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ABSTRACT

Dayne Lewis Filer: Tools and statistical approaches for integrating DNA sequencing into clinical
care

(Under the direction of Kirk C Wilhelmsen)

The discovery of DNA fundamentally changed the world, revolutionizing our understanding of

life and the practice of medicine. After a century of studying DNA, medicine entered a new frontier

with the completion of the nearly 20-year billion-dollar effort to sequence the first human genome.

We can now sequence a human genome in a matter of days for hundreds (not billions) of dollars.

Technological advances and medical geneticists’ robust efforts to interpret human variation have led

to exponential clinical sequencing growth. The medical genetics community currently faces three

primary challenges: (1) variant interpretation; (2) overcoming difficult detection problems (e.g.,

structural variants and low-frequency variants); (3) moving beyond a linear poorly-representative

reference genome. The work herein addresses how to overcome two specific detection problems.

First, I present a novel approach for detecting exon-level copy number variation using exome

sequencing. The vast majority of available sequencing collected lacks the power to detect small

copy number variants, leading to a significant blind spot in our understanding of genetic variation.

I demonstrate how modifying the exome capture step to capture multiple samples simultaneously

significantly reduces the inter-sample variance and improves copy number discrimination. I then

demonstrate the utility of a novel statistical algorithm specifically for multiplexed-capture exome

sequencing.

Second, I outline the shortcomings of noninvasive exome sequencing in prenatal genetics. Uti-

lizing cell-free fetal DNA in maternal circulation, we can diagnose a wide range of genetic condi-

tions noninvasively. Efforts have suggested the possibility of noninvasive fetal genome and exome

sequencing. However, to-date, no one has demonstrated accurate fetal genotyping purely from

cell-free DNA. I use probability theory to demonstrate why efforts have failed, and suggest a path

forward for noninvasive fetal genotyping.
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Finally, I briefly outline my ongoing work in prenatal genetics and propose a validation study

to further interrogate exon-level copy number variation.
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To my loving and endlessly supportive wife and parents,

it’s all happening. . .

The only true currency in this bankrupt world

is what you share with someone else

when you’re uncool.

– Cameron Crowe
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CHAPTER 1: INTRODUCTION

1.1 Outline

This chapter outlines the historical context for human and medical genetics, with a basic

overview of the topics necessary to understand the original work presented in this dissertation.

Human Genetics Primer summarizes DNA discovery as the hereditary material in eukaryotic

life (1.2.1) and describes the types of variation observed in DNA (1.2.2).

DNA Sequencing describes the development of DNA sequencing, with an overview of first

generation sequencing (1.3.1), the discoveries that led to second generation sequencing (1.3.2), and a

more detailed discussion of the Solexa/Illumina sequencing platform (1.3.3). The section concludes

with a longer discussion of the considerations and challenges with analyzing second-generation

sequencing data (1.3.4).

Development of Medical Genetics highlights some of the most important landmarks in the

origination of medical genetics as both a research topic and a clinical profession.

Finally, Rationale briefly describes the motivation for my dissertation work.

1.2 Human Genetics Primer

1.2.1 Discovery of DNA and the central dogma: The discovery of deoxyribonucleic acid

(DNA) took roughly 100 years of work, and has fundamentally changed how we view ourselves,

society, and life. The study of genetics begins with the study of peas and the discovery of inheri-

tance by Gregor Mendel in the middle of the 19th century.1 Shortly after Mendel’s work, Friedrich

Miescher isolated “nuclein” from lymphocytes noting the uniquely high proportion of phosphorus

in the form of phosphoric acid.2–4 Albrecht Kossel and Albert Neumann furthered Miescher’s work

by identifying the four bases and renaming “nuclein” deoxyribonucleic acid.5 Walther Flemming

first described mitosis (the division of cells), showing the doubling and separation of chromosomes.6
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Theodor Boveri and Walter Sutton independently discovered meiosis, establishing chromosomes as

the vehicle for inheritance (i.e., the “chromosome theory of inheritance”).7–9

Despite early suggestions of chromatin containing DNA by Kossel and Neumann, many be-

lieved proteins and not DNA coded the fundamental information for inheritance. Oswald Avery,

Collin MacLeod, and Maclyn McCarty published the first experiments to establish DNA carries the

genetic code using Diplococcus pneumoniae.10 Erwin Chargaff rightly believed Avery et al. and dis-

covered equal proportions of adenine/thymine guanine/cytosine (“Chargaff’s rule”), disproving the

tetranucleotide hypothesis and laying the groundwork for the double helical model.11 In the early

1950’s Rosalind Franklin started using X-ray crystallography to study the structure of DNA, pro-

ducing the first images showing the double helical form.12 Watson and Crick were given Rosalind’s

images without her knowledge or permission, allowing them to perform the final work to establish

the structure of DNA.13 Crick went on to establish the Central Dogma of Molecular Biology.14,15

The Central Dogma of Molecular Biology describes how DNA codes for the proteins which

build and sustain eukaryotic life. To produce proteins, ribonucleic acid (RNA) polymerase first

transcribes the DNA message into single-stranded RNA molecules (messenger RNA, mRNA). After

post-transcriptional modifications including possible splicing (reorganization), mRNA is translated

into a polymer of amino acids by ribosomal RNA complexes. Amino acid polymers, also known as

polypeptides or peptide chains, form the primary structure of proteins. Therefore, modifications

to DNA have profound impacts on cellular and organismal function.

1.2.2 Genetic variation in humans: Humans are diploid organisms, meaning we have two

copies of each chromosome. Under normal circumstances, we receive one set of chromosomes each

from our biological mother and father. Humans have 46 chromosomes (23 from each parent),

including 21 autosomes (chromosomes 1-22) and two sex chromosomes (X and Y).16 The haploid

(single copy) genome spans roughly 3.1 billion basepairs, of which roughly 1.5% is predicted to code

for protein.17 Broadly, four classes of variants occur within DNA: (1) single nucleotide substitutions

(single nucleotide variants, SNVs), (2) insertions and deletions (indels), (3) copy number variants,

and (4) translocations and inversions.
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SNVs occur when one base replaces another in a specific sequence. DNA codes for amino acids

(the building blocks for protein) using three consecutive bases (a codon). The codon code includes

redundancy in the third position (e.g. the sequences GAA and GAG both code for the amino acid

glutamic acid). Consequently, synonymous and non-synonymous mutations exist. Synonymous

mutations occur in the third position of the codon and do not change the resulting amino acid.

Non-synonymous mutations change the resulting protein structure, either by an amino acid sub-

stitution (missense mutations), causing a premature stop codon (nonsense mutation), eliminating

a start codon (non-start mutation), or eliminating the stop codon (nonstop mutation). SNVs can

occur through polymerase errors during DNA replication and mutagenic substances (e.g. specific

wavelengths of light, chemical exposure).

The remaining three types of mutations fall into the large category of structural variation (SV),

with muddy lines between what constitutes an insertion/deletion (indel) versus copy number variant

(CNV). Indels represent small insertions or deletions of genetic material; any indel with length not

divisible by three can cause a shift in the reading frame (frameshift mutation) and modify all

downstream amino acids. Copy number variants represent larger insertions or deletions and can

range from a single exon up to whole chromosomes (aneuploidy). Aneuploidy occurs due to mitotic

segregation errors during cellular replication. Smaller copy number variation likely occurs through

non-allelic homologous recombination (NAHR), non-homologous end-joining (NHEJ), fork stalling

and template switching (FoSTeS), and retrotransposition.18

We call segmental rearrangements a translocation when the segment moves from one locus to

another, and an inversion when the segment gets flipped and reinserted. Rearrangements can cause

detrimental effects when they disrupt gene sequence. The same processes creating CNVs discussed

above can create rearrangements, and rearrangements often go hand-in-hand with copy number

variation.

1.3 DNA Sequencing

1.3.1 First-generation sequencing: Using lessons learned from previous RNA sequencing ef-

forts, the first DNA sequencing techniques arose in the 1970s with Sanger’s original plus-minus
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approach,19 the Maxam-Gilbert chemical cleavage approach,20 and Sanger’s chain termination

approach.21

Maxam-Gilbert sequencing works by cleaving DNA sequences at specific base pairs using spe-

cific chemical reactions. Before cleaving, radioactive phosphorus is incorporated into the DNA

fragment’s 5’ terminus. The fragment is then cleaved randomly at specific bases in four separate

reactions: G, G and A, C, or C and T. The cleaved radio-labeled fragments from each of the four

reactions are then size-separated and visualized on a polyacrylamide gel.

Sanger sequencing (chain termination) was the first sequencing by synthesis (SBS) approach.

Similar to Maxam-Gilbert sequencing, the target DNA fragment is replicated by the polymerase

chain reaction (PCR) in four separate conditions. Each condition contains an equimolar mix of the

four deoxynucleotide triphosphate (dNTP, DNA bases) molecules and a small amount of a single

radio- or fluorescently-labeled dideoxynucleotide (ddNTP). The PCR reaction cannot proceed after

incorporating a ddNTP, so each of the four reactions will contain synthesized fragments that stop

at the same base. Again, the four reactions are size-separated and visualized on a polyacrylamide

gel.

1.3.2 Second-generation sequencing: In the following decade Nyrèn and Lundin discovered

an enzymatic method for detecting the incorporation of a new base during sequencing.22 Pyrophos-

phate is released when dNTPs are incorporated into a DNA polymer; Nyrèn added two enzymes

to the synthesis reaction: (1) ATP sulfurylase, which converts pyrophosphate into ATP; (2) lu-

ciferase, which converts ATP molecules into light. After fixing the DNA template to a solid phase,

sequencing is performed by watching for light reactions after adding a single base at a time. Pyrose-

quencing struggles with sequencing over homopolymers (contiguous runs of the same base), with

poor performance after 4-5 identical bases.23

The next significant breakthrough came in the early 2000s when Li et al. developed the first

photocleavable fluorescent nucleotide.24 The novel nucleotides use a fluorescent tag to block the 3’

hydroxyl group, which can be cleaved using a specific wavelength of light. This allows for SBS with

a “reversible termination” of synthesis after each base incorporation. The reversible terminators,
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in conjunction with the development of glass-bound colony expansion,25 laid the groundwork for

the Solexa system (acquired by Illumina) which currently dominates the sequencing field.26

1.3.3 Illumina sequencing: Illumina sequencing works by creating clusters of identical DNA

fragments bound to a glass plate (“flow cell”), then performing SBS using fluorescent reversible

terminators. During Illumina sequencing, specific sequencing adapters are ligated onto short DNA

fragments to: (1) bind DNA fragments to the flow cell; (2) initiate amplification; (3) optionally

identify the fragment source. The flow cell contains a “lawn” of two short oligos bound to the glass

surface; the fragments have homology to either the forward or reverse adapter. The sequencing

library containing the ligated forward and reverse adapters are added to the flow cell, where they

hybridize to the lawn. Once bound, polymerase is added and the bound oligo is extended using

the hybridized DNA fragment as a template. The original template is then washed away, leaving

complementary sequences bound to the flow cell. The free adapter then bends over to hybridize to

its complement oligo, forming a bridge, and polymerase fills in the oligo to form a double-stranded

fragment (bridge amplification). The double-stranded fragment is denatured, leaving two single

stranded fragments bound to the flow cell. Bridge amplification is repeated until each cluster

contains hundreds of the same fragment. The reverse fragments are then cleaved from the flow cell,

and the clusters are sequenced by detecting the incorporation of fluorescent reversible terminators.

Each cluster is tracked as bases are incorporated, giving the final DNA sequence.

1.3.4 Processing short-read sequencing data: With the advancements in sequencing chem-

istry, we can now sequence great amounts of DNA cheaply. However, the massively parallel se-

quencing modalities only sequence small fragments of DNA (typically 50 to 500 basepairs in length),

often using a “shotgun” approach – “shotgun” referring to sequencing a randomly fragmented sam-

ple rather than a known locus. Therefore, the nature of short-read shotgun sequencing requires

robust computational approaches to process and contextualize sequence data for millions of DNA

fragments.

Here, I will give an overview of processing sequencing data for a species with an established

reference genome. Processing short-read sequencing data follows the following general steps:
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1. pre-processing to remove artificially added sequence (sequencing adapters, sample barcodes,

etc.) and create FASTA/FASTQ27,28 output;

2. map individual reads to their original location in the reference genome and create Sequence

Alignment Map (SAM/BAM)29 output;

3. optional post-mapping quality control;

4. variant identification;

5. variant filtering and interpretation.

The pre-processing step depends entirely on the sequencing chemistry and machinery used.

Illumina sequencers produce binary base call (BCL) files containing all raw base calls and quality

information from the sequencing run. BCL files contain the adapter sequence (including sample

barcode sequence and optional molecular index sequence), which we must remove before mapping.

Due to modern sequencer capacity, frequently each lane of the flow cell will contain multiple samples.

By convention, reads from each sample are separated into individual FASTQ files. Separating reads

by sample must occur before discarding the adapter sequence information. Illumina currently

provides the ‘bcl2fastq’ command line tool for performing all of the required tasks to produce

sample-specific FASTQ files with molecular index information when applicable.

The process of mapping individual reads (query sequences) to a reference sequence requires (1)

finding the correct starting point in the reference sequence, and (2) accounting for substitutions,

insertions, and deletions in the query sequence. Smith and Waterman published the first algo-

rithm meeting both requirements, using dynamic programming on a substitution matrix30 based

on Needleman and Wunsch;s initial work.31 The Smith-Waterman algorithm requires user-defined

scores for matches, mismatches, and gaps (insertions/deletions); the algorithm will find the best

possible match with the given scoring system, but requires O(mn) compute time where m and n

represent the length of the reference and query sequences.

To reduce the problem’s complexity, Altschul et al. developed the basic local alignment search

tool (BLAST).32 BLAST works by breaking the query sequences into a hash table of all possible k-

mer sub-sequences and searching the reference sequence for non-gap matches above some threshold.

For pairs of matches, BLAST extends the sequence to refine the candidate pool, and then finalizes
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the best candidates using the Smith-Waterman algorithm. Many other tools take similar hash table

approaches, including hashing the reference sequence rather than the query sequence.33

Modern alignment algorithms have further improved efficiency by exploiting the Burrows-

Wheeler Transform (BWT).33,34 The BWT creates a quickly search-able compressed representa-

tion of the reference sequence (roughly 1 gigabyte for the complete human genome), enabling

in-memory computation.35 The various BWT-based algorithms differ primarily on how they han-

dle mismatches.33 For DNA sequencing, the Burrows Wheeler alignment tool (BWA) developed

and subsequently refined by Li and Durbin in 2009 remains the de facto industry standard.29,36

Post-alignment processing prepares the mapped reads for variant calling. Artificial duplicate

reads can create bias in downstream variant calling, and deserve careful consideration. Two types of

artificial duplicates can occur with Illumina sequencing: (1) PCR duplicates, (2) technical (optical

and cluster) duplicates. In large randomly-fragmented libraries sequenced to moderate depth, dupli-

cate reads are much more likely to represent artificial than true duplicates. Virtually all sequencing

library preparation protocols include PCR amplification, producing artificial duplicate reads. Using

non-patterned flow cells, the image processing software may incorrectly identify large/oddly shaped

clusters as two separate clusters. With patterned flow cells, occasionally the same template can

“jump” into an adjacent cluster.

In deeply-sequenced libraries with low complexity, we are more likely to observe true read

duplicates. Without including unique molecular identifiers (UMIs) in the adapter sequence, we

have no way of distinguishing true versus artificial duplicate reads. A UMI is a short (generally

6-12 basepairs) sequence of random bases; all PCR duplicates will contain the same UMI sequence.

The exceedingly low probability of two true read duplicates having the same UMI allows properly

controlling for artificial duplicates without removing true duplicates.

In addition to removing duplicate reads, the GATK best practices pipeline suggests adjusting

the base quality scores before variant calling.37,38 GATK provides the BaseQualityScoreRecalibra-

tion tool, which uses machine learning models to correct known systematic errors in sequencing.
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With the final set of aligned reads, we move to identifying deviations (variants) from the

reference sequence. Numerous tools exist to perform variant calling; I will discuss the general

approaches to calling the different types of variants, highlighting commonly-used algorithms.

Calling single base substitutions – single nucleotide variants (SNVs) – relies fundamentally

on counting alleles at each locus. At minimum, the statistical models incorporate the quality of

each base call and assumptions about sequencing error rates, e.g. the samtools mpileup/bcftools

call programs.39 GATK previously provided a similar tool, implementing a simple Bayesian geno-

type likelihood model,37,38,40 but has moved currently to a haplotype-based calling algorithm

(HaplotypeCaller).41 HaplotypeCaller works by (1) identifying “active” regions containing plau-

sible variants, (2) building possible haplotypes in the active regions using de Bruijn-like graphs,

(3) assigning haplotype likelihoods to reads, and (4) calculating genotype likelihoods incorporating

the estimated haplotype information. The idea for using haplotype estimates in genotype calling

originated with the freebayes algorithm.42 The above tools all use very similar approaches to call

small insertions and deletions (indels). Development continues actively in SNV/indel variant iden-

tification, and performance between algorithms predictably differs depending on the nature of a

variant.43,44

Calling larger structural variation from short-read sequencing poses a greater difficulty. SNVs

and indels exist within single reads; therefore, we can view and count them directly. We cannot

directly view variation which spans lengths greater than our read (or read pair) length. To identify

larger variation, calling algorithms attempt to identify some combination of the following signals:

(1) relative changes in sequencing depth (read depth); (2) paired read insert size and orientation

(paired end mapping); (3) rarey, loss of heterozygosity.

Read-depth methods, e.g. CNVnator,45 work by building statistical models utilizing the relative

sequencing depth across the genome. The depth bias introduced by the capture step in targeted

sequencing necessitates comparing to a set of control samples, e.g. ExomeDepth,46 rather than

calculating the relative depth across the genome. Paired-end mapping methods identify sets of

reads with insert sizes outside a specified range, indicating insertions or deletions, and reads with

the incorrect orientation suggesting genomic rearrangements.47 The Lumpy algorithm48 utilizes
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both the read depth and paired end mapping approaches for greater detection sensitivity. The

ERDS algorithm49 combines read depth information with allele ratios when possible.

Sequencing an individual reveals millions of variants compared to the current reference genome,50

often requiring filtering to identify meaning results. Multiple public databases now exist cata-

loging known variants: dbSNP with SNVs and indels,51 dbGaP52 with variants linked to pheno-

types, ClinVar53 with clinical variant interpretations, ensembl54,55 which aggregates data from many

sources and provides additional analysis tools (e.g. the Variant Effect Predictor),56 and gnomAD57

with variants from >100,000 human exome sequences and >15,000 human genome sequences across

diverse populations. Most commonly we begin by searching the predicted variants for known

pathogenic variants that explain the clinical picture. If the search for known pathogenic variants

fails, we can proceed by throwing out common variants and predicting protein-altering variants

that correlate clinically. Many tools exist for predicting variant outcome, e.g., the Ensembl Variant

Effect Predictor,56 PolyPhen,58 and JannoVar.59

1.4 Development of Medical Genetics

The field of medical genetics arguably began in the first years of the 20th century with Archibald

Garrod. In a collaborative effort with William Bateson, the person most responsible for the resur-

gence of Mendel’s work,60 Garrod first-identified a disease (alkaptonuria) that follows a Mendelian

inheritance pattern.61 Garrod, one of the initial pioneers in the biochemistry, went on to character-

ize the “inborn errors of metabolism” as enzymatic deficiencies in a book bearing the same name62

and correctly hypothesized our “individual chemistries” derived from “chromosomes from which we

sprang” in 1931.63

During the first half of the 20th century, medical genetics focused on identifying and describ-

ing genetic diseases in humans, with nearly all of the molecular and basic science taking place in

fruit flies, mice, and corn.60,64 During this time, Bateson hotly debated Francis Galton (the orig-

inator of eugenics) and Karl Pearson on “Mendelism” versus “biometrics.”60 In 1918, R.A. Fisher

proved Mendelian inheritance could produce the spectrum of variation described by the biomet-

rics proponents in the landmark paper “The Correlation between Relatives on the Supposition

of Mendelian Inheritance.”65 Rightly overshadowed by the horrific legacy of eugenics, the Trea-
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sury of Human Inheritance published in multiple volumes between 1923 and 1958 by Pearson and

the Galton Laboratory for National Eugenics described dozens of genetic disorders. Of note, the

physician-mathematician Julia Bell contributed more monographs to the volumes than any other

individual.

Progress in medical genetics accelerated quickly in the second half of the century, with the de-

velopment of cytogenetics and molecular biology/genetics. Flemming first visualized chromosomes

in 1878,6 but we did not know the correct chromosome number in humans until 1956.16 Advances in

cell culture and the use of colchicine,66 allowed the first accurate pictures of human chromosomes,

leading to the identification of numerous aneuploidy syndromes. Then, in 1970 Caspersson et al.

developed a fluorescent technique for banding chromosomes,67 with the invention of G-banding for

chromosomes developed shortly after by Marina Seabright.68 The ease of G-banding brought it into

clinical use and greatly expanded cytogenetics’ utility both in gene mapping and diagnostics. In

1990, Fan et al. further expanded the cytogenetics’ utility with the invention of fluorescent in situ

hybridization (FISH).69

In parallel to cytogenetics advancements, the evolution of molecular biology led to the iden-

tification of specific genes and proteins. Major advancements included the isolation of restriction

enzymes,70 DNA hybridization and the Southern blot,71 first human gene cloned,72 and the de-

velopment of using restriction fragment length polymorphisms to map genes,73 and the invention

of the polymerase chain reaction (PCR) for amplifying DNA without using complicated bacterial

cultures.74 The molecular genetics field culminated with the completion of the human genome

project in 2001, using combinations of first and second generation DNA sequencing (discussed in

1.3).

Medical genetics, clinically, has most impacted pediatrics and obstetrics by implementing screen-

ing for metabolic conditions and prenatal genetic testing.

Metabolic screening programs started in 1963 with phenylketonuria (PKU).75 Fölling discovered

PKU in 1934 and later confirmed its autosomal recessive inheritance in 1945.60 In 1953 Jervis

identified the specific enzymatic deficiency,76 and later that year Bickel et al. demonstrated the

effectiveness of a phenylalanine-restricted diet in treating PKU.77 The PKU model was extended
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to other inborn errors of metabolism and now all children in the US get screened for a panel of

treatable metabolic conditions at birth.

Prenatal genetics began in 1956 when Fuchs demonstrated fetal sex identification from amniocentesis.78

A decade later Steele et al. began culturing amniocytes derived from amniocentesis, opening up

the door for wide ranging prenatal genetic testing.79 We now perform the full gamut of available

genetic testing early in pregnancy, either by amniocentesis or chorionic villus sampling. In addition

to direct fetal sampling, researchers have identified circulating fetal lymphocytes,80 trophoblasts,81

and fetal nucleated red blood cells82 in pregnant mothers’ circulation. In 1997 Dennis Lo et al.

identified cell-free DNA (cfDNA) in maternal circulation,83 which has, so-far, proven more diag-

nostically exploitable than isolating fetal cells. We can now detect many genetic disorders from

cell-free fetal DNA.84

1.5 Rationale

The work presented here addresses two issues at the forefront of medical genetics: (1) we

still have very limited information on the prevalence and clinical significance of small exon-level

copy number variants; (2) no one has adequately performed fetal genotyping solely from maternal

cell-free DNA.

Due to both cost and the overbearing number of variants with unknown significance obtained

with genome sequencing, most clinical sequencing efforts focus on targeted sequencing (either whole-

exome or specific gene panels). Targeted sequencing introduces large exon-to-exon read depth

variability, making CNV detection from targeted sequencing difficult. The majority of read-depth

variability comes from the differential efficiency of the oligonucleotide baits used to capture specific

genes or regions. I show multiplexing the capture step in targeted sequencing greatly reduces sample-

to-sample read depth variance, increasing power to detect copy number variation. Additionally, I

present a novel statistical framework and R package for estimating copy number from multiplexed

capture data.

Despite great advances in non-invasive prenatal testing, noninvasive fetal genotyping without

additional parental sequencing remains elusive. Others have suggested the possibility of noninvasive

exome sequencing. I describe the statistical limitations impeding noninvasive fetal genotyping and
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demonstrate why noninvasive exome sequencing does not make sense clinically. I also present a

novel algorithm implementing an empirical Bayesian approach to estimating the fetal fraction and

maternal-fetal genotypes.
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CHAPTER 2: A NOVEL COPY NUMBER VARIANT ALGORITHM

2.1 Introduction

In human genetics, individuals normally have two copies of each locus in the genome (one inher-

ited from each parent). Deviations from the normal diploid state, known broadly as copy number

variation, can cause phenotypic changes and Mendelian disorders. Technologies, e.g. microarray, ex-

ist for reliably detecting large (greater than 100 kilobases) copy number variants (CNVs). Over the

last decade, the availability short-read DNA sequencing compelled numerous efforts to identify and

characterize smaller variants. Sequencing cost, data burden, and the problem of classifying intronic

and non-coding variants have led to exome sequencing (ES) as the preferred clinical sequencing

modality. ES analysis most often focuses on identifying pathogenic single-nucleotide variants and

insertion/deletions. CNV analysis has demonstrated limited improvement in diagnostic yield,85 but

existing data/analysis lacks power to detect exon-level variation.86,87

Current analytic methodologies adequately detect large CNVs, but require large amounts of

data and lack resolution for intragenic exon-level variation.46,88–90 The prevalence and clinical

importance of exon-level CNVs remains largely unknown due to inadequate power in ES studies

and limited access to clinical genome sequencing data. Recent work on a subset of 1507 genes

suggests intragenic CNVs account for 1.9% of total variants, but 9.8% of pathogenic variants.91

Additionally, the authors demonstrated 627/2844 (22%) of identified CNVs spanned a single (598)

or partial (29) exon.91

Targeted sequencing requires capturing the desired loci (e.g. exons) using sequence-specific

oligonucleotide baits. The differential efficiency of baits, even when carefully designed and balanced,

leads to variable read-depth across the exome. The GC content and length of targeted fragments

both contribute to the observed variable read-depth;92 most ES analysis platforms incorporate

correction for GC content and exon length.93 The variable read-depth in ES precludes the single-
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sample window-smoothing approaches successfully applied in GS data,94 therefore we must rely on

comparative analysis for interrogating copy number.

Comparing multiple samples, each captured independently, compounds the variable read-depth

problem. The capture probability for each exon correlates between samples but with high variability.46

In other words, we can gain information from similarly captured samples, but independent captures

introduce significant noise. ExomeDepth attempts to circumvent the capture-to-capture variation

by identifying a subset of samples from a large pool with low inter-sample variability.46 Alternatively,

CoNIFER,90 XHMM,88 and CODEX89 use a latent factor model with spectral value decomposition

to remove systematic noise, presumably introduced by capture-to-capture variation. These meth-

ods generally require very large sample sizes, and often still lack power for exon-level resolution

(e.g. CODEX defines a “short” CNV as spanning 5 contiguous exons).

Here, we explore how multiplexing the capture across samples reduces inter-sample variance,

increasing the power to detect CNVs. We also introduce our own algorithm, mcCNV (“multiplexed

capture CNV”), specifically designed to utilize multiplexed capture exome data for estimating exon-

level variation without prior information.

2.2 Methods

2.2.1 Exome sequencing: We performed sequencing on human samples of purified DNA ob-

tained from the Wilhelmsen laboratory collection, the NCGENES cohort,95 and the Coriell Insti-

tute in compliance with the UNC Institutional Review Board. We also utilized existing read-level

data from the NCGENES95 project. We compared the performance of two capture platforms: (1)

Agilent SureSelect XT2 (multiplexed capture)/Agilent SureSelect XT (independent capture); (2)

Integrated DNA Technologies (IDT) xGen Lockdown Probes. We utilized Human All Exome v4

baits (Agilent) and Exome Research Panel v1 baits (IDT). All captures performed according to

manufacturer protocol, with the following exceptions: (1) we multiplexed 16 samples versus the

recommended 8 for the XT2 protocol for some pools; (2) for Pool2, we performed the fragmentation

step 5 times, to test whether a more uniform fragment length distribution would improve capture.

All sequencing performed with Illumina paired-end chemistry. We aligned paired reads to

hg19v0 (GATK resource bundle) using BWA-MEM96 and removed duplicate reads using Picard
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tools. We then used our novel R package, mcCNV, to count the number of overlapping molecules

(read-pairs) per exon. For inclusion, we required properly-paired molecules with unambiguous map-

ping for one read and mapping quality greater than or equal to 20 for both reads. Full Snakemake97

pipeline provided in supplemental materials. Table 2.1 provides an overview of the exome sequenc-

ing included.

2.2.2 Genome sequencing: For the 16 samples in the “WGS” pool, we performed genome

sequencing to an average 50x coverage. We followed Trost et al. recommendations for making read-

depth based CNV calls.98 Briefly, we mapped paired-reads identical to our targeted sequencing data.

We then interrogated the read depth interquartile range using samtools depth,29 recalibrated base-

quality scores and called sequence variants using GATK,40 and called copy number variants using

the ERDS49 and cnvpytor (updated implementation of CNVnator)45 algorithms. Full Snakemake97

pipeline provided in supplemental materials.

2.2.3 Simulating targeted sequencing: To simulate targeted capture, we represent the cap-

ture process as a large multinomial distribution defining the probability of capture at each target.

We use an alternate definition of copy state, such that 1 represents the normal diploid state. Let

N represent the total number of molecules (read pairs) and ej ∈ E represent the probability of

capturing target j, then for each subject, i:

1. Randomly select sij ∈ Si from S = {0.0, 0.5, 1, 1.5, 2} as the copy number at target j

2. Adjust the subject-specific capture probabilities by the copy number, Ei =
E⊙Si∑
j E⊙Si

3. Draw N times from Multinomial(Ei), giving the molecule counts at each target j for sample

i, cij ∈ Ci

We provide functionality within the mcCNV R package for producing reproducible simulations.

2.2.4 mcCNV algorithm: The mcCNV algorithm was adapted from the sSEQ method for

quantifying differential expression in RNA-seq experiments with small sample sizes.99 Yu et al. pro-

vide detailed theoretical background of the negative binomial model and using shrinkage to improve

dispersion estimates. The mcCNV algorithm adjusts the sSEQ probability model by adding a mul-
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tiplier for the copy state:

Cij ∼ NB(fisijµ̂j , ϕ̃j/fi)

where the random variable Cij represents observed molecule counts for subject i at target j, fi is

the size factor for subject i, sij is the copy state, µj is the expected mean under the diploid state

at target j, and ϕ̃j is the shrunken phi at target j. We observe cij and wish to estimate sij , ŝij .

Initialize by setting ŝij = 1 for all i, j. Then,

1. Adjust the observed values for the estimated copy-state,

c′ij =
cij
ŝij

.

2. Subset c′ij such that c′ij > 10, ŝij > 0

3. Calculate the size-factor for each subject

fi = median
(
c′ij
gj

)
,

where gj is the geometric mean at each exon.

4. Use method of moments to calculate the expected dispersion

ϕ̂j = max

(
0,

σ̂2
j − µ̂j

µ̂2
j

)

where µ̂j and σ̂2
j are the sample mean and variance of c′ij/fi.

5. Let J represent the number of targets. Shrink the phi values to

ϕ̃j = (1− δ)ϕ̂j + δξ̂

such that

δ =

∑
j

(
ϕ̂j − 1

nj

∑
j
ϕ̂j

)2

/(J − 1)

∑
j

(
ϕ̂j − ξ̂

)2
/(nj − 2)
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and

ξ̂ = argmin
ξ


d

dξ

1∑
j

(
ϕ̂j − ξ

)2
 .

6. Update ŝij ,

argmax
s∈S

{
L(s|cij , fi, µ̂j , ϕ̃j)

}
where S = {0.001, 0.5, 1, 1.5, 2}.

7. Repeat until the number of changed states falls below a threshold or a maximum number of

iterations is reached.

8. After convergence, calculate p-values for the diploid state, πij = Pr(sij = 1).

9. Adjust p-values using the Benjamini–Hochberg procedure100 and filter to a final call-set such

that adjusted p-values fall below some threshold, α.

2.3 Results

2.3.1 Multiplexed capture reduces inter-sample variance: ES requires using molecular

baits to “capture” the exonic DNA fragments during the library preparation (prior to sequencing).

Most laboratories capture each sample individually. The capture efficiency varies with timing,

temperature, and substrate concentrations, making identical capture reproduction impossible. Al-

ternatively, one could multiplex (pool) samples prior to capture, capturing the pool of samples

simultaneously. Here we profile the inter-sample variance of individual capture versus multiplexed

capture.

A multinomial process provides a logical framework for modeling targeted capture, each target

represented by an individual outcome. We can estimate the multinomial probability simplex for

an exome capture by dividing the observed counts at each exon by the total mapped reads for

the exome. The dirichlet distribution, conjugate prior to the multinomial, defines distributions of

probability simplexes. The dirichlet distribution is parameterized by α = {α1, α2, . . . , αn}, where

the expected probability for outcome i is given by αi/α0, α0 =
∑

α. If π is a probability simplex

drawn from a dirichlet with α, then the variance of π is inversely proportional to α0. Therefore,

17



Table 2.1: Summary of whole-exome sequencing. “pool” indicates the name of the pool of samples;
“capture” indicates the capture platform for the pool; “N” gives the number of samples in the
pool; “medExon” gives the pool median of the subject median mapped molecule count per exon;
“medTotal” gives the median by pool of total mapped molecule counts per subject; “minTotal”
and “maxTotal” give the minimum and maximum total mapped molecules; “rsdTotal” gives the
relative standard deviation (SD/mean*100) of total mapped molecules. † indicates captures were
performed independently on each sample within the pool, otherwise captures were multiplexed
across all samples within the pool.

pool capture N medExon medTotal minTotal maxTotal rsdTotal

IDT-IC† IDT 16 143 55,149,058 37,453,015 85,138,915 22.4
IDT-MC IDT 16 93 29,772,684 16,674,468 118,147,912 64.2
IDT-RR IDT 16 272 79,079,629 61,289,322 120,147,888 22.9
NCGENES† Agilent 112 93 24,451,245 12,749,793 68,565,471 27.6
Pool1 Agilent 16 56 13,265,614 8,911,132 17,324,903 18.5

Pool2 Agilent 16 86 21,076,056 4,585,195 27,846,146 27.6
SMA1 Agilent 8 56 12,256,002 11,051,840 13,600,697 6.2
SMA2 Agilent 8 25 5,622,040 4,904,000 6,545,360 10.4
WGS Agilent 16 196 46,406,224 36,496,097 65,200,410 16.4

we can approximate the inter-sample variance by fitting the dirichlet distribution to each pool and

interrogating the mean α.

Using multiplexed capture, we sequenced 3 16-sample pools and 2 8-sample pools with Agilent

baits and 2 16-sample pools with IDT baits (Table 2.1). To compare to individually-captured

Agilent data, we randomly-selected 5 16-sample pools from the NCGENES cohort. For numeric

stability, we subset to exons with at least 5 and no greater than 2000 counts across all samples

within a pool. We then used a Newton-Raphson algorithm101 to fit the dirichlet distribution to each

pool; all pools converged to stable estimates. We found, with one exception, multiplexed capture

pools had greater α0 of their independently-captured counterparts (Figure 2.1).

The multiplexed pool without decreased inter-sample variance, IDT-MC, had a much larger

spread in sequencing depth across the pool (Table 2.1, Figure 2.1). Looking at the total mapped

molecules, the IDT-MC pool had a relative standard deviation of 64.2%, over double the next

highest pool. We hypothesized the absent reduction in variation stemmed from poor library balance

during the multiplexing step. We subsequently captured a new pool using the same DNA input,

IDT-RR, and found comparable reductions in inter-sample variance (the pool with the highest α0

in Figure 2.1).
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Figure 2.1: Multiplexed capture (MC) decreases variance with respect to independent captures
(IC), as estimated by fitting the dirichlet distribution. Total counts/sample given on the horizontal
axis; mean α given on the vertical axis. α0 is inversely proportional to inter-sample variance. Each
line/point represents a single pool. The point indicates the median total counts across the pool,
with the range given by the line. Orange indicates a multiplexed capture; blue indicates independent
captures. Triangles indicate pools using Agilent (AGL) capture; squares indicate Integrated DNA
Technologies (IDT).
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Figure 2.2: Mean-variance relationship for Agilent (AGL) pools. Mean counts per exon given on the
horizontal axis; mean variance per exon given on the vertical axis. Contours show the distribution
of points by pool. Dotted lines show the ordinary least squares regression fit. Orange indicates
multiplexed capture pools; blue indicates independently captured pools. The dashed gray line
represents the 1:1 relationship expected under a Poisson process. Lines above the plot show the
density of mean values by pool; lines to the right of the plot show the density of variance values by
pool.

Examining the mean-variance relationship demonstrated the same inter-sample variance re-

duction suggested by the dirichlet parameter estimates (Figures 2.2 and 2.3). The Agilent pools

(Figure 2.2) segregated cleanly, with less dispersion in the multiplexed capture pools. Again, we

found no variance reduction for the IDT-MC pool, overlapping with independently-captured IDT-

IC pool (Figure 2.2). We did, however, observe near-complete reduction in dispersion for the

better-balanced IDT-RR pool.

2.3.2 Multiplexed capture provides controls for ExomeDepth: ExomeDepth requires a

set of control subjects, summed into a reference vector of counts at each exon. ExomeDepth provides

functionality to select appropriate controls from a set of subjects, often requiring large numbers

of subjects to identify appropriate controls. Smaller research groups and clinical laboratories may
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Figure 2.3: Mean-variance relationship for Integrated DNA Technologies (IDT) pools. Mean counts
per exon given on the horizontal axis; mean variance per exon given on the vertical axis. Contours
show the distribution of points by pool. Dotted lines show the ordinary least squares regression
fit. Orange indicates multiplexed capture pools; blue indicates independently captured pools. The
dashed gray line represents the 1:1 relationship expected under a Poisson process. Lines above the
plot show the density of mean values by pool; lines to the right of the plot show the density of
variance values by pool.
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Figure 2.4: Comparison of mean-variance relationship between WGS pool (blue) and IDT-RR pool
(orange). Mean count by exon given on horizontal axis; variance of exon counts given on horizontal
axis. Dotted lines show the ordinary least-squares fit. Lines above plot show the distribution of
mean values; lines to the right of the plot show the distribution of variance values.
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Figure 2.5: Median count per exon. Each point represents a single sample, with samples grouped
by pool. Triangles indicate independently-captured samples; circles indiciate a single multiplexed
capture within the pool. Dotted vertical line separates the two capture platforms.

struggle building large databases of exomes, with the difficulty compounded by lot-to-lot variation

and regular improvements to capture and sequencing chemistries. We wanted to know if the

reduced inter-sample variance with multiplexed capture could provide an appropriate control set

for ExomeDepth, eliminating the need for large databases of similarly-captured exomes. We found

the reduced inter-sample variance with multiplexed capture leads to appropriate control selection

for ExomeDepth (Figures 2.5). Pool2, where we repeated the initial fragmentation 5 times, did not

perform as well as the other multiplexed pools. We also found two samples within the WGS pool

did not correlate well with the rest of the pool.

When we looked at independently-captured subjects, we found appropriate control sets for

most of the 112 NCGENES subjects (Figure 2.6). However, ExomeDepth only selected 12.2% of

available samples as controls, on average (Figure 2.7). Similarly, with the independently-captured

IDT-IC pool we find low control numbers for most samples. While possible to select the same

number of controls but exhibit differing dispersion, we observed little difference in the dispersion

between independent and multiplexed capture (Figure 2.8). Overall, multiplexed capture provided

23



N
C

G
E

N
E

S

P
oo

l1

P
oo

l2

S
M

A
1

S
M

A
2

W
G

S

ID
T

−
IC

ID
T

−
M

C

ID
T

−
R

R

1
2

5
10

20

N
um

be
r 

of
 c

on
tr

ol
s 

se
le

ct
ed

A
gi

le
nt

ID
T

Figure 2.6: Total number of controls selected by ExomeDepth. Each point represents a single
sample, with samples grouped by pool. Triangles indicate independently-captured samples; circles
indiciate a single multiplexed capture within the pool. Dotted vertical line separates the two capture
platforms.
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Figure 2.7: Proportion of available samples selected by ExomeDepth as a control. Each point rep-
resents a single sample, with samples grouped by pool. Triangles indicate independently-captured
samples; circles indiciate a single multiplexed capture within the pool. Dotted vertical line separates
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25



N
C

G
E

N
E

S

P
oo

l1

P
oo

l2

S
M

A
1

S
M

A
2

W
G

S

ID
T

−
IC

ID
T

−
M

C

ID
T

−
R

R

2e
−

05
1e

−
04

5e
−

04
2e

−
03

1e
−

02

O
ve

rd
is

pe
rs

io
n 

(p
hi

)

A
gi

le
nt

ID
T

Figure 2.8: Estimated phi parameter from ExomeDepth. Each point represents a single sample,
with samples grouped by pool. Triangles indicate independently-captured samples; circles indici-
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appropriate controls for most samples tested, however an adequately-large set of available controls

delivered comparable performance.

2.3.3 mcCNV & ExomeDepth perform comparably in simulation study: To compare

our mcCNV algorithm and ExomeDepth, we created synthetic pools of data across different se-

quencing depths. Based on our observations with the real data, we selected the total number of

molecules for each sample from a uniform distribution defined as a 30% window on either side of the

specified depth; for example, for a specified depth of 10 million molecules, we drew the molecules

per sample from 7 to 13 million molecules. For each depth ranging from 5 to 100 million molecules,

we simulated 200 16-sample pools with single-exon variants. We allowed for homozygous and het-

erozygous deletions and duplications (0 to 4 copies), such that all variants were equally likely and

the total variant probability was 1/1, 000. We used, as the starting capture probabilities (E), the

empiric capture probabilities observed by summing across the Pool1 pool.

We analyzed each of the 4,000 pools (200 replicates by 20 depths) using our algorithm and two

iterations of ExomeDepth. For the first iteration of ExomeDepth, we used the default values for

transition probability (1/10, 000) and expected variant length (50 kb). For the second iteration,

we used the true simulated variant prior for the transition probability (1/1, 000) and an expected

variant length of 1 kb. As expected, the sensitivity increased and false discovery rate decreased

as the sequencing depth increased (Figures 2.9). In both comparisons, mcCNV demonstrated

a superior false-discovery rate. When interrogating Matthew’s correlation coefficient102 and the

sensitivity, we found mcCNV had marginal performance over ExomeDepth with default parameters

and marginal performance under ExomeDepth with simulation-matched parameters. Table 2.2

provides the actual values.

2.3.4 mcCNV & ExomeDepth perform comparably on WGS pool: To establish a truth

set on real data, we performed matched genome sequencing on the subjects included in the WGS

pool. Following the best practices suggested by Trost et al.,98 we performed read-depth based CNV

calling using the genome data. In line with recommendations by Trost et al., we excluded from

comparative analysis any exons overlapping repetitive or low-complexity regions (34,856 out of

179,250). We then compared the exome calls using mcCNV and ExomeDepth to the genome calls
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Figure 2.9: Algorithm performance comparing mcCNV and ExomeDepth on simulated exomes. (A-
C) mcCNV versus ExomeDepth with default parameters, 1/10, 000 transition probability and 50 kb
expected variant length. (D-F) mcCNV versus ExomeDepth with simulation-matched parameters,
1/1, 000 transition probability and 1 kb expected variant length. Numbered points indicate the
simulated depth in millions of molecules. ‘MCC’ indicates Matthew’s correlation coefficient; ‘TPR’
indicates true positive rate/sensitivity; ‘FDR’ indicates false discovery rate. Dashed black line
shows the 1:1 relationship.
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Table 2.2: Simulation results by algorithm. ED-def: ExomeDepth with default parameters; ED-sim:
ExomeDepth with simulation-matched parameters. Values represent the mean over 200 simulations.

MCC TPR FDR

dep mcCNV ED-def ED-sim mcCNV ED-def ED-sim mcCNV ED-def ED-sim

5 0.713 0.401 0.519 0.522 0.192 0.298 0.02230 0.15900 0.09260
10 0.694 0.628 0.708 0.503 0.431 0.549 0.04250 0.08450 0.08590
15 0.781 0.742 0.801 0.627 0.581 0.690 0.02600 0.05270 0.06940
20 0.840 0.811 0.857 0.719 0.682 0.777 0.01810 0.03420 0.05360
25 0.879 0.856 0.893 0.783 0.752 0.832 0.01310 0.02460 0.04090

30 0.907 0.889 0.918 0.831 0.804 0.872 0.00967 0.01750 0.03210
35 0.926 0.909 0.935 0.864 0.839 0.897 0.00807 0.01370 0.02600
40 0.941 0.927 0.948 0.891 0.869 0.917 0.00638 0.01060 0.02080
45 0.952 0.940 0.957 0.911 0.892 0.932 0.00527 0.00846 0.01680
50 0.961 0.950 0.965 0.927 0.910 0.944 0.00437 0.00701 0.01370

55 0.966 0.957 0.969 0.937 0.921 0.951 0.00377 0.00569 0.01180
60 0.972 0.963 0.974 0.947 0.933 0.959 0.00318 0.00517 0.00986
65 0.976 0.969 0.978 0.955 0.943 0.964 0.00290 0.00433 0.00837
70 0.978 0.972 0.980 0.960 0.949 0.968 0.00252 0.00381 0.00735
75 0.981 0.976 0.983 0.965 0.955 0.972 0.00212 0.00321 0.00625

80 0.983 0.978 0.985 0.969 0.960 0.975 0.00200 0.00294 0.00560
85 0.985 0.980 0.986 0.972 0.963 0.977 0.00181 0.00263 0.00491
90 0.987 0.982 0.987 0.975 0.967 0.979 0.00169 0.00243 0.00451
95 0.988 0.984 0.988 0.978 0.970 0.981 0.00156 0.00223 0.00393

100 0.989 0.985 0.989 0.980 0.973 0.982 0.00150 0.00195 0.00359
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Table 2.3: Number of CNV calls by subject and algorithm for the ‘WGS’ pool. ‘MC’ indicates
the mcCNV algorithm; ‘ED’ indicates the ExomeDepth algorithm; ‘WG’ indicates the overlap of
ERDS/cnvpytor calls from matched whole-genome sequencing. Exons with any overlap of the
repetitive and low-complexity regions, as defined in the Trost et al. manuscript,98 omitted from
analysis.

Total Duplications Deletions

subject MC ED WG MC ED WG MC ED WG

NCG_00012 90 106 143 61 73 121 29 33 22
NCG_00237 82 101 165 50 64 129 32 37 36
NCG_00525 68 74 151 30 33 110 38 41 41
NCG_00593 45 58 142 22 28 81 23 30 61
NCG_00676 66 78 112 38 46 92 28 32 20

NCG_00790 5,156 2,204 121 19 37 92 5,137 2,167 29
NCG_00819 68 76 134 30 41 100 38 35 34
NCG_00840 78 92 157 44 52 115 34 40 42
NCG_00851 1,151 859 141 28 51 102 1,123 808 39
NCG_00857 59 75 119 10 15 81 49 60 38

NCG_00976 46 58 114 25 37 93 21 21 21
NCG_01023 59 95 143 32 60 113 27 35 30
NCG_01043 73 94 128 40 64 105 33 30 23
NCG_01076 36 57 105 7 22 78 29 35 27
NCG_01077 135 157 230 103 121 184 32 36 46

NCG_01117 95 101 154 72 78 129 23 23 25

using the overlap of ERDS and cnvpytor. Table 2.3 lists the total calls by subject. Overall, mc-

CNV predicted the largest number of variants; however, 85.7% of predicted variants were deletions

from two samples (NCG_00790 and NCG_00851). ExomeDepth also predicted a disproportionate

number of deletions for NCG_00790 and NCG_00851, totaling 69.4% of calls.

Looking at the control selection, for NCG_00790 and NCG_00851 ExomeDepth only selected

2 and 3 controls, respectively. Furthermore, NCG_00790 and NCG_00851 had substantially higher

dispersion than the rest of the pool (two outliers in Figure 2.8).

Recognizing the genome calls do not represent an accurate truth set, we looked at the ability of

mcCNV and ExomeDepth to predict the genome calls. Due to the large number of deletions called

for NCG_00790 and NCG_00851, both algorithms performed poorly in predicting the genome

calls (Table 2.4). When we excluded NCG_00790 and NCG_00851 from the analysis, mcCNV

had comparable, but uniformly better performance. Both algorithms demonstrated greater power
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Table 2.4: mcCNV (MC)/ExomeDepth (ED) calls for ‘WGS’ pool (used as prediction) versus the
ERDS/cnvpytor calls from matched genome sequencing (used as truth). Calls are subdivided by
duplications (DUP) and deletions (DEL). ‘Full’ gives performance across the full pool; ‘Sub’ gives
the performance excluding the poorly correlated samples NCG_00790 and NCG_00851 (gray rows).
‘MCC’ is Matthew’s correlation coefficient, ‘TPR’ is true positive rate/sensitivity, ‘FDR’ is false
discovery rate, ‘PPV’ is positive predictive value, ‘BalAcc’ is balanced accuracy. Exons with any
overlap of the repetitive and low-complexity regions, as defined in the Trost et al. manuscript,98

omitted from analysis.

MCC TPR FDR PPV

MC 0.185 0.335 0.897 0.1030
Total ED 0.263 0.363 0.809 0.1910

MC 0.487 0.345 0.311 0.6890ALL
Sub ED 0.482 0.378 0.383 0.6170

MC 0.396 0.236 0.334 0.6660
Total ED 0.347 0.240 0.496 0.5040

MC 0.404 0.246 0.333 0.6670DUP
Sub ED 0.384 0.266 0.446 0.5540

MC 0.180 0.639 0.949 0.0509
Total ED 0.219 0.558 0.914 0.0861

MC 0.683 0.661 0.294 0.7060DEL
Sub ED 0.541 0.554 0.471 0.5290

to detect deletions. Figures 2.10 and 2.11 show the call overlap between the three approaches,

including and excluding NCG_00790 and NCG_00851, respectively.
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2.4 Discussion

The medical genetics community still lacks robust exome-wide information about small (exon-

level) variant prevalence. Others have established the reliability and cost-efficiency of pre-capture

multiplexing,103–107 and most commercial exome capture platforms have protocols for pre-capture

multiplexing. Here, we demonstrate the reduction in inter-sample variance when pre-capture mul-

tiplexing, leading to increased power to detect exon-level copy number variation. Despite the

benefits, many clinical laboratories do not employ a multiplexed capture protocol because multi-

plexing requires waiting to fill a pool and may delay results. While we understand the increased

complexity, multiplexed capture may uncover otherwise missed copy number variation and increase

the diagnostic yield for patients.

Multiplexed capture is not without limitations. We presented an example (pool IDT-MC)

where multiplexed capture provided little to no improvement over independently-captured samples.

We concluded the absent improvement in inter-sample variance stemmed from the poor library

balance prior to capture. Rebuilding a more-balanced pool with the same samples (pool IDT-RR)

demonstrated a large reduction in inter-sample variance.

In assessing the inter-sample variance, we compared two capture platforms: (1) Agilent SureS-

electXT2 and (2) Integrated DNA Technologies xGen Lockdown Probes. We do not have enough

data to suggest definitively one over the other. Comparing the mean-variance relationship, the

IDT-RR pool appeared to have less dispersion overall (Figure 2.4); however, the sample-specific

dispersion estimates from ExomeDepth suggest better performance by the WGS pool (Figure 2.8)

and the higher pool-wide dispersion comes entirely from the two poorly correlated samples.

Our results suggest having a sufficiently large database of samples most-often provides appropri-

ate control samples to estimate copy number variation (Figure 2.5). However, we show laboratories

can circumvent the need for large samples by multiplexing the capture step. Defining the capture

pool as the set of controls both limits the need for regular reanalysis as the database grows and

eliminates potential over-selecting of samples with the same variants.

At the depth of the WGS pool, our simplistic simulation study would suggest both mcCNV and

ExomeDepth have the power to detect single-exon variants with >85% sensitivity while maintaining
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a low false-discovery rate (Figure 2.9, Table 2.2). However, comparing the exome calls to the

genome calls for the WGS pool revealed lackluster concordance. As Trost et al. point out, the

genome CNV callers still struggle with variants less than 1 kb.98 We do not dismiss the possibility

of exome calls providing greater reliability than the genome calls, given multiplexed capture and

adequate sequencing depth. However, given the distribution of calls throughout the exome, we

doubt the thousands of excess deletions called for NCG_00790 and NCG_00851. Confirmation of

the individual calls is beyond the scope of this work.

Unsurprisingly, both mcCNV and ExomeDepth failed to call many of the duplications called

from the genome data. The variance for the negative binomial increases as the mean increases; we

expect greater variation in read depth from duplicated loci, making duplications more difficult to

distinguish. Similarly, the variance of the binomial proportion increases monotonically over [0, 0.5).

More sensitive detection of duplications will likely require greater sequencing depth.

The simulation study emphasizes the importance of sequencing depth (in terms of absolute

molecules). We can collect increased basepair coverage for less money by sequencing longer reads

(e.g. 2x150 versus 2x50), but doing so decreases power for depth-based CNV calling. Typically,

exome sequencing targets 30-50x coverage to ensure most targets have sufficient coverage for accu-

rate basepair calling. We demonstrate the need for much deeper sequencing if we wish to establish

exon-level variants.

Taken together, we recommend the following: (1) research and clinical endeavors consider ad-

justing protocols to multiplex samples prior to any targeted capture; (2) prior to capture, we suggest

checking the library balance and adjusting as necessary (we achieved reasonable performance with

relative standard deviation values less than 25%); (3) collecting an average of 225 filtered read-

pairs per target. We then provide a simple-to-use and efficient R package to estimate copy number

utilizing the negative bionimal distribution.

We believe the uncertainty about the prevalence and clinical significance of exon-level variants

warrants a large undertaking. Even if we take the conservative approach and looking only at

concordant calls between genome and exome sequencing (Figure 2.11), we have an average of 40

variants per sample to contend with. Two possibilities exist: (1) the algorithms all fail over specific
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regions, or (2) some genes can tolerate intrageneic copy-number variation better than others. Having

eliminated calls from repetitive and low-complexity regions, we believe possibility (2) is more likely.

To truly determine the prevalence (and therefore, clinical significance) of exon-level variants we

need to interrogate exon-level variants on a large cohort. Confirmation testing for the tens to

thousands of predicted variants from the exome and genome calls would allow true determination

of algorithm performance and inform the clinical utility.
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CHAPTER 3: NONINVASIVE PRENATAL EXOME SEQUENCING PITFALLS

3.1 Introduction

The beneficial health outcomes from newborn screening programs (NBS) are indisputable. We

envision future NBS will begin with prenatal genetic testing to enable care in the immediate

newborn period, and open up new possibilities for in utero and genetic therapies. During preg-

nancy, placental DNA is released into maternal circulation, enabling noninvasive interrogation of

fetal genetics (noninvasive prenatal testing, NIPT). NIPT has a well-established clinical utility

in screening for common chromosomal abnormalities such as Down syndrome with high sensitiv-

ity and specificity.108 More recently, efforts have demonstrated sequencing-based testing for de

novo pathogenic variants in a list of 30 genes associated with dominant Mendelian disorders109 and

PCR-based testing for a small number of recessive Mendelian disorders.110 Using relative haplotype

dosage analysis (RHDO),111 multiple groups have successfully diagnosed single gene disorders112–114

including a new offering of noninvasive prenatal diagnosis for cystic fibrosis in the UK Public Health

Service.115 RHDO typically relies on collecting parental, and ideally proband, genetic information

to resolve parental haplotypes; Jang et al. demonstrated success in diagnosing Duchenne muscular

dystrophy by estimating haplotypes solely from maternal long-read sequencing.113 Scotchman et

al. provide an excellent review summarizing the history of noninvasive testing.84 To date, no one

has reported reliable fetal genotyping purely from maternal cell-free DNA using a sequencing-based

approach.

To begin NBS with prenatal genetic testing, we believe we first need a reliable noninvasive

test only requiring a maternal sample. Others could reasonably argue the availability of carrier

screening, and the immeasurably small risk of invasive testing,116 removes the need for noninvasive

testing. Such an argument, however, dismisses (1) the ethical and practical issues surrounding

the necessity of involving the biological father, (2) the fact that many genetic disorders arise due

to de novo mutations, and (3) the understandable fear and apprehension around invasive testing
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(especially for rare conditions). Additionally, we believe the prenatal diagnosis community should

focus work on sequencing-based (as opposed to PCR-based) approaches. Sequencing generalizes

across disorders more easily than PCR techniques, allows multiplexing to a degree not feasible using

PCR, and will only continue to decrease in cost.

Snyder et al. provide a review of previous attempts to perform noninvasive fetal genome se-

quencing, illustrating the cost-infeasibility and suggesting more targeted approaches such as exome

sequencing (ES).111,117–119 As an exploratory exercise, we performed ES on cell-free DNA (cfES)

from three pregnant women with singleton fetuses.

3.2 Methods

3.2.1 Participant selection: Genetic counselors identified pregnant women with suspected ge-

netic disorders based either on family history or fetal sonographic findings. We enrolled three

women, blinded to their family history and sonographic findings. All participants were consented

and enrolled at UNC Hospitals by certified genetic counselors with approval from the UNC Insti-

tutional Review Board (IRB Number: 18-2618); we do not include any identifying information in

this manuscript.

3.2.2 Exome sequencing and analysis: We collected cell-free DNA from maternal plasma,

prepared sequencing libraries for the Illumina platform, and performed exome capture using the IDT

xGen Exome Research Panel v1.0 (Cases 1 & 2) or Agilent SureSelect Human All Exon v7 (Case 3).

We processed the data using a novel analytic pipeline developed in Snakemake97 using Anaconda

environments for reproducibility (provided in supplemental materials). Briefly, sequencing reads

were aligned to hg38 (excluding alternate contigs) using BWA-MEM,96 then base quality scores

were re-calibrated using GATK4.37,40,41 We only retained non-duplicate, properly-paired reads with

unambiguous mapping and mapping quality >30 for each read. We called variants using bcftools,39

requiring basepair quality scores >20. We suggest the review by Seaby et al. for more information

on the specifics of collecting and processing ES data for clinical use.120 Analyses were restricted

to the regions overlapping between the IDT and Agilent capture platforms. For cell-free analyses,

we required 5 alternate allele-supporting read-pairs, and at least 80 total read-pairs. Using the

identified single-nucleotide variants, we applied a novel empirical Bayesian procedure to estimate
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the fetal fraction (FF; the proportion of placental/fetal to maternal sequencing reads). We then

estimated maternal and fetal genotypes using a maximal likelihood model incorporating the FF

estimate and observed proportion of minor allele (alternate) reads (PMAR).

3.2.3 Genotyping algorithm: Represent maternal and fetal genotype pairs, given by the ran-

dom variable G, with capital and lowercase letters, where ‘A’ and ‘B’ represent the major and

minor alleles (e.g. ‘AAab’ represents the fetus uniquely heterozygous for the minor allele).

Let X,Y be random variables for major and minor allele read counts. Define the fetal fraction

and PMAR as the random variables F and M . Then, by definition, E[M ] = E[Y/(X + Y )]. It’s

easily proven:

E[M |G = AAab, F = f ] =
f

2
(3.1)

E[M |G = ABaa, F = f ] =
1− f

2
(3.2)

E[M |G = ABab, F = f ] =
1

2
(3.3)

E[M |G = ABbb, F = f ] =
1 + f

2
(3.4)

E[M |G = BBab, F = f ] = 1− f

2
(3.5)

We can then rearrange equations (3.1) and (3.5) and solve for the expected fetal fraction in

terms of the PMAR:

E[F |G = AAab,M = m] = 2m (3.6)

E[F |G = BBab,M = m] = 2− 2m (3.7)

Given the average population allele frequency for sequenced variants, we know the probability

distribution of maternal/fetal genotypes under Hardy-Weinberg, Pr{G = g}. As shown above,
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given the fetal fraction, F = f , we know the expected PMAR for each genotype, M . We observe

the major and minor allele reads, X and Y respectively, and wish to estimate G, Ĝ.

We employ an empirical Bayesian expectation-maximization algorithm to identify loci with

unique fetal heterozygosity, i.e. g ∈ {AAab,BBab}. We pick reasonable starting values for the fetal

fraction, F = f , and the average minor allele frequency, then iteratively update the expected allele

distribution and expected PMAR values until some convergence:

1. Initialize the genotype probabilities, p∗g = Pr{G = g}, and the expected PMAR, m∗
g = mg,

based on reasonable estimates for the average minor allele frequency and fetal fraction

2. Update Ĝ:

ĝi = argmax
g∈G

{
p∗gL(g|m∗

g, xi, yi)
}
, Yi ∼ Bin(xi + yi,m

∗
g)

3. Update the genotype probabilities:

p∗g =

∑
i I(ĝ = g) +NPr{G = g} − 1∑

g {
∑

i I(ĝ = g) +NPr{G = g} − 2}

where N is the weight given to the initial estimate of the genotype probability, Pr{G = g}.

4. Update the expected PMAR:

m∗
g =

∑
i yiI(ĝ = g) +Nmg − 1∑

i(xi + yi)I(ĝ = g) +N − 2

where N is the weight given to the initial estimate of the PMAR, mg.

5. Continue updating Ĝ (2), p∗g (3), and m∗
g (4) until Ĝ converges.

6. For all loci j, such that ĝ ∈ {AAab,BBab}, calculate f̂j :

f̂j =


2yj

xj + yj
, ĝ = AAab

2− 2yj
xj + yj

, ĝ = BBab
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7. Let

f̂ = median
(
f̂j

)

8. Calculate the expected PMAR using the fetal fraction estimate,

mg = E[M |f̂ , g]

9. Finally, for all loci, i, estimate ĝi ∈ Ĝ,

ĝi = argmax
g∈G

{L(g|mg, xi, yi)} , Yi ∼ Bin(xi + yi,mg)

3.2.4 Data availability: The data that support the findings of this study are available on

request from the corresponding author. The raw sequencing data are not publicly available due to

privacy or ethical restrictions. Allele depths, with the alleles masked and genomic location rounded

to 10 kilobases are available in the self-contained R121 package reproducing the analysis herein

(https://github.com/daynefiler/filer2020B).

3.3 Results

Using the final set of filtered reads, we analyzed single nucleotide loci with >80x coverage and

at least 5 reads supporting the alternate allele. At each analyzed site, we alternate allele sequencing

depth and total sequencing depth to estimate the fetal fraction and maternal-fetal genotypes using

our novel algorithm (Figure 3.1). Table 3.1 lists the known genetic diagnoses for the three cases

presented. Genetic counselors recruited the three participants; investigators and cfES analysis was

blinded to the eventual genetic diagnoses. In Cases 1 & 2, specific gene sequencing based on family

history and sonographic findings, respectively, provided genetic diagnoses. To date, Case 3 does not

have a genetic diagnosis. We learned the mother in Case 1 carries a deletion of exon 1 in the gene

most-often responsible for Menke’s syndrome (ATP7A). Neither exome capture platform targets

ATP7A exon 1; therefore, cfES could not have identified the diagnosis for Case 1 with the platform

used. In Case 2, we identified the causal variant using cfES. In this case, we correctly genotyped

the fetus, but lacked the power to make the genotyping call with any level of confidence acceptable
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Figure 3.1: Distribution of observed proportion of minor allele reads (PMAR) values for the three
cases across the possible maternal-fetal genotype pairs. Uppercase letters give the estimated mater-
nal genotype, lowercase letters give the estimated fetal genotype; ‘A/a’ indicates the reference allele,
‘B/b’ indicates the alternate allele. Solid lines show the normal approximation for the theoretical
distribution of binomial probabilities, given the frequency of the estimated genotypes. The vertical
line in (B) shows the observed PMAR for the known pathogenic variant, rs140468248.

for clinical use (Figure 3.1B, note the widely-overlapping distributions at the causal variant). We

did not identify any known pathogenic variants in the sequencing of Case 3, and despite performing

genome sequencing on the newborn, we still do not have a genetic diagnosis for the family.

In Case 3, in addition to cfES, we performed exome sequencing (ES) on fetal, maternal, and

paternal samples. Based on previous work demonstrating the differential length of maternal and

fetal fragments,122–125 we interrogated the distribution of presumed maternal and fetal reads (Figure

3.2). We identified maternal and fetal reads by identifying sites with unique heterozygosity in the

direct maternal and fetal ES results; at the informative sites, we extracted reads supporting the
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Table 3.1: Case summaries. GA: gestational age at the time of blood draw for cfES. FF: estimated
fetal fraction. Depth: median depth used to estimate genotypes (does not include duplicated/-
filtered reads). %Dup: percentage of total mapped read pairs discarded as PCR and/or optical
duplicates. %Filt: percentage of total mapped read pairs discarded for improper pairing and/or
mapping quality.

GA Clinical findings Genetic diagnosis FF Dep %Dup %Filt

1 32w2d 5 prior pregnancies
affected with X-linked
recessive Menke’s
syndrome

Menke’s syndrome;
del. ATP7A exon 1

0.117 241 42.80 21.96

2 24w5d Fetal sonogram at
21w5d showed femoral
bowing with shortened
length (<3% for GA)
bilaterally

Osteogenesis
imperfecta type VIII;
P3H1 c.1120G>T
(rs140468248)

0.122 152 33.32 22.09

3 34w0d Fetal sonogram at
19w0d showed
bilateral club foot
with bilateral upper
limb arthrogryposis

None, to date, despite
exome and genome
sequencing of newborn

0.169 330 53.67 32.65

allele unique to the mother or fetus. In total, we identified 654,619 maternal reads and 279,508

fetal reads. We found, as others have, a higher proportion of fetal reads falling below 150 basepairs;

however, we also observed a slightly higher proportion of longer reads, as well.

Rabinowitz et al. proposed the Hoobari method which incorporates fragment lengths into fetal

genotype estimates,125 finding the difference in accuracy varied from -0.25% to 1.89% when using

versus not using fragment length in their exome analyses. To explore the utility of correcting

for fragment length in our analysis, we interrogated the PMAR as a function of the short read

proportion (fraction of reads with insert sizes less than 140 basepairs; Figure 3.3). We selected

140 as the cutoff based on the Hoobari algorithm. Overall, we found no meaningful relationship

between the short read proportion and the observed PMAR and chose not to incorporate fragment

length into our genotype estimates.

Returning to Case 3, we interrogated the fetal genotyping accuracy at all sites with cell-free

genotype estimates and reliable calls from the direct fetal sample. Overall, we found a 50.91%

accuracy (Table 3.2). Table 3.3 provides the full set of maternal, fetal, and cell-free calls.
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Figure 3.2: Distribution of maternal versus fetal fragment length in Case 3. (A) shows the density;
(B) shows the emperic cumulative distribution. The horiztonal axis shows the fragment length
(insert size taken from aligned read-pairs). Blue lines show maternal reads, orange lines show fetal
reads. We only included cfES reads supporting alleles unique to the mother or fetus, as identified
from the direct maternal and fetal ES.

Table 3.2: Case 3 fetal versus cell-free genotype calls. ‘0’ represents the major allele; ‘1’ represents
the minor allele. Sites with cell-free estimates and reliable direct fetal calls included (reliable defied
as passing all quality checks and having a total sequencing depth greater than 30).

Cell-free

0/0 0/1 1/1

0/0 1,063 1,857 9

0/1 3,598 7,079 1,454Fetal
1/1 76 2,197 1,391
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Figure 3.3: Proportion of minor allele reads (PMAR) as a function of the short read proportion for
genotypes estimated as ‘AAab.’ Short reads defined as fragments less than 140 basepairs. (A-C)
show Cases 1 to 3, respectively. Gray points show the individual sites; blue contour lines show the
two-dimensional distribution of values.
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Table 3.3: Maternal, fetal, and cell-free genotype calls. ‘0’ represents the major allele; ‘1’ represents
the minor allele. Sites with cell-free estimates and reliable direct fetal calls included (reliable defied
as passing all quality checks and having a total sequencing depth greater than 30).

Maternal Fetal Cell-free N

0/0 468
0/0 0/1 1,159

0/0 64
0/1 0/1 352

0/0 1
0/0

1/1 0/1 2

0/0 387

0/1 1070/0
1/1 6

0/0 3,072

0/1 1,9670/1
1/1 713

0/0 68

0/1 458

0/1

1/1
1/1 1,291

0/1 1
0/0 1/1 2

0/0 3

0/1 1,3080/1
1/1 648

0/1 1,601

1/1

1/1 1/1 23
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3.4 Discussion

Without the ability to reliably exclude maternal DNA fragments, noninvasive sequencing-based

methods to genotype the fetus either require additional sequencing of parental samples or distin-

guishing genotypes by the proportion of minor allele reads (PMAR). Here, we make no attempt

to utilize parental genetic information and demonstrate the difficulty of inferring the genotypes

directly from the PMAR. We model the PMAR as a binomial proportion; given the fetal fraction,

one can prove the true PMAR defines the maternal and fetal genotypes (supplemental document).

The theoretical bounds of the binomial distribution, therefore, confine our ability to discrim-

inate maternal-fetal genotypes. Using the normal approximation for the binomial variance (valid

when the number of observations, i.e. sequencing depth, times the binomial proportion, i.e. PMAR,

is greater than 10), we can clearly explain the poor results we observed (Figures 3.4 and 3.5). At

sequencing depths up to 500x, the 95% confidence intervals on PMAR distributions still overlap

for fetal fractions up to roughly 0.17 (Figure 3.4). When we calculate the degree of distribution

overlap (a proxy for classification error rate), we see required sequencing depths in excess of 8,000x

for low fetal fraction samples (Figure 3.5). We, therefore, cannot expect cell-free sequencing to

reliably differentiate genotypes without substantially higher depth or additional genetic informa-

tion. No amount of cleverness in the analysis can overcome the fundamental variance bounds when

estimating binomial proportions.

The sequencing herein suffers from three problems: (1) inadequate sequencing depth; (2) biased

PMAR values from the removal of duplicate reads; (3) errors in sequencing and/or PCR. We have

already illustrated the inadequate depth, but emphasize that the theoretical results we present

speak to the final depths (not the raw sequencing depth). In our three cases, we excluded over

half the reads taken off the sequencer due to sequencing quality thresholds (Table 3.1). We observe

the evidence of problems (2) and (3) by observing the high proportion of both duplicate reads and

PMAR values outside the theoretic distributions. Additionally, we observed very poor accuracy in

the Case 3 genotype estimates.

Typical sequencing workflows start with randomly fragmenting DNA molecules to build se-

quencing libraries. Standard bioinformatic practices suggest we remove read-pairs with identical
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endpoints, because the duplicate read-pairs more likely represent PCR amplification of a single

molecule than two molecules with the same fragmentation. Cell-free DNA molecules are shorter

than nuclear DNA, not requiring manual fragmentation, and have a non-random distribution of

endpoints.123 Therefore, compared to standard sequencing libraries, the likelihood of observing true

duplicates in cell-free libraries increases and we cannot necessarily assume duplicates represent PCR

amplification. However, for this work we have no way of differentiating reads representing true du-

plicate molecules versus PCR duplicates and thus excluded duplicate reads from our analysis.

Assuming adequate depth and appropriate handling of duplicate reads and sequencing errors,

incorporating the fragment length into the statistical model may prove more beneficial. The high

variability of the binomial distribution for small n obfuscates any meaningful relationship between

fragment length and PMAR in our data. We reiterate, however, incorporating fragment length

may give better estimates of the binomial proportion but cannot decrease variance beyond the

distribution bounds.

To solve the above issues, we advocate a more targeted approach with much greater sequencing

depth and unique molecular identifiers. Unique molecular identifiers allow identification of sequenc-

ing errors and differentiate true versus artifactual duplicate reads. Given the depth requirements

for estimating fetal genotypes by the PMAR, and the challenge of variants of uncertain clinical sig-

nificance, we advocate against broad sequencing modalities on noninvasive samples. Recognizing

that all capture methods introduce bias in the relative sequencing efficiency of different targeted

regions,120 the sequencing depths needed for noninvasive fetal genotyping necessitate a targeted

approach. Despite the challenges raised by this work, we believe assessing hundreds to thousands

of basepairs, rather than the tens of millions targeted in ES, will prove economical and clinically

reliable. Doing so, we hope, will foster population-level screening for Mendelian disorders during

the prenatal period and, ultimately, unlock new avenues in the treatment of these disorders.
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CHAPTER 4: FUTURE DIRECTIONS

Here, I discuss ongoing work and a proposal to expand the work presented.

4.1 Fetal genotyping project

I am currently working on a proof-of-concept project to perform noninvasive fetal genotyping

with Neeta Vora. As demonstrated in Chapter 3, determining maternal and fetal genotypes requires

two estimation problems: (1) we must estimate the proportion of fetal DNA in maternal circulation

(fetal fraction), then (2) use the fetal fraction estimate and the observed proportion of minor

allele reads (PMAR) to estimate genotypes. We are currently building a cohort of 100 pregnant

women with singleton pregnancies (UNC IRB 18-2618). For each mother-newborn duo we collect

two samples: (1) 35 milliliters of maternal blood between 24-28 weeks gestational age; (2) either

newborn cord blood or cheek swab at delivery. We will then perform targeted sequencing to

estimate maternal and fetal genotypes from cell-free DNA, evaluating our genotype estimates using

the direct maternal and newborn samples. We will subdivide the two estimation problems (fetal

fraction and genotyping) into two separate bait panels for sequencing efficiency.

IDT provides a panel of 9,113 baits with approximately 0.34 MB spacing throughout the genome.

Using allele frequencies across diverse populations in the Genome Aggregation Database (gnomAD),

containing sequence data from over 130,000 individuals, we expect to observe approximately 2,000

informative sites per mother-fetus duo. Each informative site provides an independent estimate of

the fetal fraction; by the weak law of large numbers, averaging over many estimates will converge

to the true value. Therefore, the high density of informative sites should give robust fetal fraction

estimates without the depth of sequencing required for accurate genotyping.

With an estimation of fetal fraction, we can estimate maternal and fetal genotypes by counting

the number of minor allele reads (same as counting colored balls in the urn). In a small cohort of

100 patients, interrogating rare disease variants would give little (if any) indication of genotyping
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accuracy at heterozygous sites. Rather, to test genotyping accuracy, we will build sequencing

libraries using the IDT Human ID panel. The ID panel contains 229 probes covering 76 polymorphic

sites with minor allele frequencies close to 0.5 across diverse populations. Interrogating variants

with minor allele population frequencies near one half will allow us to adequately assess genotyping

accuracy without observing rare disease variants.

We will consider the pilot successful if we observe greater than 95% accuracy at sites with

maternal heterozygosity. Ultimately, performing noninvasive fetal genotyping will improve neonatal

outcomes by empowering neonatologists and creating the onus to develop novel in utero therapies.

4.2 CNV validation proposal

Fundamentally, we cannot evaluate CNV detection algorithms because we lack validated genome-

wide information around small exon-level copy number variation. Based on the numerous CNVs

detected across algorithms, we most likely have greater issues with specificity than sensitivity. Un-

fortunately, array-based approaches lack the precision to identify exon-level variation. The next

step in evaluating the mcCNV algorithm would be to test predicted calls using digital PCR. Digital

PCR uses nanofluidics to partition a sample into 20,000 individual PCR reactions, enabling highly-

precise copy-number estimation Probes to cost roughly $120 each; the reaction for each sample

costing roughly $20.

Having familial information would allow us to exploit inheritance patterns to better understand

and evaluate estimated calls. I would collect a cohort of mother-father-child trios, and perform deep

exome sequencing. Using a single lane of an S4 flow cell on an Illumina NovaSeq sequencer, we

could sequence 32 mother-father-child trios to >300x coverage. To maximize independence within

the mcCNV algorithm, I would capture mothers, fathers, and children in separate multiplexed

reactions. Cost constraints prohibit doing exome-wide digital PCR. I would select roughly 100

predicted variants, shared across multiple samples, and perform digital PCR on samples with and

without the predicted variant.
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R CODE

This appendix contains all of the R code to reproduce the work presented. Note, I have omitted
the lines of code defining captions for figures/tables for formatting purposes.
options(knitr.graphics.auto_pdf = TRUE)
knitr::opts_chunk$set(

echo = FALSE,
warning = FALSE,
message = FALSE,
error = FALSE,
cache = TRUE,
fig.align = "center",
fig.width = 5,
fig.height = 4,
dev.args = list(pdf = list(pointsize = 10),

png = list(pointsize = 10)),
dpi = 300

)
tex <- TRUE
docx <- FALSE
html <- FALSE
if (!knitr:::is_latex_output()) {

tex <- FALSE
if (knitr:::is_html_output()) {

html <- TRUE
} else {

docx <- TRUE
}

}
library(filer2020A)
library(filer2020B)
library(mcCNV)
library(xtable)
library(eulerr)
library(dlfUtils)
library(parallel)
library(grid)
library(kableExtra)
library(MASS)
library(tufte)
defOutWid <- if (html) '70%' else NULL
dblOutWid <- if (html) '40%' else '49%'
data(subjectMeta)
poolTbl <- subjectMeta[ ,

.(N = .N,
medExon = round(median(medIntMolCount), 0),
medTotal = round(median(totalMolCount), 0),
minTotal = min(totalMolCount),
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maxTotal = max(totalMolCount),
rsdTotal = sd(totalMolCount)/mean(totalMolCount)*100),

by = .(pool, capture, multiplexCapture)]
poolTbl[ , rsdTotal := round(rsdTotal, 1)]
poolTbl[(!multiplexCapture), pool := paste0(pool, "$ˆ\\dagger$")]
kable(poolTbl[ , .(pool, capture, N, medExon, medTotal,

minTotal, maxTotal, rsdTotal)],
row.names = FALSE,
label = "poolSummary",
format.args = list(big.mark = ",", scientific = FALSE),
booktabs = TRUE,
caption.short = "Summary of whole-exome sequencing for CNV project.",
escape = FALSE) %>%

kable_classic()
## Create IC pools
smplSubject <- function(poolName, n) {

data(subjectMeta, envir = environment())
subjectMeta[pool == poolName, sample(subject, n, replace = FALSE)]

}
set.seed(1234)
pools <- c(replicate(5, smplSubject("NCGENES", 16), simplify = FALSE))
names(pools) <- c(sprintf("randNCG_%d", 1:5))
pools <- c(pools,

with(subjectMeta[pool != "NCGENES"], split(subject, pool)))
## Calculate mean-variance by pool
mnvr <- mclapply(pools, subsetCounts, mc.cores = length(pools))
mnvr <- mclapply(mnvr, calcIntStats, mc.cores = length(mnvr))
for (i in seq_along(mnvr)) {

mnvr[[i]][ , pool := names(mnvr)[i]]
}
mnvr <- rbindlist(mnvr)
setkey(mnvr, pool); setcolorder(mnvr)

## Estimate alpha0
alpha0 <- mclapply(pools, estAlpha0, mc.cores = length(pools))
a0tbl <- data.table(pool = names(alpha0),

a0 = sapply(alpha0, "[[", "a0"),
N = sapply(alpha0, "[[", "N"))

a0tbl[ , aMn := a0/N]
calcRange <- function(x) {

subjectMeta[subject %in% x,
.(mnCount = min(totalMolCount),

mdCount = median(totalMolCount),
mxCount = max(totalMolCount),
rsCount = sd(totalMolCount)/mean(totalMolCount)*100)]

}
poolCts <- lapply(pools, calcRange)
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poolCts <- lapply(names(poolCts), function(x) poolCts[[x]][ , pool := x])
poolCts <- rbindlist(poolCts)
a0tbl <- merge(a0tbl, poolCts)
a0tbl[ , mc := !grepl("IDT-IC|rand", pool)]
a0tbl[ , idt := grepl("IDT", pool)]
pltAlpha0(a0tbl)
aglPools <- c(sprintf("randNCG_%d", 1:5), "Pool1", "Pool2", "WGS", "SMA1", "SMA2")
with(mnvr[pool %in% aglPools], {

pltMnVrCont(dat = as.data.table(as.list(environment())),
grpVec = factor(pool, levels = aglPools),
colVec = c(rep('darkblue', 5), rep('darkorange', 5)),
lgnd = FALSE)

})
idtPools <- c("IDT-MC", "IDT-IC", "IDT-RR")
with(mnvr[pool %in% idtPools], {

pltMnVrCont(dat = as.data.table(as.list(environment())),
grpVec = factor(pool, levels = idtPools),
colVec = c("darkorange", "darkblue", "darkorange"),
lgnd = FALSE)

})
with(mnvr[pool %in% c("WGS", "IDT-RR")], {

pltMnVrCont(dat = as.data.table(as.list(environment())),
grpVec = factor(pool, levels = c("WGS", "IDT-RR")),
colVec = c("darkblue", "darkorange"))

})
pltSubjectStatByPool("medIntMolCount", ylab = "Median count per exon")
pltSubjectStatByPool("nSelected", ylab = "Number of controls selected")
pltSubjectStatByPool("propSelected", ylab = "Proportion of controls selected")
pltSubjectStatByPool("overallPhi", ylab = "Overdispersion (phi)")
setkey(subjectMeta, subject)
data(subjectCorr)
setkey(subjectCorr, subject)
subjectCorr <- subjectMeta[subjectCorr]
data(simRes)
procSimRes <- lapply(simRes, function(x) procRes(x$clpRes))

simResTbl <- lapply(procSimRes,
function(x) x$mnDat[ , .(mcc, tpr, fdr), keyby = dep])

simResTbl <- Reduce(merge, simResTbl)
setnames(simResTbl,

c("dep",
"mcMCC", "mcTPR", "mcFDR", ## mcCNV
"edMCC", "edTPR", "edFDR", ## ExomeDepthDefault
"ebMCC", "ebTPR", "ebFDR")) ## ExomeDepthBest

setcolorder(simResTbl,
c("dep", "mcMCC", "edMCC", "ebMCC", "mcTPR",

"edTPR", "ebTPR", "mcFDR", "edFDR", "ebFDR"))
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simResTbl <- simResTbl[ , lapply(.SD, signif, 3), by = dep]
pltStatCompare(xRes = procSimRes$ExomeDepthDefault, yRes = procSimRes$mcCNV,

stat = "mcc", xlab = "ExomeDepth (default)", ylab = "mcCNV")
addfiglab("A")
pltStatCompare(xRes = procSimRes$ExomeDepthDefault, yRes = procSimRes$mcCNV,

stat = "tpr", xlab = "ExomeDepth (default)", ylab = "mcCNV")
addfiglab("B")
pltStatCompare(xRes = procSimRes$ExomeDepthDefault, yRes = procSimRes$mcCNV,

stat = "fdr", xlab = "ExomeDepth (default)", ylab = "mcCNV")
addfiglab("C")
pltStatCompare(xRes = procSimRes$ExomeDepthBest, yRes = procSimRes$mcCNV,

stat = "mcc", xlab = "ExomeDepth (correct)", ylab = "mcCNV")
addfiglab("D")
pltStatCompare(xRes = procSimRes$ExomeDepthBest, yRes = procSimRes$mcCNV,

stat = "tpr", xlab = "ExomeDepth (correct)", ylab = "mcCNV")
addfiglab("E")
pltStatCompare(xRes = procSimRes$ExomeDepthBest, yRes = procSimRes$mcCNV,

stat = "fdr", xlab = "ExomeDepth (correct)", ylab = "mcCNV")
addfiglab("F")
kable(simResTbl,

col.names = c("dep", rep(c("mcCNV", "ED-def", "ED-sim"), 3)),
row.names = FALSE,
label = "simResTbl",
format.args = list(big.mark = ",", scientific = FALSE),
booktabs = TRUE) %>%

kable_classic() %>%
add_header_above(c(" " = 1, "MCC" = 3, "TPR" = 3, "FDR" = 3))

data(wgsPoolCalls)
mergeAll <- function(x, y) merge(x, y, all = TRUE)
wgs <- Reduce(mergeAll, wgsPoolCalls)
data(intAgl)
xpandInt <- function(int, sbjVec) {

lst <- vector(mode = "list", length = length(sbjVec))
names(lst) <- sbjVec
for (s in sbjVec) {

lst[[s]] <- copy(int)
lst[[s]][ , subject := s]

}
rbindlist(lst)

}
wgsAgl <- xpandInt(intAgl, wgs[ , unique(subject)])
setkeyv(wgsAgl, key(wgs))
wgs <- wgs[wgsAgl]
rm(wgsAgl)
wgs <- wgs[!(rlcr),

.(mcDup = !is.na(passFilter) & CN > 1,
edDup = !is.na(type) & type == "duplication",
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wgDup = !is.na(erds) & !is.na(cnvpytor) & erds == "dup",
mcDel = !is.na(passFilter) & CN < 1,
edDel = !is.na(type) & type == "deletion",
wgDel = !is.na(erds) & !is.na(cnvpytor) & erds == "del"),

by = .(subject, seqnames, start, end)]
wgs[ , mc := mcDup | mcDel]
wgs[ , ed := edDup | edDel]
wgs[ , wg := wgDup | wgDel]
setcolorder(wgs, c(key(wgs), 'mc', 'ed', 'wg'))
wgsCallBySbj <- wgs[ , lapply(.SD, sum), .SDcols = is.logical, by = subject]
kable(wgsCallBySbj,

col.names = c("subject", rep(c("MC", "ED", "WG"), 3)),
row.names = FALSE,
label = "wgsCallSbj",
format.args = list(big.mark = ",", scientific = FALSE),
booktabs = TRUE) %>%

kable_classic() %>%
add_header_above(c(" " = 1, "Total" = 3, "Duplications" = 3, "Deletions" = 3))

pmLst <- list()
pmLst$mc <- with(wgs, evalPred(mc, wg))
pmLst$ed <- with(wgs, evalPred(ed, wg))
pmLst$mcSub <- with(wgs[!grepl("790|851", subject)], evalPred(mc, wg))
pmLst$edSub <- with(wgs[!grepl("790|851", subject)], evalPred(ed, wg))
pmLst$mcDup <- with(wgs, evalPred(mcDup, wgDup))
pmLst$edDup <- with(wgs, evalPred(edDup, wgDup))
pmLst$mcSubDup <- with(wgs[!grepl("790|851", subject)],

evalPred(mcDup, wgDup))
pmLst$edSubDup <- with(wgs[!grepl("790|851", subject)],

evalPred(edDup, wgDup))
pmLst$mcDel <- with(wgs, evalPred(mcDel, wgDel))
pmLst$edDel <- with(wgs, evalPred(edDel, wgDel))
pmLst$mcSubDel <- with(wgs[!grepl("790|851", subject)],

evalPred(mcDel, wgDel))
pmLst$edSubDel <- with(wgs[!grepl("790|851", subject)],

evalPred(edDel, wgDel))
predMetrics <- as.data.table(do.call(rbind, pmLst), keep.rownames = "PredSet")
predMetrics[ , typ := rep(c("ALL", "DUP", "DEL"), each = 4)]
predMetrics[ , set := ifelse(grepl("Sub", PredSet), "Sub", "Total")]
predMetrics[ , alg := ifelse(grepl("mc", PredSet), "MC", "ED")]
setcolorder(predMetrics, c("typ", "set", "alg"))
kable(predMetrics[ , .(typ, set, alg, MCC, TPR, FDR, PPV)],

col.names = c(rep("", 3), "MCC", "TPR", "FDR", "PPV"),
row.names = FALSE,
label = "predMet",
format.args = list(big.mark = ",", scientific = FALSE),
booktabs = TRUE) %>%

kable_classic() %>%
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collapse_rows(columns = 1:3, valign = "middle")
ctsAll <- euler(wgs[ , .(mc, ed, wg)])
ctsSub <- euler(wgs[!grepl("790|851", subject), .(mc, ed, wg)])
ctsAllDup <- euler(wgs[ , .(mcDup, edDup, wgDup)])
ctsSubDup <- euler(wgs[!grepl("790|851", subject), .(mcDup, edDup, wgDup)])
ctsAllDel <- euler(wgs[ , .(mcDel, edDel, wgDel)])
ctsSubDel <- euler(wgs[!grepl("790|851", subject), .(mcDel, edDel, wgDel)])
eulerr_options(fills = list(fill = c("#E9E9E9", "#7F7FC4", "#FFC57F")),

quantities = list(cex = 0.5))
gridFigLab <- function(lab) {

grid.text(lab, x = 0, y = 1, hjust = 0, vjust = 1, gp = gpar(font = 2))
}
eulerr_options(fills = list(fill = c("#E9E9E9", "#7F7FC4", "#FFC57F")),

quantities = list(cex = 0.5))
plot(ctsAllDup, quantities = TRUE, labels = FALSE, main = "")
gridFigLab("A")
grid.text("DUPLICATIONS", x = 0.5, y = 0.9)
plot(ctsAllDel, quantities = TRUE, labels = FALSE, main = "")
gridFigLab("B")
grid.text("DELETIONS", x = 0.5, y = 0.9)

eulerr_options(fills = list(fill = c("#E9E9E9", "#7F7FC4", "#FFC57F")),
quantities = list(cex = 0.5))

plot(ctsSubDup, quantities = TRUE, labels = FALSE, main = "")
gridFigLab("A")
grid.text("DUPLICATIONS", x = 0.5, y = 0.9)
plot(ctsSubDel, quantities = TRUE, labels = FALSE, main = "")
gridFigLab("B")
grid.text("DELETIONS", x = 0.5, y = 0.9)
## Estimate maternal-fetal genotypes from cell-free exome sequencing
data(gt)
gt[ , udep := ref + alt]
gt[ , use := udep > 80 & ref > 5 & alt > 5]
for (s in c("S1", "S2", "FES-0034-4")) {

gt[smp == s & use,
c("ff", "gtCall", "gtLike") := callSmpl(alt, udep, .N, median(sdep/ldep))]

}
## Calculate median read depth & fetal fraction estimates by sample
smry <- gt[(use), .(md = median(udep), ff = ff[1]), by = smp]
setkey(smry, smp)
## Allele depth histograms
# par(oma = c(3, 0, 0, 0), mfrow = c(3, 1))
layout(matrix(1:4, ncol = 1), heights = c(rep(10, 3), 1))
with(gt[use & smp == "S1"], cfPltFreqHist(alt, udep, gtCall, ff = ff[1]))
title(ylab = "Case 1", line = 1)
addfiglab("A")
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data(rs140468248)
data(GenoMeta)
with(gt[use & smp == "S2"], cfPltFreqHist(alt, udep, gtCall, ff = ff[1]))
oiCall <- gt[varid == rs140468248, gtCall]
oiPmar <- gt[varid == rs140468248, alt/(ref + alt)]
abline(v = oiPmar, col = GenoMeta$color[GenoMeta$name == oiCall])
text(x = oiPmar,

y = grconvertY(0.75, "nfc"),
"rs140468248",
srt = 90,
adj = c(0.5, 1.5),
col = GenoMeta$color[GenoMeta$name == oiCall])

title(ylab = "Case 2", line = 1)
addfiglab("B", units = 'nfc')

with(gt[use & smp == "FES-0034-4"], cfPltFreqHist(alt, udep, gtCall, ff = ff[1]))
title(ylab = "Case 3", line = 1)
addfiglab("C", units = 'nfc')

par(mar = rep(0, 4))
plot.new()
legend(x = grconvertX(0.5, from = "nfc"),

y = grconvertY(0.5, from = "nfc"),
legend = GenoMeta$name,
horiz = TRUE,
lwd = 4,
col = GenoMeta$color,
xjust = 0.5,
yjust = 0.5,
xpd = NA,
bty = "n")

## Collect read depth and filtering information into a table
data(readSmry)
rs <- readSmry$summary
rs[ , pctDup := round(pctDup, 2)]
rs[ , pctFlt := round(pctFlt, 2)]
setkey(rs, smp)
rs <- smry[rs]
rs[ , ff := round(ff, 3)]
rs[smp == "S1", case := "Case 1"]
rs[smp == "S2", case := "Case 2"]
rs[grepl("FES", smp), case := "Case 3"]
caseSmry <- rs[!is.na(ff)][order(case)][ , {

.(GA = sprintf('(ref:case%dga)', 1:3),
`Clinical findings` = sprintf('(ref:case%dcc)', 1:3),
`Genetic diagnosis` = sprintf('(ref:case%dgd)', 1:3),
FF = ff,
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Dep = md,
`%Dup` = pctDup,
`%Filt` = pctFlt)

}]
kable(caseSmry,

row.names = TRUE,
label = "caseSmry",
format.args = list(big.mark = ",", scientific = FALSE),
booktabs = TRUE,
caption.short = "Cell-free exome sequencing case summaries") %>%

kable_classic() %>%
column_spec(3:4, width = "10em")

## Load c3MatFetReads
data(c3MatFetReads)
## Calculate density and ECDF for fragment read lengths
matDen <- density(c3MatFetReads[source == "maternal", isize])
fetDen <- density(c3MatFetReads[source == "fetal", isize])
matCdf <- ecdf(c3MatFetReads[source == "maternal", isize])
fetCdf <- ecdf(c3MatFetReads[source == "fetal", isize])

## Generate plots
par(mfrow = c(1, 2), oma = c(3, 0, 0, 0))
par(mar = c(4, 4, 1, 1))
plot.new()
plot.window(xlim = range(c(matDen$x, fetDen$x)), range(c(matDen$y, fetDen$y)))
lines(matDen, col = "darkblue", lwd = 2)
lines(fetDen, col = "darkorange", lwd =2)
axis(side = 1)
title(xlab = "Fragment length (insert size)", ylab = "Density")
addfiglab("A")
plot.new()
xv <- seq(50, 300, 1)
plot.window(xlim = range(xv), ylim = 0:1)
points(x = xv, y = matCdf(xv), col = "darkblue", lwd = 2, type = "l")
points(x = xv, y = fetCdf(xv), col = "darkorange", lwd = 2, type = "l")
addfiglab("B", units = 'nfc')
axis(side = 1)
axis(side = 2)
title(xlab = "Fragment length (insert size)",

ylab = "Cumulative distribution")
legend(x = grconvertX(0.5, from = "ndc"),

y = line2user(2, side = 1, outer = TRUE),
legend = c("Maternal", "Fetal"),
horiz = TRUE,
lwd = 2,
col = c("darkblue", "darkorange"),
xjust = 0.5,
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yjust = 0.5,
xpd = NA,
bty = "n")

gt[ , pmar := alt/(alt + ref)]
gt[ , sratio := sdep/adep]
pltSratioByPmar <- function(smpNm) {

par(mar = c(4, 4, 1, 1))
with(gt[gtCall == "AAab" & smp == smpNm], {

plot(pmar ~ sratio,
xlab = "Proportion of fragments < 140 bp",
ylab = "PMAR",
pch = 16,
cex = 0.5,
col = col2alpha('darkgray'),
bty = "n")

})
with(gt[gtCall == "AAab" & smp == smpNm], {

contour(kde2d(x = sratio, y = pmar, n = 500),
nlevels = 25,
add = TRUE,
drawlabels = FALSE,
col = "darkblue")

})
}
pltSratioByPmar("S1")
addfiglab("A")
pltSratioByPmar("S2")
addfiglab("B")
pltSratioByPmar("FES-0034-4")
addfiglab("C")
## Calculate call concordance between cell-free and direct for Case 3
c3 <- gt[(smp == "FES-0034-0" & udep > 30 & gt %in% c("0/0", "0/1", "1/1")) |

(smp == "FES-0034-1" & udep > 30 & gt %in% c("0/0", "0/1", "1/1")) |
(use & smp == "FES-0034-4")]

c3[ , mrg := substr(gtCall, 3, 4)]
c3[ , mrg := c("0/0", "0/1", "1/1")[match(mrg, c("aa", "ab", "bb"))]]
c3[is.na(gtCall), mrg := gt]
c3 <- dcast(c3, varid ~ smp, value.var = "mrg")
setnames(c3, c("varid", "fet", "mat", "cff"))
c3 <- c3[ , .N, by = .(mat, fet, cff)]
## call by call matrix, cell-free calls in columns, fetal in rows
c3FetByCf <- dcast(c3[!is.na(fet) & !is.na(cff)],

fet ~ cff,
fun.aggregate = sum,
value.var = "N")

setkey(c3FetByCf, fet)
## all c3 calls
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c3Calls <- c3[!is.na(mat) & !is.na(fet) & !is.na(cff), ][order(mat, fet, cff)]
kable(c3FetByCf[ , .(" " = "Fetal", " " = fet, `0/0`, `0/1`, `1/1`)],

row.names = FALSE,
label = "c3FetByCf",
format.args = list(big.mark = ",", scientific = FALSE),
booktabs = TRUE,
caption.short = 'Case 3 fetal versus cell-free genotype calls.') %>%

kable_classic() %>%
collapse_rows(columns = 1, valign = "middle") %>%
add_header_above(c(" " = 2, "Cell-free" = 3))

kable(c3Calls[ , .(Maternal = mat, Fetal = fet, `Cell-free` = cff, N)],
row.names = FALSE,
label = "c3Calls",
format.args = list(big.mark = ",", scientific = FALSE),
booktabs = TRUE,
caption.short = 'Maternal, fetal, and cell-free genotype calls.') %>%

kable_classic() %>%
collapse_rows(columns = 1:2, valign = "middle", latex_hline = "full")

pltExpMAF(500)
pltMissclass()
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