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ABSTRACT 
 

Yidan Cong: Machine Learning Assisted Strategic Synthesis of Tissue Mimetic Elastomers 
(Under the direction of Sergei Sheiko) 

  

 Over the course of evolution, biological creatures in nature have developed various 

elegant mechanisms to defend themselves. Particularly, soft biological tissues not only serve 

as cushions but at the same time, also prevent tearing. Meanwhile, some tissues, such as the 

skin of chameleons, can also display adaptive coloration which protects them from predators 

and helps them attract spouses. Inspired by the multifunctionality of biological tissues, this 

study focused on developing materials that possess a combination of these unique properties. 

To characterize the nonlinear elasticity of tissues and synthetic materials that mimic this 

property, we used firmness 𝛽 and Young’s modulus 𝐸!. To unravel the origin of mechanical 

properties of tissues, we studied the stress-strain curves of previously measured tissues from 

literatures. We demonstrated that the mechanical properties of tissues were tied to their 

functions and structural organization of collagens. To target the nonlinear elasticity 

synthetically, we used linear-bottlebrush-linear (LBL) triblock copolymers that micro-phase 

separate into physical networks, which we named plastomers. The triblock was produced by 

a two-step atomic transfer radical polymerization (ATRP) synthesis: the bottlebrush 

macroinitiator was synthesized by grafting-through polymerization followed by linear chain 

extension from both ends of the macroinitiator. The synthetic challenges and synthetic 

outcomes on the effect of mechanical properties of plastomers were investigated. Rigorous 
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kinetic studies were performed to optimize the synthetic conditions for producing bottlebrush 

macroinitiator with high chain end fidelity. Next, we investigated in the control of 

mechanical properties by varying architectural parameters as well as mixing experiments. We 

showed that there is still a gap between synthetic plastomers and biological tissues. In 

particular, we lacked synthetic materials that possessed high firmness (𝛽 > 0.8) and high 

modulus (𝐸! > 105 Pa). To bridge this gap, we needed to target plastomers with specific 

firmness and modulus. Therefore, we developed statistical and machine learning models that 

predicted the mechanical properties of triblocks based on chemical and architectural 

parameters. Finally, we investigated in incorporating structural coloration into plastomers. 

We studied factors, such as architectural parameters of the plastomers and swelling that 

controlled the reflected color of the plastomers. Specifically, we utilized ultraviolet-visible 

(UV-VS) spectroscopy and small angle X-ray scattering (SAXS) to demonstrate the effect of 

these factors on reflected wavelength and periodicity of the plastomers. 
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CHAPTER 1 

Inspiration from Nature 

1.1 Introduction 

 Many of the greatest human inventions have been inspired by nature1-3. For instance, 

the shape of birds’ wings inspired the invention of airplanes. The tactile sensing of fingers 

motivated engineers in building robots with the same ability. Sonar was invented based on 

echolocation and sonar system of bats and dolphins4 (Figure 1.1). These abilities of animals 

have evolved over the course of revolution to increase their chances of survival. Among 

these fascinating abilities, we are particularly interested in the defensive mechanisms of 

biological tissues: softness, firmness, and structural coloration as they are crucial in the 

application of wearable electronics, biomedical devices and soft robotics5-7. Many types of 

biological tissues are soft in order to cushion the intricate biological systems within the body. 

Meanwhile, tissues are firm as stretching is limited once the strain of tissues exceeds a 

certain threshold. This restriction prevents tissue from being overly stretched. In addition to 

softness and firmness, some animal skins are colorful, such as chameleons. They display 

vivid color, which can also change when exposed to external stimuli. This coloration allows 

animals to hide from or warn predators and attract spouses.  
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1.2 Mechanical properties of tissues 

The seemingly contradictive mechanical properties of tissues, softness and firmness, are 

achieved by the two main protein components of tissues: collagen and elastin8. Collagen is a    

type of protein that occupies 30% of the protein mass in the human body9. Collagen fibers 

are formed by three protein chains that assemble into triple helices (Figure 1.2). Each protein 

chain is composed of tri-amino acid Gly-X-Y repeats, where Gly stands for glycine and X 

and Y are usually proline and 4-hydroxy-proline, resepctively10. Each collagen fiber can then 

further assemble into different structural organizations such as forming bundles or networks. 

Meanwhile, elastin is a protein that forms branching networks, which control tissues’ 

stretching and recoiling. Once stretched, the recoil of elastin is driven by two types of 

entropic forces: the hydrophobic effect which describes solvent entropy, and a high structural 

disorder of the polypeptide chain, which describes solute entropy11. High polypeptide chain 

Figure 1.1: Examples of inventions inspired by nature. (A) Airplane inspired by bird 
wings. (B) Tactile sensing of robotics inspired by human hands. (C) Sonar system 
inspired by echolocation of bats.  



 3 

disorder opposes both stretching and tight packing, since both restrict the number of possible 

confirmations of the protein. While collagen provides tissues with high tensile strength, 

elastin allows tissues to be elastic and resilient. The combination of these two proteins allows 

tissues to resist tearing. Even when a small strain is applied, the stress of tissues increases 

exponentially. Hence, biological tissues are known to have non-linear elasticity mechanical 

properties12-14.  

 

 

 

 

 

 

 

 

1.3 Coloration in Nature 

 A rich variety of animals display color, either to attract spouses, scare away predators, 

or camouflage7. There are two types of biological color: pigmentation and structural 

coloration5,6 (Figure 1.3). In the case of pigmentation, animals such as cephalopods contain 

cells that are rich in chemicals capable of absorbing wavelengths in the visible range, giving 

them vibrant colors. On the contrary, components in tissues that have structural coloration 

are colorless. Rather, nanostructures form periodic morphologies that reflect light with 

wavelengths in the visible range by constructive interference.  

Figure 1.2: Triple helix structure of collagen molecule. Gly-X-Y amino acid sequence 
repeats assemble into triple helices. 
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A representative example of structural coloration in animals is chameleons, which 

have nanocrystals periodically distributed in the cytoplasm, and in turn, display various 

colors. Furthermore, chameleons can vary the periodicity to change the color they display. 

Periodicity can occur in one direction, as in the case of butterflies, two directions, as in the 

case of peacocks, and three directions, as in the case of chameleons6, 15, 16 (Figure 1.4). 

 

 

 

 

 

Figure 1.3: Two types of coloration in nature. (A) Pigmentation in cephalopods5. (B) 
Structural coloration in chameleons6.  
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1.4 Summary and Outline 

Being able to incorporate the softness, firmness, and structural coloration into 

synthetic materials is crucial in the applications of biomedical devices, soft robotics and 

wearable electronics. Multiple factors need to be considered when selecting a synthetic 

candidate for these applications, including but not limited to cost, toxicity, and 

reproducibility. This study aimed to design a material that possesses both mechanical and 

optical properties of tissues while being cost efficient to produce in bulk, has no leakage, and 

stable under ambient conditions. Chapter 2 introduced the unique non-linear elasticity of 

tissues and the physical model used to characterize this adaptive mechanics for both tissues 

and synthetic materials throughout this study. Chapter 3 discussed the origin of the variety 

Figure 1.4: Examples of structural coloration in nature.  
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in mechanical properties of biological tissues. It included a thorough study of comparing 

tissues’ mechanical properties according to categories, functions, and structural organization 

of collagens. Chapter 4 addressed the current limitations of synthetic materials in mimicking 

multifunctionalities of biological tissues and strategies to overcome these challenges. 

Chapter 5 discussed methods to optimize the synthetic conditions to ensure consistent and 

robust outcomes. Chapter 6 discussed controlling the mechanical properties by varying the 

chemical and architectural parameters of synthetic polymers as well as by mixing different 

polymers. Chapter 7 introduced statistical and machine learning models used to predict 

mechanical properties of synthetic materials.  Chapter 8 discussed the physical origin of 

structural coloration. Chapter 9 addressed the control of coloration. Finally, Chapter 10 

discussed future works on this subject. 
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CHAPTER 2 

Mechanical Properties of Tissues 

2.1 Unique non-linear elasticity of tissues 

 Compared to common synthetic materials, biological tissues possess unique 

mechanical properties12,17-20. Figure 2.1 shows the stress-strain curves of common synthetic 

materials and tissues, where stress is represented by 𝜎 and strain is represented by 𝜆 = 𝐿 𝐿!⁄ , 

which is the ratio between elongated length (L) and initial length of the material (L0). The 

deformation of tissues has two phases: low modulus elastic deformation at smaller strains 

followed by rapid stiffening and yielding at larger deformations12-14,21,22. This two-step 

deformation process is not observed in synthetic materials as shown in Figure 2.1. While 

thermoplastic was stiff, it had a much higher modulus than tissue. Rubber and gel possessed 

low modulus but was incapable of rapid stiffening. Therefore, common commercial materials 

can either reproduce tissues’ softness or stiffness but not both18,23-25.  
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The distinction between tissues and synthetic materials can also be observed in the 

derivative plot in Figure 2.2. The partial derivative of with respect to strain (elongation) of 

tissues displayed a distinguished sigmoid shape, demonstrating the rapid increase in stress 

upon transitioning into the second deformation step. Meanwhile, the derivatives of synthetic 

materials did not exhibit such drastic increase. Rather, the derivatives either plateaued or 

increased slowly, showing linear increase in stress with applied strain. 

 

 

 

 

Figure 2.1: Comparison of stress elongation response between tissues and 
commercial materials. 𝜆: elongation, which is the ratio between elongated length 
(L) and initial length (L0). 𝜎1342: true stress. 𝜎1342 = 𝜎2(+𝜆, where 𝜎2(+ is the 
engineering stress. 



 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 Physical model for characterization of tissues’ mechanics 

To characterize the mechanical properties of tissues and tissue-like materials, we used an 

equation of state26, which describes the relation between the true stress 𝜎1342 and elongation 

𝜆 = 𝐿 𝐿!⁄ . 

𝜎1342 (𝜆& − 𝜆5%)⁄ =
𝐸
3 @1 + 2C1 −

𝛽 D𝜆& + 2𝜆E
3 F

5&

G																																		(1) 

𝐸 is the structural modulus and 𝛽 is the firmness parameter (𝛽 = 〈𝑅*(& 〉 𝑅-./&⁄ ), where 〈𝑅*(& 〉is 

the mean square end-to-end distance between neighboring L-domains and 𝑅-./ is the 

Figure 2.2: Comparison of differential stress between biological tissues and 
synthetic materials. 𝜆: elongation, which is the ratio between elongated length (L) and 
initial length (L0). 𝜎1342: true stress. 𝜎1342 = 𝜎2(+𝜆, where 𝜎2(+ is the engineering 
stress. 𝜕𝜎1342 𝜆⁄ : differential true stress with respect to elongation. Synt. Elastin: 
synthetic elastin. bb50, bb70, bb100, 400: bottlebrush elastomers with degree of 
polymerization (DP) of backbone = 50, 70, 100, 400. PU/AM: 
poly(urethane)/acrylamide hydrogel. PDMS: poly(dimethylsiloxane). 
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contour length of the bottlebrush backbone. Hence, the value of 𝛽 is always between 0 and 1. 

Typically, 𝛽 of linear polymer is lower than 0.1 while that of bottlebrush is higher than 0.8. 

The higher the 𝛽, the less extendable the material, or in other words, the firmer the material. 

By substituting 𝜆 = 1 into the right-hand side of eq 1, we obtain the Young’s modulus 𝐸!: 

                                          𝐸! = 𝐸(1 + 2(1 − 𝛽)5&) 3⁄ .                                                (2) 

Figure 2.3 demonstrated the effect of firmness on the stress strain curves of materials. Each 

curve was constructed using the theoretical equation (1). While the structural modulus is 

constant, the higher the firmness, the more rapidly stiffening the material.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

In an experimental setting, the stress-strain curves are obtained by tensile stress 

measurements on a dynamic mechanical analysis (DMA) instrument. The experimental data 

Figure 2.3: Effect of firmness (𝜷) on the shape of the stress-strain curves. 𝜆-./: 
Elongation at which the material breaks. The curves were plotted by substituting E = 
3000 Pa into equation (1) while varying the values of 𝛽.  
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are then fitted using equation (1) to obtain structural modulus E and firmness 𝛽. Figure 2.4 

showed a few examples of experimental stress-curves of tissues, all of which exhibited 

similar J shapes to the theoretical curves illustrated in Figure 2.3. Table 2.1 summarized the 

firmness 𝛽 and moduli values of the tissues in Figure 2.4. The firmness of tissues fell in the 

range of (0.2, 1), while the order of magnitude of Young’s modulus 𝐸! was in the range of 

10' − 106 Pa. Hence, the mechanical properties of tissues could be described as soft but 

firm.  

 

 

 

 

 

 

 

 

 

Table 2.1: Firmness and modulus of example biological tissues. 

Tissue Type 𝜷 𝑬 (kPa) 𝑬𝟎 (kPa) 

Back skin 0.90 36.1 2417 

Fetal membrane 0.79 1.28 19.8 

Dog lung 0.69 0.25 1.8 

Pig belly skin 0.45 11.2 28.5 

Chicken gut 0.29 3.41 5.6 

Figure 2.4: Examples of experimental tissues’ stress-elongation curves. 
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CHAPTER 3 

Variety of Tissues’ Mechanical Properties 

3.1 Tissue types 

 Over the course of evolution, human and other invertebrates have developed 

sophisticated functional systems within their body. Compartmentalized components have a 

variety of structures and functions to fulfill everyday tasks of biological organisms. For 

example, each human organ has a unique set of structural compositions and capabilities and 

can work together with each other to accomplish tasks crucial to human being’s survival. 

One of the defining features that make up organs is tissue27. Depending on the location and 

function of the organ, the tissue’s composition and structure differ. There are four main types 

of tissues in human body: epithelial, connective, muscle, and nervous tissues, and within 

each type, tissues are further divided into subcategories (Figure 3.1)28. Epithelial tissues 

form boundaries between different environments, such as between inside and outside of 

organs. They protect underlying tissues from radiation, desiccation, and toxins, and regulate 

excretion and secretion of chemicals29. Muscle tissues can be further divided into three 

categories: skeletal muscle, cardiac muscle and smooth muscle. Skeletal muscles are attached 

to the skeletal system via tendons and ligaments to maintain posture and control movements. 

Cardiac muscles are found only in the heart and are in charge of contractions and maintaining 

blood pressure. Smooth muscles are mostly found in the linings of numerous organs such as 

stomach and lung30. Nervous tissues exist in the central nervous system, which include brain 
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and spinal cord. Nervous tissues have crucial functions in integration and communication31. 

Connective tissue is a major component in the body and exist in all types of organs and have 

different functionalities depending on their locations, including but not limited to, binding 

and support, protection, insulation, and transportation. Loose connective tissues such as 

areolar and adipose are universal packing materials such as fat and store energy for the 

human body. Dense connective tissues typically have closely packed bundles of collagen 

bundles. They transfer movements from bone to muscle and prevent organs from tearing. 

Cartilage tissues maintain the shape of a specific structure while allowing flexibility and can 

also act as shock absorption (i.e., intervertebral discs). Bones are osseous tissues that are hard 

and lightweight in nature32，33. 

Figure 3.1: Tissue types and examples of organs and body parts that belong to each tissue 
type.  
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3.2 Collagen and Elastin 

 Depending on their categories, types, and functions, tissues exhibit different 

mechanical properties, namely, firmness and modulus. On structural level, two decisive 

factors that play important roles in the mechanical properties of tissues are collagen 

composition and architecture. Collagen occupies about 30% of protein mass in the human 

body and exists in fiber forms9,34,35. Collagen fibers are formed by three peptide chains that 

assemble into triple helices. To date, there are 28 types of collagens that have been 

discovered based on the amino acids that make up the peptide chains. Five most common 

collagens are: collagen I, found in skin, tendon, bone; collagen II, found mostly in cartilage; 

collagen III: main component of reticular fibers; collagen IV: mostly found in basal lamina, 

the epithelium-secreted layer of the basement membrane; collagen V: found in cell surfaces 

such has hair and placenta. Collagens can further be categorized according to their structural 

organization. The most common category of collagens is fibril-forming collagens, such as 

collagen I, II, II, V, where collagen fibers align parallelly to form thick cylindrical bundles. 

Fibril associated collagens with interrupted triple helices (FACIT) collagens, such as 

collagen IX, XII, XIX, XXI, do not form bundles but attach to other collagen bundles, and 

are responsible for signaling and cross-linking between collagens. Collagen IV, VIII, X are 

network forming collagens that can form rhombus or hexagonal shaped networks by covalent 

cross-linking. Collagen VII are anchoring fibrils that connect epidermis to dermis tissues. 

Collagen VI forms beaded filaments that are ubiquitous in connective tissues. They bridge 

and anchors cells to other components of the extracellular matrix.  

               In addition to collagen, another protein that influences the mechanical properties of 

tissues is elastin. While collagen contributes to the tensile strength of tissue, elastins help 
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tissue stretch and recoil, preventing tissue from being overly stretched. Elastins are composed 

of highly disordered peptide chains that oppose both stretching and tight packing since they 

restrict the number of conformations available to elastins. Elastic tissue, such as artery and 

blood vessels, is a subcategory of dense connective tissues that contains a large amount of 

elastin fibers. The combination of collagen and elastin gives biological tissues their unique 

nonlinear elasticity. The deformation of tissue is characterized by two stages: an elastic 

deformation followed by rapid stiffening when a small strain is applied12-14, as discussed in 

Section 2.2. 

 

3.3 Tissue mechanical properties by categories and functions 

 Stress-strain curves of 126 soft tissue samples were obtained from 60 literature 

sources (APPENDIX 1). The figures in the literature were digitized in Origin Lab and the 

data obtained after digitization were fitted according to the process described in Section 2.2.  

Soft tissues, defined as Young’s modulus less than 107 Pa, were selected for this 

study. Each tissue sample obtained from literatures was assigned to a category, based on the 

most prominent type of tissue in the sample, resulting in 11 categories: adipose, cardiac 

muscle, cartilage, dense irregular, dense regular, elastic, epithelial, nervous, reticular, and 

skeletal muscle. Figure 3.2 showed the average firmness 𝛽 and Young’s modulus 𝐸! for 

each tissue category. The average modulus for all tissue categories was between 104 - 106 Pa, 

however; a wide range of firmness was observed. The reticular tissues had the lowest average 

firmness, which could be due to the presence of network-forming collagen fibers, i.e., 

reticular fibers. Nervous tissue category contained only brain tissues and had the second 

lowest average firmness. The other 9 categories of tissues had high average firmness in the 
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range of (0.8, 0.95). Among them, dense regular, cartilage, and cardiac muscle tissues had 

the highest average firmness around 0.9, indicating that these types of tissues are most 

resistant to deformation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 showed the firmness and Young’s modulus of every tissue in this study, 

grouped by category. Majority of the tissues’ firmness were between 0.8 and 0.99 and their 

average Young’s modulus had 105 Pa order of magnitude. Dense regular tissues, specifically 

tendons and ligaments, separated themselves from this group. They had exceptionally high 

firmness (> 0.9) and high modulus (106 Pa). Nervous and reticular tissues had lower modulus 

(~ 104 Pa) and a wider range of firmness. Since majority of tissue categories fell into the 

same range, the mechanical properties differences in tissues did not originate from tissue 

types. 

Figure 3.2: Average firmness 𝜷 and Young’s modulus 𝑬𝟎 of tissues according to 
categories.  
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Next, grouping tissues by their functionalities was investigated. The tissues were 

divided into 7 groups according to their functions: shock absorbance, barrier, insulation, 

blood pressure maintenance, movement, tearing prevention, and force transfer. Examples of 

shock absorbance include intervertebral discs, where fibrocartilages are found between bony 

vertebrae and knee meniscus. Epithelial tissues, such as fetal membrane, serve as barriers 

between the organ and its external environments. Tissues such as adipose, areolar, and brains 

are examples of insulation tissues. Cardiac muscles, such as heart valves, are tissues that 

maintain blood pressure as they have sophisticated and delicate control of heart contractions 

and pumping. Movement tissues are essentially skeletal muscles that control the movement 

of human bodies. Tissues that prevent tearing are mostly dense irregular tissues such as skin 

dermis, pericardium, and cornea. Dense regular tissues such as ligaments and tendons are in 

Figure 3.3: Young’s modulus 𝑬𝟎 vs. firmness 𝜷 of tissues grouped by categories. 
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charge of transfer forces from bone to muscles. According to Figure 3.4, tissues that are 

responsible for insulation has the lowest modulus and a wide range of firmness. Since 

insulation tissues do not tend to undergo external forces such tension and compression, it has 

lower Young’s modulus and lower firmness. Opposite to insulation tissues, tissues that 

transfer forces have the highest modulus and firmness, as they need to resist high tensile 

stress. Right beneath force transfer tissues are tissues that prevent tearing. These tissues are 

slightly more flexible than tissues that transfer forces as they have a wider range of firmness, 

but their firmness still fall into the high range. These tissues can be stretched, but not to a 

great extent. 

 

 

 

 

 

 

 

 

 

 

 

 

Though tissues that maintain blood pressure have the same range of modulus to 

tissues that control movements, but they have a tighter firmness range, to prevent themselves 

Figure 3.4: Young’s modulus 𝑬𝟎 vs. firmness 𝜷 of tissues grouped by functions. 
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from being over-stretched. This was reflected in Figure 3.5, where the mechanical properties 

of skeletal muscles (movement) and cardiac muscles (blood pressure maintenance) were 

compared side to side. Though both groups have the same range of modulus (104 - 105 Pa), 

tissues that maintain blood pressure, i.e., cardiac muscles, have much lower range of firmness 

(0.8 - 0.9) compared to tissues in charge of movement (skeletal muscles). This difference 

reflects that organs’ evolutions are closely tied to their functionalities. Since cardiac muscles 

have the essential function to control heart’s contraction and pumping, it is crucial for them 

to maintain a stable shape and hence results in very limited flexibility and involuntary 

movement. On the other hand, skeletal muscles are much more flexible as animals such as 

invertebrates, need to be able to move around freely and have voluntary control of their 

movements. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Young’s modulus 𝑬𝟎 vs. firmness 𝜷 of muscle tissues grouped by functions. 
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3.4 Tissue mechanical properties by collagen structural organization 

Since the firmness of the majority of the tissues was higher than 0.5, several folds 

higher than common synthetic tissue mimics, this study focused on tissues with 𝛽 > 0.5. As 

introduced in Section 3.2, the structural component responsible for tissues’ mechanical 

properties is collagen fibers. Although the majority of tissues’ main collagen component is 

collagen I, they still exhibit different mechanical properties. For example, both tendon and 

arteries’ major collagen component is collagen I10, but artery tissues had lower average 

firmness than tendons. Such distinctions could arise from the difference in collagen 

architectural organizations. Collagens can assemble into different morphologies and form 

different types of networks, similar to synthetic polymers can be manufactured to for 

different networks9. To study the influence of collagen architectures of tissues on their 

mechanical properties, microscopic pictures of each tissue used in this study were examined 

to find the underlying collagen architecture. Consequently, the tissues were divided 

according to the 7 types of architectures summarized based on microscopic pictures found in 

previous literatures35-54 (Figure 3.6): densely aligned bundle, meshlike network, parallel 

array, multidirectional bundle, interweaving bundle, loosely woven network, rhombus 

network. Note that there was an 8th category, where very small percent of collagens (< 6%) 

were scarcely distributed in the extracellular matrix36. Furthermore, some literature sources 

measured singular collagen fibers isolated from the tissue, and hence these samples were 

referred as “singular fiber”. 
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The mechanical properties of tissues grouped according to collagen architectures 

were displayed in Figure 3.7. As shown in Figure 3.7, densely aligned bundles35,37-39 had the 

highest modulus, close to 107 Pa, as well as high firmness, which was in the range of (0.99, 

1). Tissues that had mesh-like network collagen architectures40 also had very high firmness, 

similar to the densely aligned bundles, with modulus 0.5 - 1 order of magnitude lower. 

Tissues with multidirectional bundle41-44 and parallel array45-49 organizations overlapped in 

the modulus vs. firmness map. Both had a relatively wide range of firmness (0.6 - 0.95) and a 

modulus range between 104 - 105 Pa. Note that although densely aligned bundles and parallel 

arrays had a similar pattern, they should not be mixed in the same category, as parallel arrays 

often contain other substances, distributed among the spaces between fibers. For example, 

Figure 3.6: Different types of collagen structural organization. 
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parallel arrays in skeletal muscles have cable-like networks, capable of expanding47. Elastic 

tissues have elastins distributed throughout the parallel collagen fibers, which allow the 

tissues to stretch and recoil48. Tissues with interweaving bundles architecture occupied a 

unique region in Figure 3.7: moderate modulus but high firmness, this corresponded to the 

cardiac muscles in charge of maintaining blood pressure51,52. A high firmness but moderate 

modulus allow heart muscles to contract and pump blood without being over-stretched. 

Tissues with loosely woven networks52,53 had slightly lower modulus compared to parallel 

arrays and multidirectional bundles. Singular collagen fibers and tissues with very low 

collagen content scarcely distributed in the extracellular matrix had the lowest modulus and 

the widest range of firmness, along with tissues with rhombus-shaped network54.  

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Young’s modulus 𝑬𝟎 vs. firmness 𝜷 of tissues grouped by collagen 
structural organization. 
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CHAPTER 4 

Synthetic Strategy for Bio-mimicking Multifunctional Materials 

4.1 Previous work 

 A plethora of work has been conducted to construct chameleon-like materials that 

possess both non-linear elasticity and structural coloration. In particular, the lamellar 

morphology (1D) has been widely used in photonic materials. Grubbs et al. have reported 

using bottlebrush block copolymer (BBCP) as a multilayer photonic material55. 

Poly(isocyanate) based macromonomers were copolymerized by ring opening metathesis 

polymerization (ROMP) (Figure 4.1 A). Controlling the degree of polymerization (DP) of 

each block allowed the BBCP to self-assembly into lamellar structures with varied 

periodicity. When the DP increased, λmax red shifted according to reflectance spectroscopy, 

which indicated an increase in domain spacing (Figure 4.1 B).  

 

 

 

 

 

 

 

 

  

Figure 4.1: 1D multilayer photonic crystal assembled from poly(isocyanate) based 
bottblebrush copolymers (BBCPs)55. (A) Chemical structure and assemble 
morphology of BBCPs. (B) Reflectance spectroscopy of BBCPs.  



 24 

 Although BBCPs have the advantage to quickly assemble into lamellar morphology 

and display a wide range of color with varied DP of each block, they lack the flexibility of 

biological tissues, as well as the ability to change their colors once assembled.  

Two rationales are commonly used when designing materials with tunable colors: 

changing refractive indices contrast and changing domain spacing. Miguez et al. constructed 

lamellar like structures by fabrication of silicon/titanium oxide hybrid nanoparticles. The 

two-component system was formed by the hybrid material and air. Air has a low refractive 

index and with the introduction of  solvent vapor, a significant decrease in reflectivity 

occurred due to diminished refractive index contrast (Figure 4.2)56.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Silicon/titanium oxide hybrid nanoparticles macroscopic structure and 
corresponding reflectance change upon exposure to solvent vapors56.  
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While these assembled nanoparticles have tunable reflectivity, they are brittle and 

stiff, hence lacking the desired stretchable and soft mechanical properties that are commonly 

observed in biological tissues. In order to introduce elasticity while preserving the lamellar, 

Gong et al. sandwiched a poly(acrylamide) (PAAm) hydrogel between poly(dodecylglyceryl 

itaconate (DGI)) layers resulting in materials that possessed lamellar-like macroscopic 

structure and were flexible at the same time. PolyDGI formed rigid bilayers with interior 

hydrophilic tails and exterior hydrophobic DGI heads. Compressible PAAm hydrogels were 

then inserted into these bilayers yielding an orange material at zero strain. When the 

materials were compressed, the spacing between polyDGI bilayers decreased, which caused 

the reflected wavelength to blue shift, as shown in both pictures of the material and 

reflectance spectrum57 (Figure 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: 1D photonic materials capable of changing color upon mechanical 
stimuli57. (A) The materials were fabricated by inserting PAAm hydrogel between 
amphiphilic poly(DGI) layers. (B) Reflected wavelength decreased when materials 
were compressed. (C) Reflectance spectroscopy of photonic material with respect to 
compression. 
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To summarize, current materials are able to mimic partial properties of chameleon-

like tissues. However, these materials either lack tissue-like mechanical properties (as in the 

case of Grubbs), or requires blending of multiple materials (as in the case of Gong). 

Therefore, the goal remains: construct materials assembled from one single molecule that 

possess both tissue-like mechanical properties and change color upon stimuli.  

 

4.2 Synthetic Strategy 

 To address this challenge, we introduced linear–bottlebrush–linear (LBL) triblock 

copolymers that microphase separate to yield thermoplastic elastomers (or plastomers) 

(Figure 4.4)58 analogous to linear triblocks59-62. However, bottlebrush strands are 

architecturally disentangled and extended within LBL networks63-66, which generates a strong 

non-linear modulus increase with deformation63,67,68. Concurrently, microdomains of flexible 

linear blocks serve as hidden length reservoirs that unravel at larger deformations58,69,70. This 

oxymoronic combination of supersoft matrices composed of stiff brush macromolecules and 

hard microdomains composed of flexible linear chains creates the tissue-like stress-strain 

response. Furthermore, specific mechanical properties and optical properties, such as 

Young’s modulus (𝐸!), firmness (β), and elongation-at-break (𝜆-./), reflected wavelength, 

can be encoded into the LBL architecture by controlling degrees of polymerization (DP) of 

linear blocks (𝑛"), bottlebrush blocks (𝑛##), and bottlebrush side chains (𝑛$,)68. 

 

 

 

 



 27 

 

 

 

 

 

 

 

 

Figure 4.4: Linear-bottlebrush-linear (LBL) triblock copolymers micro-phase 
separate into physical networks (plastomers). Linear poly(methyl methacrylate) 
(PMMA) was grown from both ends of the poly(dimethylsiloxane) (PDMS) bottlebrush, 
resulting in linear-bottlebrush-linear triblock copolymers which self-assemble into physical 
networks and resemble the mechanical properties of biological tissues. 𝑛##: DP of 
P(PDMS11MA) bottlebrush, 𝑛": DP of linear PMMA block on each end, 𝑛+: grafting 
density of P(PDMS11MA) bottlebrush, 𝑛$,: side chain length of the P(PDMS11MA) 
bottlebrush, 𝜒: Flory-Huggins interaction parameter. 
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CHAPTER 5 

Synthesis of Linear-Bottlebrush-Linear (LBL) Triblock Copolymers 

5.1 Synthetic Scheme 

 To gain precise synthetic control of 𝑛" and 𝑛##, we employed atom transfer radical 

polymerization (ATRP), to produce polymers with narrow molecular weight distribution and 

well-defined architectures71,72. Figure 5.1 outlines the two-step synthesis of LBL copolymers. 

First, P(PDMS11MA) bottlebrushes with Br-terminated chain ends were prepared by grafting-

through polymerization of PDMS11MA macromonomers with a difunctional ATRP initiator, 

2-EBiB. After reaching a desired 𝑛##, the reaction was quenched, and the bottlebrush solution 

was precipitated several times into methanol to remove unreacted macromonomer. Purified 

bottlebrush macroinitiators were then used to grow either linear PMMA or poly(benzyl 

methacrylate) (PBzMA) at both ends. Typical dispersity of the bottlebrush macroinitiator and 

the corresponding LBL copolymer was Đ@1.5 (Figure 5.2). 

 

Figure 5.1: Two-step synthesis of linear-bottlebrush-linear triblock copolymers. The 
triblock contained a P(PDMS11MA) bottlebrush block and linear PMMA blocks at both 
ends. Macromonomer PDMS11MA has 11 Si atoms but totally 28 atoms (10 O atoms and 7 
C atoms, forming a side chain. We use 𝑛$, = 14  as a number of effective monomeric units 
per side chain by analogy with 14 vinyl monomeric units forming a chain with 28 atoms.    
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5.1.1 Synthesis of ethylene bis(2-bromoisobutyrate) (2-BiB) 

The synthesis was adapted from a literature with some modifications73. Ethylene glycol 

(14.43 g, 0.23 mol) was added under nitrogen to a flask containing a magnetic stirring bar and 

placed in an ice bath. Anhydrous THF was added into the flask. Triethylamine (60 mL, 3 eq.) 

was added to the reaction mixture. 2-Bromoisobutyryl bromide (120 g, 2.2 eq.) was added 

dropwise to the reaction mixture with a syringe pump. After a complete addition, the reaction 

mixture stirred at 0 °C for extra one hour and then at ambient temperature overnight. The 

mixture was filtered, and the volatile compounds were removed by rotary evaporation. The 

resulting brown solution was dissolved in chloroform and treated with 1M HCl solution, 

saturated NaHCO3 solution and three times with deionized water. The organic layer was dried 

over dry MgSO4. The volatile compounds were removed with vacuum to give a light brown 

solid. This sample passed through a column to purify and achieve pure creamy white crystal 

Figure 5.2: Gel permeation chromatography (GPC) spectra of bottlebrush and 
triblock copolymers. (A) Multi-angle light scattering gel permeation chromotography 
(MALS-GPC) spectrum of P(PDMSMA)830. (B) MALS-GPC spectrum of PBzMA500-b-
P(PDMS11MA)860-b-PBzMA500.  
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after drying sample. Nuclear magnetic resonance (NMR) spectrum was used to confirm the 

success of synthesis (Figure 5.3). 

 

 

5.1.2 Synthesis of PDMS11MA bottlebrush 

In a typical synthesis, PDMS11MA macromonomer (MW = 1000 g/mol, 𝑛$, = 14) 

was dissolved in toluene, as a 0.4 M solution. Difunctional initiator ethylene bis(2-

bromoisobutyrate) (2-BiB) was added according to a targeted DP, which was calculated by 

[M]0:[I], along with Cu(I)Br, and tris[2-(dimethylamino)ethyl]amine (Me6TREN), where the 

molar equivalents of the catalyst and ligand relative to initiator were 

[I]:[Cu(I)Br]:[Me6TREN] = 1:2:2 ([I] was calculated as the moles of 2-BiB divided by the 

volume of the reaction volume). The reaction temperature was kept at 45 ºC for the duration 

of the polymerization. The conversion was confirmed by 1H NMR. After desired conversion 

was reached, the reaction was quenched by air and the reaction mixture was washed in 

methanol six times to remove unreacted macromonomers and copper catalysts. The purified 

a b 

a 

b 

CDCl3 

Figure 5.3: 1H-NMR spectrum of purified 2-BiB in CDCl3 (400 MHz). 
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bottlebrush was dried overnight. Figure 5.4 showed the NMR of a purified PDMS11MA 

bottlebrush.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.3 Synthesis of L-B-L Linear-Bottlebrush-Linear triblock copolymer 

To prepare L-B-L triblock copolymers, synthesized and purified PDMS bottlebrushes 

were used as macroinitiators to grow linear methacrylate side-blocks at both ends. Here we use 

poly(benzyl methacrylate)-bbPDMS-poly(benzyl methacrylate) (PBzMA-bbPDMS-PBzMA) 

as an example. In a typical synthesis, 5.44 g of bbPDMS macroinitiator (nbb = 860, 6.33 µmol), 

5 g of BzMA (280 mM), 6.6 µL Me6TREN (25 µmol), and 30 mL toluene were added to a 100 

Figure 5.4: 1H-NMR spectrum of purified PDMS11MA bottlebrush in CDCl3 (400 MHz). 
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mL Schlenk flask equipped with a stir bar. The solution was degassed by nitrogen gas for 1.5 

hrs and then 3.6 mg of CuBr (25 25 µmol) was quickly added to the Schlenk flask and the 

reaction mixture was then degassed for another 5 minutes. The flask was immersed in a 45ºC 

oil bath until desired conversion was reached (verified by 1H-NMR).  The reaction was then 

quenched by exposure to air and dried. The crude product was dissolved in DCM and 

precipitated in methanol three times to remove unreacted BzMA monomers and copper 

catalysts. The pure products were dried with airflow to remove DCM and methanol.  and 

vacuumed overnight. The DP and mass ratio of linear end bocks were measured by 1H-NMR 

(CDCl3, Brüker 400 MHz spectrometer) as shown in Figure 5.5 for PBzMA-b-

P(PDMS11MA)-b-PBzMA 

 

 

 

 

 

 

 

 

 

 

 Figure 5.5: 1H-NMR of PBzMA-b-P(PDMS11MA)-b-PBzMA (400 MHz, CDCl3): 3.89 (-
CH2-O-C=O, br, 2H), 4.9 (O-C=O-CH2-C6H5, s, 2H), 0.54 (COO-CH2-CH2-CH2-Si(CH3)2, 
t, 4H). nL=𝐴𝑟𝑒𝑎(𝑎

!)
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Using the same method described above poly(methyl methacrylate)-b- P(PDMS11MA)-

b-poly(methyl methacrylate) (PMMA-b-P(PDMS11MA)-b-PMMA) was synthesized (Figure 

5.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5.2 Synthetic challenges 

Despite this highly optimized method, termination events such as biradical 

combination or chain transfer remain a challenge when employing ATRP for grafting-through 

polymerization of macromonomers. Compared to small molecules, bulky macromonomers 

have slower rates of propagation and observable equilibrium monomer concentrations where 

Figure 5.6: 1H-NMR of PMMA-b-P(PDMS11MA)-b-PMMA (400 MHz, CDCl3): 3.9 
(-CH2-O-C=O, br, 2H), 3.62 (COO-CH3, s, 3H), 0.54 (COO-CH2-CH2-CH2-Si(CH3)2, 
t, 4H).nL=𝐴𝑟𝑒𝑎(𝑎

8)
3R ∗ 𝐴𝑟𝑒𝑎(𝑏) 4R ∗ 𝑛##. 
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the rate of propagation equals the rate of depropagation when [M] reaches its equilibrium 

monomer concentration, [M]e. Polymerization does not occur when [M]0 < [M]e74. The slow 

rate of polymerization, relative to the rates of chain breaking reactions such as termination and 

transfer reactions, and the contribution of depolymerization could lead to a greater challenge 

in achieving both high yield and chain end functionality. Loss of chain end functionality is 

detrimental to the synthesis of LBL triblock copolymer as it results in undesired linear–

bottlebrush diblocks (LB) and bottlebrush homopolymer (B) impurities (Figure 5.7A). Due to 

the high molecular weight and similar solubility parameters, these side products are difficult 

to isolate by common purification techniques such as precipitation or dialysis; therefore, they 

could remain in the final materials and affect their mechanical properties. The effect of these 

impurities on the stress-strain response of LBL plastomers was demonstrated by varying 

polymerization conditions (Figure 5.7B). Plastomers with the same targeted chemical and 

architectural composition from two different batches demonstrated significant difference in 

mechanical properties (Table 5.1, 5.2). 
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Table 5.1: Mechanical parameters of PMMA1200-b-P(PDMSMA)900-b-PMMA1200  

Batch  𝜷 E0 (kPa) 

1 0.67 39.3 

2 0.58 9.19 

 

Table 5.2: Mechanical parameters of PMMA200-b-P(PDMSMA)900-b-PMMA200  

Batch  𝜷 E0 (kPa) 

1 0.29 5.40 

2 0.20 2.95 

 

Accordingly, comparison of two identical plastomers before and after extraction with 

hexane (Figure 5.8) showed significant stiffness increase after removal of free bottlebrushes 

Figure 5.7: Possible side products that caused inconsistencies in plastomer 
mechanical properties. (A) Possible side products of LBL synthesis: bottlebrush 
homopolymer (B), linear-bottlebrush diblock (LB), linear PMMA homopolymer (L). (B) 
Two batches of two different plastomers 𝑃𝑀𝑀𝐴%&!!−𝑏 − 𝑃(PDMSMA)9!!− 𝑏 −
𝑃𝑀𝑀𝐴%&!! (blue) and 𝑃𝑀𝑀𝐴&!!− 𝑏 −𝑃(𝑃𝐷𝑀𝑆𝑀𝐴)9!!− 𝑏 −𝑃𝑀𝑀𝐴&!! (black) 
demonstrate significant variation of stress-elongation curves upon uniaxial extension at 
𝜀̇= 0.008𝑠−1,T = 25°C. For both batches, the initial macromonomer concentration were 
0.4 M and the reaction were run in toluene at 45 ºC. Macroinitiator synthesis for batch 1 
was quenched at 74% conversion and that for batch 2 was quenched at 83% to reach the 
same	𝑃(𝑃𝐷𝑀𝑆𝑀𝐴)9!! chain length. 
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(Table 5.3, 5.4), which were present between 25-29 wt% relative to the total yield of LBL 

plastomer (Table 5.5, Figure 5.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3: Mechanical parameters of PMMA1500-b-P(PDMSMA)900-b-PMMA1500 before 
and after extraction with hexane  
 

 𝜷 E0 (kPa) 

Before 0.65 10.8 

After 0.75 35.4 
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Figure 5.8: Difference between stress-elongation curves of plastomers before 
and after extraction. Stress-elongation curves of two LBL plastomers 
𝑃𝑀𝑀𝐴%6!! − 𝑏 − 𝑃(𝑃𝐷𝑀𝑆𝑀𝐴)9:! − 𝑏 − 𝑃𝑀𝑀𝐴%6!! (blue) and 𝑃𝑀𝑀𝐴:;! − 𝑏 −
𝑃(𝑃𝐷𝑀𝑆𝑀𝐴)9:! − 𝑏 − 𝑃𝑀𝑀𝐴:;! (black) show significant difference in stress-
elongation response before (dashed lines) and after (solid lines) extraction of free B-
blocks from the plastomer samples. 
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Table 5.4: Mechanical parameters of PMMA480-b-P(PDMSMA)900-b-PMMA480 before 
and after extraction with hexane  
 

 𝜷 E0 (kPa) 

Before 0.28 2.1 

After 0.36 8.3 

 

Table 5.5: Free P(PDMS11MA) bottlebrushes extracted from LBL plastomers (Figure 
5.8) 
 

𝒏𝒃𝒃 𝒏𝑳 wt% of P(PDMS11MA) 
extracted 

940* 480 25 

840 24 

1500 29 

* Degree of polymerization of bottlebrush backbone after 83.3% on macromonomer 
conversion at a targeted 𝑛## = 1125.  

Figure 5.9: NMR of hexane extracted substance from triblock copolymers.  
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Conversely, we deliberately mixed P(PDMS11MA) bottlebrush homopolymers with 

triblock copolymers during network self-assembly to demonstrate the plasticization effect on 

the stress-strain response (Figure 5.10). A significant decrease in modulus (~3.5x) is observed 

after the addition of only 21 wt% P(PDMS11MA) bottlebrushes (Table 5.6), which is counter 

to traditional network swelling theory75 as the presence of free P(PDMS11MA) significantly 

alters the LBL plastomer self-assembly pathway of the L-domains. Therefore, the mechanics 

of LBL, LB, and B mixtures warrants a future study that will investigate specific contributions 

of free brush fraction and their architectural dimensions (nsc, ng, nbb). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 5.10: Effect of free bottlebrush impurities on plastomer stress-elongation 
response. The stress-elongation response changes upon adding 21 wt.% of free 
P(PDMS11MA) (nbb = 860) bottlebrushes to PBzMA540-b-P(PDMS11MA)860-b-
PBzMA540 plastomers. 
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Table 5.6: Effect of bottlebrush impurity on the mechanical properties of PMMA540-b-
P(PDMSMA)860-b-PMMA540 

 

Wt% of 
impurtity 

𝜷 E0 (kPa) 

0 0.54 25.5 

21 0.52 7.1 

 

Note that termination and chain transfer may also occur during linear block 

polymerization as observed by extractable linear homopolymers (Figure 5.11), but this does 

not significantly affect the resulting mechanical properties as (i) terminated LBLs are still 

mechanically active and average out over the entire network, and (ii) free homopolymer 

constitutes small fractions (2-4wt%). To test the impurity hypothesis, we mixed linear 

homopolymers into purified triblocks during self-assembly. Their mechanical performance did 

not noticeably deviate from the pure triblock (Figure 5.11, Table 5.7) and stresses the 

importance of minimizing termination and chain transfer in P(PDMS11MA) polymerization. 
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Table 5.7: Mechanical properties of pure triblocks and mixtures with linear 
homopolymers. 
 

Wt%  𝜷 E0 (kPa) 

0 0.29 5.7 

1.0 0.33 4.1 

5.0 0.34 4.5 

10.0 0.34 4.6 

 

5.3 Optimizing synthesis conditions 

To summarize, impurities such as bottlebrush homopolymers and linear-bottlebrush 

diblocks affect the mechanical properties LBL copolymers. Therefore, we investigated in 

synthetic conditions of grafting-through of PDMS11MA macromonomers to produce 

Figure 5.11: Effect of linear homopolymer impurity on plastomer stress-
elongation response. The stress-elongation response changes upon adding 1.wt%, 
5.wt%, and 10.wt% of free P(BzMA) homopolymers to PBzMA330-b-
P(PDMS11MA)900-b-PBzMA330 plastomers. 
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difunctional P(PDMS11MA) macroinitiator brushes with high 𝑛##~1000, chain-end fidelity, 

and yield. Specifically, we explored the following synthetic parameters: (i) targeted DP of 

bottlebrush backbone, (ii) initial monomer concentration, (iii) solvent type, and (iv) ATRP 

techniques.  

Grafting-through polymerization of PDMS11MA macromonomers was set up 

according to the procedure described in Section 5.1. Kinetic aliquots were taken at different 

timepoints to determine conversion by 1H NMR. The extent of termination in a grafting-

through polymerization was assessed by deviation from a linear trend by a reversible first-

order kinetic equation. This equation accounts for the reversibility in a grafting-through 

polymerization as [M] approaches the equilibrium monomer concentration [𝑀]2  of 

PDMS11MA. When a polymerization reaches [𝑀]2, the rate of propagation is equal to the rate 

of depropagation and polymerization stops75-79. [𝑀]2 in a grafting-through polymerization is 

solvent and temperature-dependent80. The [𝑀]2 	was estimated by the dead-end monomer 

concentrations ([M]∞) of conventional radical polymerizations performed at [M]0 = 100 – 400 

mM81,82. In a typical experiment, 16 g (0.016 mol) of PDMS macromonomer was dissolved in 

20 mL toluene in a 100 mL Schlenk flask charged with a stir bar, resulting in a 400 mM 

solution. 0.159 g AIBN (0.97 mM) was added and the solution was degassed for 1 hour under 

nitrogen. The flask was then immersed in a 50 ºC oil bath and samples were taken every 1, 2, 

4, 6, 8 hours and then every 15 – 20 hours until the concentration of the monomer remained 

constant. This concentration was the equilibrium monomer concentration ([M]e) (Figure 5.12). 

The conversion of the macromonomer was confirmed by 1H NMR. The above process was 

repeated for 200 mM and 100 mM initial monomer concentration as well as in tert-

butylbenzene.  
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A decrease in the slope kp, app  can be attributed to a change in radical concentration. In 

a normal ATRP, a decrease in slope would correspond to an increase in [CuBr2] with radical 

termination according to the persistent radical effect83. All 10% decreases in kp, app  are denoted 

and used to assess livingness in model polymerizations.  

As shown in Figure 5.13A, a decrease in rate of polymerization was observed at lower 

conversion when targeting higher DP of the bottlebrush backbone. Polymerizations which 

targeted 𝑛##= 900, and 1200, exhibited a 10% decrease in apparent rate of polymerization 

(kp,app) at 85 and 70 % conversion, respectively. Polymerization with a low targeted nbb = 360 

showed no noticeable decrease in kp,app. Note that a higher targeted nbb required a lower initiator 

and CuBr/Me6TREN catalyst concentration. Control in a polymerization with only 

CuBr/Me6TREN activator will rely on radical termination to generate CuBr2/Me6TREN 

deactivator, which can lead to a gradual improvement in polymerization control via faster 

Figure 5.12: Equilibrium monomer concentration kinetic plot. Concentration 
versus time for free radical polymerization of PDMS macromonomer in (A) toluene 
and (B) tert-butylbenzene. [M]e in toluene was determined to be 10 mM and that in 
tert-butylbenzene was determined to be 5 mM. 
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exchange reaction between active and dormant species but at the expense of the loss of chain 

end functionality and polymerization rate.  

Next, the effect of initial monomer concentration was investigated (Figure 5.13B). For 

the same targeted 𝑛## = 1200, a significant decrease in polymerization rate occurred at lower 

conversions with a lower [𝑀]!. Specifically, 10% decreases in kp,app  observed after reaching 

70 and 60% conversion for polymerizations conducted at [M]0 = 0.40 M and 0.25 M, 

respectively. From these studies, we concluded that high chain end functionality of 

P(PDMS11MA) can be improved by polymerization at a high initial monomer concentration, 

targeting lower conversion. This agrees with general rules for controlled radical 

polymerization84.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Effect of target nbb and initial monomer concentration on kinetics of 
grafting-through polymerization of PDMS11MA macromonomer. (A) Effect of 
target nbb on kinetics of grafting through of PDMS11MA macromonomer. The initial 
concentration was 0.4M. As target DP increased, termination started occur at lower % 
conversion. (B) Effect of initial monomer concentration on kinetics of grafting through 
of PDMS11MA macromonomer. The target nbb was kept at 1200. As initial monomer 
concentration decreased, termination started to occur at lower % conversion. [M]e in 
toluene  = 10 mM. 
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To verify the effect of chain-end fidelity on plastomer mechanical properties, we 

synthesized three batches of P(PDMS11MA) with the same final DP of 𝑛## = 850 ± 10 , 

calculated as conversion×targeted 𝑛##. All three batches were synthesized using 0.4 M initial 

monomer concentration. Batch 1 had targeted 𝑛## = 1075, and the reaction was quenched at 

80% conversion. Targeted backbone DP for Batch 2 was 1200 and the reaction was quenched 

at 70% conversion. Finally, Batch 3 had targeted 𝑛## = 1600, and the reaction was quenched 

at 53% conversion. Using 3 different P(PDMS11MA) macroinitiators, series of PBzMA-b-

P(PDMS11MA)-b-PBzMA triblocks with various 𝑛"  were synthesized. Films of each 

plastomer were prepared by slow solvent evaporation and followed by tensile stress 

measurements. The measurement was performed three times for each sample. The complete 

set of stress strain curves of the three batches of plastomers as well as their corresponding 

mechanical parameters were included in Figure 5.14 and Table 5.8 – 5.10. The mechanical 

parameters, Young’s modulus 𝐸! and firmness 𝛽, were obtained using the equation described 

in Section 2.2.  
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Table 5.8: Mechanical properties of batch 1 PBzMA-b-P(PDMSMA)-b-PBzMA 
plastomers 
 

𝒏𝒃𝒃 𝒏𝑳 𝜷 E0 (kPa) 

860 390 0.38±0.03 11.3±0.52 

860 500 0.46±0.02 15.5±1.7 

860 650 0.44±0.03 16.7±1.0 

Figure 5.14: The strain-elongation response of three batches of PBzMA-b-
P(PDMS11MA)-b-PBzMA triblocks. (A) The stress-elongation responses of batch 1 
PBzMA-b-P(PDMS11MA)-b-PBzMA plastomers. 𝑛##= 860, 𝑛"= 390, 500, 650. (B) The 
stress-elongation responses of batch 2 PBzMA-b-P(PDMS11MA)-b-PBzMA plastomers. 
𝑛##= 850, 𝑛"= 50, 240, 350, 460. (C) The stress-elongation responses of batch 3 
PBzMA-b-P(PDMS11MA)-b-PBzMA plastomers. 𝑛##= 850, 𝑛"= 40, 240, 450. 
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Table 5.9: Mechanical properties of batch 2 PBzMA-b-P(PDMSMA)-b-PBzMA 
plastomers 
 

𝒏𝒃𝒃 𝒏𝑳 𝜷 E0 (kPa) 

850 50 0.22±0.01 7.5±0.3 

850 240 0.34±0.01 16.8±0.4 

850 350 0.42±0.01 16.6±0.25 

850 460 0.50±0.01 22.5±0.1 

 

Table 5.10: Mechanical properties of batch 3 PBzMA-b-P(PDMSMA)-b-PBzMA 
plastomers 
 

𝒏𝒃𝒃 𝒏𝑳 𝜷 E0 (kPa) 

850 40 0.08±0.002 4.5±0.1 

850 240 0.19±0.01 9.9±0.3 

850 450 0.35±0.02 14.2±0.9 

 

 

Figure 5.15A shows example stress-strain curves of LBL triblocks with the same 

𝑛##, 𝑛", and 𝑛$, using P(PDMS11MA) macroinitiators from batch 1, 2, and 3. Despite similar 

composition, plastomers assembled from these three triblocks exhibited different mechanical 

properties. By plotting 𝐸! vs. 𝛽, we compared the mechanical properties of three series of 

plastomers synthesized from different batches (Figure 5.15B). Each series consisted of 3-4 

plastomers with different 𝑛". The slope of batch 1 was approximately the same as batch 2, 

but the positions of batch 2 plastomers were above batch 1. Figure 5.15B suggests that 

plastomers synthesized using batch 2 macroinitiators are stiffer compared to batch 1 

plastomers. This observation corroborated our hypothesis as reactions quenched at lower 

conversions (batch 2) lead to bottlebrushes with higher chain-end fidelity and less 
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unfunctional BB impurities.  However, a drop in modulus and firmness was observed when 

the targeted 𝑛## was highest with batch 3. However, a drop in modulus and firmness was 

observed when the targeted nbb was highest with batch 3. Batch 3 had the highest [M] 

relative to [2-BiB], which could lead to a lower [Cu(II)Br2] concentration and poor 

deactivation. This suggests the need to balance yield (batch 1) and [Cu(II)Br2] concentration 

(batch 3) to improve chain end fidelity and achieve optimal reaction conditions (batch 2) 

which are consistent with conventional ATRP kinetics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: Comparison of mechanical properties of three batches of PBzMA-b-
P(PDMS11MA)-b-PBzMA triblocks. (A) Stress-strain curves of plastomers assembed 
from triblocks with the same architectural parameters (𝑛## = 860, 𝑛" = 450, 𝑛$, = 14) 
but synthesized using different batches of P(PDMS11MA) macroinitiators. (B) Young’s 
modulus (𝐸! ) vs. firmness parameter (𝛽 ) for three series of plastomers that were 
synthesized using the same P(PDMS11MA) macroinitiator from three different batches.  
Batch 1: Targeted nbb = 1075, % conversion = 80%; Batch 2: Targeted nbb = 1200, % 
conversion = 70%; Batch 3: Targeted nbb = 1600, % conversion = 53%.  
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The above experiments confirmed that lower chain-end fidelity of the bottlebrush 

macroinitiator affects the mechanical properties of plastomers. A primary cause of chain-end 

fidelity loss during radical polymerization could be radical termination or chain transfer of a 

growing polymer to monomer or to solvent. Generally, ATRP proceeds faster in polar solvents 

due to improved solubility of catalysts and an increase in KATRP85. In the case of the 

PDMS11MA macromonomer, polar solvent selection is limited because the nonpolar PDMS 

sidechain has a particularly low Hildebrand solubility parameter of 𝛿 = 7.3𝑐𝑎𝑙% &⁄ 𝑐𝑚5' &⁄ 86. 

An ideal solvent for the grafting-through polymerization of PDMS11MA would have a large 

difference in Hansen solubility parameter to limit thermodynamic barriers (increase yield) 

while also having a low transfer coefficient79. Transfer of a H-atom from solvent to growing 

polymer radical can become important at high monomer conversion where rate of propagation 

is low due to a low [M], while the concentration of growing radical polymer chain ([P*]) and 

H-atom capped solvent ([S-H]) remain high. This can slow a polymerization if the solvent 

derived dormant species (for example benzyl bromide formed from toluene) is much less 

ATRP active (has ca. 2 orders of magnitude lower kact) than the dormant P(PDMS11MA)-Br 

polymer chain87-89.  

tert-Butylbenzene and chlorobenzene were assessed as solvents for PDMS11MA 

polymerization due to their anticipated lower transfer coefficients collected from literature 

(Table 5.11). Both solvents have similar solubility profiles to toluene but lack functional 

groups with readily extractable benzylic protons. Polymerization of PDMS11MA in 

tetrahydrofuran (THF) exhibited an earlier decrease in kp,app relative to toluene and was not 

investigated further (Figure 5.16).   
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Table 5.11: Transfer coefficients for polymerization of methyl methacrylatea 

Material Cs (x 104) Temperature (oC) 

Toluene 0.200 60 

Xylene 0.43 60 

1,4- Dioxane 0.222 80 

THFb 0.5 60 

Chlorobenzene 0.074 60 

a	𝐶𝑠 = 	 ?!"
?#

. All values collected from the Polymer Handbook, 4th Ed. bCs is given for a styrene 

polymerization in THF conducted at 60 oC.      

 
 
 

 

Figure 5.16: Comparison of reaction kinetics in toluene and THF. Both reactions were run at 
45 ºC, and the initial monomer concentration was 0.4 M. The targeted DP of the bottlebrush 
backbone was 𝑛## = 900, and [I]:[Cu(I)]:[Me6TREN] = 1:2:2. For the reactions that occurred in 
toluene, termination occurred after the conversion reached 85%, while termination started to 
occur at 75% conversion for the reaction in THF. 
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Polymerizations were run in three different solvents (toluene, tert-butylbenzene, and 

chlorobenzene) under the same [M]0=0.4M, targeted 𝑛## = 1200 , and 

[I]:[Cu(I)Br]:[Me6TREN] = 1:2:2 ([I] was calculated as the mole of 2-BiB divided by the 

volume of the reaction volume). Comparison of the reversible first order kinetic plots shows 

that reactions in tert-butylbenzene and chlorobenzene proceeded to > 90% conversion before 

a significant decrease in kp,app was observed, while polymerization in toluene gradually slowed 

after reaching 70% conversion, (Figure 5.17). This systematic study suggested that solvent 

choice is important in maintaining the chain end functionality of P(PDMS11MA) bottlebrushes. 

Using solvents such as tert-butylbenzene and chlorobenzene, we were able to avoid formation 

of solvent derived dormant species which would slow polymerization as well as maintaining 

an efficient rate of ATRP. Hence, this modification in solvents provided a more reliable 

method of synthesizing P(PDMS11MA) bottlebrushes with high chain end fidelity. 
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Another approach to decrease the probability of chain breaking reactions during 

grafting-through polymerization of PDMS11MA macromonomers is to improve catalytic 

systems. To extend the livingness of controlled radical polymerization as well as decrease the 

amount of catalysts used, several alternatives to the traditional ATRP methods such as 

activators regenerated by electron transfer (ARGET) ATRP, initiators for continuous activator 

regeneration (ICAR) ATRP, eATRP, photoinduced ATRP were recently developed90. In our 

study, we selected supplemental activator and reducing agent (SARA) ATRP technique91. 

SARA ATRP is a subset of ARGET ATRP, where Cu(0) is used as a reducing agent, but it can 

also serve as a supplemental activator for halogen terminated initiators and polymer chain-

ends. Cu(0) can comproportionate with Cu(II) to produce two equivalences of Cu(I) while in the 

Figure 5.17: Comparison of reaction kinetics in different solvents. All reactions were run at 45 
ºC, and the initial monomer concentration was 0.4 M. The targeted DP of the bottlebrush backbone 
was 𝑛## = 1200 , and [I]:[Cu(I)]:[Me6TREN] = 1:2:2. For the reactions that occurred in tert-
butylbenzene and chlorobenzene, termination occurred after the conversion reached 90%, while 
termination started to occur at 80% conversion for the reaction in toluene. [M]e in toluene = 10 mM. 
[M]e in tert-butylbenzene  = 5 mM  
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reverse process, two equivalents of Cu(I) disproportionate into one equivalent of Cu(0) and one 

equivalent of Cu(II) (Figure 5.18)92. The benefits of using SARA ATRP include a lower 

catalyst loading, a higher concentration of deactivating Cu(II) species, and lower sensitivity to 

oxygen. 

 

 

 

 

 

 

 

 

 

In this study, copper wire with 1 mm diameter was used as the source of Cu(0), initial 

PDMS11MA macromonomer concentration was 0.40 M, and [I]:[ Cu(II)Br2]:[Me6TREN] = 

1:0.1:2. In order for the reaction to proceed more efficiently, solvent effects should also be 

taken into account. One of the factors that affects the rate of SARA ATRP is the rate at which 

Cu(I) is extracted from the surface of Cu(0) and dissolved in solution93. Here, tetrahydrofuran 

(THF) was investigated in SARA ATRP in comparison to toluene used in traditional ATRP. 

The targeted backbone DP for both experiments was nbb=1200. As seen in Figure 5.19, 

termination took place after 70% conversion for the reaction using normal ATRP. However, 

SARA ATRP was able to achieve 92% conversion, at which the reaction was quenched, before 

the rate decrease started to occur. There was also an induction period of > 5 hours in the kinetic 

Figure 5.18: Mechanism of SARA ATRP. 
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plot in SARA ATRP. Note that although Cu(0) itself can act as an activator, the activating 

efficiency is significantly lower than that of Cu(I) 91. Furthermore, as shown in Figure 5.19, the 

reactions in SARA ATRP were 3-fold slower compared to the traditional ATRP method. This 

was expected due to the induction period as well as more Cu(II) in the system causing the 

deactivation rate to be faster, hence the overall rate of ATRP was slower and accompanied by 

less termination94.  

 

5.4 Closing remarks 

In this chapter, we demonstrated that the unique tissue-mimetic plastomer platform is 

sensitive to synthetic impurities caused by loss of chain end functionality during 

macromonomer polymerization, which elucidates observed discrepancies in the mechanical 

properties of plastomers with similar architecture targets. Grafting-through polymerization of 

PDMSMA is challenging due to the limited selection of solvents which are not prone to 

Figure 5.19: Comparison between traditional ATRP and SARA ATRP. Targeted 𝑛## =
1200, [Cu(0)] = 0.08 cm2/mL, [Cu(II)] = 10 mol%, [Cu(II)Br2]:[Me6TREN] = 1:20. Initial monomer 
concentration was 0.4 M for both reactions, temperature was set to 45 ºC. In toluene, [M]e=10 
mM. 
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chain breaking reactions and a slow rate of propagation which is in competition with 

depropagation95. We were able to provide synthetic insights to overcome the challenges to 

prepare difunctional P(PDMS11MA) macroinitiators with high chain end fidelity.  

In particular, we performed kinetic studies of grafting-through polymerization of a 

PDMS11MA macromonomer under systematically different conditions. Kinetic studies 

showed that chain breaking reactions can become significant in polymerizations conducted at 

low initial monomer concentrations in solvents with high transfer coefficients. Increasing 

macromonomer concentration, targeting higher polymerization DP, and stopping 

polymerization at lower conversion decreased the extent of terminated chains.  

Polymerization in tert-butylbenzene and chlorobenzene had better polymerization control 

due to a decreased rate of chain transfer reactions compared to toluene. Additionally, SARA 

ATRP was successful in synthesizing P(PDMS11MA) with high targeted backbone DP and 

chain-end fidelity. In conclusion, the best synthetic conditions to minimize LB and B 

impurities were as follows: 1) [M]o > 0.4 M; 2) solvents without moieties to undergo chain 

transfer reactions, such as tert-butylbenzene and chlorobenzene; and 3) methods which 

produce a higher fraction CuBr2/L deactivating catalyst without relying on RT, such as 

SARA ATRP.  

Additionally, we developed a novel method to qualitatively assess loss of chain end 

functionality in macromonomer polymerization by the mechanical properties of final LBL 

triblocks. All of these efforts will facilitate future LBL triblock design to achieve robust and 

consistent mechanical properties.  
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CHAPTER 6 

Controlling the Mechanical Properties of Plastomers 

6.1 Effect of 𝒏𝑳 on stress-elongation responses of plastomers 

 The mechanical properties of plastomers are controlled by the architectural encoding 

of the linear-bottle-linear (LBL) triblock copolymer. As discussed in Section 4.2, various 

architectural and chemical parameters can be decided and tuned at the synthetic level, 

including degrees of polymerization (DP) of linear blocks (𝑛"), bottlebrush blocks (𝑛##), and 

bottlebrush side chains (𝑛$,)26. To investigate the effect of individual parameter on the 

mechanical properties of plastomers, we synthesized a series of PBzMA-b-P(PDMS11MA)-b-

PBzMA LBL triblocks with the same 𝑛## and 𝑛$, but differed in 𝑛". Figure 6.1 showed the 

stress-elongation curves of the series and the fitting results were shown in Table 6.1. As 

mentioned previously, the chemically and architecturally linear and bottlebrush components 

microphase separate into physical networks, with linear domains distributed in the soft 

bottlebrush matrix58-60. The diameter of the linear domain R is proportional to 𝑛". Hence, 

plastomers with higher 𝑛" will form larger spherical domains. Larger domain has higher 

curvature, causing the bottlebrush to be more pre-strained, which in turn increases the 

firmness of the plastomer. Furthermore, higher 𝑛" also increases the entanglement in the 

linear domain, which causes the modulus of the plastomers to increase.  
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Table 6.1: Fitting results of PBzMA-b-P(PDMS11MA)-b-PBzMA with varied 𝒏𝑳  

𝒏𝑳 E (kPa) 𝑬𝟎 (kPa) 𝜷 R 

50 5.3 7.5 0.22  

230 9.0 16.8 0.34  

340 7.2 16.6 0.42  

460 7.5 22.5 0.50  

 

6.2 Effect of 𝒏𝒃𝒃 on stress-elongation responses of plastomers 

Interested in the effect of 𝑛##, a different series of PBzMA-b-P(PDMS11MA)-b-PBzMA 

triblocks were synthesized where the volume fraction of the linear block 𝜙" (calculated as 

𝑉" (𝑉" + 𝑉##)⁄ , where 𝑉" was the total volume of the linear blocks and 𝑉## was the volume of 

the bottlebrush block) and the 𝑛$, were held constant and 𝑛## was varied. Figure 6.2 showed 

Figure 6.1: Stress-elongation response of PBzMA-b-P(PDMS11MA)-b-PBzMA triblock 
copolymers with varied 𝒏𝑳.   
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the stress-elongation curves of the series and the fitting results were shown in Table 6.2. As 

𝑛## increased, the bottlebrush backbone is less strained, causing 𝛽 and modulus to decrease.  

 

 

 

 

 

 

 

 

 

 

 

Table 6.2: Fitting results of PBzMA-b-P(PDMS11MA)-b-PBzMA with varied 𝒏𝒃𝒃 

𝒏𝒃𝒃 𝒏𝑳 𝝓𝑳 E (kPa) 𝑬𝟎 (kPa) 𝜷 

320 150 0.12 5.6 19.6 0.54 

850 460 0.13 7.5 22.7 0.50 

1150 470 0.11 3.7 6.9 0.33 

 

 

6.3 Decoupling firmness and modulus 

Noticeably, the above data showed that firmness and modulus increased concurrently. 

Interested in whether it was possible to decouple firmness and modulus and control each 

Figure 6.2: Stress-elongation responses of PBzMA-b-P(PDMS11MA)-b-PBzMA triblock 
copolymers with varied 𝒏𝒃𝒃. 𝑛$, = 14, 𝜙	~ 0.12.  
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parameter separately, we conducted a series of mixing experiments. PMMA-b-

P(PDMS11MA) diblock was synthesized and mixed with PMMA-b-P(PDMS11MA)-b-

PMMA triblocks. The two components had the same 𝜙".The effect of the weight percentage 

(wt%) of the diblock was shown in Figure 6.3, which demonstrated that increase in wt% of 

diblock mixture would decrease the modulus, but the modulus was not affected. Since the 

diblock only had one end of linear chain, it created dangling ends upon microphase 

separation, triggering the decrease in modulus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 Mixing experiments of triblocks  

 Additionally, we conducted a series of mixing experiments between different triblocks. 

First, we mixed two triblocks with the same 𝜙", 𝑛$,, and chemical composition, but different 

Figure 6.3: Adding linear-bottlebrush (LB) deblocks decreased modulus of the 
linear-bottlebrush-linear (LBL) triblocks. (A) The stress-elongation response change 
upon adding 10. wt%, 40. wt% of linear-bottlebrush PMMA170-b-P(PDMS11MA)440 
diblocks to PMMA360-b-P(PDMS11MA)940-b-PMMA360 plastomers. 𝑛$, = 14 for both 
polymers. (B) Effect of wt% of LB mixtures on the mechanical properties of LBL 
triblocks.   
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𝑛## . The two triblocks, PBzMA470-b-P(PDMS11MA)1150-b-PBzMA470 and PBzMA150-b-

P(PDMS11MA)320-b-PBzMA150, were co-dissolved in toluene in 50:50 weight ratio. The film 

was prepared by slowly evaporating the solvent. Figure 6.4  and Table 6.3 showed the 

mechanical behavior of the pure plastomers and the mixed plastomers. The Young’s modulus 

and firmness of the mixture were between that of the two pure plastomers.  
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Figure 6.4: Strain-elongation responses of PBzMA-b-P(PDMS11MA)-b-PBzMA 
triblock copolymer mixtures with varied 𝒏𝒃𝒃. 1: PBzMA470-b-P(PDMS11MA)1150-b-
PBzMA470 plastomers. 2: PBzMA150-b-P(PDMS11MA)320-b-PBzMA150 plastomers. 
The 𝜙"  for both plastomers is 0.11. 1+2: Mixture of 1 and 2 in 50:50 weight ratio.  
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Table 6.3: Mechanical parameters of two PBzMA-b-P(PDMS11MA)-b-PBzMA 
plastomers with different 𝒏𝒃𝒃 and their mixture (50:50 weight ratio).  
 

Sample 𝒏𝒃𝒃 𝒏𝑳 𝝓𝑳 E (kPa) 𝑬𝟎 (kPa) 𝜷 

1 1150 470 0.11 3.7 6.9 0.33 

1+2 - - - 2.7 7.8 0.48 

2 320 150 0.12 5.6 19.6 0.54 

 
 

 

Same conclusion could be made by mixing two triblocks with the same 𝑛##, 𝑛$,, and 

chemical species, but different 𝜙"(Figure 6.5, Table 6.4). It was expected that the size of the 

linear domain of the mixture would be between that of the two pure plastomers, hence 

causing the Young’s modulus and firmness to fall in between the two pure plastomers.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5: Strain-elongation responses of PBzMA-b-P(PDMS11MA)-b-PBzMA 
triblock copolymer mixtures with varied 𝝓𝑳. 2: PBzMA150-b-P(PDMS11MA)320-b-
PBzMA150 plastomers. 3: PBzMA260-b-P(PDMS11MA)320-b-PBzMA260 plastomers. 
2+3: Mixture of 2 and 3 in 50:50 weight ratio.  
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Table 6.4: Mechanical parameters of two PBzMA-b-P(PDMS11MA)-b-PBzMA 
plastomers with different 𝝓𝑳and their mixture (50:50 weight ratio).  
 

Sample 𝒏𝒃𝒃 𝒏𝑳 𝝓𝑳 E (kPa) 𝑬𝟎 (kPa) 𝜷 

2 320 150 0.12 5.6 19.6 0.54 

2+3 - - - 4.6 26.8 0.65 

3 320 260 0.19 5.6 34.6 0.68 

 
 

Finally, we performed a series of experiments using two triblocks with the chemical 

structure, 𝑛##, 𝑛$,, but different 𝑛". The mixture was composed of different weight ratio of 

the two plastomers. Figure 6.6 and Table 6.5 showed the mechanical behaviors of the 

mixtures. Overall, as we increased the percentage of the plastomer with higher 𝑛", both 

modulus and firmness increased. This corroborated with our observations when the mixture 

was in 50:50 ratio.  
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Table 6.5: Mechanical parameters of two PBzMA-b-P(PDMS11MA)-b-PBzMA 
plastomers mixed with different weight ratios   
 

No. Ratio of 1:7 E (kPa) 𝑬𝟎 (kPa) 𝜷 

1 100:0 5.6 19.6  0.544 

2 90:10 5.3 22.0 0.58 

3 70:30 5.6 26.4 0.61 

4 50:50 4.6 26.8 0.65 

5 30:70 5.2 28.3 0.64 

6 10:90 5.5 31.8 0.65 

7 0:100 5.1 34.6 0.68 

 

 

Figure 6.6: Strain-elongation responses of two PBzMA-b-P(PDMS11MA)-b-
PBzMA triblock copolymers mixed with varied weight ratios: 1: 100% 
PBzMA150-b-P(PDMS11MA)320-b-PBzMA150 plastomers. 7: 100% PBzMA260-b-
P(PDMS11MA)320-b-PBzMA260 plastomers. 1:7 = 90:10 (2), 70:30 (3), 50:50 (4), 
30:70 (5), 10:90 (6). 
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6.5 Closing remarks 

 In conclusion, we uncovered means to control the mechanical properties of 

plastomers. Furthermore, we demonstrated methods to decouple modulus and firmness. 

Finally, by mixing triblock copolymers with various weight ratios, we discovered that the 

mixtures of plastomers covered a wide range of mechanical properties. Hence, in order to 

control the mechanical properties of plastomers, we can not only vary the architectural and 

chemical parameters of the triblocks, but also mix different plastomers so that we do not need 

to synthesize new materials. However, so far we only established qualitatives relationships 

between change in Young’s modulus and firmness with respect to the ratio of mixtures. 

Further study can be done to discover the quantitative correlation.  
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CHAPTER 7 

Machine Learning Assisted Strategic Synthesis Planning 

7.1 Challenges in cost-efficient production of plastomers  

 The mechanical properties of plastomers can be precisely controlled by a series of 

chemical and architectural encoding: degree of polymerization (DP) of the bottlebrush 

backbone nbb, DP of linear block nL, side chain length nsc, grafting density of the bottlebrush 

backbone ng, Flory-Huggins interaction parameter χ, and average melting temperature of the 

bottlebrush and linear blocks Tg. These parameters can be controlled during synthesis, which 

is a two-step atomic transfer radical polymerization (ATRP): the grafting-through 

polymerization of macromonomers of choice followed by chain extension of the 

macroinitiator (Chapter 5). Using the protocol developed in Chapter 5, we have produced 

materials that mimicked tissues’ high firmness and soft modulus. Plastomers produced in our 

group have provided some general trend in correlation between [nbb, nL, nsc, ng, χ, Tg] and [β, 

E0]. For example, we demonstrated in Section 6.1 and Section 6.2 that higher nbb and lower 

nL lead to lower firmness and modulus and vice versa. However, we still yet to uncover the 

relative importance of these parameters in the mechanical properties of plastomers. 

Furthermore, we still need yet to establish a quantitative correlation between all six 

parameters and the mechanical properties of plastomers. Establishing such a relationship will 

allow strategic planning of the plastomer synthesis to target desired quantatitive values of 



 65 

mechanical properties, which in turn saves cost in both time and raw materials. To solve this 

problem, we have decided to utilize statistical and machine learning modeling.  

 

7.2 Introduction to machine learning 

 Machine learning is a subset of data analytic algorithms and modeling. The name 

comes from the fact that machines are able to process and model complex and high-

dimensional datasets by going through training processes. It has proven to be powerful and 

effective in solving challenging problems in many different fields, such as finance, retail, 

technology, and healthcare. Starting from several years ago, machine learning has been 

applied in chemistry research, such as drug discovery, retrosynthesis of small organic 

molecules, reaction prediction, just to name a few96-101. Although machine learning has been 

used to predict material properties such as inorganic materials and metalloids102-107, 

applications in prediction of soft materials’ mechanic properties are still lacking. In this 

study, we utilized decision tree, random forest, gradient boosting, and deep neural network 

models which were trained using a dataset of previously synthesized triblocks to predict the 

firmness and modulus of plastomers. Decision tree breaks the dataset into smaller and 

smaller subsets, and distributes these subsets to different leaf nodes, until the subsets at a leaf 

node cannot be further broken down. Since there are many possible schemes to branch out 

from a root, a branching scheme that results in the lowest standard deviation in each branch 

is selected108-110. As its name suggests, random forest is an ensemble of decision trees. The 

dataset is broken into multiple subsets randomly and each subset is distributed to a decision 

tree and the results from each tree are averaged to produce the final prediction111,112. Similar 

to random forest, gradient boosting also consists of multiple decision trees. However, the 
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algorithm focuses on improving the performance of the worst decision tree113-115. Last but not 

the least, neural network is inspired by the neuron network in human brain. Neural network 

contains multiple nodes divided into three types of layers: input layer, hidden layer, and 

output layer116,117. All nodes are interconnected, analogous to the neurons in human brains. 

The input layer refers to the dataset that gets passed to a hidden layer, or multiple hidden 

layers. The output layer can consist of multiple nodes, depending on the number of outputs. 

In this study, it consists of two nodes, since the model is predicting numerical results for 

firmness and modulus. Neural network uses a user-specified loss function, which computes 

the difference between predicted values from the output layer and actual values. The goal is 

to minimize the loss after numerous iterations.  

 

7.3 Motivation and rationale 

 Previously, we reported on linear-block-linear triblock copolymers that microphase 

separated into linear domains distributed in bottlebrush matrix (Figure 7.1A) and have 

demonstrated their resemblance to biological tissues58. Remarkably, the advantage of using 

the triblock approach was the ability to encode the mechanical properties into the material 

assembled from one single molecule without the need for composites or cross-linkers. 

Interested in the mechanical performance all of the plastomers we have produced, we plotted 

plastomers and tissues on the Young’s modulus (E0) vs. firmness (β) map (Figure 7.1B). The 

plastomers shown in Figure 7.1B differed in degree of polymerization (DP) of the 

bottlebrush backbone nbb, DP of linear block nL, side chain length nsc, grafting density of the 

bottlebrush backbone ng, Flory-Huggins interaction parameter χ, and average melting 

temperature of the bottlebrush and linear blocks Tg. Noticeably, the mechanical properties of 
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plastomers overlapped with those of tissues in the left region of the graph, which had 

firmness below 0.8 and modulus between 104 - 105 Pa. However, a gap still existed in the 

high firmness (> 0.8) and high modulus region (> 105 Pa).  

 

 

 

 

 

 

 

 

 

 

 

 

To bridge the gap between plastomers and tissues, plastomers with high firmness and 

modulus need to be synthesized. However, due to the large number of tunable parameters 

involved, it was difficult to select the correct combination to result in a plastomer with 

targeted mechanical properties. Although previously, we have established understanding of 

qualitative and physical effects of nbb, nL, and nsc on firmness and modulus of the 

plastomers70, we still lacked a quantitative model that correlates all synthetic parameters with 

the resulting mechanical properties. Previously, the triblock copolymers were synthesized 

based on a trial-and-error process: a polymer was synthesized and then prepared for 

Figure 7.1: Mechanical property gap between synthetic plastomers and tissues. 
(A) Linear-bottlebrush-linear (LBL) triblock copolymer microphase-separate into linear 
domains distributed in bottlebrush matrix, forming plastomers. nbb: Degree of 
polymerization (DP) of the bottlebrush backbone; nL: DP of linear block; nsc: Side 
chain length; ng: grafting density of the bottlebrush backbone; 𝜒: Flory-Huggins 
interaction parameter. (B) Comparison between the mechanical properties of soft 
biological tissues and synthetic plastomers.  
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mechanical property measurement. If the result of the measurement did not satisfy the 

targeted firmness and modulus, the entire process was repeated after tweaking synthetic 

parameters until the desired mechanical properties were obtained. Establishing a model that 

accurately predicts the firmness and modulus mechanical parameters of plastomers based on 

chemical and architectural parameters saves both cost and time.  

 

7.4 Data preparation 

A collection of plastomers was established, using previously synthesized and 

characterized materials (APPENDIX 2). The collection consisted of a wide range of 

architectural parameters as well as a variety of chemical compositions. In particular, the 

features being considered were degree of polymerization (DP) of the bottlebrush backbone 

nbb, DP of linear block nL, side chain length nsc, grafting density of the bottlebrush backbone 

ng, Flory-Huggins interaction parameter χ, and average melting temperature of the 

bottlebrush and linear blocks Tg. Four models were used: decision tree, random forest, 

gradient boosting, and neural networks. Prior to being fed into the model, the plastomer 

dataset was first standardized so that all values were in the range of (0,1). This scaling 

stabilized the variance of the variables, standardized the variables to have the same range so 

that their contribution could be compared, and accelerated the convergence during the 

training phase of the neural network. The dataset was divided into training set and test set. 

The training set was used to tune the parameters of the models while the test set was used to 

evaluate the prediction performance and generalizability of the models. Mean absolute error, 

computed as the average between absolute error of firmness and modulus, and percent error, 
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computed as the difference between predicted and actual value divided by the actual value, 

were used as the metrics for prediction accuracy.  

 

7.5 Multiple Linear Regression 

 A multiple linear regression model (MLR) was used as the baseline model, since it’s 

a simpler model than the ones introduced in Section 7.2. It assumed that the firmness 𝛽 and 

Young’s modulus 𝐸! are linear combinations of [nbb, nL, nsc, χ, Tg] (equation 3, 4).   

            

           				𝛽 = 𝑐! + 𝑐%𝑛## + 𝑐&𝑛" + 𝑐'𝑛$, + 𝑐6𝑇+                           (3) 

                    𝐸! = 𝑐! + 𝑐%𝑛## + 𝑐&𝑛" + 𝑐'𝑛$, + 𝑐:𝜒 + 𝑐6𝑇+                     (4) 

 

Table 7.1 displayed the fitting results for the MLR model of firmness. As shown by 

the estimates of the coefficients, firmness decreased with increasing nbb and Tg and increased 

with increasing the other three parameters. This observation was in accordance with our 

previous conclusions from mechanical testing (Section 6.2). The R2 value was 0.676, 

implying that the fitting performance was moderate but not exceptional. The p-values of the 

coefficients for χ and Tg were both larger than 0.1, indicating that these two parameters might 

not be significant in deciding the value of 𝛽. Therefore, we used forward selection to select 

the combination of parameters to include in the model that minimized the Akaike 

information criteria (AIC). Table 7.2 showed the fitting result using forward selection. The 

Flory-Huggins interaction parameter 𝜒 was not included in the new model. The p-values 

were all less than 0.1, indicating that all parameters were significant. The R2 value of the new 

model was 0.671, which was relatively similar to the model that included all parameters. 
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Therefore, excluding 𝜒 did not compromise the fitting performance. Judging by the absolute 

values of the coefficients in Table 7.2, nsc contributed most significantly to 𝛽, followed 

closely by nL. Tg contributed negatively to 𝛽 and had the smallest effect.  

 
Table 7.1: Fitting results summary of the multiple linear regression model of firmness 
𝜷. 
 

Coefficient 
 

Estimate Std. Error P-value 

𝑐! 0.30 3.9E-2 3.25E-11 

𝑐% -1.58E-4 4.2E-5 3.7E-4 

𝑐& 3.02E-4 5.5E-5 4.9E-7 

𝑐' 5.8E-3 6.9E-4 1.5E-12 

𝑐: 4.3E-3 3.8E-3 0.27 

𝑐6 -1.67E-3 1.19E-3 0.17 

 

 
Table 7.2: Fitting results summary of the multiple linear regression model of firmness 𝜷 
fitted with forward selection. 
 

Coefficient Estimate Std. Error P-value 

𝑐! 0.56 0.036 1.26E-5 

𝑐% -0.32 0.085 3.0E-4 

𝑐& 0.45 0.080 3.0E-7 

𝑐' 0.44 0.053 2.0E-12 

𝑐6 -0.27 0.15 0.084 
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The same forward selection process was used to fit Young’s modulus E0. To stabilize 

the variance, we fitted the standardized logarithmic 𝐸!. Table 7.3 displayed the fitting results 

of logarithmic 𝐸!. In this case, the forward selection kept three predictors, nbb, nL, and 𝜒. The 

p-values for all coefficients were smaller than 0.1, indicating that all three predictors were 

significant in affecting the Young’s modulus. The coefficient for nbb was negative, indicating 

that increasing nbb decreased modulus, which corroborated with our observations from 

mechanical testing (Section 6.2). Furthermore, nbb contributed most significantly to modulus 

among these predictors while 𝜒 contributed the least.  

 

Table 7.3: Fitting results summary of the multiple linear regression model for 
logarithmic Young’s modulus 𝑬𝟎 fitted with forward selection. 
 

Coefficient Estimate Std. Error P-value 

𝑐! 0.57 0.033 < 2E-16 

𝑐% -0.86 0.079 < 2E-16 

𝑐& 0.36 0.079 1.52E-5 

𝑐: 0.26 0.10 0.013 

 

 

7.6 Complicated statistical models 

 The R2 values for the multiple linear regression (MLR) models in Section 7.5 

suggested that the MLR models were underfitting and the relationship between architectural 

parameters [nbb, nL, nsc, ng, χ, Tg] and the mechanical parameters [β, E0] needed to be 

described by more complicated models. Therefore, we trained decision tree, random forest, 

and gradient descent models. We tested both in-sample and out-of-sample performances of 
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these models to ensure that the models not only had high prediction accuracy, but also did 

not overfit the data. We used R2 values to evaluate the in-sample fitting performance and 

percent error as the metrics for prediction performance. In addition to the types of models, 

we also investigated in the hyperparameters for each model to select the combination of 

hyperparameters that resulted in models with best fitting results as well as generalizability. 

 

7.6.1 Decision Trees 

 To tune the performance of the decision tree model, we tuned the minimum sample 

split hyperparameter, which is the minimum number of samples required at each node before 

splitting. The smaller the minimum sample split, the more complicated the model is. Figure 

7.2 showed the effect of the minimum sample split on the percent error and the R2 value of 

the decision tree model. As minimum sample split increased, the percent error increased and 

the R2 value decreased, indicating that both in-sample and out-of-sample fit performances 

worsened. This observation was expected as the decision tree regression algorithm aims to 

minimize the standard deviation of each node. The more samples at each node, the higher the 

standard deviation.  
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 Next, we tested the effect of max depth of the tree parameter of the decision tree 

model. Once the tree’s max depth is reached, it will not allow further splitting. Figure 7.3 

showed the effect of the max depth on the percent error and the R2 value of the decision tree 

model. As we increased the maximum depth of the tree, R2 increased and the percent error 

decreased, indicating the improvement of both in-sample and out-of-sample performance. 

However, it was noticeable that once the maximum depth exceeded 12, the improvement in 

R2 and percent error became much less significant. Therefore, we could cap the max depth at 

12 for the decision tree model to guarantee both model performance and efficiency.  

 

Figure 7.2: Effect of minimum sample split on in-sample and out-of-sample 
performance of the decision tree model.  % Error = |predicted value – actual value| / 
actual value x 100%.   
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 An advantage of using decision tree was that it allowed us to view the importance of 

each feature in predicting the firmness and Young’s modulus. Figure 7.4 showed the feature 

importance of the decision tree model that was trained on standardized dataset. The 

parameter that had the highest influence over firmness and modulus was nsc, which accounted 

for approximately 50% of the contribution. The next important feature was nbb, which 

contributed to 30% of the mechanical properties. nL, DP of the linear block, weighted 10% 

towards the firmness and modulus of the plastomers. The two parameters that contributed the 

least to the mechanical properties were the Flory-Huggins interaction parameter and the 

average glass transition temperature. Note that ng = 1 for all samples in the training set, and 

therefore it was trivial to compute the feature importance of ng. 

 

Figure 7.3: Effect of maximum depth of the tree on in-sample and out-of-sample 
performance of the decision tree model. % Error = |predicted value – actual value| / 
actual value x 100%.   
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7.6.2 Random Forest 

 As introduced in Section 7.2, random forest model is an ensemble of decision trees. 

Therefore, in addition to the hyperparameters for decision trees, we were also able to tune the 

number of decision trees used in a random forest model. Figure 7.5 showed the effect of 

number of decision trees on the percent error and R2. As we increased the number of trees, R2 

increased, indicating that the in-sample fitting improved. However, after 40 trees, the percent 

error for firmness increased again, suggesting that the model was overfitting. Therefore, the 

optimal number of trees to use was 40.  

 

Figure 7.4: Feature importance of the decision tree model for predicting firmness 
and Young’s modulus. AvgTg: average glass transition temperature between the linear 
block and the bottlebrush block; Chi: 𝜒, Flory-Huggins interaction parameter; nsc: Side 
chain length; nL: DP of linear block; nbb: Degree of polymerization (DP) of the 
bottlebrush backbone. 
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7.6.3 Gradient Boosting 

 Similar to random forest, gradient boosting model also consists of multiple decision 

trees. Therefore, we also varied the number of trees used in the gradient boosting model. 

Figure 7.6 showed the effect of number of decision trees on the percent error and R2. As we 

increased the number of trees, R2 increased and percent error decreased, indicating that both 

the in-sample and out-of-sample fitting improved. This was different from the conclusion we 

obtained for the random forest model. The reason for this phenomenon was due to the 

different mechanism of random forest and gradient boosting. Training samples are randomly 

distributed to the decision trees concurrently in random forest and the results are averaged, 

whereas gradient boosting model is built in a stage-wise manner and aims to improve the 

Figure 7.5: Effect of number of decision trees on in-sample and out-of-sample 
performance of the random forest model. % Error = |predicted value – actual value| / 
actual value x 100%.   
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worst performing tree’s outcome at each stage. Therefore, having more trees allows further 

improvements and do not necessarily overfit the model.  

 

 

 

 

 

 

 

 

 

 

 

7.7 Neural Networks 

  

7.7 Neural Networks  

 The architecture of a typical neural network was shown in Figure 7.7. Our aim was to 

feed in a dataset containing all six features of the plastomers, [nbb, nL, nsc, ng, χ, Tg], and the 

model would in turn predict the [β, E0] values based on these features. 

Figure 7.6: Effect of number of decision trees on in-sample and out-of-sample 
performance of the gradient boosting model. % Error = |predicted value – actual value| 
/ actual value x 100%.   
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Since each node in the neural network adds to the total number of parameters, the 

neural network can easily have a large number of parameters, causing the model to overfit. 

Therefore, in this study, we paid particular attention to the out-of-sample prediction 

performance to evaluate the generalizability of the neural network models. Two typical 

techniques used in neural networks to prevent overfitting are drop out and early stopping. 

The first method assigns a dropout probability to each node in the neural network, which is 

the probability that the value of a node will be turned to zero at an iteration. In this way, we 

decrease the number of parameters trained in the neural network. The second method keeps 

track of the loss at each iteration and stops the training early once the loss stops improving. 

Figure 7.8 showed an example of the obtainable minimum mean absolute error (MAE), 

which was calculated by averaging the MAE of firmness and Young’s modulus, when drop 

out or early stopping was applied. For all three models in Figure 7.8, the number of nodes in 

each hidden layer was 20. Neither drop out or early stopping was applied to the model in 

Figure 7.8A. Drop out was applied to Figure 7.8B and early stopping was applied to Figure 

Figure 7.7: Architecture of a typical neural network. 
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7.8C. Minimum MAE decreased when drop out or early stopping was applied, suggesting 

that these two techniques were effective in decreasing overfitting in neural networks. Note 

that the effect of applying both drop out and early stopping to neural networks was also 

investigated. However, the fitting performance of this scenario was worse compared to all 

three models in Figure 7.8, indicating that the model was underfitting when both techniques 

were used. Finally, Figure 7.8 also showed that increasing the number of layers, which in 

turn increased the complexity of the model, did not result in higher prediction accuracy.  

 

 

Figure 7.8: Decreasing the extent of overfitting of neural networks by drop out and 
early stopping. (A) Neither drop out or early stopping was applied. (B) Drop out was 
applied. (C) Early stopping was applied. The size of each layer was 20 for all three models. 
The mean absolute error (MAE) was calculated by averaging the MAE of firmness and 
Young’s modulus.  
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7.8 Model performance summaries and comparisons 

To compare the four models, we evaluated both in-sample and out-of-sample 

performances of the models using mean absolute error as a metric. The training dataset, 

which contained all plastomers produced in our group, was used to test the in-sampe 

performance. For out-of-sample performance, we used several samples synthesized by 

another research group in Carnegie Mellon University. All samples in the test set had unique 

combinations of [nbb, nL, nsc, ng, χ, Tg] that were never seen by any of the models during the 

training phase (Table 7.4).  

 
Table 7.4: Chemical and architectural composition of samples in the test set. 
 
L block BB block 𝒏𝒃𝒃 𝒏𝑳 𝒏𝒔𝒄 𝒏𝒈 χ Avg 

𝑻𝒈(ºC) 
𝜷 𝒍𝒐𝒈(𝑬𝟎) 

PNiPAM POEOMA 399 328 25 2.7 1.44 31.5 0.60 4.86 

PNiPAM POEOMA 399 544 24 2.7 1.44 31.5 0.47 4.88 

PNiPAM POEOMA 399 1200 13 2.7 1.44 31.5 0.78 5.70 

PNiPAM POEOMA 399 1200 24 2.7 1.44 31.5 0.60 5.36 

PNiPAM POEOMA 399 1200 67 2.7 1.44 31.5 0.67 5.65 

PNiPAM POEOMA 399 2435 26 2.7 1.44 31.5 0.78 5.53 

PNiPAM POEOMA 399 3311 32 2.7 1.44 31.5 0.92 5.98 

 
 

Table 7.5 displayed the training set and set mean absolute (MAE) errors using the 

models in Section 7.5 – 7.7, using the performance of multiple linear regression as a 

reference. As shown in Table 7.5, all four models outperformed the linear regression model 

in both in-sample and out-of-sample prediction performance. Although the neural network 

model only improved MAE by less than 0.05 compared to decision tree, random forest, and 

gradient boosting, it performed significantly better in the out-of-sample prediction using the 
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test set. This indicated that the neural network was the most generalizable compared to other 

models. Therefore, neural network was selected to be the final model used in strategic 

planning of plastomer production. The average percent error of firmness was 13.6% while 

that for Young’s modulus was 6.07%, indicating that the neural network was accurate in 

predicting the mechanical properties of plastomers based on architectural encodings. 

However, it was more challenging for the model to predict firmness compared to Young’s 

modulus.  

 

Table 7.5: Mean absolute errors (MAE) of the training and test set using different 
statistical and machine learning models. 
 

Model Training set MAE Test Set MAE 

Multiple linear regression 0.090 0.19 

Decision tree 0.076 0.14 

Random forest 0.063 0.15 

Gradient boosting 0.059 0.14 

Neural network 0.058 0.095 

 

The finalized and trained neural network model had three hidden layers and each 

hidden layer consisted of 20 nodes. Drop out was applied, with drop out probability = 50%. 

A candidate table was generated, containing possible combinations of [nbb, nL, nsc, ng, χ, Tg] 

(APPENDIX 3) that led to plastomers with firmness > 0.8 and modulus > 105 Pa. Guided by 

the table of possible candidates, as well as taking synthetic feasibility into consideration, two 

combinations were selected among the possible candidates. Two linear-bottlebrush-linear 

triblocks, PnBMA280-b-P(PDMS11MA)100-b-PnBMA280, and PBzMA250-b-P(PDMS11MA)100-
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b-PBzMA250, were synthesized and plastomer films were prepared for mechanical 

measurements. Table 7.6 and Table 7.7 showed the proposed chemical structures vs. actual 

chemical structures of the synthesized triblocks, as well as the predicted mechanical 

properties vs. experimentally measured properties. Although the proposed nL was 1100 for 

both blocks, due to synthetic limitation, we could only grow the DP of the linear blocks to 

280 and 250 respectively. However, the resulting firmness and modulus were still higher than 

the predicted values. This indicated that our neural network underestimated the firmness and 

modulus when making predictions based on the combinations listed in Table 7.6 and Table 

7.7. This could be caused by two reasons: 1) our training data lacked samples with extremely 

high β (> 0.8) and E0 (> 106 Pa), and 2) only a very small region of the stress-elongation 

responses of the samples could be characterized by the equation of state (Figure 7.9, Section 

2.2), causing the fitting to be challenging. To solve these two problems, we can include more 

samples with extremely high firmness and modulus into the training data as well as seeking 

alternative synthetic systems other than LBL triblocks.  

 
Table 7.6: Comparison between predicted and actual structures and mechanical 
properties of PnBMA280-b-P(PDMS11MA)100-b-PnBMA280 

 

 𝒏𝒃𝒃 𝒏𝑳 𝒏𝒔𝒄 𝒏𝒈 χ Avg 𝑻𝒈(ºC) 𝜷 𝒍𝒐𝒈(𝑬𝟎) 

Predicted 100 1100 14 1 3 -50 0.80 5.33 

Actual 100 280 14 1 2.89 -52 0.93 6.61 

 
 
Table 7.7: Comparison between predicted and actual structures and mechanical 
properties of PBzMA250-b-P(PDMS11MA)100-b-PBzMA250 

 

 𝒏𝒃𝒃 𝒏𝑳 𝒏𝒔𝒄 𝒏𝒈 χ Avg 𝑻𝒈(ºC) 𝜷 𝒍𝒐𝒈(𝑬𝟎) 

Predicted 100 1100 14 1 7 -20 0.81 5.37 

Actual 100 250 14 1 6.76 -22.5 0.98 6.81 
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Figure 7.10 displayed the position of the PnBMA280-b-P(PDMS11MA)100-b-

PnBMA280 and PBzMA250-b-P(PDMS11MA)100-b-PBzMA250 on the tissue-plastomer map. = 

The strategically synthesized plastomers were able to fill in the gap between plastomers and 

tissues (Figure 7.10A). Moreover, the PBzMA250-b-P(PDMS11MA)100-b-PBzMA250 sample 

was able to recreate the stress-elongation response of posterior cruciate ligament (PCL) 

(Figure 7.10B). 

 

 

 

 

 

 

 

Figure 7.9: Stress-elongation responses of two triblocks synthesized using neural 
network guidance. (A) PnBMA280-b-P(PDMS11MA)100-b-PnBMA280 (B) PBzMA250-b-
P(PDMS11MA)100-b-PBzMA250 
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7.9 Closing remarks 

 The large amount of tunable architectural encodings of the triblocks makes precisely 

targeting tissue-like mechanical properties challenging. This study overcame this challenge 

by adapting complex machine learning models to predict the modulus and firmness of the 

plastomers according to their architectural and chemical parameters accurately. The most 

accurate result was obtained by the neural network model.  Hence, we successfully 

demonstrated the effectiveness and efficiency of utilizing advanced machine learning models 

in strategic planning of plastomer synthesis. This strategy provided a valuable method in 

target-oriented tissue-like material synthesis. 

 

 

Figure 7.10: Strategically planned synthesis produced plastomers. (A) Machine 
learning assisted synthesis produced plastomers that fell into the gap region between 
tissues and synthetic plastomers. (B) Strategically planned synthesis of PBzMA250-b-
P(PDMS11MA)100-b-PBzMA250 closely mimicked the stress-elongation response of 
posterior cruciate ligament (PCL).  
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CHAPTER 8 

Physical Origin of Structural Coloration 

Structural coloration is produced by constructive interference of reflected lights at the 

boundary between each pair of layers118,119. In order for structural coloration to occur, two 

requirements need to be met: periodicity of two components, and difference in refractive 

indices of the two components. Figure 8.1 showed the mechanism of two cases of structural 

coloration. In case 1 (Figure 8.1A), when there are three layers and refractive indices 𝑛%< 

𝑛&< 𝑛', the constructive interference can be described by 2𝑛&𝑑𝑐𝑜𝑠𝜃& = 𝑚𝜆, where 𝑑 is the 

periodicity, 𝜃& is the reflected angle, 𝑚 is the number of repeated layers, and 𝜆 is the 

reflected wavelength. In order for the reflected light to fall in the visible range, the 

periodicity needs to be proportional to 𝜆 2⁄ . In case 2 (Figure 8.1B), when there are two 

layers and refractive indices 𝑛C<𝑛D, the constructive interference can be described as 

2𝑛D𝑑C𝑐𝑜𝑠𝜃D = (𝑚 − %
&
)𝜆, where 𝑑Cis the periodicity between B layers, 𝜃D is the reflection 

angle from the surface of layer B. In this case, periodicity 𝑑 needs to be proportional to 𝜆 4⁄  

to reflect light in the visible range. Overall, the wavelength of the reflected light can be tuned 

by tuning the length of the periodicity and the refractive indices of the two components.  
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Figure 8.1: Mechanism of structural coloration. (A) Case 1: three layers, refractive 
indices 𝑛%< 𝑛&< 𝑛'. (B) Case 2: two layers, refractive indices 𝑛C<𝑛D. 
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CHAPTER 9 

Controlling the Structural Coloration of Linear-Bottlebrush-Linear (LBL) Triblocks 

9.1 Overview and Strategy 

 As mentioned in Chapter 8, the premises of materials displaying structural coloration 

are periodicity and contrast in refractive index. The microphase separation of linear-

bottlebrush-linear triblock copolymers formed hard linear domains distributed uniformly in 

soft bottlebrush matrix. Therefore, there existed periodic patterns in plastomers similar to 

chameleons (Section 1.3). This theory was confirmed by tapping mode atomic force 

microscopy (AFM) as shown in Figure 9.1.  

 

 

 Two strategies can be used to control the color of the plastomers with structural 

coloration. Recall that the reflected wavelength 𝜆 can be described by 1) 2𝑛&𝑑𝑐𝑜𝑠𝜃& = 𝑚𝜆, 

where  𝑑 is the periodicity, 𝜃& is the reflected angle, 𝑚 is the number of repeated layers, and 

Figure 9.1: AFM of PBzMA1100-b-P(PDMS11MA)940-b-PBzMA1100 triblocks triblock 
copolymer.  

500 nm 1 μm 



 88 

2) as 2𝑛D𝑑C𝑐𝑜𝑠𝜃D = (𝑚 − %
&
)𝜆, where 𝑑Cis the periodicity between B layers, 𝜃D is the 

reflection angle from the surface of layer B (Chapter 8). Therefore, to shift the reflected 

wavelength into the visible range, we can either increase the periodicity 𝑑 or increase the 

refractive index 𝑛. In this study, our primary candidate for the linear block is PBzMA as its 

average refractive index is ~1.57, which is higher than PMMA or poly(n-butyl methacrylate) 

(PnBtMA). Using the protocol optimized in Chapter 5, we synthesized series of PBzMA-b-

P(PDMS11MA)-b-PBzMA triblock copolymers (Table 9.1). The entries highlighted in blue 

were the ones that displayed blue color. The rest were colorless with the exception of 

PBzMA1100-bbPDMS940-PBzMA1100, which was white. The samples that displayed blue color 

either had high linear block volume fraction 𝜙" or high 𝑛##, both cases increased the 

periodicity.
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Table 9.1: PBzMA-b-P(PDMS11MA)-b-PBzMA architectural parametersa. 

𝒏𝒔𝒄 𝒏𝒃𝒃 𝒏𝑳 𝝓𝑳 

 

 

 

 

 

14 

320 150 0.12 

320 260 0.19 

850 50 0.02 

850 230 0.07 

850 340 0.10 

850 460 0.13 

940b 1100 0.25 

1010 170 0.05 

1010 230 0.06 

1010 340 0.09 

1150 250 0.06 

1150 470 0.11 

a. The entries highlighted in blue were samples that displayed blue color. b. Although sample 
had high nL and 𝜙", it displayed an opaque white color.  
 

9.2 Effect of 𝒏𝑳 on reflected color 

Figure 8.2 showed the reflectance spectroscopy of a series of PBzMA-b-

P(PDMS11MA)-b-PBzMA where 𝑛##=850, 𝑛$,=14, and 𝑛"=50, 230, 340, and 460. Triblocks 

with 𝑛"=50, 230 did not show reflectance in the visible region (400 – 700 nm), where 

triblocks with 𝑛"=340 and 460 showed positive %reflectance at 400 nm. The reflectance of 

𝑛"= 460 triblock was slightly higher than that of 𝑛"= 340 as longer 𝑛" increased the 

periodicity by increasing the radius of the linear domains (Section 6.1).  
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9.3 Effect of swelling on reflected color 

The difference in coloration in the above series was caused by varying chemical 

structure and architectural parameters. Another method of controlling coloration was from 

external stimuli. Although some dried plastomers did not show visible color, they displayed 

color while dissolved in solution. We hypothesized that this was due to the triblock being 

swollen while dissolved, increasing its periodicity. To test this hypothesis, we performed a 

drying experiment using a series of PBzMA-b-P(PDMS11MA)-b-PBzMA with 𝑛## = 1150, 

𝑛$,= 14 and varied 𝜙". 

Figure 9.2: Effect of 𝒏𝑳 on the reflectance of PBzMA-bbPDMS-PBzMA triblocks. 
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A drop of 25 wt% PBzMA-b-P(PDMS11MA)-b-PBzMA in toluene solution was 

dropped onto a smooth surface for each sample. Pictures were taken at 10 min, 20 min, and 

40 min intervals. The drying process was shown in Figure 9.3. Initially, all three droplets 

were blue, and as time went by, the color gradually blue-shifted, which was due to the 

shrinkage of periodicity while the material was being dried.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we performed a deswelling experiment in which we swelled PBzMA470-

bbPDMS1150-PBzMA470 with hexane and then let the hexane evaporate. Hexane selectively 

swelled the bottlebrush backbone, and the linear block was insoluble in hexane. As shown in 

Figure 9.4, the swollen plastomer appeared turquoise, and the color blue-shifted while the 

hexane was evaporating. When the bottlebrush backbone was swollen, the space between the 

Figure 9.3: Drying process of PBzMA-b-P(PDMS11MA)-b-PBzMA from toluene.  
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spherical linear domain increased, which increased periodicity, causing the plastomer to 

appear turquoise. When the hexane evaporated, the periodicity decreased to the original 

value, and hence the color blue-shifted. 

 

 

Finally, we measured the swelling effect on structural coloration quantitively via UV-

Vis spectrophotometer. 0.1 mL PDMS11MA macromonomer was absorbed by each dry piece 

of PBzMA-b-P(PDMS11MA)-b-PBzMA triblock, where 𝑛##=850, 𝑛$,=14, and 𝑛"=50, 230, 

340, and 460. Each piece was approximately 1 cm2 in area and 0.5 mm in thickness. Once the 

macromonomer droplet was absorbed, the reflectance of each film was measured and 

compared to its dry state. As shown in Figure 9.5, the reflectance of the swollen plastomer 

films all increased compared to the dry films. Since PDMS11MA macromonomer only 

dissolves the P(PDMS11MA) bottlebrush backbone, the distance between linear domains of 

the plastomer increased upon swelling, causing the reflectance to red shift.  

 

Figure 9.4: Deswelling of PBzMA-b-P(PDMS11MA)-b-PBzMA triblock from hexane.  
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9.4 Small Angle X-Ray Scattering (SAXS) of LBL triblocks 

 Interested in the effect of 𝑛## and 𝜙" on the periodicity of the plastomers, a series of 

SAXS experiments were performed. In particular, we measured the distance between 

bottlebrush strands 𝑑%, radius of the linear domain 𝑑&, and the distance between linear 

domains 𝑑' (Figure 9.6). 

 

 

 

 

 

 

Figure 9.5: Effect of swelling on the reflectance of PBzMA-b-P(PDMS11MA)-b-
PBzMA triblocks. Solid: dry plastomer. Dashed: swollen with PDMS 
macromonomer.   
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First, we compared a series of PBzMA-b-P(PDMS11MA)-b-PBzMA of varied 𝑛##but 

same 𝑛$, and approximately the same 𝜙". Figure 9.7 and Table 9.2 showed the comparison 

of the plastomers. The inter-distance between the bottlebrushes was not affected by the 

length of the bottlebrush backbone. The distance between linear domains increased linearly 

with the increase in 𝑛##. Note that the B300-3 sample did not show a peak corresponding to 

𝑑'. This could be due to the relatively high dispersity of the radius of the linear domain. The 

radii of the three samples were approximately in the same order of magnitude, which was 

around 30 nm. This was expected as the volume fraction of the three samples were roughly 

the same, around 0.11.  

 

 

 

 

d3 

d2 

d1 

Figure 9.6: Illustration of distances in plastomer networks measurable by SAXS. d1: 
Radius of the linear domain. d2: Distance between bottlebrushes. d3: Distance between linear 
domains.  
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Table 9.2: SAXS results for PBzMA-b-P(PDMS11MA)-b-PBzMA with varied 𝒏𝒃𝒃, 
𝝓𝑳~	𝟎. 𝟏𝟏. 
 

Name 𝐧𝐛𝐛 𝐧𝐋 𝛟𝐋 𝐝𝟏 

(nm) 

𝐝𝟐 

(nm) 

𝐝𝟑 

(nm) 

Radius 

Polydispersity 

(%) 

B300-3 320 150 0.12 3.41 24.7 - 28.8 

B900-3 850 340 0.10 3.39 25.8 82 12.5 

B1200-3 1150 470 0.11 3.57 32.7 107 10.9 

 

 

Figure 9.7: SAXS spectra for PBzMA-b-P(PDMS11MA)-b-PBzMA with varied nbb, 
𝝓𝑳~	𝟎. 𝟏𝟏. 
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The same experiment was performed on a series of PBzMA-b-P(PDMS11MA)-b-

PBzMA with higher 𝜙" (Figure 9.8, Table 9.3). Similar to the previous series, the inter 

distance between brushes remained consistent, so did the radius of the linear domains. 

Although the radius of the B300-4 sample was smaller compared to the other two samples, it 

could be due to the fact the dispersity of the radius was high (32.4) and hence affected the 

average radius. In contrast to the previous series, the distance between linear domains did not 

have a strong correlation with 𝑛##. Therefore, it was inconclusive whether the value of 𝑛## 

had a direct impact on the periodicity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.8: SAXS spectra for PBzMA-b-P(PDMS11MA)-b-PBzMA with varied nbb, 
𝝓𝑳~𝟎. 𝟏𝟓.  
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Table 9.3: SAXS results for PBzMA-b-P(PDMS11MA)-b-PBzMA with varied 𝒏𝒃𝒃, 
𝝓𝑳~𝟎. 𝟏𝟓.  
 

Name 𝒏𝒃𝒃 𝒏𝑳 𝝓𝑳 𝒅𝟏 

(nm) 

𝒅𝟐 

(nm) 

𝒅𝟑 

(nm) 

Radius 

Polydispersity 

(%) 

B300-4 320 260 0.19 3.40 23.7 104 32.4 

B600-4 540 350 0.15 3.41 31.3 85 7.0 

B900-4 850 460 0.13 3.41 31.0 90 11.2 

 

  

Next, we investigated in the effect of 𝑛" on the domain size and distances. SAXS 

measurements were performed on a series of PBzMA-b-P(PDMS11MA)-b-PBzMA triblocks 

with the same 𝑛## and 𝑛$, but different 𝑛" (Figure 9.9, Table 9.4). The distance between 

bottlebrush backbones remained the same with varied 𝑛". The distance between linear 

domains and the radius of the linear domain increased consistently with the increase of 𝑛". 

This corroborated with our theory in Section 6.1 that the higher curvature of the linear 

domain caused the bottlebrush backbone to be more pre-strained. Furthermore, we confirmed 

that increasing 𝑛" increased periodicity.  
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Table 9.4: SAXS results for PBzMA-b-P(PDMS11MA)-b-PBzMA with varied 𝒏𝑳. 

Name 𝒏𝒃𝒃 𝒏𝑳 𝝓𝑳 𝒅𝟏 

(nm) 

𝒅𝟐 

(nm) 

𝒅𝟑 

(nm) 

Radius 

Polydispersity 

(%) 

B900-1 850 50 0.02 3.40 8.0 44 11 

B900-2 850 230 0.07 3.40 18.9 66 9.2 

B900-3 850 340 0.10 3.39 25.8 82 12.5 

B900-4 850 460 0.13 3.41 31.0 90 11.2 

 

 

Figure 9.9: SAXS spectra for PBzMA-b-P(PDMS11MA)-b-PBzMA with varied 𝒏𝑳.  
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Finally, we investigated in the effect of swelling on periodicity. PBzMA460- 

P(PDMS11MA)850-PBzMA460 was swollen with 10, 20, 60, and 90 wt% PDMS11MA 

macromonomer respectively and measured by SAXS. The corresponding domain distances 

were shown in Table 9.5. Both the distance between bottlebrushes and between linear 

domains increased with respect to wt% of PDMS11MA macromonomer added. Meanwhile, 

the radius of the linear domain remained constant. This proved that the addition of 

PDMS11MA macromonomer selectively swelled the bottlebrush backbone and increased the 

periodicity. Consequently, the reflected wavelengths of the swollen plastomer red-shifted. 

 

Table 9.5: Effect of swelling on the inter-distances of plastomers. 

PDMS11MA Wt % 𝒅𝟏 (nm) 𝒅𝟐 (nm) 𝒅𝟑 (nm) 

0 3.41 31.0 90 

10 3.58 31.3 93 

20 3.70 31.2 95 

60 4.37 31.0 104 

90 4.80 31.1 111 

  

 

Figure 9.10 showed the correlation between change in microscopic volume of 

plastomers and swelling ratio. The change in microscopic volume of the plastomer was 

estimated by a ratio of 𝑑&𝑑%
& 𝑑&,!𝑑%,!

&R . The change in volume increased with respect to 

swelling ratio, however; the former had a higher increase rate compared to swelling ratio.  
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9.5 Closing remarks 

  

9.5 Closing remarks 

 In this chapter, we thoroughly investigated in methods to control the color of 

plastomers. SAXS measurements demonstrated that there was high order periodicity in the 

plastomers. The periodicity could be increased by increasing 𝑛" and 𝑛## although the former 

was more effective than the latter. Furthermore, swelling could also act as an external stimuli 

to change the reflected wavelength of the plastomer. However, so far all plastomers 

synthesized showed blue color. In order to red-shift the color, alternative strategies needed to 

be considered. For example, we could potentially increase the Flory-Huggin parameter 

between the linear and bottlebrush blocks to increase the extent of pre-strain of the 

bottlebrush backbone. Furthermore, bulkier linear blocks could be used to increase the 

periodicity.  

Figure 9.10: Effect of swelling ratio on the change in volume of the plastomers according 
to inter-distances measured by SAXS.  
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CHAPTER 10 

Future Works 

10.1 Introduction 

 In this study, we demonstrated that plastomers, physical networks formed by micro-

phase separation of linear-bottlebrush-linear triblock copolymers, were capable of 

incorporating multiple biological tissues’ defensive properties, such as softness, firmness, 

and structural coloration. More importantly, this multifunctionality was achieved by micro-

phase separation of one single molecule, which remained stable under ambient condition, 

without leeching or needing additives. By controlling the architectural and chemical 

parameters [nbb, nL, nsc, ng, χ, Tg], plastomers with a wide range of mechanical and optical 

properties could be produced.  

 To overcome the synthetic challenge and produce materials with consistent and 

robust properties, as well as making the production process as cost-effective as possible, we 

have optimized our strategies from both synthetic and planning levels. From synthetic 

perspective, we investigated the effect of side products on the mechanical properties of 

plastomers and conducted a systematic investigation on the kinetics of the grafting-

polymerization of PDMS11MA macromonomer to optimize the synthetic conditions. For the 

planning stage, we built statistical and machine learning models to predict the mechanical 

properties of plastomers based on architectural and chemical information, so that we can 

directly target the tissues of interest.  
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 In addition to the achievements discussed above, the plastomer system offered great 

potential in the discovery of functional materials. For instance, so far, we have demonstrated 

the structural coloration of plastomers, but we are currently limited to the blue wavelength 

region, and the change in coloration upon stimuli is mostly verified from microscopic level, 

using UV-Vis spectroscopy or SAXS. In addition to the softness, firmness, and structural 

coloration, we can incorporate additional properties that are crucial to biomedical 

applications using the current plastomer architectural framework. From the synthetic 

perspective, we have currently focused on grafting-through polymerization of PDMS11MA 

macronomer and proved its success and ease of use. However, limitations exist with this 

method, especially when we are aiming for triblocks with high nsc. Additional polymerization 

methods to synthesize the bottlebrush macroinitiator, such as grafting-from, can be 

investigated, so that we can use different chemicals to produce plastomers and unlock more 

properties.  

 

 10.2 Red-shifting plastomer color 

 In Chapter 9, we showed various methods to control the coloration of plastomers, 

such as varying the architectural parameters and applying external stimuli. However, so far, 

the colors displayed all fall in the blue wavelength range, and the external stimuli were 

limited to swelling. To truly mimic chameleon-like skins, we need to synthesize materials 

that displayed color in the red-side of the visible spectrum without external stimuli. Figure 

10.1 showed an example of applying mechanical stimulus to plastomer. At relaxed state, the 

plastomer exhibits a red color and upon tensile stress, the periodicity decreases, causing the 

color to blue shift. To achieve this, we propose to establish a quantitative relationship 
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between inter-domain distances of the plastomer and architectural parameters, as well as 

investigating in the mechanism of microphase separation of triblocks. Chapter 9 proved that 

higher nbb led to higher inter-domain distance. However, the increase in inter-domain 

distance was not linearly dependent on the increase in nbb. By studying the microphase 

separation mechanism, we will be able to discover factors that affect the inter-domain 

distance in addition to nbb.  

 

 

 

 

 

 

 

 

 

 

 

10.3 Soft-to-hard injectables 

 Since plastomers mimic tissues’ mechanical properties and are stable under ambient 

conditions, they are ideal candidates for biomedical applications such as implants. The 

plastomer’s architectural framework provides a solid foundation for controlling its tissue-like 

mechanical properties. Therefore, we can vary the chemical composition to add additional 

functionalities to the plastomers, as we did with the structural coloration. In this case, we can 

Figure 10.1: Plastomer’s color blue-shifts upon applying tensile stress.  
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adapt hydrophilic polymers with low critical solution temperature (LCST) into our triblock 

so that at elevated temperature, the triblock phase separates from the homogenous aqueous 

solution to form gels. For example, we can use poly(N-isopropylacrylamide) (PNiPAM) as 

the linear block and bottlebrush poly(ethylene glycol) (PEG) as the bottlebrush block. This 

triblock is soluble in water at room temperature and can phase separate at body temperature 

to form physical networks since PNiPAM has an LCST around 30 ºC121-123. Since the 

gelation occurs within the body, this material can be used as injectables for implants so that 

both implanting and removing of the implants do not depend on invasive procedures.  

 

10.4 Alternative synthetic methods 

 With the right synthetic conditions, grafting-through polymerization has been proven 

to be an effective method in synthesizing bottlebrush macroinitiator. However, there are still 

underlying limitations with this method. As discussed in Section 5.2, the bulkier the 

monomer, the higher the equilibrium monomer concentration, and consequently, the lower 

the resulting DP. This limitation hinders the synthesis of triblocks with high nsc and high nbb, 

and in turn, blocks a wide range of mechanical properties of the plastomers. Alternatively, 

we can utilize the grafting-from polymerization method to synthesize the bottlebrush 

macroinitiator. This method involves two steps: 1) A linear backbone with initiation sites is 

synthesized, and 2) Side chains are grown from the initiation sites until desired nsc is 

reached124. This method avoids the equilibrium monomer concentration challenge of 

macromonomers, and therefore allows the synthesis of triblocks of long side chains. 
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10.5 Closing Remarks 

 Biological creatures undergo the long process of evolution to develop a system of 

intricate compartments with different functionalities that work perfectly together to guarantee 

their chances of survival. As scientists, we aspire to recreate such functionalities in synthetic 

materials to fulfill the needs in medicine and therapeutics. Furthermore, as technology 

progresses, we aim to not only develop novel materials but also discover advanced methods 

that assist in the production of multifunctional materials. This project successfully produced 

bio-mimicking plastomers, optimized robust synthetic protocols to improve the 

reproducibility and consistency of the plastomers, and finally, introduced the effectiveness of 

using machine learning approach in strategic synthetic planning. It demonstrated a streamline 

process that utilized artificial intelligence to improve the efficiency of synthesizing materials 

with properties of interest. So far, we have illustrated applying artificial intelligence in the 

synthesis of organic polymers that mimicked biological tissues’ softness and firmness. With 

ample data, this technique can be generalized to a variety of tissue-like properties.  
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APPENDIX 1: MECHANICAL PARAMETERS OF TISSUES FROM LITERATURE 

Category Type 𝜷 𝑬𝟎 (kPa) 𝝀𝒇𝒊𝒕 𝝀𝒎𝒂𝒙 Ref 

Adipose IDC 0.89 79.8 1.21 1.28 125 

Adipose Fibro 0.77 93.9 1.28 1.29 125 

Adipose DCI 0.88 52.8 1.24 1.30 125 

Adipose Omental 0.90 11.1 1.24 1.34 126 

Adipose Subcataneous 0.91 3.2 1.21 1.30 126 

Adipose Subcataneous 0.91 0.62 1.26 1.26 127 

Adipose Fibro 0.97 106.8 1.13 1.14 128 

Adipose Lobular 0.97 140.1 1.15 1.15 128 

Adipose Gland 0.97 35.7 1.15 1.15 128 

Adipose Fat 0.97 26.7 1.15 1.15 128 

Adipose Gland 0.90 45.9 1.22 1.22 129 

Adipose Breast 0.98 53.3 1.05 1.05 130 

Adipose Fibro 0.99 28.0 1.04 1.05 130 

Adipose Subcataneous 0.88 0.70 1.30 1.30 131 

Adipose Subcataneous 0.89 0.72 1.23 1.26 131 

Adipose Kidney 0.98 116 1.05 1.06 132 

Adipose Breast 0.97 22.2 1.10 1.11 133 

Cartilage Intervertebral disc 0.93 82.7 - - 134 

Cartilage Intervertebral disc 0.96 86.6 - - 134 

Dense regular Fascia 0.87 562 1.32 1.32 135 
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Dense regular MCL 0.99 9800. 1.07 1.15 136 

Dense regular Tendon 0.999 6400. 1.02 1.06 137 

Dense regular PCL 0.998 7300. 1.02 1.07 138 

Dense regular PL 0.87 155 1.28 1.35 139 

Dense regular PL 0.93 10.2 1.33 2.58 140 

Dense regular PL 0.97 22.2 1.30 2.09 140 

Dense regular PL 0.95 15.1 1.30 2.40 140 

Dense irregular Pericardium 0.97 176 1.13 1.20 141 

Dense irregular Pericardium 0.96 63.8 1.16 1.19 141 

Dense irregular Cornea 0.991 1600 1/05 1.06 142 

Dense irregular Cornea 0.992 940 1.05 1.08 142 

Dense irregular Cornea 0.988 810 1.05 1.08 142 

Dense irregular Cornea 0.989 790 1.05 1.08 142 

Dense irregular Cornea 0.991 520 1.05 1.08 142 

Dense irregular Cornea 0.994 1700 1.04 1.06 142 

Dense irregular Cornea 0.993 1000 1.04 1.08 142 

Dense irregular Cornea 0.989 550 1.06 1.08 142 

Dense irregular Skin dermis 0.99 760 1.05 1.36 143 

Dense irregular Skin dermis 0.87 534 1.18 1.36 143 

Dense irregular Skin dermis 0.92 67.4 1.18 1.19 143 

Dense irregular Skin dermis 0.96 444 1.10 1.25 143 

Dense irregular Skin dermis 0.92 639 1.13 1.17 143 

Dense irregular Skin dermis 0.85 84.9 1.24 1.60 143 
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Dense irregular Skin dermis 0.71 61.5 1.38 1.60 143 

Dense irregular Skin dermis 0.72 14.3 1.46 2.10 143 

Dense irregular Skin dermis 0.90 13.9 1.16 2.10 143 

Dense irregular Cornea 0.99 580. 1.05 1.08 144 

Dense irregular Cornea 0.90 724 - - 145 

Dense irregular Skin dermis 0.93 164 - - 146 

Dense irregular Skin dermis 0.84 206 - - 147 

Dense irregular Skin dermis 0.90 174 - - 148 

Dense irregular Skin dermis 0.74 59.1 - - 149 

Dense irregular Zonular filament 0.92 7.20 - - 150 

Dense irregular Spinal cord 0.84 71.8 - - 151 

Elastic Aorta 0.87 64.0 1.32 1.32 152 

Elastic Aorta 0.79 66.4 1.35 1.35 152 

Elastic Artery 0.79 66.0 1.42 1.42 153 

Elastic Artery 0.75 55.2 1.50 1.50 153 

Elastic Artery 0.78 36.7 1.48 1.48 153 

Elastic Artery 0.84 44.9 1.35 1.40 153 

Elastic Aorta 0.98 115 1.10 1.35 154 

Elastic Aorta 0.94 351 1.16 1.32 155 

Elastic Aorta 0.92 172 1.23 1.32 155 

Elastic Aorta 0.89 39.2 1.30 1.47 155 

Elastic Aorta 0.91 131 1.22 1.38 155 

Elastic Aorta 0.91 83.8 1.25 1.40 155 
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Elastic Aorta 0.83 120. 1.18 1.57 155 

Elastic Aorta 0.97 256 1.14 1.30 156 

Elastic Aorta 0.83 120. 1.18 1.57 157 

Elastic Aorta 0.98 310/ 1.10 1.25 158 

Elastic Aorta 0.96 214 1.14 1.46 158 

Elastic Aorta 0.90 53.1 1.28 1.60 158 

Elastic Aorta 0.96 51.3 1.15 1.69 158 

Elastic Artery 0.99 480. 1.05 1.05 159 

Elastic Artery 0.97 227 1.12 1.12 159 

Elastic Artery 0.96 191 1.13 1.13 159 

Elastic Aorta 0.67 128 - - 160 

Elastic Blood vessel 0.75 37.4 - - 161 

Elastic Artery 0.91 28.8 - - 162 

Epithelial Fetal membrane 0.79 20.1 - - 163 

Epithelial Alveolar wall 0.87 3.30 - - 164 

Cardiac muscle Aortic valve 0.99 220. 1.09 1.12 165 

Cardiac muscle Heart valve 0.92 55.5 1.28 1.28 166 

Skeletal muscle Skeletal muscle 0.95 330. 1.14 1.27 167 

Skeletal muscle Skeletal muscle 0.96 210. 1.17 1.27 167 

Skeletal muscle Vocal fold 0.82 11.0 1.38 1.40 168 

Skeletal muscle Vocal fold 0.84 19.7 1.35 1.39 168 

Skeletal muscle Vocal fold 0.74 45.4 1.37 1.40 168 

Skeletal muscle Skeletal muscle 0.75 82.6 1.45 1.46 169 
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Skeletal muscle Skeletal muscle 0.77 17.9 1.48 1.48 169 

Skeletal muscle Skeletal muscle 0.98 125 1.10 1.47 169 

Cardiac muscle Heart valve 0.99 92.0 1.09 1.10 170 

Cardiac muscle Heart valve 0.991 200. 1.10 1.10 170 

Cardiac muscle Heart valve 0.98 175 1.13 1.13 170 

Cardiac muscle Heart valve 0.98 140. 1.13 1.20 170 

Cardiac muscle Heart valve 0.96 21.3 1.19 1.24 170 

Cardiac muscle Heart valve 0.87 16.5 1.32 1.36 170 

Cardiac muscle Heart valve 0.98 37.0 1.12 1.21 170 

Cardiac muscle Heart valve 0.95 65.0 1.20 1.23 170 

Skeletal muscle Skeletal muscle 0.86 289 1.21 1.38 171 

Skeletal muscle Skeletal muscle 0.50 19/4 1.62 2.03 171 

Cardiac muscle Heart muscle 0.96 8.30 - - 172 

Skeletal muscle Vocal fold 0.93 20.0 - - 173 

Skeletal muscle Single muscle 

fiber 

0.75 2.30 - - 174 

Skeletal muscle Skeletal muscle 0.90 29.5 - - 175 

Nervous Brain 0.47 1.30 1.58 1.6 176 

Nervous Brain 0.38 0.98 1.22 1.63 177 

Nervous Brain 0.74 9.4 1.26 1.28 178 

Nervous Brain 0.70 13.8 1.28 1.28 178 

Nervous Brain 0.75 17.5 1.28 1.28 178 

Nervous Brain 0.51 18.4 1.29 1.29 179 
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Nervous Brain 0.62 26.6 1.26 1.30 179 

Nervous Brain 0.55 34.3 1.30 1.30 179 

Nervous Brain 0.90 3.4 1.21 1.21 180 

Nervous Brain 0.86 0.88 1.29 1.36 180 

Nervous Brain 0.75 0.70 - - 181 

Reticular Liver 0.45 0.282 2.13 2.29 182 

Reticular Liver 0.95 557 1.10 1.21 183 

Reticular Liver 0.95 14.4 1.11 1.11 183 

Reticular Spleen 0.52 325 1.16 1.57 183 

Reticular Spleen 0.19 47.7 1.70 1.78 183 

Reticular Lung 0.69 2.20 - -  
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APPENDIX 2: PLASTOMER DATABASE FOR MODEL TRAINING 

Name 𝒏𝒃𝒃 𝒏𝑳 𝒏𝒔𝒄 𝝌 AvgTg (ºC) 𝜷 𝑬𝟎 (kPa) 

PMMA - PDMS 14 302 57 14 4.84 -10 0.48 12.8 

PMMA - PDMS 14 302 117 14 4.84 -10 0.56 20.4 

PMMA - PDMS 14 302 181 14 4.84 -10 0.69 41.5 

PMMA - PDMS 14 602 295 14 4.84 -10 0.3 4.9 

PMMA - PDMS 14 602 351 14 4.84 -10 0.35 6.9 

PMMA - PDMS 14 602 677 14 4.84 -10 0.42 10.1 

PMMA - PDMS 14 602 803 14 4.84 -10 0.51 15.3 

PMMA - PDMS 14 938 190 14 4.84 -10 0.29 5.4 

PMMA - PDMS 14 938 325 14 4.84 -10 0.33 6.5 

PMMA - PDMS 14 938 656 14 4.84 -10 0.45 11.8 

PMMA - PDMS 14 938 1235 14 4.84 -10 0.67 39.3 

PMMA - PDMS 14 1065 360 14 4.84 -10 0.26 5.1 

PMMA - PDMS 14 1065 480 14 4.84 -10 0.3 6.4 

PMMA - PDMS 14 1065 810 14 4.84 -10 0.36 7.8 

PMMA - PDMS 70 112 105 70 4.84 -10 0.71 106.2 

PMMA - PDMS 70 112 131 70 4.84 -10 0.76 130 

PMMA - PDMS 70 112 185 70 4.84 -10 0.84 155.7 

PMMA - PDMS 70 296 156 70 4.84 -10 0.77 13.3 

PMMA - PDMS 70 296 285 70 4.84 -10 0.8 18.3 

PMMA - PDMS 70 296 507 70 4.84 -10 0.85 24.8 

PMMA - PDMS 70 296 754 70 4.84 -10 0.91 55.7 

PMMA - PDMS 70 447 288 70 4.84 -10 0.71 11.2 

PMMA - PDMS 70 447 604 70 4.84 -10 0.78 20.4 

PMMA - PDMS 70 447 772 70 4.84 -10 0.81 22.3 

PMMA - PDMS 70 447 894 70 4.84 -10 0.82 26.3 

PMMA - PDMS 14 1483 867 14 4.84 -10 0.33 3.7 

PMMA - PDMS 14 1765 365 14 4.84 -10 0.4 3.4 
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PMMA - PDMS 14 1765 545 14 4.84 -10 0.48 5 

PMMA - PDMS 14 1765 780 14 4.84 -10 0.58 7.9 

P(OEOMA) - PDMS 
14 

900 240 14 9.61 -95.5 0.6 32 

PMMA - 
PDMS/MMA 7.5 

336 78 7.5 4.84 -10 0.08 19.5 

PMMA - 
PDMS/MMA 7.5 

336 102 7.5 4.84 -10 0.11 28.4 

PMMA - 
PDMS/MMA 7.5 

336 119 7.5 4.84 -10 0.13 33.9 

PMMA - 
PDMS/MMA 10.8 

196 34 10.8 4.84 -10 0.18 14.3 

PMMA - 
PDMS/MMA 10.8 

196 58 10.8 4.84 -10 0.24 26.9 

PMMA - 
PDMS/MMA 10.8 

196 64 10.8 4.84 -10 0.28 29 

PMMA - 
PDMS/MMA 12.9 

197 29 12.9 4.84 -10 0.19 11.8 

PMMA - 
PDMS/MMA 12.9 

197 52 12.9 4.84 -10 0.31 22.5 

PMMA - 
PDMS/MMA 12.9 

197 76 12.9 4.84 -10 0.36 30.5 

PMMA - PDMS 
14.4 

363 57 14.4 4.84 -10 0.35 17.5 

PMMA - PDMS 
14.4 

363 116 14.4 4.84 -10 0.44 33.2 

PMMA - PDMS 
14.4 

363 168 14.4 4.84 -10 0.49 36.1 

PMMA - PDMS 
23.6 

285 88 23.6 4.84 -10 0.45 29.2 

PMMA - PDMS 
23.6 

285 123 23.6 4.84 -10 0.52 31.8 

PMMA - PDMS 
23.6 

285 201 23.6 4.84 -10 0.56 38.9 

PMMA - PDMS 
33.8 

249 62 33.8 4.84 -10 0.46 13.2 

PMMA - PDMS 
33.8 

249 106 33.8 4.84 -10 0.5 24.2 

PMMA - PDMS 
33.8 

249 133 33.8 4.84 -10 0.56 26.5 

PMMA - PDMS 
47.1 

308 187 47.1 4.84 -10 0.68 23.6 

PMMA - PDMS 
47.1 

308 261 47.1 4.84 -10 0.72 33.5 
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PMMA - PDMS 
47.1 

308 430 47.1 4.84 -10 0.76 55.4 

PMMA - PDMS 
14.4 

559 315 14.4 4.84 -10 0.365 20.8 

PMMA - PDMS 
71.2 

302 410 71.2 4.84 -10 0.821 36.3 

PtBMA - PDMS 
14.4 

283 178 14.4 1.44 -3.5 0.482 33.8 

PtBMA - PDMS 
14.4 

283 178 14.4 1.44 -3.5 0.525 35.1 

PiPMA - PDMS 
14.4 

283 170 14.4 2.56 -18 0.492 39.1 

PiPMA - PDMS 
14.4 

283 170 14.4 2.56 -17.5 0.509 40.2 

PBzMA - PDMS 
14.4 

283 158 14.4 6.76 -22.5 0.497 46.9 

PBzMA - PDMS 
14.4 

283 158 14.4 6.76 -22.5 0.541 51.0 

MMA - PIB 20 341 643 20 2.56 16 0.652 73.2 

MMA - PIB 20 341 872 20 2.56 16 0.732 111 

MMA - PIB 20 341 989 20 2.56 16 0.808 157 

P(HEMA-r-MMA) - 
PDMS 14 

296 120 14 22.09 -11.5 0.65 49.6 

P(HEMA-r-MMA) - 
PDMS 14 

296 92 14 22.09 -11.5 0.61 97.8 

P(HEMA-r-MMA) - 
PDMS 14 

900 1006 14 22.09 -11.5 0.41 56.7 

PBzMA - PDMS 14 1010 170 14 6.76 -22.5 0.35 3 

PBzMA - PDMS 14 1010 230 14 6.76 -22.5 0.37 3.9 

PBzMA - PDMS 14 1010 340 14 6.76 -22.5 0.4 5.1 

PBzMA - PDMS 14 940 1100 14 6.76 -22.5 0.66 9.7 

PBzMA - PDMS 14 850 50 14 6.76 -22.5 0.22 7.5 

PBzMA - PDMS 14 850 240 14 6.76 -22.5 0.34 16.8 

PBzMA - PDMS 14 850 350 14 6.76 -22.5 0.42 16.6 

PBzMA - PDMS 14 850 460 14 6.76 -22.5 0.5 22.5 

PBzMA - PDMS 14 320 150 14 6.76 -22.5 0.54 19.6 

PBzMA - PDMS 14 320 260 14 6.76 -22.5 0.68 34.6 

PBzMA - PDMS 14 1150 470 14 6.76 -22.5 0.33 6.9 
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PMMA - PDMS 14 938 358 14 4.84 -10 0.3 16.2 

PMMA/PAMMA - 
PDMS 14 

320 150 14 4.84 -10 0.43 11.6 

PMMA - PDMS 14 288 230 14 4.84 -10 0.63 50.5 

PBzMA - PDMS 14 860 260 14 6.76 -22.5 0.41 18 

PBzMA - PDMS 14 860 540 14 6.76 -22.5 0.54 25.5 

PBzMA - PDMS 14 860 330 14 6.76 -22.5 0.38 11.3 

PBzMA - PDMS 14 860 330 14 6.76 -22.5 0.32 4.4 

PBzMA - PDMS 14 860 460 14 6.76 -22.5 0.46 15.5 

PBzMA - PDMS 14 860 240 14 6.76 -22.5 0.28 3.2 
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APPENDIX 3: PLASTOMER CANDIDATES  
 

nbb nL nsc ng Chi AvgTg (ºC) beta logE 

100 1100 14 1 3 -50 0.80 5.33 

100 1100 14 1 3 -20 0.81 5.42 

100 1100 14 1 3 -10 0.81 5.42 

100 1100 14 1 5 -50 0.81 5.30 

100 1100 14 1 5 -20 0.81 5.41 

100 1100 14 1 5 -10 0.81 5.40 

100 1100 14 1 7 -50 0.81 5.28 

100 1100 14 1 7 -20 0.81 5.37 

100 1100 14 1 7 -10 0.81 5.38 

100 1300 14 1 3 -50 0.82 5.34 

100 1300 14 1 3 -20 0.83 5.43 

100 1300 14 1 3 -10 0.83 5.47 

100 1300 14 1 5 -50 0.82 5.31 

100 1300 14 1 5 -20 0.83 5.43 

100 1300 14 1 5 -10 0.83 5.45 

100 1300 14 1 7 -50 0.83 5.28 

100 1300 14 1 7 -20 0.83 5.40 

100 1300 14 1 7 -10 0.83 5.43 

100 1500 14 1 3 -50 0.83 5.34 

100 1500 14 1 3 -20 0.84 5.44 

100 1500 14 1 3 -10 0.85 5.48 

100 1500 14 1 5 -50 0.84 5.31 

100 1500 14 1 5 -20 0.84 5.44 

100 1500 14 1 5 -10 0.84 5.47 

100 1500 14 1 7 -50 0.84 5.29 

100 1500 14 1 7 -20 0.84 5.42 

100 1500 14 1 7 -10 0.84 5.46 
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100 1700 14 1 3 -50 0.85 5.34 

100 1700 14 1 3 -20 0.86 5.45 

100 1700 14 1 3 -10 0.86 5.49 

100 1700 14 1 5 -50 0.85 5.32 

100 1700 14 1 5 -20 0.86 5.45 

100 1700 14 1 5 -10 0.86 5.48 

100 1700 14 1 7 -50 0.86 5.29 

100 1700 14 1 7 -20 0.86 5.43 

100 1700 14 1 7 -10 0.86 5.47 

100 1900 14 1 3 -50 0.86 5.34 

100 1900 14 1 3 -20 0.87 5.45 

100 1900 14 1 3 -10 0.87 5.49 

100 1900 14 1 5 -50 0.86 5.32 

100 1900 14 1 5 -20 0.87 5.45 

100 1900 14 1 5 -10 0.87 5.48 

100 1900 14 1 7 -50 0.87 5.29 

100 1900 14 1 7 -20 0.87 5.43 

100 1900 14 1 7 -10 0.87 5.47 

100 2100 14 1 3 -50 0.87 5.34 

100 2100 14 1 3 -20 0.88 5.45 

100 2100 14 1 3 -10 0.89 5.49 

100 2100 14 1 5 -50 0.88 5.32 

100 2100 14 1 5 -20 0.88 5.45 

100 2100 14 1 5 -10 0.88 5.49 

100 2100 14 1 7 -50 0.88 5.29 

100 2100 14 1 7 -20 0.88 5.43 

100 2100 14 1 7 -10 0.88 5.48 

100 2300 14 1 3 -50 0.89 5.34 

100 2300 14 1 3 -20 0.89 5.45 
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100 2300 14 1 3 -10 0.90 5.50 

100 2300 14 1 5 -50 0.89 5.32 

100 2300 14 1 5 -20 0.89 5.45 

100 2300 14 1 5 -10 0.89 5.49 

100 2300 14 1 7 -50 0.89 5.29 

100 2300 14 1 7 -20 0.89 5.43 

100 2300 14 1 7 -10 0.89 5.48 

100 2500 14 1 3 -50 0.90 5.34 

100 2500 14 1 3 -20 0.90 5.45 

100 2500 14 1 3 -10 0.91 5.50 

100 2500 14 1 5 -50 0.90 5.32 

100 2500 14 1 5 -20 0.90 5.45 

100 2500 14 1 5 -10 0.90 5.49 

100 2500 14 1 7 -50 0.90 5.29 

100 2500 14 1 7 -20 0.90 5.44 

100 2500 14 1 7 -10 0.90 5.48 

100 2700 14 1 3 -50 0.91 5.34 

100 2700 14 1 3 -20 0.91 5.45 

100 2700 14 1 3 -10 0.91 5.50 

100 2700 14 1 5 -50 0.91 5.32 

100 2700 14 1 5 -20 0.91 5.45 

100 2700 14 1 5 -10 0.91 5.49 

100 2700 14 1 7 -50 0.91 5.29 

100 2700 14 1 7 -20 0.91 5.44 

100 2700 14 1 7 -10 0.91 5.48 

100 2900 14 1 3 -50 0.91 5.34 

100 2900 14 1 3 -20 0.92 5.45 

100 2900 14 1 3 -10 0.92 5.49 

100 2900 14 1 5 -50 0.91 5.32 
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100 2900 14 1 5 -20 0.92 5.45 

100 2900 14 1 5 -10 0.92 5.49 

100 2900 14 1 7 -50 0.91 5.27 

100 2900 14 1 7 -20 0.92 5.44 

100 2900 14 1 7 -10 0.92 5.49 

100 3100 14 1 3 -50 0.92 5.33 

100 3100 14 1 3 -20 0.93 5.45 

100 3100 14 1 3 -10 0.93 5.49 

100 3100 14 1 5 -50 0.92 5.30 

100 3100 14 1 5 -20 0.93 5.45 

100 3100 14 1 5 -10 0.93 5.49 

100 3100 14 1 7 -50 0.92 5.26 

100 3100 14 1 7 -20 0.92 5.44 

100 3100 14 1 7 -10 0.93 5.49 

100 3300 14 1 3 -50 0.93 5.32 

100 3300 14 1 3 -20 0.93 5.45 

100 3300 14 1 3 -10 0.93 5.49 

100 3300 14 1 5 -50 0.93 5.29 

100 3300 14 1 5 -20 0.93 5.45 

100 3300 14 1 5 -10 0.93 5.48 

100 3300 14 1 7 -50 0.93 5.24 

100 3300 14 1 7 -20 0.93 5.44 

100 3300 14 1 7 -10 0.93 5.49 

100 3500 14 1 3 -50 0.93 5.30 

100 3500 14 1 3 -20 0.94 5.44 

100 3500 14 1 3 -10 0.94 5.48 

100 3500 14 1 5 -50 0.93 5.28 

100 3500 14 1 5 -20 0.94 5.44 

100 3500 14 1 5 -10 0.94 5.48 
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100 3500 14 1 7 -50 0.93 5.22 

100 3500 14 1 7 -20 0.94 5.44 

100 3500 14 1 7 -10 0.94 5.48 

100 3700 14 1 3 -50 0.94 5.29 

100 3700 14 1 3 -20 0.94 5.44 

100 3700 14 1 3 -10 0.94 5.48 

100 3700 14 1 5 -50 0.94 5.26 

100 3700 14 1 5 -20 0.94 5.44 

100 3700 14 1 5 -10 0.94 5.48 

100 3700 14 1 7 -50 0.94 5.21 

100 3700 14 1 7 -20 0.94 5.44 

100 3700 14 1 7 -10 0.94 5.48 

100 3900 14 1 3 -50 0.94 5.28 

100 3900 14 1 3 -20 0.95 5.44 

100 3900 14 1 3 -10 0.95 5.48 

100 3900 14 1 5 -50 0.94 5.25 

100 3900 14 1 5 -20 0.95 5.44 

100 3900 14 1 5 -10 0.95 5.48 

100 3900 14 1 7 -50 0.94 5.20 

100 3900 14 1 7 -20 0.95 5.44 

100 3900 14 1 7 -10 0.95 5.48 
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