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ABSTRACT 

Isai Salas-González: Integrative genomics to study the plant microbiome 
(Under the direction of Jeffery L. Dangl) 

 
 Plants associate with a myriad of microorganisms on the basis of environmental and plant 

derived cues resulting in a broad spectrum of plant-microbe interactions ranging from mutualism 

to pathogenicity. These microorganisms, collectively term the plant microbiota, influence plant 

phenotypes and ultimately fitness. Widely supported trends have emerged based on high-

throughput culture independent exploratory surveys: plant habitats exert a selective bottleneck for 

microbes in relation to the surrounding soil, the enrichment of microbes within the plant is 

phylogenetically constrained and plant-associated microbes influence host phenotypes (Chapter 

1).   

 The work in this dissertation exploits the increasing availability of plant-associated 

bacterial isolates to infer the molecular mechanisms modulating plant-microbiome interactions via 

a combination of multi-omics analyses. First, by developing and deploying a phylogenomic and 

statistical framework in conjunctions with thousands of bacterial isolates, we identified novel traits 

associated with bacterial adaptation to plant lifestyle (Chapter 2). Afterwards, by employing a 

multi-omics profiled synthetic ecology approach, we explored the influence of abiotic stresses over 

the plant microbiome assembly (Chapter 3) and the discovered dominant microbe-microbe 

interactions responsible for the modulation of the plant host root growth (Chapter 4).  Finally, as 

an epilogue (Chapter 5), I provide a perspective about the current challenges and future directions 

concerning plant microbiome research.
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CHAPTER 1: THE PLANT MICROBIOME (FROM ECOLOGY TO REDUCTIONISM)1 
 
Introduction 
 

The causes and consequences of plant-associated microbial variation have been the subject 

of intense study for over a century. Following the discovery that atmospheric nitrogen is fixed by 

bacteria residing in leguminous root nodules came the understanding that plants are associated 

with an abundance of diverse microbes. Hypotheses that arose in that period are fundamental to 

the field to this day. Among them are the notions articulated by Lorenz Hiltner (Bulgarelli et al., 

2012)(Hartmann et al., 2008): that plant-derived nutrients attract beneficial microbiota in a 

species-specific manner and that this mechanism is exposed to exploitation by pathogens. 

For over a century, the field relied on culture-dependent approaches to illuminate and study 

the multitude of plant microbiome inhabitants, which include fungi, bacteria, protists, and viruses. 

However, the stunning extent and distribution of this diversity revealed by culture-independent 

and high-throughput molecular approaches over the past two decades have had a transformative 

effect on our understanding, study, and application of plant-microbe research. 

1.1: Ecological and evolutionary processes shaping the plant microbiome  
 

The era of culture-independent, high-throughput plant microbiome study began with an 

exploratory phase of the diversity and composition of microbial taxa and genes across plant 

habitats. Primarily based on marker-based census data, these studies  confirmed  the   century-old

                                                       
1 A portion of the results presented in this chapter appeared as an article in:  
Fitzpatrick CR*, Salas-González I*, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The Plant Microbiome: 
From Ecology to Reductionism and Beyond. Annu Rev Microbiol. 2020 Sep 8;74:81-100. 
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hypothesis that plants harbor distinct microbiota, which represent a subset of those found in the 

ambient environment (Bulgarelli et al., 2012; Lundberg, Lebeis, Paredes, Yourstone, Gehring, 

Malfatti, Tremblay, Engelbrektson, Kunin, del Rio, et al., 2012). This led to the multistep model 

of plant microbiome assembly, whereby specific microbes in the environment are recruited to plant 

surfaces, followed by additional filtering as microbial taxa colonize the interior of plant organs 

(Bulgarelli et al., 2013)(Edwards et al., 2015). Such large effects of plant habitats on microbial 

communities led to the hypothesis that plant-associated microorganisms are adapted to the unique 

environments provided by their plant hosts. 

To date studies, besides conforming to this paradigm, have revealed that additional ecological and 

evolutionary processes can strongly shape plant microbiota. 

1.1.1: Selection  
 

Plants are not homogenous microbial habitats. Different plant habitats such as leaves (J. H. 

Leveau, 2019), roots (Pascale et al., 2020), or flowers (Rebolleda‐Gómez et al., 2019) typically 

harbor unique microbiota ((Bai et al., 2015; Bodenhausen et al., 2013); but see (Meaden et al., 

2016)). This is due to variation across plant habitats in plant-derived resources as well as physical 

and chemical properties resulting from structural differences and exposure to different features of 

the environment. For example, roots and leaves impose different selection on microbiota due to 

both their structural differences and exposure to soil versus air, respectively (Bai et al., 2015; 

Grinberg et al., 2019). After plant habitat, variation in the abiotic and biotic environment can exert 

large direct and indirect effects on plant-associated microbiota. Climate-driven geographical 

variation in soil microorganisms (Bahram et al., 2018) can drive the composition of plant 

microbiota due to the predominance of horizontal transmission (Liu et al., 2019). Alternatively, 

environmental variation, both abiotic (Gallart et al., 2018) and biotic (Humphrey & Whiteman, 
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2020), can indirectly shape plant microbiota through plant responses. Interactions among microbes 

can also have large effects on community composition, in which the presence of particular 

microbial groups or even single taxa alter the plant microbiome via both antagonistic and 

beneficial interactions (Carrión et al., 2019; Durán et al., 2018; Snelders et al., 2020; Uroz et al., 

2019; X. Wang et al., 2019). Finally, numerous studies demonstrate that variation (Bowsher et al., 

2020; Cregger et al., 2018) and across (Fitzpatrick et al., 2018; Koyama et al., 2019; Naylor et al., 

2017; Tkacz et al., 2020) host plant species can affect both the diversity and composition of plant 

microbiota. However, the extent to which variation across host plants shapes microbiota seems to 

vary across environments (Bowen et al., 2017; Bowsher et al., 2020; Veach et al., 2019) and 

habitats within (Massoni et al., 2020; Rochefort et al., 2019). 

1.1.2: Ecological drift 
 

Ecological drift—stochastic variation in growth and death—can be a potent driver of 

community composition under certain scenarios, notably when communities have few species and 

exhibit low overall abundance and selection is weak (B. Gilbert & Levine, 2017; Zhou & Ning, 

2017). Endophytic communities found within plant organs may be particularly prone to ecological 

drift due to their low overall abundance compared to epiphytic communities, especially during 

early plant development (Edwards et al., 2015; Z. Gao et al., 2019). Stochastic changes in the 

relative abundance of individual species within a community can have large downstream effects 

on community composition when coupled with selection, such as altered interaction strengths 

among community members. For example, increasing the relative abundance of six randomly 

chosen members of a soil microbial community led to compositional changes consistent with 

competitive exclusion between the increased member and close relatives in the community (Zhao 

et al., 2019). The high levels of unexplained variance in plant microbiome composition and 
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diversity, as well as the abundance of individual taxa, are, at least in part, due to drift (Maignien 

et al., 2014). 

1.1.3: Dispersal 
 

While selection and drift alter the abundance of existing members within a community, 

dispersal and diversification are how new species arise in communities. Plant-colonizing 

microorganisms disperse from the surrounding environment (i.e., horizontal transmission), 

including soil (Liu et al., 2019), neighboring plants and interacting animals (Rebolleda Gómez & 

Ashman, 2019), and the air column (Choudoir et al., 2018), although vertical transmission via seed 

can also occur (Newcombe et al., 2018; Shade et al., 2017). After initial colonization, microbial 

dispersal to and from plants is likely to occur. Yet despite its omnipresence, dispersal is a difficult 

process to quantify; this is especially true for microorganisms. The importance of dispersal is 

inferred by correlating the compositional similarity between two communities with the physical 

distance separating them, although distance can be confounded by known or unknown 

environmental factors. A negative correlation between distance and similarity (i.e., distance-

decay) suggests that microbial dispersal limitation may contribute to compositional differences 

between communities. Distance-decay studies of plant microbiota show that the importance of 

dispersal as a driver of community composition will vary according to the spatial scale, plant 

habitat, and microbial taxa under (Amend et al., 2019; Donald et al., 2020; Finkel et al., 2012; 

Hurtado-McCormick et al., 2019; Laforest-Lapointe et al., 2016; Meaden et al., 2016). Researchers 

are also beginning to use experimental approaches to evaluate the importance of dispersal in the 

plant microbiome. Experimentally reducing dispersal among floral nectar microbial communities 

increased compositional similarities between communities (Vannette & Fukami, 2017). 

Experimental studies show that bacterial dispersal in soil is restricted to a narrow taxonomic 
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breadth of organisms, which could have direct impacts on the colonization of plant roots (Krüger 

et al., 2018; Wolf et al., 2015). Dispersal can also shape plant microbiota through the introduction 

of priority effects, whereby the order of arrival among microorganisms can either facilitate or 

inhibit the success of future colonists (Carlström et al., 2019). Furthermore, changes in 

environmental variables such as resource availability and pH can alter the strength of priority 

effects (Grainger et al., 2019). 

1.1.4: Evolution 
 

Evolutionary change can shape the growth of individual populations and the interactions 

between species and can ultimately give rise to new species, all of which can affect community 

composition (Gómez et al., 2016; Pelletier et al., 2009). Direct evidence of evolutionary change 

occurring within plant microbiota, let alone shaping community composition, is rare outside well-

known symbionts (Porter et al., 2017). Evolved resistance to phage reduced the ability of a 

bacterial pathogen to proliferate on its host plant, which in turn led to altered composition of plant 

microbiota (X. Wang et al., 2019). Indeed, the evolutionary outcomes of multitrophic interactions 

within the plant microbiome may play a much larger role in shaping community diversity and 

composition than is currently recognized (Z. Gao et al., 2019; Koskella & Taylor, 2018; Morella 

et al., 2018). The interaction between evolutionary dynamics and dispersal may also have large 

effects on plant microbiomes. Conceivably, a beneficial mutation arising in one microbial 

population could spread via dispersal to others, either within or between plant hosts, potentially 

altering microbe-microbe interactions and ultimately community composition (Miller et al., 2018). 

Although the above examples include evolution by natural selection, genetic drift occurring within 

microbial populations could also lead to evolutionary change, with consequences for ecological 

dynamics. 
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Figure 1.1 - Ecological and evolutionary processes shaping the plant microbiome. 

An illustrative example of the ecological and evolutionary processes shaping the plant microbiota. 
a) Plants and their microbiomes occur across large geographic areas that vary in abiotic and biotic 
environmental factors. Here, we focus on two localities found at the extremes of a temperature 
gradient. b) Selection imposed by numerous factors (1 –3 in the figure) can shape the diversity and 
composition of plant microbiota. (1) Microbes found in the environment are winnowed during 
colonization and assemble unique plant-associated microbiomes, a fraction of which are found at 
high occurrence across host plants and localities (taxa denoted by asterisks in panel b). Moreover, 
host plant variation across localities as a result of responses to temperature or other environmental 
factors (indicated by different host plant color in panel b), genetically distinct populations, or 
different plant species can also shape plant microbiota. (2) Geographic location and corresponding 
environmental features determine the pool of microbes available for plant colonization. (3) 
Microbe-microbe interactions will likely vary across localities, in turn driving compositional 
differences in plant microbiota. In addition to selection, plant microbiota is also shaped by (c) drift, 
(d) dispersal, and (e) evolution. c) Drift results from stochastic differences in the growth rates of 
individual plant microbiome members and can cause plant microbiota to compositionally diverge 
despite exposure to the same environments. Each point in panel c depicts the composition of a 
sampled plant microbiome, and the distance between two points reflects compositional similarity. 
Although location has a clear effect on plant microbiota, samples within a locality still exhibit 
variation despite being collected from the same host plant species in the same environment. Some 
of this variation will be caused by ecological drift. d) Dispersal can also contribute to 
compositional differences observed among plant microbiota across spatial scales. Microbial 
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dispersal can occur over small and large spatial extents, giving rise to compositional differences 
between pairs of plant microbiota that scale with distance. e) Evolutionary change occurring in 
individual plant microbiome members can lead to altered population growth rates and species 
interactions (as depicted in panel b), both of which could lead to shifts in plant microbiota. In 
addition to elucidating its role in shaping plant microbiota, research on evolutionary change in the 
plant microbiome has led to important discoveries of adaptations to a plant-associated lifestyle. 
For example, genetic differences between plant-associated and free-living relatives reveal 
microbial adaptations to life with plants (as shown in panel e). However, that microbial adaptation 
might be occurring to other features of the local plant-associated environment, including host plant 
variation, the abiotic environment, and resident microbiota (as depicted in 1 –3 in panel b). 
Genomic analysis of core microbiome members across these factors could reveal adaptations that 
are otherwise hidden by the cryptic diversity within amplicon sequence variants or operational 
taxonomic units. 
 
1.2: Environmental variation shapes the mechanistic interactions between plants and 
microbiota 
 

Plants and their microbiomes must cope with environmental variation, including changing 

temperature, light, humidity, soil chemistry, and water availability. This environmental variation 

often leads to shifts in the diversity or composition of plant microbiota (Caddell et al., 2019; Cheng 

et al., 2019; Hiruma, 2019). While these environmentally induced shifts can be due to direct 

microbial responses, they are often indirectly caused by plant responses (Carvalhais et al., 2013), 

which can shift plant microbiota through the mechanisms described above. For example, in 

Arabidopsis, phosphorus starvation alters the root microbiome through the phosphate starvation 

response, which is integrated with the immune system through the master transcriptional regulator, 

phosphate starvation response 1 (phr1), and its effects on the jasmonic and salicylic acid pathways 

(Castrillo et al., 2017; Hiruma et al., 2016; Morcillo et al., 2020). Secondary metabolites produced 

by plants under various environmental stresses, including iron (Stringlis et al., 2018) and 

phosphate (Hiruma et al., 2016) limitation, can also shape the plant microbiome by either 

selectively enriching or inhibiting particular members. Plant responses to abiotic stress can also be 

linked with microbiota through shared signaling components, such as salt stress tolerance, which 
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is linked through the chitin receptor, chitin elicitor receptor kinase 1 (Espinoza et al., 2017). Plant 

exudation and bacterial uptake of the metabolite glycerol-3-phosphate was strongly associated 

with the enrichment of Actinobacteria in the Sorghum bicolor root under drought stress (L. Xu et 

al., 2018). Moreover, the cross talk between abiotic and biotic environmental responses can change 

over the course of plant development, in turn shifting the composition of plant microbiota (Berens 

et al., 2019). Lastly, insect herbivory can perturb the leaf microbiome through the induction of 

plant defense responses (Humphrey & Whiteman, 2020). These examples illustrate that variation 

in both the abiotic and biotic environment can elicit changes in the plant microbiome through plant 

responses (Figure 1.2). 

 

Figure 1.2 - Exemplary abiotic and biotic factors influencing the plant microbiome 

1.3: Integrating ecological and reductionist approaches for a more mechanistic 
understanding of the plant microbiome. 
 
 The association between the plant microbiome and the increased tolerance of plant hosts 

to biotic and abiotic stresses (Berendsen et al., 2018; Carrión et al., 2019; Fitzpatrick et al., 2018; 

Stringlis et al., 2018; L. Xu et al., 2018) has propelled the field into a quest of comprehending the 

mechanisms behind the distribution of microbes within plant environments. This transition in the 
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research perspective, from a descriptive to a mechanistic one, has been driven by novel advances 

including the use of synthetic communities of genome-sequenced microbial strains, dual omics of 

host plants and microbiota, and increased resolution of microfluidic and microscopy techniques. 

Along the following chapters, I will illustrate how these new reductionists approaches have proven 

and will continue to be critical for our understanding of the diversity and composition observed in 

plant microbiota across host plant habitats and environments (Figure 1.3). 

 

Figure 1.3 - Scheme showing a synthetic ecology framework to elucidate plant-microbiome 
mechanisms. 
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CHAPTER 2: GENOMIC FEATURES OF BACTERIAL ADAPTATION TO PLANTS2 
 
Introduction 
 

The microbiota of plants and animals have coevolved with their hosts for millions of years 

(Baumann, 2005; Ley et al., 2008; Sprent, 2008). Through photosynthesis, plants serve as a rich 

source of carbon for diverse bacterial communities. These include mutualists and commensals, as 

well as pathogens. Phytopathogens and growth-promoting bacteria have considerable effects on 

plant growth, health, and productivity (Chowdhury et al., 2015; Fibach-Paldi et al., 2012; 

Pfeilmeier et al., 2016; Santhanam et al., 2015). Except for intensively studied relationships such 

as root nodulation in legumes (Peters et al., 1986), T-DNA transfer by Agrobacterium (Hiei et al., 

1994) , and type III secretion–mediated pathogenesis(Hueck, 1998), the molecular mechanisms 

that govern plant–microbe interactions are not well understood. It is therefore important to identify 

and characterize the bacterial genes and functions that help microbes thrive in the plant 

environment. Such knowledge should improve the ability to combat plant diseases and harness 

beneficial bacterial functions for agriculture, with direct effects on global food security, bioenergy, 

and carbon sequestration.  

Cultivation-independent methods based on profiling of marker genes or shotgun 

metagenome sequencing have considerably improved the overall understanding of microbial 

ecology in the plant environment.

                                                       
2 A portion of the results presented in this chapter appeared as an article in:  
Levy A*, Salas Gonzalez I*, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, Wang K, Devescovi G, Stillman K, 
Monteiro F, Rangel Alvarez B, Lundberg DS, Lu TY, Lebeis S, Jin Z, McDonald M, Klein AP, Feltcher ME, Rio TG, Grant SR, 
Doty SL, Ley RE, Zhao B, Venturi V, Pelletier DA, Vorholt JA, Tringe SG, Woyke T, Dangl JL. Genomic features of bacterial 
adaptation to plants. Nat Genet. 2017 Dec 18;50(1):138-150 
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 In parallel, reduced sequencing costs have enabled the genome  sequencing of plant-

associated bacterial isolates at a large scale (Bai et al., 2015). Importantly, isolates enable 

functional validation of in silico predictions. Isolate genomes also provide genomic and 

evolutionary context for individual genes, as well as the potential to access genomes of rare 

organisms that might be missed by metagenomics because of limited sequencing depth. Although 

metagenome sequencing has the advantage of capturing the DNA of uncultivated organisms, 

multiple 16S rRNA gene surveys have reproducibly shown that the most common plant-associated 

bacteria are derived mainly from four phyla (Bulgarelli et al., 2013; Hardoim et al., 2015) 

(Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes) that are amenable to cultivation. 

Thus, bacterial cultivation is not a major limitation in sampling of the abundant members of the 

plant microbiome (Bai et al., 2015). Our objective was to characterize the genes that contribute to 

bacterial adaptation to plants (plant-associated genes) and those genes that specifically aid in 

bacterial root colonization (root associated genes).  

2.1 Expanding the plant-associated bacterial reference catalog 
 

Here, we sequenced the genomes of 484 new bacterial isolates and single bacterial cells 

from the roots of Brassicaceae, maize, and poplar trees. We combined the newly sequenced 

genomes with existing genomes to create a dataset of 3,837 high-quality, nonredundant genomes. 

We then developed a computational approach to identify plant-associated genes and root-

associated genes based on comparison of phylogenetically related genomes with knowledge of the 

origin of isolation. We experimentally validated two sets of plant-associated genes, including a 

previously unrecognized gene family that functions in plant-associated microbe–microbe 

competition. In addition, we characterized many plant-associated genes that are shared between 

bacteria of different phyla, and even between bacteria and plant-associated eukaryotes. This study 



 12 

represents a comprehensive and unbiased effort to identify and characterize candidate genes 

required at the bacteria–plant interface. 

To obtain a comprehensive reference set of plant-associated bacterial genomes, we isolated 

and sequenced 191, 135, and 51 novel bacterial strains from the roots of Brassicaceae (91% from 

Arabidopsis thaliana), poplar trees (Populus trichocarpa and Populus deltoides), and maize, 

respectively (Methods, Table 2.1).  

 
 

Table 2.1 - Taxonomic distribution and environmental classification (Plant-Associated, 
Non-Plant-Associated, Soil or Root-Associated) of the isolates used in this analysis. 

The bacteria were specifically isolated from the interior (endophytic compartment) or surface 
(rhizoplane) of plant roots, or from soil attached to the root (rhizosphere). In addition, we isolated 
and sequenced 107 single bacterial cells from surface-sterilized roots of A. thaliana. All genomes 
were assembled, annotated, and deposited in public databases and in the following dedicated 
website. 
(http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/). 
 

In addition to the newly sequenced genomes noted above, we collected 5,587 bacterial 

genomes belonging to the four most abundant phyla of plant-associated bacteria13 from public 

databases (Methods). We manually classified each genome as plant-associated, non-plant-

associated (NPA), or soil-derived on the basis of its unambiguous isolation niche (Methods). The 

plant-associated genomes included organisms isolated from plants or rhizospheres. A subset of the 

http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/
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plant-associated bacteria was also annotated as ‘root-associated’ when isolated from the rhizoplane 

or the root endophytic compartment. Genomes from bacteria isolated from soil were considered as 

a separate group, as it is unknown whether these strains can actively associate with plants. Finally, 

the remaining genomes were labeled as NPA genomes; these were isolated from diverse sources, 

including humans, non-human animals, air, sediments, and aquatic environments. We carried out 

stringent quality control to remove low-quality or redundant genomes (Methods). This led to a 

final dataset of 3,837 high-quality and nonredundant genomes, including 1,160 plant-associated 

genomes, 523 of which were also root-associated. We grouped these 3,837 genomes into nine 

monophyletic taxa to allow comparative genomics analysis among phylogenetically related 

genomes (Figure 2.1, Methods). 

 
 

Figure 2.1 - Maximum-likelihood phylogenetic tree of 3,837 high- quality and nonredundant 
bacterial genomes. 

The tree was constructed based on a super-matrix inference approach based on the concatenated 
alignment of 31 single-copy genes distributed across the 3,837 isolates. The outer ring shows the 
taxonomic group, the central ring shows the isolation source, and the inner ring shows the root-
associated (RA) genomes within plant-associated (PA) genomes. Taxon names are color-coded 
according to phylum: green, Proteobacteria; red, Firmicutes; blue, Bacteroidetes; purple, 
Actinobacteria. 
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To determine whether our genome collection from cultured isolates was representative of 

plant-associated bacterial communities, we analyzed cultivation-independent 16S rDNA surveys 

and metagenomes from the plant environments of Arabidopsis (Bulgarelli et al., 2012; Lundberg, 

Lebeis, Paredes, Yourstone, Gehring, Malfatti, Tremblay, Engelbrektson, Kunin, Rio, et al., 2012), 

barley (Bulgarelli et al., 2015), wheat, and cucumber (Ofek-Lalzar et al., 2014) (Methods). The 

nine taxa analyzed here account for 33–76% (median, 41%) of the total bacterial communities 

found in plant-associated environments and therefore represent a substantial portion of the plant 

microbiota, consistent with previous reports (Bai et al., 2015; Bulgarelli et al., 2013; Hacquard et 

al., 2015). 

2.2 Identification and validation of plant- and root-associated genes  
 

We compared the genomes of bacteria isolated from plant environments with those from 

bacteria of shared ancestry that were isolated from non-plant environments. We assumed that the 

two groups should differ in the set of accessory genes that evolved as part of their adaptation to a 

specific niche. First, employing a phylogenetic aware approach (PhyloGLM) and a naïve approach 

(t-test) we compared genome functional content at a broad sequence scale (clusters of orthologous 

groups, COGs) between PA and NPA isolates. (Figure 2.2). Two gene categories demonstrated 

similar phylogeny-independent trends suggestive of an environment-dependent selection process. 

The “Carbohydrate metabolism and transport” gene category was expanded in the plant-associated 

organisms of six taxa (Figure 2.2). This was the most expanded category in Alphaproteobacteria, 

Bacteroidetes, Xanthomonadaceae, and Pseudomonas In contrast, mobile genetic elements 

(phages and transposons) were underrepresented in four plant-associated taxa (Fig.  2.2). 
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Figure 2.2 - Differences in functional gene categories (COGs) between plant-associated and 
non-plant-associated bacteria. 

Both heat maps indicate the level of enrichment or depletion based on a PhyloGLM test. 
Significant cells (color-coded according to the key) represent P values of < 0.05 (FDR-corrected). 
Pink-red cells indicate significantly more genes in plant-associated and root-associated genomes 
in the top and bottom heat maps, respectively. Bar graphs at the top and right of each heat map 
represent the total number of genes compared in each column and row, respectively. Asterisks 
indicate non-formal class names. “Carbohydrates” denotes the carbohydrate metabolism and 
transport gene category. Note that cells representing high absolute estimate values (dark colors) 
are based on categories of few genes and are therefore more likely to be less accurate. Phylum 
names are color- coded as in Figure 2.1. Abbreviations: Xanthomon., Xanthomonadales; 
Pseudomon., Pseudomonadales; Pseudom., Pseudomonadaceae; Moraxel., Moraxellaceae. 
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Next, using a phylogenomic and statistical pipeline (Figure 2.3), we sought to identify 

specific genes enriched in plant- and root-associated genomes compared with NPA and soil-

derived genomes, respectively (Methods). First, we clustered the proteins and/or protein domains 

of each taxon on the basis of homology, using the annotation resources COG (Tatusov et al., 2000), 

KEGG Orthology (Kanehisa et al., 2016), and TIGRFAM (Haft et al., 2003), which typically 

comprise 35–75% of all genes in bacterial genomes (Huntemann et al., 2015). To capture genes 

that do not have existing functional annotations, we also used OrthoFinder (Emms & Kelly, 2015) 

to cluster all protein sequences within each taxon into homology-based orthogroups. Finally, we 

clustered protein domains with Pfam (Finn et al., 2016) (Methods). We used these five 

protein/domain-clustering approaches in parallel comparative genomics pipelines. Each 

protein/domain sequence was additionally labeled as originating from either a plantassociated 

genome or an NPA genome. Next, we determined whether protein/domain clusters were 

significantly associated with a plant-associated lifestyle by using five independent statistical 

approaches: hypergbin, hypergcn (two versions of the hypergeometric test), phyloglmbin, 

phyloglmcn (two phylogenetic tests based on PhyloGLM (Ives & Garland, 2010)), and Scoary 

(Brynildsrud et al., 2016) (a stringent combined test) (Methods). These analyses were based on 

either gene presence/absence or gene copy number. We defined a gene as significantly plant-

associated if at least one test showed that it belonged to a significant plant-associated gene cluster, 

and if it originated from a plant-associated genome. We defined significant NPA, root-associated, 

and soil genes in the same way.  
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Figure 2.3 - Overview of the algorithm used to call PA and NPA genes (proteins) and gene 
operons. 

High quality PA and NPA genomes were collected. All protein and protein domains were retrieved 
from genomes. Different protein/domain clustering approaches were used based on existing 
functional annotation (COG, Pfam, TIGRfam, KEGG orthology) or based on running OrthoFinder 
over all protein coding genes (for simplicity TIGRfam and KEGG orthology were not mentioned 
in the figure). Note that clusters may contain a combination of orthologous and paralogous genes. 
Significant PA/NPA clusters (enriched with PA/NPA proteins/domains) were called based on five 
tests: PhyloGLM and the Hypergeometric test, both gene copy number and gene presence/absence 
versions (phyloglmcn, phyloglmbin, hypergcn, hypergbin), and Scoary. Genes from PA and NPA 
genomes in PA and NPA clusters, respectively, are marked with a triangle. Genes from the 
significant protein clusters (OrthoFinder, COG) were separately used to predict PA/NPA gene 
operons comprised of nearly exclusively adjacent PA/NPA genes sharing the same orientation. PA 
Pfam domains were used to search the overlap between those and plant-like protein domains 
(PREPARADOs). 
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Figure 2.4 - Overlap of statistically significant genes between the different algorithms to 
determine enrichment. 

Number of significant orthogroups predicted by the copy number versions of the Hypergeometric 
test (hypergcn) and PhyloGLM (phyloglmcn), and by Scoary. The numbers represent gene clusters 
found either in each group separately (where circles do not overlap) or in the overlap between the 
groups. Hypergcn is likely the most promiscuous yet sensitive approach as it predicts enriched 
genes in high numbers and does not require a phylogenetic signal (monophyletic genes can be 
significant in hypergbin). It may lead to many false positive predictions. Phyloglmcn is more 
stringent than hypergcn but it may be less sensitive than hypergcn as it cannot predict any 
significant gene in certain taxa that lack sufficiently strong phylogenetic signal (e.g. 
Actinobacteria2, Xanthomonadaceae). Scoary is probably the most stringent approach that 
combines a naive statistical test, a phylogenetic test, and label permutations. Therefore, it 
frequently yields the lowest number of significant predictions. 
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We provide full lists of statistically significant plant-associated, root-associated, soil-

associated, and NPA proteins and domains according to the five clustering techniques and five 

statistical approaches for each taxon in the following website: 

http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/enrichments.html. 

To validate our predictions, we assessed the abundance patterns of plant-associated and 

root-associated genes in natural environments. We retrieved 38 publicly available plant-associated, 

NPA, root-associated, and soil-associated shotgun metagenomes, including some from plant-

associated environments that were not used for isolation of the bacteria analyzed here (Hultman et 

al., 2015; Louca et al., 2016; Ofek-Lalzar et al., 2014). We mapped reads from these culture-

independent metagenomes to plant-associated genes found with all statistical approaches 

(Methods). Plant- associated genes in up to seven taxa were more abundant (p < 0.05, t-test) in 

plant-associated metagenomes than in NPA metagenomes (Figure 2.5a). Root-associated, soil-

associated, and NPA genes, in contrast, were not necessarily more abundant in their expected 

environments (Figure 2.5a). 

In addition, we selected eight genes that were predicted to be plant-associated by multiple 

approaches for experimental validation via an in planta bacterial fitness assay (Methods). We 

inoculated the roots of surface-sterilized rice seedlings (n = 9–30 seedlings per experiment) with 

wild-type Paraburkholderia kururiensis M130 (a rice endophyte (Coutinho et al., 2015)) or a 

knock- out mutant strain for each of the eight genes. We grew the plants for 11 d and then collected 

and quantified the bacteria that were tightly attached to the roots (Methods). Mutations in two 

genes led to fourfold to sixfold reductions in colonization (false discovery rate (FDR)-corrected 

Wilcoxon rank sum test, q < 0.1) relative to that by wild-type bacteria (Figure. 2.5b). These two 

genes encode an outer-membrane efflux transporter from the nodT family and a Tir chaperone 

http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/enrichments.html
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protein (CesT), respectively. It is plausible that the other six genes assayed function in facets of 

plant association not captured in this experimental context. 

Functions for which co-expression of and cooperation between different proteins are 

needed are often encoded by gene operons in bacteria. We therefore tested whether our methods 

could correctly predict known plant-associated operons. We grouped plant- associated and root-

associated genes into putative plant-associated and root-associated operons on the basis of their 

genomic proximity and orientation (Figure 2.3, Methods). This analysis yielded some well-known 

plant-associated functions, such as those of the nodABCSUIJZ and nifHDKENXQ operons (Figures 

2.5c, d). Nod and Nif proteins are integral for biological nitrogen cycling and mediate root 

nodulation (Long, 1989) and nitrogen fixation (Ruvkun et al., 1982), respectively. We also 

identified the biosynthetic gene cluster for the precursor of the plant hormone gibberellin (Hershey 

et al., 2014; Nett et al., 2017) (Figure 2.5e). Other known plant-associated operons identified are 

related to chemotaxis (Scharf et al., 2016), secretion systems such as T3SS (Büttner & He, 2009) 

and T6SS (R. Gao et al., 2015), and flagellum biosynthesis (De Weert et al., 2002; De Weger et 

al., 1987; Weller-Stuart et al., 2017) (Figure 2.5f–i). 
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Figure 2.5 - Validation of predicted plant-associated genes by multiple approaches. 

a) Plant-associated (PA) genes, which were predicted from isolate genomes, were more abundant in PA 
metagenomes than in NPA metagenomes. Reads from 38 shotgun metagenome samples were mapped to 
significant PA, NPA, RA, and soil-associated genes predicted by Scoary. P values are indicated for the 
significant differences between PA and NPA genes or RA and soil-associated genes in each taxon (two-
sided t-test). b) Results of a rice root colonization experiment using wild-type Paraburkholderia kururiensis 
M130 or knockout mutants for two predicted plant-associated genes. Two mutants showed reduced 
colonization compared with the wild type: G118DRAFT_05604 (q-value = 0.00013, Wilcoxon rank sum 
test), which encodes an outer membrane efflux transporter from the nodT family, and G118DRAFT_03668 
(q-value = 0.0952, Wilcoxon rank sum test), a Tir chaperone protein (CesT). Each point represents the 
average count of a minimum of three to six plates derived from the same plantlet, expressedas colony-
forming units (CFU) per gram of root. c–i) Examples of known functional plant-associated operons 
captured by different statistical approaches. The plant-associated genes are highlighted by shaded bars, 
colored according to the key. c) Nod genes. d) NIF genes. e) Ent-kaurene (gibberelin precursor). f) 
Chemotaxis proteins in bacteria from different taxa. g) Type III secretion system. h) Type VI secretion 
system, including the imp genes (impaired in nodulation). i) Flagellum biosynthesis in Alphaproteobacteria. 
Labels show the gene symbol or the protein name for which such information was available. 
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Thus, we identified thousands of plant-associated and root- associated gene clusters by 

using five different statistical approaches and validated them by means of computational and 

experimental approaches, broadening our understanding of the genetic basis of plant–microbe 

interactions and providing a valuable resource to drive further experimentation. 

2.3 Protein domains reproducibly enriched in diverse plant-associated genomes 
 

Plant-associated and root-associated proteins and protein domains conserved across 

evolutionarily diverse taxa are potentially pivotal to the interaction between bacteria and plants. 

We identified 767 Pfam domains as significant plant-associated domains in at least three taxa, on 

the basis of multiple tests. Below we elaborate on a few domains that were plant-associated or 

root-associated in all four phyla. Two of these domains, a DNA-binding domain (pfam00356) and 

a ligand-binding (pfam13377) domain, are characteristic of the LacI transcription factor (TF) 

family. These TFs regulate gene expression in response to different sugars (Ravcheev et al., 2014), 

and their copy numbers were expanded in the genomes of plant-associated and root-associated 

bacteria in eight of the nine taxa analyzed (Figure 2.6a). Examination of the genomic neighbors of 

lacI-family genes identified strong enrichment for genes involved in carbohydrate metabolism and 

transport in all of these taxa, consistent with their expected regulation by a LacI-family protein 

(Ravcheev et al., 2014). We analyzed the promoter regions of these putative regulatory targets of 

LacI-family TFs, and identified three AANCGNTT palindromic octamers that were statistically 

enriched in all but one taxon, and which may serve as the TF-binding site. These data suggest that 

accumulation of a large repertoire of LacI family-controlled regulons is a common strategy across 

bacterial lineages during adaptation to the plant environment. Another domain, the metabolic 

domain aldo-keto reductase (pfam00248), was enriched in the genomes of plant-associated and 

root-associated bacteria from eight taxa belonging to all four phyla investigated (Figure 2.6b). This 
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domain is involved in the metabolic conversion of a broad range of substrates, including sugars 

and toxic carbonyl compounds (Yamauchi et al., 2011). Thus, bacteria that inhabit plant 

environments may consume similar substrates.  

 

Figure 2.6 - Proteins and protein domains that were reproducibly enriched as plant-
associated or root-associated in multiple taxa. 

We compared the occurrence of protein domains (from Pfam) between plant-associated (PA) and 
NPA bacteria and between root-associated (RA) and soil-associated bacteria. Color-coding is as 
in Figure 2.1. a) Transcription factors with LacI (Pfam00356) and periplasmic-binding protein 
domains (Pfam13377). These proteins are often annotated as COG1609. b) Aldo-keto reductase 
domain (Pfam00248). Proteins with this domain are often annotated as COG0667. We used a two-
sided t-test to test for the presence of the genes in a and b in genomes that shared the same label 
and to verify the enrichment reported by the various tests. FDR-corrected P values are shown for 
significant results (q-value < 0.05). Colored circles indicate the number of different statistical tests 
( ≤ 5) supporting plant, non-plant, root, or soil association of a gene or domain, with each circle 
representing one test. Gene illustrations above each graph represent random protein models. Note 
that a and b, each contain two graphs because of the different scales. Abbreviations: Actino., 
Actinobacteria; Alphaprot., Alphaproteobacteria; Burkho., Burkholderiales; Bactero., 
Bacteroidetes; Pseud., Pseudomonas; Xanthom., Xanthomonadaceae. Box-and-whisker plots 
show the median (center lines), 25th and 75th percentiles (box edges), extreme data points within 
1.5 times the interquartile range from the box edge (whiskers), and outliers (isolated data points). 
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2.4 Putative plant protein mimicry by plant- and root-associated proteins 
 

Convergent evolution and horizontal transfer of protein domains from eukaryotes to 

bacteria have been suggested for some microbial effector proteins that are secreted into eukaryotic 

host cells to suppress defense and facilitate microbial proliferation (Burstein et al., 2009; Dean, 

2011; Stebbins & Galaán, 2001). We searched for new candidate effectors or other functional 

plant-protein mimics. We retrieved a set of significant plant-associated and root-associated Pfam 

domains that were reproducibly predicted by multiple approaches or in multiple taxa, and we cross-

referenced these with protein domains that were also more abundant in plant genomes than in 

bacterial genomes (Methods). This analysis yielded 64 plant-resembling plant-associated and root-

associated domains (PREPARADOs) encoded by 11,916 genes (Figure 2.7).  

 

Figure 2.7 - Algorithm to predict the plant-resembling plant-associated and root-associated 
domains (PREPARADOs). 

LRR is illustrated as a PREPARADO as LRR6 and LRR8 are also PREPARADOs. 
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The number of PREPARADOs was fourfold higher than the number of domains that 

overlapped reproducible NPA/soil-associated domains and plant domains (n=15). Some 

PREPARADOs were previously described as domains within effector proteins, such as Ankyrin 

repeats (C. T. Price et al., 2009), regulator of chromosome condensation repeat (RCC1) 

(Rothmeier et al., 2013), leucine-rich repeat (LRR) (R. Q. Xu et al., 2008), and pectate lyase 

(Shevchik et al., 1997). PREPARADOs from plant genomes were enriched 3–14-fold (p < 10−5, 

Fisher’s exact test) as domains predicted to be ‘integrated effector decoys’ when fused to plant 

intracellular innate immune receptors of the NLR class (Cesari et al., 2014; Sarris et al., 2015, 

2016) (compared with two random domain sets; Methods, Figure 2.8).  

 

Figure 2.8 - Exemplary PREPARADOs contained in putative effector binding or disease 
resistance proteins in plants. 

a) Examples of microbial proteins, each with two PREPARADOs (LRR8, Pkinase_Tyr, Kelch_3, 
Kelch_4). b) Integration ofPREPARADOs into NB-ARC domains in different plant proteins. NB-
ARC is present inmany disease resistance (R) proteins. SUMM2 was suggested to act as an R gene 
(Zhang et al., 2012). 
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Seven PREPARADO-containing protein families were characterized by N-terminal 

eukaryotic or bacterial signal peptides followed by a PREPARADO dedicated to carbohydrate 

binding or metabolism. One of these domains, Jacalin, is a mannose-binding lectin domain that is 

found in 48 genes in the A. thaliana genome, compared with three genes in the human genome 

(Finn et al., 2016). Mannose is found on the cell wall of different bacterial and fungal pathogens 

and could serve as a microbial-associated molecular pattern that is recognized by the plant immune 

system (Gadjeva et al., 2004; Ma et al., 2010; Osborn et al., 1964; Sahly et al., 2002; Weidenbach 

et al., 2016; Xiang et al., 2011; Yamaji et al., 2012). We identified a family of ~430-amino-acid-

long microbial proteins with a signal peptide followed by a functionally ill-defined 

endonuclease/exonuclease/phosphatase family domain (pfam03372), and ending with a Jacalin 

domain (pfam01419). This domain architecture is absent in plants but is found in diverse 

microorganisms, many of which are phytopathogens, including Gram-negative and Gram-positive 

bacteria, fungi from the Ascomycota and Basidiomycota phyla, and oomycetes (Figure 2.9). We 

speculate that these microbial lectins may be secreted to outcompete plant immune receptors for 

mannose-binding on the microbial cell wall, effectively serving as camouflage. We thus 

discovered a large set of protein domains that are shared between plants and the microbes that 

colonize them. In many cases the entire protein is conserved across evolutionarily distant plant-

associated microorganisms. 
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Figure 2.9 - A protein family shared by plant-associated bacteria, fungi, and oomycetes that 
resemble plant proteins. 

A maximum-likelihood phylogenetic tree of representative proteins with Jacalin-like domains 
across plants and plant-associated (PA) organisms. Endonuclease/exonuclease/phosphatase- 
Jacalin proteins are present across PA eukaryotes (fungi and oomycetes) and PA bacteria. In most 
cases these proteins contain a signal peptide in the N terminus. The Jacalin-like domain is found 
in many plant proteins, often in multiple copies. The protein accession is shown above each protein 
illustration. 
 
2.5 Co-occurrence of plant-associated gene clusters 
 

We identified numerous cases of plant-associated gene clusters (orthogroups) that 

demonstrate high co-occurrence between genomes. When the plant-associated genes were derived 

by phylogeny-aware tests (i.e., PhyloGLM and Scoary), they were candidates for inter-taxon 

horizontal gene transfer events. For example, we identified a cluster predicted by Scoary of up to 

11 co-occurring genes (mean pairwise Spearman correlation: 0.81) in a flagellum-like locus from 

sporadically distributed plant-associated or soil-associated genomes across 12 different genera in 

Burkholderiales (Figure 2.10). Two of the annotated flagellar-like proteins, FlgB (COG1815) and 

FliN (pfam01052), are also encoded by plant-associated genes in Actinobacteria 1 and 

Alphaproteobacteria taxa. Six of the remaining genes encode hypothetical proteins, all but one of 

which are specific to Betaproteobacteria, suggestive of a flagellar structure variant that evolved in 
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this class in the plant environment. Flagellum-mediated motility or flagellum-derived secretion 

systems (for example, T3SS) are important for plant colonization and virulence (Cole et al., 2017; 

De Weert et al., 2002; De Weger et al., 1987; Tans-Kersten et al., 2001) and can be horizontally 

transferred (Poggio et al., 2007). 

 

Figure 2.10 - Co-occurring plant-associated and soil-associated flagellum-like gene clusters 
are sporadically distributed across Burkholderiales. 

a) Left, a hierarchically clustered correlation matrix of all 202 significant plant-associated (PA) 
orthogroups (gene clusters) from Burkholderiales, predicted by Scoary. Right, the orthogroups 
present within and adjacent to the flagellar-like locus of different genomes. Gene names based on 
a BLAST search are shown in parentheses. Hyp., hypothetical protein; RHS, RHS repeat protein. 
Genes illustrated above and below the black horizontal line for each species are located on the 
positive and negative strand, respectively. b) The Burkholderiales phylogenetic tree based on the 
concatenated alignment of 31 single- copy genes. Colored circles represent the 11 orthogroups 
presented in a, with the same color-coding as in a. Genus names are shown next to pillars of stacked 
circles. RA, root-associated. 
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2.6 Novel plant-associated gene operons  
 

In addition to successfully capturing several known plant-associated operons (Figures 2.5-

6), we also identified putative plant-associated bacterial operons. Two previously uncharacterized 

plant-associated gene families were conspicuous. These genes are organized in multiple loci in 

plant-associated genomes, each with up to five tandem gene copies. They encode short, highly 

divergent, high-copy-number proteins that are predicted to be secreted, as explained below. These 

two plant-associated protein families never co-occurred in the same genome, and their genomic 

presence was perfectly correlated with lifestyles of pathogenic or nonpathogenic bacteria of the 

genus Acidovorax (order Burkholderiales) (Figure 2.11). We named the gene families present in 

non-pathogens and pathogens Jekyll and Hyde, respectively, after the characters in Robert Louis 

Stevenson’s classic novel. The typical Jekyll gene is 97 amino acids long, contains an N-terminal 

signal peptide, lacks a transmembrane domain, and, in 98.5% of cases, appears in non-pathogenic 

plant-associated or soil-associated Acidovorax isolates (Figure 2.11a). We recently isolated four 

Acidovorax strains from the leaves of naturally grown Arabidopsis (Bai et al., 2015). Even these 

nearly identical isolates carried hypervariable Jekyll loci that were substantially more divergent 

than neighboring genes and included copy-number variations and various mutations (Figure 2.11a, 

b). The Hyde putative operons, in contrast, are composed of two distinct gene families unrelated 

to Jekyll. A typical Hyde1 protein has 135 amino acids and an N-terminal transmembrane helix. 

Hyde1 proteins are also highly variable, as demonstrated by copy-number variation, sequence 

divergence, and intra-locus transposon insertions (Figure 2.11a, c). Hyde1 was found in 99% of 

cases in phytopathogenic Acidovorax. These genomes carried up to 15 Hyde1 gene copies 

distributed in up to ten loci (Figure 2.11a). In 70% of cases Hyde1 was located directly downstream 

from a more conserved ~300-amino-acid-long plant-associated protein-coding gene that we named 
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Hyde2 (Figure. 2.11c, d). We identified loci with Hyde2 followed by Hyde1-like genes in different 

members of the Proteobacteria phylum. Hyde-carrying organisms included other phytopathogens, 

such as Pseudomonas syringae, in which the Hyde1-like-Hyde2 locus was again highly variable 

between closely related strains (Figure 2.11d). Notably, we observed that Hyde genes often are 

directly preceded by genes that encode core structural T6SS proteins, such as PAAR, VgrG, and 

Hcp (Ho et al., 2014), or are fused to PAAR (Figure 2.11d). We therefore suggest that Hyde1 

and/or Hyde2 might constitute a new T6SS effector family.  

 

Figure 2.11 - Rapidly diversifying, high-copy-number Jekyll and Hyde plant-associated 
genes. 

a) A maximum likelihood phylogenetic tree of Acidovorax isolates based on concatenation of 35 
single-copy genes. The pathogenic and non-pathogenic branches of the tree are perfectly correlated 
with the presence of Hyde1 and Jekyll genes, respectively. b) An example of a variable Jekyll 
locus in highly related Acidovorax species isolated from leaves of wild Arabidopsis from Brugg, 
Switzerland. Arrows indicate the following locus tags (from top to bottom): Ga0102403_10161, 
Ga0102306_101276, Ga0102307_107159, and Ga0102310_10161. c) An example of a variable 
Hyde locus from pathogenic Acidovorax infecting different plants (the host plant is shown after 
the species name). The transposase in the first operon fragmented a Hyde2 gene. Arrows indicate 
the following locus tags (from top to bottom): Aave_3195, Ga0078621_123525, 
Ga0098809_1087148, T336DRAFT_00345, and AASARDRAFT_03920. d) An example of a 
variable Hyde locus from pathogenic Pseudomonas syringae infecting different plants. Arrows 
indicate the following locus tags (from top to bottom): PSPTOimg_00004880 (a.k.a. 
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PSPTO_0475), A243_06583, NZ4DRAFT_02530, Pphimg_00049570, PmaM6_0066.00000100, 
PsyrptM_010100007142, and Psyr_4701. Genes color- coded with the same colors in b–d are 
homologous, with the exception of genes colored in ivory (unannotated genes) and Hyde1 and 
Hyde1-like genes, which are analogous in terms of their similar size, high diversification rate, 
position downstream of Hyde2, and tendency to have a transmembrane domain. PAAR, proline-
alanine-alanine-arginine repeat superfamily. 
 

The high sequence diversity of Jekyll and Hyde1 genes suggests that the two plant-

associated protein families encoded by these genes could be involved in molecular arms races with 

other organisms in the plant environment. As many Type VI effectors are used in interbacterial 

warfare, we tested Acidovorax Hyde1 proteins for antibacterial properties. Expression of two 

variants of the gene in Escherichia coli led to a 105 –106 -fold reduction in cell numbers (Figure 

2.12a). We constructed a mutant strain of the phytopathogen Acidovorax citrulli AAC00-1with 

deletion of five Hyde1 loci (∆5-Hyde1), encompassing 9 of 11 Hyde1 genes. Wild-type, ∆5-

Hyde1, and T6SS-mutant (∆T6SS) Acidovorax strains were co-incubated with an E. coli strain that 

is susceptible to T6SS killing (MacIntyre et al., 2010) and nine phylogenetically diverse 

Arabidopsis leaf bacterial isolates (Bai et al., 2015). Survival of wild-type E. coli and six of the 

leaf isolates after coincubation with wild-type Acidovorax was reduced 102 –106 -fold compared 

with that after coincubation with ∆5-Hyde1 or ∆T6SS Acidovorax (Figure 2.12b). Combined with 

the genomic association of Hyde loci with T6SS, these results suggest that the T6SS antibacterial 

phenotype of Acidovorax is mediated by Hyde proteins and that these toxins could be used in 

competition against other plant-associated organisms (Tian et al., 2015).  
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Figure 2.12 - Hyde1 proteins of Acidovorax citrulli AAC00-1 are toxic to E. coli and various 
plant-associated bacterial strains. 

a) Toxicity assay of Hyde proteins expressed in E. coli. GFP, Hyde2-Aave_0990, and two Hyde1 genes 
from two loci, Aave_0989 and Aave_3191, were cloned into pET28b and transformed into E. coli C41 
cells. Aave_0989 and Aave_3191 proteins were 53% identical. Bacterial cultures from five independent 
colonies were spotted on an LB plate. Gene expression of the cloned genes was induced with 0.5 mM IPTG. 
P values are shown for significant results (two-sided t-test). b) Quantification of recovered prey cells after 
co-incubation with Acidovorax aggressor strains. Antibiotic-resistant prey strains E. coli BW25113 and 
nine different Arabidopsis leaf isolates were mixed at equal ratios with different aggressor strains or with 
NB medium (negative control). Five Hyde1 loci (including 9 out of 11 Hyde1 genes) are deleted in ∆5-
Hyde1. ∆T6SS contains a vasD (Aave_1470) deletion. After coincubation for 19 h on NB agar plates, mixed 
populations were resuspended in NB medium and spotted on selective antibiotic-containing NB agar. The 
box plots represent results from at least three independent experiments, with individual values 
superimposed as dots. The center line represents the median, the box limits represent the 25th and 75th 
percentiles, and the edges represent the minimal and maximal values. P values are shown at the top; double 
asterisks denote a significant difference (one-way ANOVA followed by Tukey’s honest significant 
difference test) between results for wild type versus ∆T6SS and for wild type versus ∆5-Hyde1.  
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2.7 Discussion  
 

Here we sequenced nearly 500 root-associated bacterial genomes isolated from different 

plant hosts. These new genomes were combined in a collection of 3,837 high-quality bacterial 

genomes for comparative analysis. We developed a systematic approach to identify plant-

associated and root-associated genes and putative operons. Our method is accurate as reflected by 

its ability to capture numerous operons previously shown to have a plant-associated function, the 

enrichment of plant-associated genes in plant-associated metagenomes, the validation of Hyde1 

proteins as likely type VI effectors in Acidovorax directed against other plant-associated bacteria, 

and the validation of two new genes in P. kururiensis that affect rice root colonization. We note 

that bacterial genes that are enriched in genomes from the plant environment are also likely to be 

involved in adaptation to the many other organisms that share the same niche, as we demonstrated 

for Hyde1. We used five different statistical approaches to identify genes that were significantly 

associated with the plant/root environment, each with its advantages and disadvantages. The 

phylogeny-correcting approaches (phyloglmbin, phyloglmcn, and Scoary) allow accurate 

identification of genes that are polyphyletic and correlate with an environment independently of 

ancestral state. On the basis of our metagenome validation, the hypergeometric test predicts more 

genes that are abundant in plant-associated communities than PhyloGLM does. It also identifies 

monophyletic plant-associated genes, but it yields more false positives than the phylogenetic tests, 

because in every plant-associated lineage many lineage-specific genes will be considered plant-

associated. Scoary is the most stringent method of all and yielded the fewest predictions. Future 

experimental validation should prioritize genes predicted in multiple taxa and/or by multiple 

approaches. 
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2.8 Methods 
 
2.8.1 Bacterial isolation and genome sequencing 
 

Bacterial strains from Brassicaceae and poplar were isolated via previously described 

protocols (Doty et al., 2009; Weston et al., 2012). Poplar strains were cultured from root tissues 

collected from Populus deltoides and Populus trichocarpa trees in Tennessee, North Carolina, and 

Oregon. Root samples were processed as described previously (Gottel et al., 2011; Weston et al., 

2012). Briefly, we isolated rhizosphere strains by plating serial dilutions of root wash, whereas for 

endosphere strains, we pulverized surface-sterilized roots with a sterile mortar and pestle in 10 mL 

of MgSO4 (10 mM) solution before plating serial dilutions. Strains were isolated on R2A agar 

media, and the resulting colonies were picked and re-streaked a minimum of three times to ensure 

isolation. Isolated strains were identified by 16S rDNA PCR followed by Sanger sequencing. 

For maize isolates, we selected soils associated with Il14h and Mo17 maize genotypes 

grown in Lansing, NY, and Urbana, IL. The rhizosphere soil samples of each maize genotype were 

grown at each location and were collected at week 12 as previously described (Peiffer et al., 2013). 

From each rhizosphere soil sample, soil was washed and samples were plated onto Pseudomonas 

isolation agar (BD Diagnostic Systems). The plates were incubated at 30 °C until colonies formed, 

and DNA was extracted from cells. 

For isolation of single cells, A. thaliana accessions Col-0 and Cvi-0 were grown to 

maturity. Roots were washed in distilled water multiple times. Root surfaces were sterilized with 

bleach. Surface-sterilized roots were then ground with a sterile mortar and pestle. Individual cells 

were isolated by flow cytometry followed by DNA amplification with MDA, and 16S rDNA 

screening as described previously (Rinke et al., 2013). 
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DNA from isolates and single cells was sequenced on next-generation sequencing 

platforms, mostly using Illumina HiSeq technology. Sequenced genomic DNA was assembled via 

different assembly methods. Genomes were sequenced annotated using the DOE-JGI Microbial 

Genome Annotation Pipeline (MGAP v.4)23 and deposited at the IMG database, ENA, or 

Genbank for public use. 

2.8.2 Data compilation of 3,837 isolate genomes and their isolation-site metadata. 

We retrieved 5,586 bacterial genomes from the IMG system. Isolation sites were identified 

through a manual curation process that included scanning of IMG metadata, DSMZ, ATCC, NCBI 

Biosample and the scientific literature. On the basis of its isolation site, each genome was labeled 

as plant-associated, NPA, or soil-associated. Plant-associated organisms were also labeled as root-

associated when isolated from the endophytic compartments or from the rhizoplane. We applied 

stringent quality control measures to ensure a high-quality and minimally biased set of genomes: 

a) Known isolation site: genomes with missing isolation-site information were filtered out. 

b) High genome quality and completeness: all isolate genomes passed this filter if N50 (the 

shortest sequence length at 50% of the genome) was more than 50,000 bp. Single amplified 

genomes passed the quality filter if they had at least 90% of 35 universal single-copy 

clusters of orthologous groups (COGs) (Beszteri et al., 2010). In addition, we used CheckM 

(Parks et al., 2015) to assess isolate genome completeness and contamination. Only 

genomes that were at least 95% complete and no more than 5% contaminated were used. 

c) High-quality gene annotation: genomes that passed this filter had at least 90% genome 

sequence coding for genes, with an exception—in the Bartonella genus most genomes have 

coding base percentages below 90%. 
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d) Non-redundancy: we computed whole-genome average nucleotide identity and alignment 

fraction values for each pair of genomes (Varghese et al., 2015). When the alignment 

fraction exceeded 90% and the whole-genome average nucleotide identity was greater than 

99.995% we considered the genome pair redundant. In such cases one genome was 

randomly selected, and the other genome was marked as redundant and was filtered out. 

e) Consistency in the phylogenetic tree: we filtered out 14 bacterial genomes that showed 

discrepancy between their given taxonomy and their actual phylogenetic placement in the 

bacterial tree. 

2.8.3 Construction of the bacterial genome tree 
 

To generate a phylogenetic tree of the 3,837 high-quality and nonredundant bacterial 

genomes, we retrieved 31 universal single-copy genes from each genome with AMPHORA 

(Martin Wu & Eisen, 2008). For each individual marker gene, we used Muscle with default 

parameters to construct an alignment. We masked the 31 alignments by using Zorro (M Wu et al., 

2012) and filtered the low-quality columns of the alignment. Finally, we concatenated the 31 

alignments into an overall merged alignment, from which we built an approximately maximum-

likelihood phylogenetic tree with the WAG model implemented in FastTree 2.1 (M. N. Price et 

al., 2010). Trees of each taxon are provided in the following website: 

http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/faa_trees_metadata.html. 

2.8.4 Clustering of the 3,837 genomes into nine phylogenetic bins 
 

We divided the dataset into different taxa (taxonomic groups) to allow downstream 

identification of genes enriched in the plant-associated or root-associated genomes of each taxon 

compared with the NPA or soil-associated genomes from the same taxon, respectively. To 

determine the number of taxonomic groups to analyze, we converted the phylogenetic tree into a 

http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/faa_trees_metadata.html
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distance matrix, using the cophenetic function implemented in the R package ape (Paradis et al., 

2004). We then clustered the 3,837 genomes into nine groups using k-medoids clustering as 

implemented in the PAM (partitioning around medoids) algorithm from the R package fpc. The k-

medoids algorithm clusters a dataset of n objects into k a priori–defined clusters. To identify the 

optimal k value for the dataset, we compared the silhouette coefficients for values of k ranging 

from 1 to 30. We selected a value of k = 9 because it yielded the maximal average silhouette 

coefficient (0.66). In addition, at k = 9 the taxa were monophyletic, contained hundreds of 

genomes, and were relatively balanced between plant-associated and NPA genomes in most taxa 

(Table 2.1). The resulting genome clusters generally overlapped with annotated taxonomic units. 

One exception was in the Actinobacteria phylum. Here our clustering divided the genomes into 

two taxa that we named, for simplicity, Actinobacteria 1 and Actinobacteria 2. However, our 

rigorous phylogenetic analysis supports previous suggestions for revisions in the taxonomy of 

phylum Actinobacteria (Sen et al., 2014). In addition, the tree showed very divergent bacterial taxa 

in the Bacteroidetes phylum that could not be separated into monophyletic groups. Specifically, 

the Sphingobacteriales order (from class Sphingobacteria) and the Cytophagaceae (from class 

Cytophagia) are paraphyletic. Therefore, we decided to unify all Bacteroidetes into one phylum-

level taxon.  

2.8.5 COG enrichment analysis 
 

Protein-coding genes were retrieved and mapped to COG IDs with the program RPS-

BLAST at an e-value cutoff of 1e–2 and an alignment length of at least 70% of the consensus 

sequence length. Each COG ID was mapped to at least one COG category. For each genome, we 

counted the number of genes from a given category. A t-test and PhyloGLM test were used to 
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compare the number of genes in the genomes that shared the same taxon and category but different 

labels (e.g., plant-associated versus NPA). 

2.8.6 Identification of plant-associated, NPA, root-associated, and soil genes/domains 

The following description applies to plant-associated, NPA, root-associated, and soil 

genes. For conciseness, only plant-associated genes are described here. Plant-associated genes 

were identified via a two-step process that included protein/domain clustering on the basis of 

amino acid sequence similarity and subsequent identification of the protein/domain clusters 

significantly enriched in proteins/domains from plant-associated bacteria. Clustering of genes and 

protein domains involved five independent methods: OrthoFinder (Emms & Kelly, 2015), COG 

(Tatusov et al., 2000), KEGG Orthology (KO) (Kanehisa et al., 2016), TIGRFAM (Haft et al., 

2003), and Pfam (Finn et al., 2016). OrthoFinder was selected as the de novo clustering approach   

that included all proteins, including those that lack any functional annotation. We first compiled, 

for each taxon separately, a list of all proteins in the genomes. For COG, KO, TIGRFAM, and 

Pfam, we used the existing annotations of IMG genes that are based on BLAST alignments to the 

different protein/domain models (Huntemann et al., 2015). This process yielded gene/domain 

clusters. For each of the nine taxa, we used custom scripts to transform the orthogroup result output 

from Orthofinder into pan genome matrices depicting the distribution of orthogroups across the 

genomes of that given taxon. Additionally, we constructed tables exhibiting the distribution of 

orthogroups across genomes based on the CDS IDs.  

The pan-genome matrices and tables described above can be downloaded from: 

http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/matrices_df_ogs.html  

The scripts used to compute the matrices and tables can be found in: 

https://github.com/isaisg/gfobap/tree/master/orthofinder_orthogroups_to_matrices_dataframes 
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Next, we determined which clusters were significantly enriched with genes derived from 

plant-associated genomes. These clusters were termed plant-associated clusters. In the statistical 

analysis, we used only clusters of more than five members. We corrected P values with Benjamini–

Hochberg FDR and used q < 0.05 as the significance threshold, unless stated otherwise. The 

proteins in each cluster were categorized as either plant-associated or NPA, on the basis of the 

label of the encoding genome. Namely, a plant-associated gene is a gene derived from a plant-

associated gene cluster and a plant-associated genome. 

The three main approaches were the hypergeometric test (Hyperg), PhyloGLM, and 

Scoary. Hyperg looks for overall enrichment of gene copies across a group of genomes but ignores 

the phylogenetic structure of the dataset. PhyloGLM (Ives & Garland, 2010) takes into account 

phylogenetic information to eliminate apparent enrichments that can be explained by shared 

ancestry. The Hyperg and PhyloGLM tests were used in two versions, based on either gene 

presence/absence data (hypergbin, phyloglmbin) or gene copy-number data (hypergcn, 

phyloglmcn). We also used a stringent version of Scoary (Brynildsrud et al., 2016), a gene 

presence/absence approach that combines Fisher’s exact test, a phylogenetic test, and a label-

permutation test. The first hypergeometric test, hypergcn, used the gene copy-number data, with 

the cluster being the sample, the total number of plant-associated and NPA genes being the 

population, and the number of plant-associated genes within the cluster being considered as 

‘successes’. The second version, hybergbin, used gene presence/absence data. P values were 

corrected by Benjamini–Hochberg FDR (Benjamini & Hochberg, 1995) for clusters of 

COG/KO/TIGRFAM/Pfam. For the abundant OrthoFinder clusters, we used Bonferroni correction 

with a threshold of p < 0.1, as downstream validation with metagenomes showed fewer false 

positives with the more significant clusters. The third and fourth statistical approaches used 
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PhyloGLM (Ives & Garland, 2010), implemented in the phylolm (v 2.5) R package. PhyloGLM 

combines a Markov process of lifestyle (e.g., plant-associated versus NPA) evolution with a 

regularized logistic regression. This approach takes advantage of the known phylogeny to specify 

the residual correlation structure between genomes that share common ancestry, and so it does not 

need to make the incorrect assumption that observations are independent. Intuitively PhyloGLM 

favors genes found in multiple lineages of the same taxon. For each taxon we used the subtree 

from Figure 2.1  to estimate the correlation matrix between observations and used the copy number 

(in phyloglmcn) or presence/absence pattern (in phyloglmbin) of each gene as the only 

independent variable. Positive and negative estimates in phyloglmbin/phyloglmcn indicated plant-

associated/root-associated and NPA/soil-associated proteins/domains, respectively. 

Finally, the fifth statistical approach was Scoary (Brynildsrud et al., 2016), which uses a 

gene presence/absence dataset. Scoary combines Fisher’s exact test, a phylogeny-aware test, and 

an empirical label-switching permutation analysis. A gene cluster was considered significant by 

Scoary only if (1) it had a q-value less than 0.05 for Fisher’s exact test, (2) the ‘worst’ P value 

from the pairwise comparison algorithm was < 0.05, and (3) the empirical (permutation-based) p 

value was < 0.05. These are very stringent criteria that yielded relatively few significant 

predictions. Odds ratios greater than or less than 1 in Scoary indicated plant-associated/root-

associated and NPA/soil-associated proteins/domains, respectively. 

2.8.7 Validation of predicted plant-associated, NPA, root-associated, and soil-associated 
genes using metagenomes. 
 

For each orthogroup in our dataset consisting of more than two CDS, we built multiple 

sequence alignments using MAFFT20 (v7.305b) (Katoh et al., 2002). Subsequently, we used these 

alignments as inputs for Hidden Markov Model (HMMs) construction using the hmmbuild 

command from the HMMER suite21 (v 3.1b2) (Eddy, 2011). We built nine HMM databases, one 
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corresponding to each of the nine taxa analyzed in this study. Also, to complement these databases, 

we developed a scanning pipeline that utilizes the HMMER suite to search for the HMM 

orthogroups in our nine databases over any genome provided to the pipeline. The MAFFT 

alignments, HMM profiles and HMM databases can be downloaded from: 

http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/mafft_hmm.html  

The scripts to compute the alignments and the HMM profiles plus the pipeline to scan novel 

genomes using the HMM databases can be downloaded from: 

https://github.com/isaisg/gfobap/tree/master/mafft_hmm  

https://github.com/isaisg/gfobap/tree/master/scanner_orthogroups_scripts 

In parallel metagenome samples (n = 38) were downloaded from NCBI and GOLD 

databases. The reads were translated into proteins, and proteins at least 40 amino acids long were 

aligned using HMMsearch (Eddy, 2011) against the different protein references. The protein 

references included the predicted plant-associated, root-associated, soil-associated, and NPA 

proteins from OrthoFinder that were found to be significant by the different approaches.  

2.8.8 Validation of plant-associated genes in Paraburkholderia kururiensis M130 affecting 
rice root colonization. 
 

Paraburkholderia kururiensis strain M130 was grown at 30 C in King’s B medium. E coli 

strains were grown at 37° C in Luria Bertani medium. When needed, antibiotics were used in the 

following concentrations: ampicillin, 100 μg/mL; kanamycin, 50 μg/mL; nitrofurantoin, 50 

μg/mL; rifampicin 50 μg/mL. 

For the mutant construction, internal fragments of 200–900 bp from each gene of interest were 

PCR-amplified. Fragments were cloned in the pGem2T easy vector (Promega) and sequenced 

(GATC Biotech; Germany), then excised with EcoRI restriction enzyme and cloned in the 

corresponding site in pKNOCK-Km R94. These plasmids were then used as a suicide delivery 
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system to create the knockout mutants and transferred to P. kururiensis M130 by triparental 

mating. All the mutants were verified by PCR with primers specific to the pKNOCK-Km vector 

and to the genomic DNA sequences upstream and downstream from the targeted genes. 

For the rhizosphere colonization experiments with P. kururiensis. Seeds of Oryza sativa 

(BALDO variety) were surface-sterilized and then left to germinate in sterile conditions at 30 °C 

in the dark for 7 d. Each seedling was then aseptically transferred into a 50-mL Falcon tube 

containing 35 mL of half-strength Hoagland solution semisolid substrate (0.4% agar). The tubes 

were then inoculated with 107 colony-forming units (cfu) of a P. kururiensis suspension. Plants 

were grown for 11 d at 30 °C (16/8-h light/dark cycles). For the determination of the bacterial 

counts, plants were washed under tap water for 1 min and then cut below the cotyledon to excise 

the roots. Roots were air-dried for 15 min, weighed, and then transferred to a sterile tube containing 

5 mL of PBS. After vortexing, the suspension was serially diluted to 10−1 and 10−2 in PBS, and 

aliquots were plated on KB plates containing the appropriate antibiotic (rifampicin 50 µg/mL for 

the wild type, rifampicin 50 µg/mL and kanamycin 50 µg/mL for the mutants). After 3 d of 

incubation at 30 °C, we counted colony-forming units (CFU). Three replicates for each dilution 

from ten independent plantlets were used to determine the average CFU values. 

2.8.9 Plant-mimicking plant-associated and root-associated proteins 
 

Figure 2.7 summarizes the algorithm used to find plant-mimicking plant-associated and 

root-associated proteins. Pfam (Finn et al., 2016) version 30.0 metadata were downloaded. Protein 

domains that appeared in both Viridiplantae and bacteria and occurred at least two times more 

frequently in Viridiplantae than in bacteria were considered as plant-like domains (n = 708). In 

parallel, we scanned the set of significant plant-associated, root-associated, NPA, and soil-

associated Pfam protein domains predicted by the five algorithms in the nine taxa. We compiled a 
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list of domains that were significantly plant-associated/root-associated in at least four tests, and 

significantly NPA/soil-associated in up to two tests (n = 1,779). The overlapping domains between 

the first two sets were defined as PREPARADOs (n = 64). In parallel, we created two control sets 

of 500 random plant-like Pfam domains and 500 random plant-associated/root-associated Pfam 

domains. Enrichment of PREPARADOs integrated into plant NLR proteins in comparison to the 

domains in the control groups was tested by Fisher’s exact test. To identify domains found in plant 

disease-resistance proteins, we retrieved all proteins from Phytozome and BrassicaDB. To identify 

domains in plant disease-resistance proteins, we used hmmscan to search protein sequences for the 

presence of NB-ARC (PF00931.20), TIR (PF01582.18), TIR_2 (PF13676.4), or RPW8 

(PF05659.9) domains. Bacterial proteins carrying the PREPARADO domains were considered as 

having full-length identity to fungal, oomycete, or plant proteins on the basis of LAST alignments 

to all Refseq proteins of plants, fungi, and protozoa. “Full-length” is defined here as an alignment 

length of at least 90% of the length of both query and reference proteins. The threshold used for 

considering a high amino acid identity was 40%. 

We annotated PREPARADO-containing proteins as secreted by Sec if they had a predicted 

signal peptide (Deng et al., 2016) and lacked a transmembrane domain according to IMG 

annotation. A protein was marked as being secreted by T3SS if it had a score > 0.999 according to 

EffectiveT3 as implemented by the EffectiveDB server (Eichinger et al., 2016). A domain was 

predicted to be associated with secretion by Sec or T3SS if over 50% of the proteins carrying the 

domain were predicted to be secreted by these secretion systems. 

2.8.10 Prediction of plant-associated, NPA, root-associated, and soil-associated operons and 
their annotation as biosynthetic gene clusters 
 

Significant plant-associated, NPA, root-associated, and soil-associated genes of each 

genome were clustered on the basis of genomic distance: genes sharing the same scaffold and 
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strand that were up to 200 bp apart were clustered into the same predicted operon. We allowed up 

to one spacer gene, which is a non-significant gene, between each pair of significant genes within 

an operon. Operons were predicted for the genes in COG and OrthoFinder clusters using all five 

approaches. Operons were annotated as biosynthetic gene clusters if at least one of the constituent 

genes was part of a biosynthetic gene cluster from the IMG-ABC database (Hadjithomas et al., 

2015). 

2.8.11 Jekyll and Hyde analyses 

To find all homologs and paralogs of Jekyll and Hyde genes, we used IMG BLAST search 

with an e-value threshold of 1e–5 against all IMG isolates. We searched Hyde1 homologs of 

Acidovorax, Hyde1 homologs of Pseudomonas, Hyde2, and Jekyll genes using proteins of genes 

Aave_1071, A243_06583, Ga0078621_123530, and Ga0102403_10160 as the query sequence, 

respectively. Multiple sequence alignments were done with Mafft (Katoh et al., 2002). A 

phylogenetic tree of Acidovorax species was produced with RaxML (Stamatakis, 2014), based on 

concatenation of 35 single-copy genes (Martin Wu & Eisen, 2008). 

To verify the toxicity of Hyde1 and Hyde2 proteins to E. coli, we cloned genes encoding 

proteins Aave_0990 (Hyde2), Aave_0989 (Hyde1), and Aave_3191 (Hyde1), or GFP as a control, 

to the inducible pET28b expression vector via the LR reaction. The recombinant vectors were 

transformed into E. coli C41 competent cells by electroporation after sequencing validation. Five 

colonies were selected and cultured in LB liquid media supplemented with kanamycin with 

shaking overnight. The OD600 of the bacterial culture was adjusted to 1.0, and then the culture 

was diluted by 102, 104, 106, and 108 times successively. Bacteria culture gradients were spotted 

(5 μL) on LB plates with or without 0.5 mM IPTG to induce gene expression. 
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A. citrulli strain AAC00-1 and its derived mutants were grown on nutrient agar medium 

supplemented with rifampicin (100 µg/ml). To delete a cluster of five Hyde1 genes (Aave_3191–

3195), we carried out a marker-exchange mutagenesis as previously described (Traore et al., 2014). 

The marker-free mutant was designated as ∆1-Hyde1, and its genotype was confirmed by PCR 

amplification and sequencing. The marker-exchange mutagenesis procedure was repeated to delete 

four other Hyde1 loci. The final mutant, with deletion of 9 out of 11 Hyde1 genes (in five loci), 

was designated as ∆5-Hyde1 and was used for competition assay. The ∆T6SS mutant was provided 

by Ron Walcott’s lab. 

For the competition assay of Acidovorax citrulli AAC00-1 against different strains.  E. coli 

BW25113 pSEVA381 was grown aerobically in LB broth (5 g/L NaCl) at 37 °C in the presence of 

chloramphenicol. Naturally antibiotic-resistant bacterial leaf isolates (Bai et al., 2015) and 

Acidovorax strains were grown aerobically in NB medium (5 g/L NaCl) at 28 °C in the presence 

of the appropriate antibiotic.  

Competition assays were conducted similarly as described elsewhere (Basler et al., 2013; 

MacIntyre et al., 2010). Briefly, bacterial overnight cultures were harvested and washed in PBS 

(pH 7.4) to remove excess antibiotics, and resuspended in fresh NB medium to an optical density 

of 10. Predator and prey strains were mixed at a 1:1 ratio, and 5 µL of the mixture was spotted 

onto dry NB agar plates and incubated at 28 °C. As a negative control, the same volume of NB 

medium was mixed with prey cells instead of the predator strain. After 19 h of coincubation, 

bacterial spots were excised from the agar and resuspended in 500 µL of NB medium and then 

spotted on NB agar containing antibiotic selective for the prey strains. CFUs of recovered prey 

cells were determined after incubation at 28 °C. All assays were performed in at least three 

biological replicates 
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CHAPTER 3: THE EFFECTS OF SOIL PHOSPHORUS CONTENT ON PLANT 
MIOCROBIOTA ARE DRIVEN BY THE PLANT PHOSPHATE STARVATION 

RESPONSE3 
 
Introduction 
 

Phosphate starvation response (PSR) in nonmycorrhizal plants comprises transcriptional 

reprogramming resulting in severe physiological changes to the roots and shoots and repression of 

plant immunity. Thus, plant-colonizing microorganisms—the plant microbiota—are exposed to 

direct influence by the soil’s phosphorus (P) content itself as well as to the indirect effects of soil 

P on the microbial niches shaped by the plant. The individual contribution of these factors to plant 

microbiota assembly remains unknown. To disentangle these direct and indirect effects, we planted 

PSR-deficient Arabidopsis mutants in a long-term managed soil P gradient and compared the 

composition of their shoot and root microbiota to wild-type plants across different P 

concentrations. PSR-deficiency had a larger effect on the composition of both bacterial and fungal 

plant-associated microbiota than soil P concentrations in both roots and shoots. 

To dissect plant–microbe interactions under variable P conditions, we conducted a 

microbiota reconstitution experiment. Using a 185-member bacterial synthetic community 

(SynCom) across a wide P concentration gradient in an agar matrix, we demonstrated a shift in the 

effect of bacteria on the plant from a neutral or positive interaction to a negative one, as measured 

by rosette size. This phenotypic shift was accompanied by changes in microbiota composition: the 

                                                       
3 A portion of the results presented in this chapter appeared as an article in:  
Finkel OM*, Salas-González I*, Castrillo G*, Spaepen S, Law TF, Teixeira PJPL, Jones CD, Dangl JL. The effects of soil 
phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology. 2019 Nov 
13;17(11):e3000534.  
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genus Burkholderia was specifically enriched in plant tissue under P starvation. Through a 

community drop-out experiment, we demonstrated that in the absence of Burkholderia from the 

SynCom, plant shoots accumulated higher ortophosphate (Pi) levels than shoots colonized with 

the full SynCom but only under Pi starvation conditions. Therefore, Pi-stressed plants are 

susceptible to colonization by latent opportunistic competitors found within their microbiome, thus 

exacerbating the plant’s Pi starvation. 

Plants provide the primary energy source for terrestrial heterotrophs, most of which are 

microbial. The interaction of these microbial heterotrophs with plants ranges between the extremes 

of mutualistic symbiosis (Desbrosses & Stougaard, 2011) and pathogenesis (Dangl & Jones, 2001; 

Hacquard et al., 2016). However,        the vast majority of plant-associated microbial diversity, the 

plant microbiota, lies between these 2 extremes, inducing more subtle, context-dependent effects 

on plant health (Castrillo et al., 2017; Hacquard et al., 2017; Haney et al., 2015). The microbiota 

consumes plant photosynthate (Eissfeller et al., 2013; Hernández et al., 2015; Pickles et al., 2017), 

and it provides benefits via protection from pathogens (Cha et al., 2016; Hu et al., 2016; Mendes 

et al., 2011; Santhanam et al., 2015; Shen et al., 2015) or abiotic stress (Yuan et al., 2016)(Vargas 

et al., 2014) or by increasing nutrient bioavailability (Castrillo et al., 2017; Hacquard et al., 2016; 

Hiruma et al., 2016; Vessey, 2003).  

The plant microbiota is derived from the microbial community composition in soil 

(Edwards et al., 2015; Lundberg, Lebeis, Paredes, Yourstone, Gehring, Malfatti, Tremblay, 

Engelbrektson, Kunin, del Rio, et al., 2012; Yeoh et al., 2016) which is governed by its own set of 

ecological processes (Fierer & Jackson, 2006). Correlations with soil microbial diversity, and by 

derivation, with plant microbiota composition and diversity, were observed for soil abiotic factors, 

such as pH (Fierer & Jackson, 2006; Griffiths et al., 2011; Lauber et al., 2009; Zhalnina et al., 
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2014), drought (Angel et al., 2010; Fitzpatrick et al., 2018; Griffiths et al., 2011; Naylor et al., 

2017; Santos-Medellín et al., 2017; L. Xu et al., 2018), and nutrient concentrations (Fierer et al., 

2012; Fierer & Jackson, 2006; Griffiths et al., 2011; Leff et al., 2015; Pantigoso et al., 2018; 

Ramirez et al., 2012; P. Yu et al., 2018). Soil nutrient concentrations, in particular orthophosphate 

(Pi)—the only form of phosphorus (P) that can be taken up by plants—produce comparatively 

modest changes in microbial community composition (Fabiańska et al., 2019; Leff et al., 2015). 

Nevertheless, available soil Pi concentrations influences where a plant–microbe interaction lies 

along the mutualism–pathogenicity continuum (Hiruma et al., 2016). 

Nonmycorrhizal plants respond to phosphate limitation by employing a range of PSR 

mechanisms. These manifest as severe physiological and morphological changes to the root and 

shoot, such as lateral root growth prioritization, depletion of shoot Pi stores (Raghothama, 1999), 

and changes to root exudate profiles (Herrera Paredes et al., 2018; Ziegler et al., 2016); these 

changes can potentially affect both root and shoot microbiota. In Arabidopsis, most of the 

transcriptional PSR driving these physiological responses is controlled by the 2 partially redundant 

transcription factors PHOSPHATE STARVATION RESPONSE 1 (PHR1) and PHR1-LIKE 

(PHL1) (Bustos et al., 2010). As a result, the double mutant phr1 phl1 has an impaired PSR and 

accumulates a low level of Pi. Pi transport into roots relies on the PHOSPHATE TRANSPORTER 

TRAFFIC FACILITATOR1 (PHF1) gene, which is required for membrane localization of high-

affinity phosphate transporters (González et al., 2005). In axenic conditions, phf1 mutants 

constitutively express PSR and accumulate low levels of Pi (González et al., 2005). In addition to 

inducing physiological changes, the plant’s response to its nutrient status is also linked to its 

immune system. PHR1 negatively regulates components of the plant immune system, which can 

lead to enhanced pathogen susceptibility but also to the alteration of the plant’s microbiota under 
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phosphate starvation (Castrillo et al., 2017). Arabidopsis microbiota are altered in phr1 

phl1 and phf1 mutants (Castrillo et al., 2017; Fabiańska et al., 2019) in experiments using both 

natural and synthetic microbial communities (Castrillo et al., 2017). 

Here, we examined (i) the effect of soil P content on plant microbiota composition, (ii) how 

PSR modulates the plant microbiota, and (iii) the interplay between PSR and soil P content in 

shaping the plant microbiota composition. We used a combination of greenhouse experiments with 

differentially P-fertilized soils, Arabidopsis PSR mutants and laboratory microcosms utilizing 

tractable synthetic bacterial communities. Using PSR mutants planted in P-amended soil, we 

demonstrate that the plant PSR regulators have a profound effect on the composition of root and 

shoot microbiota, overshadowing the effect of the soil P content. We constructed an ecologically 

tractable system utilizing a complex bacterial synthetic community (SynCom) as a model of the 

plant root microbiome and used this system to study the interactions between microbiota assembly 

and abiotic stress. We demonstrate deterministic responses of the SynCom members to changes in 

Pi concentrations, and we identify Pi-dependent shifts in community composition along the 

mutualist–pathogen continuum. 

3.1 The plant phosphate starvation response is activated in soil 
 

To better understand the effect of PSR genes on the plant microbiome under both Pi-

limiting and Pi-replete conditions, we investigated how microbiota adapted to varying soil P levels 

interact with the plant’s PSR. We grew wild-type (wt) Arabidopsis and the PSR 

mutants phf1 and phr1 phl1 in soils collected from the “Halle long-term soil fertilization 

experiment,” ongoing since 1949 (Gransee & Merbach, 2000). Throughout this long-term 

experiment, each transect of soil has received 1 of 3 P fertilization treatments: 0 (low), 15 

(medium) and 45 (high) Kg[P].Ha−1.Year−1, resulting in a 3- to 5-fold difference in bioavailable P 
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between the low and high treatments (Robbins et al., 2018). To differentiate the long-term adaptive 

effect of P limitation on the microbial community from the effect of short-term changes in P 

availability, we also fertilized a subset of the low P soil at the time of planting and designated this 

condition low+P. 

We examined whether PSR, defined and typically studied in axenic conditions, is active in 

our soil-based experimental system. We harvested 8-week-old plants grown in the different soils 

and quantified developmental and molecular phenotypes typically associated with PSR in both wt 

plants and mutants. We found a strong positive correlation among all developmental features 

analyzed: shoot area, shoot fresh weight, and shoot Pi accumulation across all soil conditions 

(Figures 3.1a and 3.7a-c). In wt plants, shoot Pi accumulation reflected soil P conditions (Figure 

3.1a). As expected (González et al., 2005), phr1 phl1 showed a dramatic reduction in all 

phenotypic parameters (Figures 3.1a and 3.7b,c) and phf1 accumulated less shoot Pi than wt but 

did not display any obvious morphological effect (Figures 3.1a and 3.7b-d). 

To identify the transcriptomic signature of PSR in a low P soil, we compared the root 

transcriptomes of the 3 genotypes from the low P samples with those of the low+P samples. Using 

a likelihood ratio test, we identified 210 genes that were differentially expressed across genotypes 

and P conditions (q < 0.1). After hierarchical clustering, 123 (59%) of these genes fall into a single 

cluster (Cluster 1) of co-expressed genes that are exclusively highly expressed in wt under low P 

and not in either of the PSR mutants (Figure 3.1b). Thus, these genes represent a PSR under our 

experimental conditions. A gene ontology (GO) enrichment analysis (Figure 3.1d) illustrates that 

these genes are involved in processes such as ion homeostasis, detoxification, and response to 

oxidative stress. Interestingly, few PSR genes defined from in vitro experiments were significantly 

differentially expressed in our soil experiment. From a previously defined set of 193 PSR marker 
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genes defined using 7-day-old seedlings exposed in vitro to P limitation for up to 2 days (Castrillo 

et al., 2017), only 7 were called as significant in our experiment using 8-week-old plants. 

Nevertheless, all 7 of these genes were enriched in wt in low P soil (Figure 3.1b). Surprisingly, 

despite the fact that phf1 and phr1 phl1 have contrasting transcriptional responses to Pi limitation 

in vitro (González et al., 2005), the 123 genes in Cluster 1 were not up-regulated in both mutants. 

To corroborate that the canonical in vitro defined PSR is also induced in wt plants, we compared 

the median expression of the set of 193 PSR marker genes (Castrillo et al., 2017) across the 

different soils (Figures 3.1c and 3.7e). As expected, shoot Pi content was significantly correlated 

with the induction of PSR marker genes (Figures 3.7c, f), with the highest median expression level 

in the low P conditions. We conclude that although the response of 8-week-old plants to low P 

conditions in natural soil is markedly different from in vitro defined PSR, wt plants indeed respond 

to low P conditions in the soils tested in a Pi concentration- and PHR1/PHL1-dependent manner. 
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Figure 3.1 - Plants respond to differential P conditions in soil. 

a) Free phosphate content normalized by shoot fresh weight (mmol·mg−1) across wt Col-0 plants 
and 2 PSR mutants, phf1 and phr1 phl1. Statistical significance between low P and low+P 
treatments was determined across each genotype independently by a paired t test (p < 0.05). b) 
Heat map showing the average standardized expression of 210 DEGs across the low P and low+P 
samples in the Col-0, phf1 and phr1 phl1 genotypes. The black bar to the right highlights the 
distribution of 7 genes belonging to the in vitro defined PSR marker genes across the 5 clusters in 
the heat map. c) Average expression of 193 PSR marker genes across the 4 phosphorus regimes in 
the Col-0 genotype. d) GO enrichment for Clusters 1 and 4. Clusters 2, 3, and 6 did not show any 
statistically significant GO enrichment. The gene ratio is the proportion of genes per cluster that 
belong to a GO category. DEG, differentially expressed gene; GO, gene ontology; P, phosphorus; 
PSR, phosphate starvation response; wt, wild type. 
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3.2 Bacterial and fungal plant microbiota differ in plant recruitment patterns 
 

We studied the relationship between PSR and the plant microbiome in wt plants and the 2 

PSR mutants grown in all 4 soils. Total DNA was extracted from shoots, roots, and soil, and the 

16S rRNA (V3-V4) and ITS1 regions were amplified and sequenced to obtain bacterial and fungal 

community profiles, respectively. Sequences were collapsed into amplicon sequence variants 

(ASVs. Bacterial and fungal alpha- and beta-diversity measures conform to previously published 

data (Fabiańska et al., 2019; Lundberg, Lebeis, Paredes, Yourstone, Gehring, Malfatti, Tremblay, 

Engelbrektson, Kunin, del Rio, et al., 2012): Microbial diversity decreased from the soil to the root 

and shoot compartments (Figures 3.2a, d and 3.8a, b), and roots and shoots harbor bacterial and 

fungal communities distinct from the surrounding soil community and from each other (Figures 

3.2b, e and 3.8c-f). Plant-derived samples were primarily enriched in comparison to soil with 

members of the phyla Proteobacteria, Bacteroidetes, and Actinobacteria and depleted in members 

of Acidobacteria and Gemmatimonadetes (Figures 3.2c and 3.8e). Plant-enriched fungal ASVs 

belonged mainly to the phyla Ascomycota (orders Hypocreales and Pleosporales) and 

Basidiomycota (order Agaricales). Plant-depleted fungal ASVs belonged mainly to Filobasidiales 

(Basidiomycota) and Mortierellales (Zygomycota) (Figures 3.2f and 3.8f).  

To quantify the effect of soil community composition on the composition of root and shoot 

microbiota, we used Mantel tests to detect correlation between dissimilarity matrices of the 3 

fractions (root, shoot, and soil). For bacteria, both root and shoot community dissimilarities were 

strongly correlated with soil community dissimilarity (Figures 3.9a, b), whereas for fungi, no 

correlation was measured between root and soil (Figure 3.9d), and only a weak correlation was 

measured between shoot and soil (Figure 3.9e). This observation indicates that both root and shoot 

bacterial communities are strongly dependent on soil community composition, despite the fact that 
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bacterial microbiota is distinct from the soil community (Figure 3.2b). By contrast, the fungal 

microbiota composition both above and below ground is independent of relative abundances 

within the soil inoculum. This difference implies that the plant’s microbiota filtering mechanisms 

are fundamentally different for fungi and bacteria. 

3.3 Shoot and root microbiota are both correlated and distinct 
 

Shoot and root microbiomes are linked, and substantial crosstalk is expected to occur 

between these 2 niches (Bai et al., 2015; Knief et al., 2012). We show here that roots and shoots 

harbor distinct communities from each other (Figures 3.2b, e and 3.8c-f). To further explore organ 

specificity in the plant microbiome composition, we compared root and shoot samples at the ASV 

level. Shoots were mainly enriched with the bacterial phyla Cyanobacteria and Patescibacteria 

compared to the root, whereas roots were enriched with Proteobacteria, Chloroflexi, and 

Bacteroidetes (Figures 3.2c and 3.8e). With regard to fungal orders, shoots were enriched with 

Capnodiales, Glomerellales, Pleosporales, and Hypocreales, whereas roots were enriched with 

Pezizales, Helotiales, and Mucorales (Figures 3.2f and 3.8f). The shoot enrichment of 

Cyanobacteria suggests that the availability of light is an important factor in niche differentiation 

within the plant (Atamna-Ismaeel, Finkel, Glaser, Sharon, et al., 2012; Atamna-Ismaeel, Finkel, 

Glaser, von Mering, et al., 2012; Finkel et al., 2016). We used Mantel tests to detect correlation 

between dissimilarity matrices of root and shoot samples. Despite the fact that they harbor distinct 

communities, roots and shoots were correlated with each other for both bacteria and fungi (Figures 

3.9c, f). Thus, although roots and shoots form distinct bacterial and fungal niches, shifts in 

microbiota in both of these niches are correlated, suggesting that either one or both of these 

fractions serves as an inoculum source for the other. 
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Figure 3.2 - Plant recruitment patterns of bacteria and fungi. 

a, d) Bacterial (a) and fungal (d) alpha diversity estimated using the Shannon Diversity Index. Letters 
represent post hoc test results, based on a full factorial ANOVA model. b, e) CAP based on Bray-Curtis 
dissimilarities between bacterial (b) and fungal (e) communities across the soil, root, and shoot. The bar 
graph to the left of the CAP depicts the percentage of variance explained by statistically significant (p < 
0.05) terms in a PERMANOVA model. c) Left panel: Relative abundance profiles of the main bacterial 
phyla across the soil, root, and shoot fractions. Right panel: Number of statistically significant ASVs 
enriched in specific fractions. The arrows on the bottom of the panel denote the direction of the enrichment 
relative to the name of the contrast tested; the up arrow means enrichment in the left fraction of the contrast, 
whereas the down arrow means enrichment in the right fraction of the contrast (e.g., RootvsSoil, up arrow 
enriched in root relative to soil, bottom arrow enriched in soil relative to root). A detailed interactive 
visualization of the bacterial enrichment patterns across the multiple taxonomic levels can be found at 
https://itol.embl.de/tree/1522316254174701551987253. f) Left panel: Relative abundance profiles of the 
main fungal orders across soil, root, and shoot fractions. Right Panel: Number of statistically significant 
ASVs enriched in specific fractions. The arrows on the bottom of the panel denote the direction of the 
enrichment relative to the name of the contrast tested; the up arrow signifies enrichment in the left fraction 
of the contrast, whereas the down arrow signifies enrichment in the right fraction of the contrast (e.g., 
RootvsSoil, up arrow enriched in root relative to soil, bottom arrow enriched in soil relative to root). Plot 
is colored by order. The symbols besides the colors in the legend denote phylum. A detailed interactive 
visualization of the fungal enrichment patterns across the multiple taxonomic levels can be found at 
https://itol.embl.de/tree/13656172137464831571097084. ASV, amplicon sequence variant; CAP, 
canonical analysis of principal coordinates; PERMANOVA, Permutational Multivariate Analysis of 
Variance. 
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3.4 The plant microbiome composition is driven by the plant PSR status 
 

We investigated the influences of plant PSR signaling and the different soil P 

concentrations on microbial community composition. Constrained ordination showed significant 

differences, explaining a similar proportion of variance, in both bacterial and fungal community 

compositions. These differences persist across the P accumulation gradients represented by both 

the difference in soil P and PSR mutants (Figures 3.3a, b and 3.10a, b). This effect is maintained 

also when considering 13 soil edaphic factors that were measured in for the same soil samples 

(Robbins et al., 2018) (Figures 3.11a-d). For both bacteria and fungi, the PSR genotype effect in 

roots was more consistent than the soil P effect (Figures 3.3a, b), which was mainly driven by the 

P-amended low+P samples. In shoots, both bacteria and fungi responded to PSR genotype but in 

this case did not respond to soil P (Figures 3.10c, d). We did not observe a significant soil 

P:genotype interaction effect for either bacteria or fungi (Figures 3.10a, b), confirming 

that phf1 and phr1 phl1 both had atypical bacterial microbiomes regardless of Pi status. As 

expected, we did not observe a PSR effect in the soil samples (Figures 3.10e, f). The notable 

genotype effect illustrates that the plant niche filtering (Figures 3b, e) is partly shaped by PSR. 

To define which taxa at the ASV-levels were influenced by soil P and/or plant PSR, we 

applied a generalized linear model (GLM) to the count datasets. Contrasting the low P samples 

against the low+P samples, we detected 769 bacterial and 140 fungal ASVs, accounting for 23% 

and 33% of the bacterial and fungal abundance in the root, respectively, that were differentially 

abundant in at least 1 genotype (Figures 3.3c-f). Of these, most (568 bacterial and 85 fungal ASVs) 

were genotype specific, suggesting that the Pi response of these taxa is not direct but is rather 

driven by Pi responses in the plant. Taken together, these results indicate that plant microbiota are 

relatively robust to differences in soil P content but are sensitive to the plant PSR status. Responses 
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to soil P concentration are contingent on PSR regulatory elements under both low and high P 

conditions. 

 

Figure 3.3 - Plant PSR controls the assembly of the plant microbiome. 

a, b) Canonical analysis of principal coordinates showing the influence of plant genotypes and soil 
P content over the (a) bacterial and (b) fungal communities in the root. The p-value and R2 values 
inside each plot are derived from a PERMANOVA model and correspond to the genotype and P 
term, respectively. c, e) Venn diagrams showing the distribution of (c) bacterial and (e) fungal 
ASVs with statistically significant (q < 0.1) higher abundance in the low P treatment in comparison 
to the low+P treatment in the Col-0, phf1 and phr1 phl1 roots. d, f) Venn diagrams showing the 
distribution of (d) bacterial and (f) fungal ASVs with statistically significant (q < 0.1) higher 
abundance in the low+P treatment in comparison to the low P treatment across the Col-0, phf1 and 
phr1 phl1 roots. ASV, amplicon sequence variant; P, phosphorus; PERMANOVA, Permutational 
Multivariate Analysis of Variance; PSR, phosphate starvation response; RA, relative abundance. 
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3.5 Bacterial synthetic communities modulate the plant PSR 
 

The results obtained from the soil experiment suggest that the community structure of the 

plant microbiome is not only determined by first-order interactions (plant–microbe, microbe–

microbe, microbe–environment) but also by higher-order interactions, such as the effect of abiotic 

conditions on plant–microbe interactions. This is evident in the large proportion of ASVs that 

respond to soil P in a genotype-specific manner (Figures 3.3c-f). To establish a system in which 

interactions of different orders of complexity can be studied reproducibly, we constructed a plant–

microbe microcosm that can be deconstructed to its individual components while retaining a 

complexity that is comparable to natural ecological communities. We designed a representative 

bacterial SynCom from a culture collection composed of isolates derived from surface-

sterilized Arabidopsis roots (Levy et al., 2018). We selected 185 genome-sequenced isolates 

representing a typical plant-associated taxonomic distribution (Figures 3.4a, b). We grew each 

isolate separately and mixed the grown cultures to equal optical densities. We grew 7-day-

old Arabidopsis seedlings in a Pi concentration gradient (0, 10, 30, 50, 100, 1000 μM KH2PO4) 

and concomitantly exposed them to the SynCom on vertical agar plates for 12 days. 

First, we investigated whether PSR is induced in our experimental system. Similar to the 

natural soil-based experiment, we quantified developmental and transcriptional phenotypes 

associated with PSR in plants grown in different concentrations of Pi. In line with the work by 

Castrillo and colleagues (Castrillo et al., 2017), the presence of the SynCom consistently decreased 

primary root elongation across all Pi concentrations compared with the uninoculated control, but 

the Pi gradient did not affect this parameter (Figure 3.12a). Shoot size increased with Pi 

concentration, and the slope of this trend was affected by the presence of the SynCom: At high Pi, 

the SynCom tended to increase shoot size, whereas at low Pi the SynCom decreased it (Figure 
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3.5a), suggesting that the microbiome plays a role in shaping the plant’s response to different Pi 

concentrations. 

We performed RNA sequencing (RNA-Seq) on inoculated and uninoculated seedlings 

exposed to high (1,000 μM) and low (50 μM) Pi. To confirm that our low Pi treatments induce 

PSR, we examined the expression of the 193 PSR markers defined in the work by Castrillo and 

colleagues (Castrillo et al., 2017). We found that 168 of the 193 PSR markers genes were 

significantly induced in uninoculated plants at low Pi compared with high Pi conditions. In the 

presence of the SynCom, 184 out of 193 PSR marker genes were significantly induced, and the 

average fold change increased from 4.7 in uninoculated conditions to 11 in the presence of the 

SynCom (Figure 3.12b). We further examined whether the 123 low Pi-responsive genes from the 

soil experiment (Cluster 1 in Figure 3.1b) are overexpressed in the agar system as well. We found 

that 59 of the 123 genes (47.2%) were low Pi-enriched in uninoculated plants and 72 (58.5%) were 

low Pi-enriched in the presence of the SynCom. The average fold change for this set of 123 genes 

was 1.6 in uninoculated conditions and 2.0 in the presence of the SynCom (Figure 3.12c). These 

results confirm that (i) in both our systems, wild soils and axenic conditions, PSR is induced at 

low Pi, and (ii) the SynCom enhances this induction, similar to the results reported in the work by 

Castrillo and colleagues (Castrillo et al., 2017). 
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Figure 3.4 - Bacterial SynCom reproduces the typical plant-associated taxonomic 
distribution found in soil. 

a) Phylogenetic tree of 185 bacterial genomes included in the SynCom. The tree tips are colored 
according to the phylum classification of the genome in panel B; the outer ring shows the 
distribution of the 12 distinct bacterial orders present in the SynCom. b) Left Panel: Proportion of 
ASVs enriched in the root in comparison to the natural soil across all treatments and genotypes 
based on a fitted GLM (q < 0.1). Each ASV is colored according to its phylum-level classification. 
Right Panel: Relative abundance profiles of bacterial isolates across the initial bacterial inoculum, 
planted agar, root, and shoot fractions. Each isolate is colored according to its phylum-level 
classification based on the genome-derived taxonomy. ASV, amplicon sequence variant; GLM, 
generalized linear model; SynCom, synthetic community. 

 

3.6 Bacterial SynComs display deterministic community assembly in plants 
 

To quantify the establishment of the SynCom in the plants, we determined bacterial 

community composition after 12 days of co-inoculation in roots, shoots, and agar via 16S rRNA 

gene amplicon sequencing, mapping reads to 97 unique sequences (USeqs) representing the 185-

strain SynCom. We found that plant roots and shoots sustained a higher bacterial alpha diversity 

than the surrounding agar (Figure 3.5b), an aspect in which our experimental system differs from 

a natural environment where species richness is higher in the surrounding soil than in the plant 

(Figure 3.2a). As in natural soil experimental systems, agar, roots, and shoots assembled distinct 

bacterial communities, and this difference among these 3 fractions explained most of the variance 

in community composition despite the different Pi concentrations (Figures 3.5c and 3.12d). 
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To study which strains are enriched in the roots and shoots under the different Pi 

concentrations, we utilized a generalized linear model (GLM). Noticeably, plant (root and shoot) 

enrichment is strongly linked to phylogeny (Figure 3.5d) and is robust across the phosphate 

gradient assayed. In contrast, the root versus shoot comparison did not exhibit a significant 

phylogenetic signal, highlighting the fact that the ability to differentially colonize the shoot from 

the root under these conditions is phylogenetically scattered across the SynCom. As in the soil 

census, shoot, root, and agar beta diversities were significantly correlated (Figures 3.12e-g). 

We hypothesized that by establishing a standardized protocol for producing the inoculum 

and controlling the growth conditions, we will have created a reproducible system in which most 

of the variance can be accounted for. To test this, we compared the number of ASVs and total 

relative abundance captured by the fraction (root/shoot versus soil/agar) in a GLM in the natural 

community experiment versus the SynCom experiment. Supporting our hypothesis, only 1,518 out 

of 3,874 measurable ASVs (32% of the total ASVs), accounting for 72% of the relative abundance 

in plant tissue, shift significantly between root and soil in the natural community survey, whereas 

58 out of 97 USeqs (59%), accounting for 99% relative abundance in plant tissue, were 

significantly enriched or depleted in plant tissue in the SynCom experiment (Figure 3.5d). These 

results indicate that plant colonization is largely deterministic in our SynCom system, in 

comparison to microbiomes in nature. The reproducibility of this system, coupled with our ability 

to edit it as a tool for hypothesis-testing, is crucial to bridge ecological observation with 

mechanistic understanding of plant–microbiota interactions. 
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Figure 3.5 - Synthetic bacterial communities display deterministic community assembly in 
plants. 

a) Strip chart displaying the average shoot size of Col-0 Arabidopsis grown across a Pi gradient 
either in sterile conditions or with the SynCom. Each dot in the scatter plot represents the mean 
value for that particular treatment; the range crossing each dot represents the 95% confidence 
interval calculated. The lines are drawn to connect the means. b) Alpha diversity across the 
fractions sampled was estimated using the Shannon Diversity index. An ANOVA model followed 
up by a Tukey HSD test were applied to estimate differences between inoculum, unplanted agar, 
planted agar, root, and shoot fractions. Letters represent the results of the post hoc test. c) CAP 
based on Bray-Curtis dissimilarities between bacterial communities across the 4 fractions sampled. 
The bar graph to the left of the CAP depicts the percentage of variability explained by statistically 
significant (p < 0.05) terms in the PERMANOVA model. d) Enrichment patterns of the SynCom. 
Each row along the different panels of the figure represents a USeq: a USeq encompasses a set of 
indistinguishable V3-V4 16S rRNA sequences present in the 185-member SynCom. Phylogenetic 
tree (on the left) is colored based on the phylum-level classification of the corresponding USeq. 
Each column in the heat maps represents a specific contrast in the enrichment model. We 
calculated root versus agar (left heat map), shoot versus agar (middle heat map), and root versus 
shoot (right heat map) enrichments within each Pi treatment (e.g., Root_0Pi versus Agar_0Pi). The 
heat maps are colored based on log2 fold changes derived from the fitted GLM. Positive fold 
changes (colored in red gradient) represent enrichments on the left side of the name of the contrast 
(e.g., Root-Agar, enriched in root in comparison to agar), whereas negative fold changes (colored 
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in blue gradient) represent enrichments on the right side of the name of the contrast (e.g., Root-
Agar, enriched in agar in comparison to agar). Boxed cells represent statistically significant 
enrichment/depletion. The bottom panel depicts the transformed (−log10) q-value derived from a 
phylogenetic signal Pagel’s λ test. Tests were performed per column in the heat map (e.g., 
Root0μM Pi versus Agar0μM Pi). e) Bacterial alpha diversity estimated using the Shannon 
Diversity index. p-values derived from a linear model are shown for each fraction. Linear 
regression line is shown in black and the 95% confidence interval is shaded in gray. f) CAP 
showing the influence of phosphate on the bacterial communities in the root. The bar graphs to the 
left of the CAP depict the percentage of variability explained by statistically significant (p < 0.05) 
variables based on a PERMANOVA model. CAP, canonical analysis of principal coordinates; 
GLM, generalized linear model; HSD, Honestly Significant difference; PERMANOVA, 
Permutational Multivariate Analysis of Variance; Pi, orthophosphate; SynCom, synthetic 
community; USeq, unique sequence. 
 
3.7 P stress-induced changes in the root microbiome 
 

The shifting role of the SynCom from increasing shoot size under replete Pi to decreasing 

shoot size and PSR induction under Pi limitation (Figures 3.5a and 3.12b) can be explained by 

either a shift in the lifestyle of individual bacteria along the mutualist–pathogen continuum or by 

changes in the microbiota composition along the Pi gradient. The latter would favor the 

proliferation of mutualist bacteria only when sufficient nutritional requirements are met. To 

measure the effect of the Pi concentration in the media on the SynCom composition in wt plants, 

we measured alpha and beta diversity along our Pi gradient (0, 10, 30, 50, 100, 1000 μM KH2PO4) 

in roots, shoots, and agar. We observed a positive correlation between alpha diversity and Pi 

concentrations, resembling a partial ecological diversity–productivity relationship—the 

prediction/observation of a bell-shaped response of ecological diversity to environmental 

productivity (Kassen et al., 2000)—in roots and shoots but not in the surrounding agar (Figure 

3.5e). As for beta diversity, the composition of the SynCom shifted significantly along the Pi 

concentration gradient (Figures 3.5f and 3.13a-e). Pi concentration therefore alters the plant 
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microbiome, shifting from a net-positive outcome for the plant to a net-negative one as measured 

by shoot size (Figure 3.5a). 

3.8 Burkholderia respond to Pi stress-induced changes in the plant 
 

In a previous publication (Castrillo et al., 2017), we demonstrated that PHR1 negatively 

regulates defense-related genes under low Pi conditions. Suppression of plant defense and 

consequent alterations in colonization could account for some of the shift we observed from a 

beneficial to a detrimental community. We thus aimed to identify bacteria that respond to Pi stress-

induced changes in the plant, rather than the Pi concentration itself. To do so, we searched for 

USeqs that displayed a strong Pi:fraction (shoot, root, agar) interaction in our GLM (Figure 3.14a). 

Two of the three USeqs displaying the strongest Pi:fraction interaction belonged 

to Burkholderiaceae, representing all 5 Burkholderia strains used in this experiment. The relative 

abundance of these USeqs is positively correlated with Pi concentration in the agar but is 

negatively correlated with Pi concentration in the root and shoot (Figures 3.6a and 3.14a-c). This 

pattern suggests that these strains are responding to physiological changes in the plant. 

To measure the physiological effect of the specific recruitment of Burkholderia under Pi 

stress on the plant, we conducted a drop-out experiment in which we compared plants inoculated 

with the full SynCom to plants inoculated with a SynCom excluding all 5 Burkholderia isolates. 

We also included a SynCom excluding all members of the neighboring Ralstonia clade (Figure 

3.4a), which did not display any discernible Pi response. We measured shoot size and Pi 

concentrations in the shoots (a proxy for PSR) of plants grown in high (1,000 μM) and low (50 

μM) Pi with the different SynComs. In addition, we measured shoot size and Pi content in a 

refeeding treatment with SynCom-inoculated plants grown in low (50 μM) Pi and then transferred 

to high Pi (1,000 μM) conditions. As seen before (Figure 3.5a), the SynCom decreased shoot sizes 
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in low Pi and increased them in high Pi. However, the different taxon drop-outs did not affect 

shoot size compared with the full SynCom, except for a slight decrease in post-refeeding shoot 

size in the Ralstonia drop-out treatment (Figure 3.15). All SynCom treatments decreased shoot Pi 

content in the low Pi conditions compared with the uninoculated plants but recovered to a higher 

shoot Pi level than the uninoculated treatments upon transferring to high Pi conditions, reproducing 

our previous report (Castrillo et al., 2017) (Figure 3.6b). Among inoculated treatments, plants 

colonized with the Burkholderia drop-out treatment (SynCom excluding all Burkholderia) had a 

higher Pi content than either plants colonized with the full SynCom or with the Ralstonia drop-out 

SynCom only in the low Pi conditions. There was no difference in shoot Pi among the SynCom 

treatments in either the high Pi treatment or following the refeeding treatment. This finding 

suggests that the enrichment of Burkholderia in plant tissue under Pi starvation can be considered 

a shift in the effect of bacteria on the plant from a positive interaction to a negative one. 

To test whether Burkholderia are recruited to the plant under low Pi via a PSR-dependent 

mechanism, we inoculated 7-day-old wt, phf1, and phr1 phl1 seedlings with the SynCom and 

profiled the community composition after 12 days of growth in 3 Pi concentrations (0, 50, and 

1,000 μM). In accordance with our soil experiment, and with the work by Castrillo and colleagues 

(Castrillo et al., 2017), community composition assembled in the roots of the 3 genotypes differed 

significantly (Figure 3.16). However, Burkholderia sequences were enriched in low Pi in all 3 

genotypes (Figure 3.6c), indicating that their recruitment to the root under low Pi is independent 

of PSR activation and of the immune dampening that accompanies it. 
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Figure 3.6 - Bacterial strains respond to Pi-stress-induced physiological changes in the wt 
plants. 

a) Relative abundance of Burkholderia USeqs, both of which exhibit a statistically significant (q 
< 0.1) Pi-enrichment between the plant fractions and the agar fraction. The middle dot of each strip 
bar corresponds to the mean of that particular condition, the range of the strip bar corresponds to 
the 95% confidence interval of the mean. The lines are drawn connecting the means for each Pi 
concentration. b) Box plots showing the phosphate accumulation in plants exposed to different 
SynComs across 3 phosphate treatments. Statistically significant differences among SynCom 
treatments were computed within each phosphate treatment separately using an ANOVA model. 
Letters represent the results of the post hoc test. c) Box plot showing relative abundance of 
Burkholderia USeqs across 3 Pi concentrations and 3 plant genotypes. Summary of the NB-GLM 
for Burkholderia is shown on the right. GLM, generalized linear model; NB, no bacteria; Pi, 
orthophosphate; SynCom, synthetic community; USeq, unique sequence; wt, wild type. 
 
3.9 Discussion 
 

This study shows that despite 60 years of differential fertilization, the plant’s PSR and 

accompanying changes to its microbiome composition between the low P and high P soils are 

subtle, possibly because Pi status of the plant is highly buffered by the plant ionomic regulatory 

network (Baxter et al., 2008). Only when comparing the low P versus the P-supplemented low+P 
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samples is there a discernible difference in both plant transcriptome and shoot Pi accumulation, 

which correlates to a stronger effect on microbiota composition. This suggests that bioavailable Pi 

added to the soil is quickly consumed, and short-term amendments are needed in order to detect 

changes. A similar short-term fertilization approach was successfully applied in the work by 

Fabiańska and colleagues (Fabiańska et al., 2019), using soils from a different long-term 

experimental site. 

As opposed to in vitro defined transcriptomes (González et al., 2005), here, phf1 and phr1 

phl1 plants, although each having a distinct transcriptional profile, were impaired in the response 

of a core set of genes (Cluster 1 in Figure 3.1b)  to low P. This is despite the fact that phf1 plants 

were not impaired in growth (Figures 3.7b, c) and were only slightly impaired in shoot Pi 

accumulation (Figure 3.7d). A paralogous discrepancy was also observed in the work by Hiruma 

and colleagues (Hiruma et al., 2016), in which both phf1 and phr1 phl1 were impaired in their 

response to a plant growth promoting fungus, whereas only phr1 phl1 but not phf1 was impaired 

in P translocation to the shoot, raising the speculation that PHF1 is needed for fine, rather than 

bulk, P translocation within the plant. Our results support this idea and raise a similar speculation 

that PHF1-guided transporters are involved in fine grained phosphate translocation within the plant 

toward Pi sensing tissues. 

An additional apparent departure from the axenically defined PSR transcriptional signature 

is that only 7 of the genes that were induced in wt plants under low Pi conditions overlapped with 

the list of 193 axenically defined PSR genes we used as a reference. It is notable, however, that 

despite the difference in plant age and environmental conditions between our soil and axenic agar 

systems, the agar-defined transcriptomic signature is detectable in the soil system (Figure 3.1c) 

and vice versa: the signature of the 123 genes identified in our soil system is detectable on agar 
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(Figure 3.12c). Thus, despite the apparent differences, agar-defined PSR signatures are also 

maintained under complex real-life conditions. 

Several studies link host physiological response to the soil phosphate status with the 

bacterial (Castrillo et al., 2017; Herrera Paredes et al., 2018) and fungal (Fabiańska et al., 2019; P. 

Yu et al., 2018) microbiome. A recent report of Arabidopsis planted in a 60-year-long annual P 

fertilization gradient (the same soil used in the current study) showed a modest P effect on plant 

microbiome composition (Robbins et al., 2018). Previously, we showed that PSR mutants 

in Arabidopsis have different bacterial microbiomes in Pi replete conditions (Castrillo et al., 2017), 

and a recent publication showed that PSR mutants had a slightly altered fungal microbiome in Pi-

replete but not in Pi-depleted conditions (Fabiańska et al., 2019). Here, we analyzed fungi and 

bacteria side by side and demonstrated a pronounced effect of PSR impairment on both bacterial 

and fungal components of the plant microbiota. We noted an intriguing difference that emerged in 

the patterns of community assembly between bacteria and fungi (Figures 3.9a, b, d, e). The 

bacterial microbiota composition is strongly dependent on the soil bacterial community 

composition, whereas changes to the fungal microbiota are uncoupled from changes to the soil 

fungal community composition. This indicates that the plant is markedly more selective as to the 

fungi allowed to proliferate in its tissue than it is with bacteria. The observation that much of the 

modulation of the plant’s fungal microbiota is mediated by the bacterial microbiota itself (Durán 

et al., 2018) may also contribute to this complex pattern. Our results show that impairment of PSR 

genes profoundly affects the composition of the plant microbiota, independently of P conditions, 

and that observed shifts in root-derived microbial communities may not be a result of sensitivity 

to P concentrations but rather a response to PSR regulation in the hosts. The mechanism by which 

PSR regulation affects microbiota assembly is not fully understood. On one hand, PSR and plant 
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immunity have been shown to be transcriptionally linked (Castrillo et al., 2017). On the other, Pi 

depletion drastically changes the root’s exudate profiles (Cha et al., 2016; Herrera Paredes et al., 

2018; Pant et al., 2015; Ziegler et al., 2016), which have been shown to play a critical role in plant 

microbiota assembly (Huang et al., 2019; Stringlis et al., 2018). It is likely that both factors 

contribute to shifts in microbiota composition. Evidently, however, the Burkholderia plant-

enrichment in our SynCom occurs via a PSR-independent mechanism. 

Our SynCom, comprising 185 genome-sequenced endophytic bacterial isolates, was 

designed to resemble a natural bacterial community (Figure 3.4b). The community assembly 

patterns shown for this system are highly reproducible, demonstrating that microbiome assembly 

is largely a deterministic process. The reproducibility and editability of this system is attractive for 

detailed mechanistic study of the processes that determine community assembly and its influence 

on plant phenotype and fitness. From within this SynCom, the genus Burkholderia emerges as a 

PSR-independent, low Pi-responsive taxon. We compared the effect of Burkholderia on shoot Pi 

accumulation from within a full SynCom (a realistic proxy for the bacterial community) to that of 

the full SynCom lacking Burkholderia, a strategy akin to knocking-out a gene of interest, also 

recently applied in the work by Durán and colleagues (Durán et al., 2018). The control treatment 

for this type of approach is the full SynCom, whereas in a plant–bacterium binary association 

experiment it would typically be sterile conditions. Because both sterile conditions and binary 

association are strong deviations from conditions that may be encountered in the field, the results 

of binary association experiments may be correspondingly distorted. Using the drop-out approach, 

we expect to see more subtle differences, because the microbial load on the plant does not change 

much, but also that these differences be more relevant to the field—an expectation that is yet to be 

empirically tested. Our observation that dropping Burkholederia out of the SynCom increased 
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shoot Pi in Pi-limiting conditions (50 μM Pi) but not in Pi-replete conditions (1,000 μM Pi) 

suggests that strains in this genus shift their relationship with the plant from a seeming commensal 

to a competitor/pathogen. Having ruled out PSR-dependent processes, another plausible 

explanation for Burkholderia enrichment patterns is that when Pi is limiting in the media, the plant 

becomes a source of Pi for the bacteria and strains with an enhanced ability to utilize plant-derived 

organic Pi or polyphosphate have an advantage under these conditions. Strains belonging to the 

genus Burkholderia have been shown to be particularly efficient at polyphosphate accumulation 

at pH 5.5, which is similar to the pH we used in our media (Mullan et al., 2002). 

Shifts in microbiota composition that accompany PSR are either adaptive to the plant or 

reflect opportunistic strategies by bacteria (Castrillo et al., 2017)(Hiruma et al., 2016). Under the 

former hypothesis, microbes recruited by the plant under Pi stress provide the plants with an 

advantage vis-a-vis coping with this stress, whereas under the latter, opportunistic microbes might 

be making a bad situation worse for the plant. In the case of Burkholderia in our SynCom, results 

support the latter hypothesis. Burkholderia contribute to depletion of shoot Pi stores, only under 

Pi-limiting conditions. However, plant-adaptive microbial recruitment under low Pi has been 

shown to occur as well (Hiruma et al., 2016). The fact that bacteria responding to PSR genes are 

not a monophyletic group in soil indicates that multiple mechanisms are involved in community 

assembly. It is likely that these mechanisms encompass both plant-adaptive and opportunistic 

strategies. 
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3.10 Supporting figures 

 

Figure 3.7 - PSR in soil. 

a) Heat map showing the all versus all pairwise Pearson correlation coefficient calculated between 
the quantified phenotypes associated with the PSR: shoot area, shoot fresh weight, and shoot free 
Pi accumulation. b) Box plot showing the distribution of the shoot area measured across the P 
gradient within each of the 3 genotypes. c) Boxplot showing the distribution of shoot fresh weight 
measured across the P gradient within each of the 3 genotypes. d) Box plot showing the shoot Pi 
accumulation across the 3 genotypes. Letters represent the results of the post hoc test. e) Box plots 
displaying the average expression of 193 PSR marker genes across the low and low+P samples in 
each of the 3 genotypes tested. f) Scatter plot showing the relationship between the standardized 
average phosphate accumulation in leaves (x-axis) and the average standardized expression of 193 
PSR marker genes (y-axis). The p-value and R value were calculated according to Pearson’s 
product moment correlation coefficient. P, phosphorus; Pi, orthophosphate; PSR, phosphate 
starvation response. 
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Figure 3.8 - Characterization of the soil and plant microbiota in soils exposed to different 
level of P fertilization. 

a, b) Box plots showing the distribution of the alpha diversity (Shannon diversity index) across all 
levels of P in the soil for bacteria (a) and fungi (b). (c, d) PERMANOVA results in which the 
effect of the 3 variables (fraction, genotype, and soil P) and their interaction on the assembly of 
the bacterial (c) and fungal (d) communities were tested. e) Relative abundance profiles of the 
main bacterial phyla in the 3 variables (fraction, genotype, and soil P) across all levels of P in the 
soils. f) Relative abundance profiles of the main fungal orders in the 3 variables (fraction, 
genotype, and soil P) across all the levels of P in the soils. P, phosphorus; PERMANOVA, 
Permutational Multivariate Analysis of Variance. 
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Figure 3.9 - Bacterial but not fungal plant microbiota composition is strongly dependent on 
soil inoculum. 

a, b, c) Correlation plots between Bray-Curtis distance matrices calculated for bacteria within soil 
treatments, root, and shoot fractions. The R and p-values were calculated using Mantel tests. a) 
Correlation plot of soil versus root. a) Correlation plot of soil versus shoot. c) Correlation plot of 
root versus shoot. d, e, f) Correlation plots between Bray-Curtis distance matrices calculated for 
fungi within soil treatments, root, and shoot fractions. The R and p-values were calculated using 
Mantel tests. R and p-values colored in red were calculated excluding the cloud of large distances 
appearing in graphs panels d and e. d) Correlation plot of soil versus root. e) Correlation plot of 
soil versus shoot. f) Correlation plot of root versus shoot. 
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Figure 3.10 - Plant genotypes and soil P concentrations influence the composition of the plant 
microbiota. 

a, b) PERMANOVA results showing the influence of the plant genotype and soil P concentration 
and their interaction on the assembly of the root (a) bacterial and (b) fungal communities. c, d) 
CAP showing the effect of plant genotype and P content in the soil over the shoot (c) bacterial and 
(d) fungal communities. The p-value and R2 values in each plot are derived from a PERMANOVA 
model and correspond to the genotype and soil P term, respectively. e, f) CAP showing the 
influence of genotype and P on the soil (e) bacterial and (f) fungal communities. Note smaller 
number of points in bacterial soil samples. The p-value and R2 values in each plot are derived 
from a PERMANOVA model and correspond to the genotype and soil P term, respectively. CAP, 
canonical analysis of principal coordinates; P, phosphorus; PERMANOVA, Permutational 
Multivariate Analysis of Variance. 
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Figure 3.11 - Variation in soil edaphic factors does not confound soil P effect. 

a) Correlation heat map of the 13 edaphic factors reported in the work by Robbins and colleagues 
b) Bar plot displaying the amount of variance in the edaphic factor matrix explained by PC. c) Bar 
plot depicting the contribution of the different edaphic factors to the first 3 PC. Colors denote the 
direction of the variable in PCA space. d) Proportion of the variance explained for the different 
variables in models including (M2) and excluding (M1) edaphic factors for bacteria (left) and fungi 
(right). Only variables with a statistically significant effect are shown. P, phosphorus; PC, principal 
component; PCA, principal component analysis. 
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Figure 3.12 - A bacterial synthetic community modifies the plant PSR. 

a) Box plots displaying the primary root elongation of plants grown in a gradient of Pi 
concentrations in sterile conditions or with the SynCom. A t test was used for each Pi treatment to 
estimate differences between SynCom-treated and uninoculated plants. b) Average expression of 
the 193 PSR markers genes in low (50 μM) and high (1,000 μM) Pi conditions within SynCom-
treated and uninoculated plants. (C) Average expression of     the 123 genes from Cluster 1  in low 
(50 μM) and high (1,000 μM) Pi conditions within SynCom-treated and uninoculated plants. d) 
PERMANOVA model results showing the influence of the 2 variables (fraction and Pi 
concentration) and their interaction on the assembly of the bacterial community in the plant. e, f, 
g) Correlation plots between Bray-Curtis distance matrices calculated for bacterial profile within 
agar, root, and shoot fractions. The R and p-values were calculated using Mantel tests. e) 
Correlation plot of agar versus root. f) Correlation plot of agar versus shoot. g) Correlation plot of 
root versus shoot. PERMANOVA, Permutational Multivariate Analysis of Variance; Pi, 
orthophosphate; PSR, phosphate starvation response; SynCom, synthetic community. 
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Figure 3.13 - Bacterial synthetic community responds to the phosphate concentration in the 
media. 

a, b) CAP showing the influence of Pi concentration in the media on the bacterial communities in 
the (a) plant shoot and (b) agar. The bar graphs to the left of each plot depict the percentage of 
variability explained by statistically significant (p < 0.05) variables based on a PERMANOVA 
model. c, d, e) PERMANOVA model results showing the influence of Pi concentration on the 
assembly of the bacterial community in (c) roots, (d) shoot, and (e) agar. CAP, canonical analysis 
of principal coordinates; PERMANOVA, Permutational Multivariate Analysis of Variance; Pi, 
orthophosphate. 
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Figure 3.14 - USeqs in the bacterial synthetic community displayed a strong Pi:fraction 
(shoot, root, agar) interaction. 

a) Scatter plot (volcano plot) showing the results of the GLM interaction model between fraction 
and Pi concentration. The axes of the plot represent the output of the statistical test. The x-axis is 
the transformed q-value and the y-axis the log2 fold change. Each dot in the scatter plot represents 
a USeq. USeqs that showed a statistically significant fraction:Pi interaction are colored in red. 
USeqs genus and ID are displayed. The top right quadrant represents USeqs that are enriched in 
the plant tissues under low Pi conditions. b, c) Relative abundance of Burkholderia Useqs 16 (b) 
and 30 (c) that exhibits a statistically significant (q < 0.1) Pi enrichment between the plant fractions 
and the agar fraction. The middle dot of each strip bar corresponds to the mean of that particular 
condition; the range of the strip bar corresponds to the 95% confidence interval of the mean. GLM, 
generalized linear model; Pi, orthophosphate; USeq, unique sequence. 
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Figure 3.15 - Shoot size is not affected by Burkholderia drop-out. 

Box plots showing shoot circumference in plants exposed to different SynComs across 3 phosphate 
treatments. Statistically significant differences among SynCom treatments were computed within 
each phosphate treatment separately using an ANOVA model. Letters represent the results of the 
post hoc test. SynCom, synthetic community. 
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Figure 3.16 - Plant genotype and Pi concentration affect root community composition in the 
agar system. 

CAP showing the influence of plant genotypes (a) and agar Pi concentration (b) over the bacterial 
SynCom in the root. The p-value and R2 values inside each plot are derived from a PERMANOVA 
model and correspond to the genotype and Pi terms, respectively. CAP, canonical analysis of 
principal coordinates; PERMANOVA, Permutational Multivariate Analysis of Variance; Pi, 
orthophosphate; SynCom, synthetic community. 
 
3.11 Methods 
 
3.11.1 Soil P gradient experiment 
 
3.11.1.1 Collection of soil from field site 
 

Soil used in this experiment was collected from the long-term Pi fertilization field (“Field 

D”) trial at the Julius Kühn Experimental Station at Martin Luther University of Halle-Wittenberg 

(51°29′45.6′′N, 11°59′33.3′′E) (Gransee & Merbach, 2000; Merbach et al., 2000). Soil cores (10 

cm diameter × 15 cm depth) were taken from 18 6 × 5 m unplanted plots belonging to 2 strips. 
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These plots represent 3 P fertilization regimens: low, medium, and high P (0, 15, and 45 kg P ha−1 

year−1, respectively). Differences in soil mineral content between strips and P fertilization 

regimens are reported in the work by Robbins and colleagues (Robbins et al., 2018), showing that 

the different Pi regiments significantly differed only in P content. Soil cores were harvested in the 

middle of March 2016 (strip 1) and beginning of April 2016 (strip 2). Approximately 2 cm of the 

topsoil was discarded, and the remaining lower 13 cm of soil was stored at 4°C until use. Soils 

from each core were homogenized separately with a mesh sieve wire (5 × 5 m2). The sieved soil 

cores were stored at 4°C until use. About 300 g of soil were added to each pot (7 × 7 × 7 cm3). 

3.11.1.2 Experimental design 
 

Each of the 3 Arabidopsis genotypes was grown in soil from all 18 plots (6 plots per P 

treatment). In addition, a fourth P regimen designated “Low+P” was created by adding additional 

P to a set of pots with low P. The amount of P added to these pots is based on the difference in 

total P between low and high P plots. The average difference between low and high P over all the 

plots is 42 mg P per kg soil (Robbins et al., 2018). Per pot, this is 12.6 mg P (accounting for 300 

g soil per pot). Thus, a 10 ml solution consisting of 4.2 mg P in the form of 20% K2HPO4 

(MilliporeSigma, St. Louis, MO) and 80% KH2PO4 (MilliporeSigma, St. Louis, MO) was added 

to the pots in 3 applications (Weeks 2, 4, and 6) before watering (in order to distribute the P through 

the soil). 

Thus, the experiment included 2 variables: soil treatment (low P, medium P, high P, low+P) 

and genotypes (Col-0, phf1, and phr1/phl1) with 6 independent replicates, amounting to 72 pots. 

Pot positions in the greenhouse were randomized. 
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3.11.1.3 Plant growth conditions 
 

Arabidopsis thaliana ecotype Col-0 and mutants phf1 and phr1 phl1 (both in the Col-0 

background) were used. Seeds were surface sterilized (20 min 70% EtOH (MilliporeSigma, St. 

Louis, MO), 10 s 100% EtOH) and planted directly onto moist soil. Sown seeds were stratified for 

3 days at 4°C before being placed in a greenhouse under short-day conditions (6/18 day-night 

cycle; 19 to 21°C) for 8 weeks. Germinating seedlings were thinned to 4 plants per pot. 

3.11.1.4 Sample harvest 
 

After 8 weeks of growth, pots were photographed, and shoot size was quantified using 

WinRhizo software (Regent instruments Inc., Québec, Canada). Samples were harvested in 

random order to avoid any confounding circadian effect on the results. For DNA extraction, 2 

roots, 2 shoots, and soil from each pot were harvested separately. Roots and shoots were rinsed in 

sterile water to remove soil particles, placed in 2 ml Eppendorf tubes (Eppendorf, Hamburg, 

Germany) with 3 sterile glass beads (MilliporeSigma, St. Louis, MO), then washed 3 times with 

sterile distilled water to remove soil particles and weakly associated microbes. Root and shoot 

tissue were then pulverized using a tissue homogenizer (TissueLyser II; Qiagen, Hilden, Germany) 

and stored at −80˚C until processing. Five ml of soil from each pot was suspended in 20 ml of 

sterile distilled water. The resulting slurry was sieved through a 100 μm sterile cell strainer (Fisher 

Scientific, Hampton, NH) and the flow-through was centrifuged twice at maximum speed for 20 

minutes, removing the supernatant both times. The resulting pellet was stored at −80˚C until 

processing. For RNA extraction, one root system and one shoot were taken from 3 replicates of 

each treatment, washed lightly to remove soil particles, placed in 2 ml Eppendorf tubes with 3 

glass beads and flash frozen with liquid nitrogen. Tubes were stored at −80˚C until processing. For 

shoot Pi measurement, 2 to 3 leaves from the remaining shoot in each pot were placed in an 
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Eppendorf tube and weighed; 1% acetic acid (MilliporeSigma, St. Louis, MO) was then added, 

and samples were flash frozen and stored at −80°C until processing. The Ames method (Ames, 

1966) was used to determine the phosphate concentration in these samples. 

3.11.1.5 DNA extraction 
 

DNA extractions were carried out on ground root and shoot tissue and soil pellets, using 

the 96-well-format MoBio PowerSoil Kit (MoBio Laboratories; Qiagen, Hilden, Germany) 

following the manufacturer’s instruction. Sample position in the DNA extraction plates was 

randomized, and this randomized distribution was maintained throughout library preparation and 

sequencing. 

3.11.1.6 RNA extraction 
 

RNA was purified from plant tissue using the RNeasy Plant Mini Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions and stored at −80˚C. 

3.11.2 Bacterial SynCom Experiment 
 
3.11.2.1 Bacterial isolation and culture 
 

The 185-member bacterial SynCom contained genome-sequenced isolates obtained from 

Brassicaceae roots, nearly all Arabidopsis, planted in 2 North Carolina, US, soils. Because both 

bacteria and fungi responded similarly to PSR in our soil experiments, we only included bacteria, 

which are more compatible with our experimental system in our SynCom. A detailed description 

of this collection and isolation procedures can be found in the work by Levy and colleagues (Levy 

et al., 2018). One week prior to each experiment, bacteria were inoculated from glycerol 

(MilliporeSigma, St. Louis, MO) stocks into 600 μL KB medium in a 96 deep well plate. Bacterial 

cultures were grown at 28°C, shaking at 250 rpm. After 5 days of growth, cultures were inoculated 

into fresh media and returned to the incubator for an additional 48 hours, resulting in 2 copies of 
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each culture, 7 days old and 48 hours old. We adopted this procedure to account for variable growth 

rates of different SynCom members and to ensure that nonstationary cells from each strain were 

included in the inoculum. After growth, 48-hour-old and 7-day-old plates were combined and 

optical density (OD) of the culture was measured at 600 nm using an Infinite M200 Pro plate 

reader (TECAN, Männedorf, Switzerland). All cultures were then pooled while normalizing the 

volume of each culture according to the OD (we took a proportionally higher volume of culture 

from cultures with low OD). The mixed culture was then washed twice with 10 mM MgCl2 

(MilliporeSigma, St. Louis, MO) to remove spent media and cell debris and vortexed vigorously 

with sterile glass beads to break up aggregates. OD of the mixed, washed culture was then 

measured and normalized to OD = 0.2. A total of 100 μL of this SynCom inoculum was spread on 

each agar plate prior to transferring seedlings. 

3.11.2.2 Experimental design of agar experiments 
 

We performed the Pi gradient experiment in 2 independent replicas (experiments 

performed at different times, with fresh bacterial inoculum and batch of plants), each containing 3 

internal replications, amounting to 6 samples for each treatment. We had 2 SynCom treatments: 

no bacteria (NB) and SynCom; 6 Pi concentrations: 0, 10, 30, 50, 100, or 1,000 μM 

KH2PO4(henceforth, Pi); and 2 plant treatments: planted plates and unplanted plates (NP). 

For the drop-out experiment, the entire SynCom, excluding all 5 Burkholderia and both 

Ralstonia isolates, was grown and prepared as described above. The Burkholderia and Ralstonia 

isolates were grown in separate tubes, washed, and added to the rest of the SynCom to a final OD 

of 0.001 (the calculated OD of each individual strain in a 185-Member SynCom at an OD of 0.2) 

to form the following 4 mixtures: (1) Full community—all Burkholderia and Ralstonia isolates 

added to the SynCom; (2) Burkholderia drop-out—only Ralstonia isolates added to the SynCom; 
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(3) Ralstonia drop-out—only Burkholderia isolates added to the SynCom; (4) uninoculated 

plants—no SynCom. The experiment had 3 Pi conditions: low Pi (50 μM Pi), high Pi (1,000 μM 

Pi), and low→high Pi. Twelve days post-inoculation the low Pi and high Pi samples were 

harvested, and the low→high plants were transferred from 50 μM Pi plates to 1,000 μM Pi plates 

for an additional 3 days. The experiment was performed twice, and each rep consisted of 6 plates 

per SynCom mixture and Pi treatment, amounting to 72 samples. Upon harvest, shoot Pi 

accumulation was measured using the Ames method (Ames, 1966). 

For the drop-out experiment with PSR mutants, the entire SynCom, excluding all 5 

Burkholderia, was grown and prepared as described above. The Burkholderia isolates were grown 

in separate tubes, washed, and added to the SynCom to a final OD of 0.001 (the calculated OD of 

each individual strain in a 185-Member SynCom at an OD of 0.2) to form the following 2 mixtures: 

(1) Full community—all Burkholderia isolates added to the SynCom; (2) Burkholderia drop-out—

no isolates added to the SynCom. For each SynCom, we inoculated 6 agar plates for each of 3 Pi 

conditions: 0, 50, and 1,000 μM Pi. Three 7-day-old seedlings from each of the 3 genotypes (wt 

Col-0, phf1, and phr1 phl1) were transferred to each plate. Roots were harvested 12 days post-

inoculation, and bacterial DNA was extracted. 

3.11.2.3 In vitro plant growth conditions 
 

Arabidopsis thaliana accession Col-0 was used. All seeds were surface-sterilized with 70% 

bleach (Clorox, Oakland, CA), 0.2% Tween-20 (MilliporeSigma, St. Louis, MO) for 8 minutes, 

and rinsed 3 times with sterile distilled water to eliminate any seed-borne microbes on the seed 

surface. Seeds were stratified at 4°C in the dark for 2 days. Plants were germinated on vertical 

square 12 X 12 cm agar plates (Fisher Scientific, Hampton, NH) with Johnson medium (JM; [4]) 

containing 0.5% sucrose (MilliporeSigma, St. Louis, MO) and 1,000 μM Pi, for 7 days. Then, 10 
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plants were transferred to each vertical agar plate with amended JM lacking sucrose at one of the 

following experimental Pi concentrations: 0, 10, 30, 50, 100, or 1,000 μM Pi. The SynCom was 

spread on the agar prior to transferring plants. Each experiment included unplanted agar plates 

with SynCom for each media type (designated NP) and uninoculated plates with plants for each 

media type (designated NB). Plants were placed in randomized order in growth chambers and 

grown under a 16-hour dark/8-hour light regime at 21°C day/18°C night for 12 days (the period of 

time it takes roots to reach the bottom of the plate). 

3.11.2.4 Sample harvest 
 

Twelve days post-transferring, plates were imaged using a document scanner. For DNA 

extraction, roots, shoots, and agar were harvested separately, pooling 6 plants for each sample. 

Roots and shoots were placed in 2.0 ml Eppendorf tubes with 3 sterile glass beads. Samples were 

washed 3 times with sterile distilled water to remove agar particles and weakly associated 

microbes. Tubes were stored at −80˚C until processing. For RNA, samples were collected from a 

separate set of 2 independent experiments, using the same SynCom and conditions as above but 

with just 2 Pi concentrations: 1,000 μM Pi (high) and 50 μM Pi (low). Four seedlings were 

harvested from each sample, and samples were flash frozen and stored at −80˚C until processing. 

3.11.2.5 DNA extraction 
 

Root and shoot samples were lyophilized for 48 hours using a Freezone 6 freeze dry system 

(Labconco, Fisher Scientific, Hampton, NH) and pulverized using a tissue homogenizer (MP 

Biomedicals, Solon, OH). Agar from each plate was stored in a 30 ml syringe (Fisher Scientific, 

Hampton, NH) with a square of sterilized Miracloth (Millipore) at the bottom and kept at −20°C 

for a week. Syringes were then thawed at room temperature, and samples were squeezed gently 

into 50 ml tubes. Samples were centrifuged at maximum speed for 20 minutes, and most of the 
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supernatant was discarded. The remaining 1 to 2 ml of supernatant containing the pellet was 

transferred into clean microfuge tubes. Samples were centrifuged again, supernatant was removed, 

and pellets were stored at −80°C until DNA extraction. 

DNA extractions were carried out on ground root and shoot tissue and agar pellets using 

96-well-format MoBio PowerSoil Kit (MOBIO Laboratories; Qiagen, Hilden, Germany) 

following the manufacturer’s instruction. Sample position in the DNA extraction plates was 

randomized, and this randomized distribution was maintained throughout library preparation and 

sequencing. 

3.11.2.6 RNA extraction 
 

RNA was extracted from Arabidopsis seedlings following the work by Logemann 

(Logemann et al., 1987). Frozen seedlings were ground in liquid nitrogen, then homogenized in a 

buffer containing 400 μl of Z6-buffer; 8 M guanidinium-HCl (MilliporeSigma, St. Louis, MO), 20 

mM MES, (MilliporeSigma, St. Louis, MO)20 mM EDTA (MilliporeSigma, St. Louis, MO) at pH 

7.0; 400 μL phenol:chloroform:isoamylalcohol (25:24:1) (MilliporeSigma, St. Louis, MO) was 

added, and samples were vortexed and centrifuged (20,000g, 10 minutes) for phase separation. 

The aqueous phase was transferred to a new 1.5 ml tube, and 0.05 volumes of 1 N acetic acid 

(MilliporeSigma, St. Louis, MO) and 0.7 volumes 96% ethanol were added. The RNA was 

precipitated at −20°C overnight. Following centrifugation (20,000g, 10 minutes, 4°C), the pellet 

was washed with 200 μl sodium acetate (pH 5.2) (MilliporeSigma, St. Louis, MO) and 70% 

ethanol. The RNA was dried and dissolved in 30 μL of ultrapure water and stored at −80°C until 

use. 
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3.11.2.7 Quantification of plant phenotypes 
 

The Ames method (Ames, 1966) was used to determine the phosphate concentration in the 

shoots of plants grown on different Pi regimens and treatments. Primary root length elongation 

was measured using ImageJ (Schindelin et al., 2012), and for shoot area and total root network 

measurement, WinRhizo software (Regent Instruments Inc., Quebec, Canada) was used. 

3.11.3 DNA and RNA sequencing 
 
3.11.3.1 Bacterial 16s sequencing  
 

We amplified the V3-V4 regions of the bacterial 16S rRNA gene using primers 338F (5′-

ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). Two 

barcodes and 6 frames hifts were added to the 5’ end of 338F, and 6 frameshifts were added to the 

806R primers, based on the protocol in the work by Lundberg and colleagues (Lundberg, Lebeis, 

Paredes, Yourstone, Gehring, Malfatti, Tremblay, Engelbrektson, Kunin, del Rio, et al., 2012). 

Each PCR reaction was performed in triplicate and included a unique mixture of 3 frameshifted 

primer combinations for each plate. PCR conditions were as follows: 5 μl Kapa Enhancer (Kapa 

Biosystems, Wilmington, MA), 5 μl Kapa Buffer A (Kapa Biosystems, Wilmington, MA), 1.25 μl 

of 5 μM 338F, 1.25 μl of 5 μM 806R, 0.375 μl mixed rRNA gene-blocking peptide nucleic acids 

(PNAs; 1:1 mix of 100 μM plastid PNA and 100 μM mitochondrial PNA; PNA Bio (Kapa 

Biosystems, Wilmington, MA), 0.5 μl Kapa dNTPs (Kapa Biosystems, Wilmington, MA), 0.2 μl 

Kapa Robust Taq (Kapa Biosystems, Wilmington, MA), 8 μl dH2O, 5 μl DNA; temperature 

cycling: 95°C for 60 seconds, 24 cycles of 95°C for 15 seconds, 78°C (PNA) for 10 seconds, 50°C 

for 30 seconds, 72°C for 30 seconds, 4°C until use. Following PCR cleanup, the PCR product was 

indexed using 96 indexed 806R primers with the same reaction mix as above and 9 cycles of the 

cycling conditions described in the work by Lundberg and colleagues (Lundberg, Lebeis, Paredes, 
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Yourstone, Gehring, Malfatti, Tremblay, Engelbrektson, Kunin, del Rio, et al., 2012). PCR 

products were purified using AMPure XP magnetic beads (Beckman Coulter, Brea, CA) and 

quantified with a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA). Amplicons were pooled in 

equal amounts and then diluted to 10 pM for sequencing. Sequencing was performed on an 

Illumina MiSeq instrument (Illumina, San Diego, CA) using a 600-cycle V3 chemistry kit. The 

raw data for the natural soil experiment is available in the NCBI SRA Sequence Read Archive 

(accession PRJNA531340). The raw data for the SynCom experiment is available in the NCBI 

SRA Sequence Read Archive (accession PRJNA531340). 

3.11.3.2 Fungal/Oomycete ITS sequencing  
 

We amplified the ITS1 region using primers ITS1-F (5′-

CTTGGTCATTTAGAGGAAGTAA-3′; (GARDES & BRUNS, 1993)) and ITS2 (5′-

GCTGCGTTCTTCATCGATGC-3′; ). Samples were diluted to concentrations of 3.5 ng μl−1 of 

DNA with nuclease-free water for the first PCR reaction to amplify the ITS1 region. Reactions 

were prepared in triplicate in 25 μl volumes consisting of 10 ng of DNA template, 1× incomplete 

buffer, 0.3% bovine serum albumin, 2 mM MgCl2, 200 μM dNTPs, 300 nM of each primer, and 

2 U of DFS-Taq DNA polymerase (Bioron, Ludwigshafen, Germany); temperature cycling: 2 

minutes at 94°C, 25 cycles: 30 seconds at 94°C, 30 seconds at 55°C, and 30 seconds at 72°C; and 

termination: 10 minutes at 72°C. PCR products were cleaned using an enzymatic cleanup (24.44 

μl: 20 μl of template, 20 U of exonuclease I, 5 U of Antarctic phosphatase, 1× Antarctic 

phosphatase buffer; New England Biolabs, Frankfurt, Germany); incubation conditions were 30 

minutes at 37°C, 15 minutes at 85°C; centrifuge 10 minutes at 4,000 rpm. A second PCR was then 

performed (2 minutes at 94°C; 10 cycles: 30 seconds at 94°C, 30 seconds at 55°C, and 30 seconds 

at 72°C; and termination: 10 minutes at 72°C), in triplicate using 3 μl of cleaned PCR product and 
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sample-specific barcoded primers (5′- 

AATGATACGGCGACCACCGAGATCTACACTCACGCGCAGG-ITS1F-3′; 5′-

CAAGCAGAAGACGGCATACGAGAT-BARCODE(12-NT)-CGTACTGTGGAGA-ITS2-3′). 

PCR reactions were purified using with Agencourt AMPure XP purification kit (Beckman Coulter, 

Krefeld, Germany). Amplicons were pooled in equal amounts and then diluted to 10 pM for 

sequencing. Sequencing was performed on an Illumina MiSeq instrument using a 600-cycle V3 

chemistry kit. The raw data are available in the NCBI SRA Sequence Read Archive (Project 

Number PRJNA531340). 

3.113.3 Plant RNA Sequencing 
 

Illumina-based mRNA-Seq libraries were prepared from 1 μg RNA following the work by 

Herrera Paredes and colleagues (Herrera Paredes et al., 2018). mRNA was purified from total RNA 

using Sera-mag oligo(dT) magnetic beads (GE Healthcare Life Sciences, Chicago, IL) and then 

fragmented in the presence of divalent cations (Mg2+) at 94°C for 6 minutes. The resulting 

fragmented mRNA was used for first-strand cDNA synthesis using random hexamers and reverse 

transcriptase (Enzymatics, Qiagen, Beverly, MA), followed by second-strand cDNA synthesis 

using DNA Polymerase I (Enzymatics, Qiagen, Beverly, MA) and RNAseH (Enzymatics, Qiagen, 

Beverly, MA). Double-stranded cDNA was end-repaired using T4 DNA polymerase (Enzymatics, 

Qiagen, Beverly, MA), T4 polynucleotide kinase (Enzymatics, Qiagen, Beverly, MA), and 

Klenow polymerase (Enzymatics, Qiagen, Beverly, MA). The DNA fragments were then 

adenylated using Klenow exo-polymerase (Enzymatics, Qiagen, Beverly, MA) to allow the 

ligation of Illumina Truseq HT adapters (D501–D508 and D701–D712; Illumina, San Diego, CA). 

Following library preparation, quality control and quantification were performed using a 2100 

Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA) and the Quant-iT PicoGreen 
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dsDNA Reagent (Invitrogen, Carlsbad, CA), respectively. Libraries were sequenced using 

HiSeq4000 sequencers (Illumina, San Diego, CA) to generate 50-bp single-end reads. 

3.11.4 Data processing and statistical analyses 
 
3.11.4.1 Quantification of plant phenotypes—Soil experiment 
 

To measure correlation between all measured plant phenotypes (shoot Pi, shoot weight, 

shoot size) we applied hierarchical clustering based on a matrix of Pearson correlation 

coefficients between all pairs of phenotypes. We used the R package corrplot version 0.84 to 

visualize correlations. To compare shoot Pi accumulation, we treated the low P sample as the 

control, because this soil did not receive any treatment. We performed paired t tests between the 

different P-treated samples and the low P samples within each plant genotype independently (α < 

0.05). 

3.11.4.2 Amplicon sequence data processing—Soil experiments 
 

Bacterial sequencing data were processed with MT-Toolbox (Yourstone et al., 2014). 

Usable read output from MT-Toolbox (i.e., reads with 100% correct primer and primer sequences 

that successfully merged with their pair) were quality filtered using Sickle by not allowing any 

window with a Q score under 20. After quality filtering, samples with low total reads recruited 

(<3,000 reads), amounting to 51 soil samples were discarded. The resulting sequences were 

collapsed into ASVs using the R package DADA2 version 1.8.1 (Callahan et al., 2016). Taxonomic 

assignment of each ASV was performed using the naïve Bayes kmer method implemented in the 

DADA2 package using the Silva 132 database as training reference (Quast et al., 2013). 

Fungal ITS sequence data were processed using DADA2 (Callahan et al., 2016) with 

default parameters using only the forward reads. Taxonomic assignment of each ASV was 

performed using the naïve Bayes kmer method implemented in the MOTHUR package (Schloss 
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et al., 2009) using the UNITE database (Nilsson et al., 2019)  as training reference. The resulting 

bacterial and fungal count tables were deposited at https://github.com/isaisg/hallepi. 

3.11.4.3 Community analyses—Soil experiments 
 

The resulting bacterial and fungal count tables were processed and analyzed with functions 

from the ohchibi package. Both tables were rarefied to 3,000 reads per sample. An alpha diversity 

metric (Shannon diversity) was calculated using the diversity function from the vegan package 

version 2.5–3 (Dixon, 2003). We used ANOVA to test for differences in Shannon Diversity indices 

between groups. Tukey’s HSD post hoc tests here and elsewhere were performed using the cld 

function from the emmeans R package (Searle et al., 1980). Beta-diversity analyses (Principal 

coordinate analysis and canonical analysis of principal coordinates [CAP]) were based on Bray-

Curtis dissimilarity calculated from the rarefied abundance tables. We utilized the capscale 

function from the vegan R package v.2.5–3 (Dixon, 2003) to compute a CAP. To analyze the full 

data set (all fraction, all genotypes, all phosphorus treatments), we constrained by fraction, plant 

genotype, and phosphorus fertilization treatment, while conditioning for the plot effect. We 

performed the genotype:phosphorus interaction analysis over each fraction independently, 

constraining for the plant genotype and phosphorus fertilization treatment while conditioning for 

the plot effect. In addition to CAP, we performed Permutational Multivariate Analysis of Variance 

(PERMANOVA) over the 2 data sets described above using the adonis function from the vegan 

package version 2.5–3 (Dixon, 2003). Finally, we used the function chibi.permanova from the 

ohchibi package to plot the R2 values for each significant term in the PERMANOVA model tested. 

The relative abundance of bacterial phyla and fungal taxa were depicted using the stacked 

bar representation encoded in the function chibi.phylogram from the ohchibi package. 
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We used the R package DESeq2 version 1.22.1 (Love et al., 2014) to compute the 

enrichment profiles for both bacterial and fungal ASVs. For the full data set model, we estimated 

main effects for each variable tested (Fraction, Plant genotype, and phosphorus fertilization) using 

the following design: 

Abundance ~ Fraction + Genotype + Phosphorous treatment 

We delimited ASV fraction enrichments using the following contrasts: soil versus root, soil 

versus shoot, and root versus shoot. An ASV was considered statistically significant if it had q < 

0.1. 

We implemented a second statistical model in order to identify ASVs that exhibited 

statistically significant differential abundances depending on genotype. For this analysis, we 

utilized only root-derived low P and P-supplemented low P (low+P) treatments. We utilized a 

group design framework to facilitate the construction of specific contrasts. In the group variable 

we created, we merged the genotype and phosphate levels per sample (e.g., Col-0_lowP, 

phf1_low+P, or phr1 phl1_lowP). We controlled the paired structure of our design by adding a 

plot variable, resulting in the following model design: 

Abundance ~ Plot + group 

We delimited 6 sets (S1, S2, S3, S4, S5, S6) of statistically significant (q < 0.1) ASVs from 

our model using the following contrasts: 

S1 = {Samples from Col-0, higher abundance in low treatment in comparison to low+P treatment} 

S2 = {Samples from phf1, higher abundance in low treatment in comparison to low+P treatment} 

S3 = {Samples from phr1 phl1, higher abundance in low treatment in comparison to low+P 

treatment} 

S4 = {Samples from Col-0, higher abundance in low+P treatment in comparison to low treatment} 



 94 

S5 = {Samples from phf1, higher abundance in low+P treatment in comparison to low treatment} 

S6 = {Samples from phr1 phl1, higher abundance in low+P treatment in comparison to low 

treatment} 

The 6 sets described above were used to populate Figures S3.3c-f. 

The interactive visualization of the enrichment profiles was performed by converting the 

taxonomic assignment of each ASV into a cladogram with equidistant branch lengths using R. We 

used the interactive tree of life (iTOL) interface (Letunic & Bork, 2016) to visualize this tree jointly 

with metadata files derived from the output of the statistical models described above. The 

cladograms for both bacteria and fungi can be downloaded from the links described above or via 

the iTOL user hallepi. 

In order to compare beta-diversity patterns across samples, we only used samples coming 

from pots in which sequence data from all 3 fractions (soil, root, and shoot) passed quality filtering. 

Then, for each fraction, we estimated a distance structure between samples inside that fraction 

using the Bray-Curtis dissimilarity metric. Finally, we computed Mantel (Mantel, 

1967)correlations between pairs of distance objects (e.g., samples from root or samples from 

shoot) using the vegan package version 2.5–3 (Dixon, 2003)implementation of the Mantel test. All 

scripts and data sets required to reproduce the soil experiment analyses are deposited in the 

following GitHub repository: https://github.com/isaisg/hallepi/. 

3.11.4.4 Inspection of other edaphic factors in the soil 
 

To inspect whether the genotype or P effects that we observed are confounded by another 

edaphic factor in the soil, we cross-referenced our data set with the edaphic factors reported for 

the same soil plots in the work by Robbins and colleagues (Robbins et al., 2018). Because most of 

the edaphic factors are correlated (Figure 3.11a), we considered the first 3 principal components 
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(PCs) derived from these edaphic factors. These 3 PCs encompass 87% of the cumulative variance 

in the edaphic factor matrix (Figure 3.11b). A PERMANOVA model of the root community 

composition that considers these 3 PCs assigns 21% of explained variance to the first PC, which 

is composed of 8 edaphic factors (Figure 3.5c and 3.11b). Nonetheless, the P and genotype 

variables explain a similar proportion of variance as in a model that did not account for the other 

edaphic factors, indicating that they are orthogonal to the other variables that can be accounted for 

and are not confounded by them. 

3.11.4.5 Amplicon sequence data processing—SynCom experiments 
 

SynCom sequencing data were processed with MT-Toolbox (Yourstone et al., 2014). 

Usable read output from MT-Toolbox (i.e., reads with 100% correct primer and primer sequences 

that successfully merged with their pair) were quality filtered using Sickle by not allowing any 

window with Q-score under 20. The resulting sequences were globally aligned to a reference set 

of 16S rRNA gene sequences extracted from genome assemblies of SynCom member strains. For 

strains that did not have an intact 16S rRNA gene sequence in their assembly, we generated the 

16S rRNA gene using Sanger sequencing. The reference database also included sequences from 

known bacterial contaminants and Arabidopsis organellar 16S sequences. Sequence alignment was 

performed with USEARCH version 7.1090 (Edgar, 2010) with the option ‘usearch_global’ at a 

98% identity threshold. On average, 85% of sequences matched an expected isolate. Our 185 

isolates could not all be distinguished from each other based on the V3-V4 sequence and were thus 

classified into 97 USeqs. A USeq encompasses a set of identical (clustered at 100%) 16S rRNA 

V3-V4 sequences coming from a single or multiple isolates. 

Sequence mapping results were used to produce an isolate abundance table. The remaining 

unmapped sequences were clustered into Operational Taxonomic Units (OTUs) using UPARSE 



 96 

(Edgar, 2013) implemented with USEARCH version 7.1090 at 97% identity. Representative OTU 

sequences were taxonomically annotated with the RDP classifier (Q. Wang et al., 2007) trained on 

the Greengenes database (DeSantis et al., 2006) (4 February 2011). Matches to Arabidopsis 

organelles were discarded. The vast majority of the remaining unassigned OTUs belonged to the 

same families as isolates in the SynCom. We combined the assigned USeq and unassigned OTU 

count tables into a single table. 

The resulting count table was processed and analyzed with functions from the ohchibi 

package. Samples were rarefied to 1,000 reads per sample. An alpha diversity metric (Shannon 

diversity) was calculated using the diversity function from the vegan package version 2.5–3 

(Dixon, 2003). We used ANOVA to test for differences in alpha diversity between groups. Beta-

diversity analyses (Principal coordinate analysis and CAP) were based on were based on Bray-

Curtis dissimilarity calculated from the rarefied abundance tables. We used the capscale function 

from the vegan R package version 2.5–3 (Dixon, 2003) to compute the CAP. To analyze the full 

data set (all fraction, all phosphate treatments), we constrained by fraction and phosphate 

concentration while conditioning for the replicate effect. We performed the Fraction:Phosphate 

interaction analysis within each fraction independently, constraining for the phosphate 

concentration while conditioning for the rep effect. In addition to CAP, we used PERMANOVA 

analysis over the 2 data sets described above using the adonis function from the vegan package 

version 2.5–3 (Dixon, 2003). Finally, we used the function chibi.permanova from the ohchibi 

package to plot the R2 values for each significant term in the PERMANOVA model tested. 

We visualized the relative abundance of the bacterial phyla present in the SynCom using 

the stacked bar representation encoded in the chibi.phylogram from the ohchibi package. 
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We used the package DESeq2 version 1.22.1 (Love et al., 2014) to compute the enrichment 

profiles for USeqs and OTUs present in the count table. For the full data set model, we estimated 

main effects for each variable tested (fraction and phosphate concentration) using the following 

model specification: 

Abundance ~ Fraction + Phosphate treatment + Replicate 

We calculated the USeqs/OTUs fraction enrichments using the following contrasts: agar 

versus root, agar versus shoot, and root versus shoot. A USeq/OTU was considered statistically 

significant if it had q < 0.1. In order to populate the heat maps shown in Figure 3.5c, we grouped 

the fraction and phosphate treatment variable into a new group variable that allowed us to fit the 

following model: 

Abundance ~ Replicate + group 

We used the fitted model to estimate the fraction effect inside each particular phosphate 

level (e.g., Root versus agar at 0Pi, or shoot versus agar at 1,000Pi). 

Additionally, we utilized a third model for the identification of USeqs/OTUs that exhibited 

a significant Fraction:Phosphate interaction between the planted agar samples and the plant 

fractions (root and shoot). Based on the beta-diversity and alpha-diversity results, we only used 

samples that were treated with 0, 10, 100, and 1,000 μM of phosphate. We grouped the samples 

into 2 categories based on their phosphate concentration, low (0 μM and 10 μM) and high (100 

μM and 1,000 μM). Then we used the following model specification to derive the desired 

interaction effect: 

Abundance ~ Fraction + Category + Fraction:Category + Replicate 

Finally, we subset USeqs that exhibited a significant interaction (Fraction:Category, q < 

0.1) in the following 2 contrasts (planted agar versus root) and (planted agar versus shoot). 
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In order to compare beta-diversity patterns across samples, we only used samples coming 

from pots in which sequence data from all 3 fractions (soil root and shoot) passed quality filtering. 

Then, for each fraction, we estimated a distance structure between samples inside that fraction 

using the Bray-Curtis dissimilarity metric. Finally, we computed Mantel (Mantel, 1967) 

correlations between pairs of distance objects (e.g., samples from root or samples from shoot) 

using the vegan package version 2.5–3 (Dixon, 2003) implementation of the Mantel test. 

For the drop-out experiment, we ran an ANOVA model inside each of the phosphate 

treatments tested (50 μM Pi, 1,000 μM Pi, and 50→1,000 μM Pi). We visualized the results of the 

ANOVA models using the compact letter display encoded in the CLD function from the emmeans 

package (Searle et al., 1980). All scripts necessary to reproduce the synthetic community analyses 

are deposited in the following GitHub repository: https://github.com/isaisg/hallepi. 

3.10.4.6 Phylogenetic inference of the SynCom isolates 
 

To build the phylogenetic tree of the SynCom isolates, we utilized the supermatrix 

approach previously described in the work by Levy and colleagues (Levy et al., 2018). Briefly, we 

scanned 120 previously defined marker genes across the 185 isolate genomes from the SynCom 

utilizing the hmmsearch tool from the hmmer version 3.1b2 (Eddy, 2011). Then, we selected 47 

markers that were present as single copy genes in 100% of our isolates. Next, we aligned each 

individual marker using MAFFT (Katoh et al., 2002) and filtered low quality columns in the 

alignment using trimAl (Capella-Gutiérrez et al., 2009). Afterward, we concatenated all filtered 

alignments into a super-alignment. Finally, FastTree version 2.1(M. N. Price et al., 2010) was used 

to infer the phylogeny utilizing the WAG model of evolution. 

We utilized the inferred phylogeny along with the fraction fold change results of the main 

effect model to compute the phylogenetic signal (Pagel’s λ) for each contrast (planted agar versus 
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root, planted agar versus shoot, and root versus shoot) along each concentration of the phosphate 

gradient. The function phylosig from the R package phytools (Revell, 2012) was used to test for 

significance of the phylogenetic signal measured. Multiple panel figures were constructed using 

the egg R package.   

3.11.4.7 RNA-Seq read processing 
 

Initial quality assessment of the Illumina RNA-Seq reads was performed using FastQC 

version 0.11.7. Trimmomatic version 0.36 (Bolger et al., 2014) was used to identify and discard 

reads containing the Illumina adaptor sequence. The resulting high-quality reads were then mapped 

against the TAIR10 (Berardini et al., 2015) Arabidopsis reference genome using HISAT2 version 

2.1.0 (Kim et al., 2015) with default parameters. The featureCounts function from the Subread 

package (Liao et al., 2013) was then used to count reads that mapped to each one of the 27,206 

nuclear protein-coding genes. Evaluation of the results of each step of the analysis was done with 

MultiQC version 1.1 (Ewels et al., 2016). Raw sequencing data and read counts are available at 

the NCBI Gene Expression Omnibus accession number GSE129396. 

3.11.4.8 RNA-Seq statistical analysis—Soil experiment 
 

To measure the transcriptional response to Pi limitation in soil, we used the package 

DESeq2 version 1.22.1 (Love et al., 2014) to define differentially expressed genes (DEGs) using 

the raw count table described above. We used only samples from low P and P-supplemented low 

P (low+P) treatments along the 3 genotypes tested (Col-0, phf1, and phr1 phl1). We combined the 

genotype and P treatment variables into a new group variable (e.g., Col-0_lowP or phf1_low+P). 

Because we were interested in identifying DEGs among any pair of levels (6 levels) of the group 

variable (e.g., Col-0_lowP versus Col-0_low+P) we performed a likelihood ratio test (LRT) 
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between a model containing the group variable and a reduced model containing only the intercept. 

Next, we defined DEGs as genes that had a q < 0.1. 

For visualization purposes, we applied a variance stabilizing transformation to the raw 

count gene matrix. We then standardized (z-score) each gene along the samples. We subset DEGs 

from this standardized matrix and for each gene calculated the mean z-score expression value in a 

particular level of the group variable (e.g., Col-0_lowP); this resulted in a matrix of DEGs across 

the 6 levels in our design. Next, we created a dendrogram of DEGs by applying hierarchical 

clustering (method ward.D2, hclust R-base) to a distance object based on the correlation 

(dissimilarity) of the expression profiles of the genes across the 6 levels in our design. Finally, we 

delimited the cluster of DEGs by cutting the output dendogram into 5 groups using the R-base 

cutree function. GO enrichment was performed for each cluster of DEGs using the R package 

clusterProfiler (G. Yu et al., 2012). 

For the PSR marker gene analysis, we downloaded the ID of 193 genes defined in the work 

by Castrillo and colleagues (Castrillo et al., 2017). Then, we subset these genes from our 

standardized matrix and computed for each gene the mean z-score expression value in a particular 

level of the group variable. Finally, we visualized the average expression of this PSR regulon 

across our groups of interest utilizing the function chibi.boxplot from the ohchibi package. All 

scripts necessary to reproduce the RNA-Seq analyses are deposited in the following GitHub 

repository: https://github.com/isaisg/hallepi. 

3.11.4.9 RNA-Seq statistical analysis—SynCom experiment 
 

To measure the transcriptional response to Pi limitation in the SynCom microcosm, we 

used the package DESeq2 version 1.22.1 (Love et al., 2014) to define DEGs using the raw count 

gene table. We combined the bacteria (NB, Full SynCom) and P treatment variables into a new 
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group variable (e.g., NB_50Pi or Full_1000Pi). Afterward we fitted the following model to our 

gene matrix: 

Abundance gene ~ Rep + Group 

Finally, utilizing the model fitted, we contrasted the phosphate treatment inside each level 

of the bacteria variable (e.g., NB_1000Pi versus NB_50Pi). Any gene with q < 0.1 was defined as 

differentially expressed. 

For the PSR marker gene analysis, we downloaded the ID of 193 genes defined in the work 

by Castrillo and colleagues (Castrillo et al., 2017). Then, we subset these genes from our 

standardized matrix and computed for each gene the mean z-score expression value in a particular 

level of the group variable. Finally, we visualized the average expression of the PSR regulon across 

our groups of interest utilizing the function chibi.boxplot from the ohchibi package. All scripts 

necessary to reproduce the RNA-Seq analyses are deposited in the following GitHub repository: 

https://github.com/isaisg/hallepi. 

https://github.com/isaisg/hallepi
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CHAPTER 4: A SINGLE BACTERIAL GENUS MAINTAINS ROOT GROWTH IN A 
COMPLEX MICROBIOME4 

 
Introduction 
 

Plant phenotypes, and ultimately fitness, are influenced by the microorganisms that live in 

close association with them (Castrillo et al., 2017; Durán et al., 2018; Herrera Paredes et al., 2018). 

These microorganisms—collectively termed the plant microbiota—assemble on the basis of plant 

and environmentally derived cues (Castrillo et al., 2017; Finkel et al., 2019; Fitzpatrick et al., 2018; 

Thiergart et al., 2020), resulting in myriad interactions between plants and microorganisms. 

Beneficial and detrimental microbial effects on plants can be either direct (Herrera Paredes et al., 

2018; Hogenhout et al., 2009; Ludwig-Müller, 2015; Mylona et al., 1995), or an indirect 

consequence of microorganism–microorganism interactions (Carlström et al., 2019; Durán et al., 

2018). Although antagonistic interactions between microorganisms are known to have an 

important role in shaping plant microbiota and protecting plants from pathogens(Durán et al., 

2018), another potentially important class of interactions is metabolic signal interference (Faure et 

al., 2009; Leadbetter & Greenberg, 2000): rather than direct antagonism, microorganisms interfere 

with the delivery of chemical signals produced by other microorganisms, which alters plant–

microorganism signaling (Leadbetter & Greenberg, 2000; J. H. J. Leveau & Lindow, 2005; Zúñiga 

et al., 2013).

                                                       
4 A portion of the results presented in this chapter appeared as an article in:  
Finkel OM*, Salas-González I*, Castrillo G*, Conway JM*, Law TF, Teixeira PJPL, Wilson ED, Fitzpatrick CR, Jones CD, 
Dangl JL. A single bacterial genus maintains root growth in a complex microbiome. Nature. 2020 
Nov;587(7832):103-108.  



 103 

Plant hormones—in particular, auxins—are both produced and degraded by an abundance 

of plant-associated (Donoso et al., 2017; S. Gilbert et al., 2018; J. H. J. Leveau & Gerards, 2008; 

Sun et al., 2018). Microbially derived auxins can have effects on plants that range from growth 

promotion to the induction of disease, depending on context and concentration(Ludwig-Müller, 

2015). The intrinsic root developmental patterns of the plant are dependent on finely calibrated 

auxin and ethylene concentration gradients with fine differences across tissues and cell types 

(Brumos et al., 2018); it is not known how the plant integrates exogenous, microbially derived 

auxin fluxes into its developmental plan. 

Here we apply a synthetic community to axenic plants as a proxy for root-associated 

microbiomes in natural soils to investigate how interactions between micro-organisms shape plant 

growth. We establish plant colonization patterns across 16 abiotic conditions to guide stepwise 

deconstruction of the synthetic community, which led to the identification of multiple levels of 

microorganism–microorganism interaction that interfere with the additivity of bacterial effects on 

root growth. We demonstrate that a single bacterial genus (Variovorax) is required for maintaining 

the intrinsically controlled developmental programme of the root, by tuning its chemical 

landscape. We establish Variovorax as a core taxon in the root microbiota of diverse plants grown 

in diverse soils. Finally, we identify a locus conserved across Variovorax strains that is responsible 

for this phenotype. 

4.1 Microbial interactions control root growth  

To model plant–microbiota interactions in a fully controlled setting, we established a plant–

microbiota microcosm that represents the native bacterial root-derived microbiota on agar plates. 

We inoculated 7-day-old seedlings with a defined 185-member bacterial synthetic community 

(Finkel et al., 2019) composed of the major root-associated phyla (Castrillo et al., 2017; Finkel et 
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al., 2019; Fitzpatrick et al., 2018; Levy et al., 2018; Thiergart et al., 2020) (Figure 4.5a). We 

exposed this microcosm to each of 16 abiotic contexts by manipulating one of four variables 

(salinity, temperature, a previously reported phosphate concentration gradient (Finkel et al., 2019) 

and pH). We measured the composition of the synthetic community in root, shoot and agar 

fractions 12 days after inoculation using 16S rRNA amplicon sequencing. 

The composition of the resulting root and shoot microbiota recapitulated phylum-level 

plant-enrichment patterns seen in soil-planted Arabidopsis (Castrillo et al., 2017) (Figure 4.5b). 

We validated the patterns observed in the agar-based system using seedlings grown in sterilized 

potting soil (Kremer et al., 2018) that were inoculated with the same synthetic community. Both 

relative abundance and plant-enrichment patterns at the unique sequence level were significantly 

correlated between the agar- and soil-based systems, which confirms the applicability of our 

relatively high-throughput agar-based system as a model for the assembly of plant microbiota 

(Figure 4.5c). Within the agar system, both fraction (substrate, root or shoot) and abiotic conditions 

significantly affected α- and β-diversity (Figure 4.5d-f).  

To guide the deconstruction of the synthetic community into modules, we calculated 

pairwise correlations in relative abundance across all samples, and identified four well-defined 

modules of co-occurring strains that we termed modules A, B, C and D (Figure 4.1a). These 

modules formed distinct phylogenetically structured guilds in association with the plant. Module A 

contained mainly Gammaproteobacteria and was predominantly more abundant in the substrate 

than in the seedling; module B contained mainly low-abundance Firmicutes, with no significant 

enrichment trend; and modules C and D were composed mainly of Alphaproteobacteria and 

Actinobacteria, respectively, and showed plant enrichment across all abiotic conditions. Both 
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Alphaproteobacteria (module C) and Actinobacteria (module D) are consistently plant enriched 

across plant species (Fitzpatrick et al., 2018), which suggests that these clades contain plant-

association traits that are deeply rooted in their evolutionary histories. 

We next asked whether the different modules of co-occurring strains have different roles 

in determining plant phenotype. We inoculated seedlings with synthetic communities composed 

of modules A, B, C and D singly or in all six possible pairwise combinations, and imaged the 

seedlings 12 days after inoculation. We observed strong primary root growth inhibition (RGI) in 

seedlings inoculated with plant-enriched module C or D (Figure 4.1b,c). RGI did not occur in 

seedlings inoculated with module A or B, which do not contain plant-enriched strains (Figure 

4.1b). To test whether the root phenotype derived from each module is an additive outcome of its 

individual constituents, we inoculated seedlings in mono-association with each of the 

185 members of the synthetic community. We observed that 34 taxonomically diverse strains, 

distributed across all 4 modules, induced RGI (Figure 4.6a-c). However, neither the full synthetic 

community nor derived synthetic communities that consisted of module A or B exhibited RGI 

(Figure 4.1b). Thus, binary plant–microorganism interactions were not predictive of interactions 

in this complex-community context. 

In seedlings inoculated with module pairs, we observed epistatic interactions: in the 

presence of module A, the RGI caused by modules C and D was reverted (Figure 4.1b, c). Thus, 

by deconstructing the synthetic community into four modules, we found that bacterial effects on 

root growth are governed by multiple levels of microorganism–microorganism interaction. This is 

exemplified by at least four instances: within module A or B and between module A and module C 
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or D. Because three of these interactions involve module A, we predicted that this module contains 

strains that strongly attenuate RGI and preserve stereotypic root development. 

 

Figure 4.1 - Arabidopsis root length is governed by bacteria–bacteria interactions within a 
community. 

a) Fraction enrichment patterns of the synthetic community across abiotic gradients. Each row 
represents a unique sequence. The four modules of co-occurring strains (A, B, C and D) are 
represented. Dendrogram tips are coloured by taxonomy. Heat maps are coloured by log2-
transformed fold changes derived from a fitted generalized linear model and represent enrichments 
in plant tissue (root or shoot) compared with substrate. Comparisons with false-discovery-rate 
(FDR)-corrected q-value < 0.05 are contoured in black. Enriched families within each module are 
listed below the heat map. n = 6 biological replicates across 2 independent experiments. Pi, 
inorganic phosphate; temp, temperature. b) Primary root elongation of seedlings grown axenically 
(no bacteria, NB), with the full synthetic community (ABCD) or its subsets: modules A, B, C and 
D alone (single modules), and all pairwise combination of modules (module pairs). Significance 
was determined via analysis of variance (ANOVA); letters correspond to a Tukey post hoc test. n 
= 75, 89, 68, 94, 87, 77, 76, 96, 82, 84, 89 and 77 (from left to right) biological replicates across 2 
independent experiments. c) Binarized image of representative seedlings inoculated with modules 
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A, C and D, and with module combinations A–C and A–D. d) Heat map coloured by average 
primary root elongation of seedlings inoculated with four representative RGI-inducing strains from 
each module (columns A–D) in combination with isolates from module A (rows) or alone (self). 
Significance was determined via ANOVA. e) Primary root elongation of seedlings inoculated with 
Arthrobacter CL28 and Variovorax CL14 individually or jointly across two substrates. 
Significance was determined via ANOVA, letters are the results of a Tukey post hoc test. n = 64, 
64, 63, 17, 36 and 33 (from left to right) biological replicates across 2 independent experiments. 
In all box plots, the centre line represents the median, box edges show the 25th and 75th 
percentiles, and whiskers extend to 1.5× the interquartile range (IQR). 
4.2 Variovorax maintain stereotypical root growth 
 

To identify strains within module A that are responsible for intra- and inter-module 

attenuation of RGI, we reduced our system to a tripartite plant–microorganism–microorganism 

system. We individually screened the 18 non-RGI strains from module A for their ability to 

attenuate RGI caused by representative strains from all 4 modules. We found that all the tested 

strains from the genus Variovorax (family Comamonadaceae) suppressed the RGI caused by 

representative RGI-inducing strains from module C (Agrobacterium MF224) and module D 

(Arthrobacter CL28) (Figure 4.1d). The strains from modules A (Pseudomonas MF48) and B 

(Bacillus MF107) were not suppressed by Variovorax, but rather by two closely 

related Burkholderia strains (CL11 and MF384) (Figure 4.1d). A similar pattern was observed 

when we screened two selected RGI-suppressing Variovorax strains (CL14 and MF160) 

and Burkholderia CL11 against a diverse set of RGI-inducing strains. Variovorax attenuated 13 of 

the 18 RGI-inducing strains that we tested (Figure 4.7a). 

To test whether the RGI induction and suppression we observed on agar occur in soil as 

well, we germinated Arabidopsis on sterile soil inoculated with an RGI-suppressing and -inducing 

pair of strains: the RGI-inducing Arthrobacter CL28 and the RGI-suppressing Variovorax CL14. 

As expected, Arthrobacter CL28 induced RGI, which was reverted by Variovorax CL14 in soil 
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(Figure 4.1e). We generalized this observation by showing that Variovorax-mediated attenuation 

of RGI extended to tomato seedlings, in which Variovorax CL14 reverted Arthrobacter CL28-

mediated RGI (Figure 4.7b). Finally, we tested whether the RGI-suppressing strains maintain their 

capacity to attenuate RGI in the context of the full 185-member community. We compared the 

root phenotype of seedlings exposed to either the full synthetic community or to the same 

community after dropping out all ten Variovorax strains and/or all six Burkholderia strains present 

in the synthetic community (Figure 4.2a). We found that Variovorax is necessary and sufficient to 

revert RGI within the full community (Figures 4.2b, c and 4.8a). This result was robust across a 

range of substrates (including soil), and under various biotic and abiotic contexts (Figures 4.2d-f 

and 4.8b). Further, the presence of Variovorax in the synthetic community increases both the total 

length of root network of the plant and its shoot size (Figure 4.8c, d). Importantly, the latter is 

considered a reliable proxy for relative plant fitness (Abreu & Munne-Bosch, 2009; Clauss & 

Aarssen, 1994), which suggests that Variovorax-mediated suppression of RGI is adaptive. 

To ascertain the breadth of the ability of Variovorax to attenuate RGI, we tested 

additional Variovorax strains from across the phylogeny of this genus (Figure 4.9a). All 19 of 

the Variovorax strains we tested reverted the RGI induced by Arthrobacter CL28. A strain from 

the nearest plant-associated outgroup to this genus (Acidovorax root219 (Bai et al., 2015)) did not 

revert RGI (Figure 4.9a, b). Thus, all tested strains—representing the broad phylogeny 

of Variovorax—interact with a wide diversity of bacteria to enforce stereotypic root development 

within complex communities, independent of biotic or abiotic contexts. Importantly, we found no 

evidence that this phenotype is achieved by outcompeting or antagonizing RGI-inducing strains 

(Figures 4.2g, h and 4.10). 
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Figure 4.2 - Variovorax maintains stereotypic root development. 

a) Phylogenetic tree of 185 bacterial isolates. Concentric rings represent isolate composition of 
each synthetic community treatment. NB, uninoculated (no bacteria); full, full synthetic 
community; −Burk, Burkholderia drop-out; −Vario, Variovorax drop-out; −Vario, −Burk, 
Burkholderia and Variovorax drop-out. b) Binarized image of representative seedlings inoculated 
or not with the full synthetic community or the Variovorax drop-out synthetic community. c) 
Primary root elongation of seedlings grown axenically (NB) or inoculated with the different 
synthetic community treatments outlined in a. Significance was determined via ANOVA, letters 
correspond to a Tukey post hoc test. n = 26, 26, 24, 37 and 29 (from left to right) biological 
replicates. d) Primary root elongation of seedlings inoculated with the full synthetic community or 
with the Variovorax drop-out synthetic community across different substrates: Johnson medium 
(JM) agar, Murashige and Skoog (MS) agar, sterilized clay or potting soil. n = 36, 47, 21, 24, 43, 
48, 33 and 36 (from left to right) biological replicates across 2 independent experiments. e) Primary 
root elongation of seedlings inoculated with four subsets of the full synthetic community (module 
A, C, D or a previously described 35-member synthetic community with its single Variovorax 
strain removed (34-member)1), with (+Vario) or without (−Vario) Variovorax isolates. n = 40, 40, 
15, 19, 22, 26, 25 and 29 (from left to right) biological replicates across 2 independent experiments. 
f) Primary root elongation of seedlings inoculated with the full synthetic community or with the 
Variovorax drop-out synthetic community across different abiotic stresses: low phosphate, high 
salt, high pH and high temperature. n = 43, 45, 37, 37, 43, 44, 44 and 43 (from left to right) 
biological replicates across 2 independent experiments. Significance was determined within each 
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condition via ANOVA in d, f, and with a two-sided t-test in e. FDR-adjusted P values are 
displayed. g) Canonical analysis of principal coordinates (CAP) scatter plots comparing the 
compositions of the full synthetic community and Variovorax drop-out synthetic community 
(colour code as in a) across fractions (substrate (squares), root (circles) and shoot (triangles)). 
Permutational multivariate ANOVA (PERMANOVA) P value is shown. n = 7 (substrate + full), 
8 (substrate + −Vario), 6 (root + full), 6 (root + −Vario), 5 (shoot + full) or 5 (shoot + −Vario). h) 
Relative abundance (RA) of the Variovorax genus within the full synthetic community across the 
agar, root and shoot fractions. n = 127, 119 and 127 biological replicates for agar, root and shoot, 
respectively, across 16 independent experiments. 

4.3 Variovorax manipulates auxin and ethylene 
 

To study the mechanisms that underlie bacterial effects on root growth, we analyzed the 

transcriptomes of seedlings colonized for 12 days with the RGI-inducing 

strain Arthrobacter CL28 and the RGI-suppressing strain Variovorax CL14, either in mono-

association with the seedling or in a tripartite combination (Figure 4.1e). We also performed RNA 

sequencing (RNA-seq) on seedlings colonized with the full synthetic community (no RGI) or 

the Variovorax drop-out synthetic community (RGI) (Figure 4.11a). Eighteen genes were 

significantly induced only under RGI conditions (RGI-induced) across both experiments (Figure 

4.11a, b). Seventeen of these genes are co-expressed with genes that have proposed functions 

related to the root apex (Klepikova et al., 2016) (Figure 4.11b, c). The remaining gene, GH3.2, 

encodes indole-3-acetic acid-amido synthetase, which conjugates excess amounts of the plant 

hormone auxin and is a robust marker for late auxin responses (Takase et al., 2004; uchida et al., 

2018) (Figure 4.11b). The production of auxins is a well-documented mechanism by which 

bacteria modulate plant root development (J. H. J. Leveau & Lindow, 2005). Indeed, the top 12 

auxin-responsive genes from a previous RNA-seq study examining acute auxin response 

in Arabidopsis (uchida et al., 2018) exhibited an average transcript increase in seedlings exposed 

to our RGI-inducing conditions (Figure 4.11d). We hypothesized that the suppression of RGI 

by Variovorax is probably mediated by interference with bacterially produced auxin signalling. 
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We asked whether the suppression of RGI by Variovorax is directly and exclusively related 

to auxin signalling. Besides auxin, other small molecules cause RGI. These include the plant 

hormones ethylene (Chen et al., 2013) and cytokinin (Cary et al., 1995), as well as microbial-

associated molecular patterns such as the flagellin-derived peptide flg22 (Gómez-Gómez et al., 

1999). We tested the ability of diverse Variovorax strains and of the Burkholderia strain CL11 to 

revert the RGI induced by auxins (indole-3-acetic acid (IAA) and the auxin analogue 2,4-

dichlorophenoxyacetic acid), ethylene (the ethylene precursor 1-aminocyclopropane-1-carboxylic 

acid (ACC)), cytokinins (zeatin and 6-benzylaminopurine) and the flg22 peptide. All of 

the Variovorax strains we tested suppressed the RGI induced by IAA or ACC (Figure 4.3a) —with 

the exception of Variovorax YR216, which did not suppress ACC-induced RGI and does not 

contain an ACC deaminase gene, a plant-growth-promoting feature that is associated with this 

genus (Chen et al., 2013) (Figure 4.9a). Burkholderia CL11 only partially reverted ACC-induced 

RGI (Figure 4.3a). None of the Variovorax strains attenuated the RGI induced by 2,4-

dichlorophenoxyacetic acid, flg22 or cytokinins (Figures 4.3a and 4.12a). Importantly, this 

function is mediated by recognition of auxin by Variovorax and not by the plant auxin response 

per se, as the auxin response (RGI) induced by 2,4-dichlorophenoxyacetic acid is not reverted. 

Indeed, we found that Variovorax CL14 degrades IAA in culture (Figure 4.12b) and quenches 

fluorescence of the Arabidopsis auxin reporter line DR5::GFP caused by the RGI-

inducing Arthrobacter CL28 (Figure 4.12c, d).  

Auxin and ethylene are known to act synergistically to inhibit root growth (Robles et al., 

2013). To ascertain the roles of both auxin and ethylene perception by the plant in responding to 

RGI-inducing strains, we used the auxin-insensitive axr2-1 mutant (Nagpal et al., 2000) combined 

with a competitive inhibitor of ethylene receptors, 1-methylcyclopropene (1-MCP) (Hall et al., 
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2000). We inoculated wild-type seedlings and axr2-1 mutants, treated or not with 1-MCP, with 

the RGI-inducing Arthrobacter CL28 strain or the Variovorax drop-out synthetic community. We 

observed in both cases that bacterial RGI is reduced in axr2-1 and 1-MCP-treated wild-type 

seedlings, and is further reduced in doubly insensitive 1-MCP-treated axr2-1 seedlings; this 

demonstrates that both auxin and ethylene perception in the plant contribute additively to 

bacterially induced RGI (Figure 4.3b). Thus, in the absence of Variovorax, a complex synthetic 

community can induce severe morphological changes in root phenotypes via both auxin- and 

ethylene-dependent pathways, but both are reverted when Variovorax is present. 

 

Figure 4.3 - Variovorax suppression of RGI is related to auxin and ethylene signalling. 

a) Primary root elongation of seedlings grown with RGI-inducing Arthrobacter CL28 or three hormonal 
treatments (100 nM IAA, 2,4-dichlorophenoxyacetic acid (2,4-D) or ACC), individually (self) or with 
Burkholderia CL11 or one of four Variovorax isolates (CL14, MF160, B4 or YR216). Significance was 
determined within each treatment via ANOVA; letters correspond to a Tukey post hoc test. n = 74, 46, 61, 
48, 49, 49, 45, 44, 46, 43, 49, 40, 22, 19, 22, 19, 20, 25, 28, 30, 29, 29, 29 and 29 (from left to right) 
biological replicates across 2 independent experiments. b) Primary root elongation, standardized to axenic 
conditions, of wild-type (Col-0), auxin-unresponsive (axr2-1), ethylene-unresponsive (Col-0 + MCP) or 
auxin- and ethylene-unresponsive (axr2-1 + MCP) seedlings inoculated with RGI-inducing Arthrobacter 
CL28 or the Variovorax drop-out synthetic community (−Vario). The blue dotted line marks the relative 
mean length of uninoculated seedlings. Horizontal shading is the IQR of seedlings grown with Arthrobacter 
CL28 +Variovorax CL14 (aqua) or the full synthetic community (grey). Significance was determined via 
ANOVA; letters correspond to a Tukey post hoc test. n = 37, 25, 24, 23, 35, 21, 22 and 20 (from left to 
right) biological replicates across 2 independent experiments. In a, b, data represent the mean ± 95% 
confidence interval. 
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To identify the bacterial mechanism or mechanisms that are involved in the attenuation of 

RGI, we compared the genomes of the 10 Variovorax strains in the synthetic community to the 

genomes of the other 175 members of the synthetic community. Using de novo orthologue 

clustering across all 185 genomes, we identified 947 genes unique to Variovorax, with <5% 

prevalence across the 175 non-Variovorax members of the synthetic community and 100% 

prevalence among all 10 Variovorax strains. We grouped these genes into regions of physically 

contiguous genes (genomic hotspots) and focused on the 12 hotspots that contained at least 10 

genes unique to Variovorax (Figure 4.13a). One of these hotspots (designated hotspot 33) contains 

weak homologues (average of about 30% identity) to the genes iacC, iacD, iacE, iacF and iacR of 

the IAA-degrading iac operon of Paraburkholderia phytofirmans strain PsJN (Donoso et al., 

2017; J. H. J. Leveau & Gerards, 2008), but lacks iacA, iacB and iacI—which are known to be 

necessary for Paraburkholderia growth on IAA (Donoso et al., 2017) (Figures 4.4a and 4.13b). 

To test whether the hotspots we identified are responsive to RGI-inducing bacteria, we analysed 

the transcriptome of Variovorax CL14 in monoculture and in coculture with the RGI-

inducing Arthrobacter CL28. We observed extensive transcriptional reprogramming 

of Variovorax CL14 when cocultured with Arthrobacter CL28. Among the 12 hotspots we 

identified, the genes in hotspot 33 were the most highly upregulated (Figures 4.4a and 4.13b, c). 

We thus hypothesized that hotspot 33 contains an uncharacterized auxin-degradation operon. 

In parallel, we constructed a Variovorax CL14 genomic library in Escherichia coli with 

>12.5-kb inserts in a broad host-range vector, and screened the resulting E. coli clones for auxin 

degradation. Two clones from the approximately 3,500 that we screened degraded IAA (denoted 

V1 and V2). The Variovorax CL14 genomic inserts in both of these clones contained portions of 

hotspot 33 (Figures 4.4a and 4.13b). The overlap common to both of these clones contained nine 
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genes, among them the weak homologues to Paraburkholedria iacC, iacD and iacE. To test 

whether this genomic region is sufficient to revert RGI in plants, we 

transformed Acidovorax root219 (Bai et al., 2015), a relative of Variovorax that does not cause or 

revert RGI (Figure 4.9a, b), with the shorter functional insert (V2)  (Figures 4.4a and 4.13b) or 

with an empty vector (EV). The resulting gain-of-function strain Acidovorax root219::V2 gained 

the ability to degrade IAA in culture (Figure 4.4b). We inoculated Acidovorax root219::V2 or the 

control Acidovorax root219::EV onto plants treated with IAA or inoculated with the RGI-

inducing Arthrobacter CL28. Acidovorax root219::V2 fully reverted IAA-induced RGI (Figure 

4.4c) and partially reverted Arthrobacter CL28-induced RGI, despite colonizing roots at 

significantly lower levels than Variovorax CL14 (Figures 4.4d and 4.13d). In addition, we deleted 

hotspot 33 from Variovorax CL14 (Figure 4.4a) to test whether this putative operon is necessary 

for the reversion of RGI. The resulting strain Variovorax CL14 ΔHS33—which is not impaired in 

plant colonization (Figure 4.13e)—did not degrade IAA in culture (Figure 4.4b), and did not revert 

IAA-induced (Figure 4.4c) or Arthrobacter CL28-induced RGI (Figure 4.4d). Thus, 

this Variovorax-specific gene cluster is necessary for the suppression of RGI and for auxin 

degradation. It is thus the critical genetic locus required by Variovorax to maintain stereotypic root 

development in the context of a phylogenetically diverse microbiome. 



 115 

 

Figure 4.4 - An auxin-degrading operon in Variovorax is required for root development. 

a) A map of the auxin-degrading hotspot 33. Genes are annotated with the last two digits of their 
IMG gene identifier (26436136XX) (Figure 4.13b), and are coloured by the log2-transformed fold 
change in their transcript abundance in Variovorax CL14 cocultured with Arthrobacter CL28 
(CL14–CL28) relative to Variovorax CL14 (CL14) in monoculture (measured by RNA-seq). 
Genes contained in vector 1 (V1) and vector 2 (V2), and the region knocked-out in Variovorax 
CL14 ΔHS33, are shown below the map. b) In vitro degradation of IAA by Acidovorax 
root219::EV, Acidovorax Root219::V2, Variovorax CL14 and Variovorax CL14 ΔHS33. n = 3 
biological replicates. c) d) Primary root elongation of seedlings treated with IAA (c) or co-
inoculated with Arthrobacter CL28 combined with Acidovorax root219::EV, Acidovorax 
root219::V2, Variovorax CL14 and Variovorax CL14 ΔHS33 (d). Significance was determined 
via ANOVA; letters correspond to a Tukey post hoc test. c, n = 49, 46, 46 and 49 (from left to 
right); d, n = 51, 41, 52 and 53 (from left to right) biological replicates across 2 independent 
experiments. 
 
4.4 Discussion  
 

Signalling molecules and other secondary metabolites are products of adaptations that 

allow microorganisms to survive competition for primary metabolites. Our results illuminate the 

importance of a trophic layer of microorganisms that use these secondary metabolites for their own 

benefit, while potentially providing the unselected exaptation (Gould & Vrba, 1982) of interfering 
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with signalling between the bacterial microbiota and the plant host. Such metabolic signal 

interference has previously been demonstrated in the case of quorum quenching (Leadbetter & 

Greenberg, 2000), the degradation of microbial-associated molecular patterns (Bardoel et al., 

2011) and the degradation of bacterially produced auxin, including among Variovorax (J. H. J. 

Leveau & Lindow, 2005)(Zúñiga et al., 2013)(Sun et al., 2018). Plant development relies on tightly 

regulated auxin concentration gradients (Brumos et al., 2018), which can be distorted by auxin 

fluxes emanating from the microbiota. Some Variovorax strains have the capacity to both produce 

and degrade auxin, which suggests a capacity to fine-tune auxin concentrations in the rhizosphere 

(Chen et al., 2013; Sun et al., 2018). 

We have shown here that the chemical homeostasis enforced by the presence 

of Variovorax in a phylogenetically diverse, realistic synthetic community allows the plant to 

maintain its developmental programme within a chemically complex matrix. Variovorax was 

recently found to have the rare property of improved plant colonization upon late arrival to an 

established community (Carlström et al., 2019), which suggests that they use bacterially produced 

or induced—rather than plant-derived—substrates. Furthermore, after re-analysing a recent large-

scale time and spatially resolved survey of the Arabidopsis root microbiome (Thiergart et al., 

2020) and a common garden experiment including 30 plant species (Fitzpatrick et al., 2018), we 

noted that Variovorax is among a limited group of core bacterial genera found in 100% of the 

sampled sites and plant species (Figure 4.14a, b. These ecological observations, together with our 

results using a reductionist microcosm, reinforce the importance of Variovorax as a key player in 

the bacteria–bacteria–plant communication networks that are required to maintain root growth 

within a complex biochemical ecosystem. 
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4.5 Supporting figures 
 

 
 

Figure 4.5 - Synthetic community resembles the taxonomic make-up of natural communities. 

a) Phylogenetic tree of 185 genome-sequenced isolates obtained from surface-sterilized 
Arabidopsis roots, included in the synthetic community. The composition of this synthetic 
community captures the diversity of Actinobacteria, Proteobacteria and Bacteroidetes; the three 
major root-enriched phyla (Castrillo et al., 2017; Finkel et al., 2019; Fitzpatrick et al., 2018; Levy 
et al., 2018; Thiergart et al., 2020); and Firmicutes, which are abundant in plant-associated culture 
collections (Levy et al., 2018). Tree tips are coloured according to phylum. The outer ring shows 
the distribution of the 12 bacterial orders present in the synthetic community. b) Comparison of 
proportions of Proteobacteria, Bacteroidetes and Actinobacteria in synthetic-community 
(SynCom)-inoculated roots to root microbiota derived from plants grown in natural soil (Castrillo 
et al., 2017). Firmicutes, which are not plant-enriched, were reduced to <0.1% of the relative 
abundance (Figure 4.1a). The left panel (wild soil) shows the proportion of ASVs enriched (q value 
< 0.1) in the plant root in comparison to soil in a microbiota profiling study from the same soil 
from which the synthetic community strains were isolated. ASVs are coloured according to 
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phylum and proteobacterial ASVs are coloured by class. The right panel (synthetic community) 
represents the relative abundance profiles of bacterial isolates across the initial inoculum, planted 
agar, and root and shoot in plants inoculated with the full synthetic community. c) Comparison of 
synthetic community composition in agar versus the soil-based microcosms. Left, relative 
abundance in the substrate. Middle, relative abundance in root. Right, enrichment in root versus 
substrate. Each dot represents a single unique sequence. Pearson correlation line, 95% confidence 
intervals, r value and P value are shown for each comparison. n = 24 (soil system) and 8 (agar 
system) biological replicates. d) Canonical analysis of principal coordinates (CAP) showing the 
influence of the fraction (planted agar, root or shoot) on the assembly of the bacterial synthetic 
community across the four gradients used in this Article (phosphate, salinity, pH and temperature). 
Different colours differentiate between the fractions, and different shapes differentiate between 
experiments. Ellipses denote the 95% confidence interval of each fraction. Fraction (substrate, root 
or shoot) explains most (22%) of the variance across all abiotic variables. n = 94 (substrate), 90 
(root) and 95 (shoot) biological replicates across 8 independent experiments. e) Abiotic conditions 
displayed reproducible effects on α-diversity. Each panel represents bacterial α-diversity across 
the different abiotic gradients (phosphate, salinity, pH and temperature) and fractions (substrate, 
root and shoot) used in this Article. Bacterial α-diversity was estimated using Shannon diversity 
index. Letters represent the results of the post hoc test of an ANOVA model testing the interaction 
between fraction and abiotic condition. f) Canonical analysis of principal coordinates scatter plots 
showing the effect on the composition of the synthetic community of each of the four abiotic 
gradients (phosphate, salinity, pH and temperature) within the substrate, root and shoot fractions. 
PERMANOVA R2 values are shown within each plot. e, f, Phosphate, n = 6, 5, 6, 6, 6, 6, 6, 6, 6, 
6, 6, 6, 6, 6, 6, 6, 5 and 6; salinity n = 6, 6, 6, 6, 6, 6, 6, 4, 5, 6, 4 and 5; pH, n = 6, 6, 6, 5, 5, 6, 6, 
6 and 6; temperature n = 6, 6, 6, 6, 6, 6, 6, 6 and 6. All samples are biologically independent and 
represent two independent experiments. 
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Figure 4.6 - RGI trait is distributed across bacterial phylogeny. 

a, b) Primary root elongation of seedlings inoculated with single bacterial isolates (one box plot 
per isolate). Isolates are coloured by taxonomy. a, Isolates are grouped by module membership. 
The strips across the panels correspond to the interquartile range (IQR), as noted at the far right. 
The dotted line represents the cut-off used to classify isolates as root-growth inhibiting (cutoff 
RGI). b, Isolates are ordered according to the phylogenetic tree on the left, and coloured on the 
basis of their genome-based taxonomy. The vertical blue stripes across the panel correspond to the 
IQR of plants grown in sterile conditions. The vertical dotted line represents the 3-cm cut-off used 
to classify strains as RGI strains. The bar on the right denotes the genus classification of each 
isolate. c) Binarized image of representative seedlings grown axenically (no bacteria) or with 34 
RGI strains individually. 
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Figure 4.7 - Variovorax-mediated reversion of RGI. 

a) Heat map coloured by average primary root elongation of seedlings inoculated with eighteen 
RGI-inducing strains (rows) alone (self) or in combination with Burkholderia CL11, Variovorax 
CL14 or Variovorax MF160 (columns). Statistically significant RGI reversions were determined 
via ANOVA and are outlined in black. b) Variovorax-mediated reversion of RGI is maintained in 
a second plant species. Primary root elongation of uninoculated tomato seedlings (no bacteria) or 
seedlings inoculated with the RGI-inducer Arthrobacter CL28 individually or along with 
Variovorax CL14 grown on vertical agar plates. Significance was determined via ANOVA while 
controlling for experiment; letters correspond to a Tukey post hoc test. n = 24, 25 and 23 biological 
replicates across 2 independent experiments. 

 



 121 

 

Figure 4.8 - Variovorax maintain stereotypic plant growth. 

a) Representative plate images of plants grown with the full 185-member synthetic community (full 
SynCom) or the Variovorax drop-out community (−Vario SynCom) for 12 days. b) Bar graphs showing the 
isolate composition of synthetic communities composed by module A, module C, module D and a 
previously described1 34-member synthetic community (34-member). Isolates are ordered according to the 
phylogenetic tree on the left. The tips of the phylogenetic tree are coloured on the basis of the genome-
based taxonomy of each isolate. Presence of an isolate across the different synthetic communities is denoted 
by a black filled rectangle (labelled ‘inoculated’). c) Total root network quantification of Arabidopsis 
seedlings grown with the full synthetic community (full), or with the full synthetic community excluding 
Variovorax (−Vario), across different abiotic conditions: JM agar control, low phosphate (JM agar 10 μM 
Pi), high salt (JM agar 150 mM NaCl), high pH (JM agar pH 8.2) and high temperature (JM agar 31 °C), 
as well as half Murashige and Skoog medium (MS agar control). Significance was determined within each 
condition via ANOVA while controlling for experiment. n = 110, 77, 42, 44, 41, 35, 48, 49, 44, 45, 33 and 
26 biological replicates across 2 independent experiments. d) Shoot circumference of plants grown in pots 
with potting soil with the full synthetic community or with the full synthetic community excluding 
Variovorax. Significance was determined within each condition via ANOVA while controlling for 
experiment. n = 30 and 36 biological replicates across 2 independent experiments. 
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Figure 4.9 - Reversion of RGI is prevalent across the Variovorax phylogeny. 

a) Phylogenetic tree of 69 publically available Variovorax genomes and 2 outgroup isolates, Acidovorax 
root 219 and Burkholderia CL11. The CL28 RGI reversion bar categorizes (positive, negative or untested) 
the ability of each isolate in the phylogeny to revert the RGI caused by Arthrobacter CL28. The ACC 
deaminase bar denotes the presence of the KEGG Orthology (KO) term KO1505 (1-aminocyclopropane-1-
carboxylate deaminase) in each of the genomes. The heat map denotes the per cent identity of BLASTp hits 
in the genomes to the genes from the auxin-degrading iac operon in Paraburkholderia phytophirmans 
(Donoso et al., 2017). Synteny is not necessarily conserved, as these BLAST hits may be spread throughout 
the genomes. b) All tested Variovorax isolates reverted RGI. Phylogenetic tree of 19 Variovorax genomes 
and 2 outgroup isolates (Acidovorax root 219 and Burkholderia CL11) that were tested for their ability to 
revert the RGI imposed by Arthrobacter CL28. The blue vertical stripe denotes the IQR of plants treated 
solely with Arthrobacter CL28. The dotted vertical line denotes the 3-cm cut-off used to classify a treatment 
as an RGI. Each box plot is coloured according to the genus classification of each isolate. Significance was 
determined via ANOVA while controlling for experiment, letters correspond to a Tukey post hoc test. n = 
59, 9, 55, 71, 10, 10, 10, 9, 10, 10, 57, 10, 10, 48, 10, 10, 10, 9, 10, 10 and 9 biological replicates across 2 
independent experiments. 
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Figure 4.10 - Variovorax does not compete with or antagonize RGI strains. 

To test whether Variovorax attenuates RGI by inhibiting the growth of RGI-inducing strains, we 
compared the bacterial relative abundance profiles in seedlings colonized with the full synthetic 
community to that of seedlings colonized with the Variovorax drop-out community. We found no 
changes in the abundances of RGI-inducing strains in response to the Variovorax drop-out (Figure 
4.2g). In addition, we measured in planta absolute abundance of Arthrobacter CL28 when 
inoculated alone or with two Variovorax representatives: Variovorax B4 and Variovorax CL14. 
Here we show log-transformed CFUs of Arthrobacter CL28 normalized to root weight. To 
selectively count Arthrobacter CL28, CFUs were counted on Luria Bertani (LB) agar plates 
containing 50 μg ml−1 of apramycin, on which neither Variovorax B4 nor Variovorax CL14 grow. 
Arthrobacter CL28 CFUs are not reduced in the presence of Variovorax. Notably, Variovorax 
account for only about 1.5% of the root community (Figure 4.2h). These results rule out the 
possibility that Variovorax enforces stereotypic root growth by antagonizing or outcompeting RGI 
inducers. Significance was determined via ANOVA, letters correspond to a Tukey post hoc test. n 
= 12 biologically independent samples. 
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Figure 4.11 - Auxin-responsive genes are induced in response to RGI strains. 

a) Box plots showing the average standardized expression of genes significantly induced only 
under RGI conditions (RGI-induced), across the following treatments. Left (tripartite system), 
uninoculated seedlings (NB) or seedlings inoculated with Variovorax CL14, Arthrobacter CL28 
or both Arthrobacter CL28 and Variovorax CL14 (CL14/CL28). Right (drop-out system), 
uninoculated seedlings (NB), Burkholderia drop-out synthetic community (−Burk SynCom), 
Variovorax drop-out synthetic community (−Vario SynCom), Variovorax and Burkholderia drop-
out synthetic community (−Vario −Burk SynCom) or the full synthetic community (full SynCom). 
RGI-induced genes are defined as genes that are significantly overexpressed in RGI treatments. 
Left, genes overexpressed in Arthrobacter CL28-inoculated seedling versus NB and in 
Arthrobacter CL28-inoculated seedlings versus CL14/CL28. Right, genes overexpressed in 
−Vario versus NB and in −Vario versus full. n = 3 (left); 5 (right). b) Venn diagram showing the 
overlap of enriched genes between the tripartite and drop-out systems. The heat map shows the 
pairwise correlation in expression of these 18 genes across tissues on the basis of the Klepikova 
Atlas (Klepikova et al., 2016). Seventeen of the 18 genes show high correlation across the atlas, 
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with the exception of the auxin-conjugating gene GH3.2. A root apex diagram from the 
Arabidopsis eFP Browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) is shown, illustrating the 
spatial distribution of transcripts from the 17 highly correlated root apex-associated genes in the 
Klepikova Atlas (Klepikova et al., 2016). Significance of the overlap of enriched genes was 
determined via hypergeometric test. c) RGI-related genes share gene ontologies. Network of 
statistically significant gene ontology terms contained within the 18 overlapping RGI-induced 
genes (a, b). The network was computed using the emapplot function from the package 
clusterProfiler (G. Yu et al., 2012) in R. A P value for terms across the gene ontology was 
computed using a hypergeometric test (only significant ontologies are shown). Point size (gene 
ontology term) denotes the number of genes mapped to that particular term. d) Standardized 
expression of 12 late-responsive auxin genes (uchida et al., 2018) across the tripartite and drop-
out systems. Each dot represents a gene. Identical genes are connected between bacterial 
treatments with a black line. Mean expression (95% confidence intervals) of the aggregated 12 
genes in each treatment is highlighted in red and connected between bacterial treatments with a 
red line. Significance was calculated using a resampling approach, in which we compared the 
calculated difference between means across groups. After 10,000 resamplings, we calculated the 
P value by comparing the distribution of means calculated against the real observed differences 
between means. 

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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Figure 4.12 - Variovorax degrades auxin and quenches auxin perception by the plant. 

a) Primary root elongation of seedlings grown with six hormonal or microbial-associated molecular pattern 
RGI treatments (panels) individually (self) or with either Burkholderia CL11 or each of four Variovorax 
isolates (CL14, MF160, B4 and YR216). Significance was determined via ANOVA within each panel; 
letters correspond to a Tukey post hoc test. n = 74, 46, 61, 48, 49, 49, 45, 44, 46, 43, 49, 40, 22, 19, 22, 19, 
20, 25, 28, 30, 29, 29, 29, 29, 12, 12, 21, 20, 19, 18, 26, 30, 30, 29, 30, 30, 29, 30, 30, 26, 29 and 28 
biological replicates across 2 independent experiments. b) Variovorax degrades auxin. Growth curves 
showing optical density at OD600 (top) and IAA concentrations (mg ml−1) (bottom) in Variovorax CL14 
cultures grown in M9 medium with different carbon sources. Left, IAA (+ 0.5% ethanol as solvent); middle, 
succinate; right, succinate and IAA (+ 0.5% ethanol as solvent). c) Variovorax quenches induction of the 
auxin bioreporter DR5::GFP. Quantification of GFP intensity in DR5::GFP Arabidopsis seedlings grown 
with no bacteria, Arthrobacter CL28 and Arthrobacter CL28 + Variovorax CL14. GFP fluorescence was 
imaged 1, 3, 6, 9 and 13 days after inoculation, and quantified in the root elongation zone. Significance was 
determined via ANOVA within each time point, while controlling for experiment, and denoted with 
asterisks. n = 20 biological replicates across 2 independent experiments. d) Representative primary root 
images of DR5::GFP plants quantified in c, showing roots from 1, 3 and 6 d after inoculation. In addition 
to the bacterial treatments shown in c, an exogenous IAA control is shown (IAA, second column), as well 
as IAA-treated plants inoculated with Variovorax CL14, illustrating that IAA-induced fluorescence is 
quenched in the presence of Variovorax CL14 within 3 d. 
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Figure 4.13 - Detection of CL28-responsive Variovorax-unique operons. 

a) Presence–absence matrix denoting the distribution of 12 Variovorax-unique hotspots containing 
at least 10 genes across the 185 members of the synthetic community. Hotspots are defined using 
the Variovorax CL14 genome as a reference. Phylogeny of the 185 members of the synthetic 
community is shown to the left of the matrix. We determined the presence of an orthogroup based 
on a hidden Markov model profile scanning of each core Variovorax (genus) orthogroup across 
the 185 genomes in the synthetic community. b) A map of the auxin-degrading hotspot 33. Genes 
are annotated with the last two digits of their IMG gene identifier (26436136XX) and their 
functional assignments are shown below the map, including per cent identity of any to genes from 
a known auxin degradation locus. Genes are coloured by the log2-transformed fold change in their 
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transcript abundance in Variovorax CL14 cocultured with Arthrobacter CL28 versus Variovorax 
CL14 monoculture, as measured by RNA-seq (shown in c). The overlap of this region with vectors 
1 and 2 and the region knocked out in Variovorax CL14 ΔHS33 are shown below the map. Vector 
1 extends beyond this region. c) Results of RNA-seq on Variovorax CL14 transcripts. Variovorax 
CL14 was cocultured with Arthrobacter CL28 versus Variovorax CL14 monoculture. Only 
Variovorax-unique genomic hotspots are presented, aligned with the genes in a. Genes are 
coloured by the log2-transformed fold change in their transcript abundance in Variovorax CL14 
cocultured with Arthrobacter CL28 vs Variovorax CL14 monoculture. Note uniform upregulation 
of genes in cluster 33. d) log-transformed CFUs of Variovorax CL14 or with the Acidovorax gain-
of-function strain Acidovorax root219::V2 normalized to root weight. Each of these two strains 
was co-inoculated with Arthrobacter CL28 onto 7-d-old seedlings and collected after 12 days of 
growth. CFU counts were determined on LB plates containing 100 μg ml−1 ampicillin, for which 
Arthrobacter CL28 is susceptible and Variovorax CL14 and Acidovorax root219::V2 are naturally 
resistant. n = 3 biologically independent samples. Significance was determined using a two-sided 
Student’s t-test. P = 2.57 × 10−5. Line represents median. e) log-transformed CFUs of Variovorax 
CL14 or of the loss-of-function strain Variovorax CL14 ΔHS33 normalized to root weight. Each 
of these two strains was inoculated individually onto 7-d-old seedlings and collected after 12 d of 
growth. CFU counts were determined on LB plates. n = 5 biologically independent samples. 
Significance was determined using a two-sided Student’s t-test. P = 0.049 (mutant is slightly 
higher). Red lines represent median. 
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Figure 4.14 - Variovorax are highly prevalent across naturally occurring Arabidopsis 
microbiomes and across 30 plant species. 

a) Correlation plot of data reanalysed from (Thiergart et al., 2020), comparing bacterial ASV 
prevalence to log-transformed relative abundance in A. thaliana rhizoplane samples taken across 
3 years in 17 sites in Europe. b) Correlation plot of data reanalysed from (Fitzpatrick et al., 2018), 
comparing bacterial ASV prevalence to log-transformed relative abundance across 30 
phylogenetically diverse plant species grown in a common garden experiment. 
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4.6 Methods 
 
4.6.1 Arabidopsis with bacterial synthetic community microcosm across four stress 
gradients 
 
4.6.1.1 Bacterial culture and plant inoculation 

The 185-member bacterial synthetic community used here contains genome-sequenced 

isolates obtained from surface-sterilized Brassicaceae roots, nearly all Arabidopsis thaliana, 

planted in two soils from North Carolina (USA). A detailed description of this collection and 

isolation procedures can be found in (Levy et al., 2018). One week before each experiment, 

bacteria were inoculated from glycerol stocks into 600 μl KB medium in a 96-deep-well plate. 

Bacterial cultures were grown at 28 °C, shaking at 250 rpm. After 5 days of growth, cultures were 

inoculated into fresh medium and returned to the incubator for an additional 48 h, resulting in 2 

copies of each culture (7 days old and 48 h old). We adopted this procedure to account for variable 

growth rates of different members of the synthetic community and to ensure that nonstationary 

cells from each strain were included in the inoculum. After growth, 48-h and 7-day plates were 

combined and optical density of cultures was measured at 600 nm (OD600) using an Infinite M200 

Pro plate reader (TECAN). All cultures were then pooled while normalizing the volume of each 

culture to OD600 = 1. The mixed culture was washed twice with 10 mM MgCl2 to remove spent 

medium and cell debris, and vortexed vigorously with sterile glass beads to break up aggregates. 

OD600 of the mixed, washed culture was then measured and normalized to OD600 = 0.2. The 

synthetic community inoculum (100 μl) was spread on 12 × 12-cm vertical square agar plates with 

amended Johnson medium (JM)1 without sucrose before transferring seedlings. 
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4.6.1.2 In vitro plant growth conditions 

All seeds were surface-sterilized with 70% bleach, 0.2% Tween-20 for 8 min, and rinsed 3 

times with sterile distilled water to eliminate any seed-borne microorganisms on the seed surface. 

Seeds were stratified at 4 °C in the dark for 2 days. Plants were germinated on vertical square 12 

× 12-cm agar plates with JM containing 0.5% sucrose, for 7 days. Then, 10 plants were transferred 

to each of the agar plates inoculated with the synthetic community. The composition of JM in the 

agar plates was amended to produce environmental variation. We added to the previously reported 

phosphate concentration gradient (0, 10, 30, 50, 100 and 1,000 μM Pi) (Finkel et al., 2019) three 

additional environmental gradients: salinity (50, 100, 150 and 200 mM NaCl), pH (5.5, 7.0 and 

8.2) and incubation temperature (10, 21 and 31 °C). Each gradient was tested separately, in two 

independent replicas. Each condition included three synthetic community + plant samples, two no-

plant controls and one no-bacteria control. Thus, the total sample size for each condition was n = 

6. Previous publications (Castrillo et al., 2017; Finkel et al., 2019; Herrera Paredes et al., 2018) 

have shown that an n ≥ 5 is provides sufficient power for synthetic community profiling. Plates 

were placed in randomized order in growth chambers and grown under a 16-h dark/8-h light regime 

at 21-°C day/18-°C night for 12 days. Upon collection, DNA was extracted from roots, shoots and 

the agar substrate. Here and hereafter, all measurements were taken from distinct samples. 

4.6.1.3 DNA extraction 

Roots, shoots and agar were collected separately, pooling 6–8 plants for each sample. Roots 

and shoots were placed in 2-ml Eppendorf tubes with 3 sterile glass beads. These samples were 

washed three times with sterile distilled water to remove agar particles and weakly associated 

microorganisms. Tubes containing the samples were stored at −80 °C until processing. Root and 

shoot samples were lyophilized for 48 h using a Labconco freeze-dry system and pulverized using 
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a tissue homogenizer (MPBio). Agar from each plate was collected in 30-ml syringes with a square 

of sterilized Miracloth (Millipore) at the bottom and kept at −20 °C for 1 week. Syringes were then 

thawed at room temperature and samples were squeezed gently through the Miracloth into 50-ml 

falcon tubes. Samples were centrifuged at maximum speed for 20 min and most of the supernatant 

was discarded. The remaining 1–2 ml of supernatant, containing the pellet, was transferred into 

clean 1.5-ml Eppendorf tubes. Samples were centrifuged again, supernatant was removed and 

pellets were stored at −80 °C until DNA extraction. DNA extractions were carried out on ground 

root and shoot tissue and agar pellets using 96-well-format MoBio PowerSoil Kit (MOBIO 

Laboratories; Qiagen) following the manufacturer’s instruction. Sample position in the DNA 

extraction plates was randomized, and this randomized distribution was maintained throughout 

library preparation and sequencing. 

4.6.1.4 Bacterial 16S rRNA sequencing 

We amplified the V3–V4 regions of the bacterial 16S rRNA gene using the primers 338F 

(5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). 

Two barcodes and six frameshifts were added to the 5′ end of 338F and six frameshifts were added 

to the 806R primers, on the basis of a previously published protocol36. Each PCR reaction was 

performed in triplicate, and included a unique mixture of three frameshifted primer combinations 

for each plate. PCR conditions were as follows: 5 μl Kapa Enhancer, 5 μl Kapa Buffer A, 1.25 μl 

5 μM 338F, 1.25 μl 5 μM 806R, 0.375 μl mixed plant rRNA gene-blocking peptide nucleic acids 

(PNAs) (1:1 mix of 100 μM plastid PNA and 100 μM mitochondrial PNA36), 0.5 μl Kapa dNTPs, 

0.2 μl Kapa Robust Taq, 8 μl dH2O, 5 μl DNA; temperature cycling: 95 °C for 60 s; 24 cycles of 

95 °C for 15 s; 78 °C (PNA) for 10 s; 50 °C for 30 s; 72 °C for 30 s; 4 °C until use. Following PCR 

clean up, using AMPure beads (Beckman Coulter), the PCR product was indexed using 96 indexed 
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806R primers with the Kapa HiFi Hotstart readymix with the same primers as above; temperature 

cycling: 95 °C for 60 s; 9 cycles of 95 °C for 15 s; 78 °C (PNA) for 10 s; 60 °C for 30 s; 72 °C for 

35 s; 4 °C until use. PCR products were purified using AMPure XP magnetic beads (Beckman 

Coulter) and quantified with a Qubit 2.0 fluorometer (Invitrogen). Amplicons were pooled in equal 

amounts and then diluted to 10 pM for sequencing. Sequencing was performed on an Illumina 

MiSeq instrument using a 600-cycle V3 chemistry kit. DNA sequence data for this experiment are 

available at the NCBI Bioproject repository (accession PRJNA543313). The abundance matrix, 

metadata and taxonomy are available at https://github.com/isaisg/variovoraxRGI. 

4.6.1.5 16S rRNA amplicon sequence data processing 

Synthetic community sequencing data were processed with MT-Toolbox (Yourstone et al., 

2014). Usable read output from MT-Toolbox (that is, reads with 100% correct primer and primer 

sequences that successfully merged with their pair) were quality-filtered using Sickle by not 

allowing any window with Q score under 20. The resulting sequences were globally aligned to a 

reference set of 16S rDNA sequences extracted from genome assemblies of members of the 

synthetic community. For strains that did not have an intact 16S rDNA sequence in their assembly, 

we sequenced the 16S rRNA gene using Sanger sequencing. The reference database also included 

sequences from known bacterial contaminants and Arabidopsis organellar sequences. Sequence 

alignment was performed with USEARCH v.7.109039 (Edgar, 2010) with the option 

usearch_global at a 98% identity threshold. On average, 85% of sequences matched an expected 

isolate. Our 185 isolates could not all be distinguished from each other based on the V3–V4 

sequence and were thus classified into 97 unique sequences. A unique sequence encompasses a set 

of identical (clustered at 100%) V3–V4 sequences coming from a single or multiple isolates. 

https://github.com/isaisg/variovoraxRGI
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Sequence mapping results were used to produce an isolate abundance table. The remaining 

unmapped sequences were clustered into operational taxonomic units (OTUs) using UPARSE 

(Edgar, 2013) implemented with USEARCH v.7.1090, at 97% identity. Representative OTU 

sequences were taxonomically annotated with the RDP classifier (Q. Wang et al., 2007) trained on 

the Greengenes database (DeSantis et al., 2006) (4 February 2011). Matches to Arabidopsis 

organelles were discarded. The vast majority of the remaining unassigned OTUs belonged to the 

same families as isolates in the synthetic community. We combined the assigned unique sequence 

and unassigned OTU count tables into a single count table. In addition to the raw count table, we 

created rarefied (1,000 reads per sample) and relative abundance versions of the abundance matrix 

for further analyses. 

The resulting abundance tables were processed and analysed with functions from the 

ohchibi package (https://github.com/isaisg/ohchibi). An α-diversity metric (Shannon diversity) 

was calculated using the diversity function from the vegan package v.2.5-343 (Dixon, 2003). We 

used ANOVA to test for differences in α-diversity between groups. β-Diversity analyses (principal 

coordinate analysis and canonical analysis of principal coordinates (CAP)) were based on Bray–

Curtis dissimilarity calculated from the relative abundance matrices. We used the capscale function 

from the vegan R package v.2.5-3 (Dixon, 2003) to compute the CAP. To analyze the full dataset 

(all fractions and all abiotic treatments), we constrained by fraction and abiotic treatment while 

conditioning for the replica and experiment effect. We explored the abiotic conditions effect inside 

each of the four abiotic gradients tested (phosphate, salinity, pH and temperature). We performed 

the fraction–abiotic interaction analysis within each fraction independently, constraining for the 

abiotic conditions while conditioning for the replica effect. In addition to CAP, we performed 

PERMANOVA using the adonis function from the vegan package v.2.5-3 (Dixon, 2003). We used 
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the package DESeq2 v.1.22.1 (Love et al., 2014) to compute the enrichment profiles for unique 

sequences present in the count table. 

We estimated the fraction effect across all the abiotic conditions tested by creating a group 

variable that merged the fraction variable and the abiotic condition variable together (for example, 

Root_10Pi, Substrate_10Pi). We fitted the following model specification using this group variable:  

Abundance ~ rep + experiment + group 

From the fitted model, we extracted—for all levels within the group variables—the 

following comparisons: substrate versus root and substrate versus shoot. A unique sequence was 

considered statistically significant if it had a FDR-adjusted P value < 0.05. All scripts and dataset 

objects necessary to reproduce the synthetic community analyses are deposited in the following 

GitHub repository: https://github.com/isaisg/variovoraxRGI. 

4.6.1.6 Co-occurrence analysis 

The relative abundance matrix (unique sequences × samples) was standardized across the 

unique sequences by dividing the abundance of each unique sequence in its sample over the mean 

abundance of that unique sequence across all samples. Subsequently, we created a dissimilarity 

matrix based on the Pearson correlation coefficient between all the pairs of strains in the 

transformed abundance matrix, using the cor function in the stats base package in R. Finally, 

hierarchichal clustering (method ward.D2, function hclust) was applied over the dissimilarity 

matrix constructed above. 

https://github.com/isaisg/variovoraxRGI
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4.6.1.7 Heat map and family enrichment analysis 

We visualized the results of the generalized linear model (GLM) testing the fraction effects 

across each specific abiotic condition tested using a heat map. The rows in the heat map were 

ordered according to the dendrogram order obtained from the unique sequences co-occurrence 

analysis. The heat map was coloured on the basis of the log2-transformed fold change output by 

the GLM model. We highlighted in a black shade the comparisons that were significant (q value 

< 0.05). Finally, for each of the four modules, we computed for each family present in that module 

a hypergeometric test testing if that family was overrepresented (enriched) in that particular 

module. Families with an FDR-adjusted P value < 0.1 are visualized in the figure. 

4.6.2 Deconstructing the synthetic community to four modules of co-occurring strains 
 
4.6.2.1 Bacterial culture and plant-inoculation 

Strains belonging to each module A, B, C and D (‘Co-occurrence analysis’ in ‘Arabidopsis 

with bacterial synthetic community microcosm across four stress gradients’) were grown in 

separate deep 96-well plates and mixed as described in ‘Bacterial culture and plant-inoculation’ in 

‘Arabidopsis with bacterial synthetic community microcosm across four stress gradients’. The 

concentration of each module was adjusted to OD600 = 0.05 (1/4 of the concentration of the full 

synthetic community). Each module was spread on the plates either separately, or in combination 

with another module at a total volume of 100 μl. In addition, we included a full synthetic 

community control and an uninoculated control, bringing the number of synthetic community 

combinations to 12. We performed the experiment in two independent replicates and each replicate 

included five plates per synthetic community combination. 
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4.6.2.2 In vitro plant growth conditions 

Seed sterilization and germination conditions were the same as in ‘In vitro plant growth 

conditions’ in ‘Arabidopsis with bacterial synthetic community microcosm across four stress 

gradients’. Plants were transferred to each of the synthetic-community-inoculated agar plates 

containing JM without sucrose. Plates were placed in randomized order in growth chambers and 

grown under a 16-h dark/8-h light regime at 21-°C day/18-°C night for 12 days. Upon collection, 

root morphology was measured. 

4.6.2.3 Root and shoot image analysis 

Plates were imaged 12 days after transfer, using a document scanner. Primary root length 

elongation was measured using ImageJ (Schindelin et al., 2012) and shoot area and total root 

network were measured with WinRhizo software (Regent Instruments). 

4.6.2.4 Primary root elongation analyses 

Primary root elongation was compared across the no bacteria, full synthetic community, 

single modules and pairs of modules treatments jointly using a two-sided ANOVA model 

controlling for the replicate effect. We inspected the normality assumptions (here and elsewhere) 

using qqplots and Shapiro tests. Differences between treatments were indicated using the 

confidence letter display derived from the Tukey’s post hoc test implemented in the package 

emmeans (Searle et al., 1980). 

4.6.3 Inoculating plants with all synthetic community isolates separately 
 
4.6.3.1 Bacterial culture and plant inoculation 

Cultures from each strain in the synthetic community were grown in KB medium and 

washed separately (‘Bacterial culture and plant inoculation’ in ‘Arabidopsis with bacterial 
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synthetic community microcosm across four stress gradients’), and OD600 was adjusted to 0.01 

before spreading 100 μl on plates. We performed the experiment in two independent replicates and 

each replicate included one plate per each of the 185 strains. In vitro growth conditions were the 

same as described in ‘In vitro plant growth conditions’ in ‘Deconstructing the synthetic community 

to four modules of co-occurring strains’. Upon collection, root morphology was measured (‘Root 

and shoot image analysis’ in ‘Deconstructing the synthetic community to four modules of co-

occurring strains’). Isolates generating an average main root elongation of <3 cm were classified 

as RGI-inducing strains. 

4.6.4 Tripartite plant–microorganism–microorganism experiments 
 
4.6.4.1 Experimental design 

To identify strains that revert RGI (Figure 4.1d), we selected all 18 non-RGI-inducing 

strains in module A and co-inoculated them with each of four RGI-inducing strains, one from each 

module. The experiment also included uninoculated controls and controls consisting of each of the 

22 strains inoculated alone, amounting to 95 separate bacterial combinations. 

To confirm the ability of Variovorax and Burkholderia to attenuate RGI induced by diverse 

bacteria (Figure 4.7a), three RGI-suppressing strains were co-inoculated with a selection of 18 

RGI-inducing strains. The experiment also included uninoculated controls and controls consisting 

of each of the 21 strains inoculated alone. Thus, the experiment consisted of 76 separate bacterial 

combinations. We performed each of these two experiments in two independent replicates and 

each replicate included one plate per each of the strain combinations. 
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4.6.4.2 Bacterial culture and plant-inoculation 

All strains were streaked on agar plates, then transferred to 4 ml liquid KB medium for 

over-night growth. Cultures were then washed, and OD600 was adjusted to 0.02 before mixing 

and spreading 100 μl on each plate. Upon collection, root morphology was measured (‘Root and 

shoot image analysis’ in ‘Deconstructing the synthetic community to four modules of co-occurring 

strains’) and plant RNA was collected and processed from uninoculated samples, and from 

samples with Variovorax CL14, the RGI-inducing strain Arthrobacter CL28 and the combination 

of both (‘Experimental design’ in ‘Tripartite plant–microorganism–microorganism experiments’). 

4.6.4.3 Primary root elongation analysis 

We fitted ANOVA models for each RGI-inducing strain we tested. Each model compared 

the primary root elongation with the RGI-inducing strains alone against root elongation when the 

RGI-inducing strain was co-inoculated with other isolates. The P values for all the comparisons 

were corrected for multiple testing using FDR. 

4.6.4.3 RNA extraction 

RNA was extracted from A. thaliana seedlings following previously published methods 

(Logemann et al., 1987). Four seedlings were pooled from each plate and 3–5 samples per 

treatment were flash frozen and stored at −80 °C until processing. Frozen seedlings were ground 

using a TissueLyzer II (Qiagen), then homogenized in a buffer containing 400 μl of Z6-buffer; 8 

M guanidine HCl, 20 mM MES, 20 mM EDTA at pH 7.0. Four hundred μl 

phenol:chloroform:isoamylalcohol, 25:24:1 was added, and samples were vortexed and 

centrifuged (20,000g, 10 min) for phase separation. The aqueous phase was transferred to a new 

1.5-ml Eppendorf tube and 0.05 volumes of 1 N acetic acid and 0.7 volumes 96% ethanol were 
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added. The RNA was precipitated at −20 °C overnight. Following centrifugation (20,000g, 10 min, 

4 °C), the pellet was washed with 200 μl sodium acetate (pH 5.2) and 70% ethanol. The RNA was 

dried and dissolved in 30 μl of ultrapure water and stored at −80 °C until use. 

4.6.4.4 Plant RNA sequencing 

Illumina-based mRNA-seq libraries were prepared from 1 μg RNA following previously 

published methods (Herrera Paredes et al., 2018). mRNA was purified from total RNA using Sera-

mag oligo(dT) magnetic beads (GE Healthcare Life Sciences) and then fragmented in the presence 

of divalent cations (Mg2+) at 94 °C for 6 min. The resulting fragmented mRNA was used for first-

strand cDNA synthesis using random hexamers and reverse transcriptase, followed by second-

strand cDNA synthesis using DNA polymerase I and RNaseH. Double-stranded cDNA was end-

repaired using T4 DNA polymerase, T4 polynucleotide kinase and Klenow polymerase. The DNA 

fragments were then adenylated using Klenow exo-polymerase to allow the ligation of Illumina 

Truseq HT adapters (D501–D508 and D701–D712). All enzymes were purchased from 

Enzymatics. Following library preparation, quality control and quantification were performed 

using a 2100 Bioanalyzer instrument (Agilent) and the Quant-iT PicoGreen dsDNA Reagent 

(Invitrogen), respectively. Libraries were sequenced using Illumina HiSeq4000 sequencers to 

generate 50-bp single-end reads. 

4.6.4.5 RNA-seq read processing 

Initial quality assessment of the Illumina RNA-seq reads was performed using FastQC 

v.0.11.7. Trimmomatic v.0.36 (Bolger et al., 2014) was used to identify and discard reads 

containing the Illumina adaptor sequence. The resulting high-quality reads were then mapped 

against the TAIR10 Arabidopsis reference genome using HISAT2 v.2.1.0 (Kim et al., 2015) with 
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default parameters. The featureCounts function from the Subread package (Liao et al., 2013) was 

then used to count reads that mapped to each one of the 27,206 nuclear protein-coding genes. 

Evaluation of the results of each step of the analysis was performed using MultiQC v.1.1 (Ewels 

et al., 2016). Raw sequencing data and read counts are available at the NCBI Gene Expression 

Omnibus accession number GSE131158. 

4.6.5 Variovorax drop-out experiment 
 
4.6.5.1 Bacterial culture and plant-inoculation 

The entire synthetic community, excluding all 10 Variovorax isolates and all 5 

Burkholderia isolates, was grown and prepared as described in ‘Bacterial culture and plant 

inoculation’ in ‘Arabidopsis with bacterial synthetic community microcosm across four stress 

gradients’. The Variovorax and Burkholderia isolates were grown in separate tubes, washed and 

added to the rest of the synthetic community to a final OD600 of 0.001 (the calculated OD600 of 

each individual strain in a 185-member synthetic community at a total of OD600 of 0.2), to form 

the following five mixtures: (i) full community: all Variovorax and Burkholderia isolates added to 

the synthetic community; (ii) Burkholderia drop-out: only Variovorax isolates added to the 

synthetic community; (iii) Variovorax drop-out: only Burkholderia isolates added to the synthetic 

community; (iv) Variovorax and Burkholderia drop-out: no isolates added to the synthetic 

community; (v) uninoculated plants: no synthetic community. The experiment consisted of six 

plates per synthetic community mixture, amounting to 30 plates. Upon collection, root morphology 

was measured and analysed (‘Root and shoot image analysis’ in ‘Deconstructing the synthetic 

community to four modules of co-occurring strains’, and in ‘Primary root elongation analysis’ in 

‘Tripartite plant–microorganism–microorganism experiments’); and bacterial DNA (‘DNA 

extraction’ and ‘Bacterial 16S rRNA sequencing’ in ‘Arabidopsis with bacterial synthetic 
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community microcosm across four stress gradients’) and plant RNA (‘RNA extraction’ and ‘Plant 

RNA sequencing’ in ‘Tripartite plant–microorganism–microorganism experiments’) were 

collected and processed. 

4.6.6 Variovorax drop-out under varying abiotic contexts 
 
4.6.6.1 Bacterial culture and plant-inoculation 

The composition of JM in the agar plates was amended to produce abiotic environmental 

variation. These amendments included salt stress (150 mM NaCl), low phosphate (10 μM 

phosphate), high pH (pH 8.2) and high temperature (plates incubated at 31 °C), as well as an 

unamended JM control. Additionally, we tested a different medium (1/2-strength Murashige and 

Skoog (MS)) and a soil-like substrate. As a soil-like substrate, we used calcined clay (Diamond 

Pro), prepared as follows: 100 ml of clay was placed in Magenta GA7 jars. The jars were then 

autoclaved twice. Forty ml of liquid JM was added to the Magenta jars, with the corresponding 

bacterial mixture spiked into the media at a final OD600 of 5 × 10−4. Four 1-week old seedlings 

were transferred to each vessel, and vessels were covered with Breath-Easy gas permeable sealing 

membrane (Research Products International) to maintain sterility and gas exchange. 

The entire synthetic community, excluding all 10 Variovorax isolates, was grown and 

prepared as described in ‘Bacterial culture and plant inoculation’ in ‘Arabidopsis with bacterial 

synthetic community microcosm across four stress gradients’. The Variovorax isolates were grown 

in separate tubes, washed and added to the rest of the synthetic community to a final OD600 of 

0.001 (the calculated OD600 of each individual strain in a 185-member synthetic community at an 

OD600 of 0.2), to form the following five mixtures: (i) full community: all Variovorax isolates 
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added to the synthetic community; (ii) Variovorax drop-out: no isolates added to the synthetic 

community; (iii) uninoculated plants: no synthetic community. 

We inoculated all 3 synthetic community combinations in all 7 abiotic treatments, 

amounting to 21 experimental conditions. We performed the experiment in 2 independent 

replicates and each replicate included 3 plates per experimental conditions, amounting to 63 plates 

per replicate. Upon collection, root morphology was measured (‘Root and shoot image analysis’ 

in ‘Deconstructing the synthetic community to four modules of co-occurring strains’); and 

Bacterial DNA (‘DNA extraction, ‘Bacterial 16S rRNA sequencing’ and ‘16S rRNA amplicon 

sequence data processing’ in ‘Arabidopsis with bacterial synthetic community microcosm across 

four stress gradients’) and plant RNA (‘RNA extraction’, ‘Plant RNA sequencing’ and ‘RNA-seq 

read processing’ in ‘Tripartite plant–microorganism–microorganism experiments’) were collected 

and processed. 

4.6.6.2 Root image analysis 

For agar plates, roots were imaged as described in ‘Root and shoot image analysis’ in 

‘Deconstructing the synthetic community to four modules of co-occurring strains’. For calcined 

clay pots, four weeks after transferring, pots were inverted, and whole root systems were gently 

separated from the clay by washing with water. Root systems were spread over an empty Petri dish 

and scanned using a document scanner. 

4.6.6.3 Primary root elongation and total root network analysis 

Primary root elongation was compared between synthetic-community treatments within 

each of the different abiotic contexts tested independently. Differences between treatments were 
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indicated using the confidence letter display derived from the Tukey’s post hoc test implemented 

in the package emmeans. 

4.6.6.4 Bacterial 16S rRNA data analysis 

To be able to compare shifts in the community composition of samples treated with and 

without the Variovorax genus, we in silico-removed the 10 Variovorax isolates from the count 

table of samples inoculated with the full community treatment. We then merged this count table 

with the count table constructed from samples inoculated without the Variovorax genus 

(Variovorax drop-out treatment). Then, we calculated a relative abundance of each unique 

sequence across all the samples using the merged count matrix. Finally, we applied CAP over the 

merged relative abundance matrix to control for the replica effect. In addition, we used the function 

adonis from the vegan (Dixon, 2003) R package to compute a PERMANOVA test over the merged 

relative abundance matrix and we fitted a model evaluating the fraction and synthetic community 

(presence of Variovorax) effects over the assembly of the community. 

4.6.7 Variovorax drop-out under varying biotic contexts 
 
4.6.7.1 Bacterial culture and plant-inoculation 

Strains belonging to modules A (excluding Variovorax), C and D were grown in separate 

wells in deep 96-well plates and mixed as described in ‘Bacterial culture and plant inoculation’ in 

‘Arabidopsis with bacterial synthetic community microcosm across four stress gradients’. The 

concentration of each module was adjusted to OD600 = 0.05 (1/4 of the concentration of the full 

synthetic community). The Variovorax isolates were grown in separate tubes, washed and added 

to the rest of the synthetic community to a final OD600 of 0.001. 
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In a separate experiment, the 35-member synthetic community used in (Castrillo et al., 

2017) was grown, excluding Variovorax CL14, to create a taxonomically diverse, Variovorax-free 

subset of the full 185-member community. The concentration of this synthetic community was 

adjusted to OD600 = 0.05. The Variovorax isolates were grown in separate tubes, washed and 

added to the rest of the synthetic community to a final OD600 of 0.001. 

These two experiments included the following mixtures (Figure 4.8b): (i) module A 

excluding Variovorax; (ii) module C; (iii) module D; (iv) module A including Variovorax; (v) 

module C + all 10 Variovorax; (vi) module D + all 10 Variovorax; (vii) 35-member synthetic 

community excluding the one Variovorax found therein; (viii) 34-member synthetic community + 

all 10 Variovorax; (ix) uninoculated control. The experiment with modules A, C and D was 

performed in two independent experiments, with two plates per treatment in each. The experiment 

with the 34-member synthetic community was performed once, with 5 plates per treatment. Upon 

collection, root morphology was measured (‘Root and shoot image analysis’ in ‘Deconstructing 

the synthetic community to four modules of co-occurring strains’). 

4.6.7.2 Primary root elongation analysis 

We directly compared differences between the full synthetic community and Variovorax 

drop-out treatment using a t-test and adjusting the P values for multiple testing using FDR. 

4.6.8 Phylogenetic inference of the synthetic community and Variovorax isolates 

To build the phylogenetic tree of the synthetic community isolates, we used the previously 

described super matrix approach (Levy et al., 2018). We scanned 120 previously defined marker 

genes across the 185 isolate genomes from the synthetic community using the hmmsearch tool 

from the hmmer v.3.1b2 (Eddy, 2011). Then, we selected 47 markers that were present as single-
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copy genes in 100% of our isolates. Next, we aligned each individual marker using MAFFT (Katoh 

et al., 2002) and filtered low-quality columns in the alignment using trimAl (Capella-Gutiérrez et 

al., 2009). Then, we concatenated all filtered alignments into a super alignment. Finally, FastTree 

v.2.1 (M. N. Price et al., 2010) was used to infer the phylogeny using the WAG model of evolution. 

For the tree of the relative of Variovorax, we chose 56 markers present as single copy across 124 

Burkholderiales isolates and implemented the same methodology described above. 

4.6.9 Measuring how prevalent the RGI suppression trait is across the Variovorax phylogeny 
 
4.6.9.1 Bacterial culture and plant-inoculation 

Fifteen Variovorax strains from across the phylogeny of the genus were each co-inoculated 

with the RGI-inducing Arthrobacter CL28. All 16 strains were grown in separate tubes, then 

washed and OD600 was adjusted to 0.01 before mixing. Pairs of strains were mixed in 1:1 ratios 

and spread at a total volume of 100 μl onto agar before seedling transfer. The experiment also 

included uninoculated controls and controls consisting of each of the 16 strains inoculated alone. 

Thus, the experiment consisted of 32 separate bacterial combinations. We performed the 

experiment one time, which included three plates per bacterial combination. Upon collection, 

primary root elongation was analysed as described in ‘‘Root and shoot image analysis’ in 

‘Deconstructing the synthetic community to four modules of co-occurring strains’. 

4.6.10 Measuring RGI in tomato seedlings 
 
4.6.10.1 Experimental design 

This experiment included the following treatments: (i) no bacteria, (ii) Arthrobacter CL28, 

(iii) Variovorax CL14 and (iv) Arthrobacter CL28 + Variovorax CL14. Each treatment was 
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repeated in three separate agar plates with five tomato seedlings per plate. The experiment was 

repeated in two independent replicates. 

4.6.10.2 Bacterial culture and plant inoculation 

All strains were grown in separate tubes, then washed and OD600 was adjusted to 0.01 

before mixing and spreading (‘Bacterial culture and plant inoculation’ in ‘Tripartite plant–

microorganism–microorganism experiments’). Four hundred μl of each bacterial treatment was 

spread on 20 × 20 agar plates containing JM agar with no sucrose. 

4.6.10.3 In vitro plant growth conditions 

We used tomato cultivar Heinz 1706 seeds. All seeds were soaked in sterile distilled water 

for 15 min, then surface-sterilized with 70% bleach, 0.2% Tween-20 for 15 min, and rinsed 5 times 

with sterile distilled water to eliminate any seed-borne microorganisms on the seed surface. Seeds 

were stratified at 4 °C in the dark for 2 days. Plants were germinated on vertical square 10 × 10 

cm agar plates with JM containing 0.5% sucrose, for 7 days. Then, 5 plants were transferred to 

each of the synthetic-community-inoculated agar plates. Upon collection, root morphology was 

measured (‘Root and shoot image analysis’ in ‘Deconstructing the synthetic community to four 

modules of co-occurring strains’). 

4.6.10.4 Primary root elongation analysis 

Differences between treatments were indicated using the confidence letter display derived 

from the Tukey’s post hoc test from an ANOVA model. 
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4.6.11 Determination of Arthrobacter CL28 colony forming units from roots 

Arabidopsis seedlings were inoculated with (i) Arthrobacter CL28 alone, (ii) Arthrobacter 

CL28 + Variovorax CL14 or (iii) Arthrobacter CL28 + Variovorax B4, as described in ‘Bacterial 

culture and plant inoculation’ in ‘Tripartite plant–microorganism–microorganism experiments’. 

Each bacterial treatment included four separate plates, with nine seedlings in each plate. Upon 

collection, all seedlings were placed in pre-weighed 2-ml Eppendorf tubes containing 3 glass 

beads, 3 seedlings per tube (producing 12 data points per treatment). Roots were weighed, and 

then homogenized using a bead beater (MP Biomedicals). The resulting suspension was serially 

diluted, then plated on LB agar plates containing 50 μg/ml of apramycin to select for Arthrobacter 

CL28 colonies and colonies were counting after incubation of 48 h at 28 °C. 

4.6.12 Arabidopsis RNA-seq analysis 
 
4.6.12.1 Detection of RGI-induced genes 

To measure the transcriptional response of the plant to the different synthetic community 

combinations, we used the R package DESeq2 v.1.22.1 (Love et al., 2014). The raw count genes 

matrices for the drop-out and tripartite experiments were used independently to define 

differentially expressed genes (DEGs). For the analysis of both experiments we fitted the following 

model specification:  

Abundance gene ~ synthetic community. 

From the fitted models, we derived the following contrasts to obtain DEGs. A gene was 

considered differentially expressed if it had a q-value < 0.1. For the tripartite system (‘Tripartite 

plant–microorganism–microorganism experiments’), we performed the following contrasts: 

Arthrobacter CL28 versus no bacteria (NB) and Arthrobacter CL28 versus Arthrobacter CL28 
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co-inoculated with Variovorax CL14. The logic behind these two contrasts was to identify genes 

that were induced in RGI plants (Arthrobacter CL28 versus NB) and repressed by Variovorax 

CL14. For the drop-out system (‘Variovorax drop-out experiment’), we performed the following 

contrasts, Variovorax drop-out versus NB, and Variovorax drop-out versus full synthetic 

community. The logic behind these two contrasts was identical to the tripartite system: to identify 

genes that are associated with the RGI phenotype (Variovorax drop-out versus NB contrast) and 

repressed when Variovorax are present (Variovorax drop-out versus full synthetic community 

contrast). 

For visualization purposes, we applied a variance stabilizing transformation (DESeq2) to 

the raw count gene matrix. We then standardized each gene expression (z-score) along the samples. 

We subset DEGs from this standardized matrix and calculated the mean z-score expression value 

for each synthetic community treatment. 

To identify the tissue-specific expression profile of the 18 intersecting genes between the 

tripartite and drop-out systems, we downloaded the spatial expression profile of each gene from 

the Klepikova atlas (Klepikova et al., 2016) using the bio-analytic resource of plant biology 

platform. Then, we constructed a spatial expression matrix of the 18 genes and computed pairwise 

Pearson correlation between all pairs of genes. Finally, we applied hierarchical clustering to this 

correlation matrix. 

4.6.12. Comparison with acute auxin response dataset 

We applied the variance stabilizing transformation (DESeq2) to the raw count gene matrix. 

We then standardized each gene expression (z-score) along the samples. From this matrix, we 

subset 12 genes that in a previous study (uchida et al., 2018) exhibited the highest fold change 
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between auxin-treated and untreated samples. Finally, we calculated the mean z-score expression 

value of each of these 12 genes across the synthetic community treatments. We estimated the 

statistical significance of the trend of these 12 genes between a pair of synthetic community 

treatments (full synthetic community versus Variovorax drop-out, Arthrobacter CL28 versus 

Arthrobacter CL28 plus Variovorax CL14) using a permutation approach: we estimated a P value 

by randomly selecting 12 genes 10,000 times from the expression matrix and comparing the mean 

expression between the two synthetic community treatments (for example, full synthetic 

community versus Variovorax drop-out) with the actual mean expression value from the 12 genes 

reported as robust auxin markers. 

4.6.13 Measuring the ability of Variovorax to attenuate RGI induced by small molecules IAA, 
2,4-dichlorophenoxyacetic acid, ethylene (ACC), cytokinins (zeatin and 6-
benzylaminopurine) and flagellin 22 peptide (flg22) 
 
4.6.13.1 Bacterial culture and plant inoculation 

We embedded each of the following compounds in JM plates: 100 nM IAA (Sigma), 100 

nM 1- ACC) (Sigma), 100 nM 2,4-dichlorophenoxyacetic acid (Sigma), 100 nM flg22 (PhytoTech 

labs), 100 nM 6-benzylaminopurine (BAP) (Sigma) and 100 nM zeatin (Sigma). As some of these 

compound stocks were initially solubilized in ethanol, we included comparable amounts of ethanol 

in the control treatments. Plates with each compound were inoculated with one of the Variovorax 

strains CL14, MF160, B4 or YR216 or with Burkholderia CL11. These strains were grown in 

separate tubes, then washed and OD600 was adjusted to 0.01 before spreading 100 μl on plates. In 

addition, we included uninoculated controls for each compound. We also included unamended JM 

plates inoculated with the RGI-inducing Arthrobacter CL28 co-inoculated with each of the 

Variovorax or Burkholderia strains, or alone. Thus, the experiment included 42 individual 

treatments. The experiment was repeated twice, with three independent replicates per experiment. 
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Upon collection, root morphology was measured (‘Root and shoot image analysis’ in 

‘Deconstructing the synthetic community to four modules of co-occurring strains’). 

4.6.13.2 Primary root elongation analysis 
 

Primary root elongation was compared between bacterial treatments within each of RGI 

treatments tested. Differences between treatments were estimated as described in ‘Primary root 

elongation analysis’ in ‘Tripartite plant–microorganism–microorganism experiments’. We plotted 

the estimated means with 95% confidence interval of each bacterial treatment across the different 

RGI treatments. 

4.6.14 In vitro growth of Variovorax 

Variovorax CL14 was grown in 5-ml cultures for 40 h at 28 °C in 1× M9 minimal salts 

medium (Sigma M6030) supplemented with 2 mM MgSO4, 0.1 mM CaCl2, 10 μM FeSO4, and a 

carbon source: either 15 mM succinate alone, 0.4 mM IAA with 0.5% ethanol for IAA 

solubilization, or both. Optical density at 600 nm and IAA concentrations were measured at six 

time points. IAA concentrations were measured using the Salkowski method modified from 

(Gordon & Weber, 1951). One hundred μl of Salkowski reagent (10 mM FeCl3 in 35% perchloric 

acid) was mixed with 50 μl culture supernatant or IAA standards and colour was allowed to 

develop for 30 min before measuring the absorbance at 530 nm. 

4.6.15 Measuring plant auxin response in vivo using a bioreporter line 

4.6.15.1 Bacterial culture and plant-inoculation 

Seven-day-old transgenic Arabidopsis seedlings expressing the DR5::GFP reporter 

construct (Friml et al., 2003) were transferred onto plates containing: (i) 100 nM IAA, (ii) 

Arthrobacter CL28, (iii) 100 nM IAA + Variovorax CL14, (iv) Arthrobacter CL28 + Variovorax 
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CL14, (v) uninoculated plates. For treatments (ii) and (iii), Bacterial strains were grown in separate 

tubes, then washed and OD600 was adjusted to 0.01. For treatment (iv), OD-adjusted cultures were 

mixed in 1:1 ratios and spread onto agar before seedling transfer. 

4.6.15.2 Fluorescence microscopy 

GFP fluorescence in the root elongation zone of 8–10 plants per treatment were visualized 

using a Nikon Eclipse 80i fluorescence microscope at days 1, 3, 6, 9 and 13 after inoculation. The 

experiment was performed in two independent replicates. 

From each root imaged, 10 random 30 × 30 pixel squares were sampled and average GFP 

intensity was measured using imageJ (Schindelin et al., 2012). Treatments were compared within 

each time point using ANOVA tests with Tukey’s post hoc in the R base package emmeans. For 

visualization purposes, we plotted the estimated means of each bacterial across the different time 

points 

4.6.16 Measuring the dual role of auxin and ethylene perception in synthetic-community-
induced RGI 
 
4.6.16.1 Bacterial culture and plant inoculation 

We transferred four 7-day-old wild-type seedling and four axr2-1seedlings to each plate in 

this experiment. The plates contained one of five bacterial treatments: (i) Arthrobacter CL28, (ii) 

Arthrobacter CL28 + Variovorax CL14, (iii) Variovorax drop-out synthetic community, (iv) full 

synthetic community, (v) uninoculated, prepared as described in ‘Bacterial culture and plant 

inoculation’ in ‘Variovorax drop-out under varying abiotic contexts’, and in ‘Bacterial culture and 

plant inoculation’ in ‘Measuring plant auxin response in vivo using a bioreporter line’. Plates were 

placed vertically inside sealed 86 × 68 cm Ziploc bags. In one of the bags, we placed an open water 
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container with 80 2.5 g sachets containing 0.014% 1-MCP (Ethylene Buster, Chrystal International 

BV). In the second bag we added, as a control, an open water container. Both bags were placed in 

the growth chamber for 12 days. After 6 days of growth, we added 32 additional sachets to the 1-

MCP-treated bag to maintain 1-MCP concentrations in the air. Upon collection, root morphology 

was measured (‘Root and shoot image analysis’ in ‘Deconstructing the synthetic community to 

four modules of co-occurring strains’). 

4.6.16.2 Primary root elongation analysis 

Primary root elongation was standardized to the no-bacteria control of each genotype, and 

compared between genotype and 1-MCP treatments within the Arthrobacter CL28 treatment and 

within the Variovorax drop-out synthetic community treatment, independently. Differences 

between treatments were estimated as described in ‘Primary root elongation analysis’ in ‘Tripartite 

plant–microorganism–microorganism experiments’. We plotted the estimated means with 95% 

confidence interval of each bacterial treatment across the four genotypes. We calculated the IQR 

for the full and Arthrobacter CL28 with Variovorax CL14 treatments, pooling the four genotypes 

and MCP treatments. 

4.6.17 Preparation of binarized plant images 

To present representative root images, we increased contrast and subtracted background in 

ImageJ (Schindelin et al., 2012), then cropped the image to select representative roots. 

Neighboring roots were manually erased from the cropped image. 
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4.6.18 Mining Variovorax genomes for auxin degradation operons and ACC-deaminase 
genes and comparative genomics of Variovorax genomes against the other synthetic 
community members 

We used local alignment (BLASTp) (Altschul et al., 1990) to search for the presence of 

the 10 genes (iacA, iacB, iacC, iacD, iacE, iacF, iacG, iacH, iacI and iacY) from a previously 

characterized auxin degradation operon in a different genus (J. H. J. Leveau & Gerards, 2008) 

across the 10 Variovorax isolates in our synthetic community. A minimal set of seven of these 

genes (iacA, iacB, iacC, iacD, iacE, iacF and iacI) was shown to be necessary and sufficient for 

auxin degradation (Donoso et al., 2017). We identified homologues for these genes across the 

Variovorax phylogeny (Figure 4.9a) at relatively low sequence identity (27–48%). Two genes of 

the minimal set of seven genes did not have any homologues in most Variovorax genomes (iacB 

and iacI). In addition to the iac operon, we scanned the genomes for the auxin degradation operon 

described in (Ebenau-Jehle et al., 2012) and could not identify it in any of the Variovorax isolates. 

We also searched for the ACC deaminase gene by looking for the KEGG orthology 

identifier K01505 (1-aminocyclopropane-1-carboxylate deaminase) across the IMG annotations 

available for all our genomes. 

We used orthofinder v.2.2.1 (Emms & Kelly, 2015) to construct orthogroups (group of 

homologue sequences) using all the coding sequences of the 10 Variovorax isolates included in 

the full 185-member synthetic community. We aligned each orthogroup using MAFFT v.707  

(Katoh et al., 2002) and proceeded to build hidden Markov model (HMM) profiles from the 

alignments using hmmbuild v.3.1b2 (Eddy, 2011). We then used the HMM profiles that consist of 

core genes (present in the 10 isolates) in the Variovorax genus and scanned the 175 remaining 

genomes in the synthetic community for these HMM profiles using hmmsearch v.31.b2 (Eddy, 
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2011). We then selected orthogroups that were less than 5% prevalent in the 175 remaining isolates 

scanned. Finally, taking the Variovorax CL14 genome as a reference, we built hotspots of 

physically adjacent selected orthogroups. We used an iterative approach that extended adjacent 

orthogroups if they were less than 10 kb from each other. As a final filtering step, we selected 

hotspots that contained more than 10 selected orthogroups. 

4.6.19 Variovorax CL14 RNA-seq in monoculture and in coculture with Arthrobacter CL28 

 
4.6.19.1 Bacterial culture 

Variovorax CL14 was grown either alone or in coculture with Arthrobacter CL28 in 5 ml 

of 1/10 2× YT medium (1.6 g/l tryptone, 1 g/l yeast extract, 0.5 g/l NaCl) in triplicate. The 

monoculture was inoculated at OD600 of 0.02 and the coculture was inoculated with OD600 of 

0.01 of each strain. Cultures were grown at 28 °C to early stationary phase (approximately 22 h) 

and cells were collected by centrifugation at 4,100g for 15 min and frozen at −80 °C before RNA 

extraction. 

4.6.19.2 RNA extraction and RNA-seq 

Cells were lysed for RNA extraction using TRIzol Reagent (Invitrogen) according to the 

manufacturer instructions. Following cell lysis and phase separation, RNA was purified using the 

RNeasy Mini kit (Qiagen) including the optional on column DNase Digestion with the RNase-

Free DNase Set (Qiagen). Total RNA quality was confirmed on the 2100 Bioanalyzer instrument 

(Agilent) and quantified using a Qubit 2.0 fluorometer (Invitrogen). RNA-seq libraries were 

prepared using the Universal Prokaryotic RNA-Seq, Prokaryotic AnyDeplete kit (Tecan, formerly 

NuGEN). Libraries were pooled and sequenced on the Illumina HiSeq4000 platform to generate 

50-bp single-end reads. 
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4.6.19.3 RNA-seq analysis 

We mapped the generated raw reads to the Variovorax CL14 genome (fasta file available 

on https://github.com/isaisg/variovoraxRGI/blob/master/rawdata/2643221508.fna) using bowtie2 

(Langmead & Salzberg, 2012) with the ‘very sensitive’ flag. We then counted hits to each 

individual coding sequence annotated for the Variovorax CL14 genome using the function 

featureCounts from the R package Rsubread (Liao et al., 2013), inputting the Variovorax CL14 

gff file (available on 

https://github.com/isaisg/variovoraxRGI/blob/master/rawdata/2643221508.gff) and using the 

default parameters with the flag allowMultiOverlap = FALSE. Finally, we used DESeq2 (Love et 

al., 2014) to estimate DEGs between treatments with the corresponding fold change estimates and 

FDR-adjusted P values. 

4.6.20 Variovorax CL14 genomic library construction and screening 

4.6.20.1 Library construction 

High-molecular weight Variovorax CL14 genomic DNA was isolated by phenol–

chloroform extraction. This genomic DNA was partially digested with Sau3A1 (New England 

Biolabs), and separated on the BluePippin (Sage Science) to isolate DNA fragments >12.5 kb. 

Vector backbone was prepared by amplifying pBBR-1MCS262 using Phusion polymerase (New 

England Biolabs) with primers JMC277–JMC278, digesting the PCR product with BamHI-HF 

(New England Biolabs), dephosphorylating with Quick CIP (New England Biolabs), and gel 

extracting using the QIAquick Gel Extraction Kit (Qiagen). The prepared Variovorax CL14 

genomic DNA fragments were ligated to the prepared pBBR1-MCS2 vector backbone using 

ElectroLigase (New England Biolabs) and transformed by electroporation into NEB 10-beta 

Electrocompetent E. coli (New England Biolabs). Clones were selected by blue–white screening 
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on LB plates containing 1.5% agar, 50 μg/ml kanamycin, 40 μg/ml X-gal (5-bromo-4-chloro-3-

indolyl-β-D-galactopyranoside), and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 

37 °C. White colonies were screened by colony PCR using Taq polymerase and JMC247–JMC270 

primers  to eliminate clones with small inserts. The screened library clones were picked into LB 

medium + 50 μg/ml kanamycin, grown at 37 °C, and stored at −80 °C in 20% glycerol. The 

Variovorax CL14 genomic library comprises approximately 3,500 clones with inserts >12.5 kb in 

vector pBBR1-MCS2 in NEB 10-beta E. coli. 

4.6.20.2 Library screening for IAA degradation 

To screen the Variovorax CL14 genomic library for IAA degradation, the E. coli clones 

were grown in LB medium containing 50 μg/ml kanamycin, 1 mM IPTG, 0.05 mg/ml IAA, and 

0.25% ethanol from IAA solubilization for 3 days at 37 °C. Salkowski reagent (10 mM FeCl3 in 

35% perchloric acid) was mixed with culture supernatant 2:1 and colour was allowed to develop 

for 30 min before measuring the absorbance at 530 nm. Two clones from the library (plate 8A well 

E8 and plate2A well F10, henceforth vector 1 and vector 2, respectively) were identified as 

degrading IAA. The Variovorax CL14 genes contained in vectors 1 and 2 were inferred by 

isolating plasmid from these clones using the ZymoPURE II Plasmid Midiprep Kit (Zymo 

Research) and Sanger-sequencing the insert ends using primers JMC247 and JMC270. Double 

digest of the purified plasmids with SacI and EcoRV confirmed the size of the inserts. Vector 1 

contains a 35-kb insert and vector 2 contains a 15-kb insert (nucleotide coordinates 29,100–64,406 

and 52,627–67,679, respectively, from Variovorax CL14 scaffold Ga0102008_10005) (Figures 

4.4a and 4.13b). The genes in both inserts are in the same direction as the IPTG0inducible Lac 

promoter used to drive LacZ-alpha expression for blue–white screening on pBBR1-MCS2. 
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4.6.21 Acidovorax Root219::EV and Acidovorax root219::V2 construction and screening 

Triparental mating was used to mobilize vector 2 or control EV pBBR1-MCS2 from E. 

coli to Acidovorax root219. Donor NEB 10-beta E. coli containing the vector for conjugation and 

helper strain E. coli pRK201363 were grown in LB medium containing 50 μg/ml kanamycin at 

37 °C. Acidovorax root219 was grown in 2xYT medium containing 100 μg/ml ampicillin at 28 °C. 

Bacteria were washed 3 times with 2xYT medium without antibiotics, mixed in a ratio of 

approximately 1:1:10 donor:helper:recipient, centrifuged and resuspended in 1/10 the volume and 

plated as a pool on LB agar plates without antibiotics and grown at 28 °C. Eighteen to thirty h 

later, exconjugantes were streaked on LB agar plates containing 50 μg/ml kanamycin and 100 

μg/ml ampicillin to select only Acidovorax root219 containing the conjugated vector. The resulting 

strains are designated Acidovorax root219::EV containing empty vector pBBR1-MCS2 and 

Acidovorax root219::V2 containing vector 2. In vitro IAA degradation was performed as in ‘In 

vitro growth of Variovorax’ using M9 medium with carbon sources: 15 mM succinate, 0.1 mg/ml 

IAA and 0.5% ethanol with the addition of 50 μg/ml kanamycin and 1 mM IPTG. Primary root 

elongation measurement was performed as described in ‘Root and shoot image analysis’ in 

‘Deconstructing the synthetic community to four modules of co-occurring strains’, on MS medium 

with 1 mM IPTG and RGI induced by either 100 nM IAA or Arthrobacter CL28. Acidovorax 

root219::V2 root colonization was compared to Variovorax CL14 colonization by plating a subset 

of ground root samples from the root elongation experiment (see ‘Determination of Arthrobacter 

CL28 colony forming units from roots’ for root collection and processing protocol) on LB agar 

plates containing 100 μg/ml ampicillin, for which Arthrobacter CL28 is susceptible and 

Variovorax CL14 and Acidovorax Root219 are not. Number of colony-forming units (CFUs) was 

normalized to root weight (Figure 4.13d). 
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4.6.22 Variovorax hotspot 33 knockout construction and screening 

4.6.22.1 Knockout suicide vector pJMC158 construction 

The unmarked deletion mutant Variovorax CL14 Δ2643613653–2643613677 (Variovorax 

CL14 ΔHS33) was constructed based on a genetic system developed for Burkholderia spp. and its 

suicide vector pMo13064 

The vector backbone was amplified from pMo130 using primers JMC203–JMC204 with 

Q5 DNA polymerase (New England Biolabs), cleaned up and treated with DpnI (New England 

Biolabs). One-kb regions for homologous recombination flanking Variovorax CL14 genes 

2643613653–2643613677 were amplified using Q5 Polymerase (New England Biolabs) and 

primers JMC533–JMC534 and JMC535–JMC536. The vector was assembled with Gibson 

Assembly Mastermix (New England Biolabs) at 50 °C for 1 h, transformed into NEB 5-alpha 

chemically competent E. coli (New England Biolabs), and plated on LB agar with 50 μg/ml 

kanamycin. pJMC158 DNA was isolated from a clone using the ZR Plasmid Miniprep Classic Kit 

(Zymo Research), sequence confirmed, and transformed into biparental mating strain E. coli 

WM3064. E. coli strain WM3064 containing pJMC158 was maintained on LB containing 50 μg/ml 

kanamycin and 0.3 mM diaminopimelic acid (DAP) at 37 °C. 

4.6.22.2 Conjugative transfer of pJMC158 into Variovorax CL14 

For biparental mating, E. coli WM3064 containing pJMC158 was grown as above, and 

Variovorax CL14 was grown in 2xYT medium containing 100 μg/ml ampicillin. Each strain was 

washed separately 3 times with 2xYT medium, then mixed at ratios between 1:1–1:10 

donor:recipient, centrifuged and resuspended in approximately 1/10 the volume and plated in a 

single pool on LB agar containing 0.3 mM DAP and grown at 28 °C overnight. Exconjugants were 
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streaked onto LB plates containing 100 μg/ml ampicillin, 50 μg/ml kanamycin lacking DAP and 

grown at 28 °C to select Variovorax CL14 strains that incorporated suicide vector pJMC158. First 

crossover strains were subsequently purified once by restreaking and then individual colonies 

grown in LB with 100 μg/ml ampicillin, 50 μg/ml kanamycin. 

4.6.22.3 Resolution of pJMC158 integration and knockout strain purification and 
verification 

To resolve the integration of pJMC158, first crossover strains were grown once in LB 

medium containing 100 μg/ml ampicillin and 1 mM IPTG then plated on medium containing 10 

g/l tryptone, 5 g/l yeast extract, 100 g/l sucrose, 1.5% agar, 100 μg/ml ampicillin and 1 mM IPTG. 

Colonies were picked into the same liquid medium and grown once. The resulting strains were 

screened by PCR using Q5 polymerase for deletion of genes 2643613653–2643613677 using 

primers JMC568–JMC569.These strains were subsequently plate-purified at least 3 times on LB 

100 μg/ml ampicillin plates. To ensure strain purity, PCR primers were designed to amplify from 

outside into the genes that were deleted (primer pairs JMC571–JMC569 and JMC568–JMC570). 

These PCR reactions were performed using Q5 polymerase with wild-type Variovorax CL14 as a 

control. All genomic DNA used for screening PCR was isolated using the Quick-DNA miniprep 

kit (Zymo Research). The resulting knockout strain was designated Variovorax CL14 ΔHS33. 

4.6.22.4 Screening of Variovorax CL14ΔHS33 

In vitro IAA degradation was performed as in ‘In vitro growth of Variovorax’ using M9 

medium with carbon sources: 15 mM succinate, 0.1 mg/ml IAA and 0.5% ethanol. Primary root 

elongation measurement was performed as described in ‘Root and shoot image analysis’ in 

‘Deconstructing the synthetic community to four modules of co-occurring strains’, on MS medium 

with 1mM IPTG and RGI induced by either 100 nM IAA or Arthrobacter CL28. To control for 
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pleiotropic colonization effects, CFU counts were obtained for both CL14 and CL14 ΔHS33 in 

binary-association with the plant (see ‘Determination of Arthrobacter CL28 colony-forming units 

from roots’ for root collection and processing protocol). CL14 ΔHS33 colonization was not 

impaired (Figure 4.13e). 

4.6.23 Screening existing 16S rRNA census data for Variovorax 

4.6.23.1 Natural Arabidopsis populations across Europe (Thiergart et al., 2020) 

We used the DADA2 (Callahan et al., 2016) pipeline to create amplicon sequence variants 

(ASVs) from the raw reads published in (Thiergart et al., 2020) We then used the naive Bayes 

classifier implemented in mothur (Schloss et al., 2009) to taxonomically classify each ASV using 

the SILVA 132 database (Quast et al., 2013). To determine prevalence and relative abundance of 

ASVs, we followed the same approach as in (Thiergart et al., 2020). The bacterial ASV table was 

restricted to samples having >1,000 reads. The table was transformed to relative abundance (RA) 

by dividing each value in a sample by the total reads in that sample. An ASV was considered to 

be present in a sample if it had an RA >0.01% in that particular sample. To calculate the average 

relative abundance (y-axis in Figure 4.14a, b) independently of prevalence, we calculated the mean 

RA using only the sample for which each ASV was considered present. We used the same 

classification scheme to colour the ASVs across the scatter plots shown. ASVs present in >80% 

of the sites on average are considered as widespread ASVs. 

4.6.23.2 Different plant species in the same soil (Fitzpatrick et al., 2018) 

We used the ASV table provided within (Fitzpatrick et al., 2018) and followed the same 

pipeline described in ‘Natural Arabidopsis populations across Europe’. For each sample in the 

dataset, an ASV was considered to be present if that ASV had an RA >0.01% in that particular 
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sample. To calculate the average relative abundance (y-axis in Figure 4.14 a, b) independently of 

prevalence, we calculated the mean RA using only the samples for which each ASV was 

considered present. For each one of the thirty plant species in this data set, an ASV was considered 

present in that plant species if it was present in >70% of samples coming from that plant species. 

An ASV was considered core if it was present in all 30 plant species surveyed in this experiment.
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CHAPTER 5: THE FUTURE OF THE PLANT MICROBIOME FIELD5 
 
Introduction 
  

 When I started my graduate training, the utilization of synthetic ecology as a framework to 

elucidate molecular mechanisms was a pioneering methodology applied solely by a handful of 

research groups. Five years afterwards, at the twilight of my doctorate, the deployment of 

amenable microcosms and synthetic communities has become a common tool across the whole 

plant microbiome field. The democratization of this research framework has brought new 

challenges to overcome and new frontiers of knowledge to discover. Both ecological and 

reductionist approaches have led to important discoveries in plant microbiome research, yet in 

isolation, these approaches are limited. Mechanism is impossible to discern using amplicon or 

metagenomic surveys, and ecological importance is often unknown with reductionist approaches. 

Given the labor, cost, and time associated with large-scale surveys and detailed mechanistic 

studies, integrating these approaches may not always be feasible in a single research group, let 

alone a single project. Instead, integration needs to take place across research groups to advance 

the understanding of the mechanistic underpinnings and consequences of variation observed in 

plant microbiota in natural and managed habitats. In this chapter I will highlight some of the 

current methodological challenges and new frontiers of knowledge faced by the plant microbiome 

field.

                                                       
5A portion of the results presented in this chapter appeared as an article in:  
Fitzpatrick CR*, Salas-González I*, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The Plant Microbiome: 
From Ecology to Reductionism and Beyond. Annu Rev Microbiol. 2020 Sep 8;74:81-100. 
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5.1 Revisiting bacterial comparative genomics in the light of reverse ecology 
 
 The explosion in culturomics, propelled by the development of highly parallelizable 

isolation methods (Nichols et al., 2010) and the decreased cost of genome-sequencing, had led to 

the accumulation of microbial cultured collections isolated from diverse plant hosts and conditions. 

The increasing availability of both the cultured isolates and their associated genomic data, will 

permit to test novel hypothesis concerning microbial adaptation to distinct plant hosts and co-

adaptation of both, host and microbes, to particular agronomically-relevant environments such as 

low nutrient soils.  

Computationally, the development of novel genomic-based reverse-ecology approaches 

(Arevalo et al., 2019) permit one to leverage the available genomic data of closely-related isolates 

(same bacterial species) to delineate signatures of bacterial adaptation. By intersecting this reverse 

ecology approach with isolates metadata, such as host or environmental source of isolation, it is 

possible to identify the genomic features associated with the bacterial adaptation to specific plant 

hosts or environmental conditions. In addition, by reconstructing groups of homologs between 

bacterial species, it is feasible to estimate the generality of the traits that exhibit signatures of 

adaptation across the species of bacterial genus with sufficient genomic representation in the plant-

microbe culture collections.  

Currently, it is possible to test this evolutionary comparative genomics framework, using 

Pseudomonas species, isolated from Arabidopsis thaliana wild populations across Europe 

(Karasov et al., 2018), and other bacterial genus with relevant host-associated phenotypes such as 

Variovorax (maintaining root growth in the context of a microbial community) and 

Methylobacterium isolates (plant growth promoters) (Krug et al., 2020). 
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5.2 An eco-evolutionary framework to universalize SynCom-derived knowledge 
 
 One of the biggest challenges of deploying synthetic communities resides in the fact that 

each designed community carries unique meta-properties because of the unique genomic 

architectures of the members within the community. Due to these unique meta-properties, the 

findings obtained from SynCom-based experiments lack universality in scenarios where specific 

microbe-microbe interactions are missing in a given SynCom. In order to alleviate the context-

dependency of SynCom-derived results, it is important to establish a methodological framework 

that increases the reproducibility and scalability of these findings. Here, I present an eco-

evolutionary methodological framework (Figure 5.1) that maximizes scalability and 

reproducibility of SynCom-derived findings: 

 1) Design of SynComs, with highly reproducible and characterized phenotypes, that serve 

as control treatments for SynCom-based experiments. The utilization of control SynComs would 

reduce technical noise inherent to the biological systems and increase the interpretability of 

SynCom-based results by establishing a biologically better control that the current utilized axenic 

(NB) control.  

 2) Establishment of experimentally-independent standardized statistics to permit the 

comparability of SynCom-derived effects across multiple studies. The adoption of these universal 

metrics in conjunction with deployment of control SynComs would facilitate to contrast effects 

(e.g Plant mutants affecting microbiome assembly) via meta-analysis. 

 3) When possible, SynCom-based claims should be supported by ecological evidence 

obtained from wild surveys employing either marker-based or metagenomic approaches. 

 4) SynCom-based claims obtained for a particular host-species should be extended across 

other plant-species. This extended evolutionary approach, besides demonstrating generality of a 
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particular microbial effect, can also identify novel mechanisms of plant-microbiome interactions 

by exploring plant lineage-specific specializations distributed across the plant phylogeny. 

 

 
Figure 5.1 - A three-part research plan to advance our understanding of the plant 
microbiome under natural and managed settings. 

a) The plan begins with describing patterns in the distribution of microbial taxa or genes using 
census experiments. b) The mechanism or mechanisms underlying these patterns are then 
investigated using reductionist experiments. c) Finally, evaluating the operative role of the 
identified mechanisms across diverse systems demonstrates generality. For example, numerous 
census experiments reveal that the composition of plant microbiota, including those found in 
leaves and roots, varies among host plants. Reductionist studies, which use a variety of approaches 
including synthetic communities paired with targeted mutants of model plant species, support the 
mechanism that innate plant immunity and plant exudation profiles shape leaf and root microbiota. 
However, these mechanisms have yet to be evaluated across a wide range of settings, which could 
include different host plant populations or species, variation in the abiotic and biotic environment, 
and different resident microbiota from which the plant microbiome is derived. Moreover, the 
ecological processes of dispersal and drift occurring in conjunction with selection may obscure the 
operation of the identified mechanisms under more complex settings 
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5.3 The plant microbiome project 
 
 Analogous to the Human Microbiome Project (Turnbaugh et al., 2007), the plant 

microbiome field requires  to develop a standardizable, scalable and accessible repository to store 

and distribute the data from plant-microbiome ecological surveys, either amplicon-based or 

metagenomics-based, and the genomic information form plant-derived microbial isolates. The 

creation of this community resource would facilitate the deployment of the aforementioned eco-

evolutionary reproducible research framework ultimately generating novel findings by integrating 

knowledge across multiple studies
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