, 2) (D4, 3) (E6, 2)

X∗(T )/Q̌ Z2` Z2`+1 Z4 Z2 × Z2 Z2 × Z2 Z3

(X∗(T )/Q̌)σ Z2 0 Z2 Z2 0 0

Table 4.1: Coinvariants of fundamental groups. This also provides the number of components of GrG for G
adjoint.

We now assume G is of adjoint type. From the perspective of the geometric Satake, we can determine the

minimal elements in X∗(T )+
σ, in other words the minimal Schubert variety in each connected component of

GrG . From the table (4.2.2), we see that when (G,m) = (A2`−1, 2), GrG has two components, where Grω̌1
G

is

the minimal Schubert variety in the non-neutral component, since ω̌1 gives the miniscule dominant weight

of H ' Sp2`. When (G,m) = (D`+1, 2), GrG also has two components and Grω̌`
G

is the minimal Schubert

variety in the non-neutral component, since ω̌` is the miniscule dominant weight of H ' Spin2`+1. Otherwise,

GrG has only one component. In fact, when (G,m) = (A2`, 4), H ' SO2`+1, in which case the weight lattice

X∗(T )σ coincides with the root lattice of H.

Let S denote the following set

S =



{0} if (G, r) , (A2`−1, 2), (D`+1, 2)

{0, ω̌1} if (G, r) = (A2`−1, 2)

{0, ω̌`} if (G, r) = (D`+1, 2)

. (4.6)

For any κ ∈ S , let GrG ,κ be the component of GrG containing the Schubert variety Grκ̄
G

, or equivalently

containing the point eκ̄. Then,

GrG = tκ∈S GrG ,κ .

We can now describe our choice of automorphism in the A2n case in a satisfactory way, using a little

Bruhat-Tits theory.

According to the table above, the twisted affine Grassmannian in types A and D are disjoint unions of

homogeneous spaces for the G(K)τ action. These homogeneous spaces have descriptions coming from
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Bruhat-Tits theory and local Dynkin diagrams.

The twisted affine Dynkin diagrams are found in Kac [Ka]. They are as follows:

g Dynkin Diagram

A(2)
2

2

α0

1

α1

A(2)
2l (l ≥ 2)

2

α0

2

α1

. . .
2

αl−1

1

αl
⇐ ⇐

A(2)
2l−1(l ≥ 3)

1

α1 α2

2 2

α3

. . .
2

αl−1

1

αl
⇐

α0

1

D(2)
l+1(l ≥ 2)

1

α0

1

α1

. . .
1

αl−1

1

αl
⇐ ⇒

E(2)
6

1

α0

2

α1

3

α2

2

α3

1

α4
⇐

D(3)
4

1

α0

2

α1

1

α2
W

Table 4.2: Twisted affine algebras and their Dynkin diagrams.

According to Bruhat-Tits theory, associated to each node of the twisted affine Dynkin diagram is a

maximal parahoric subgroup, which we denote Pi for the index i. Moreover, certain indices are special, and

give rise to "special" maximal parahorics. We list them as follows (also see [Tits]):

For A(2)
2 , P0 and P1 correspond to special parahorics. For A(2)

2l , P0 and Pl correspond to special parahorics.

For A(2)
2l−1, P0 and P1 correspond to special parahorics. For D(2)

l+1, P0 and Pl are special parahorics. For E(2)
6 ,

P0 is a special parahoric. Lastly, for D(3)
4 , P0 is a special parahoric.

Let G be adjoint and let G̃ be the simply connected cover. For types A(2)
2n−1, D(3)

4 , D(2)
n (n ≥ 5) and E(2)

6

and when G is adjoint, we can describe the components in two ways: for γi ∈ (X∗(T )/Q∨)σ we have

GrG =
⊔
γi

G̃(K)σ/Adtγi G̃(O)σ

but also as

GrG =
⊔

G̃(K)σ/Pi
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with the Pi ranging over the special parahorics.

Thus to understand twisted affine Schubert varieties, we would have to distinguish at every moment

which component we were examining.

However, note that in the cases of A(2)
2l−1 and D(2)

2l , while there are two different special parahorics, they are

related by a diagram automorphism and are thus isomorphic. This implies that the two components LG /P0

and LG /Pl are also related by a diagram automorphism, so essentially we need only consider the geometry

of the neutral component.

This description fails for A(2)
2n ; there are two special parahorics but only one component of the twisted affine

Grassmannian. In fact in this case, G̃(K)σ/P0 and G̃(K)σ/Pl are two distinct, non-isomorphic homogeneous

spaces, only one of which has a line bundle of central charge 1.

Thus we cannot extend our results to the homogeneous space LG /Pl, but we can extend our results to

LG /P0. This latter homogeneous space is isomorphic (at the level of C-points) to G(K)σ/G(O)σ, where

now σ is the absolutely special automorphism of order 4. This topic is treated in Haines-Richarz [HR]. This

explains our notation of "absolutely special" automorphisms and explains why we are not simply using the

diagram automorphism τ in the A(2)
2l case.

4.3 Global Twisted Affine Grassmannians

As in the untwisted case, we may globalize the twisted affine Grassmannian using torsors of non-trivial

group schemes over curves. We first construct the global versions of our non-constant group schemes. Let

C̃ → C be a surjective morphism of complete smooth algebraic curves over C of degree n, with ramification

points pi ∈ C.

We produce non-constant group schemes over C by using Weil restriction again.

Definition 4.3.1. We define GC := ResC̃/C(G × C̃)σ. When the curve C is understood from context we will

write merely G.

In an identical fashion to what was done above, if T is a chosen maximal torus in G, we wish to form the

global twisted torus T .

Definition 4.3.2. We define TC := (ResC̃/C(T × C̃)σ)◦. When the curve C is understood from context we will

write merely T .

The group scheme G has the following properties:
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1. For any y ∈ C, when y is unramified in C, the fiber G|y over y is isomorphic to G; the restriction Gy to

the formal disc Dy around y is isomorphic to the constant group scheme GDy over Dy.

2. When y is ramified, G|y is isomorphic to G(C[t]/tr)σ, which is not reductive; the restriction Gy to Dy is

isomorphic to G .

We can make a global version of the affine Grassmannian using the non-constant group scheme G. As

before, let GC be the group scheme associated to the ramified covering C̃ → C. Let p ∈ C(R), and denote by

F a G-torsor over C. We denote by F̊ the trivial G-torsor over C. We then make the global twisted affine

Grassmannian according to the same recipe as we defined the global affine Grassmannian.

Definition 4.3.3. We define

GrG,C(R) :=

 (p,F , β)

∣∣∣∣∣∣∣∣∣∣
p ∈ C(R)

β : F |CR\Γp ' F̊ |CR\Γp

 . (4.7)

When we wish to fix a point p ∈ C(R), we write GrG,p(R).

For closed points p ∈ C, when p is unramified in π : C̃ → C, we have an isomorphism

GrG,p ' GrG, (4.8)

and when p ∈ C is ramified in π : C̃ → C, we have

GrG,p ' GrG . (4.9)

Thus the global twisted affine Grassmannian allows us to compare twisted and untwisted affine Grass-

mannians.

We produce two more generalizations of the global twisted affine Grassmannian, in perfect analogy with

Chapter 2.

Definition 4.3.4. We define the Beilinson-Drinfeld Grassmannian:

GrG,C2(R) :=

 (p1, p2,F , β)

∣∣∣∣∣∣∣∣∣∣
pi ∈ C(R)

β : F |CR\Γp1∪Γp2
' F̊ |CR\Γp1∪Γp2

 . (4.10)
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and the convolution Grassmannian

Definition 4.3.5.

ConvG,C(R) :=


(p1, p2,F1,F2, β1, β2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
pi ∈ C(R)

β2 : F2|CR\Γp2
' F1|CR\Γp2

β1 : F1|CR\Γp1
' F̊ |CR\Γp1


. (4.11)

Notice that we have a natural map

ConvG,C2(R)→ GrG,C2(R)

(p1, p2,F1,F2, β1, β2) 7→ (p1, p2,F2, β1 ◦ β2).
(4.12)

We must also construct appropriate global analogues of G(O), which will enable us to define affine

Schubert varieties in a later section.

Definition 4.3.6. We define

L+GC(R) :=

 (p, β)

∣∣∣∣∣∣∣∣∣∣
p ∈ C(R)

β : F̊ |Γ̂p
' F̊ |Γ̂p

 . (4.13)

where Γ̂p is the formal completion of the subscheme p→ C. Any G-torsor restricted to a formal disc is

trivializable (perhaps after base change), and β is a trivialization of the trivial torsor. Note that if we fix p ∈ C

as an unramified closed point, L+Gp(C) = G(O) and if p is a ramification point, L+Gp(C) = G(O)σ. In the

case of the Beilinson-Drinfeld Grassmannian, we simply add a point:

Definition 4.3.7. We define

L+GC2(R) :=

 (p1, p2, β)

∣∣∣∣∣∣∣∣∣∣
pi ∈ C(R)

β : F̊ |p̂1∪p̂2 ' F̊ |p̂1∪p̂2

 . (4.14)

We have a left action of L+GC2 on GrG,C2 defined as follows:

(p1, p2, β) × (p3, p4,F , β2) 7→ (p3, p4,F
′, β2) (4.15)

where F ′ is the modification of F at the two points p1, p2 formed by pulling back F to the cover
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CR \ Γ̂p1 ∪ Γ̂p2 , twisting F |Γ̂pi
by β, and then forming F ′ by descent.

4.3.1 Global Twisted Schubert Varieties

The following constructions are analogous to those in Chapter 2, where these objects were constructed

for the constant group scheme G ×C.

Let σ be an absolutely special automorphism of G, and let π : C̃ → C be a ramified morphism of degree

|σ|.

We define a section sλ : C̃ → GrT ,C as follows. We have

Definition 4.3.8. sλ(C̃) := (Id ∈ Hom(C̃, C̃),F , β) such that for all weights µ, we have the induced homo-

morphism

βµ : F ×T Cµ ' OC̃×C̃(
∑

i

〈σiλ, µ〉Γσi)

for F a (Γ,T )-torsor on C̃.

Note that this is in fact a section over C̃, and not over C. It descends to a section over C when

〈λ, µ〉 = 〈σiλ, µ〉 for all µ (so that λ is defined "over the base field").

For points p ∈ C̃, we can understand the section as follows: sλ(p) = tλ which corresponds to λ ∈ X∗(T ) if

p is not fixed by σ and sλ = tλ which corresponds to λ ∈ X∗(T )σ if p is fixed by σ.

Technically sλ is a section of GrT ,C but we can include it into GrG,C; by abuse of notation we will denote

this section by sλ as well. We can then define Gr
λ
G,C as the minimal closure of the L+GC̃-orbit on sλ.

We have the following facts about Gr
λ
G,C .

Theorem 4.3.9. ([Zh2]): Gr
λ
G,C is flat over C̃.

Proof. This is essentially by construction. �

Theorem 4.3.10. ([Zh2]): The fibers of Gr
λ
G,C̃ have the following description: if p ∈ C̃ is fixed by σ, then

Gr
λ
G,p ' Gr

λ
G. On the other hand, if p is not fixed by σ, then Gr

λ
G,p ' Gr

λ
G .

Proof. Even in the case where G is a constant group scheme, the proof of this fact is highly nontrivial. It is

easier to see that the reduced scheme structure on the special fiber is the desired one. More difficult to show

is that Gr
λ
G,p is a reduced scheme. This requires a proof using fusion, the convolution affine Grassmannian,

and an analysis of the partial Bott-Samelson which is the special fiber of the convolution Grassmannian. �
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This flat scheme will allow us to translate information from the generic fiber (an untwisted affine Schubert

variety) to the special fiber (a twisted affine Schubert variety).
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CHAPTER 5

Construction of Line Bundles of Level 1

In this chapter we deal with line bundles on twisted affine Grassmannians. This proceeds in several steps.

First, we define a line bundle L on GrG which is level one on each component of GrG ; this is completed in

Proposition 5.1.7. Our next objective is a "global" line bundle L on GrG,C which restricts to the "local" line

bundle of level one on each fiber. To construct this line bundle we first build a line bundle on BunG and pull it

back to GrG ,C; this is accomplished in Theorem 5.1.17. References for this Chapter are [Ka], [Ku] and [Fa]

for generalities, and most pertinently [HK].

5.1 Conformal Blocks, Line Bundles

We must first collect some facts about line bundles on the twisted affine Grassmannians GrG .

We define P(σ, c) to be the set of dominant weights of gσ of level c. This set parametrizes highest-weight

integrable representations of g̃σ, which we denote by Hc(λ).

Lemma 5.1.1. For an absolutely special automorphism σ, we have

P(σ, 1) =



{0} if (σ,m) , (A2`−1, 2), (D`+1, 2)

{0, λ1} if (σ,m) = (A2`−1, 2)

{0, λ`} if (σ,m) = (D`+1, 2)

.

Proof. We first consider the case when (g,m) , (A2`, 4). We can read from [HK, Lemma 2.1], for any

λ ∈ (tσ)∗, λ ∈ P(σ, 1) if and only if

〈λ, β̌i〉 ∈ Z≥0 for any i ∈ Iσ,

and 〈λ, θ̌0〉 ≤ 1, where θ0 is the highest short root of gσ and θ̌0 is the coroot of θ0, and hence θ̌0 is the

highest coroot of gσ. In this case, λ ∈ P(σ, 1) if and only if λ = 0 or a miniscule dominant weight of gσ

(cf. [BH, Lemma 2.13]). Following the labellings in [Ka, Table Fin,p53], when gσ is of type C`, λ1 is the
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only miniscule weight; when gσ is of type B`, λ` is the only miniscule weight. Any other non simply-laced

Lie algebra has no miniscule weight. This finishes the argument of the lemma when (g,m) , (A2`, 4).

Now, we assume that (g,m) = (A2`, 4). In this case, it is more convenient to choose a different set of

simple roots for gσ, rather than the one described in (3.4). Namely, we can also choose

{αi|tσ | i = 1, 2, · · · , ` − 1} ∪ {−θ|tσ}

as the set of simple roots of gσ. With this set of simple root, we can also read from [HK, Lemma 2.1], for any

λ ∈ (tσ)∗, λ ∈ P(σ, 1) if and only if λ = 0.

�

Remark 5.1.2. It is not true that 0 ∈ P(σ, 1) for any automorphism σ. For example, 0 < P(τ, 1), when

g = A2` and τ is a diagram automorphism; instead 0 ∈ P(τ, 2).

We define the following map

ι : X∗(T )→ (tσ)∗, (5.1)

such that for any λ ∈ X∗(T ), ι(λ)(h) = (λ, h), where we regard λ as an element in t and (, ) is the normalized

Killing form on t. It is clear that ι(0) = 0. This map naturally descends to a map X∗(T )σ → (tσ)∗. By abuse

of notation, we still call it ι.

Recall some terminology introduced in Section 3.2. Iσ is the set parametrizing simple roots of gσ, and we

also defined a map η : I → Iσ. The set {λ̌ j | j ∈ Iσ} is the set of fundamental coweights of gσ, and {λ j | j ∈ Iσ}

is the set of fundamental weights of gσ. We also recall that α̌i is a simple coroot of g for each i ∈ I, and γ j is

the image of α̌i in X∗(T )σ. The following lemma already appears in [Ha, Lemma 3.2] in a slightly different

setting.

Lemma 5.1.3. For any j ∈ Iσ, we have

ι(γ j) =


β j, if (g,m) , (A2`, 4), or , (g,m) = (A2`, 4) and j , `

1
2β`, if (g,m) = (A2`, 4) and j = `

.
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Proof. By the definition of ι, for any γ j = α̌i with j = η(i), and k ∈ Iσ we have the following equalities:

〈λ̌k, γ j〉 = 〈λ̌k, ι(α̌i)〉 = (λ̌k, α̌i) = 〈λ̌k, αi〉.

Then, this lemma follows from the description of fundamental coweights of gσ in (3.7) and (3.8). �

Recall the set S defined in (4.6).

Lemma 5.1.4. For any i ∈ I, we have ι(ω̌i) = λη(i). As a consequence, ι maps X∗(T )+
σ bijectively into the set

of dominant weights of gσ. Furthermore, ι maps S bijectively into P(σ, 1).

Proof. For any i ∈ I and j ∈ Iσ, we have

〈ι(ω̌i), β̌ j〉 = (ω̌i, β̌ j) = (ω̌i,
∑

a∈η−1(i)

α̌a) = δη(i), j.

Hence, ι(ω̌i) = λη(i).

In view of Lemma 5.1.1, ι maps S bijectively into P(σ, 1). �

Remark 5.1.5. In view of Lemma 5.1.3 and Lemma 5.1.4, when (G,m) , (A2`, 4), the root systems of gσ

and H := (Ǧ)τ can be naturally identified, where H is discussed in Chapter 4. Namely, { ω̌i | i ∈ I} is a set

of fundmental weights of H corresponding to {λ j | j ∈ Iσ} of gσ, and the set of simple roots { γ j | j ∈ Iσ}

corresponds to { β j | j ∈ Iσ } of gσ.

For any g ∈ G(K)σ, we can define a Lie algebra automorphism

Âdg(x[ f ]) := Adg(x[ f ]) +
1
m

Rest=0(g−1dg, x[ f ])K, (5.2)

for any x[ f ] ∈ g(K)σ, where (, ) is the normalized Killing form on g. By Lemma 5.1.4, ι(κ) ∈ P(σ, 1) for any

κ ∈ S . Thus, cι(κ) ∈ P(σ, c) for any level c ≥ 1.

Set

Hc := ⊕κ∈S Hc(cι(κ)). (5.3)

Let g̃ := g ⊗ K ⊕ CK′ ⊕ Cd′ be the untwisted Kac-Moody algebra associated to g, where K′ is the canonical
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center and d′ is the scaling element. We may define an automorphism σ on g̃ as follows,

σ(x[ f (t)]) = σ(x)[ f (εt)], σ(K′) = K′, σ(d′) = d′,

for any x[ f ] ∈ g ⊗ K . Then the fixed point Lie algebra g̃σ is exactly the twisted Kac-Moody alegbra L̃(g, σ)

containing L̂(g, σ) as the derived algebra. Following from [Ka, Theorem 8.7,§8], in this realization the

canonical center K in L̃(g, σ) is equal to mK′, and the scaling element d in g̃ is equal to d′ when g̃σ is not

A(2)
2` , and d = 2d′when g̃σ = A(2)

2` .

For any g ∈ G(K), one can define an automorphism Âdg on g̃ as in [Ku, Section 13.2.3]. From the

formula loc.cit, it is clear that if g ∈ G(K)σ, then Âdg commutes with σ. In particular, it follows that Âdg

restricts to an automorphism on L̃(g, σ). One may observe easily that, restricting further to L̂(g, σ), this is

exactly the automorphism defined in (5.2).

By demanding that d · vκ = 0 for each κ ∈ S , the action L̂(g, σ) on H extends uniquely to an action of

L̃(g, σ).

Lemma 5.1.6. For any g ∈ G(K)σ, there exists an intertwining operator ρg : Hc 'Hc such that

ρg(x[ f ] · v) = Âdg(x[ f ]) · ρg(v), (5.4)

for any x[ f ] ∈ g(K)σ and v ∈Hc. In particular, for any κ ∈ S ,

Âdn−κ(Hc(0)) = Hc(cι(κ)), and Âdn−κ(Hc(cι(κ))) = Hc(0). (5.5)

Proof. Let G′ be the simply-connected cover of G, and let p : G′(K)σ → G(K)σ be the induced map. Then,

G(K)σ = tκ∈S n−κG′(K)σ, (5.6)

where G′(K)σ = p(G′(K)σ). By twisted analogue of Faltings Lemma (cf. [HK, Proposition 10.2]), for any

element g ∈ G′(K)σ, there exists an operator ρg which maps Hc(cι(κ)) to Hc(cι(κ)) with the desired property

(5.4), for any κ ∈ S . By decomposition (5.6), it suffices to show that, for nonzero κ, n−κ satisfies property

(5.5).

Assume κ , 0 in S . From the table (4.2.2), the group (X∗(T )/Q̌)σ is at most of order 2. Therefore,

30



n−2κ ∈ G′(K)σ. For each Hc(cι(κ)), we denote the action by πc,κ : L̂(g, σ) → End(Hc(cι(κ))). Then the

property (5.4) for n−2κ, is equivalent to the existence of an isomorphism of representations,

ρn−2κ : (Hc(cι(κ)), πc,κ) ' (Hc(cι(κ)), πc,κ ◦ Âdn−2κ). (5.7)

Let vκ be the highest weight vector in Hc(cι(κ)). Then vκ is of tσ-weight cι(κ). We regard β̌i as elements in tσ.

By formula (5.2),

Âdn−κ(β̌i) = β̌i − (κ, β̌i)c = β̌i − 〈ι(κ), β̌i〉c.

Hence, vκ is of tσ-weight 0 and a highest weight vector in the representation

(Hc(cι(κ)), πc,κ ◦ Âdn−κ).

By Schur lemma, there exists an intertwining operator ρ0κ,

ρ0κ : (Hc(0), πc,0) ' (Hc(cι(κ)), πc,κ ◦ Âdn−κ). (5.8)

We also can regard ρ0κ as the following intertwining operator

ρ0κ : (Hc(0), πc,0 ◦ Âdn−κ) ' (Hc(cι(κ)), πc,κ ◦ Âdn−2κ) (5.9)

Combining isomorphisms (5.7),(5.9), we get

(Hc(cι(κ)), πc,κ)
ρn−2κ
−−−−→ (Hc(cι(κ)), πc,κ ◦ Âdn−2κ)

(ρ0κ)−1

−−−−−→ (Hc(0), πc,0 ◦ Âdn−κ).

We define ρn−κ to be the following operator

ρn−κ = (ρ0κ, (ρ0κ)−1 ◦ ρn−2κ) : Hc(0) ⊕Hc(cι(κ)) 'Hc(0) ⊕Hc(cι(κ)).

The map ρn−κ satisfies property (5.4). �

As discussed in Section the components of GrG are parametrized by elements in (X∗(T )/Q̌)σ. Moreover,

GrG = tκ∈S GrG ,κ, where S is defined in (4.6).
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Let G ′ be the parahoric group scheme ResÕ/O(G′
Õ

)σ, and let L+G ′ (resp. LG ′) denote the jet group

scheme (resp. loop group scheme) of G ′. The group LG acts on LG ′ by conjugation. Set

L+G ′κ := Adn−κ(L+G ′).

Then, L+G ′κ is a subgroup scheme of LG ′. We have

GrG ,κ ' LG ′/L+G ′. (5.10)

By the twisted analogue of Faltings lemma (cf. [HK, Proposition 10.2]), there exists a group homomor-

phism LG ′ → PGL(H1(0)). Consider the central extension

1→ Gm → GL(H1(0))→ PGL(H1(0))→ 1. (5.11)

The pull-back of (5.11) to LG ′ defines the following canonical central extension of LG ′:

1→ Gm → L̂G ′ → LG ′ → 1. (5.12)

It is known that ˆLG ′ is a Kac-Moody group of twisted type (up to a scaling multiplicative group) in the

sense of Kumar and Mathieu, see [PR]. Let ˆL+G ′κ denote the preimage of L+G ′κ in ˆLG ′ via the projection map

ˆLG ′ → LG ′. As the same proof as in [BH, Lemma 2.19], ˆL+G ′κ is a parabolic subgroup in ˆLG ′, moreover

GrG ,κ ' ˆLG ′/ ˆL+G ′κ , (5.13)

i.e. GrG ,κ is a partial flag variety of the Kac-Moody group ˆLG ′.

Proposition 5.1.7. There exists a line bundle L on GrG such that L is of level one on each component of

GrG .

Proof. We first consider the simply-connected cover G′ of G. By [HK, Theorem 10.7 (1)], there exists a

canonical splitting of L̂G ′ → LG ′ in the central extension (5.11) over L+G ′. We may define a line bundle L

on GrG ′ = L̂G ′/L̂+G ′ via the character L̂+G ′ := Gm × L+G ′ → Gm defined via the first projection. In fact,

as the argument in [LS, Lemma 4.1], this line bundle is the ample generator of Pic(GrG ′) of level 1. This
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finishes the proof of part (1).

We now consider the case when G is of adjoint type. Since the neutral component GrG ,◦ is isomorphic

to GrG ′ , we get the level one line bundle on GrG ,◦ induced from the one on GrG ′ . For any other component

GrG ,κ, by (5.13) we have an isomorphism GrG ,◦ ' GrG ,κ. Therefore, this gives rise to the level one line bundle

on GrG ,κ.

�

The line bundle L on GrG naturally has a ˆLG ′-equivariant structure, since L admits a unique ˆLG ′-

equivariant structure on each component of GrG as a partial flag variety of ˆLG ′. Now, by the standard

Borel-Weil-Bott theorem for Kac-Moody group (cf. [Ku]), we get the following theorem.

Theorem 5.1.8. As representations of L̂(g, σ), we have H0(GrG ,L c)∨ ' Hc, where L c is the c-power of

L .

Let v0 be the highest weight vector in H0. For any λ̄ ∈ X∗(T )σ, we define

vλ̄ := ρnλ(v0), (5.14)

where ρnλ in defined in Lemma 5.1.6. Then vλ̄ is independent of the choice of the representative λ in X∗(T )

and is well-defined up to a nonzero scalar.

Lemma 5.1.9. The tσ-weight of the vector vλ̄ is −cι(λ̄).

Proof. For any h ∈ tσ, by Lemma 5.1.6,

h · vλ̄ = h · ρnλ(v0) = ρnλ(Âdn−λ(h)v0).

By the formula (5.2), we have

Âdn−λ(h) = h − 〈λ, h〉K.

It follows that

h · vλ̄ = −〈λ, h〉cvλ̄ = −cι(λ)(h)vλ̄.

This concludes the proof of the lemma. �
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Definition 5.1.10. For any dominant λ̄ ∈ X∗(T )+
σ, we define the twisted affine Demazure module D(c, λ̄) as

the following g[t]σ-module,

D(c, λ̄) := U(g[t]σ)vλ̄.

In view of Lemma 5.1.9, D(c, λ̄) contains an irreducible representation V(−cι(λ)) of gσ of lowest weight

−cι(λ). The following theorem follows from [Ku, Theorem 8.2.2 (a)].

Theorem 5.1.11. As g[t]σ-modules, H0(Gr
λ̄
G ,L

c)∨ ' D(c, λ̄).

5.1.1 Construction of level one line bundles on BunG

Note 5.1.12. In this chapter and going forward, we are free to choose the curve C to be P1
C

. In this setting,

the ramified cover C̃ → C of degree 1,2 or 3 can be chosen to be ramified at two points called o and∞.

In this subsection, we consider the parahoric Bruhat-Tits group scheme G := ResC̃/C(G × C̃)Γ over C as

in the setting of Section 4.

Let BunG be the moduli stack of G-torsors on C. It is known that BunG is a smooth Artin stack (cf. [He]).

By [He, Theorem 3], the Picard group Pic(BunG) of BunG is isomorphic to Z, since the group X∗(G|y)

of characters for G|y is trivial for any y ∈ C. In this subsection, we will construct the ample generator

L ∈ Pic(BunG) when G is simply-connected, and we will construct a level one line bundle on every

component of GrG,C when G is of adjoint type.

By Lemma 5.1.1, we have 0 ∈ P(σ, 1) for any absolutely special automorphism σ. Recall that H1(0) is

the basic representation of level one associated to 0 ∈ P(σ, 1).

We now define the following space of twisted covacua of level one,

VC,σ(0) :=
H1(0)

g[t−1]σ ·H1(0)
, (5.15)

where g[t−1]σ is the Lie subalgebra of L̂(g, σ).

Lemma 5.1.13. The dimension of the vector space VC,σ(0) is 1.

Proof. Let v0 be the highest weight vector in H1(0). Then

H1(0) = U((t−1
g[t−1])σ) · v0 = U((t−1

g[t−1])σ)(t−1
g[t−1])σv0 ⊕ Cv0,

where U((t−1g[t−1])σ) denotes the universal enveloping algebra of (t−1g[t−1])σ. We can write g[t−1]σ =
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gσ ⊕ (t−1g[t−1])σ. Hence,

g[t−1]σ ·H1(0) = gσ · U((t−1
g[t−1])σ)(t−1

g[t−1])σv0 + U((t−1
g[t−1])σ)(t−1

g[t−1])σv0 (5.16)

= U((t−1
g[t−1])σ)(t−1

g[t−1])σv0, (5.17)

where the first equality holds since gσ · v0 = 0, and the second equality holds since gσ normalizes (t−1g[t−1])σ

under the Lie bracket. Therefore, dim VC,σ(0) = 1. �

Let G′ be the simply-connected cover of G. Recall the Heinloth uniformization theorem for G′ :=

ResC̃/C(G′ × C̃)Γover the affine line C\o (cf. [He]),

BunG′ ' G′[t−1]σ\ GrG ′ ,

where GrG ′ denotes the affine Grassmannian of G ′ := ResÕ/O(G′
Õ

)σ, and G′[t−1]σ\ GrG ′ denotes the fppf

quotient.

Theorem 5.1.14. The line bundle L descends to a line bundle L on BunG′ .

Proof. Let L be the level one line bundle on GrG ′ constructed from Proposition 5.1.7. To show that the

line bundle L can descend to BunG′ , as in the argument in [So], it suffices to show that there is a G′[t−1]σ-

linearization on L . This is equivalent to the splitting of the central extension (5.12) over G′[t−1]σ. We use

the same argument as in [So, Proposition 3.3], since the vector space VC,σ(0) is nonvanishing by Lemma

5.1.13, the central extension (5.12) splits over G′[t−1]σ. �

We consider the projection map pr : GrG′,C → BunG′ . By abuse of notation, we still denote by L the line

bundle on GrG′,C pulling-back from L on BunG′ .

Corollary 5.1.15. The restriction of the line bundleL to the fiber GrG′,p is the ample generator of Pic(GrG′,p),

for any p ∈ C.

Proof. It follows from Theorem 5.1.14 and [Zh2, Proposition 4.1]. �

The following theorem is interesting by itself, but will not be used in this paper.
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Theorem 5.1.16. There is a natural isomorphism

H0(BunG′ ,L) ' VC,σ(0)∨,

where VC,σ(0)∨ denotes the dual of VC,σ(0). In particular,

dim H0(BunG′ ,L) = 1.

Proof. The theorem follows from the same argument as in [HK, Theorem 12.1]. �

Now, we would like to construct the line bundle L of level one on GrG,C , where G = ResC̃/C(GC̃)σ with

G of adjoint type.

Theorem 5.1.17. There exists a line bundle L on GrG,C such that the restriction of L to the fiber GrG,p is the

level one line bundle on GrG,p, for any p ∈ C.

Proof. Let X be a component of GrG,C . Fix any point x ∈ X, x ∈ GrG,p for a unique p ∈ C̃. If p = o, then

X contains at least one component of GrG . If p , o,∞, then x is a point in an affine Schubert variety Gr
λ
G,p

for some λ ∈ X∗(T )+. By Theorem 4.3.10, Gr
λ
G,p admits a flat degeneration to Gr

λ̄
G . If p = ∞, x is a point

in a twisted affine Schubert variety Gr
λ̄
G,∞. Similarly, there is a flat family connecting Gr

λ̄
G,∞ and Gr

λ̄
G . This

concludes that X must contain at least one component of GrG . In other words, GrG has as many or more

components than GrG,C .

Recall that the components of GrG are parametrized by (X∗(T )/Q̌)σ. On the other hand, by [He, Theorem

2], π0(BunG) can also be identified with (X∗(T )/Q̌)σ. We have a natural projection pr : GrG,C → BunG. In

view of Heinloth’s uniformization theorem [He, Theorem 3], the map pr is surjective. Hence GrG,C has

as many or more components than BunG. It forces that GrG , GrG,C and BunG have the same number of

components. In particular, it follows that there is a natural bijection bertween components of GrG and GrG,C .

It is well-known that the neutral component GrG,C,◦ of GrG,C is isomorphic to GrG′,C . Thus, we naturally

get the level one line bundle L on the neutral component GrG,C,◦. Recall the set S in (4.6) that parametrizes

the components of GrG . For any nonzero κ ∈ S (if it exists), the component GrG ,κ of GrG contains eκ̄. Thus,

the associated component GrG,C,κ is exactly the one containing sκ. The component GrG ,κ is isomorphic to

LGC/Adsκ(L+GC),
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where is sκ is a C-point in GrG,C as defined in Chapter 4. Then there exists a natural isomorphism

GrG′,C = LG′C/L
+G′C ' LG′C/Adsκ(L+G′C),

given by gL+G′C 7→ Ads−κ(g)Adsκ(L+G′C). Therefore, the line bundle of level one on the non-neutral

component can be realized as the pull-back from the line bundle L on the neutral component GrG,C,◦ via this

isomorphism. �
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CHAPTER 6

Flat Degenerations and Smoothness

In this chapter we may reap the fruits of our labors. Having constructed flat families and global line

bundles of level one, we proceed by using Zhu’s results in the untwisted setting (this amounts to cohomological

vanishing at a generic fiber of the flat family) and use it to show cohomological vanishing at the special fiber.

The main theorem of this Chapter and indeed of this work is Theorem 6.1.5, which proves the restriction

isomorphism for twisted affine Schubert varieties in all the cases where we have the related theorem in the

untwisted case. A nice corollary is Theorem 6.1.11, which describes the smooth locus of many twisted affine

Schubert varieties.

6.1 Flat Degeneration and Smoothness Results

We first recall a theorem in [Zh1, Theorem 1.3.4].

Theorem 6.1.1. The natural morphism GrT → GrG identifies GrT as the T-fixed point ind-subscheme (GrG)T

of GrG.

We now prove an analogue of Theorem 6.1.1 in the setting of absolutely special parahoric group schemes.

Theorem 6.1.2. The natural morphism GrT → GrG identifies GrT as the Tσ-fixed point ind-subscheme

(GrG )Tσ
of GrG .

Proof. Let L−−G be the ind-group scheme represented by the following functor, for any C-algebra R,

L−−G(R) := ker(ev∞ : G(R[t−1])→ G(R)),

where ev∞ is the evaluation map sending t−1 to 0. Let L−−G be the ind-group scheme which represents the

following functor , for any C-algebra R,

L−−G (R) := ker(ev∞ : G(R[t−1])σ → G(R)σ).
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We can similarly define L−−T and L−−T .

By the similar argument as in [Zh4, Lemma 2.3.5] or [HR2, Lemma 3.1], we have an open embedding

L−−G ↪→ GrG

given by g 7→ ge0, where e0 is the base point in GrG . Let I be the Iwahori subgroup of L+G , which is the

preimage of Bσ via the evaluation map ev : L+G → Gσ for a σ-stable Borel subgroup B in G. We have the

following decomposition

GrG =
⊔

λ̄∈X∗(T )σ

Ieλ̄. (6.1)

For each λ̄ ∈ X∗(T )σ, we choose a representative λ ∈ X∗(T ). The twisted Iwahori Schubert cell

Ieλ̄ = nλAdn−λ(I)e0

is contained in nλL−−G e0. Then by the decomposition (6.1),
⋃
λ̄∈X∗(T )∗ nλL−−G e0 is an open covering of GrG .

We may naturally regard GrT as an ind-subscheme of GrG . Hence, we may regard e0 as the base point in

GrT . Under this convention,

⋃
λ∈X∗(T )σ

nλL−−T e0 =
⋃

λ∈X∗(T )σ

L−−T nλe0

is an open covering of GrT . Therefore, it suffices to show that for each λ̄ ∈ X∗(T )σ,

(nλL−−G e0)Tσ

' nλL−−T e0.

Further, it suffices to show that (L−−G )Tσ
' L−−T , where the action of Tσ on L−−G is by conjugation.

From the proof of [HR2, Proposition 3.4], one may see that (L−−G)Tσ
' L−−T . This actually implies that

(L−−G )Tσ
' L−−T . Hence, this finishes the proof of the theorem. �

An immediate consequence of Theorem 6.1.2 is the following corollary.

Corollary 6.1.3. The Tσ-fixed C-point set in GrG is {eλ̄ | λ ∈ X∗(T )σ}.
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6.1.1 A duality isomorphism for twisted Schubert varieties

Let GrG be the affine Grassmannian of G, and let L be the line bundle on GrG that is of level one on every

component of GrG. For any λ ∈ X∗(T ), let Gr
λ
G denote the closure of G(O)-orbit at Lλ := tλG(O) ∈ GrG. Let

(Gr
λ
G)T denote the T -fixed point subscheme of Gr

λ
G. Zhu [Zh1] proved that

Theorem 6.1.4. When G is simply-laced and not of type E, the restriction map H0(Gr
λ
G,L)→ H0((Gr

λ
G)T ,L|

(Gr
λ
G)T )

is an isomorphism.

Our goal is to prove an analagous isomorphism for the twisted affine Grassmannians, and our tool for

doing this will be the flat family Gr
λ
G.

From Theorem 6.1.2, we have the identification GrT
'
−→ GrTσ

G . Let I λ̄ denote the ideal sheaf of the

Tσ-fixed subscheme (Gr
λ̄
G )Tσ

of Gr
λ̄
G . Then we have a short exact sequence of sheaves

0→ I λ̄ → O
Gr

λ̄
G

→ O
(Gr

λ̄
G )Tσ

→ 0. (6.2)

Recall that L is the line bundle on GrG which is of level one on every component. Tensoring the above

short exact sequence with L and taking the functor of global sections, we obtain the following exact sequence

0→H0(Gr
λ̄
G ,I

λ̄ ⊗L )→ H0(Gr
λ̄
G ,L )

r
−→ H0((Gr

λ̄
G )Tσ

,L |
(Gr

λ̄
G )Tσ

)→ · · · , (6.3)

where r is the restriction map.

Theorem 6.1.5. When G is not of type E(2)
6 , the restriction map

H0(Gr
λ̄
G ,L )

r
−→ H0((Gr

λ̄
G )Tσ

,L |
(Gr

λ̄
G )Tσ

)

is an isomorphism.

This theorem will follow from the following proposition and Lemma 6.1.8. In fact, this theorem holds for

many twisted affine Schubert varieties of E(2)
6 , see Remark 6.1.9. The following proposition does not exclude

E(2)
6 .

Proposition 6.1.6. The map r is a surjection.

Proof. It is well-known that any twisted affine Schubert varietiety Gr
λ̄
G is a usual Schubert variety in a partial

affine flag variety of Kac-Moody group. See the identification (5.10) and an argument for untwisted case in
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[BH, Proposition 2.21]. By [Ku, Theorem 8.2.2 (d)], we have that for any λ̄ � µ̄ in X∗(T )+
σ, the following

restriction map

H0(Gr
λ̄
G ,L )→ H0(Gr

µ̄
G ,L ) (6.4)

is surjective, and

H0(GrG ,L ) = lim
←−−

H0(Gr
λ̄
G ,L |Grλ̄G

). (6.5)

We also have the following surjective map

H0((Gr
λ̄
G )Tσ

,L )→ H0((Gr
µ̄
G )Tσ

,L ) (6.6)

for all λ̄ � µ̄, since these Tσ-fixed closed subschemes are affine and the morphism (Gr
µ̄
G )Tσ

→ (Gr
λ̄
G )Tσ

is a

closed embedding. Moreover,

H0((GrG )Tσ

,L |(GrG )Tσ ) = lim
←−−

H0((Gr
λ̄
G )Tσ

,L |
(Gr

λ̄
G )Tσ

).

Therefore, for any λ̄ ∈ X∗(T )+
σ we have the following surjective maps

H0(GrG ,L )→ H0(Gr
λ̄
G ,L ), H0((GrG )Tσ

,L )→ H0((Gr
λ̄
G )Tσ

,L ).

Then to prove the map

H0(Gr
λ̄
G ,L )→ H0((Gr

λ̄
G )Tσ

,L |
(Gr

λ̄
G )Tσ

)

is surjective, it is sufficient to prove that the map

H0(GrG ,L )→ H0((GrG )Tσ

,L |(GrG )Tσ ) (6.7)

is surjective, since we will have the following commutative diagram, for all λ̄,

H0(GrG ,L ) H0((GrG )Tσ
,L |(GrG )Tσ )

H0(Gr
λ̄
G ,L |Grλ̄G

) H0((Gr
λ̄
G )Tσ

,L |
(Gr

λ̄
G )Tσ

).r
(6.8)
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By Theorem 6.1.2, we have GrT ' (GrG )Tσ
. Therefore, the surjectivity of the map (6.7) follows from the

following Lemma 6.1.7. �

We first make a digression on Heisenberg algebras and their representations. The subspace t̂σ :=

(tK )σ ⊕ CK ↪→ L̂(g, σ) is a Lie subalgebra. In fact, t̂σ is an extended (completed) Heisenberg algebra with

center tσ ⊕ CK. Therefore, any integrable irreducible highest weight representation of t̂σ is parametrized

by an element µ ∈ (tσ)∗ and the level c, i.e. K acts by the scalar c on this representation. We denote this

representation by πµ,c. By the standard construction,

πµ,c = indt̂
σ

(tO)σ⊕CKCµ,c, (6.9)

where ind is the induced representation in the sense of universal enveloping algebras, and Cµ,c is the 1-

dimensional module over (tO)σ ⊕ CK where the action of (tO)σ factors through tσ.

Lemma 6.1.7. The restriction map H0(GrG ,L c)→ H0(GrT ,L c|GrT ) is surjective.

Proof. Proving surjectivity here is equivalent to proving injectivity for the dual modules,

0→ H0(GrT ,L c|GrT )∨ → H0(GrG ,L c)∨.

Note that both of these spaces are modules for the Heisenberg algebra t̂σ; the morphism is a t̂σ-morphism.

Since T is discrete, we naturally have the following decomposition

H0(GrT ,L c|GrT ) '
⊕

λ̄∈X∗(T )σ

OGrT ,eλ̄ ⊗L c|eλ̄ ,

where OGrT ,eλ̄ is the structure sheaf of the component of GrT containing eλ̄. We also notice that, the identify

component of GrT is naturally the formal group with Lie algebra (tK )σ/(tO)σ. In view of the construction

(6.9), we have

H0(GrT ,L c|GrT )∨ =
⊕

λ̄∈X∗(T )σ

π−cι(λ̄),c;

where the map ι : X∗(T )σ → (tσ)∗ is defined in (5.1). Since each π−cι(λ̄),c is irreducible, and generated by a

−cι(λ̄)-weight vector w−cι(λ̄), it suffices to show that the morphism

π−cι(λ̄),c → H0(GrG ,L c)∨
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sends w−cι(λ̄) to a nonzero vector.

By Theorem 5.1.8, we may define a Plücker embedding

φ : GrG → P(Hc)

given by ge0 7→ [ρg(v0)] for any ge0 ∈ GrG , where ρg is defined in Lemma 5.1.6, and [ρg(v0)] represents

the line in Hc that contains ρg(v0). Then we may pick a linear form fλ̄ on Hc which is nonzero on [vλ̄],

and which is 0 on other weight vectors, where vλ̄ is defined in (5.14). The restriction fλ̄|φ(GrG ) produces a

nontrivial element in H0(GrG ,L ), since φ(eλ̄) = vλ̄.

Observe that the map π−cι(λ̄),c → H0(GrG ,L c)∨ sends w−cι(λ̄) to a nonzero scalar of vλ̄. Thus the map

π−cι(λ̄),c → H0(GrG ,L c)∨ is nontrivial and thus injective. �

By Lemma 6.1.7, we obtain the following short exact sequence

0→ H0(Gr
λ̄
G ,I

λ̄ ⊗L )→ H0(Gr
λ̄
G ,L )

r
−→ H0(Gr

λ̄
G ,L ⊗ O

(Gr
λ̄
G )

)→ 0.

Thus, the obstruction to the map r being an isomorphism is the vanishing of the first term H0(Gr
λ̄
G ,I

λ̄ ⊗

L ).

Let Iλ denote the ideal sheaf of the T -fixed subscheme on Gr
λ
G. We will show that the vanishing of the

first term can be deduced from the vanishing of H0(Gr
λ
G, I

λ ⊗ L).

Recall that Gr
λ
G,C is a global Schubert variety defined in Chapter 4. The constant group scheme Tσ ×C

over C is naturally a closed subgroup scheme of T . Hence Tσ acts on Gr
λ
G,C naturally. Let (Gr

λ
G,C)Tσ

be the

Tσ-fixed subscheme of Gr
λ
G,C , and let Iλ be the ideal sheaf of (Gr

λ
G,C)Tσ

. Then, Iλ|p is the ideal sheaf of

(Gr
λ
G,C |p)Tσ

. Recall that,

Gr
λ
G,o = Gr

λ̄
G , Gr

λ
G,∞ ' Gr

λ̄
G , Gr

λ
G,p,o,∞ ' Gr

λ
G.

In particular, we have

Iλ|o = I λ, Iλ|∞ ' I λ, Iλ|p,o,∞ ' Iλ.

Lemma 6.1.8. Assume that G is not of type E6. Then the ideal Iλ is flat over C.

Proof. Consider Gr
λ
G,C\{o,∞} and the Tσ-fixed subscheme (Gr

λ
G,C\{o,∞})

Tσ
. We denote by Zλ the flat closure
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of (Gr
λ
G,C\{o,∞})

Tσ
in GrG,C . Since Z is the closure of a Tσ-fixed subscheme, we see that Zλ|o ⊂ Gr

λ
G,C |o, and

Zλ|∞ ⊂ Gr
λ
G,C |∞.

To show Iλ is flat over C, it is sufficient to show that (Gr
λ
G,C)Tσ

is flat over C. This is equivalent to

showing Zλ = (Gr
λ
G,C)Tσ

. In particular, it suffices to show the fibers Zλ|o and Zλ|∞ are isomorphic to (Gr
λ̄
G )Tσ

.

Since the fiber Zλ|∞ at∞ is similar to the fiber Zλ|o at o, it suffices to show that Zλ|o = (Gr
λ̄
G )Tσ

. Note that

both of these are finite schemes, we can compare the dimensions of their structure sheaves as follows:

dim O
(Gr

λ̄
G )Tσ

≥ dim OZλ |o = dim O
(Gr

λ
G,p,o,∞)Tσ

= dim O
(Gr

λ
G,p,o,∞)T

= dim H0(Gr
λ
G,L|p,o,∞)

= dim H0(Gr
λ̄
G ,L )

≥ dim O
(Gr

λ̄
G )Tσ

,

where the first equality follows from the flatness of Zλ over C, the third equality follows from Theorem

6.1.4, the fourth equality follows since Gr
λ
G,C is flat over C (cf. Theorem 4.3.10), and the last inequality

follows from Proposition 6.1.6 . From this comparison, it follows that dim OZλ |o = dim O
(Gr

λ
G,p,o)Tσ . Hence,

OZλ |o = O
(Gr

λ
G,p,0)Tσ . This concludes the proof of the lemma. �

Proof of Theorem 6.1.5. By Lemma 6.1.8, if H0(Gr
λ
G, I

λ ⊗ L) = 0, then H0(Gr
λ̄
G ,I

λ̄ ⊗L ) = 0. When G

is not of type E6, from [Zh1, Section 2.2] it is known that H0(Gr
λ
G, I

λ ⊗ L) = 0 for any λ ∈ X∗(T ). Hence,

when G is not of type E(2)
6 , H0(Gr

λ̄
G ,I

λ̄ ⊗L ) = 0 for any λ̄ ∈ X∗(T )+
σ. Therefore, the theorem follows from

Lemma 6.1.7 and the long exact sequence (6.3). �

Remark 6.1.9. In [Zh1], Zhu also proved Theorem 6.1.4 for many cases of affine Schubert varieties when G

is type E. In particular, when G is type E6 and for any λ which is a non-negative summation of fundamental

coweights ω̌1, ω̌2, ω̌4, ω̌5, ω̌6 following the labelling in [Ka, Table Fin, p.53], Theorem 6.1.4 holds. Therefore,

it follows that when λ̄ ∈ X∗(T )σ is a non-negative summation of ω̌1, ω̌2, ω̌6 ∈ X∗(T )+
σ, our Lemma 6.1.8 and

Theorem 6.1.5 hold. Note that ω̌1 = ω̌5 and ω̌2 = ω̌4. To fully prove the case of E6, by the method in [Zh1], it

suffices to prove Theorem 6.1.4 when λ = ω̌3. Due to the complexity of this method for exceptional groups,

this case is still open.
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As an application of Theorem 6.1.5, we get a geometric Frenkel-Kac isomorphism for twisted affine

algebras.

Theorem 6.1.10. For any absolutely special G , the restriction map

H0(GrG ,L )→ H0(GrT ,L |GrT )

is an isomorphism, via the embedding GrT → GrG .

Proof. By Theorem 6.1.2, it suffices to show that the restriction map r : H0(GrG ,L )→ H0(GrT ,L |(GrG )Tσ )

is an isomorphism. In view of (6.5) and (6.6) and as a consequence of Theorem 6.1.5, the restriction map r is

an isomorphism when G is not E(2)
6 .

When G is of type E(2)
6 , the element ω̌1 ∈ X∗(T )+

σ corresponds to the highest root of H := (Ǧ)∨, see

Chapter 4. Thus, for any λ̄ ∈ X∗(T )σ, there exists k ∈ N such that λ̄ � kω̌1. It follows that

H0(GrG ,L ) = lim
←−−

k

H0(Gr
kω̌1
G ,L |

Gr
kω̌1
G

),

and

H0((GrG )Tσ

,L |(GrG )Tσ ) = lim
←−−

k

H0((Gr
kω̌1
G )Tσ

,L |
(Gr

kω̌1
G )Tσ

).

Now, by Remark 6.1.9, we see that the restriction map r is also an isomorphism when G is E(2)
6 .

�

6.1.2 Application: Smooth locus of twisted affine Schubert varieties

We now wish to investigate the smooth locus of the Schubert variety Gr
λ̄
G .

Theorem 6.1.11. Assume that G is of type A(2)
2`−1,D

(2)
`+1,D

(3)
4 . For any λ ∈ X∗(T )+

σ, the smooth locus of Gr
λ̄
G is

precisely the open Schubert cell Grλ̄
G

.

Proof. For any µ̄ ∈ X∗(T )+
σ, if eµ̄ = nµe0 is a smooth point in Gr

λ̄
G , then by [Zh1, Lemma 2.3.3] dim O

(Gr
λ̄
G )Tσ ,eµ̄

=

1.

By Theorem 5.1.11, we have H0(Gr
λ̄
G ,L )∨ ' D(1, λ̄), where D(1, λ̄) is the Demazure module defined in

Definition 5.1.10. Then by Theorem 6.1.5, we have

dim D(1, λ̄)−ι(µ̄) = lengthO
(Gr

λ̄
G )Tσ ,eµ̄

,
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where D(1, λ̄)−ι(µ̄) is the −ι(µ̄)-weight space in D(1, λ̄). We will prove that for any µ̄ � λ̄, dim D(1, λ̄)−ι(µ̄) ≥ 2,

which would imply that eµ̄ is not a smooth point in Gr
λ̄
G . From the surjectivity of (6.4), we have an

embedding D(1, µ̄) ↪→ D(1, λ̄). On the the other hand, V(−ι(λ̄)) ↪→ D(1, λ̄), where V(−ι(λ̄)) is the irreducible

representation of gσ of lowest weight −ι(λ̄). In view of Lemma 4.2.6, Lemma 5.1.3 and Lemma 5.1.4, when

G is not of type A2`, the relation µ̄ � λ̄ implies that ι(µ̄) � ι(λ̄). Hence, V(−ι(λ̄))−ι(µ̄) , 0. Furthermore, as

subspaces in D(1, λ̄),

D(1, µ̄) ∩ V(−ι(λ̄)) = 0.

It follows that dim D(1, λ̄)−ι(µ̄) ≥ 2. This concludes the proof of the theorem. �

From the proof of the above theorem, we see that our technique does not fully apply to the Schubert

variety Gr
λ̄
G when G is of type A(2)

2` . Also, since the duality theorem is not fully established yet for E(2)
6 , we

can only get some partial result in this case.

Recall the group H = (Ǧ)τ mentioned in Chapter 4. By the ramified geometric Satake, (X∗(T )σ, X∗(T )+
σ, γ j, j ∈

Iσ) can be regarded as the weight lattice, the set of dominant weights, and simple roots of H. When

(G,m) = (E6, 2), H is F4; when (G,m) = (A2`, 4), H is B` of adjoint type. We follow the labelling of Dynkin

diagram in [Ka, Table Fin, p 53]. Let {$ j | j ∈ Iσ } be the set of fundamental dominant weights of H.

Theorem 6.1.12. 1. Let G be of type E(2)
6 . If λ̄ is a non-negative linear combination of the fundmental

weights $1, $2, $4 of H, then the smooth locus of Gr
λ̄
G is the open cell Grλ̄

G
.

2. Let G be of type A(2)
2` . For any λ̄, µ̄ ∈ X∗(T )+

σ with µ̄ � λ̄, the Schubert cell Grµ̄
G

is contained in the

singular locus of Gr
λ̄
G , except if µ̄ ≺ λ̄ is a cover relation such that the simple short root γ` appears in

λ̄ − µ̄.

Proof. Part (1) of the theorem follows from Remark 5.1.5 and Remark 6.1.9, where under the map η : I → Iσ,

$1 = ω̌6, $3 = ω̌2, $4 = ω̌1.

For part (2) of the theorem, we will prove this part by several steps. Let c` be the coefficient of γ` in λ̄− µ̄.

Step 1. Observe from the proof of Theorem 6.1.11, when the coefficient c` is even, we have dim D(1, λ̄)−ι(µ̄) ≥

2. Thus, eµ̄ is singular in Gr
λ̄
G .

Step 2. Assume that the coefficient c` > 1. There exists sequence of dominant elements in X∗(T )+
σ,

µ̄ = λ̄k ≺ λ̄k−1 ≺ · · · ≺ λ̄1 ≺ λ̄0 = λ̄, (6.10)
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such that each ≺ is a cover relation. Then, by a theorem of Stembridge [St, Theorem 2.8], for each i, λ̄i − λ̄i+1

is a positive root of H, for any 0 ≤ i ≤ k − 1, and the coefficient of γ` in each λ̄i − λ̄i+1 is either 0 or 1. Let

j be the least integer such that the coefficient of γ` in λ̄ j−1 − λ̄ j is 1. Such j exists, since c` , 1. Then the

coefficient of γ` in λ̄ j − µ̄ is even. By Step 1, we have dim D(1, λ̄ j)−ι(µ̄) ≥ 2. On the other hand, we have the

inclusion D(1, λ̄ j) ⊂ D(1, λ̄). It follows that dim D(1, λ̄)−ι(µ̄) ≥ 2. Hence, the variety Gr
λ̄
G is singular at the

point eµ̄.

Step 3. We now assume that the coefficient c` = 1. By assumption, µ̄ ≺ λ̄ is not a cover relation. Then, in

the sequence of cover relations in (6.10), either the coefficient of γ` in λ̄k−1 − λ̄k is 0, or the coefficient of

γ` in λ̄0 − λ̄1 is 0. If the coefficient of γ` in λ̄k−1 − λ̄k is 0, by Step 1 dim D(1, λ̄k−1)−ι(µ̄) ≥ 2, implying that

dim D(1, λ̄)−ι(µ̄) ≥ 2. Hence eµ̄ is singular in Gr
λ̄
G . If the coefficient of γ` in λ̄0 − λ̄1 is 0, then by Step 1 again,

eλ̄1
is a singular point in Gr

λ̄
G . Since the singular locus of Gr

λ̄
G is closed, the point eµ̄ is also singular. �

Let G be of type A(2)
2` . We now explicitly describe the cover relation µ̄ ≺ λ̄ such that γ` appears in λ̄ − µ̄.

Note that X∗(T )σ is a root lattice of H ' S O2n+1. In fact, X∗(T )σ is spanned by $1, $2, · · · , $`−1, 2$`.

Reading more carefully from [St, Theorem 2.8], we can see that, µ̄ ≺ λ̄ is a cover relation such that γ` appears

in λ̄ − µ̄, if and only if one of the followings holds:

1. λ̄ − µ̄ = γ`.

2. λ̄ − µ̄ =
∑`

j=i γ j and µ =
∑i−1

k=1 ak$k with all ak > 0, for some 1 ≤ i ≤ ` − 1.

Remark 6.1.13. 1. When G is a special but not absolutely special parahoric group scheme of type A(2)
2` ,

i.e. when σ is the diagram automorphism and G is of type A2`, there is a counter-example that Gr
λ̄
G is

smooth but Gr
λ̄
G , Gr

λ̄
G

, cf. [HR, Section 5.1] or [Zh3, page 3]. This phenomenon is somewhat related

to Remark 5.1.2.

2. One can define the affine Grassmannian GrG and twisted affine Schubert varieties Gr
λ̄
G of the absolutely

special parahoric group scheme G with the base field k of characteristic p. In [HR, Section 6], when

p , r, Haines and Richarz reduced the question of the smooth locus of the Gr
λ̄
G over characteristic p to

characteristic zero case. In fact, by the work of Lourenço [Lo], one may construct a global twisted

affine Schubert variety over Z so that the base change to the field k of characteristic p (including p = r)

is the given twisted affine Schubert variety defined over k. Then the argument of Haines and Richarz
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can still apply to the case of characteristic p = r. Therefore, Theorem 6.1.11 also holds for any base

field k.
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CHAPTER 7

Partial Results on E6

In this chapter we make partial progress towards completing Zhu’s localization result for E6.

7.1 Partial Results on E6

We return to the untwisted case for type E6. In this chapter, in contrast to the previous chapters in which

we used the notation of Kac (especially for affine and twisted affine Dynkin diagrams) we now use Bourbaki

notation.

In this notation, Zhu has proven that

H0(Grω̌i
E6
, L) ' H0((Grω̌i

E6
)T , L) (7.1)

in all cases except ω̌4. Proving the restriction isomorphism in this case would prove the result for all coweights

for type E6. Moreover, if we could prove the localization theorem for E6, we would be able to use our

theorems from Chapter 6 to obtain results about the twisted affine Schubert varieties in this case, which is the

last remaining twisted case.

Mostly we work on the dual side; namely affine Demazure modules. It is convenient to begin with

a description of the g-module structure, along with the d-weight of each such irreducible module. The

Demazure module H0(Grω̌4
E6
, L)∗ decomposes into a direct sum of gmodules which may have different weights

with respect to the derivation part of the Cartan Cd. We write Vλ, j for the irreducible g-module of highest

T -weight λ and with d-weight j.

We will write Vλ, j(µ) for the µ-weight space of this irreducible, where µ ∈ X∗(T ).

Theorem 7.1.1. H0(Grω̌4
E6
, L)∗ = V0 ⊕ Vω2,−1 ⊕ Vω1+ω6,−2 ⊕ Vω2,−2 ⊕ Vω4,−3.

Proof. See [Kl]. To be pedantic we may say we are considering g ⊕ Cd modules. �

The problem is to show that each weight space appears with the correct dimension when we only examine

the restriction to the T -fixed subscheme.

There are two theorems that we can use to reduce this problem.
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Theorem 7.1.2. The surjection H0(Grω̌4
E6
, L)→ H0(Grω̌1+ω̌6

E6
, L) induces an injection on the dual spaces.

Corollary 7.1.3. V0 ⊕ Vω2,−1 ⊕ Vω1+ω6,−2 ⊂ H0((Grω̌4
E6

)T , L ⊗ O
(Gr

ω̌4
E6

)T )∗.

Proof. This follows from the theorem and the fact that the restriction isomorphism holds for the coweight

ω̌1 + ω̌6, see Zhu. �

Note moreover that we need only consider dominant weight spaces of these representations, as the second

space can be given a W-module structure such that the morphism

H0(Grω̌4
E6
, L)→ H0((Grω̌4

E6
), L)

is W-equivariant.

Lemma 7.1.4. Assume that Vµ(λ) has a basis consisting of elements fαi1
fαi2

. . . fαin
wvµ where fαi j

are the

Chevalley generators corresponding to a Levi M for which the restriction isomorphism is known. Then

H0(Gr
ι(µ)
G , Iι(µ)(1))∗(λ) = 0.

Proof. We follow the proof in [Zh1]. Let {u∗d} be dual to the described basis, and take σ a weight vector in

H0(Gr
ι(µ)
G , Iι(µ)(1))∗(λ) = 0. Then we can write σ =

∑
d σdu∗d. Viewing u∗d ∈ H0(G/P,O(µ)) via the Plucker

embedding, we see that u∗d does not vanish on the open subspace U−αi1
. . .U−αin

wd, whereas u′d∗ does vanish

uniformly on this open set. By the assumption of the lemma, when we restrict σ to U−αi1
. . .U−αin

wd it must

vanish uniformly. Thus σd = 0 for all d, and σ = 0. �

Fact 7.1.5. All Levi subquotients of E6 are of type A or D, for which the restriction isomorphism is known,

due to [Zh1].

With these preparations complete, we may begin to examine individual dominant weight spaces in Vω4,−3

and Vω2,−2. Our examination of Vω4,−3 rests almost entirely on Lemma 7.1.4, but our examination of Vω2,−2

relies on facts about the "Heisenberg" raising operators which will be introduced later.

Note 7.1.6. For ease of notation, going forward we will write Dω4(λ) for H0(Grω̌4
E6
, L)∗(λ) and DT

ω4
(λ) for

H0((Grω̌4
E6

)T , L ⊗ O
(Gr

ω̌4
E6

)T )∗(λ).
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7.2 Vω4,−3

By W-equivariance, we need only examine the dominant weight spaces. The dominant character of Vω4 is

eω4 + 4eω1+ω6 + 15eω2 + 45e0. We must show that DT
ω4

has the same weight spaces with the same dimensions.

Said differently,

dimDω4(ω4 − 3δ) = 1

dimDω4(ω1 + ω6 − 3δ) = 4,

dimDω4(ω2 − 3δ) = 15

and

dimDω4(0 − 3δ) = 45.

Our task is to show that dimDT
ω4

(µ) is equal to dimDω4(µ) for all the µ listed above.

7.2.1 Vω4,−3(ω4)

This is a one-dimensional weight space. Let σω̌4 be the linear form on
⊕

γ∈π1(G) L(Λ + ιωiγ ) which is not

zero on tω̌4vΛ0 and zero on the other weight spaces. This form restricts to a form on the T -fixed subscheme

supported at tω̌4 . Thus DT
ω4

(ω4 − 3δ) is 1-dimensional.

7.2.2 Vω4,−3(ω1 + ω6)

In terms of simple roots, we have ω4 = 2α1 + 3α2 + 4α3 + 6α4 + 4α5 + 2α2 and ω1 + ω6 = 2α1 + 2α2 +

3α3 + 4α4 + 3α5 + 2α6. Thus the difference ω4 − (ω1 + ω6) = α2 + α3 + 2α4 + α5; in other words, this

difference is supported on the Levi of type D4 with simple roots α2, α3, α4, α5.

Thus we have a basis of Vω4(ω1 + ω6) of the form fαi1
. . . fαin

vω4 where the fαi j
∈ L of type D4. Thus the

Lemma 7.1.4 applies, so DT
ω4

(ω1 + ω6 − 3δ) is 4-dimensional.

7.2.3 Vω4,−3(ω2)

We will again use Lemma 7.1.4; thus we must provide a basis as in the assumption of the Lemma. This

case is significantly more challenging and requires some brute force. The difference ω4 − (ω1 + ω6) =

α1 + α2 + 2α3 + 3α4 + 2α5 + α6.

We actually consider all expressions of the form fαi1
. . . fαi10

ω4 such that this vector is of weight ω2; this

provides a spanning set of vectors in Vω4(ω2) (with many relations!). It turns out that the vast majority of

such expressions admit the following description:
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fαi1
. . . fαik︸      ︷︷      ︸

In a Levi

fαik+1
. . . fαi10

vω4︸              ︷︷              ︸
Extremal weight vect.

(7.2)

Thus they are precisely of the form necessary for Lemma 7.1.4.

Definition 7.2.1. We call vectors of the form fαi1
. . . fαik︸      ︷︷      ︸

In a Levi

fαik+1
. . . fαi10

vω4︸              ︷︷              ︸
Extremal weight vect.

Levi/extremal vectors.

We provide the following diagram, which describes which lowering operators we may apply to a weight

vector and whether or not the result is an extremal weight vector.

ω4

ω2 + ω3 + −ω4 + ω5

ω1 + ω2 − ω3 + ω5 ω2 + ω3 − ω5 + ω6

ω1 + ω2 − ω3 + ω4 − ω5 + ω6

ω1 + 2ω2 − ω4 + ω6

s4

s3

s5

s5

s3

s4

Figure 7.1: This is the poset of extremal weights µ such that ω2 < µ ≤ ω4 and such that the support of µ −ω2
is not a proper subdiagram.

We have not included arrows corresponding to reflections sαi when the following two conditions are

satisfied: the pairing 〈αi, µ〉 = 1 and sαiµ − ω2 is supported on a proper subdiagram; all of these vectors are

of the type Levi/extremal, or in other words satisfy the assumptions of Lemma 7.1.4.

Thus the "worst possible" case, from the perspective of producing Levi/extremal vectors, has the first five

lowering operators as follows: fα2 fα4 fα5 fα3 fα4vω4 . All other nontrivial applications of 5 lowering operators

will result in a Levi/extremal vector.

Thus every element fαi1
. . . fαi10

vω4 is of the form

fαi1
. . . fαik︸      ︷︷      ︸

In a Levi

fαik+1
. . . fαi10

vω4︸              ︷︷              ︸
Extremal weight vect.

except those of which the first five lowering operators are precisely fα2 fα4 fα5 fα3 fα4vω4 ; what remains are the
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lowering operators f1, f3, f4, f5, f6. By the same logic, the next lowering operator must be f4, since any other

lowering operator would commute with f4, returning us to the Levi/extremal weight situation.

Thus we are left with is considering the following element:

fα6 fα1 fα3 fα5 fα4 fα2 fα4 fα5 fα3 fα4vω4 .

After applying a commutation relation fα4 fα2 = fα2 fα4 + [ fα2 , fα4], this is equal to

fα6 fα1 fα3 fα5 fα2 fα4 fα4 fα5 fα3 fα4vω4

+ fα6 fα1 fα3 fα5[ fα4 , fα2] fα4 fα5 fα3 fα4vω4 .

The first expression is 0. The second expression is Levi/extremal, since the weight of fα4 fα5 fα3 fα4vω4 is

ω1 + 2ω2 − ω4 + ω6, and the pairing 〈α̌2 + α̌4, ω1 + 2ω2 − ω4 + ω6〉 = 1, so

sα2+α4 fα4 fα5 fα3 fα4vω4 = [ fα2 , fα4] fα4 fα5 fα3 fα4vω4 . (7.3)

Thus dimDT
ω4

(ω2 − 3δ) = 15.

7.2.4 Vω4,−3(0)

The 0 weight space of Vω4 decomposes as a direct sum of two irreducible representations for the Weyl

group, one 15 dimensional and the other 30 dimensional, see [Ree].

We can produce several Levi/extremal vectors; for instance, α1 + 2α3 + α4 + 2α5 + α6 is an extremal

weight as seen by

α1 + 2α3 + α4 + 2α5 + α6 = s2s4s3s5s1s6s2s4s3s5s4ω4. (7.4)

Moreover if we branch Vω4 along the Levi spanned by α1, α3, α4, α5, α6 (whose derived group is of type

A5), we find that the 0 weight space of the representation with highest weight α1 + 2α3 + α4 + 2α5 + α6

is nontrivial. Thus there must be at least one global section σ of weight 0 which vanishes globally, or in

other words DT
ω4

(0 − 3δ) is non-empty. By the W-equivariance of this last module, we see that there are three

options.
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1. The chosen Levi/extremal weight vector lies entirely inside the representation of dimension 30

2. The chosen Levi/extremal weight vector lies entirely inside the representation of dimension 15

3. The chosen Levi/extremal weight vector consists of summands from the two irreducibles.

This is the current state of our knowledge; our methods are sufficient to show that DT
ω4

(0 − 3δ) is either 15

dimensional, 30 dimensional or 45 dimensional (recall that for the restriction isomorphism to hold, this space

must be 45 dimensional).

7.3 Vω2,−2

Recall that the subspace of Dω4 with d-weight -2 decomposes into a direct sum of g-modules Vω2⊕Vω1+ω6 .

Moreover, Vω1+ω6,−2 ⊂ DT
ω4

by Theorem 7.1.2. Thus we must show that Vω2,−2 ⊂ DT
ω4

. The dominant

character of Vω2 is eω2 + 6e0; this is the adjoint representation of g.

Said slightly differently, we have

dimDω4(0 − 2δ) = 26

and

dimDω4(ω2 − 2δ) = 6.

Moreover we already know that

dimDT
ω4

(0 − 2δ) ≥ 20

and

dimDT
ω4

(ω2 − 2δ) ≥ 5,

both by Lemma 7.1.2.

7.3.1 Heisenberg Action

First we consider the "0-string" of the full basic representation H ; this is the direct sum H (0 − nδ) for

all n ≥ 0. The finite Weyl group of E6 acts on each of these weight spaces, so H (0 − nδ) is a direct sum of

irreducible representations of the Weyl group. We describe H (0), H (0 − δ), H (0 − 2δ), H (0 − 3δ).

By [Ka] Chapter 12, the q-dimension here is 1 + 6q + 27q2 + 98q3 + . . . . Indeed we can go further and
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decompose these spaces in terms of tensor powers of the Cartan subalgebra h. In particular, H (0) is trivial,

H (0 − δ) is spanned by h[t−1]vΛ0 , H (0 − 2δ) is spanned by h[t−1]h[t−1]vΛ0 ⊕ h[t
−2vΛ0] ' S 2h ⊕ S 1h and

lastly H (0 − 3δ) is spanned by h[t−1]h[t−1]h[t−1]vΛ0 ⊕ h[t
−1]h[t−2]vΛ0 ⊕ h[t

−3]vΛ0 . This is isomorphic to

S 3h ⊕ T 2h ⊕ h.

We now wish to further decompose these spaces into irreducible representations for the finite Weyl group.

H (0) and H (0 − δ) ' h are both already irreducible Weyl modules.

H (0 − 2δ) decomposes as follows: h[t−2]vΛ0 is irreducible just as above. The 21 dimensional space

isomorphic to S 2h is not irreducible; there is a 1-dimensional W-invariant subspace given by (the dual of)

the Killing form (, ) restricted to h. Thus H (0 − 2δ) ' Triv ⊕ Comp ⊕ Adj where Comp is an irreducible

20-dimensional W-module.

Lastly we decompose H (0− 3δ). The factor isomorphic to h is irreducible. The factor isomorphic to T 2h

decomposes as usual into symmetric and exterior powers, generated by elements of the form h1[t−1]h2[t−2] ±

h2[t−1]h1[t−2]. Finally we consider the 56-dimensional subspace isomorphic to S 3h. We know that there

is a 30-dimensional irreducible subspace since dimVω4(0) is a direct sum of a 30 dimensional irreducible

W-module and a 15 dimensional irreducible W-module, and Vω4,3 ⊂H as g-modules. We are not sure how

the remaining 26-dimensional space decomposes, but we have the following lemma:

Lemma 7.3.1. The 26-dimensional complement to the 30 dimensional irreducible representation in S 3h

cannot contain a 15-dimensional irreducible W-module.

Proof. Assume to the contrary that there is a 15-dimensional irreducible W-module. The dimensions of

irreducible W modules are 1,6,15,20,24, etc, from the character table. Thus if it does decompose, it must

decompose into a 15-dimensional module and then either a 6-dimensional irreducible and 5 1-dimensional

irreducibles or a 15-dimensional and 11 1-dimensional irreducibles.

Both of these options are impossible for the following reasons. The only two one-dimensional representa-

tions of W are the trivial representation and the sign representation.

The trivial representation cannot appear in S 3h since this would give a W-invariant degree 3 polynomial.

Using the Chevalley isomorphism C[g]G ' C[h]W , we see that this would imply the existence of a degree

3 invariant polynomial on g (after dualizing). This is impossible, because the possible degrees of invariant

polynomials of E6 are 2,5,6,8,9,12; this list is the set of exponents +1 which can be found in [Bou].

The other option is that all of these 1-dimensional irreducibles are the sign representation. However,
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VΛ0(−3δ) = Vω4 ⊕ k1Vω1+ω6 ⊕ k2Vω2 ⊕ k3V0; in other words no other representations can appear in the

g-module decomposition of H (−3δ), since −3δ + ω4 is an extremal weight of VΛ0 . None of the 0-weight

spaces of these representations has any factor isomorphic to the sign representation of W. Thus the sign

representation may not appear either, and the decomposition with an irreducible factor of dimension 15 is

impossible. �

Corollary 7.3.2. The 15-dimensional irreducible W-module with weight 0 − 3δ is isomorphic to
∧2 h and is

generated by (h1[t−1]h2[t−2] − h2[t−1]h1[t−2])vΛ0 .

7.3.2 Vω2,−2(0)

We return to the Demazure module Dω4 . The weight space Dω4(0 − 2δ) decomposes into the direct

sum Vω1+ω6(0) ⊕ Vω2(0). The factor Vω1+ω6(0) already appears in DT
ω4

by Theorem 7.1.2. The remaining

6-dimensional irreducible W-module must be the one spanned by h[t−2]vΛ0 . The missing 6-dimensional

space h[t−2] is in the image of the raising operators h[t] applied to h1[t−1]h2[t−2] − h2[t−1]h1[t−2]. Thus we

see that showing that proving that dimDω4(0 − 3δ) = dimDT
ω4

(0 − 3δ) implies that Dω4(0 − 2δ) = DT
ω4

(0 − 2δ)

by Corollary 7.3.2.

7.3.3 Vω2,−2(ω2)

We must find a basis vector v ∈ Vω2,−2(ω2). By W-equivariance, it is sufficient to find the lowest weight

vector v ∈ Vω2−2δ(w0ω2) which is in the image of the raising operators e0, e1 . . . e5, e6. For convenience we

translate to the dominant chamber; thus we examine vectors of the form fi1 . . . fik vω4−3δ of weight ω2 − 2δ

and is also annihilated by e1, . . . e6 (this is the condition that we have a highest-weight vector). Moreover

we may consider vectors precisely of the following form; exactly one fi j is eθ[t], and the rest are lowering

operators f1, . . . f6.

We first claim that fi1 is the only possible term which can be eθ[t]. If fi j = eθ[t] and j , 1, then

fi j fi j+1 . . . fik vω4−3δ has T -weight µ such that θ < µ in the root lattice. This implies either that fi j fi j+1 . . . fik vω4−3δ =

0 or that fi j fi j+1 . . . fik vω4−3δ ∈ Vω1+ω6,−2, in which case fi1 . . . fik vω4−3δ ∈ Vω1+ω6,−2 by irreducibility.

Thus to find a basis vector in the desired weight space we need only consider elements of the form

eθ[t] fi2 . . . fik vω4−3δ, and such that the T -weight of fi2 . . . fik vω4−3δ is 0.

We now examine commutation relations here.

For instance, we have
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eθ[t] fi2 . . . fik vω4−3δ = fi2eθ[t] fi3 . . . fik vω4−3δ

keθ−αi2
[t] fi3 . . . fik vω4−3δ.

For the same reasons as above, the first term is either 0 or lies in Vω1+ω6,−2, and so cannot contribute to

a basis of Vω2,−2(ω2). Thus we need only consider elements of the form eθ−αi2
[t] fi3 . . . fik vω4−3δ. We may

repeat this procedure, obtaining more generally

eθ−β[t] fil . . . fik vω4−3δ = fileθ−β[t] fil+1 . . . fik vω4−3δ

[eθ−β[t], fil] fil+1 . . . fik vω4−3δ.

The first term cannot contribute to the Vω2,−2(ω2) weight space since it is either 0 or in Vω1+ω6,−2. The

second term [eθ−β[t], fil] fil+1 . . . fik vω4−3δ is either equal to keθ−β−αil
[t] fil+1 . . . fik vω4−3δ if θ − β − αil is a root

of ΦE6 and 0 otherwise.

We repeat this algorithm until we have a spanning set of vectors of Vω2,−2(ω2) of the form h[t] fim . . . fik vω4−3δ,

where h ∈ h. Thus fim . . . fik vω4−3δ has h⊕Cd-weight ω2 − 3δ or is the 0 vector. However, by our examination

of the Vω4,−3(ω2) weight space, we know that this entire weight space is in DT
ω4

. Since DT
ω4

is h[t]-stable, we

find that Vω2,−2(ω2) ⊂ DT
ω4

, or in other words DT
ω4

(ω2 − 2δ) is 6-dimensional (5 dimensions coming from

Vω1+ω6,−2(ω2) and the remaining dimension being provided by Vω2,−2(ω2)). This concludes the case of this

weight space.

7.3.4 Conclusion

To finish the restriction isomorphism for E6, we needed to show the following dimensions:

dimDT
ω4

(ω4 − 3δ) = 1

dimDT
ω4

(ω1 + ω6 − 3δ) = 4,
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dimDT
ω4

(ω2 − 3δ) = 15

dimDT
ω4

(0 − 3δ) = 45

dimDT
ω4

(0 − 2δ) = 26

(with a 20-dimensional subspace already accounted for by Vω1+ω6,−2(0)) and

dimDT
ω4

(ω2 − 2δ) = 6

(with a 5-dimensional subspace already accounted for by Vω1+ω6,−2(ω2)).

We proved the first, second, third, and sixth of these dimensions directly and showed that the 5th statement

would follow from the 4th statement. Thus to conclude this proof, one must show that dimDT
ω4

(0 − 3δ) = 45.

As mentioned above, by W-equivariance and the existence of at least one Levi/extremal vector, we know that

this dimension must either be 15, 30 or 45. Hopefully this task can be finished at some future point in time.
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