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ABSTRACT

GANG LI: Coupling Machine Learning with Fiducial Inference, Genetics and Epigenetics
(Under the directions of Jan Hannig and Yun Li)

This dissertation consists of three research topics.

In the first part, we present deep fiducial inference and approximate fiducial compu-

tation (AFC) algorithm. Since the mid-2000s, there has been a resurrection of interest in

modern modifications of fiducial inference. To date, the main computational tool to extract

a generalized fiducial distribution is Markov chain Monte Carlo (MCMC). We propose an

alternative way of computing a generalized fiducial distribution that could be used in com-

plex situations. In particular, to overcome the difficulty when the unnormalized fiducial

density (needed for MCMC) is intractable, we design a fiducial autoencoder (FAE). The

fitted FAE is used to generate generalized fiducial samples of the unknown parameters. To

increase accuracy, we then apply an approximate fiducial computation (AFC) algorithm,

by rejecting samples that do not replicate the observed data well enough when plugged

into a decoder. Our numerical experiments show the effectiveness of our FAE-based inverse

solution and the excellent coverage performance of the AFC corrected FAE solution.

In the second part, we present SMNN, a supervised mutual nearest neighbor method, for

batch effect correction in single-cell RNA-sequencing (scRNA-seq) data. Batch effect correc-

tion has been recognized to be indispensable when integrating single-cell RNA sequencing

(scRNA-seq) data from multiple batches. State-of-the-art methods ignore single-cell cluster

label information, but such information can improve the effectiveness of batch effect correc-

tion, particularly under realistic scenarios where biological differences are not orthogonal

to batch effects. To address this issue, we propose SMNN for batch effect correction of

scRNA-seq data via supervised mutual nearest neighbor detection. Our extensive evalua-

tions in simulated and real datasets show that SMNN provides improved merging within

the corresponding cell types across batches, leading to reduced differentiation across batches
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over alternative methods including MNN, Seurat v3 and LIGER. Furthermore, SMNN re-

tains more cell-type-specific features, partially manifested by differentially expressed genes

identified between cell types after SMNN correction being biologically more relevant, with

precision improving by up to 841.0%.

In the third part, we present an ensemble imputation framework for DNA methylation

across different platforms. DNA methylation at CpG dinucleotides is a biological process

by which methyl groups are added to the DNA molecule. It is one of the most exten-

sively studied epigenetic marks. With technological advancements, geneticists can profile

DNA methylation with multiple reliable approaches. However, different profiling platforms

can differ substantially in the density and measurements for the CpGs they assess, con-

sequently hindering joint analysis across platforms. For this project, we focus on the two

most commonly used commercial methylation platforms from the Illumina company, specif-

ically aiming to impute from the HumanMethylation450 (HM450) BeadChip to 850K CpG

sites on the HumanMethylationEPIC (HM850) BeadChip. We present CUE, CpG imputa-

tion Ensemble, which ensemble multiple classical statistical and modern machine learning

methods. Our results highlight CUE as a valuable tool for imputing from HM450 to HM850.
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CHAPTER 1

Introduction

With the advancement of technology and the volume of big data, data science and statistics

play even more important roles in the 21st century’s genetics and epigenetics than before. In

particular, machine learning methods are of increasing importance in both foundations of statistical

inference and modern genetics applications. This dissertation contains two parts. In the first

part of this dissertation (Chapter 2), we focus on the foundation of the inference problem. We

introduce a new inference framework, deep fiducial inference, accompanied by a computational

algorithm, approximate fiducial computation. This new framework provides an alternate approach

to generalized fiducial inference, compared to the traditional MCMC-like approach, and is designed

for big data circumstances.

Since the mid-2000s, there has been a resurrection of interest in modern modifications of fiducial

inference. To date, the main computational tool to extract a generalized fiducial distribution is

MCMC and MCMC derived methods. We aim to propose an alternative way of computing a

generalized fiducial distribution via inverse solutions. The main idea of the inverse solution is

to use the inverse function or the approximate inverse function as a sampler to directly generate

fiducial samples, and then get the kernel density estimation of fiducial distribution without knowing

the analytical density form, which might be difficult or impossible to calculate. With the fiducial

distribution built on the inverse solution, typical inference can be carried on. The main challenges

for this project are how to approximate the inverse function and how to generate fiducial samples

lives on the data manifold. Deep fiducial inference framework employs deep neural networks to

approximate the inverse function and approximate fiducial computation is an algorithm that uses

a reject-sampling scheme to generate valid fiducial samples. The competitive performance of AFC

corrected FAE solutions both in terms of efficiency and accuracy suggests that this is a promising

area for future research.
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In the second part of this dissertation (Chapters 3 and 4), we introduce one application in

genetics in Chapter 3 and one application in epigenetics in Chapter 4. Although the methods we

built and improved for those two applications are rooted in two particular examples, they can also

be generalized to other situations. However, for the brevity and consistency in each chapter, we

focus on the motivated application itself in this dissertation.

An ever-increasing amount of single-cell RNA-sequencing (scRNA-seq) data has been generated

as scRNA-seq technologies mature and sequencing costs continue dropping. However, large-scale

scRNA-seq data, for example, those profiling tens of thousands to millions of cells (such as the Hu-

man Cell Atlas Project (Rozenblatt-Rosen et al., 2017), almost inevitably involve multiple batches

across time points, laboratories, or experimental protocols. The presence of batch effect renders

joint analysis across batches challenging (Chen and Zhou, 2017; Stegle et al., 2015). Batch effect, or

systematic differences in gene expression profiles across batches, not only can obscure the true un-

derlying biology, but also may lead to spurious findings. Thus, batch effect correction, which aims

to mitigate the discrepancies across batches, is crucial and deemed indispensable for the analysis

of scRNA-seq data across batches (Stuart and Satija, 2019a). Because of its importance, several

batch effects correction methods have been recently proposed and implemented. However, when

applied to scRNA-seq data, the corrected results derived from these methods widely adopted for

bulk RNA-seq data might be even inferior to raw data without no correction, in some extreme cases

(Haghverdi et al., 2018).

To address the heterogeneity and high dimensionality of complex data, we present SMNN, a su-

pervised mutual nearest neighbor method, for batch effect correction in single-cell RNA-sequencing

(scRNA-seq) data in Chapter 3. An ever-increasing deluge of scRNA-seq data has been generated,

often involving different time points, laboratories, or sequencing protocols. Batch effect correction

has been recognized to be indispensable when integrating scRNA-seq data from multiple batches.

SMNN either takes cluster/cell-type label information as input or infers cell types using scRNA-seq

clustering in the absence of such information. It then detects mutual nearest neighbors within

matched cell types and corrects batch effect accordingly. Compared to other state-of-arts batch

effects correction methods, SMNN provides improved merging within the corresponding cell types

across batches and retains more cell-type-specific features after correction.
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We next consider an application in epigenetics. DNA methylation of cytosine residues at

CpG dinucleotides is one of the most extensively studied epigenetic marks. Rich recent literature

provides evidence regarding its important role not only in normal development but also in risk

and progression to many diseases (Bird, 2002; Gonzalo, 2010; Joubert et al., 2016; Klutstein et al.,

2016; Iurlaro et al., 2017; Horvath and Raj, 2018; Turecki and Meaney, 2016; Bakusic et al., 2017).

With the emergence of powerful technologies such as DNA methylation microarray (Bibikova et al.,

2011b) and bisulfite sequencing, geneticists can profile DNA methylation at increasingly higher

resolutions. Taking methylation microarrays for an example, we have witnessed new platforms

replacing old ones every few years (Moran et al., 2016; Bibikova et al., 2009; Dedeurwaerder et al.,

2014). However, different platforms (for example, the widely used Illumina HumanMethylation27,

HumanMethylation450, MethylationEPIC BeadChips) target different CpG sites and have different

marker densities, consequently hindering joint analysis across platforms.

In Chapter 4, we aim to impute an HM450 dataset up to an HM850 dataset, for increased

coverage of this epigenomic landscape. Specifically, we present CUE, CpG imputation Ensemble,

which ensemble multiple classical statistical and modern machine learning methods, to impute

from the Illumina HumanMethylation450 (HM450) BeadChip to 850K CpG sites on the Illumina

HumanMethylationEPIC (HM850) BeadChip. We analyzed data from two population cohorts

measured both by HM450 and HM850: the Extremely Low Gestational Age Newborns (ELGAN)

study (n=127, placenta) and the Posttraumatic Stress Disorder (PTSD) study (n=144, whole

blood). Our results highlight CUE as a valuable tool for imputing from HM450 to HM850.
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CHAPTER 2

Deep Fiducial Inference and Approximate Fiducial Computation

2.1 Introduction

Generalized fiducial inference (GFI) (Hannig et al., 2016), a modern re-incarnation of R. A.

Fisher’s fiducial inference (Fisher, 1930), provides inferentially meaningful probability statements

about subsets of parameter space without the need for subjective prior information. GFI specifies

a generalized fiducial distribution (GFD) by defining a data-dependent measure on the parameter

space through an inverse of a data-generating algorithm (see Sections 2.3). The data-generating

algorithm plays the role of a model and is sometimes called data-generating equation or data-

generating function. With GFD as a distribution estimator for the fixed parameter(s), we can

further define approximate confidence (fiducial) sets which are often shown in simulation to have

very desired properties (Hannig et al., 2016).

Given the data-generating algorithm and the corresponding density of the GFD, one can form

point estimates and asymptotic confidence sets similarly to a Bayesian posterior density. Standard

MCMC-type sampling techniques have already been successfully implemented in many situations;

see (Hannig et al., 2016) and the references therein. However, sometimes the generalized fiducial

density can be hard to compute. Especially when the likelihood function of the data is intractable,

MCMC may be difficult or impossible to implement. For this reason we propose using a deep neural

network to approximate the nonlinear inverse to the data-generating algorithm, and to generate an

approximation to the fiducial distribution without knowing the exact form the density.

Autoencoder (AE) (Hinton and Zemel, 1994; Schmidhuber, 2015) is a type of neural network

architecture to learn data code, an efficient representation of the data, and to reduce data di-

mensions. Different variants of autoencoder (Vincent et al., 2010) have gained a lot of successful

results in applications of the neural network, such as variational autoencoder (Doersch, 2016) and

variational Bayes (Kingma and Welling, 2013). The denoising autoencoder (Vincent et al., 2008)
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is designed to remove the noise effects without losing the essential signal in the data. Inspired

by the autoencoder’s architecture, we design an FAE, which continues to use a neural network as

the encoder to approximate the inverse of data generating function but employs the exact data-

generating function as the decoder. Furthermore, we design and implement approximate fiducial

computation algorithms, in addition to FAE, to generate generalized fiducial samples.

The rest of this chapter is organized as follows. In Section 2.2, we first introduce the generalized

fiducial inference and its standard MCMC based solution. In Section 2.3.1, we design a fiducial

autoencoder (FAE) to approximate the inverse function when it is not directly available, and we also

propose the approximate fiducial computation (AFC) algorithm to further increase the accuracy of

FAE. We demonstrate the performance of FAE and AFC in four numerical examples in Section 2.4.

Section 2.5 concludes the chapter with some discussions.

2.2 Background on generalized fiducial inference

Before introducing our computational tool, FAE, we first briefly present the current state of

ideas in GFI. The GFI framework is based on linking the observed data x, the unknown parameter

µ, and some random component z via a data generating algorithm, also called data generating

function. We shall discuss this in detail.

Data generating algorithm: The data generating algorithm is

x = f(z, µ). (2.1)

where x is the data, µ is the parameter, and z is a random component with random distribution

F0, e.g., i.i.d. standard Gaussian distribution, that is completely known and independent of the

parameter µ. It is assumed that the data could have been generated by fixing some parameter

value µ, generating a value z from distribution F0, and plugging them into the equation (2.1). The

data x is assumed observed, while the values of µ and z are unobserved. Notice that this procedure

uniquely determines the sampling distribution of x, and µ is fixed.

Generalized fiducial distribution: If both x and z were known, then inverting equation

(2.1), i.e., solving for µ, would give us the unknown parameter. Heuristically speaking, since z is

unknown, we estimate it using its distribution F0 and define GFD by propagating the distribution
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F0 through the inverse of the data generating algorithm. More precisely, GFD is defined rigorously

as follows (Hannig et al., 2016):

For an ε > 0, consider the following inverse problem

g(x, z) = argmin
µ?

‖x− f(z, µ?)‖. (2.2)

In this chapter we will use ‖ · ‖ as either `2 or Frobenius norm and call the inverse of the data

generating algorithm g(x, z) the inverse function. Next define the random variable µ?ε = g(x,Z?ε ),

where Z?ε has distribution F0 truncated to the set

Cε = {Z?ε : ‖x− f(Z?ε , µ
?
ε )‖ = ‖x− f(Z?ε , g(x,Z?ε ))‖ ≤ ε}. (2.3)

Then assuming that the random variable µ?ε converges in distribution as ε → 0, GFD is de-

fined as the limiting distribution µ? = limε→0 µ
?
ε . In practice, a small threshold ε is selected for

computation. Notice that the fiducial distribution of µ? depends on the observed data x.

With this GFD as the distribution estimator for µ, one can form point estimators and construct

approximate confidence sets just like using a Bayesian posterior distribution. Notice that GFI does

not need any prior information, and in fact, it provides a systematic approach to deriving objective

Bayes-like posterior distributions (Hannig et al., 2016). The following theorem is a basis for most

current numerical implementations of GFD:

Theorem 1 ((Hannig et al., 2016)). Under mild conditions, the limiting distribution above has

density

rx(µ) =
L(x|µ)J(x,µ)∫

L (x|µ′) J (x,µ′) dµ′

where L(x|µ) is the likelihood function and J(x,µ) = D
(
∇µf (z,µ)|z=f−1(x,µ)

)
, where ∇µ is a

gradient matrix with respect to µ and D(A) = (detA′A)
1
2 .

Notice that the form of the GFD density in the theorem has a similar form to a Bayesian poste-

rior density, where the Jacobian function J(x, µ) plays the role of a data-dependent prior. Similarly

to Bayesian inference, one potential challenge using this formula to calculate the fiducial density

is that the denominator might be intractable. Traditionally this has been addressed using MCMC
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algorithms. There are many well-known challenges associated with MCMC such as computational

speeds and intractable high dimensional integrals. In particular, MCMC is difficult to implement

when a closed form of the likelihood is unknown or difficult to derive.

In this chapter, we propose a sampling-based computational solution using (2.2) directly. There

are two main challenges in implementing this approach. First, the solution to the optimization

problem in (2.2) might not have an analytical form or might be difficult to calculate. Therefore we

propose to approximate the solution g(x,Z?ε ) using a deep neural network (see details in section

2.3.1). Second, one needs to generate Z?ε from Cε for a small ε, which could be very challenging

when C0 is a lower dimensional-manifold. We propose an AFC algorithm (see details in section

2.3.2) to effectively generate fiducial samples.

Confidence curve: before proceeding further, we also introduce the confidence curve (CC),

a useful graphical tool for plotting epistemic distributions (Birnbaum, 1961). Given Rx(µ) the

distribution function of GFD corresponding to a one-dimensional marginal of density in Theorem 1,

CC is defined as 2|Rx(µ) − 0.5|. CC shows two-sided confidence intervals at all significance levels

stacked upon each other (e.g., see Figure 2.1 ). The median of GFD is the point where CC touches

x-axis and can be used as a point estimator.

Figure 2.1: Confidence curve.

See Figure 2.1: a vertical line shows the true parameter value, while a horizontal line with

height α (0 < α < 1) across the CC provides an α level, equal tailed, two-sided confidence interval.
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2.3 Methodology

2.3.1 Deep fiducial inference

Before we introduce our FAE, we first discuss some terminology used within deep learning

(Goodfellow et al., 2016). Artificial neural network is a function described using a directed graph.

The vertices are simple functions, typically a linear function with output modified by a non-linear

function called an activation function. Examples of activation functions include the identity, called

linear activation function, max(x, 0), called ReLU (Nair and Hinton, 2010), sigmoid function, hy-

perbolic tangent function, etc. Activation functions are called squashing if their range is a compact

interval. The edges of the graph describe the relationships between inputs and outputs of the simple

functions. A feedforward neural network, the most basic type of neural network, is an artificial

neural network wherein connections between the nodes do not form a cycle. Training neural net-

work describes the process of fitting the coefficients of the linear functions in the nodes of the graph

to training data. This is typically done using a stochastic optimization algorithm, e.g., stochastic

gradient descent (SGD) (Bottou, 2010) or Adam (Kingma and Ba, 2014).

In this section, we design a fiducial FAE, a deep neural network based approximation for the

inverse function (2.2), for circumstances where the inverse function might not have an analytical

form or might be difficult to calculate. There are standard theoretical guarantees for a good

approximation (Hornik et al., 1989) (Theorem 2) and our numerical experiments in Section 2.4 also

validate this approach.

Theorem 2 (Universal Approximation Theorem). A feedforward network with a linear output layer

and at least one hidden layer with any squashing activation functions can approximate any Borel

measurable function, provided that the network is given enough hidden units.

The most basic version of autoencoder (AE) (Hinton and Zemel, 1994; Schmidhuber, 2015)

often contains two parts, encoder and decoder. The encoder maps from the observation space X

to latent coder space Z while the decoder does the inverse (see left panel of Figure 2.2).
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Figure 2.2: Autoencoder and fiducial inference. The left panel shows a schematic of a generic autoencoder
while the right panel compares autoencoder with usual generalized fiducial inference.

We compare the encode-decode process of the standard AE to the usual fiducial inference in the

right panel of Figure 2.2. The process by which the data generating function maps the parameter

and the latent variables to the observations is similar to the mechanism by which the decoder maps

the code to the data in the usual AE. Similarly, the encoder in AE plays a role akin to the inverse

of the data generating algorithm in fiducial inference. Inspired by this analogy, we create the FAE

framework which will use as an encoder a neural network that will approximate the inverse of

the data generating algorithm µ̂ = g(x, z) to be estimated, and as a decoder the data generating

algorithm x̂ = f(z, µ̂) that is known to us.

Figure 2.3: Standard fiducial autoencoder architecture.

More precisely, the standard FAE has two input nodes, the observation data x and the latent

variable z, one final output node, the prediction x̂, and one intermediate output node, the prediction

µ̂. The FAE’s encoder usually consists of a deep fully connected neural network, which maps the x

and z to µ̂. The architecture of the encoder is flexible and should be selected based on the problem

so that it can learn the inverse function well. Unlike the traditional autoencoder which uses the

code layer µ̂ to predict the input nodes, the FAE’s decoder employs the known data generating

algorithm x̂ = f(z, µ̂). We built an additional straight connection from the input z node directly

to the final output node x̂, which is an extreme case of the residual neural network, see Figure 2.3.

Two main differences between traditional autoencoder and our FAE are summarized as follows:
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• First, we use the exact data generating algorithm instead of another group of neural network

as the decoder.

• Second, our decoder takes as the input not only code layer µ̂ but also the random component

Z?.

One big advantage of FAE, compared to the usual AE, is that it never suffers a lack of training

data. This is because the training data is obtained by simulation from the data generating algorithm

that is known to us. In particular, given a number of training {µk, k = 1, 2, ..., ntrain}, we could

generate as many pairs of xk and zk for training FAE as needed. The limitation is that we need to

make sure that the training set contains a large enough number of data sets that are similar to the

observed data. For example, if the training set does not contain enough values of µk that are close

to the true µ, we cannot guarantee the FAE to provide good answers. Therefore, we recommend

that enough of the training data is generated using values of µk close to some pilot estimator of µ̂.;

for example, the least square estimator as in Section 2.4.4.

Since the decoder is the fixed deterministic data generating function, the loss of FAE quantifies

how well the encoder approximates the inverse function. The total loss function we use for training

our neural network contains two parts, the mean square error with regard to x̂ and µ̂: L =

w1‖x− x̂‖2 +w2‖µ− µ̂‖2, where w1 and w2 are user-selected weights. If we set w1 = 0 and w2 = 1,

we would in effect be training a neural network mapping directly from X and Z to µ, and we

would miss the information provided by the data generating function. Our numerical experiments

show that this choice is not optimal. After incorporating the information from the data generating

function, the approximation performance is greatly improved. On the other hand, if we only use

the mean square error based on predicting the data, ‖x− x̂‖2 (w1 = 1 and w2 = 0), the FAE would

still do reasonably well. However, using MSE for µ̂ with appropriate weights does not only increase

the convergence speed but also improves the FAE’s performance. In our numerical experiments we

manually select w1, w2 so that the loss with regard to the observation, w1‖x− x̂‖2, and the loss

with regard to the parameter, w2‖µ− µ̂‖2, are roughly of the same magnitude. For example, we

set w1 = w2 = 1 as the default parameters in Section 2.4.2.
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2.3.2 Approximate fiducial computation

Once the FAE converges, we simply apply the encoder with pairs of the fixed observed x and

a number of simulated Z?, which are the independent identical copy of Z, to get the estimated

µ?. Truncating these fiducial samples to the set Z? ∈ Cε, defined in (2.3), using approximate

fiducial computation algorithms, one will achieve samples from the approximate generalized fiducial

distribution that can be used for inference. Notice that using only Z? ∈ Cε is very natural as we

are discarding those Z? for which FAE predicts values of x? that are far from the observed value

x.

This is similar to the approximate Bayesian computation (ABC) that have been intensively

studied in the past years (Blum et al., 2013). Similar to ABC, which is designed to overcome the

intractable likelihood function, AFC avoids directly calculating the fiducial density and the inverse

function. One major difference is that while ABC uses a prior distribution to get candidate µ?, the

AFC algorithm uses the optimization problem (2.2) eschewing the need to select an arbitrary prior

distribution.

The steps of the AFC algorithms are summarized in Algorithm 1. Note that for different

problems and even for different parameters within the same problem we might need to select

different thresholds (ε in equation (2.3)) to efficiently get valid approximate generalized fiducial

samples. If the threshold is too big, then we might get biased samples; if the threshold is too small,

it would be very difficult for AFC to generate enough samples passing the threshold condition. In

practice, we could use one random batch of samples to approximate the distribution of dist(x,x?),

and select the threshold according to the efficiency and the accuracy we expect for the AFC.

We call the samples from Algorithm 1 approximate generalized fiducial samples. Aggregating

those samples into an empirical distribution provides an approximation to the GFD and form the

bases for making statistical inference. In our numerical experiments, we study statistical properties

of the point estimators based on the mean and median, and the α-level approximate confidence

intervals based on the (1 − α)/2 and (1 + α)/2 empirical quantiles of the generalized fiducial

samples. The corresponding confidence curves are reported to visualize the approximate fiducial

distribution. Finally, we remark that the AFC algorithm can be useful even in situations when we
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know the analytical form of the fiducial inverse function (2.2). We demonstrate this on an example

in Section 2.4.1.

Algorithm 1: Approximate Fiducial Computation (AFC)

Input : Data generating function f; (approximate) inverse function g; distribution F0 for

generating Z?; observation x; threshold ε

Output: Generalized fiducial samples (GFS)

1 while (itr < max itr) and (# of GFS < N) do

2 Sample Z? from F0;

3 µ? = g(x,Z?) ;

4 x? = f(Z?, µ?) ;

5 if dist(x,x?) < ε then

6 Accept µ?;

7 else

8 Reject µ?;

9 end

10 itr = itr + 1;

11 end

2.4 Simulation

We report the results of four numerical experiments. The first is the location-scale Laplace

distribution, a relatively straightforward example illustrating AFC when the analytical form of

the inverse of the data generating algorithm is available. The second example demonstrates that

FAE can learn a non-linear inverse function and shows how AFC improves the inference with the

decreasing thresholds ε. The third example shows AFC improves the inference of a function of

parameter. The fourth example compares FAE and several competing methods using a highly

non-linear regression model.
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2.4.1 Location-scale Laplace distribution

Consider the data generating algorithm

x = f(z, µ) = θ × 1 + σz,

where x = (x1, . . . , xm)> are the observed data, µ = (θ, σ) are the unknown scalar parameters,

and z = (z1, . . . , zm)> is a vector of i.i.d. samples from standard Laplace distribution, i.e., density

f(z) = e−|z|/2. Straightforward calculations show that µ? = (θ?, σ?) = g(x,Z?) is

σ? =

∑m
i=1(xi − x̄)(Z?i − Z̄?)∑m

i=1(Z
?
i − Z̄?)2

and θ? = x̄− σ?Z̄?, (2.4)

where x̄ = m−1
∑m

i=1 xi and Z̄? = m−1
∑m

i=1 Z
?
i .

Since we have the analytical solution for the inverse function we can easily compute µ? =

g(x,Z?) for any Z? following Laplace distribution. This is the baseline method without AFC

algorithm. Then we use the data generating algorithm to compute the predicted observation

x? = f(Z?, µ?) = θ? × 1 + σ?Z?, and accept the proposed µ? if and only if ‖x− x?‖ ≤ ε for some

pre-selected threshold ε. This process is repeated until we get the desired number of AFC corrected

fiducial samples.

Notice that for small enough ε the AFC algorithm will not accept Z? that does not match the

order of the data. Since the distribution of Z? is exchangeable, we will without loss of generality

assume that both x1 < · · · < xm and Z?1 < · · · < Z?m are ordered. This will make the algorithm

more efficient. Finally, because of invariance of the location-scale model, it is enough to perform

the simulation using only one value the true parameter value, say θ = 0 and σ = 1.

Figure 2.4 shows an example of CC with and without AFC for the same dataset containing

m = 100 observations. In the left panel, we see that the CC for θ with AFC (orange) is much

thinner than the curve without AFC (blue). And the corresponding fiducial median with AFC

is also more close to the truth 0. In the right panel, the CC for σ with AFC provides a slightly

narrower 90% confidence interval compared with that without AFC.
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Figure 2.4: Confidence curves of marginal distributions for the Laplace example. The red vertical lines
shows the true parameters (θ = 0 and σ = 1) generated the observed data. The yellow horizontal line
indicates the 90% confidence intervals.

Table 2.1: Inference performances without AFC for Laplace example.

Truth Coverage Expected CI Length Expected Mean Expected Median

θ = 0 0.835 0.4468 0.0042 0.0048

σ = 1 0.935 0.3636 0.9717 0.9657

Tables 2.1 and 2.2 compare the inference performance with and without AFC. In particular,

we fixed the true parameters θ = 0 and σ = 1, and observed 200 data sets each containing

m = 100 observations {xk = (x1,k, . . . , xm,k)
>, k = 1, . . . , 200}. For each xk, we used 1,000 random

{Z?
j,k, j = 1, . . . , 1000} to obtain the corresponding µ?j,k and use them to obtain estimators of the

mean, median and 90% confidence set. We report four key statistics averaged over the 200 data

sets, namely, coverage, the expected length of the confidence intervals, the expected value of the

fiducial mean and median. We can see that AFC provides more accurate point estimations for both

mean estimator and median estimator. In addition, the length of confidence intervals with AFC at

the same confidence level are shorter than those without AFC. Lastly, AFC improves the coverage

for θ and σ.

Table 2.2: Inference performances with AFC for Laplace example.

Truth Coverage Expected CI Length Expected Mean Expected Median

θ = 0 0.870 0.4244 0.0033 0.0032

σ = 1 0.940 0.3466 0.9872 0.9796
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2.4.2 Nonlinear data generating algorithm

Consider the following non-linear model defined by the data generating algorithm

x = µ× 1 + µ
q
2 × z,

where x, z ∈ Rm(m = 3) and µ ∈ R, with zi as the realizations of independent standard normal

random variables. Here, µ is the parameter of interest and q/2 is known. When q = 0, this

becomes a standard location parameter problem: X = µ × 1 + Z, q = 2 is a scale parameter

problem X = µ × (1 + Z). and q = 4 leads to a one-parameter exponential family. In this

numerical experiment we choose q = 3 in order to have a true non-linear model.

To train the FAE, we simulate 100,000 µk from the Uniform(0, 6) distribution and randomly

split them to 80,000 training samples and 20,000 validation samples. These µk serve as the true

parameter for training purposes. We use an 11 layer fully-connected neural network as the encoder

with ReLU as the activation function (Nair and Hinton, 2010) and with Adam as the optimizer

(Kingma and Ba, 2014). The FAE converges after 10 epochs. All FAEs in this chapter are imple-

mented using on Keras in Python (Chollet et al., 2015).

After the FAE has converged we will use the fitted encoder for inference. In particular we

first randomly sample Z?
j , j = 1, . . . , nfid (nfid = 1000) and use them together with the observed

data x in the encoder to obtain nfid samples of µ?j . Notice that the same observed value of x is

used for all µ?j . Using the µ?j we can estimate an empirical distribution function of the GFD for µ

and draw a corresponding confidence curve. Figure 2.5 shows confidence curves for nine different

realizations of x. Most of the confidence intervals are wide and only 7 of 9 true µ are covered by

the corresponding 95% level confidence interval.

Table 2.3 presents the results of a simulation study using FAE without AFC. In particular, we

fixed four true µ ∈ 1, 2, 3, 4, and observed 200 data sets {xk, k = 1, . . . , 200} for each of the four

values of µ. For each xk, we use 1,000 random Z?
j to obtain µ?j and use them to obtain fiducial

mean, median and 90% confidence set. Table 2.3 reports four key statistics averaged over the 200

data sets, namely, coverage, the expected length of the confidence intervals, the expected value of

15



Figure 2.5: Nine confidence curves for nonlinear data generating algorithm of FAE without AFC. The red
vertical lines correspond to the true parameters. The intersection of the confidence level (yellow horizontal
line) and the blue confidence curve shows the 95% confidence interval. The values of Z are the random
realizations used in the data generating algorithm.

the fiducial mean and median . We can see that the confidence sets are very wide and the expected

fiducial mean and the expected fiducial median are biased.

Next, we investigate the effect of AFC for a fixed observation. Figure 2.6 shows confidence

curves for the same data x with different thresholds; the true µ = 3.5. As the threshold ε decreases,

the marginal fiducial median is getting closer to the true µ. Additionally, the fiducial distribution

is becoming more concentrated.

Finally, we repeated the simulation study for FAE with AFC to generate 1,000 threshold-

admissible samples to form inference estimates. As shown in Table 2.4, the fiducial mean and
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Table 2.3: Inference performances without AFC for nonlinear data generating algorithm.

True µ Coverage Expected CI Length Expected Mean Expected Median

1 0.985 2.03 1.07 0.90

2 0.905 3.50 2.64 2.49

3 0.865 4.25 3.85 3.81

4 0.870 4.28 4.48 4.45

Figure 2.6: Confidence curves with different thresholds. The red vertical lines correspond to the true
parameter (µ = 3.5).

median with AFC is less biased compared to the inference performance without AFC shown in

Table 2.3. The empirical coverage is greater than the true 90% confidence level for all 4 settings.

Table 2.4: Inference performances with AFC for nonlinear data generating algorithm.

True µ Coverage Expected CI Length Expected Mean Expected Median

1 0.95 3.10 1.44 1.06

2 0.95 4.07 2.55 2.18

3 0.97 3.43 3.22 2.99

4 0.94 3.30 3.98 3.89
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2.4.3 Many means

For this simulation, we are able to calculate the analytical form of the inverse function. We

show the improvement of AFC by comparing the inference performances with and without AFC to

select the valid threshold fiducial samples.

Considering the following data generate equation: x = µ+ z, with x ∈ <m, µ ∈ <m, and z ∈ <m.

And the parameter of interests is the square of the l-2 norm of µ, ‖µ‖2, instead of µ itself. We

will first generated fiducical samples of µ, and further generated admissible ‖µ‖2. For this case,

the inverse function of is simple: µ = g(x, z) = x − z. But when plug in the true x and z∗, an

independent copy of z, into the inverse function g and carried the AFC algorithms, we will accept

every proposed µ, since x̂ = f(µ̂, z∗) = µ̂ + z∗ = g(x, z∗) + z∗ = x − z∗ + z∗ = x. We proposed

the following estimation µ̂ = ‖µ̃‖ ∗ (x/‖x‖) with µ̃ = x− z∗.

Figure 2.7: Confidence curves with and without AFC.

Table 2.5: Inference performances for many means example. (‖µ‖2 = 3.37)

If AFC Coverage Expected CI Length Expected Mean Expected Median

No 0.85 3.12 3.91 3.91

Yes 0.95 3.29 3.65 3.64

As shown in Table 3, the empirical coverage increase 10%, and the expected median and the

expected mean is more accurate with AFC.
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2.4.4 Biological oxygen demand problem

Here we further test our AFC-corrected FAE solution on a non-linear regression algebraic model

for Biological Oxygen Demand (BOD) (Bardsley et al., 2014) . The BOD model is often used for

simulating the saturation of the growth of the observed response y that corresponds to a given

variable x. The corresponding data generating algorithm is

y = f(µ,x) = t0(1− e−t1x) + z (2.5)

where the parameters µ = (t0, t1) are two scalars to estimate; the observed synthetic data have five

design points x = (2, 4, 6, 8, 10) and dependent observations y = (0.152, 0.296, 0.413, 0.482, 0.567).

The observation errors z = (z1, . . . , z5) are assumed to be independent and identically distributed

mean zero Gaussian errors with the standard deviation σ > 0. Following (Bardsley et al., 2014) we

fixed σ = 0.015.

To train the FAE for the BOD model, we simulate 120,000 samples, with 96,000 as training

dataset and 24,000 as validation dataset. Each data frame indexed by k contains three parts, the

parameters µk = (t0,k, t1,k), with t0,k from the Uniform(0.4, 1.2) distribution and t1,k from the

Uniform(0.000001, 0.2) distribution, the random error zk from N5(0, σ
2I5), and the corresponding

yk generated from the data generating algorithm (2.5). Notice that these µk serve as the true

parameter for training purpose and are generated around the least square estimators of the pa-

rameters (t̂0 = 0.90110, t̂1 = 0.09863). Our encoder consists of 8 shared fully-connected layers that

learn code from the observed data (x,yk) and the corresponding zk; then 3 fully-connected layers

map from the code space to t0, and in parallel one fully-connected layer maps from the code to t1.

We use ReLU as the activation function and Adam as the optimizer. The FAE converges after 10

epochs.

We used four different methods to analyze the BOD data with the resulting distributions

reported in Figure 2.8. The FAE with AFC is in panel a); the GFD using Theorem 1 implemented

using Hamiltonian Monte Carlo in STAN (Stan Development Team, 2020) is in panel b); the

parametric bootstrap (Tibshirani and Efron, 1993) is in panel c); and the Bayesian solution of

(Bardsley et al., 2014) using Metropolis-Hastings algorithm with a simplified fiducial-like proposal,
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Figure 2.8: Contour plots of the joint posteriors for the BOD example. (a) FAE estimation with AFC
algorithm (orange); (b) fiducial estimation implemented via HMC (brown); (c) parametric bootstrap (cyan);
(d) RTO (Bayesian) solution (magenta). The red dots near the center of the contours represent the true
parameters (t0 = 0.9, t1 = 0.1) that generated the observed data.

called randomize-then-optimize (RTO), is in panel d). Notice that all methods yield a ”banana-

shaped” distribution centered around the true parameters (t1 = 0.9, t2 = 0.1), indicated by the

red dots in Figure 2.8. The AFC-corrected FAE solution (orange contour) achieve the thinnest

banana-shape among all, while the RTO solution is the widest. Furthermore, we report confidence

curves based on the marginal distributions of the two parameters separately in Figure 2.9. Again

our AFC-corrected FAE solution is the thinnest among the four methods. Both the thinnest banana

shape and confidence curve indicate that our AFC-corrected FAE solution is the most concentrated

near the truth.
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Figure 2.9: Confidence curves of marginal distributions for the BOD example. The colors associated with
the methods are the same as in Figure 2.8. The red vertical lines are the true parameters (t0 = 0.9, t1 = 0.1)
that generated the observed data. The yellow horizontal line indicates the 90% confidence intervals.

In summary, we have shown how to use AFC with and without the analytical form of the

inverse function, and by implementing AFC we improved the inference performances of GFI. Our

FAE provides an accurate approximation of the inverse function.

2.5 Discussion

In this chapter, we first proposed a fiducial autoencoder for the circumstance in which the an-

alytical form of the inverse function is not available or the marginal fiducial density is intractable.

The universal approximation theorem provides theoretical guarantees for the approximation per-

formance of our FAE, and our simulations further validate our approach. The proposed FAE can

accurately approximate the inverse function, and it can be efficiently combined with the AFC algo-

rithm to provide valid and accurate inferences of the true parameters. The AFC algorithm is similar

to ABC and provides an insight into the relationship between Bayesian and fiducial distribution;

the use of a prior versus solving an optimization problem when proposing µ.

For modern machine learning and deep learning communities, data are usually implicitly mod-

eled, while for fiducial inference, we explicitly model the modeling mechanism behind the data

through our data generating algorithm. Under the FAE framework, we are combining those two

approaches: we incorporate the data generating algorithm as a decoder (explicitly model the for-

ward process); we keep deep neural network (implicit model) as an encoder to computationally

solve the inverse problem. Furthermore, FAE might help the deep learning community to under-
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stand the neural work through our fiducial autoencoder. For example, a neural network is often

regarded as a non-linear regression tool, but one main difficulty for DL is that the true function

is unknown. When the inverse function has an analytical solution, we can quantify the biases in

a certain sense. Thus studying the theoretical properties of FAE could potentially be helpful to

understand the neural network.

One limitation of our AFC-corrected FAE solution is that the inference results are sensitive to

the training data FAE learned from. Neural networks are known for their ability to perform well on

the similar data it has seen before. If most of the parameters of our simulated training data are far

from the true parameter of the observed data, or FAE does not see enough similar training data as

the true parameters of the observed data, FAE, even with AFC, might provide a biased estimation.

A simple remedy for that is to generate the training data around the least square estimation of the

parameter. In other words, we only require the FAE to learn the inverse function around the true

parameter, instead of the whole parameter space, which can be much harder.

We have focused on cases with completely known data-generating algorithm and our pre-defined

neural network architecture (fully connected neural networks) in the numerical experiments. The

main purpose of these studies is to demonstrate the approximation performance of the FAE and

the validity of the AFC algorithm. Thus we did not tune the best neural network architecture for

the encoder part of the FAE. Note we do not have a specific requirement for the network structure

of encoder. Any standard deep neural networks can be used to construct an encoder. However, to

learn a complex inverse function inevitably requires a more sophisticated construction of encoder.

This can be a potential issue, but rapid development of deep learning should provide new elegant

architectures that increase the FAE applicability. The competitive performance of AFC corrected

FAE solution both in terms of efficiency and accuracy suggests that this is a promising area for

future research.
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CHAPTER 3

SMNN: Batch Effect Correction for Single-cell RNA-seq data
via Supervised Mutual Nearest Neighbor Detection

3.1 Introduction

An ever-increasing amount of single cell RNA-sequencing (scRNA-seq) data has been gener-

ated as scRNA-seq technologies mature and sequencing costs continue dropping. However, large

scale scRNA-seq data, for example, those profiling tens of thousands to millions of cells (such as

the Human Cell Atlas Project (Rozenblatt-Rosen et al., 2017), almost inevitably involve multiple

batches across time points, laboratories, or experimental protocols. The presence of batch effect

renders joint analysis across batches challenging (Chen and Zhou, 2017; Stegle et al., 2015). Batch

effect, or systematic differences in gene expression profiles across batches, not only can obscure

the true underlying biology, but also may lead to spurious findings. Thus, batch effect correction,

which aims to mitigate the discrepancies across batches, is crucial and deemed indispensable for

the analysis of scRNA-seq data across batches (Stuart and Satija, 2019a).

Because of its importance, a number of batch effects correction methods has been recently pro-

posed and implemented. Most of these methods, including limma (Smyth, 2005), ComBat (Johnson

et al., 2007), and svaseq (Leek, 2014) , are regression-based. Among them, limma and ComBat ex-

plicitly model known batch effect as a blocking term. Because of the regression framework adopted,

standard statistical approaches to estimate the regression coefficients corresponding to the block-

ing term can be conveniently employed. In contrast, svaseq is often used to detect underlying

unknown factors of variation, for instance, unrecorded differences in the experimental protocols.

svaseq first identifies these unknown factors as surrogate variables and subsequently corrects them.

For these regression-based methods, once the regression coefficients are estimated or the unknown

factors are identified, one can then regress out these batch effects accordingly, obtaining residuals

that will serve as the batch-effect corrected expression matrix for further analyses. These methods
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have become standard practice in the analysis of bulk RNA-seq data. However, when it comes to

scRNA-seq data, one key underlying assumption behind these methods, that the cell composition

within each batch is identical, might not hold. Consequently, estimates of the coefficients might

be inaccurate. As a matter of fact, when applied to scRNA-seq data, the corrected results derived

from these methods widely adopted for bulk RNA-seq data might be even inferior to raw data

without no correction, in some extreme cases (Haghverdi et al., 2018).

To address the heterogeneity and high dimensionality of complex data, several dimension-

reduction approaches have been adopted. An incomplete list of these strategies includes principal

component analysis (PCA), autoencoder, or force-based methods such as t-distributed stochastic

neighbor embedding (t-SNE) (Van Der Maaten, 2014). Through those dimension reduction tech-

niques, one can project new data onto the reference dataset using a set of landmarks from the

reference (Haghverdi et al., 2018; Nestorowa et al., 2016; Spitzer et al., 2015; Stuart and Satija,

2019b) to remove batch effects between any new dataset and the reference dataset. Such projection

methods require the reference batch contains all the cell types across batches. As one example,

Spitzer et al. (Spitzer et al., 2015) employed force-based dimension reduction and showed that

leveraging a few landmark cell types from bone marrow (the most appropriate tissue in that it

provides the most complete coverage of immune cell types) allowed mapping and comparing im-

mune cells across different tissues and species. When applied to scRNA-seq data, however, these

methods suffer when cells from a new batch fall out of the space inferred from the reference. Fur-

thermore, determining the dimensionality of the low dimensional manifolds is still an open and

challenging problem. To address the limitations of existing methods, two recently developed batch

effect correction methods, MNN and Seurat v3, adopt the concept of leveraging information of

mutual nearest neighbors (MNN) across batches (Haghverdi et al., 2018; Stuart and Satija, 2019b),

and demonstrate superior performance over alternative methods (Haghverdi et al., 2018; Stuart

and Satija, 2019b). However, this MNN-based strategy ignores cell type information and suffers

from potentially mismatching cells from different cell types/states across batches, which may lead

to undesired correction results. For example, under the scenario depicted in Fig. 3.1b, MNN

leads to cluster 1 (C1) and cluster 2 (C2) mis-corrected due to mismatching single cells in the two

clusters/cell-types across batches.
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To address the above issue, here we present SMNN, a supervised machine learning method that

explicitly incorporates cell type information. SMNN performs nearest neighbor searching within

the same cell type, instead of global searching ignoring cell type labels (Fig. 3.1a). Cell type

information, when unknown a priori, can be inferred via clustering methods (Duò et al., 2018;

Kiselev et al., 2019; Sun et al., 2019; Zhu et al., 2019).

3.2 Methodology

3.2.1 SMNN framework

The motivation behind our SMNN is that single-cell cluster or cell type information has the

potential aid the identification of most relevant nearest neighbors and subsequently improve batch

effect correction. A preliminary clustering before any correction can provide knowledge regarding

cell composition within each batch, which serves as the cellular correspondence across batches (Fig.

3.1a). With this clustering information, we can refine the nearest neighbor searching space within a

certain population of cells that are of the same or similar cell type(s) or state(s) across all batches.

25



Batch 2

Batch 1

Nearest 
neighbors 
of SMNN

C1 C2

C3

C1’ C2’

C3’

Batch effect

Batch 2

Batch 1

Nearest 
neighbors 

of MNN

C1 C2

C3

C1’ C2’

C3’

Batch effect

a

c

clustering

Computing
correction vector

Expression matrices 
of two batches

n single cells

g 
ge

ne
s

m single cells

g 
ge

ne
s

-20

-10

0

10

20

-20 -10 0 10

tSNE_1

tS
N

E
_2

cluster1
cluster2
cluster3

-10

0

10

20

-20 -10 0 10 20

tSNE_1

tS
N

E
_2

cluster1
cluster2
cluster3

clustering

cluster1

cluster2

cluster3

Pecam1 Ptprc Pdgfra Col1a1

Features

Percent Expressed
0
20
40
60

-0.5
0.0
0.5
1.0

Average Expression

cluster1

cluster2

cluster3

Pecam1 Ptprc Pdgfra Col1a1

Features

-0.5
0.0
0.5
1.0

Average Expression

Percent Expressed
20
40

60

Batch 2

Batch 1

Finding the nearest neighbors within 
corresponding clusters

cluster 3 cluster 1

cluster 2

cluster 3’ cluster 1’

cluster 2’

Adjusting
“kissing effects” 

harmonizing

harmonizing

Batch 1

Batch 2

... ... ...

... ... ...

Corrected expression matrices 
of two batches

Batch 1

Batch 2

NNs between the current batch 
and the reference batch

Cell type 
clustering

Cluster 
harmonization

b

Figure 3.1: Overview of SMNN. Schematics for detecting mutual nearest neighbors between two
batches under a non-orthogonal scenario (a) in SMNN; and (b) in MNN. (c) Workflow of SMNN. Single cell
clustering is first performed within each batch using Seurat v3; and then SMNN takes user-specified marker
gene information for each cell type to match clusters/cell types across batches. With the clustering and
cluster-specific marker gene information, SMNN searches mutual nearest neighbors within each cell type and
performs batch effect correction accordingly.

SMNN takes a natural two-step approach to leverage cell type label information for enhanced

batch effect correction (Fig. 3.1c). First, it takes the expression matrices across multiple batches

as input, and performs clustering separately for each batch. Specifically, in this first step, SMNN

uses Seurat v3 (Butler et al., 2018) where dimension reduction is conducted via principal com-

ponent analysis (PCA) to the default of 20 PCs, and then graph-based clustering follows on the

dimension-reduced data with resolution parameter of 0.9 (Huh et al., 2019; Yang et al., 2019).

Obtaining an accurate matching of the cluster labels across batches is of paramount importance

for subsequent nearest neighbor detection. SMNN requires users to specify a list of marker genes

and their corresponding cell type labels to match clusters/cell types across batches. We hereafter

refer to this cell type or cluster matching as cluster harmonization across batches. Because not

all cell types are necessarily shared across batches, and no prior knowledge exists regarding the

exact composition of cell types in each batch, SMNN allows users to take discretion in terms of the

marker genes to include, representing the cell types that are believed to be shared across batches.
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Based on the marker gene information, a harmonized label is assigned to every cluster identified

across all the batches according to two criteria: the percentage of cells in a cluster expressing a

certain marker gene and the average gene expression levels across all the cells in the cluster. After

harmonization, cluster labels are unified across batches. This completes step one of SMNN. Note

that if users have a priori knowledge regarding the cluster/cell-type labels, the clustering step could

be bypassed completely.

With the harmonized cluster or cell type label information obtained in the first step, SMNN,

in the second step, searches mutual nearest neighbors only within each matched cell type between

the first batch (which serves as the reference batch) and any of the other batches (the current

batch), and performs batch effect correction accordingly. Compared to MNN or Seurat v3, where

the mutual nearest neighbors or anchor cells are searched globally, SMNN identifies neighbors

from the same cell population or state. After mutual nearest neighbors are identified, similar to

MNN, SMNN first computes batch effect correction vector for each identified pair of cells, and

then calculates, for each cell, the cell-specific correction vectors by exploiting a Gaussian kernel to

obtain a weighted average across all the pair-specific vectors with mutual nearest neighbors of the

cell under consideration. The correction vectors obtained from shared cell-types will be applied to

correct all cells including those belonging to batch-specific cell types.

The correction vector obtained from shared cell-types will be applied to correct all the cells,

including the cells in batch-specific clusters. Specifically, for each cell x in the target batch (which

will be corrected), whether it falls into a batch-shared cluster or a batch-specific cluster, SMNN

calculates a cell-specific correction vector using the same formula below. The cell-specific correction

vector ~u for any target cell x is a weighted sum of vector differences ~vml across all identified MNN

pairs (without loss of generosity, we assume m is from the target batch and l from the reference

batch. Note that in SMNN, the two cells m and l in each MNN pair belong to the same cluster/cell-

type across the two batches).

~u(x) =

∑
MNN pairs~vmlW (x,m)∑
MNN pairsW (x,m)

The Gaussian kernel weights W (x,m) gives higher weights to vector differences (~vml’s) involving

a cell m in closer proximity with the target cell x. The smaller the distance, the larger of the
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weight. Note that a cell m may appear multiple times and contributes to multiple terms in the

weighted sum if it has multiple MNNs identified by our SMNN. Also note that if cell x belongs to

a batch-specific cluster, itself would not contribute to any of the terms because it would not have

any MNNs.

Each cell’s correction vector is further scaled according to the cell’s location in the space

defined by the correction vector, and standardized according to quantiles across batches, in order

to eliminate “kissing effects”. “Kissing effects” refer to the phenomenon that only the surfaces of

cell-clouds across batches are brought in contact (rather than entire clouds fully merged), commonly

observed with näıve batch effect correction, (Haghverdi et al., 2018). At the end of the second step,

SMNN returns the batch-effect corrected expression matrix matrix including all genes from the

input matrix for each batch, as well as the information regarding nearest neighbors between the

reference batch and the current batch under correction. This step is carried out for every batch

other than the reference batch so that all batches are corrected to the same reference batch in the

end.

SMNN is implemented in R, and freely available at https://yunliweb.its.unc.edu/SMNN/

and https://github.com/yycunc/SMNN.

3.3 Simulation

We simulated two scenarios, orthogonal and non-orthogonal, to compare the performance of

MNN and SMNN. The difference between the two scenarios lies in the directions of the true un-

derlying batch effect vectors with respect to those of the biological effects (see details in Section

3.3.3).

3.3.1 Baseline simulation

Our baseline simulation framework, similar to that adopted in the MNN paper, contains two

steps: Firstly, data are initially generated in low (specifically three) dimensional biological space.

Data in each batch independently generated from a Gaussian mixture model to represent a low

dimensional biological space, with each component in the mixture corresponding to one cell type.

Specifically, we considered two batchesXk and Yl, each of which follows a three-component Gaussian
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mixture model in a three-dimensional space, representing the low (here three) dimensional biological

space.

Xk ∼
∑3

i=1w1iN (µ1i, I3) , with
∑3

i=1w1i = 1, and w11, w12, w13 ≥ 0, for k = 1, 2, . . . , n1

Yl ∼
∑3

j=1w2jN (µ2j , I3) , with
∑3

j=1w2j = 1, and w21, w22, w23 ≥ 0, for l = 1, 2, . . . , n2

where µ1i is the three-dimensional vector specifying cell-type specific means for the i-th three

cell types in the first batch, reflecting the biological effect; similarly for µ2j ; n1 and n2 is the total

number of cells in the first and second batch, respectively; w1i and w2j are the different mixing

coefficients for the three cell types in the two batches; and I3 is the three dimensional identity

matrix with diagonal entries as ones and the rest entries as zeros. In our simulations, we set

n1 = 1000, n2 = 1100 and

(w11, w12, w13) = (0.3, 0.5, 0.2)

(w21, w22, w23) = (0.25, 0.5, 0.25)

Secondly, we projected the low dimensional data with batch effect to the high dimensional gene

expression space. We mapped both datasets to G = 50 dimensions by linear transformation using

the same random Gaussian matrix P , to simulate high-dimensional gene expression profiles.

X̃k = PXk, for k = 1, 2, . . . , n1

Ỹl = PYl, for l = 1, 2, . . . , n2

P is a G × 3 Gaussian random matrix with each entry simulated from the standard normal

distribution.

3.3.2 Introduction of batch effects

In the MNN paper (Haghverdi et al., 2018), batch effects were directly introduced in the high

dimensional gene expression space. Specifically, a Gaussian random vector b = (b1, b2, . . . , bG)T was

simulated and added to the second dataset via the following:

XObserved,k = X̃k + ε1,k, for k = 1, 2, . . . , n1
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YObserved,l = Ỹl + b+ ε2,l, for l = 1, 2, . . . , n2

where ε1,k and ε2,l are independent random noises added to the expression of each “gene” for

each cell in the two batches.

In our simulations, we adopted a slightly different approach: we introduced batch effects in the

low dimensional biological space. Specifically, we simulated a bias vector c = (c1, c2, c3)
T in the

biological space:

XObserved,k = X̃k + ε1,k = PXk + ε1,k, for k = 1, 2, . . . , n1

YObserved,l = ˜YSMNN,l + ε2,l = P (Yl + c) + ε2,l = PYl + Pc+ ε2,l, for l = 1, 2, . . . , n2

Our simulation framework can be viewed as a reparametrized version of the model in Haghverdi

et al. (Haghverdi et al., 2018). For each batch effect b of the model in Haghverdi et al. (Haghverdi

et al., 2018), there exist multiple pairs of projection matrix P and vector c such that b=Pc, and

for any vector c in our model, there is a corresponding vector b=Pc given a fixed projection matrix

P. In particular, (b)l = (P c)l =
∑G

i=1 Plici ∼ N
(

0,
∑G

i=1 c
2
i

)
. In other words, for any simulated

setting in Haghverdi et al. (Haghverdi et al., 2018), we can find at least one equivalent setting in our

model; and vice versa. Although our simulation framework is largely similar to that in Haghverdi

et al. (Haghverdi et al., 2018), the two differ in the following two aspects:

First, the low-dimensional biological space is three-dimensional in ours and two-dimensional

in Haghverdi et al. (Haghverdi et al., 2018). Second, we introduce batch effects c in low di-

mensional biological space and then projected to high dimensional space, while Haghverdi et al.

(Haghverdi et al., 2018) directly introduce batch effects b in the high dimensional gene expression

space. We made such changes so that we can simulate both the orthogonal and non-orthogonal

scenarios in a more straightforward manner the extent of orthogonality can be controlled. The

orthogonality is defined in the sense that biological differences (that is, mean difference between

any two clusters/cell-types), are orthogonal to those from batch effects. Our framework allows

flexible modeling of the biological effects and batch effects in the same low dimensional biological

space and allow us to control the extent of orthogonality. Specifically, the batch effect c is added

to mean vectors of three cell types in batch 1 to get the mean vectors of three cell types for batch
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2.

µ2i = µ1i + c, for i = 1, 2, 3

Note that (µ1j − µ1i) c = 0, for i 6= j ∈ {1, 2, 3} represents the orthogonal scenario that varia-

tion from batch effect is orthogonal to mean difference between any two clusters/cell-types, and

(µ1j − µ1i) c 6= 0, for i 6= j ∈ {1, 2, 3} in the non-orthogonal case.

3.3.3 The two scenarios

As aforementioned, we considered two scenarios, orthogonal case and non-orthogonal case.

Orthogonality is defined in the sense that biological differences (that is, mean difference between

any two clusters/cell-types), are orthogonal to those from batch effects.

Leveraging the simulation framework described before (Section 3.3.2), we simulated two sce-

narios via the following:

a) In the orthogonal case, we set c = (0, 0, 2)T

µ11 = (5, 0, 0)T , µ12 = (0, 0, 0)T , µ13 = (0, 5, 0)T

µ21 = (5, 0, 2)T , µ22 = (0, 0, 2)T , µ23 = (0, 5, 2)T

b) In the non-orthogonal case, we set c = (0, 5, 2)T

µ11 = (5, 0, 0)T , µ12 = (0, 0, 0)T , µ13 = (0, 5, 0)T

µ21 = (5, 5, 2)T , µ22 = (0, 5, 2)T , µ23 = (0, 10, 2)T

3.3.4 Performance evaluation

MNN and SMNN share the goal to correct batch effects. Mathematically, using the notations

introduced in Section 3.3.2, the goal translates into de-biasing vector c (which would be effec-

tively reduced to b in the orthogonal case). Without loss of generality and following MNN, we

treated the first batch as the reference and corrected the second batch YObserved,l : l = 1, . . . , n2 to

the first batch XObserved,k : k = 1, . . . , n1. Denote the corrected values from MNN and SMNN as{
ŶMNNN : l = 1, . . . , n2

}
and

{
̂YSMNNN : l = 1, . . . , n2

}
, respectively.
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To measure the performance of the two correction methods, we utilize the Frobenius norm to

define the loss function:

L(Ŷ , Ỹ ) = ‖Ỹ − Ŷ ‖F =

√√√√ n2∑
l=1

∥∥∥Ỹl − Ŷl∥∥∥2 =

√√√√ n2∑
l=1

G∑
g=1

∣∣∣Ỹl,g − Ŷl,g∣∣∣2

Note that Ỹ is the simulated true profiles (from section 3.3.1) before batch effects and noises

are introduced in section 3.3.2. Since MNN conducts a cosine normalization to the input and the

output, we use cosine-normalized Ỹ when calculating the above loss function.

3.3.5 Simulation results

Since MNN has been shown to excel alternative methods (Haghverdi et al., 2018; Stuart and

Satija, 2019a) , we here focus on comparing our SMNN with MNN. We first compared the per-

formance of SMNN to MNN in simulated data. In our simulations, SMNN demonstrates superior

performance over MNN under both orthogonal and non-orthogonal scenarios (Fig. 3.2 - Fig. 3.6).
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Figure 3.2: Heatmap of gene expression matrices for simulated data under orthogonal scenario.
(a), (b), (c) and (d) show the 3-dimensional biological space with rows of each heatmap representing biological
factors and columns corresponding to single cells. (e), (f), (g) and (h) show the high dimensional gene
expression profiles with rows corresponding to genes and columns again representing single cells. (a), (e) and
(i) correspond to the batch 1, and (b), (f) and (j) correspond to batch 2. (c) and (g) provide a visualization
for the direction of batch effects in low-dimension biological space and high-dimension gene expression spaces,
respectively. (d) and (h), sum of (b) and (c) and sum of (f) and (g) respectively, are “observed” data for
cells in batch 2 in low and high dimensional space respectively. (i) and (j) are the cosine-normalized data
for batch 1 and original batch 2. Note “original” is in the sense that no batch effects have been introduced
to the data yet. (k) and (l) are the MNN and SMNN corrected results, respectively.
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Figure 3.3: Heatmap of gene expression matrices for simulated data under non-orthogonal
scenario. (a), (b), (c) and (d) show the 3-dimensional biological space with rows of each heatmap
representing biological factors and columns corresponding to single cells. (e), (f), (g) and (h) show the high
dimensional gene expression profiles with rows corresponding to genes and columns again representing single
cells. (a), (e) and (i) correspond to the batch 1, and (b), (f) and (j) correspond to batch 2. (c) and (g)
provide a visualization for the direction of batch effects in low-dimension biological space and high-dimension
gene expression spaces, respectively. (d) and (h), sum of (b) and (c) and sum of (f) and (g) respectively,
are “observed” data for cells in batch 2 in low and high dimensional space respectively. (i) and (j) are the
cosine-normalized data for batch 1 and original batch 2. Note “original” is in the sense that no batch effects
have been introduced to the data yet. (k) and (l) are the MNN and SMNN corrected results, respectively.

We show t-SNE plot for each cell type before and after MNN and SMNN correction under

both the orthogonal and non-orthogonal scenarios. Under orthogonality, the two batches partially

overlapped in the t-SNE plot before correction, suggesting that the variation due to batch effect

was indeed much smaller than that due to biological effect. Both MNN and SMNN successfully

mixed single cells from two batches (Fig. 3.4). However, for cell types 1 and 3, there were still some

cells from the second batch left unmixed with those from the first batch after MNN correction (Fig.
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3.4a and c). Under the non-orthogonal scenario, the differences between two batches were more

pronounced before correction, and SMNN apparently outperformed MNN (Fig. 3.5), especially in

cell type 1 (Fig. 3.5a).
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Figure 3.4: t-SNE plots by cell type under the orthogonal scenario. The first column shows the
uncorrected data after cosine normalization; the second column shows the MNN corrected results and the
last column shows the SMNN corrected results. (a), (b) and (c) correspond to three different cell types.

35



a

b

c

Uncorrected

MNN

SMNN

Batch1

Batch2

Uncorrected

MNN

SMNN

Uncorrected

MNN

SMNN

C
el

l t
yp

e 
1

C
el

l t
yp

e 
2

C
el

l t
yp

e 
3

Batch1

Batch2

Batch1

Batch2

−40 −20 0 20 40

−1
0

0
10

20
30

Uncorrected

tSNE.1

tS
N

E
.2

−40 −20 0 20 40

−2
0

−1
0

0
10

20
30

MNNcorrect

tSNE.1

tS
N

E
.2

−40 −20 0 20 40

−1
0

0
10

20
30

SMNNcorrect

tSNE.1

tS
N

E
.2

−20 −10 0 10 20

−2
0

−1
0

0
10

20
30

Uncorrected

tSNE.1

tS
N

E
.2

−20 −10 0 10 20

−2
0

−1
0

0
10

20
30

MNNcorrect

tSNE.1

tS
N

E
.2

−20 −10 0 10 20

−2
0

−1
0

0
10

20
30

SMNNcorrect

tSNE.1

tS
N

E
.2

−20 0 20 40

−1
0

0
10

20
30

Uncorrected

tSNE.1

tS
N

E
.2

−20 0 20 40

−2
0

−1
0

0
10

20
30

MNNcorrect

tSNE.1

tS
N

E
.2

−20 0 20 40

−2
0

−1
0

0
10

20
30

SMNNcorrect

tSNE.1

tS
N

E
.2

Figure 3.5: t-SNE plots by cell type under the non-orthogonal scenario. The first column shows
the uncorrected data after cosine normalization; the second column shows the MNN corrected results and
the last column shows the SMNN corrected results. (a), (b) and (c) corresponds to three different cell types.

Moreover, we also computed Frobenius norm distance (Van Loan and Golub, 1983) for each

cell between its simulated true profile before introducing batch effects and after SMNN and MNN

correction. The results showed an apparently reduced deviation from the truth after SMNN correc-

tion than MNN (Fig. 3.6). We have also simulated data using the original simulation framework in

Haghverdi et al. (Haghverdi et al., 2018), which does not allow precise control of orthogonality and

seems to simulate data closer to those under orthogonal cases (Appendix B: Fig. B.1a). Applying

SMNN and MNN to such simualted data, we also found that SMNN showed slight advantages (Ap-

pendix B: Fig. B.1b) These results suggest that SMNN provides improved batch effect correction

over MNN under both orthogonal and non-orthogonal scenarios.

36



15 20 25 30

15
20

25
30

Non−Orthogonal Case

MNN Frobenius Norm Distance

S
M

N
N

 F
ro

be
ni

us
 N

or
m

 D
is

ta
nc

e

12 14 16 18 20 22

12
14

16
18

20
22

Orthogonal Case

MNN Frobenius Norm Distance

S
M

N
N

 F
ro

be
ni

us
 N

or
m

 D
is

ta
nc

e
a b

Figure 3.6: Frobenius norm distance between two batches after SMNN and MNN correction in simulation
data under orthogonal (left) and non-orthogonal scenarios (right).

3.4 Real data benchmarking

To assess the performance of SMNN in real data, we first compared SMNN to alternative batch

effect correction methods: MNN (Haghverdi et al., 2018), Seurat v3 (Butler et al., 2018), and

LIGER (Welch et al., 2019) on two hematopoietic scRNA-seq datasets, generated using different

sequencing platforms, MARS-seq and SMART-seq2 (Table 3.1) (Nestorowa et al., 2016; Paul et al.,

2015). The first batch produced by MARS-seq consists of 1920 cells of six major cell types, and

the second batch generated by SMART-seq2 contains 2730 of three cell types, where three cell

types, CMP, GMP and MEP cells, are shared between these two batches (here the two datasets).

Batch effect correction was carried out using all four methods, following their default instructions.

Cell type labels were fed to SMNN directly according to the annotation from the original papers.

To better compare the performance between MNN and SMNN, only the three cell types shared

between the two batches were extracted for our downstream analyses. The corrected results of all

the three cell types together, as well as for each of them separately, were visualized by UMAP using

umap-learn method (McInnes et al., 2018). In order to qualify the mixture of single cells using

both batch correction methods, we calculated: 1) F statistics under two-way multivariate analysis

of variance (MANOVA) for merged datasets of the two batches. F statistics quantifies differences
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between batches, where smaller values indicating better mixing of cells across batches; and 2) the

distance for the cells within each cell type in batch 2 to the centroid of the corresponding cell group

in batch 1.

To measure the separation of cell types after correction, we additionally attempted to detect

differentially expressed genes (DEGs) between different cell types in both SMNN and MNN cor-

rected datasets. The corrected expression matrices of the two batches were merged and DEGs were

detected by Seurat v3 using Wilcoxon rank sum test (Butler et al., 2018). Genes with an adjusted

p-value < 0.01 were considered as differentially expressed. Gene ontology (GO) enrichment analysis

was performed for the DEGs exclusively identified by SMNN using clusterProfiler (Yu et al., 2012).

Because there is no ground truth for DEGs, we further identified DEGs between different cell types

within corrected batch 2 and then compared them to those identified in uncorrected batch 1 and

uncorrected batch 2, which supposedly are not affected by the choice of batch effect correction

method. Precision was computed for each comparison. Furthermore, we performed batch effect

correction on another two tissues/cell lines, pancreas (Grün et al., 2016; Muraro et al., 2016) human

peripheral blood mononuclear cells (PBMCs) (Zheng et al., 2017), again using both SMNN and

MNN. DEGs were detected between T cells and B cells in the merged PBMC and T cell datasets

after SMNN and MNN correction, respectively. Furthermore, single cell clustering was applied to

batch-effects corrected gene expression matrices in all the three real datasets following the pipeline

described in MNN paper (Haghverdi et al., 2018). Cell type labels before correction were consid-

ered as ground truth and Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) was employed to

measure the clustering similarity before and after correction:

ARI (Lq, Ls) =
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where nq and ns are the single cell numbers in cluster q and s, respectively; nqs is the number of

single cells shared between clusters q and s; and n is the total number of single cells. ARI ranges
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from 0 to 1, where a higher value represents a higher level of similarity between the two sets of

cluster labels.

Figure 3.7: Performance comparison between SMNN and MNN in two hematopoietic datasets.
(a) UMAP plots for two hematopoietic datasets before batch effect correction. Solid and inverted triangle
represent the first and second batch, respectively; and different cell types are shown in different colors. (b-e)
UMAP plots for the two hematopoietic datasets after correction with MNN, Seurat v3, LIGER, and SMNN.
(f) Logarithms of F-statistics for merged data of the two batches.

For performance evaluation on two hematopoietic datasets using four methods: our SMNN,

published MNN, Seurat v3 and LIGER. Fig. 3.7a-e shows UMAP plot before and after correc-

tion. Notably, all four methods can substantially mitigate discrepancy between the two datasets.

Comparatively, SMNN better mixed cells of the same cell type across batches than the other three

methods, and seemed to better position cells from batch-specific cell types with respect to other

biologically related cell types (Fig. 3.11), especially for common myeloid progenitor (CMP) and

megakaryocyte-erythrocyte progenitor (MEP) cells, which were wrongly corrected by MNN due to

sub-optimal nearest neighbor search ignoring cell type information (Fig. 3.8).
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Figure 3.8: Quantification of cell-type mismatching in MNN identified nearest neighbors.
(a) Histogram of the proportion of nearest neighbors from a mismatching cell type (for each cell), for two
hematopoietic datasets. (b) Histogram of the proportion of nearest neighbors from a mismatching cell type
(for each cell), for the 10X Genomics datasets. (c) Histogram of the angles (surrogate for orthogonality) for
the 10X Genomics datasets.

Correspondingly, SMNN corrected data exhibits the lowest F value than that from the other

three methods. Specifically, F value is with reduced by 81.5 - 96.6% on top of MNN, Seurat

v3, and LIGER, respectively (Fig. 3.7f). Furthermore, we compared the distance for the cells

between batch 1 and 2, and found that, compared to data before correction, both MNN and SMNN

reduced the Euclidean distance between the two batches (Fig. 3.9). In addition, SMNN further
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decreased the distance by up to 8.2% than MNN (2.8%, 4.3% and 8.2% for cells of type CMP,

MEP and granulocyte-monocyte progenitor (GMP) cells, respectively). ). Under scenarios where

we only have partial cell type information, SMNN still better mixed cells of the same cell type

across batches (detailed in Appendix B; Appendix B: Fig. 3.10a-c and e-g), and manifested the

best/lowest F values, compared with uncorrected and MNN-corrected data (Appendix B: Fig. 3.10d

and h). These results suggest improved batch effect correction by SMNN, compared to unsupervised

correction methods.
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Figure 3.9: Boxplot of distances by cell type. For each of the three different cell types, CMP (a),
GMP (b) and MEP (c), we calculate the distance for every cell in batch 2 to its corresponding centroid in
batch1.

3.4.1 SMNN identifies differentially expressed genes that are biologically rele-

vant

We then compared the DEGs among different cell types identified by SMNN and MNN. After

correction, in the merged hematopoietic dataset, 1012 and 1145 up-regulated DEGs were identified

in CMP cells by SMNN and MNN, respectively, when compared to GMP cells, while 926 and 1108

down-regulated DEGs were identified by the two methods, respectively (Fig. B.1a and Appendix

Fig. B.4a). Of them, 736 up-regulated and 842 down-regulated DEGs were shared between SMNN

and MNN corrected data. GO enrichment analysis showed that, the DEGs detected only by SMNN

were overrepresented in GO terms related to blood coagulation and hemostasis, such as platelet

activation and aggregation, hemostasis, coagulation and regulation of wound healing (Fig. B.1b).
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Similar DEG detection was carried out to detect genes differentially expressed between CMP and

MEP cells. 181 SMNN-specific DEGs were identified out of the 594 up-regulated DEGs in CMP cells

when compared to MEP cells (Fig. B.1c), and they were found to be enriched for GO terms involved

in immune cell proliferation and differentiation, including regulation of leukocyte proliferation,

differentiation and migration, myeloid cell differentiation and mononuclear cell proliferation (Fig.

B.1d). Lastly, genes identified by SMNN to be up-regulated in GMP when compared to MEP cells,

were found to be involved in immune processes; whereas up-regulated genes in MEP over GMP

were enriched in blood coagulation (Appendix Fig. B.4e-h). Comparatively, the GO terms enriched

for MNN-specific DEGs seem not particularly relevant to corresponding cell functions (Fig. B.5).

These cell-function-relevant SMNN-specific DEGs indicate SMNN can maintain some cell features

that are missed by MNN after correction.
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Figure 3.10: Comparison of differentially expressed genes (DEGs), identified in the merged
dataset by pooling batch 1 data with batch 2 data after SMNN and MNN correction. (a)
Overlap of DEGs up-regulated in CMP over GMP after SMNN and MNN correction. (b) Feature enriched
GO terms and the corresponding DEGs up-regulated in CMP over GMP. (c) Overlap of DEGs up-regulated
in CMP over MEP after SMNN and MNN correction. (d) Feature enriched GO terms and the corresponding
DEGs up-regulated in CMP over MEP.
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In addition, we considered two sets of “working truth”: first, DEGs identified in uncorrected

batch 1; second DEGs identified in batch 2, and we compared SMNN and MNN results to both

sets of working truth. The results showed that, in both comparisons (one comparison for each set

of working truth), fewer DEGs were observed in SMNN-corrected batch 2, but higher precision and

lower false negative rate in each of the three cell types than those in MNN results. When compared

to the uncorrected batch 1, 3.6% - 841% improvements in precision were observed in SMNN results

than MNN (Fig. 3.11 and Appendix Fig. B.7). Similarly, SMNN increased the precision by 6.2%

- 54.0% on top of MNN when compared to uncorrected batch 2 (Appendix Fig. B.6-B.8). We also

performed DEG analysis at various adjusted p-value thresholds and the results showed that the

better performance of SMNN is not sensitive to the p-value cutoff we used for DEG detection. Such

an improvement in the accuracy of DEG identification indicates that higher amount of information

regarding cell structure was retained after SMNN correction than MNN.
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Figure 3.11: Reproducibility of DEGs (between CMP and GMP), identified in uncorrected
batch 1 and in SMNN or MNN-corrected batch 2. (a) Reproducibility of DEGs up-regulated in CMP
over GMP, detected in batch 1, versus SMNN (left) or MNN-corrected (right) batch 2. (b) Precision of the
DEGs (between CMP and GMP) identified in batch 2 after SMNN and MNN correction. (c) Reproducibility
of DEGs up-regulated in GMP over CMP, identified in the uncorrected batch 1, and in SMNN (left) or
MNN-corrected (right) batch 2. (d) Precision of the DEGs up-regulated in GMP over CMP identified in
batch 2 after SMNN and MNN correction.

We also identified DEGs between T cells and B cells in the merged PBMC and T cell datasets

after SMNN and MNN correction, respectively. Compared to B cells, 3213 and 4180 up-regulated
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DEGs were identified in T cells by SMNN and MNN, respectively, 2203 of which were shared

between the two methods (Appendix Fig. B.10e). GO enrichment analysis showed that, the

SMNN-specific DEGs were significantly enriched for GO terms relevant to the processes of immune

signal recognition and T cell activation, such as T cell receptor signaling pathway, innate immune

response-activating signal transduction, cytoplasmic pattern recognition receptor signaling pathway

and regulation of autophagy (Appendix Fig. B.10f). In B cells, 5422 and 3462 were found to be

up-regulated after SMNN and MNN correction, where 2765 were SMNN-specific (Appendix Fig.

B.10g). These genes were overrepresented in GO terms involved in protein synthesis and transport,

including translational elongation and termination, ER to Golgi vesicle-mediated transport, vesicle

organization and Golgi vesicle budding (Appendix Fig. B.10h). These results again suggest that

SMNN more accurately retains or rescues cell features after correction.

3.4.2 SMNN more accurately identifies cell clusters

Table 3.1: Major characteristics of the three benchmarking datasets.

Dataset Batch ID Tissue Num. of Technical Ref

origin cells platform

Hematopoiesis
batch 1 Mouse 2,729 MARS-seq Paul et al. 2015

hematopoiesis

batch 2 Mouse 1,920 SMART-seq2 Nestorowa et al. 2016

hematopoiesis

Pancreas
batch 1 Human cadaveric 1,007 CEL-seq Grün et al. 2016

pancreata

batch 2 Human cadaveric 1,595 CEL-seq2 Muraro et al. 2016

pancreata

Droplet
batch 1 PBMC 68,580 10X Genomics Zheng et al. 2017

GemCode

batch 2 T Cells 4,459 10X Genomics Zheng et al. 2017

GemCode

Finally, we examined the ability to differentiate cell types after SMNN and MNN correction in

three datasets (Table 3.1). In all three real datasets, ARI after SMNN correction showed 7.6 - 42.3%

improvements over that of MNN (Fig. 3.12), suggesting that SMNN correction more effectively

recovers cell-type specific features.
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Figure 3.12: Clustering accuracy in three datasets after batch effect correction. Adjusted
Rand Index (ARI) is employed to measure the similarity between clustering results before and after batch
effect correction.

3.5 Discussion

In this study, we present SMNN, a batch effect correction method for scRNA-seq data via

supervised mutual nearest neighbor detection. Our work is built on the recently developed method

MNN, which has showed advantages in batch effect correction than existing alternative methods.

On top of MNN, our SMNN relaxes a strong assumption that underlies MNN: that the biological

differentiations are orthogonal to batch effects (Haghverdi et al., 2018). When this fundamental

assumption is violated, especially under the realistic scenario that the two batches are rather

different, MNN tends to err when searching nearest neighbors for cells belonging to the same

biological cell type across batches. Our SMNN, in contrast, explicitly considers cell type label

information to perform supervised mutual nearest neighbor matching, thus empowered to extract

only desired neighbors from the same cell type.

A notable feature of our SMNN is that it can detect and match the corresponding cell popula-

tions across batches with the help of feature markers provided by users. SMNN performs clustering

within each batch before merging across batches, which can reveal basic data structure, i.e. cell

composition and proportions of contributing cell types, without any adverse impact due to batch

effects. Cells of each cluster are labeled by leveraging their average expression levels of certain
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marker(s), thus enabling us to limit the mutual nearest neighbor detection within a smaller search

space (i.e., only among cells of the same or similar cell type or status). This supervised approach

eliminates the correction biases incurred by pairs of cells wrongly matched across cell types. We

benchmarked SMNN together with three state-of-the-art batch effect correction methods, MNN,

Seurat v3 and LIGER, on simulated and three published scRNA datasets. Our results clearly

show the advantages of SMNN in terms removing batch effects. For example, our results for the

hematopoietic datasets show that SMNN better mixed cells of all the three cell types across the

two batches (Fig. 3.7a-e), and reduced the differentiation between the two batches by up to 96.6%

on top of the corrected results from the three unsupervised methods (Fig. 3.7f), demonstrating

that our SMNN method can more effectively mitigate batch effect. Additionally, cell population

composition also can be a critical factor in batch effect correction (Fig. B.11). Our results by ana-

lyzing batches with varying cell type compositions suggest that our SMNN is robust to differential

cell composition across batches.

More importantly, the wrongly matched cell pairs may wipe out the distinguishing features of

cell types. This is mainly because, for a pair of cells from two different cell types, the true biological

differentiations between them would be considered as technical biases and subsequently removed

in the correction process. Compared to MNN, SMNN also appears to more accurately recover

cell-type specific features: clustering accuracy using SMNN-corrected data increases substantially

in all the three real datasets (by 7.6 to 42.3% when measured by ARI) (Fig. 3.12). Furthermore, we

observe power enhancement in detecting DEGs between different cell types in the data after SMNN

correction than MNN (Fig. 3.10 and 3.11 and Appendix Fig. B.4-B.8). Specifically, the precision

of the DEGs identified by SMNN were improved by up to 841% and 54.0% than those by MNN

when compared to the two set of working truth, respectively (Fig. 3.11c and d and Appendix Fig.

B.7-B.8). Moreover, GO term enrichment results show that, the up-regulated DEGs identified only

in SMNN-corrected GMP and MEP cells were involved in immune process and blood coagulation,

respectively (Appendix Fig. B.4f and h), which accurately reflect the major features of these two

cell types (Lieu and Reddy, 2012). Similarly, DEGs identified between T and B cells after SMNN

correction are also biologically more relevant than those identified after MNN correction (Fig.

B.10). These results suggest that SMNN can eliminate the overcorrection between different cell

types and thus maintains more biological features in corrected data than MNN. Efficient removal of
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batch effects at reduced cost of biological information loss, manifested by SMNN in our extensive

simulated and real data evaluations, empowers valid and more powerful downstream analysis.

In summary, extensive simulation and real data benchmarking suggest that our SMNN can

not only better rescue biological features and thereof provide improved cluster results, but also

facilitate the identification of biologically relevant DEGs. Therefore, we anticipate that our SMNN

is valuable for integrated analysis of multiple scRNA-seq datasets, accelerating genetic studies

involving single-cell dynamics.
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CHAPTER 4

CUE: CpG impUtation Ensemble
for DNA Methylation Imputation Across Platforms

4.1 Introduction

DNA methylation of cytosine residues at CpG dinucleotides is one of the most extensively

studied epigenetic marks. Rich recent literature provides evidence regarding its important role

not only in normal development but also in risk and progression to many diseases (Bird, 2002;

Gonzalo, 2010; Joubert et al., 2016; Klutstein et al., 2016; Iurlaro et al., 2017; Horvath and Raj,

2018; Turecki and Meaney, 2016; Bakusic et al., 2017). A wide range of biological processes are

dependent on DNA methylation status, including gene transcription, X-chromosome inactivation,

cell differentiation, cancer progression and other critical life events or processes such as aging (Bird,

2002; Gonzalo, 2010). Therefore, studying DNA methylation is of great interest and importance.

However, such studies also provide great challenges for a number of reasons including but not

limited to the following four. First, as an epigenetic marker, DNA methylation level is dynamic,

varying over time, across different molecular environment, in different developmental stages, or

across different tissues or cell lines. Second, correlation of methylation levels between CpG sites

decreases dramatically with distance, for example typically < 0.5 when two CpG sites are merely

>500bp apart. Third, there are multiple options to measure DNA methylation (see section 2 for a

more detailed review). Lastly, even using the same measurement technology, batch effect and/or

various other technical biases and noises are almost inevitable (Bird, 2002; Gonzalo, 2010).

With the emergence of powerful technologies such as DNA methylation microarray (Bibikova

et al., 2011b) and bisulfite sequencing, geneticists are able to profile DNA methylation at increas-

ingly higher resolutions. Taking methylation microarrays for an example, we have witnessed new

platforms replacing old ones every few years (Moran et al., 2016; Bibikova et al., 2009; Dedeur-

waerder et al., 2014). However, different platforms (for example, the widely used Illumina Human-
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Methylation27, HumanMethylation450, MethylationEPIC BeadChips) target different CpG sites

and have different marker densities. In addition, different biochemical or experimental techniques

can be used to quantify methylation levels (e.g., type-I versus type-II assays adopted by the Illu-

mina methylation arrays), further hindering joint analysis of data from multiple platforms. Two

aforementioned microarrays, the Illumina HumanMethylationEPIC (HM850) BeadChip and Hu-

manMethylation450 (HM450) BeadChip, are the most commonly used microarrays to measure DNA

methylation levels. While HM450 investigates 485, 577 probes spanning 96% of CpG islands and

92% of CpG shores across a moderate number of genes (Bibikova et al., 2011b) , HM850 provides

much more comprehensive coverage with the additional 413, 743 CpG sites located farther outside

CpG islands. Because HM450 is no longer commercially available, we start to encounter data gen-

erated from a mixture of two different arrays. Such data have largely constrained joint analysis,

where investigators typically focus on the probes shared between the two platforms. This is a

prudent and convenient approach, without having to reevaluate all samples using HM850 (which

is not only time consuming but also cost prohibitive). However, such an approach implies an un-

fortunate waste of HM850 data where more than 40% of data will not be used. In this study, we

present CUE, CpG imputation Ensemble, an ensemble learning framework which leverages several

machine learning algorithms and traditional statistical models, to efficiently utilize data generated

from different platforms. While several existing methods designed for imputing sequencing-density

methylation levels require hundreds of genomic features (e.g., those from the ENCODE project)

to impute each missing CpG methylation site, we consider a relatively simple and more widely-

applicable imputation regime where we only require methylation measurements from the HM450

BeadChip.

Because of the practical needs of imputation in DNA methylation data as well as the success of

imputation methods in other genetic settings, a number of DNA methylation imputation methods

has been proposed in the recent literature. Among them, support vector machines (SVM) and

hybrid of SVM and other models predominated the DNA methylation imputation literature (Bhasin

et al., 2005; Das et al., 2006; Bock et al., 2006; Fang et al., 2006; Zhou et al., 2012; Zhou and Tuck,

2007; Liu et al., 2015).Most of these methods assumed that methylation status is binary. In other

words, a CpG site is either methylated or unmethylated for an individual and thus imputation

becomes a classification problem. Almost all methods proposed prior to 2014 predicted the average
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methylation status for genomic regions, where each region encompasses multiple CpG sites (Zhang

et al., 2015). All of the studies reported accuracy exceeding 90%.

Dichotomizing methylation status, adopted by these SVM based methods, is not ideal in that it

can lead not only to general information loss but also to losing biologically meaningful information

carried by intermediate raw beta values (β). Beta value is the ratio of intensities between methylated

and unmethylated alleles, one standard quantitative measure of DNA methylation levels. β values

range from 0 to 1 with 0 being completely unmethylated and 1 completely methylated. With the

prospering data science field, especially in areas such as machine learning and particularly deep

learning (Bengio, 2009), several algorithms have been successfully employed and reported (see table)

to outperform the earlier SVM based methods. For example, Zhang et al. (Zhang et al., 2015)

in 2015 employed a random forest (RF) classifier to predict methylation levels with five groups

of features selected from the ENCODE Project, achieving 96% accuracy. For another example,

Angermueller et al. (Angermueller et al., 2017) in 2017 adopted a deep learning method to provide

an accurate prediction of single-cell DNA methylation states, which achieved performances similar

to the previous SVM or RF based methods. In the same year, BoostMe (Zou et al., 2018), based

on the state-of-the-art boosting algorithm XGBoost, achieved the same level of accuracy as RF,

but is computationally much more efficient.

In this study, we aim to impute an HM450 dataset up to an HM850 dataset, for increased

coverage of this epigenomic landscape. We first seek solutions among the imputation methods

in previous literatures. Our goal was to develop a general imputation framework to leverage the

merits of different models and improve the imputation accuracy. We also examined the imputation

results and filtering out the low-quality probes. These accurately imputed methylation values

could subsequently improve power in downstream analysis, for example for associating methylation

profiles with the phenotypic trait(s) of interest, widely referred to as epigenome wide association

studies (EWAS).

4.2 Materials (data)

Recent advances in methylation microarrays and sequencing technologies have enabled us to

gauge DNA methylation profiles genome-wide at single base-pair resolution (Laird, 2010). There are
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four major types of DNA methylation data commonly generated by different technologies (Laird,

2010).

a) Whole-genome bisulfite sequencing (WGBS) data This is the current gold standard for quanti-

fying single-site DNA methylation levels across the genome. WGBS can theoretically quantify

DNA methylation levels at 26 million (out of 28 million in total) CpG sites for the human

genome (Laurent et al., 2010; Lister et al., 2011; Sandoval et al., 2011). The number of CpG

sites measured by WGBS by far exceeds that of the remaining three methods to be reviewed.

Despite its most comprehensive coverage, WGBS is not the standard practice mainly because of

its prohibitively high costs and partly also because of various experimental biases such as those

induced by bisulfite conversion. In addition, WGBS is difficult to apply to a particular region(s)

of interest.

b) Methylation microarrays data The Illumina HumanMethylation27 and HumanMethylation450

BeadChip have been most widely used to measure DNA methylation levels at preselected CpG

sites across the genome. They assay 28,000 and 480,00o CpG sites respectively. The lat-

est Illumina MethylationEpic BeadChip encompasses over 850,000 sites, offering even broader

coverage of the human methylome.

c) Methylated DNA immunoprecipitation sequencing data Generating this type of data is not only

expensive but also experimentally difficult. For example, antibodies to pool down methylated

DNA segments with high sensitivity and specificity are largely non-existing (Bryk et al., 2002;

Ruike et al., 2010; Down et al., 2008).

d) Reduced representation bisulfite sequencing (RRBS) data Combining restriction enzyme diges-

tion and bisulfite conversion, RRBS targets certain regions of the genome by enriching for areas

with a high CpG content (Meissner et al., 2005).

For our ensemble imputation model, We analyzed data from two population cohorts measured

both by both HumanMethylationEPIC (HM850) and HumanMethylation450 (HM450) BeadChip:

the Extremely Low Gestational Age Newborns (ELGAN) study (Santos et al., 2019)(n = 127) and

the Posttraumatic Stress Disorder (PTSD) genetics data repository (Logue et al., 2017) (n = 144).

We assess three datasets: ELGAN and PTSD separately, and a combined dataset with batch ef-
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fects corrected via the ComBat R function. Samples from the PTSD genetics repository were from

the Translational Research Center for TBI and Stress Disorders (TRACTS), a VA Rehabilitation

Research and Development National Center for TBI Research at VA Boston Healthcare System.

Informed consent was obtained from all PTSD subjects at the time of study inclusion. ELGAN

study enrolled infants born < 28 weeks of gestion during 2002-2004, in five states and 14 hospitals

in the United states (Santos et al., 2019). Detailed procedure regarding sample recruitment, main

characteristics of study samples, and methylation measurements are presented in previous publi-

cations: Logue el al. for PTSD (Logue et al., 2017) and Hudson et al. for ELGAN (Santos et al.,

2019).

The data used in this study have been pre-preprocessed previously. Logue el al. have previously

published on the 145 samples measured both by HM450 and HM850 (Logue et al., 2017). The

PTSD dataset was first corrected for the individual-level background noise by used GenomeStudio

and then cleaned with the CpGassoc package and the ChAMP package in R (Team, 2008). The

detailed data cleaning and processing of PTSD dataset can be referred to Mark’s paper. In this

dissertation, we further excluded 1 sample and keep 144 complete samples due to its missing of a lot

of probes. Additionally, 127 subjects from ELGAN study (Santos et al., 2019) were selected based

on the availability of placental samples with DNA methylation data by both HM450 and HM850.

DNA methylation data for ELGAN dataset are first pre-processed by minfi package (Aryee et al.,

2014). Then functional normalization is used for background subtraction and dye normalization.

Hudson et al. finally used ComBat function from sva package to adjust for batch effects from two

platforms (Johnson et al., 2007). The detailed placenta tissue collection and other assessments of

DNA methylation for ELGAN dataset can be referred to Hudson’s paper.

We aim to impute HM450 up to HM850, for increased coverage of this epigenomic landscape.

To make our data better follow a Gaussian distribution (PFR model assumption) (Network, 2012,

2015), we employ M values, defined as

M = logit(β) = log2(
β

1− β
)

instead of the raw beta (β) values. Again, beta values are the ratios of intensities of the methylated

probes over unmethylated probes.
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Since imputing sporadic missing data is not the focus of our work, we removed all probes with

any missing values for convenience. One could apply methods similar to those developed for gene

expression data (Troyanskaya et al., 2001; Bø et al., 2004; Kim et al., 2006; Liew et al., 2010) to

impute the sporadic missing values at directly assayed CpG sites. After removing sporadic missing

values, we further filtered the probes to keep the common complete (no missing data) probes

shared between two cohorts, which would make the assessments of different imputation models on

two cohorts comparable. This left us 248,421 probes for HM450 and 587,454 probes for HM850 for

ELGAN and PTSD cohort respectively. We used 248K as explanatory variables while the 339K

HM850 specific probes as response variables.

4.3 Methodology

4.3.1 Penalized functional regression

Here we present a penalized functional regression model (Goldsmith et al., 2011) with minor

modifications. We also observe Xi(t), indexed by Ti = t representing sample-specific density

function of the DNA methylation levels measured by HM450. Previous work has been shown

that by incorporating non-local density information we could improve the imputation accuracy.

We consider the following functional linear regression model:

Yi = α+

∫ 1

0
Xi(t)β(t)dt+ Ziγ + εi

with β(t) ∈ L2[0, 1] characterizes the effect of density function Xi(t) when Ti = t. α is the grand

mean and γ denotes the vector of regression coefficients corresponding to the vector of covariates

Zi, 25 downstream probes and 25 upstream probes to each target probe as the local covariates.

εi ∼ N
(
0, σ2

)
Estimation of Xi(t): In order to improve imputation accuracy, we incorporated functional

predictors Xi(t) into our model to capture methylome-wide information, besides methylation levels

from local probes encapsulated in Zi. According to the probe’s relative location to a CpG island,

we first defined five groups: “CpG Island,” “North Shore,” “South Shore,” “North Shelf,” and

“South Shelf” (Bibikova et al., 2011a) (Fig. 4.1).
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Then, we estimated the DNA methylation function Xi(t) for a particular target probe using

the DNA methylation data from all HM450 probes falling in the same group as the target probe.

Assuming that probes with similar properties tend to have similar methylation profiles, we use

Xi(t) to borrow information from the nonlocal probes falling in the same group. The observed

DNA methylation data in group g are denoted as τ gi = (τ g1 , . . . , τ
g
q ), where q is the number of CpG

sites falling into group g, and τ gj is the DNA methylation value at jth HM450 probe in group g

with j = 1, . . . , q. Rather than estimating Xi(t) by expanding into the principal component basis

obtained from its covariance matrix (Goldsmith et al., 2011), we employed kernel density estimation

to obtain Xi(t) with τ gi so that it is specific to group g.

Figure 4.1: Five groups of CpG sites according to their relative location to CpG islands.

Estimation of β(t): To perform model fitting, we projected the functional term β(t) onto a

linear spline basis:

β(t) = b1 + b2t+

Kb∑
k=3

bk (t− δk)+ with δk ∈ [0, 1]

where δk is the k th knot along the interval [0, 1] and (t− δk)+ is the positive part function:

(t− δk)+ =

 t− δk, if t ≥ δk

0, if t < δk

We further defined our spline basis vector:

ϕ(t) = {ϕ1(t), ϕ2(t), . . . , ϕKb(t)} =
{

1, t, (t− δ3)+ , (t− δ4)+ , . . . , (t− δKb)t
}

and a coefficient vector: b = (b1, b2, .., bKb)
T so that we may induce smoothing by assuming b ∼

N(0,D), where D is a penalty matrix corresponding to the particular spline basis ϕ(t). Since
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β(t) = ϕ(t) · b, we had:

∫ 1

0
Xi(t)β(t)dt =

∫ 1

0
fTi(t)ϕ(t) · bdt =

∫ 1

0
fTi(t)ϕ(t)dt · b

For ease of notation, we denoted JXφ as the n × Kb matrix with the (i, k)th entry equal to∫ 1
0 fTi(t)ϕk(t)dt and Z as the n× p matrix with the ith row equal to Zi, where p is the number of

covariates. The model can be written in matrix format as:

Y |X(t) =
[
1n, JXϕ , Z

] [
αT , bT , γT

]
+ ε

b ∼ N(0, D)

This is a mixed effect model with Kb random effects b and penalty matrix:

D =

 02×2 02×(Kb−2)

0(Kb−2)×2 σ2b I(Kb−2)×(Kb−2)


The advantage of the PFR approach is it borrows the info from non-local probes and one

limitation is the running time of PFR is relative long compare to other single imputation approach.

4.3.2 CUE: CpG impUtation Ensemble

Denote the different imputation models by fk, with k = {1, ..,K}. Then the imputed values

for the ith probe with the kth imputation model are denoted by Ŷik = fk(Zi) (or fk(Zi, Xi(t)) if we

use our penalized functional regression approach). The proposed ensemble prediction estimator:

Ŷi. =

K∑
k=1

wi,kŶik , with weights wi,k ∈ [0, 1] k = {1, ..,K}

Note with β methylation values, we have the natural constraint Yi, Ŷik ∈ [0, 1].

Selection of Weights: One challenge problem is how to select weights for the ensemble

imputation methods. Here we list three different approaches to select the weights. First, equal

weights: wj,1 = wj,2 = · · · = wJ,K = 1
K ; Second, best-single-method weights (0-1 weights): wj,best =

1, the other weights = 0; Third, theoretical optimal weights: given the predictions from different
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models, we need to solve the following probe specific optimization problem to learn the optimal

weights for each probe.


min

wi∈[0,1]p
Li(wi) = ||Yi − Ŷi.||2 = ||Yi −

∑K
k=1wi,kŶik||2

subject to wi = [wi,1, wi,2, .., wi,K ]T

In general, the first one is simple and robust but could not guarantee the improvement of the

performance. The second one and the third one would be guaranteed to be no worse than any single

imputation tools by design. The third one is actually the best linear fitting on the training data,

which tends to overfits on the training data. The above convex optimization can be efficiently solved

by standard convex optimizer. However, in the real application examples, the true Yi could not be

observed. One possible remedy is that we solve the optimal weights for the training dataset where

we observe the true Yi and directly applied learning weights to the test dataset. If the training

dataset and the test dataset are generated from same distribution, then the optimal weights we

learned from training datasets can be generalized to the test dataset easily. If not, other domain

adaption and transfer learning techniques can be incorporated to get more accurate estimation of

the optimal weights for the test dataset. But in this chapter, we would assume that the training

and test dataset are generated from the same dataset.

In this study, we adopted the second approach to seek for the balance between imputation

performances and robustness. Based on the training results, we select the best method for imputa-

tion at each CpG site and employ that model for the final prediction. Here the model comparison

criterion is out-of-bag predicted MSE. Suppose the k − th model outperforms other methods on a

CpG site (i.e., with lowest out-of-bag prediction MSE), then wk = 1 and wi = 0 for i 6= k. Namely,

ŷEns = ŷk for this CpG site if the k − th model performs the best. Consequently, the performance

of the ensemble method outperforms other single methods by design.

4.3.3 Imputation quality assessment and control

Six-fold cross-validation was used to assess imputation quality. For each split, the full dataset

was randomly divided into a training set, consisting of 5/6 of the total samples, and a testing

set (1/6 of the total samples). For each testing set, we only kept data at the probes common to
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HM450 and HM850 (shared probes, or predictor probes), and masked methylation values of HM850-

specific probes. For the training set, we employed methylation measurements on the shared probes

as predictors to impute methylation values at HM850 specific probes. Since most HM450 probes

are measured by both HM850 and HM450 platforms, the predictors used in our model can be

methylation levels for these shared probes measured from either array. Note that our prediction

model was built under the realistic and thus more challenging scenario where we used as predictors

the measurements from HM450 array instead of those from HM850 array, which would require

the training dataset had measurements from both arrays. Specifically, we first fitted our PFR

model, learning the relationship between the methylation values of the shared and HM450-specific

probes. Second, we used the fitted model to impute the masked values of HM850 probes from the

HM450 data in the testing set. In the end, we evaluated the imputation performance by integrating

imputation results from all 6 splits.

As measures of the imputation quality, we employ both the predicted root mean squared error

(RMSE) and the accuracy with 0.5 as the threshold. Conventionally, if the raw methylation value

is above the threshold, we call it methylated, and unmethylated otherwise. We employ two quality

control criteria: the probe-level predicted RMSE > 0.05 and the probe-level predicted accuracy

> 95% when dichotomizing DNA methylation level at a cutoff of 0.5.

4.4 Real data results

In this study, we used DNA methylation data of both HM450 and HM850 from two cohorts,

namely the Posttraumatic Stress Disorder (PTSD) genetics repository (Logue et al., 2017) (144

whole blood samples) and Extremely Low Gestational Age Newborns (ELGAN) study (Santos

et al., 2019) (127 placenta samples). We first comprehensively assessed five methods: three tradi-

tional statistical methods, k-nearest-neighbors (KNN), logistic regression (Logistic) and penalized

functional regression (PFR) model (Goldsmith et al., 2011; Zhang et al., 2016); and two modern

machine learning algorithms, random forest (RF) and XGBoost. Their performances were system-

atically evaluated using six-fold cross-validation on the two cohorts separately.
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4.4.1 Cross validation results on ELGAN and PTSD

In this dissertation, we mainly focused on imputation within the same tissue, because for most

studies, samples are usually collected for the same tissue and more importantly because methylation

profiles tend to differ profoundly, preventing accurate or even meaningful imputation across tissues.

We assessed imputation quality within each cohort by conducting the six-fold cross validation,

separately on whole blood samples from PTSD and placenta samples from ELGAN. Note that all

samples in the two cohorts (ELGAN and PTSD) in this study have both 850K and 450K data and

thus could be used to evaluate our CUE method using the aforementioned cross-validation strategy.

Note the time complexity of our method is O(n) and we can easily impute each target probe in

parallel to decrease clock computation time, where n is the number of the HM850-specific probes

(in this case n = 339, 033 HM850-specific probes).

For the ELGAN dataset, RF achieved the fastest speed, the smallest root mean square error

(RMSE) (0.099) and the highest accuracy (measured by dichotomizing DNA methylation level at

a cutoff of 0.5) (94.60%) among the five imputation tools we compared (Table 1). KNN, PFR

and XGBoost performed slightly worse than RF with regard to RMSE (decreases by 0.004-0.025),

and had 0.34%-1.96% loss in terms of classification accuracy for dichotomous methylation status.

Logistic regression can achieve an accuracy higher than 90% but performed the worst in RMSE.

Table 4.1: Imputation performances in the ELGAN dataset and the PTSD dataset. For all the compu-
tational results reported in tables of this chapter, we used 15 CPUs. Logistic regression did not converge
(D.N.C.) for ELGAN dataset.

PTSD performance ELGAN performance

Accuracy RMSE Time Accuracy RMSE Time

KNN 98.02% 0.054 3hrs 92.64% 0.124 2.5hrs

Logistic D.N.C. D.N.C. D.N.C. 91.76% 0.263 2.5hrs

PFR 98.41% 0.044 18.5hrs 93.50% 0.114 6hrs

RF 98.02% 0.054 5hrs 94.60% 0.099 3hrs

XGBoost 98.59% 0.040 3hrs 94.26% 0.103 3hrs

Similarly, we obtained the six-fold cross validation results in the PTSD dataset. Among the

five single imputation results, the winner in this PTSD dataset is XGBoost, in contrast to random

forest for the ELGAN dataset. Specifically, XGBoost achieved the smallest RMSE (0.04) and the

highest accuracy (98.59%) (Table 4.1). In fact, random forest was the not even the second best.

Penalized functional regression approach achieved a 0.39% higher accuracy and a lower (by 0.01)
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RMSE than random forest. Compared with previous results from the ELGAN dataset, this set of

results suggests that there was no uniformly best single imputation method across different tissues

or datasets, which inspired our ensemble imputation framework.

We further reported the proportions of CpG sites where each imputation method outperformed

all others in PTSD (Fig. 4.2). Results showed that all four viable imputation methods (we ex-

cluded logistic regression since it failed to converge) are champion at some CpG sites, which again

motivates the development of an ensemble imputation framework. For more than 42% of the CpG

sites, random forest achieved the lowest RMSE (Fig. 4.2). In total, random forest and XGBoost

outperformed the other methods for 70% of CpG sites. In contrast, penalized functional regression

was the best imputation model for 26% of the CpG sites while XGBoost for 30% CpG sites (Fig.

4.2). Last but not the least, for 1.7% of the probes (5,596 probes) KNN performed the best (Fig.

4.2).

Figure 4.2: Proportions of Best Method for Each Targeted Site in PTSD.
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Figure 4.3: Imputed Performances Before (Left Bar) and After QC (Right Bar) for QCed Probes in
PTSD. (a) RMSE comparisons. (b) 1- Accuracy (classification error) comparisons. Different colors represent
different methods. The horizontal dash line is the lowest value corresponding to the best method.

We developed CUE, CpG imputation Ensemble, which employed an ensemble approach to

improve prediction of methylation values at HM850 specific CpG sites. We also filtered out the

probes failed to pass the quality control (QC) criteria (RMSE < 0.05 and accuracy > 95% at CpG

site level). Before QC, all the methods’ predicted RMSE are below 0.06 and CUE performed best

(Fig. 4.3). The predicted RMSE of individual tools can be reduced by 5.8%-30.3% with CUE. After

post-imputation QC, the predicted RMSE of all the tools were reduced by 37.9%− 50.0%. Among

all the 339,033 HM850-only CpG sites shared between ELGAN and PTSD, CUE out-performed

all individual methods at 289,604 (85.4%) sites (Table C.1). Specifically, CUE achieved the lowest

predicted RMSE (0.026) and the highest accuracy (99.97%), compared with individual methods

with RMSE ranging 0.029-0.036 (improved by 10.0%− 27.4%) and with accuracy 99.95%− 99.97%

.

When evaluating prediction accuracy, we use 0.5 as the conventional cut-off for the methylation

states (labeled as 1 [or methylated] if the beta methylation level is above 0.5; 0 [or unmethylated]

otherwise). Our CUE method is robust to different cut-offs (thresholds) and achieves the highest

accuracy across all thresholds (Fig. C.2). Logistic regression seems sensitive to the threshold

probably because it is trained based on labels defined at the cutoff of 0.5.
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4.4.2 Independent validation results: cross-dataset performances

Although six-fold cross-validation experiments above provide useful information, in reality,

imputation will be performed in dataset(s) distinct from the one based on which training models

are built. To provide more honest performance estimates and to assess the transportability of

models trained by our CUE and individual methods, we examined their performances across the

two datasets. With the presence of many systematic differences between the two datasets, we first

attempted to correct for batch effects. Specifically, we employed Combat (Johnson, Li et al. 2007)

to generate a harmonized dataset after pooled together data from the two cohorts. We then trained

methylation prediction models with the harmonized ELGAN dataset and tested on the harmonized

PTSD dataset. Among the five single imputation methods, random forest achieved the highest

accuracy (95.23%) and the lowest predicted RMSE (0.07). KNN is the fastest model with 1.4%

loss in accuracy and 0.02 loss.

4.4.3 DNA methylation varies across different tissues

DNA methylation data varies across different tissues inherently. Separately for each cohort

(tissue), we classified DNA methylation probes into three categories: unmethylated probe if β

values across all samples in the cohort are less than 0.5; methylated probe if β values across all

samples in the cohort are greater than 0.5; bi-modal probe otherwise. We reported the proportions

of three different categories probes for 339,033 HM850-targeted probes (Fig. 4.4). For PTSD

cohort, almost 91% probes are either methylated or unmethylated, while only 54% for ELGAN. In

general, bi-modal probes are more difficult to impute because of their complexity inherently. One

indicator is that their variances tend to be larger than the rest probes.

Figure 4.4: Proportions of Three-Category HM850-specific Probes in Two Studies.
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4.5 Discussion

In this study, we developed an ensemble method, CUE, to enhance prediction accuracy when

imputing methylation values across different platforms. Although our initial goal is to extende

our previously developed penalized functional regression (PFR) framework, and systematically

evaluated its performance with multiple alternative methods. Results from real data analyses

suggest that there is no uniformly single best imputation method across different datasets or tissues,

which motivates our ensemble method, CUE. Under three different scenarios with data from two

different cohorts (one with samples from placenta and the other with samples from whole blood),

CUE outperforms all the single imputation tools in terms of both predicted root mean square error

(measuring methylation values with a continuous scale) and predicted accuracy (dichotomizing

methylation values). CUE also leads to a larger number of probes well imputed (that is, passing

post-imputation quality control) than any single imputation method.

CUE can produce accurate imputation results when the training and testing data characterize

the same tissue under similar conditions. With our CUE imputation framework, we can combine

data from multiple platforms, enabling higher resolution and more powerful downstream analysis.

For example, the combined dataset can be used to boost the power not only for epigenome wide

association (EWAS) study, but also for mQTL analysis, as well as multi-omics integrative analysis.

Regardless of the epigenetic architecture underlying phenotype(s) of interest, we expect our method

to facilitate more efficient utilization of methylation data from multiple platforms and to foster

advances in understanding the impact of DNA methylation on phenotype(s) of interest.

To further assess the generalizability of prediction model trained on data from the same tissue

but from different institutions, we would benefit from the availability of such data. However, we

are not aware of such data despite our keen efforts to assemble such datasets. Future studies are

highly warranted when data become available.

In summary, findings in this study suggest that our CUE ensemble methylation imputation

method is valuable for imputing from HM450 to HM850. DNA methylation data inherently vary

across tissues and ours and others’ results (Zhang et al., 2016) suggest that it would be prudent to

train separate imputation prediction models for different tissues. From this study, we provide two

sets of imputation models: one for whole blood and the other for placenta. Our study is the first
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to impute from HM450 to HM850 for two different tissues. We believe our CUE method as well

as the pre-trained imputation models across the two tissues will be of value to many investigators,

facilitating more powerful epigenetics studies with either HM450 data or a mixture of HM450 and

HM850 data.
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Summary

Machine learning methods are of increasing importance in both foundations of statistical infer-

ence and modern genetics applications. In the dissertation, we first focus on the foundation of the

inference problem in Chapter 2. Specifically, we introduce a new ML-based inference framework,

deep fiducial inference, accompanied by a computational algorithm, approximate fiducial computa-

tion. Then, we consider two ML applications, one in genetics in Chapter 3 and one in epigenetics

in Chapter 4.

In Chapter 2, we propose a fiducial autoencoder for the circumstance in which the analytical

form of the inverse function is not available or the marginal fiducial density is intractable. The uni-

versal approximation theorem provides theoretical guarantees for the approximation performance

of our FAE, and our simulations further validate our approach. The proposed FAE can accurately

approximate the inverse function, and it can be efficiently combined with the AFC algorithm to

provide valid and accurate inferences of the true parameters. The competitive performance of AFC

corrected FAE solutions both in terms of efficiency and accuracy suggests that this is a promising

area for future research.

In Chapter 3, we present SMNN, a batch effect correction method for scRNA-seq data via

supervised mutual nearest neighbor detection. Our SMNN explicitly considers cell type label in-

formation to perform supervised mutual nearest neighbor matching, thus empowered to extract

only desired neighbors from the same cell type. Extensive simulation and real data benchmarking

suggest that our SMNN can better rescue biological features and thereof provide improved cluster

results. Therefore, we anticipate that our SMNN is valuable for the integrated analysis of multiple

scRNA-seq datasets.

In Chapter 4, we develop an ensemble method, CUE, to enhance prediction accuracy when

imputing methylation values across different platforms. CUE can produce accurate imputation

results when the training and testing data characterize the same tissue under similar conditions.

With our CUE imputation framework, we can combine data from multiple platforms, enabling

higher resolution and more powerful downstream analysis. Findings in this study suggest that our

CUE ensemble methylation imputation method is valuable for imputing from HM450 to HM850.
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APPENDIX A

PYTHON CODES FOR FAE

Listing A.1: Python code for BOD example

import keras

import t en s o r f l ow as t f

from keras import backend as K

import numpy as np

from keras . l a y e r s import Input , Dense

from keras . models import Model , Sequent i a l

from keras . models import model f rom json

from keras . op t im i z e r s import RMSprop , Adam

import matp lo t l i b . pyplot as p l t

import sys

import os

class FAE( ) :

def i n i t ( s e l f ) :

# Input shape

s e l f . samples = 120000

s e l f . n o i s e v a r = 0.015

s e l f . dim = 5

s e l f . channe l s = 1

s e l f . opt imize r = Adam( )

# I n i t i a l z i e input

x input = Input ( shape=( s e l f . dim , s e l f . channe l s ) , name=’ x ’ )

y input = Input ( shape=( s e l f . dim , s e l f . channe l s ) , name=’ y ’ )

z input = Input ( shape=( s e l f . dim , s e l f . channe l s ) , name=’ z ’ )

# Bui ld encoder
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s e l f . encoder = s e l f . bu i l d encode r ( )

s e l f . encoder0 = s e l f . bu i ld encode r0 ( )

s e l f . encoder1 = s e l f . bu i ld encode r1 ( )

code = s e l f . encoder ( [ x input , y input , z input ] )

t0 = s e l f . encoder0 ( [ code ] )

t1 = s e l f . encoder1 ( [ code ] )

# Bui ld decoder

s e l f . decoder = s e l f . bu i l d decode r ( )

y hat = s e l f . decoder ( [ t0 , t1 , x input , z input ] )

# The combined model ( conect encoder and decoder )

s e l f . autoencoder = Model ( inputs =[ x input , y input , z input ] ,

outputs =[ y hat , t0 , t1 ] )

s e l f . autoencoder . compile ( opt imize r = s e l f . opt imizer ,

l o s s ={ ’ decoder ’ : ’ mean squared error ’ ,

’ encoder0 ’ : ’ mean squared error ’ ,

’ encoder1 ’ : ’ mean squared error ’ } ,

l o s s w e i g h t s={ ’ decoder ’ : 5 ,

’ encoder0 ’ : 10 ,

’ encoder1 ’ : 3})

s e l f . autoencoder . summary ( )

def bu i ld encode r ( s e l f ) :

# t h i s i s our input p l a c e h o l d e r

x input = Input ( shape = ( s e l f . dim , s e l f . channe l s ) ,name=’ x ’ )

y input = Input ( shape = ( s e l f . dim , s e l f . channe l s ) ,name=’ y ’ )

z input = Input ( shape=( s e l f . dim , s e l f . channe l s ) , name=’ z ’ )

# ” encoded ” i s the encoded r e p r e s e n t a t i o n o f the input

encoded=keras . l a y e r s . concatenate ( [ x input , y input , z input ] )

encoded = Dense (32 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )
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encoded = Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (128 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (512 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (128 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (512 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (128 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (32 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoder = Model ( inputs =[ x input , y input , z input ] , outputs=

encoded , name=” encoder ” )

encoder . summary ( )

return encoder

def bu i ld encode r0 ( s e l f ) :

encoded0 = Input ( shape=( s e l f . dim , 32) , name=’ code0 ’ )

encoded = Dense (128 , a c t i v a t i o n=’ r e l u ’ ) ( encoded0 )

encoded = Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (32 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

t0 cand ida t e = Dense (1 , a c t i v a t i o n=’ r e l u ’ ,name=’ t0 hat ’ ) (

encoded )

et0 = keras . l a y e r s . AveragePooling1D ( p o o l s i z e=s e l f . dim ,

s t r i d e s=None , padding=’ v a l i d ’ ,name=’ et0 ’ ) ( t 0 cand ida t e )

encoder0 = Model ( inputs=encoded0 , outputs=et0 , name=” encoder0 ”

)

encoder0 . summary ( )

return encoder0

def bu i ld encode r1 ( s e l f ) :

# d e f i n e encoder1

encoded = Input ( shape=( s e l f . dim , 32) , name=’ code1 ’ )

t1 cand ida t e = Dense (1 , a c t i v a t i o n=’ r e l u ’ ,name=’ t1 hat ’ ) (

encoded )

et1 = keras . l a y e r s . AveragePooling1D ( p o o l s i z e=s e l f . dim ,

s t r i d e s=None , padding=’ v a l i d ’ ,name=’ et1 ’ ) ( t 1 cand ida t e )
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encoder1 = Model ( inputs=encoded , outputs=et1 , name=” encoder1 ” )

encoder1 . summary ( )

return encoder1

def bu i ld decode r ( s e l f ) :

# t h i s i s our input p l a c e h o l d e r

dt0 = Input ( shape = (1 , s e l f . channe l s ) ,name=’ dt0 ’ )

dt1 = Input ( shape = (1 , s e l f . channe l s ) ,name=’ dt1 ’ )

x input = Input ( shape = ( s e l f . dim , s e l f . channe l s ) ,name=’ x ’ )

z input = Input ( shape=( s e l f . dim , s e l f . channe l s ) , name=’ z ’ )

def dg ( ip ) :

t t0 = ip [ 0 ]

t t1 = ip [ 1 ]

tx2 = ip [ 2 ]

tz2 = ip [ 3 ]

ty = tt0 ∗ (1−K. exp(− t t1 ∗ tx2 ) ) + tz2

return ty

y hat = keras . l a y e r s . Lambda( dg ) ( [ dt0 , dt1 , x input , z input ] )

encoder = Model ( inputs =[dt0 , dt1 , x input , z input ] , outputs=

y hat , name=” decoder ” )

encoder . summary ( )

return encoder

def load data BOD ( s e l f , s o r t = True ) :

# Generate BOD Data

m = s e l f . dim

n = s e l f . samples

x=np . array ( [ 2 . 0 , 4 . 0 , 6 . 0 , 8 . 0 , 1 0 . 0 ] )

def DataGenerateFunction ( z , t0 , t1 ,m, n) :

y = z + np . diag ( t0 ) @ (1 − np . exp(− ( t1 . reshape (n , 1 ) @

x . reshape ( ( 1 ,m) ) ) ) )
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return y

def model1 (m = 5 , n = 30) :

t0 = np . random . uniform ( 0 . 4 , 1 . 2 , n )

t1 = np . random . uniform (0 .000001 , 0 . 2 , n )

z = np . random . normal (0 , s e l f . no i s e var , (n ,m) )

y = DataGenerateFunction ( z , t0 , t1 ,m, n)

return (m, n , y , z , t0 , t1 )

# setup the random seed

np . random . seed (20200521)

(m, n , y , z , t0 , t1 ) = model1 (m = m, n = n)

i f s o r t == True :

p = y . a r g s o r t ( a x i s =1)

y . s o r t ( a x i s =1)

z=np . array ( [ z [ i , p [ i , ] ] for i in range (n) ] )

y=y [ : , : , np . newaxis ]

z=z [ : , : , np . newaxis ]

t0=t0 [ : , np . newaxis , np . newaxis ]

t1=t1 [ : , np . newaxis , np . newaxis ]

r =0.8 # r a t i o o f t r a i n and v a l i d a t i o n

t r a i n y=y [ 0 : int (n∗ r ) , : , : ]

t r a i n z=z [ 0 : int (n∗ r ) , : , : ]

v a l i d y=y [ int (n∗ r ) : n , : , : ]

v a l i d z=z [ int (n∗ r ) : n , : , : ]

t r a i n t 0=t0 [ 0 : int (n∗ r ) , : , : ]

t r a i n t 1=t1 [ 0 : int (n∗ r ) , : , : ]

v a l i d t 0=t0 [ int (n∗ r ) : n , : , : ]

v a l i d t 1=t1 [ int (n∗ r ) : n , : , : ]

x = np . t i l e (x , ( n , 1 ) )

x = x [ : , : , np . newaxis ]

t r a i n x = x [ 0 : int (n∗ r ) , : , : ]

v a l i d x = x [ int (n∗ r ) : n , : , : ]
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print ( t r a i n y . shape [ 0 ] , ’ t r a i n samples ’ )

print ( v a l i d y . shape [ 0 ] , ’ t e s t samples ’ )

return ( t ra in x , t ra in y , t r a i n z , t r a i n t 0 , t r a i n t 1 , va l id x ,

va l id y , v a l i d z , v a l i d t 0 , v a l i d t 1 , r )

def train AE ( s e l f , epochs , b a t c h s i z e =256 , s o r t = True ) :

( t r a in x , t ra in y , t r a i n z , t r a i n t 0 , t r a i n t 1 , va l id x , va l id y ,

v a l i d z , v a l i d t 0 , v a l i d t 1 , r ) = s e l f . load data BOD ( s o r t =

True )

s e l f . t r a i n = s e l f . autoencoder . f i t ({ ’ x ’ : t r a in x , ’ y ’ : t r a in y ,

’ z ’ : t r a i n z } ,

{ ’ decoder ’ : t r a in y ,

’ encoder0 ’ : t r a i n t 0 ,

’ encoder1 ’ : t r a i n t 1 } ,

b a t c h s i z e=batch s i z e , epochs=epochs , verbose =1,

v a l i d a t i o n d a t a =({ ’ x ’ : va l id x , ’ y ’ : va l id y , ’ z ’ :

v a l i d z } ,

{ ’ decoder ’ : va l id y ,

’ encoder0 ’ : v a l i d t 0 ,

’ encoder1 ’ : v a l i d t 1 }

) )

p r e d t r a i n = s e l f . autoencoder . p r ed i c t on ba t ch ({ ’ x ’ : t r a in x ,

’ y ’ : t r a in y , ’ z ’ : t r a i n z })

p r e d v a l i d = s e l f . autoencoder . p r ed i c t on ba t ch ({ ’ x ’ : va l id x ,

’ y ’ : va l id y , ’ z ’ : v a l i d z })

# np . savez ( ’ p r e d t r a i n v a l i d . npz ’ , p r e d t r a i n=p r e d t r a i n ,

p r e d v a l i d=p r e d v a l i d ,

# t r a i n y=t r a i n y , t r a i n t 0=t r a i n t 0 , t r a i n t 1=t r a i n t 1 )

# e v a l u a t e the model

s c o r e s = s e l f . autoencoder . eva luate ( x=[ va l id x , va l id y ,

v a l i d z ] , y=[ va l id y , v a l i d t 0 , v a l i d t 1 ] , verbose =0)

print ( ”%s : %.2 f ” % ( s e l f . autoencoder . metr ics names [ 0 ] , s c o r e s

[ 0 ] ) )
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print ( ”%s : %.2 f ” % ( s e l f . autoencoder . metr ics names [ 1 ] , s c o r e s

[ 1 ] ) )

print ( ”%s : %.2 f ” % ( s e l f . autoencoder . metr ics names [ 2 ] , s c o r e s

[ 2 ] ) )

print ( ”%s : %.2 f ” % ( s e l f . autoencoder . metr ics names [ 3 ] , s c o r e s

[ 3 ] ) )

def test AE ( s e l f , t0 =0.8 , t1 =1.0 , n t e s t =1000 , s o r t = True ) :

m = s e l f . dim

x=np . array ( [ 2 . 0 , 4 . 0 , 6 . 0 , 8 . 0 , 1 0 . 0 ] )

def mode l t e s t ( ) :

z = np . random . normal (0 , s e l f . no i s e var , (1 ,m) )

y = z + t0 ∗ (1 − np . exp(− ( t1 ∗ x ) ) )

return (m, n te s t , y , z , t0 , t1 )

np . random . seed (20200526) # 0504

(m, n te s t , y t e s t , z t e s t , t0 , t1 ) = mode l t e s t ( )

y t e s t = np . array ( [ 0 . 1 5 2 2 0 7 1 , 0 .29667172 , 0 .41254479 ,

0 .48237946 , 0 . 56707723 ] )

p t e s t = np . array ( [ 0 , 1 , 2 , 3 , 4 ] )

print ( y t e s t )

print ( p t e s t )

y t e s t = np . t i l e ( y t e s t , ( n t e s t , 1 ) )

y t e s t = y t e s t [ : , : , np . newaxis ]

np . random . seed (20200504)

z t e s t = np . random . normal (0 , s e l f . no i s e var , ( n t e s t ,m) )

i f s o r t == True :

z t e s t=np . array ( [ z t e s t [ i , p t e s t ] for i in range (

n t e s t ) ] )

z t e s t = z t e s t [ : , : , np . newaxis ]

x t e s t = np . t i l e (x , ( n t e s t , 1 ) )

x t e s t = x t e s t [ : , : , np . newaxis ]
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pred = s e l f . autoencoder . p r ed i c t on ba t ch ({ ’ x ’ : x t e s t , ’ y ’ :

y t e s t , ’ z ’ : z t e s t })

t 0 f a e = pred [ 1 ]

t 1 f a e = pred [ 2 ]

np . save ( ”BOD t0 %.3 f . npy”%t0 , t 0 f a e )

np . save ( ”BOD t1 %.3 f . npy”%t1 , t 1 f a e )

np . save ( ”BOD y hat . npy” , pred [ 0 ] )

i f name == ’ ma in ’ :

f a e = FAE( )

f a e . train AE ( epochs =10, b a t c h s i z e =500 , s o r t = False )

f a e . test AE ( t0 =0.9 , t1 =0.1 , n t e s t =10000 , s o r t = False )

Listing A.2: Python code for non-linear data generating example

#!/ usr / b in /env python3

# −∗− coding : u t f−8 −∗−

”””

Created on Tue Oct 30 09 :19 :36 2018

@author : GangLi

”””

import keras

import numpy as np

from keras import backend as K

from keras . l a y e r s import Input , Dense

from keras . models import Model

from keras . op t im i z e r s import RMSprop , Adam

import matp lo t l i b as mpl

#mpl . use ( ’macOsX ’)

##########################################################

72



# Generate Data

##########################################################

def DataGenerateFunction ( z ,mu,m) :

x = np . t ranspose (np . t i l e (mu, (m, 1 ) ) ) + np . matmul (np . d iag (np . power (mu, ( 3 / 2 ) )

) , z )

return x

def model1 (m = 10 , n = 30) :

mu = np . random . uniform (0 , 6 , n)

z = np . random . normal (0 , 1 , (n ,m) )

x = DataGenerateFunction ( z ,mu,m)

return (m, n , x , z , mu)

(m, n , x , z , mu0) = model1 (m = 3 , n = 100000)

x=x [ : , : , np . newaxis ]

z=z [ : , : , np . newaxis ]

r =0.8 # r a t i o o f t r a i n and v a l i d a t i o n

t ra in X=x [ 0 : int (n∗ r ) , : , : ]

t r a i n z=z [ 0 : int (n∗ r ) , : , : ]

va l id X=x [ int (n∗ r ) : n , : , : ]

v a l i d z=z [ int (n∗ r ) : n , : , : ]

print ( t ra in X . shape [ 0 ] , ’ t r a i n samples ’ )

print ( va l id X . shape [ 0 ] , ’ t e s t samples ’ )

######################################################

# Define the FAE

######################################################

inChannel = 1

# t h i s i s our input p l a c e h o l d e r

x input = Input ( shape = (m, inChannel ) ,name=’ x ’ )
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z input = Input ( shape=(m, inChannel ) , name=’ z ’ )

# ” encoded ” i s the encoded r e p r e s e n t a t i o n o f the input

encoded=keras . l a y e r s . concatenate ( [ x input , z input ] )

encoded = Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (128 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (512 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (128 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (512 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (128 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (128 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

encoded = Dense (32 , a c t i v a t i o n=’ r e l u ’ ) ( encoded )

mu = Dense (1 , a c t i v a t i o n=’ r e l u ’ ,name=’ mu hat ’ ) ( encoded )

mu1 = keras . l a y e r s . AveragePooling1D ( p o o l s i z e =3, s t r i d e s=None , padding=’ v a l i d ’

) (mu)

def dg ( ip ) :

mu1 = ip [ 0 ]

z2 = ip [ 1 ]

mu2=K. repea t e l ement s (mu1, 3 , 1 )

return mu2 + K.pow(mu2, 3 / 2 ) ∗ z2

decoded = keras . l a y e r s . Lambda( dg ) ( [ mu1 , z input ] )

FAE = Model ( inputs =[ x input , z input ] , outputs =[decoded , mu1 ] )

FAE. compile ( opt imize r = Adam( ) ,

l o s s ={ ’ lambda 1 ’ : ’ mean squared error ’ ,

’ ave rage poo l ing1d 1 ’ : ’ mean squared error ’ } ,

l o s s w e i g h t s={ ’ lambda 1 ’ : 1 ,

’ ave rage poo l ing1d 1 ’ : 1})
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FAE. summary ( )

###### Model F i t t i n g

b a t c h s i z e = 250

epochs = 10

FAE train=FAE. f i t ({ ’ x ’ : tra in X , ’ z ’ : t r a i n z } ,

{ ’ lambda 1 ’ : tra in X ,

’ ave rage poo l ing1d 1 ’ : mu0 [ 0 : int (n∗ r ) , np . newaxis , np . newaxis

] } ,

b a t c h s i z e=batch s i z e , epochs=epochs , verbose =1,

v a l i d a t i o n d a t a =({ ’ x ’ : val id X , ’ z ’ : v a l i d z } ,

{ ’ lambda 1 ’ : val id X ,

’ ave rage poo l ing1d 1 ’ : mu0 [ int (n∗ r ) : n , np .

newaxis , np . newaxis ] }) )

[ FAE pred X , FAE pred mu]=FAE. p r e d i c t ({ ’ x ’ : val id X , ’ z ’ : v a l i d z })
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APPENDIX B

ADDITIONAL PERFORMANCE EVALUATIONS FOR SMNN

In this study, we further evaluated several other computing and performance aspects of SMNN.

First, we evaluated SMNN’s robustness to the availability of only partial cell type information.

Specifically, we performed SMNN correction for two hematopoietic datasets by feeding cluster

labels for either one or two of the three cell types. The results showed that, under such partial

label information, SMNN still better mixed cells of the same cell type across batches than MNN

method (Appendix B: Fig. B.2a-c and e-g), consistent with the best/lowest F values from the

SMNN-corrected results F value, compared with uncorrected and MNN-corrected data. Specifically,

SMNN reduced the differentiation between the two batches by 89.7% to 94.0% (73.9% to 96.7%) on

top of the MNN corrected results when using label information for only one (two) of the three cell

types, respectively (Appendix B: Fig. B.2d and h). These results indicate that SMNN is robust

and superior even with partial cell type annotation information.

Furthermore, to assess whether the differentially expressed genes (DEGs) identified in SMNN

and MNN corrected data were sensitive to the significance threshold selected, we show ROC curves

to illustrate the ability of identifying DEGs among CMP, GMP and MEP cells after SMNN and

MNN correction, at various adjusted p-value threshold, treating those identified in uncorrected

batch 1 as working truth. The results showed that, in almost all cases, SMNN outperformed MNN

(Appendix B: Fig. B.9). The only exception is for DEGs up-regulated in GMP when compared

to MEP, where the ROC curves of SMNN and MNN are comparable (Appendix B: Fig. B.9e).

These results suggest that our DEG analysis is not sensitive to the p-value cutoff we use for DEG

detection.

Lastly, when the cell population compositions are unbalanced between two batches, we ex-

tracted the three major cell types out from two hematopoietic datasets, in order to construct two

new batches with a more apparent difference in cell group composition. In the new batch 1, the

proportion of CMP, GMP and MEP cells are 40.4%, 15.1% and 44.5%, while those are 17.6%,

42.3% and 40.1% in new batch 2. Then we performed both MNN and SMNN correction across

the new batches. The results showed that SMNN outperformed MNN that SMNN reduced the

differentiation between the two batches (measured by the F value) by 11.3% on top of the MNN

76



corrected results (Appendix B: Fig. B.11), indicating that SMNN is robust to the cell population

composition.
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Figure B.1: Performance of SMNN and MNN in the simulation data using the model in
Haghverdi et al. (2018). (a) Histogram of the angles (surrogate for orthogonality) for the simulation
data using the model in Haghverdi et al. (2018). (b) Frobenius norm distance between two batches after
SMNN and MNN correction in simulation data under orthogonal (left) and non-orthogonal scenarios (right).
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Figure B.2: Performance of SMNN in two hematopoietic datasets with partial cell type labels.
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data of the two batches before and after correction with MNN and SMNN. SMNN correction was performed
with the cell type label only from CMP, GMP and MEP cells, respectively. (e-g) UMAP plots for the two
hematopoietic datasets after SMNN correction with cell type label only from any two of the three cell types,
CMP, GMP and MEP cells. (h) Logarithms of F-statistics for merged data of the two batches before and
after correction with MNN and SMNN. SMNN correction was performed with the cell type label only from
any of the three cell types, CMP, GMP and MEP cells.
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Figure B.4: Comparison of differentially expressed genes (DEGs), identified in the merged
dataset by pooling batch 1 data with batch 2 data after SMNN and MNN correction. (a)
Overlap of DEGs up-regulated in GMP over CMP after SMNN and MNN correction. (b) Feature enriched
GO terms and the corresponding DEGs up-regulated in GMP over CMP. (c) Overlap of DEGs up-regulated
in MEP over CMP after SMNN and MNN correction. (d) Feature enriched GO terms and the corresponding
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Figure B.7: Reproducibility of DEGs (between CMP and MEP and between GMP and MEP).
(a) Reproducibility of DEGs up-regulated in CMP over MEP. (b) and (c) Precision and false negative rate
(FNR) of the DEGs up-regulated in CMP over MEP. (d) Reproducibility of DEGs up-regulated in MEP
over CMP. (e) and (f) Precision and FNR of the DEGs up-regulated in MEP over CMP. (g) Reproducibility
of DEGs up-regulated in GMP over MEP. (h) and (i) Precision and FNR of the DEGs up-regulated in GMP
over MEP. (j) Reproducibility of DEGs up-regulated in MEP over GMP. (k) and (l) Precision and FNR of
the DEGs up-regulated in MEP over GMP.
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Figure B.8: Reproducibility of DEGs (between any two cell types, out of the three: CMP,
GMP and MEP). (a) reproducibility for DEGs up-regulated in CMP over GMP. (b) and (c) Precision
and false negative rate (FNR) of the DEGs up-regulated in CMP over GMP. (d) Reproducibility of DEGs
up-regulated in GMP over CMP. (e) and (f) Precision and FNR of the DEGs up-regulated in GMP over
CMP. (g) Reproducibility of DEGs up-regulated in CMP over MEP. (h) and (i) Precision and FNR of the
DEGs up-regulated in CMP over MEP. (j) Reproducibility of DEGs up-regulated in MEP over CMP. (k)
and (l) Precision and FNR of the DEGs up-regulated in MEP over CMP. (m) Reproducibility of DEGs
up-regulated in GMP over MEP. (n) and (o) Precision and FNR of the DEGs up-regulated in GMP over
MEP. (p) Reproducibility of DEGs up-regulated in MEP over GMP. (q) and (r) Precision and FNR of the
DEGs up-regulated in MEP over GMP.
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Figure B.9: ROC curves for DEGs (between any two cell types, out of the three: CMP, GMP
and MEP) at various adjusted p-value thresholds. (a) ROC curve for DEGs up-regulated in CMP
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Figure B.10: Performance comparison between SMNN and MNN in two 10X Genomics
datasets for human PBMC and T cells.(a-c) UMAP plots for PBMC and T cells datasets before and
after batch effect correction with MNN and SMNN, respectively. Solid and inverted triangle represent PBMC
and T cell datasets, respectively; and different cell types are shown in different colors. (d) Logarithms of
F-statistics for merged data of the two batches. (e) Overlap of DEGs up-regulated in T cells over B cells
after SMNN and MNN correction. (f) Feature enriched GO terms and the corresponding DEGs up-regulated
in T cells over B cells. (g) Overlap of DEGs up-regulated in B cells over T cells after SMNN and MNN
correction. (h) Feature enriched GO terms and the corresponding DEGs up-regulated in B cells over T cells.
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Figure B.11: Performance of SMNN in two hematopoietic datasets with unbalanced cell pop-
ulation composition. (a-c) UMAP plots for two hematopoietic datasets before and after correction with
MNN and SMNN, respectively. Solid and inverted triangle represent the first and second batch, respectively;
and different cell types are shown in different colors. (d) Cell population proportions in the two batches.
(e) Logarithms of F-statistics for merged data of the two batches before and after correction with MNN and
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APPENDIX C

ADDITIONAL RESULTS FOR CUE

Table C.1: Numbers and ratios of well-imputed sites. Quality control (QC) criterias for PTSD: RMSE
< 0.05 and Accruracy > 95%; QC for ELGAN: RMSE < 0.1 and Accruracy > 90%. The ratios are out of
339,033 HM850-only CpG sites.

PTSD (%) ELGAN (%)

KNN 249,425 (73.6%) 181,304 (53.5%)

Logistic D.N.C. 93,470 (27.6%)

PFR 269,745 (79.6%) 213,355 (62.9%)

RF 249,425 (73.6%) 236,645 (69.8%)

XGBoost 285,330 (84.2%) 224,317 (66.2%)

CUE 289,604 (85.4%) 238,090 (70.2%)

Figure C.1: Imputed Performances Before (Left Bar) and After QC (Right Bar) for QCed
Probes in ELGAN. (a) RMSE comparisons. (b) 1- Accuracy (classification error) comparisons. Different
colors represent different methods. The horizontal dash line is the lowest value corresponding to the best
method.
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Figure C.2: Imputation accuracy across different thresholds in the ELGAN dataset. Our CUE
method (black line) achieves the highest accuracy across all thresholds. Logistic regression (yellow line)
seems sensitive to the threshold probably because it is trained based on labels defined at the cutoff of 0.5.
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