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ABSTRACT 

Simon Topp: MULTIDECADAL REMOTE SENSING OF INLAND WATER DYNAMICS 
(Under the direction of Tamlin Pavelsky) 

 

Remote sensing approaches to measuring inland water dynamics date back more than 

50 years. These approaches rely on the unique spectral properties of different waterbodies to 

delineate surface extents and estimate optically active water quality parameters. Until recently, 

inland water remote sensing focused largely on localized study domains due to limitations in 

modelling methods, computing power, and data access. Recent advances in these areas have 

created novel opportunities for data-driven-multidecadal remote sensing of inland waters at the 

landscape scale. Here, I highlight the history of inland water remote sensing along with the 

dominant methodologies, water quality constituents, and limitations involved. I then use this 

background to contextualize three macroscale inland water remote sensing studies of 

increasing complexity. The first combines field measurements with remotely sensed surface 

water extents to identify the impacts of small-scale gold mining in Peru. Our results suggest that 

mining is leading to synergistic increases in lake area and mercury loading that are significantly 

heightening exposure risk for people and wildlife. I move from measuring lake extents in Peru to 

measuring lake color in over 26,000 lakes across the United States. This analysis shows that 

lake color seasonality can be generalized into five distinct phenology groups that follow well-

known patterns of algae growth and succession. The stability of a given lake (i.e. the likelihood it 

will move from one phenology group to another) is tied to lake and landscape level 

characteristics including climate and population density. Finally, I move from simple parameters 

such as quantity and color to estimating multidecadal changes in water clarity in U.S. lakes. I 

show that lake water clarity in the U.S. has increased by an average of 0.52 cm yr-1 since 1984, 
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largely as a result of extensive U.S. freshwater pollution abatement measures. In combination, 

these three studies highlight that data intensive remote sensing approaches are expanding the 

capabilities of inland water remote sensing from local to global scales, and that macroscale 

remote sensing of inland waters reveals trends and processes that are unobservable using field 

data alone. 
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Chapter 1: Research Trends in the Use of Remote Sensing for Inland Water Quality 
Science: Moving Towards Multidisciplinary Applications1 

Section 1: Introduction 

Section 1.1: Summary 

Remote sensing approaches to measuring inland water quality date back nearly 50 

years to the beginning of the satellite era. Over this time span, hundreds of peer-reviewed 

publications have demonstrated promising remote sensing models to estimate biological, 

chemical, and physical properties of inland waterbodies. Until recently, most of these 

publications focused largely on algorithm development as opposed to implementation of those 

algorithms to address specific science questions. This slow evolution contrasts with terrestrial 

and oceanic remote sensing, where methods development in the 1970s led to publications 

focused on understanding spatially expansive, complex processes as early as the mid-1980s. 

This review explores the progression of inland water quality remote sensing from 

methodological development to scientific applications. We use bibliometric analysis to assess 

overall patterns in the field and subsequently examine 236 key papers to identify trends in 

research focus and scale. The results highlight an initial 30 year period where the majority of 

publications focused on model development and validation followed by a spike in publications, 

beginning in the early-2000s, applying remote sensing models to analyze spatiotemporal trends, 

drivers, and impacts of changing water quality on ecosystems and human populations. Recent 

and emerging resources, including improved data availability and enhanced processing 

 
1 This chapter previously appeared as an article in Water. The original citation is as follows: Topp, S. N., 
Pavelsky, T. M., Jensen, D., Simard, M., & Ross, M. R. V. (2020). Research trends in the use of remote 
sensing for inland water quality science: Moving towards multidisciplinary applications. Water, 12(1), 169. 
https://doi.org/10.3390/w12010169. 
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platforms, are enabling researchers to address challenging science questions and model 

spatiotemporally explicit patterns in water quality. Examination of the literature shows that the 

past 10–15 years has brought about a focal shift within the field, where researchers are using 

improved computing resources, datasets, and operational remote sensing algorithms to better 

understand complex inland water systems. Future satellite missions promise to continue these 

improvements by providing observational continuity with spatial/spectral resolutions ideal for 

inland waters.  

Section 1.2: Background 

Remote sensing has long been promised as a tool for large-scale monitoring of inland 

water quality. Dating back to the early 1970s, airborne and satellite sensors have been used to 

examine a wide range of water quality constituents (Wrigley and Horne, 1974; Scarpace et al., 

1979). In the 50 years since, scientists have produced hundreds of peer-reviewed publications 

presenting models estimating biological, chemical, and physical properties of complex 

waterbodies (see reviews by Liu et al. (2003), Matthews (2011), Odermatt et al. (2012), and 

Gholizadeh et al. (2016)). Despite this proliferation of publications, existing reviews focus almost 

exclusively on methodological approaches rather than on the scientific contributions of remote 

sensing to our understanding of water quality, so characterization of the extent to which remote 

sensing has improved our knowledge of inland water dynamics remains limited.  

The historical tendency of inland water remote sensing to focus largely on methods 

development (here defined as data collection and processing and/or algorithm calibration and 

validation), contrasts starkly with that of related fields in terms of both the scope of research 

questions and the scale of studies. For terrestrial remote sensing, algorithm development 

throughout the 1970s (e.g., Normalized Difference Vegetation Index (NDVI); Tucker (1979)) led 

to publications focused on spatially expansive, complex processes as early as the mid-1980s. 

These papers include studies on global land use (Matthews, 1983), global vegetation analysis 

(Tarpley et al., 1984), and connections between primary productivity and carbon cycling (Tucker 
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et al., 1986; Box et al., 1989). For ocean color remote sensing, early methods development led 

to global datasets and estimations of oceanic primary productivity by the late 1980s (Platt and 

Sathyendranath, 1988; Feldman et al., 1989). Comparatively, global data products for inland 

water quality are limited, with a few key exceptions (e.g., Zandaryaa  (2018)) despite 

widespread acknowledgement of their importance from the inland water scientific community 

(Malthus et al., 2012; Lee et al., 2018). This slow evolution can be partially explained by well-

known challenges related to remote sensing of complex waterbodies, as well as the limited 

availability of sensors appropriate for inland water quality remote sensing (Hestir et al., 2015), 

discussed in detail with other challenges in Section 7.  

Previous reviews have provided excellent summaries of the technical approaches 

available to retrieve inland water quality parameters through remote sensing, as well as the 

current limitations of the field (Liu et al., 2003; Matthews, 2011; Odermatt et al., 2012; 

Gholizadeh et al., 2016; Tyler et al., 2016; IOCCG, 2018; Giardino et al., 2019a). Instead, we 

focus not on methodological details, but on the overall purpose and impact of past publications, 

how those impacts have changed over time, and how the field may evolve in the future. We 

quantify broad-scale trends through bibliometric analysis of search engine results. A subset of 

the most relevant published papers (n = 236) was identified using existing reviews, citation 

counts, database queries, and journal-specific searches. The identified papers were 

subsequently read, with key attributes documented in order to analyze trends and patterns in 

methodological approaches, model application, research focus, and study scale over time. 

Here, trend refers to a pattern with directionality over time or space. We limit our analysis to 

airborne and satellite remote sensing publications focusing on lakes, rivers, deltas, and 

estuaries, although we fully acknowledge that these publications were preceded by years of vital 

methods development using handheld and shipborne sensors (e.g., Bukata et al. (1981, 1988), 

Kishino et al. (1984), Kirk and Tyler (1986), Seyhan and Dekker (1986), and Dekker and 

Seyhan (1988)). Similarly, given the focus of this paper on the remote sensing of lake, river, 
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delta, and estuarine systems, which present their own unique challenges (Hestir et al., 2015), 

we excluded studies on near shore ocean waters and the Laurentian Great Lakes due to their 

similarity to Ocean Color Remote Sensing where well established methods already exist. 

Our results highlight a nearly 30 year period focusing predominantly on methods 

development prior to a spike in publications, beginning in the early 2000s, applying well 

validated algorithms to identify spatiotemporal trends, drivers, and impacts of changing inland 

water quality on ecosystem functions and human populations. Study scale exhibits a similar 

trend towards increasingly large areas with more waterbodies studied over longer periods of 

time, slowly moving closer to regional and global-scale data products. Through both broad and 

detailed inspection of the field, our results suggest that the past decade of inland water remote 

sensing has led to a fuller understanding of inland water processes by focusing on challenging 

science questions and increased study scales. This contribution continues today with an ever-

expanding body of available data, processing platforms, and methodologies.  

We contextualize our analysis of the literature by: (1) summarizing the primary water 

constituents measured with earth observation instruments, (2) providing a brief overview of 

common modelling approaches to measure those constituents, and (3) discussing the 

limitations that have hampered past research. This contextual information is followed by the 

bibliometric and index analysis described above. We conclude with a discussion of potential 

future directions for the field. 

Section 2: Earth Observation Sensors and Optically Active Waterbody Constituents  

The work reviewed here focuses primarily on passive optical satellite sensors capable of 

large-scale remote sensing research. In general, these are either ocean color sensors such as 

the Moderate Resolution Imaging Spectroradiometer (MODIS) (Miller and McKee, 2004; Falcini 

et al., 2012; Adamo et al., 2013; Qin et al., 2015), the Medium Resolution Imaging Spectrometer 

(MERIS) (Matthews et al., 2010; Bresciani et al., 2011, 2012; Palmer et al., 2015b), and the 

Sentinel-3 Ocean and Land Cover Instrument (OLCI) (Shen et al., 2017), or land surface optical 
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sensors including the Landsat series (Multispectral Scanner (MSS): (Ritchie et al., 1990; Mertes 

et al., 1993; Kloiber et al., 2002); Thematic Mapper (TM): (Dekker and Peters, 1993; Yacobi et 

al., 1995; Wang et al., 2004); Enhanced Thematic Mapper (ETM+): (Ouillon et al., 2004; Tyler et 

al., 2006; Duan et al., 2007); and Operational Land Imager (OLI): (Watanabe et al., 2015; Lee et 

al., 2016)), Sentinel 2 A/B MultiSpectral Instrument (MSI) (Kutser et al., 2016; Toming et al., 

2016), and SPOT High-Resolution Geometric Sensor (HRG) (Doxaran et al., 2002b). A subset 

of researchers have used high-resolution commercial sensors including WorldView 2 (Dvornikov 

et al., 2018) and IKONOS (Sawaya et al., 2003; Hellweger et al., 2007). The above sensors 

vary significantly in their applicability, based largely on their spatial, temporal, spectral, and 

radiometric resolutions. Temporal and spatial resolutions determine the scale of processes that 

can be captured by a given sensor. In general, land surface sensors have a finer spatial 

resolution (~10–30m) but coarser temporal resolution (~1–2 weeks), allowing them to detect 

spatial patterns in water quality in smaller waterbodies (e.g., small lakes and rivers) but with 

only 1–2 observations per month depending on the sensor and cloud cover conditions. 

Comparatively, ocean color sensors are characterized by coarse spatial resolutions (~300–1000 

m) but finer temporal resolutions (~daily), limiting observations to large waterbodies but 

facilitating examination of processes that occur at short timespans. A more in-depth discussion 

on the effects of varying resolutions across ocean and terrestrial sensors can be found in 

Olmanson et al. (2011) and the Committee on Earth Observation Satellites (CEOS) (2018). 

Additionally, technical discussions and summaries of the spatial, temporal, spectral, and 

radiometric resolutions of the above sensors are provided by Gholizadeh et al. (2016) and 

Matthews (2011). 

Since water is highly absorptive within the near and shortwave infrared spectrum, the 

majority of water-leaving radiance occurs within the visible spectrum with slight variations 

dependent on temperature and salinity (Buiteveld et al., 1994; Röttgers et al., 2014). The 

primary exception is in optically complex waters (due to high turbidity and/or bottom 
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reflectance), where sediment reflectance exceeds the absorptive properties of water in the near 

and shortwave infrared wavelengths (Sathyendranath, 2000; Doxaran et al., 2002b). Relatively 

high absorption within the visible spectrum leads to a low range of reflectance values when 

compared to land surface remote sensing. This low range requires high sensitivity (i.e., high 

radiometric resolution) to detect small changes in reflectance (Matthews, 2011). Different 

concentrations of varying water quality parameters lead to various absorption features and 

backscatter peaks within the water leaving radiance. The spectral resolution, measured by the 

range of wavelengths captured by individual sensor bands, needs to be sufficiently fine to 

capture spectral peaks and accurately estimate the contribution of a given water quality 

parameter to the overall spectral signature (Hestir et al., 2015). The sensors mentioned above 

are all multispectral sensors, meaning that they have a small number of relatively wide bands 

(~10 nm to ~80 nm) placed within the visible to mid-infrared spectrum. These coarse 

bandwidths can complicate retrieval of water quality parameters (Hestir et al., 2015). In order to 

better capture the specific absorption features and backscatter peaks within a waterbody’s 

spectral signature, a subset of publications have utilized hyperspectral sensors that provide 

hundreds of narrow (1–10 nm), contiguous bands spanning the visible to shortwave infrared 

spectrum (see Govender et al. (2007)). Currently, the majority of hyperspectral sensors are 

airborne or in planning stages for future satellite missions (Bioucas-dias et al., 2013). Within 

inland water remote sensing, applications of hyperspectral remote sensors include the use of 

Hyperion (Brando and Dekker, 2003; Fang et al., 2008), the Compact Airborne Spectrographic 

Imager (CASI) (Wass et al., 1997; Hunter et al., 2008), the Airborne Prism Experiment (APEX) 

(Knaeps et al., 2015), and NASA’s HyMAP scanner (Choe et al., 2008), Airborne 

Visible/Infrared Spectrometer (AVIRIS) (Palacios et al., 2015), Airborne Visible/Infrared 

Spectrometer-Next Generation (AVIRIS-NG) (Jensen et al., 2019), and Portable Remote 

Imaging Spectrometer (PRISM) (Fichot et al., 2016). 
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Regardless of sensor, the optically active water parameters that contribute to the total 

water-leaving signal are phytoplankton, organic and inorganic suspended solids, and colored 

dissolved organic matter (CDOM) (Morel and Gordon, 1980; Mobley, 1994; Sathyendranath, 

2000) (Table S1). The sum of these three individual constituents, in combination, attribute to 

differences in overall water clarity, which is frequently used as a proxy for water quality 

(McCullough et al., 2012; Lee et al., 2018). Publications leveraging relationships between 

optically inactive constituents, which have no detectable spectral signal, and the optically active 

constituents listed above have provided remote sensing models for nitrogen and phosphorous 

(Lillesand et al., 1983; He et al., 2008; Torbick et al., 2013), dissolved oxygen (Wang et al., 

2004; Toming et al., 2016), and heavy metals (Fichot et al., 2016). However, compared to 

optically active parameters, these optically inactive constituents require site specific algorithms 

due to varying regional correlations with optically active water quality constituents. Publications 

examining the remote sensing of inactive constituents date back to the early 90s (Baban, 1993; 

Dekker and Peters, 1993); however, they appear relatively infrequently within the literature and 

are not discussed in detail here. Below, we describe the optically active constituents with their 

distinct spectral signatures.  

Section 2.1: Chlorophyll-A  

Chlorophylls are the photosynthetically active compounds that convert light into energy 

for photosynthesis. Remote sensing studies primarily focus on chlorophyll-a (chl-a), which is the 

most abundant chlorophyll and is present within all plants, algae, and cyanobacteria that 

photosynthesize. In aquatic systems, it is used as a proxy measure of total algal biomass 

(Kutser, 2009). The algal biomass of a waterbody controls its overall biological productivity, also 

known as trophic state, making it an ideal indicator of ecosystem integrity (McCormick and 

Cairns, 1994; Carvalho et al., 2013). While not all algal blooms are inherently harmful, blooms 

containing certain species, most commonly phycocyanin-producing cyanobacteria, are toxic to 

humans, livestock, and wildlife (Svirčev et al., 2013). Anthropogenically driven nutrient loading 
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and climate change in recent decades have increased the size and frequency of these harmful 

algal blooms worldwide (Paerl and Huisman, 2009). 

Optically, the spectral signature of chl-a varies depending on its concentration in relation 

to other water quality parameters and the composition of phytoplankton phenotypes producing 

the signal (Dierssen et al., 2006; Zhou et al., 2018). For low biomass, oligotrophic to 

mesotrophic waterbodies, the chl-a spectrum is characterized by a sun-induced fluorescence 

peak around 680 nm (Gitelson et al., 1994; Gower et al., 1999, 2004). For high biomass, 

eutrophic waterbodies, the florescence signal is masked by absorption features and backscatter 

peaks centered at 665 nm and 710 nm respectively (Matthews et al., 2012). The ratio between 

these two wavelengths has been used to accurately estimate chl-a concentrations in numerous 

studies (Gitelson et al., 1993; Dall’Olmo and Gitelson, 2006; Le et al., 2011). Beyond basic 

constituent retrieval, research focusing on chlorophyll includes the detection of harmful 

cyanobacteria (Kudela et al., 2015; Lunetta et al., 2015; Oyama et al., 2015) and phycocyanin 

(Hunter et al., 2008; Medina-Cobo et al., 2014), assessment of trophic state (Duan et al., 2007; 

Sheela et al., 2011; Watanabe et al., 2015), and algal bloom development and dispersion 

modelling (Hedger et al., 2002; Bresciani et al., 2013; Zhang et al., 2013; Curtarelli et al., 2015). 

Section: 2.2: Total Suspended Solids 

Total suspended solids (TSS) refers to both inorganic and organic particles held in 

suspension throughout a water column. Controls on the composition of organic and inorganic 

particles vary geographically, with some areas driven primarily by inorganic sediments and 

others by phytoplankton. In the literature it is referred to variously as total suspended matter, 

suspended sediment concentration, and particulate matter, though the precise definitions of 

these terms sometimes vary. Monitoring TSS fluxes has strong implications for biogeochemical 

cycling in terms of nutrient transport (Rügner et al., 2013), heavy metal loading (Nasrabadi et 

al., 2016), light conditions (Julian et al., 2008), and global carbon budgets (Mendonça et al., 

2017). Terrestrial carbon deposition into lakes and reservoirs, largely in the form of TSS, is 
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double that of deposition into the ocean (Cole et al., 2007; Adrian et al., 2009), despite lakes 

comprising only 3%–3.7% of the total land area (Downing et al., 2006; Verpoorter et al., 2014). 

Simultaneously, the settling out of TSS into lake bottom sediments provides a carbon sink, with 

current global carbon sequestration estimates ranging from 0.06–0.27 Pg year−1 (Cole et al., 

2007; Mendonça et al., 2017). On a local scale, high TSS reduces light penetration through 

increasing turbidity and leads to benthic smothering, impacting species composition and primary 

productivity from macrophytes (Bilotta and Brazier, 2008; Kefford et al., 2010). Finally, TSS 

concentrations and flux in rivers capture the landscape processes controlling delivery of 

erosional products from land to ocean (Syvitski, 2005; Overeem et al., 2017).  

Spectral signatures of TSS concentrations can vary significantly based on the particle 

size and composition of organic to inorganic materials (Novo et al., 1989; Spyrakos et al., 2017). 

Organic-dominated systems derive their spectral signatures from algae concentrations and can 

share the pronounced absorption features and backscatter peaks described above for 

chlorophyll (Shi et al., 2013). As inorganic TSS concentrations increase within a waterbody, the 

location of the spectral maximum moves from around 550 nm into the red or near-infrared 

wavelengths (Doxaran et al., 2002b) with waterbody specific variation dependent on chlorophyll 

and CDOM concentrations. Remote sensing studies examining TSS focus largely on riverine 

and coastal systems, with notable studies including estimates of TSS delivery to the ocean 

(Overeem et al., 2017), variability in sediment plume size (Walker, 1996; Falcini et al., 2012; 

Brando et al., 2015), impacts of reservoirs on sediment concentration (Pereira et al., 2017), 

impacts of land use change on sediment delivery (Telmer et al., 2006), and variability of 

sediment in lagoons (Volpe et al., 2011). TSS concentrations can be correlated with various 

optically inactive water quality parameters and have subsequently been used to infer the 

concentration of phosphorous (Gholizadeh et al., 2016), mercury (Telmer et al., 2006), and 

other metals (Choe et al., 2008) at local scales.  

 



 

10 

Section: 2.3: Colored Dissolved Organic Matter 

Colored (or ‘chromophoric’) dissolved organic matter is the colored portion of total 

dissolved organic carbon. Sources of CDOM can be either autochthonous (i.e., phytoplankton) 

or allochthonous (i.e., terrestrial carbon). Of the two sources, allochthonous carbon leached out 

of surrounding soils is generally the dominant control of total lake and river dissolved organic 

carbon (Sobek et al., 2007). Photo and biodegradation of CDOM can contribute to elevated 

levels of CO2 within lacustrine systems (Tranvik et al., 2009). Recent studies of CO2 

concentrations in Chinese (Wen et al., 2017) and US (McDonald et al., 2013) lakes found that 

~60%–70% were supersaturated with CO2. Globally, this oversaturation leads to 0.35–0.43 Pg 

year−1 of carbon off-gassed into the atmosphere, in addition to an estimated 1.8 Pg year−1 

emitted from streams and rivers (Raymond et al., 2013). At low levels, CDOM absorbs harmful 

ultraviolet radiation with minimal impact on light penetration within the visible spectrum (del 

Vecchio and Blough, 2006). As concentrations increase, absorption of low-wavelength light by 

CDOM regulates the light availability of primary producers, controlling net productivity and 

trophic structure (del Vecchio and Blough, 2006; Thrane et al., 2014). Continued monitoring of 

CDOM directly, and as a proxy for total dissolved organic carbon, provides a better 

understanding of carbon inputs and processing in freshwater systems. 

Highly absorptive in the visible spectrum, elevated levels of CDOM lead to stratified, 

dark waterbodies with limited light penetration (Houser, 2006). Similar to TSS, the reflectance 

spectra of waterbodies with varying concentrations of CDOM are highly dependent on the 

composition of other optically active constituents, and in certain areas can be complicated by 

the presence of colloidal iron, which shares similar optical properties (Kutser et al., 2015a). 

CDOM’s contribution to water-leaving radiance is characterized by an exponential increase in 

absorption as wavelength decreases (Olmanson et al., 2016). Intuitively, this would suggest that 

CDOM models should incorporate wavelengths in the blue spectrum; however, excessive 

absorption by CDOM and low natural water-leaving radiance at low wavelengths reduces the 
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usable signal (Bricaud et al., 1981; Kirk and Tyler, 1986). As a result, algorithms commonly 

incorporate a green/red ratio (e.g., Brezonik et al. (2005), Kutser et al. (2005, 2009a); Toming et 

al. (2016)). Remote sensing studies focusing on CDOM range in application from identifying 

trends in inland water carbon content (Chang and Vannah, 2012; Kutser et al., 2015b) to 

examining landscape-level drivers of CDOM distributions (Dvornikov et al., 2018; Griffin et al., 

2018a). Work in rivers highlights controls of carbon export in arctic landscapes (Griffin et al., 

2011) and relationships governing CDOM variation in river estuaries along with the resulting 

impact on correlated concentrations of methylmercury (Fichot et al., 2016). An in depth review 

of CDOM and its optical properties was published by Coble (2007). 

Section: 2.4: Water Clarity 

The combination of chlorophyll, suspended sediments, and CDOM collectively 

contributes to overall water clarity. Most commonly, Secchi Disk depth or turbidity are used as 

relative measures of clarity. The former metric, developed more than 150 years ago, quantifies 

the maximum visible depth of a white and black disk lowered into a waterbody (Cialdi and 

Secchi, 1865; Wernand, 2010). In comparison, turbidity is an explicit measurement of light 

scattering within a water column caused by suspended and dissolved particles. Water clarity 

regulates freshwater ecosystems through light attenuation and control over epilimnion depth 

(Mazumder and Taylor, 1994). Numerous studies have examined the role of water clarity in 

thermal stratification (Gunn et al., 2001; Heiskanen et al., 2015), lake metabolism (Schwarz and 

Hawes, 1997; Obrador et al., 2014), and biodiversity (Bilotta and Brazier, 2008). Generally, a 

shallower thermocline and reduced light penetration associated with degraded water clarity 

reduces photosynthesis of submerged macrophytes and other primary producers (Bilotta and 

Brazier, 2008; Izagirre et al., 2009).  

Remote sensing retrievals of water clarity almost universally use wavelengths and band 

ratios that include the red spectrum in some way (e.g., Verdin (1985), Baban (1993), Nelson et 

al. (2003), Bayley et al. (2007), Wu et al. (2008), McCullough et al. (2012), Hicks et al. (2013), 
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Rose et al.  (2017)). Reflectance at these wavelengths accounts for total sediment and 

chlorophyll concentrations such that increasing brightness is associated with decreased water 

clarity (Matthews, 2011). Water clarity has long been acknowledged as a proxy for nutrient 

availability and chlorophyll concentrations within lakes (Hutchinson, 1973; Carlson, 1977; 

Megard et al., 1980); as a result, remote sensing studies frequently use it as a proxy for overall 

lake trophic status (oligotrophic, mesotrophic, or eutrophic) (Peckham et al., 2006; Olmanson et 

al., 2008; Sheela et al., 2011).  

Section 3: Modelling Approaches 

Models that leverage the relationship between a waterbody’s optical qualities and its 

concentration of optically active water quality constituents are commonly referred to as bio-

optical algorithms (Morel, 2001). In inland waters, these models can be categorized as 

empirical, semi-analytical, or machine learning based (Appendix A: Table S2). While inherently 

empirical, we distinguish machine learning techniques separately due to their computational 

complexity and ability to handle non-linear relationships. As discussed below, all three of these 

modeling approaches have benefits and shortcomings in terms of applicable scale, model 

transparency, and model complexity.  

Section 3.1: Empirical Models 

The most common approach to inland water remote sensing involves fitting a standard 

linear regression between spectral band/band ratio values and temporally coincident in situ 

water quality measurements. One inherent limitation of this approach is its non-generalizability 

across large spatial and temporal scales where variations in atmospheric and water composition 

create large variability in observed spectral signatures of water quality parameters. As such, 

empirical models are restricted to confident predictions only within the range and setting of the 

input data. This restriction limits their application across spatiotemporal domains. At a local 

scale, empirical modelling accounts for the site-specific optical qualities of the water, but with 

increasing spatial or temporal scales, optically non-homogenous waterbodies and changing 
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atmospheric conditions complicate parameterization (Politi et al., 2015). These shortcomings 

are often outweighed by the benefits of model transparency, simplicity, and minimal 

computational requirements.  

The family of empirical models can be split into purely empirical and semi-empirical 

approaches. The purely empirical approach derives relationships using input band and band 

ratio values as coefficients, often generating multiple models and choosing the best fit through 

comparison of error metrics. Purely empirical approaches date back to the 1970s and 80s, with 

notable applications examining trophic state in Wisconsin (Scarpace et al., 1979) and Minnesota 

(Lillesand et al., 1983), and turbidity and chlorophyll in Australian lakes (Carpenter and 

Carpenter, 1983).  

In contrast, semi-empirical models use multi-band index values with some basis in the 

physical properties of the constituent of interest. These models largely focus on the 

measurement of water clarity, chl-a, cyanobacteria, and TSS. Like terrestrial vegetation indices 

(e.g., NDVI), they are designed to enhance the spectral properties of the constituent of interest 

while reducing noise from extraneous optical parameters; however, unlike semi-analytical 

approaches (described below), semi-empirical models don’t incorporate any inverse modelling 

of the inherent optical properties of a given waterbody. Notable semi-empirical indexes include 

the normalized difference chlorophyll index (Mishra and Mishra, 2012), the maximum chlorophyll 

index (Gower et al., 2005), the Floating Algal Index (Hu, 2009), and the normalized difference 

suspended sediment index (Shahzad et al., 2018). Application of these semi-empirical indexes 

has contributed to robust algal bloom detection (Huang et al., 2014), determining the presence 

of harmful cyanobacteria concentrations associated with eutrophication (Zhou et al., 2018), and 

modelling sediment concentrations in rivers and deltas (Shahzad et al., 2018). Due to their basis 

in physical properties, semi-empirical models are more generalizable than purely empirical 

approaches. However, they necessitate measurements of specific wavelengths that capture 
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absorption features and scattering peaks, restricting their applicability to sensors with suitably 

placed band centers and sufficient spectral resolution.  

Section 3.2: Semi-Analytical Models 

Analytical and semi-analytical models are physics based and involve parameterization 

based on the inherent optical properties (IOPs) of water and the atmosphere, where IOPs refer 

to the optical properties of the medium of interest that are independent of the ambient light field 

(Mobley, 1994; Sathyendranath, 2000). The IOPs of a given waterbody are modelled in 

coordination with apparent optical properties (including illumination conditions, sensor 

orientation, and field of view) to construct theoretical absorption and backscattering values 

which can then be decomposed through an inverse equation to estimate optically active water 

quality constituents (described below) (Morel and Gordon, 1980; Sathyendranath, 2000; Morel, 

2001; Giardino et al., 2019a). For purely analytical models, the inverse equation is 

parameterized based purely on light physics; however, these are rarely used for optically 

complex waters where the interactions of numerous water quality constituents become difficult 

to model. As a result, semi-analytical models, which incorporate in situ measurements to 

parameterize the inverse equation, are the primary form of physics based algorithms developed 

for inland water quality remote sensing retrievals (Matthews, 2011). This modelling approach 

evolved from the reflectance approximation developed by Morel (1977), who studied turbidity 

and chlorophyll in ocean waters. Compared to empirical and semi-empirical algorithms, semi-

analytical models are mechanistic, make apriori assumptions regarding light physics, and are 

theoretically generalizable outside the range of a given study; however, the application of any 

single model to optically nonhomogeneous waterbodies requires large amounts of in situ 

validation data and remains challenging (Malthus et al., 2012). 

A prerequisite to this modelling approach is understanding the light physics that control 

reflectance as particle size, composition, and concentration vary. These properties are modelled 

through the absorption and backscattering coefficients of all the optically active constituents 
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found within the study area (Equation 1). While derivations of semi-analytical models come from 

numerous sources (e.g., Gordon et al. (1975, 1988), Philpot (1987); Stumpf and Pennock 

(1989)), the basic form of the preliminary equation follows Equation 1. 

R(λ)=Y*
b(λ)

a(λ)+b(λ)
 

(

1) 

Here, the total reflectance just below the water’s surface (R) at wavelength 𝜆 is equal to 

the backscattering at the given wavelength over the absorption plus the backscattering at the 

given wavelength times an empirically or analytically derived constant Y. The absorption and 

backscattering coefficients can be further broken down into absorption and backscattering for 

each optically active constituent. (e.g., 𝑏(𝜆) = 𝑏𝑤𝑎𝑡𝑒𝑟(𝜆) + 𝑏𝑐𝑑𝑜𝑚(𝜆) + (𝜆)𝑏𝑐ℎ𝑙 + (𝜆)𝑏𝑡𝑠𝑠). Values 

for R are either generated through in situ measurements of reflectance and water quality or 

theoretically generated using physical modelling software such as HydroLight (Mobley and 

Sundman, 2008). These generated spectral signatures are then used to parameterize an 

inverse model that decomposes R into optically active constituent concentrations through their 

absorption and backscatter coefficients. One benefit of this inverse modelling procedure is the 

ability to estimate multiple water quality parameters simultaneously. However, model 

development is inherently complicated and, depending on if atmospheric corrections have been 

applied, requires information about atmospheric composition, bottom reflectance, and extensive 

in situ sampling. Even so, the literature contains numerous examples of successful applications 

of semi-analytical models across large spatiotemporal scales. Early development of semi-

analytical modelling for inland waters was led by researchers such as Dekker (Seyhan and 

Dekker, 1986; Dekker et al., 1991) and Kutser (Kutser and Arst, 1994) examining chl-a, TSS, 

and CDOM. More recently, Heege et al. (2014) developed a semi-analytical algorithm for 

turbidity across the Mekong Delta with strong validation results using MODIS, Landsat, and 

RapidEye, Lymburner et al. (2016) applied a semi-analytical algorithm to a multi-decadal study 

of TSS in Australian lakes, and both Volpe et al. (2011) and Zhou et al. (2017) applied semi-
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analytical algorithms across multi- and hyper-spectral data to detect TSS in shallow lagoons. 

For a more detailed description of semi-analytical modelling, see Dekker et al. (2001, 2002), 

Giardino et al. (2019a), Morel (2001), and IOCCG (2000).  

Section 3.3: Machine Learning Models 

In recent years, increases in computational capacity and available data have created 

opportunities for novel approaches to data analysis. While inherently empirical, machine 

learning approaches are differentiated by their ability to operate in multidimensional space with 

complex non-linear relationships (Olden et al., 2008). The spectrum of machine learning 

methods for remote sensing applications is broad (Camps-Valls, 2009; Lary et al., 2016); here, 

we focus on the benefits and limitations of machine learning methods generally, along with 

some notable examples in the field of inland water remote sensing. A more detailed review of 

machine learning methodology for remote sensing was published by Lary et al. (2016). 

Within inland water remote sensing, machine learning algorithms including artificial 

neural networks (Schiller and Doerffer, 1999; Song, 2011; Imen et al., 2015), genetic 

algorithms/programming (Song et al., 2013; Chang et al., 2014), support vector machines (Sun 

et al., 2014), random forest/boosted regression trees (Lin et al., 2018), and empirical orthogonal 

functions (Qi et al., 2014; Duan et al., 2017) have all shown promise in accurately estimating 

water quality parameters across a variety of spatiotemporal scales. As with traditional empirical 

models, machine learning approaches are only applicable within the range and setting of data 

used to train a given model. However, unlike traditional empirical models, most machine 

learning models use iterative learning to reduce overall error and maximize model fit (Hastie, 

2009). Depending on the parameterization of the model and the amount of training data 

available, this approach may lead to over-fitting of the data, especially in models with numerous 

input variables subject to collinearity such as adjacent hyperspectral bands (Rocha et al., 2017). 

To avoid overfitting, machine learning methods require the provision of separate training and 

testing datasets that contain representative samples of the parameters of interest. The power 
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and scalability of most machine learning algorithms is dependent on the quality and range of the 

training and testing data. Given the proper inputs, these algorithms can produce generalizable 

models that capture complex, non-linear relationships between remotely sensed reflectance and 

biogeophysical parameters. While modelling chl-a and turbidity in Lake Chagan, China, Song 

(2011) found reductions in root mean square error of 76% and 65%, respectively, when 

comparing traditional regression techniques to artificial neural networks. Similarly, Xiang et al. 

(2015) found a 20% increase in trophic state classification accuracy when using machine 

learning compared to multivariate regression. 

Section 4: Challenges and Limitations Within the Field 

The literature reviewed here highlights that, despite the diverse modelling approaches 

discussed above, several barriers still exist that limit the progress of inland water remote 

sensing. Specifically, sensor design, atmospheric effects, dynamic waterbodies, and institutional 

barriers, all of which present legitimate challenges to increasing the scale and robustness of 

remote sensing algorithms. Here, we discuss these issues in detail to provide context on the 

limitations of the reviewed literature.  

At the most basic level, many sensors are limited in the types of observations they can 

make. Multispectral, broad-band satellites like the Landsat TM/ETM+ series were engineered 

for terrestrial applications and lack the spectral resolution, band centers, and signal-to-noise 

ratios ideal for complex waters. Their relatively infrequent return periods make them more suited 

to detecting long-term changes as opposed to daily or weekly variation. Ocean color sensors 

including MODIS, SeaWiFS, and MERIS have higher spectral resolution and frequent return 

periods, but they lack the spatial resolution to capture narrower inland water bodies, particularly 

rivers (see Matthews (2011) and Hestir et al. (2015) for detailed discussion). The newest 

generation of sensors has been designed to overcome some of these issues (Tyler et al., 2016; 

Giardino et al., 2019a), though the limited precision of broad spectral bands remains a 

challenge. While they lack certain band centers useful for inland water remote sensing, new 
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sensors such as the Landsat 8 Operational Land Imager (OLI) and the Sentinel 2 MultiSpectral 

Instrument (MSI) have increased signal to noise ratios, improved radiometric and temporal 

resolution, and aerosol-specific bands making them better equipped to handle the size and 

complexity of inland waters (Concha and Schott, 2016; Pahlevan et al., 2017).  

Regardless of sensor choice, among the largest barriers to remote sensing of inland 

waters is controlling for varying atmospheric effects. The signal to noise ratio of top-of-

atmosphere radiance over waterbodies can vary substantially with different atmospheric water 

vapor and aerosol concentrations. In order to accurately estimate water quality parameters, the 

atmospheric effects need to be controlled for through precise atmospheric corrections (Brivio et 

al., 2001; IOCCG, 2018). These corrections are particularly important over large spatiotemporal 

domains because atmospheric conditions can vary significantly. Historic correction procedures 

are largely based on open ocean remote sensing and assume zero water leaving radiance 

beyond the visible spectrum (Gordon and Wang, 1994). This assumption does not hold over 

optically complex waters where chlorophyll, suspended sediment, and bottom reflectance lead 

to true non-zero radiance in the near infrared. The result is an overestimation of aerosol 

thickness and an overcorrection of visible wavelengths in turbid waters (Schroeder et al., 2007). 

Progress has been made improving atmospheric correction algorithms over complex waters 

through the use of radiative transfer functions (Schroeder et al., 2007), pseudo-invariant 

features (Concha and Schott, 2016), dark pixel extraction (Vanhellemont and Ruddick, 2018), 

and SWIR-based correction procedures (Wang et al., 2013; Novoa et al., 2017); however, many 

methods lack transferability between sensors making it difficult to compare surface reflectance 

products across platforms (Pahlevan et al., 2019). Atmospheric correction is further complicated 

by adjacency effects from surrounding land. Radiation reflected from relatively bright land is 

scattered by the atmosphere, increasing noise over adjacent, relatively dark waterbodies. 

Solving adjacency issues typically involves computationally expensive radiative transfer 

functions, though recent progress has been made using models that reduce computational 
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requirements by approximating atmospheric scattering within the correction procedure (Kiselev 

et al., 2015).  

Independent atmospheric challenges are exacerbated by the dynamic nature of 

waterbodies themselves. Changing water conditions and bio-fouling of in situ sensors can make 

it difficult to capture coincident field and satellite observations necessary for model development 

(Garaba et al., 2014; Garaba and Zielinski, 2015). From a reflectance standpoint, algal mats, 

surface macrophytes, and sun glint (specular reflection of sunlight towards the sensor) all 

contribute extraneous signals to observed water-leaving radiance. The body of literature on 

these issues is significant, and processing schemes to isolate and/or remove these signals are 

continually improving. For sun glint, removal schemes can range from relatively simple empirical 

models such as those tested by Kutser et al. (2009b) to more complicated radiative transfer 

functions (Martin et al., 2016). For algal mats and floating macrophytes, semi-empirical 

threshold-based algorithms including the Floating Algal Index (Hu, 2009), Maximum-Peak 

Height (Matthews et al., 2012), and adaptations of classic NDWI indexes (Oyama et al., 2015) 

have all provided robust delineation of water from adjacent algal and macrophyte signals. 

Additionally, varying sediment types between regions can affect the relationship between 

reflectance and measurements of TSS (Novo et al., 1989). These variations can be partially 

accounted for using band ratio algorithms that are generalizable across sediment types 

(Doxaran et al., 2002a). 

The above technical barriers represent legitimate challenges to extracting water quality 

constituents from dynamic inland systems. However, existing retrospectives on the past 50 

years in the field indicate that technical barriers alone are not responsible for the slow progress 

towards applying remote sensing as a tool to better understand inland water systems. Bukata 

(2013) insightfully proposes that one explanation may be the relatively isolated nature of the 

field and the historic lack of collaboration with related ocean color remote sensing. This 

observation is supported by Downing (2014), who describes the fields of oceanography and 



 

20 

limnology as “twins, mostly separated since birth”. This lack of institutional communication has 

had ripple effects, reducing collaborative projects and limiting funding sources. Collaboration is 

further reduced through the inherent scale of the research. Technical challenges with 

spatiotemporally expansive studies generally constrain inland water research efforts to localized 

scales. This pattern contrasts with ocean remote sensing, where international study areas have 

led to numerous, well-funded, multinational research efforts (Palmer et al., 2015a). 

Communication and collaboration leading to these large research efforts is facilitated by 

international organizations like the International Ocean-Colour Coordinating Group (IOCCG). 

Recent work done by the IOCCG (IOCCG, 2018), as well as emerging groups like AquaWatch 

(https://www.geoaquawatch.org/), are working towards similar goals for inland water remote 

sensing researchers, but these efforts are still in their infancy compared to their ocean color 

counterparts. The nature of the field and its apparent lack of cohesion may, in part, stem from 

the fact that it is spread across many different disciplines. A Scopus search query of inland 

water quality remote sensing returns publications from over 350 distinct journals spread across 

hydrology, ecology, biogeochemistry, environmental management, and engineering, indicating 

that much of the research is spread across different niches and sub-disciplines. However, the 

following review of the literature indicates that efforts to overcome these technical and 

institutional barriers have made significant progress in improving inland water quality remote 

sensing efforts, particularly over the past decade. Below we highlight this progress through an 

analysis of how remote sensing of inland water quality has been used to answer challenging 

science questions. Additionally, we contextualize these recent advances within the literature and 

discuss how researchers are working towards further addressing them in the future (Section 7). 

Section 5: Evolution of Inland Water Remote Sensing Publications 

In order to analyze the progression of publications on remote sensing of inland water 

quality, we carried out two analyses: the first identifies general trends in publication patterns, 

while the second analyzes trends in modelling approaches and research focus.  
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Section 5.1: Overarching Trends in the Field of Inland Water Remote Sensing 

General trends were identified through a bibliometric analysis of search results from the 

Elsevier Scopus database (conducted July 2018). Database titles, keywords, and abstracts 

were searched for the terms ‘remote sensing’, ‘water quality’, and either ‘lake’, ‘reservoir’, ‘river’, 

‘delta’, ‘estuary’, or ‘inland waters’ (along with variants, i.e., ‘lake’ and ‘lakes’). The search 

results returned 1,186 distinct articles published in peer-reviewed journals dating back to 1970 

(Figure 1.1). Bibliometric data were extracted from the query using the Bibliometrix package in 

R (Aria and Cuccurullo, 2017). 

 

The results of the Scopus bibliometric analysis indicate that inland water quality remote 

sensing has been growing dramatically since its introduction in the 1970s. The annual average 

increase in publications over the study period is 8.9%, but examination of the trend indicates 

that it is best represented by a simple power law function (R2 = 0.848), with a sharp increase in 

publications starting in the early 2000s. Power law functions allow for the calculation of a 

doubling time which represents the amount of time it takes a population to double in size 

Figure 1.1. Published papers per 
year returned from Scopus search 
queries and grouped by search term. 
Average citation count is the sum of 
citations for all papers averaged over 
the number of years since their 
publication. 
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starting from any given timepoint. Bornmann and Mutz (2015) calculated the doubling time and 

average annual growth rate for total academic publishing between 1980 and 2012 to be 

approximately 23.7 years and 2.96% respectively. For the same period, remote sensing of 

inland water quality grew at three times that rate, with a doubling time and average annual 

growth rate of 8.3 years and 10.01% respectively. The most pronounced year-on-year jump 

occurs right after 2008, which corresponds to the public release of freely available Landsat 

imagery by NASA and the US Geological Survey. After removing the overall trend of the power 

law function, a t-test on the residuals for the 5 years before and after 2008 indicates a significant 

increase in publications for the period after Landsat was made public (95% CI = 0.3–0.7, p = 

0.0016). This result is consistent with previous research showing that for multiple earth 

observation fields, the release of the Landsat archive resulted in more frequent and larger-scale 

studies (Wulder et al., 2012).  

Further analysis of the bibliometric data shows that while contributions to the literature 

come from a diverse set of sources, there are a few distinct countries, journals, and authors that 

are disproportionately active within the field. Publications from the United States and China are 

responsible for 26.1% and 21.4% of the total publications respectively (Figure 1.2). Similarly, 

while there are contributions to the literature from 3362 authors or co-authors, publications that 

include the top ten most productive authors comprise 17% of the total search results (Table 

1.1). The cumulative contribution of publications from the top ten journals comprise nearly one 

third of the entire search. Of the 378 publications from these top ten journals, 60% are from 

strictly remote sensing journals. When expanded out to the entire query, 18% of the returned 

journals include a remote sensing term in their title and account for 33% of all publications. This 

pattern is worth noting for two reasons. First, remote sensing journals are more likely to contain 

methods development papers. Secondly, it suggests that many publications are focused 

primarily on communicating advances within the remote sensing community, with perhaps less 
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outreach to hydrologists, ecologists, and other scientists not inherently focused on remote 

sensing.  

Section 5.2: Detailed Analysis of Literature Patterns and Scale 

In order to more deeply examine trends in remote sensing of water quality, we identified 

a subset of 236 papers within existing reviews (Matthews, 2011; Odermatt et al., 2012; 

Gholizadeh et al., 2016) and from keyword searches containing common inland water remote 

sensing terms (e.g., combinations of ‘remote sensing’, ‘lakes’, ‘rivers’, ‘chlorophyll’, ‘CDOM’, 

‘TSS’, and ‘inland waters’) in relevant databases (Article+, Google Scholar, Scopus, and Web of 

Science). Papers were chosen based on a combination of their search relevance, citation count, 

Figure 1.2. Distribution of publications returned 
from Scopus query for the top ten most 
productive countries (A) and top ten most 
published journals (B). 

Table 1.1. Summary data from Scopus query for 
inland water quality remote sensing. 

Scopus Query Summary 

Total Publications 1186 

Distinct Journals 342 

Distinct Keywords (Scopus) 7706 

Distinct Keywords (Authors) 2447 

Average citations per publication  16.6 

Authorship Summary 

Distinct Authors 3,362 

Authors per Documents             5.24 

Contributions Summary 

Contribution from top 10 Countries 676 (54.8%) 

Contribution from top 10 Authors 209 (16.9%) 

Contribution from top 10 Journals 378 (30.6%) 
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and subject focus. While we strived to be comprehensive in the inclusion of papers, some 

relevant studies were inevitably missed. We conducted more intensive journal-specific searches 

within high impact journals including Science, Nature, PNAS, WRR, Association for the 

Sciences of Limnology and Oceanography journals, and Ecological Society of America journals 

to ensure the inclusion of studies that utilized remote sensing but focused more on scientific 

application of remote sensing than on methods development. A significant and worthwhile body 

of work exists using remote sensing to study water quality in complex near coast ocean 

environments as well as the Laurentian Great Lakes (see reviews Liu et al. (2003), Matthews 

(2011), Odermatt et al. (2012), and Gholizadeh et al. (2016)). While critical to the development 

of inland water quality remote sensing methods, this body of work was excluded from this 

review in order to better focus on lake, river, and estuary remote sensing applications and how 

those applications have changed over time. Similarly, studies using strictly in situ reflectance 

were excluded because our focus was on remote sensing from satellites or airborne platforms. 

The final subset was read to analyze overarching trends in research focus and scale. Each of 

the resulting 236 papers was subsequently classified into one of the four categories outlined 

below. 

1) Purely methodological: The purpose of the paper is to present and validate a new 

model or methodology. Results consist of model validation and error metrics. No 

figures depicting spatial or temporal patterns are present. 

2) Methodological with pattern analysis: The paper is predominately methods 

development and validation but includes some figures applying the proposed model 

either spatially or temporally.  

3) Trend/pattern analysis: The purpose of the paper is to examine spatiotemporal 

patterns and/or trends in water quality within the study area, with trends defined has 

having directionality over space or time. Model validation results are presented for 

transparency, but the bulk of the results and discussion focusses on either spatial or 
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temporal trend analysis. The preponderance of figures and tables depict maps, time-

series, or other spatiotemporal analyses. 

4) Water quality science research with a focus on impacts and drivers: The paper 

contains specific hypotheses and/or science questions to be directly addressed. 

Results and discussion focus on spatiotemporal dynamics of water quality as well as 

the drivers and/or impacts of changing water quality. The preponderance of figures 

and tables present within the paper depict either trends or relationships between the 

parameter of interest and associated drivers/impacts.  

Key questions that determined the classification of the papers included: 

1) Is there a specific hypothesis or science question addressed? 

2) Is there any spatial or temporal analysis of patterns or trends in the study area? 

3) Are the majority of the figures and tables focused on validating a proposed model, or 

are they examining trends, drivers, and impacts of inland water quality? 

With regards to the third criterion, figures and tables within each paper were categorized 

into the four groups depending on whether they provided background information, model 

validation, or spatiotemporal analysis (details in Appendix A: Table S3). The final index 

(Appendix A) depicts a field of research that has evolved, particularly in the last decade, from 

almost universally methods-focused into one in which new methodologies, data products, and 

increased computing power are creating opportunities to address science questions related to 

water quality in novel ways.  

The overall trend in the publication counts of the detailed dataset closely parallels the 

power-law trend in the broad Scopus query, including a comparable spike in publications after 

2008. Similarly, 75% of the studies resulting from the various searches focus on lakes and lake 

related water quality parameters (Figure 1.3). Eutrophication-associated parameters 

(chlorophyll, clarity, and cyanobacteria) are almost entirely measured in lake systems. In 
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contrast, studies focusing on rivers, deltas, and estuaries are almost exclusively measuring 

sediment loading and transport parameters (TSS and turbidity).  

In total, the included papers presented 411 models for constituent retrieval. Of these, 

only 70% reported some measure of goodness-of-fit or absolute error, and only 23% reported 

some measure of validation, with validation defined as an error metric derived from data not 

used in building the model. The most commonly reported metric was a coefficient of 

determination (R2), with mean recorded values of 0.76 (σ = 0.184) for model fit and 0.79 (σ = 

0.159) for model validation (Figure 1.4). Simple linear regression of R2 values over time indicate 

that model fit has decreased (p = 0.011) and model validation has shown no significant trend (p 

= 0.633). However, more recent models frequently cover larger spatiotemporal domains and 

represent more difficult constituent retrieval, possibly leading to reduced model fit. While R2 

values are not the most robust stand-alone metric of model performance (Willmott, 1981), 

comparisons utilizing other common metrics are difficult due to the lack of standardization 

between reported metrics within the reviewed publications. In total, over 35 different error 

metrics were identified within the literature. Many of these represent differences in terminology 

Figure 1.3. Publication counts within the detailed index binned by time (A) and water quality parameter of 
interest (B). Colors represent type of waterbody being researched. 
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as opposed to the actual statistical measure. For example, root mean square error (RMSE) is 

referred to in nine different ways in total, with variations both in terminology (e.g., root mean 

square error and root mean square deviation) and metric transformation (e.g., percent, 

normalized, relative, and log values). Similar ranges of variation occur for mean/median 

absolute error (MAE), standard error (SE), relative error (RE), and bias. This disparity in 

reporting measures makes it difficult to accurately compare model error across studies without 

significant burden on the reader. However, examination of the most common metric, R2, 

suggests consistently strong model fits dating back to the 1970s (Figure 1.4). These results 

suggest that the potential has long existed for remote sensing to contribute to addressing 

scientific questions related to water quality. The reasons for the lag between methods 

development and scientific application remain uncertain. Two possible explanations are that the 

empirical models that dominate early literature were too site-specific to be useful at larger 

scales, or that perceptions of the usefulness of remote sensing in water quality research differed 

between the remote sensing community and fields like hydrology, limnology, and ecology.  

 

Trends in modelling approach indicate a fairly static field up until the early 1990s, with 

empirical modelling approaches comprising 50%–80% of all publications for nearly 20 years 

(Figure 1.5). The mid-2000s show an increase in publications employing machine learning 

models and pre-produced satellite products. The emergence and subsequent decline of 

Figure 1.4. Reported R2 

values for model fit and 
model validation along with 
linear regressions of R2 over 
time. 
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product-based studies from 2008–2015 likely corresponds to the launch of the Medium 

Resolution Imaging Spectrometer (MERIS) in 2002 and its decommission in 2012. MERIS 

presented a unique step towards global products through the development of the BEAM 

processing toolbox (Brockman Consult in collaboration with the European Space Agency), 

which utilizes a neural network scheme to simultaneously conduct atmospheric correction and 

water quality estimates. BEAM provided ready-made water quality products to inland water and 

ocean researchers alike, though validation of the products was regionally inconsistent (Alikas 

and Reinart, 2008; Okullo et al., 2011; Kallio et al., 2015).  

 

Figure 1.5. Temporal distributions of modelled parameters (A), modelling approach (B), study spatial scale 
(C), and study temporal scale (D). Results for 1975–1999 are reported in five-year windows due to the 
relatively small number of studies published during this time period. 
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The development of BEAM’s neural network scheme and the rise in machine learning 

approaches starting around 2000 is likely attributable to increased computational capabilities 

and a proliferation of specialized software in common programming environments like R and 

Python. For the former, packages like Rpart (Therneau and Atkinson, 2019), originally released 

in 1999, and nnet (Venables and Ripley, 2002) created previously unavailable access to 

decision tree and neural network modelling approaches. For Python, software development 

throughout the 2000s led to comprehensive machine learning libraries such as Scikit-learn 

(Pedregosa et al., 2011), which provided both access to common machine learning algorithms 

and a framework for their calibration and validation. These machine learning tools, among 

others, emerged in part due to an increased need for open source software that promoted study 

replicability, researcher access, and collaborative code development for machine learning 

researchers across fields (Sonnenburg et al., 2007).  

The emergence of machine learning approaches in remote sensing of inland waters is 

paralleled by an increase in semi-empirical models. Initially, this late appearance of semi-

empirical models appears unintuitive since they are computationally inexpensive and closely 

parallel older terrestrial indexes like NDVI; however, their emergence is likely explained by a 

proliferation of data from ocean color sensors such as SeaWiFs (launched 1997), MODIS Terra 

and Aqua (1999 and 2002 respectively), and MERIS (2002). With MERIS specifically, its high 

spectral resolution and chlorophyll-specific band centers allowed for better detection of 

absorption features and backscatter peaks that facilitate semi-empirical models (Gower et al., 

1999). However, due to their coarse spatial resolution, these studies are mostly limited to larger 

lakes. These sensors were subsequently joined by the hyperspectral sensor Hyperion in 2000, 

which created new opportunities for semi-analytical water constituent retrieval (Brando and 

Dekker, 2003).  

The temporal trends described above show distinct spatial patterns with an overall 

dominance of studies located in the U.S., Europe, and China (Figure 1.6). China and the U.S., 
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respectively, comprise 20% and 24% of the total studies included, with a notable clustering of 

long-term, large-scale studies in the Yangtze Basin. Spatiotemporal trends in publication dates 

depict a temporal expansion outward, with the earliest studies located almost exclusively in the 

U.S and subsequent publications spreading out across the globe. However, it should be noted 

that this trend may be partially attributable to a language bias in early publications where there 

is less access to non-English papers.  

 

Section 6: From Methods to Applications: An Overview of Inland Water Remote Sensing  

The study of water quality in lakes, rivers, and estuaries using remote sensing has 

expanded substantially over the past 50 years. When considering the intent of the publications 

Figure 1.6. Spatial distribution of 
study publication date (A), 
timespan (B), and spatial scale 
(C). 
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as opposed to just the number, it is apparent that only in the past 10–15 years has inland water 

remote sensing consistently been used as a powerful analytical tool informing the broader 

inland water literature. In the papers reviewed for this analysis, twice as many studies were 

published in the past ten years as in the previous 28 years combined, a rate much faster than 

the growth of academic publishing as a whole. Of papers published since 2008, nearly 30% 

focus on examining drivers and impacts of water quality, compared to only 7% for the period 

prior (Figure 1.7).  

 

 

Studies are also expanding into longer time-frames and over larger spatial scales 

(Figure 1.5). Pre-2008, the average study covered tens of square kilometers over a 2 year 

period. Post-2008, the average study examines hundreds of square kilometers over a period of 

5 years. This expansion requires the caveat that study scale is used as a proxy for the number 

Figure 1.7. Distribution of publication 
focus through time (A). Cumulative sum 
totals (B) for methods categories (n = 
113; 49%), trend/pattern papers (n = 
81; 35%), and water quality science 
papers (n = 38; 16%) show decreasing 
dominance of methods over time. 



 

32 

of distinct lakes, and some of the increase in study scale may result from an increase in the 

average lake size rather than the total number of optically unique waterbodies. Similarly, longer-

term studies largely focus on simpler metrics such as water clarity and TSS, in part due to 

ongoing challenges modelling the more complex spectral signatures of chl-a and CDOM. 

Satellites like Landsat provide long time series of observations but lack the radiometric and 

spectral resolution to model more complex parameters. Pearson’s Correlation Coefficients 

(Pearson, 1896) were calculated to identify relationships between study scale, duration, 

publishing date, and category. The category variable was converted to a numeric (1–4) in order 

of level of analysis (1, methods development; 2, methods with pattern analysis; 3, trend/pattern 

analysis; 4, water quality science). While the categorical classification of the included papers is 

partially subjective, their correlations with other study parameters are still included to provide 

insight into how the scientific application of publications has changed with study scale and 

duration. The resulting correlation matrix (Table 1.2) depicts a clear pattern between study scale 

and impact over time. All four of the included variables were positively correlated at a 99% 

significance level (with the exception of study category and scale, p = 0.014). While none of the 

correlations are particularly strong, their significance and consistency indicate that studies 

published later tend to cover larger spatiotemporal domains and focus more on analyzing water 

quality dynamics and impacts than on methods development.  

Table 1.2. Correlation matrix of key study parameters. All correlations are significant at a 99% 

confidence interval (***). Study category rescaled to 1–4, representing the four levels of analysis 

from purely methodological to water quality science papers. 

  Pub. Year Study Duration Study Scale Study Category 

Pub. Year 1 0.171 0.255 0.342 

Study Duration *** 1 0.326 0.32 

Study Scale *** *** 1 0.173 

Study Category *** *** *** 1 
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This shift in study focus, scale, and duration all suggest that remote sensing is becoming 

a useful tool in understanding inland water quality rather than an area for methodological study 

among remote sensing specialists. Publications representative of this shift towards hypothesis-

driven science vary significantly in their focus, with emphasis on hydrological processes, drivers 

of water quality, public hazard identification, and impacts of degraded water quality (Appendix A: 

Table S4).  

Studies examining drivers of water quality at local to regional scales comprise the largest 

group of water quality science publications. Recent work has examined climatic, anthropogenic, 

and landscape-scale variables that interact with complex biogeophysical water quality 

properties. Work by Lymburner et al. (2016) presents a 30 year analysis of TSS in Australian 

lakes, showing distinct relationships between El Niño Southern Oscillations and fluctuations in 

TSS levels. Olmanson et al. (2008, 2014), examined a 20 year record of remotely sensed water 

clarity for over 10,000 lakes in Minnesota. Their results showed significant differences in overall 

trends based on land use and eco-region. Ng et al. (2011) and Curtarelli et al. (2015) both 

incorporated remotely sensed chl-a data into hydrologic models and found that thermal 

stratification and mixing were key drivers of algal bloom growth and dispersion. Work done by 

Rose et al. (2017) showed that controls on water clarity move from local to watershed scales 

during dry and wet years respectively. Other studies focusing on climatic drivers of water quality 

have used remote sensing to analyze the impacts of hurricanes (Wang et al., 2012), typhoons 

(Zhu et al., 2014), and growing season length (Sass et al., 2008a) on various water quality 

metrics. 

Studies focusing on anthropogenic drivers have brought to light the impacts of human 

activities on freshwater resources for areas ranging from individual lakes to entire states. Work 

by Cui et al. (2009, 2013) examined the combined effects of precipitation, river flows, and 

dredging on TSS levels in Poyang Lake in China. They found that the combined precipitation 

and anthropogenic impacts degraded water quality far more than either individual driver could 
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on its own. At a basin scale, Ren et al. (2018) and Hou et al. (2017) conducted studies 

examining how the Three Gorges Reservoir affected water clarity and TSS dynamics in the 

Yangtze Basin. In the Peace-Athabasca Delta, Pavelsky and Smith (2009) and Long and 

Pavelsky (2013) utilized multi-temporal images of sediment loads to calculate river velocity and 

recharge for floodplain lakes.  

Studies using remote sensing of water quality to address scientific questions extend 

beyond the field of hydrology and into biology and public health. Sandström et al. (2016) utilized 

remotely sensed CDOM and chl-a concentrations to analyze fish habitat assemblages and 

biodiversity. For public health, inland water remote sensing is helping to analyze disease 

distribution and drinking water hazards. Fichot et al. (2016) identified spatial patterns of 

methylmercury in the San Francisco Bay area using an airplane mounted hyperspectral sensor. 

Qin et al. (2015) developed a dynamic forecasting model capable of predicting the presence of 

toxic algal blooms. The model ultimately resulted in over one million tons of algal scum being 

removed from a drinking water reservoir in China (Qin et al., 2015). Other authors have similarly 

identified public threats to drinking water in Lake Mead (USA) (Imen et al., 2015) and Lake 

Chaohu in China (Duan et al., 2017). Two specific studies stood out through their novel use of 

remote sensing to facilitate epidemiological studies. Torbick et al. (2014) incorporated Landsat-

derived water quality parameters into an eco-epidemiological model to examine the distribution 

of amyotrophic lateral sclerosis (ALS) across New England. They found that close proximity to 

waterbodies with elevated levels of nitrogen increased the odds of being located within an ALS 

hotspot by 167%. Similarly, Finger et al. (2014) incorporated remotely sensed chl-a 

measurements into a model of cholera dynamics within the Democratic Republic of Congo.  

One additional subset of the reviewed literature merits discussion when considering 

advances in the field; specifically, researchers who are continuing to expand the spatiotemporal 

scale of their study areas. The need for global data products has received increasing attention 

in recent years as an essential aspect to protecting threatened freshwater resources (Malthus et 
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al., 2012; Hestir et al., 2015; Lee et al., 2018). Within the U.S., work towards this goal includes 

state-wide analyzes of Secchi Disk depth in Minnesota (Olmanson et al., 2008, 2014) and 

Maine (McCullough et al., 2013), and a national approach to modelling lake chl-a (Lin et al., 

2018). Outside the U.S., previously mentioned work by Lymberner et al. (2016) in Australian 

lakes and Hou et al. (2017) in the Yangtze basin both cover areas of tens of thousands of 

square kilometers, albeit without including every lake in the study region. At a global level, Ho et 

al. (2019) recently analyzed the prevalence of harmful algal blooms in 71 lakes over the span of 

three decades, further increasing the spatiotemporal domain of inland water remote sensing. 

Publications like those mentioned above are complemented by a host of living 

databases and interactive web services that are increasing access to near real-time water 

quality information. The Copernicus Inland Water Service provides semi-continuous (2002–

2012, 2016-present) turbidity and chl-a observations for approximately 1000 of the world’s 

largest lakes (https://land.copernicus.eu/global/products/lwq). Similarly, the Minnesota 

LakeBrowser provides periodic measurements of chl-a, CDOM, and water clarity dating back to 

2002 for over 10,000 lakes across the state (https://lakes.rs.umn.edu/). These publicly available 

databases are being supplemented by private companies like EOMAP 

(https://www.eomap.com/) which provide remotely sensed estimates of water quality parameters 

on a contract basis around the globe. While validation of some of these products is difficult to 

obtain, they are facilitating increased access to water quality data for water managers and 

researchers alike. Improvements in modeling methodologies and growing access to both in situ 

and earth observation data are setting the stage for future studies at larger and larger scales.  

Section 7: Emerging Trends in the Remote Sensing of Water Quality  

The past decade has seen a dramatic growth in the resources necessary to remotely 

sense inland water quality. One example highlighted here is the 2008 shift to open access 

Landsat data—after which, publication counts rose and study scale and duration increased 

significantly. However, the Landsat archive is only one of numerous petabyte-size archives of 

https://lakes.rs.umn.edu/
https://www.eomap.com/
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earth observation data provided by government agencies such as NASA, the USGS, NOAA, 

and the European Space Agency. These archives are constantly expanding and will continue to 

do so in the coming years. Starting in 2010, access to these data sources further increased with 

the release of the Google Earth Engine platform, which hosts imagery and resulting data 

products from over a dozen different earth observation sensors. The platform provides free 

access to these datasets along with cloud-based processing, dramatically increasing the 

computational power of remote sensing researchers across fields. For inland water remote 

sensing, Lin et al. (2018) combined in situ data from the 2007 National Lake Assessment (N = 

1,157 lakes) with Landsat data and machine learning algorithms built into Google Earth Engine 

to develop a well-validated national model for lake chl-a (RMSE = 34.9 µg/L). Similarly, 

Overeem et al. (2017) used Google Earth Engine to model sediment export from Greenland 

over 14 years. Today, the platform continues to grow and increase in usefulness, adding 

approximately 6,000 scenes daily from various active satellite missions, with a latency of 

approximately 24 h (Gorelick et al., 2017). The power of Google Earth Engine essentially 

provides researchers with supercomputing capabilities from their local machines, dramatically 

increasing the scales at which earth observation research can take place. Platforms like Google 

Earth Engine are complimented by an ever-growing body of processing and analysis software in 

common programming languages like R (Fox, 2009).  

While the provision of open-access satellite imagery to researchers is essential to the 

progression of the field, it alone cannot account for the shift in research focus and scale outlined 

above. Paralleling the rise in remote sensing data availability over the past decade has been a 

rise in the in situ data available for model calibration and validation. In the past, the burden of 

collecting this data frequently fell on individual researchers, significantly limiting the amount of 

field data available. Recent databases provided by government agencies, NGOs, and 

researchers alike are providing a wealth of freely available in situ data that are easily 

accessible. At a global level, the GEMStat database maintained through the International Centre 
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for Water Resources and Global Change, provides over 4 million observations of lakes, rivers, 

wetlands, and groundwater systems from 4000 sites spread over 75 countries 

(https://gemstat.org/). In the U.S., The National Water Quality Portal (WQP), released in 2012 

by the USGS, EPA, and National Water Quality Monitoring Network, provides national coverage 

of archived state, federal, and tribal water quality field measurements. In total it assimilates and 

standardizes monitoring data for over 2 million individual sampling sites (Read et al., 2017). The 

Lake Multi-Scaled Geospatial and Temporal Database (LAGOS-NE) provides a similar 

assimilation of in situ water quality measurements for 17 water-rich states in the upper Midwest 

and Northeast United States, providing historical field data for over 51,000 lakes and reservoirs 

(Soranno et al., 2017). These datasets have already been used as calibration and validation 

data for remote sensing of water skin temperature (Schaeffer et al., 2018). In Europe, national-

scale water quality data for inland and coastal waters are compiled from participating agencies 

into the Waterbase dataset, which is harmonized and made research ready under the WISE 

system (water information system for Europe) (Srebotnjak et al., 2012). These official data 

sources can be supplemented with novel collections aggregated through citizen science 

campaigns. These include Eye On Water (http://www.eyeonwater.org/) and Seen-monitoring 

(http://www.seen-transparent.de/) in Europe, the Secchi-Dip In in North America 

(http://www.secchidipin.org/), and state level efforts in Minnesota, Wisconsin, Michigan, and 

Maine (https://www.pca.state.mn.us/water/citizen-water-monitoring, https://www.uwsp.edu/cnr-

ap/UWEXLakes/Pages/programs/clmn/default.aspx, https://micorps.net/lake-monitoring/, and 

https://www.lakestewardsofmaine.org/ respectively). Together these campaigns have collected 

hundreds of thousands of observations available to researchers. The new AquaSat database 

from (Ross et al., 2019) uses Google Earth Engine to extract coincident (+/− 1 day) Landsat 

reflectance values for in situ measurements found in the WQP and LAGOS-NE. The result is the 

first dataset of its kind, providing over 500,000 paired observations of reflectance values and 

associated water quality parameters in optically complex waters dating back to 1984. Databases 

https://micorps.net/lake-monitoring/
https://www.lakestewardsofmaine.org/
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such as these provide data continuity, cost and time savings for researchers, and large 

calibration and validation samples for model development. 

The development and expansion of new and existing databases is paralleled by the 

development of new sensor technology. Airborne hyperspectral sensors capable of capturing 

contiguous spectral signatures of water-leaving radiance have provided new levels of precision 

to measure optically active constituents (see reviews by Govender et al. (2007), Gholizadeh et 

al. (2016)). These airborne campaigns are working towards satellite missions such as NASA’s 

Surface Biology and Geology mission (SBG, in development), Italy’s PRecursore IperSpettrale 

della Missione Applicativa (PRISMA, launched 22 March 2019), Japan’s Hyperspectral Imaging 

Suite (HISUI, planned 2019), and Germany’s Environmental Mapping and Analysis Program 

(EnMAP, planned 2020) (Kneubühler and Damm-Reiser, 2018). These spaceborne imaging 

spectrometers will increase spatiotemporal transferability of retrieval models, improve overall 

constituent retrieval, facilitate biogeochemical composition analysis, enable benthic habitat 

identification in optically shallow water bodies, and allow for the retrieval of additional detectable 

water quality parameters that are currently unfeasible with broadband, multispectral sensors, all 

while providing global hyperspectral data at roughly 30 m resolution (Hestir et al., 2015; 

Giardino et al., 2019a). Traditional governmental satellite missions are being supplemented with 

a host of novel earth observation technologies being developed by commercial companies such 

as Planet (https://www.planet.com/), MAXAR (https://www.maxar.com/), and Airbus 

(https://www.airbus.com/). These private platforms are creating novel opportunities for 

hydrological remote sensing through public and academic research partnerships. For example, 

Planet, which operates over 150 small imaging satellites that provide daily global imagery at 3–5 

m resolution, collaborated with Cooley et al. (2017) to study lake connectivity in the Yukon Flats 

region of Alaska at previously unfeasible spatial scales. For inland water quality, the high spatial 

and temporal resolution of such satellite constellations will allow for detection of short-term 

phenomena like algal blooms in streams and lakes that are currently too small to study with 
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publicly available satellite imagery. These efforts to improve research in small aquatic systems 

are being further aided by the increased use of unmanned aerial vehicles and even 

smartphones (McCabe et al., 2017). 

These emerging technologies will allow the inland water quality remote sensing 

community to overcome historic challenges and examine new science questions. However, this 

process will require dedicated researchers and reliable funding sources. While emerging 

technologies hold promise, they also present new challenges. Hyperion, the first spaceborne 

hyperspectral sensor believed to be appropriate for inland waters, showed initial promise 

(Brando and Dekker, 2003) but ultimately proved unreliable over waterbodies due to its low 

signal to noise ratio and radiometric instability (Devred et al., 2013). The Planet constellation of 

CubeSats, while providing unprecedented spatial and temporal resolution, are subject to 

geolocation accuracy errors and inconsistencies in radiometric calibration between satellites 

(Cooley et al., 2017). These issues are in addition to well-characterized challenges including 

robust atmospheric correction and solving adjacency effects, both of which need to be applied 

across sensors to create comparable datasets. Solutions to these existing challenges will likely 

be developed through improvements in sensor engineering, computational capacity, and 

modelling approaches, as well as growing collaborative efforts by international groups such as 

IOCCG (IOCCG, 2008, 2018) and the Committee on Earth Observation Satellites (CEOS, 

2018). As existing issues are overcome, remote sensing of inland water quality can be applied 

to address relevant scientific questions and conservation goals, including those outlined in the 

National Research Council Decadal Survey (National Academies of Sciences, 2018) and the EU 

Water Framework Directive (Poikane et al., 2011). Conducting such research will help solve 

water quality issues of global importance and better inform water managers, policy makers, and 

the scientific community regarding critical science questions. Some of the most pressing 

questions synthesized from the reviewed literature include: 
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• How does biogeochemical cycling of suspended sediments and CDOM in lakes 

and rivers contribute to the global carbon cycle? 

• How are added nutrient inputs and warming air temperatures contributing to the 

frequency and distribution of harmful algal blooms in lakes and reservoirs? 

• What is the impact of anthropogenic development, including urbanization and 

reservoir construction, on basin-wide water quality?  

• What are the patterns and trends in the biogeochemistry of water resources in 

remote, vulnerable areas including the arctic and boreal regions? 

• How are changes in water quality affecting the biological structure of freshwater 

resources at regional to global scales? 

• How are changing water quality dynamics impacting important drinking water 

resources? 

Section 8: Conclusions 

The bibliometric analysis presented here highlights the dramatic growth of inland water 

quality remote sensing studies, far outpacing the average rate of increase in academic 

publishing as a whole. The past 50 years have produced hundreds of remote sensing 

publications accurately estimating biogeochemical water quality parameters; however, the 

majority of these focus on methods development rather than using remote sensing as a tool to 

better understand inland water quality dynamics. Detailed examination of 236 of the most 

relevant publications returned by search queries indicates that the past 10–15 years has 

brought about a focal shift within the field, where researchers are moving beyond methods 

development towards research focused on spatiotemporally explicit water quality dynamics. 

This shift is partially attributable to the development of new satellite and in situ datasets, 

improved access to satellite imagery, and increased computational/software capabilities. The 

current change in focus within the field is similar in nature to the shift that occurred in ocean 
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color and terrestrial remote sensing throughout the 1980s and 1990s—after which, both fields 

applied remote sensing to answer some of the most pressing science questions of their time. 

For inland water quality, the progression of research is evidenced by a subset of recent 

publications which have begun to leverage remote sensing to examine water quality trends, 

ecological and anthropogenic drivers, and resulting impacts of changing water quality on 

ecosystem function and water resources. This shift has been accompanied by a significant 

increase in the spatiotemporal scale of analysis, moving the field closer to providing national to 

global-scale data products for policy makers, water managers, and scientists. The increase in 

high quality science and study scale within the field continues to be facilitated by improved 

datasets and growing computational capacity. New data products like AquaSat (Ross et al., 

2019) promise to continue this trajectory of growth and facilitate a new generation of inland 

water remote sensing research.  

Based on the literature reviewed here, future inland water quality remote sensing work 

will benefit greatly from the following recommendations:  

• Continued development of generalizable constituent retrieval models, including 

atmospheric corrections, that are applicable across large spatiotemporal domains 

and across differing sensors.  

• The expanded application of robust, generalizable models to better understand 

global processes including erosion and deposition, terrestrial carbon and nutrient 

cycling, and trends in algal bloom dynamics in inland waters. 

• Improved communication between experts in remote sensing and scientists in 

fields such as hydrology, limnology, and ecology in order to facilitate the wider 

adoption of remote sensing models in scientific studies of water quality.  



 

42 

• The development of user-friendly tools that inform local water managers of 

remotely sensed changes in water quality to promote sound policy and the 

conservation of essential freshwater resources. 
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Chapter 2: Artificial lake expansion amplifies mercury pollution from gold mining2 

Section 1: Introduction 

Section 1.1: Summary 

Artisanal and small-scale gold mining (ASGM) is the largest global source of 

anthropogenic mercury emissions. However, little is known about how effectively mercury 

released from ASGM is converted into the bioavailable form of methylmercury in ASGM-altered 

landscapes. Through examination of ASGM-impacted river basins in Peru, we show that lake 

area in heavily mined watersheds has increased by 670% between 1985 and 2018, and that 

lakes in this area convert mercury into methylmercury at net rates 5-7 times greater than rivers. 

These results suggest that synergistic increases in lake area and mercury loading associated 

with ASGM are significantly increasing exposure risk for people and wildlife. Similarly dramatic 

increases in lake area in other ASGM hotspots suggest that ‘hydroscape’ (hydrological 

landscape) alteration is an important and previously unrecognized component of mercury risk 

from ASGM. 

Section 1.2: Background 

Informal – mostly illegal – artisanal and small-scale gold mining (ASGM) is the primary 

contributor to global atmospheric mercury (Hg) pollution (UNEP, 2018) and an important driver 

of deforestation (Asner et al., 2013; Asner and Tupayachi, 2017; Espejo et al., 2018), sediment 

loading (Lobo et al., 2016; Dethier et al., 2019), and biodiversity loss (Mol and Ouboter, 2004; 

 
2 This chapter previously appeared as a joint first-author article with Jacqueline Gerson in Science Advances. The 
original citation is as follows: Gerson, J. R*., Topp, S. N.*, Vega, C. M., Gardner, J. R., Yang, X., Fernandez, L. E., 
Bernhardt, E. S., & Pavelsky, T. M. (2020). Artificial lake expansion amplifies mercury pollution from gold mining. 
Science Advances, 6(48), eabd4953. https://doi.org/10.1126/sciadv.abd4953. *Indicates equal contributions to 
first authorship 
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Alvarez-Berríos et al., 2016; Markham and Sangermano, 2018) across the Global South. 

Simultaneously, ASGM provides livelihoods for tens of millions of people (Veiga et al., 2006) 

across over 70 countries worldwide (Telmer and Veiga, 2009). Within the Madre de Dios region 

of the Peruvian Amazon – a global biodiversity hotspot and home to numerous indigenous 

communities – ASGM has been responsible for the deforestation of nearly 14% (~95,000 ha) of 

the landscape between 1984-2017 (Espejo et al., 2018) and is estimated to release 

approximately 180 tons of Hg annually, according to a recent report by the Artisanal Gold 

Council (Cardo and Vargas, 2017). 

During ASGM, gold-laden sediments from rivers, oxbow lakes, and floodplains are 

processed through a combination of sluicing and settlement ponds in which elemental Hg is 

added to isolate the gold. The Hg within this Hg-gold amalgam is then burned off and released 

into the atmosphere, while Hg-enriched tailings are dumped into nearby aquatic ecosystems. 

Once methylated by microbes, predominantly under anoxic conditions, methylmercury (MeHg) 

bioaccumulates and biomagnifies across the food web (Driscoll et al., 2013), leading to 

neurotoxic impacts in terrestrial and aquatic biota (Scheuhammer et al., 2007; Eagles-Smith et 

al., 2018) and people (Ha et al., 2017). In addition to deforestation and Hg loading, ASGM alters 

the landscape by creating thousands of small mining ponds (Figure 2.1), which in turn can 

cause site-specific externalities, such as increased malaria transmission (Sanchez et al., 2017; 

Ferring and Hausermann, 2019) and contamination of agricultural land (Bose-O’Reilly et al., 

2016). The size and connectivity of these ponds vary, but their presence is ubiquitous and has 

implications for the processing and bioavailability of Hg. 

In this study, we sought to understand how ASGM changes the extent of lotic (riverine) 

and lentic (lake) environments and how Hg loading and net methylation differ across these 

environments. We analyzed remote sensing data of the Madre de Dios region over the past 34 

years to quantify changing areas of lotic and lentic systems and understand how mining alters 

the landscape to create environments suitable for Hg methylation. We also collected unfiltered 
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water (representing the summation of the dissolved and suspended fractions) and bulk 

sediment samples from a 200-km reach of the Madre de Dios River, its tributaries, and 

surrounding oxbow lakes and mining ponds. Sampling occurred in areas both upstream and 

downstream of ASGM activity to test its impact on the transport and fate of Hg. In each sample, 

we measured concentrations of total Hg and MeHg. We use MeHg concentrations as indicative 

of net Hg methylation, which represents both methylation and demethylation processes. Of the 

eight watersheds included in the study, mining operations have largely occurred in the Colorado 

and Inambari watersheds (Asner et al., 2013; Espejo et al., 2018). Three watersheds are 

located downstream of these two heavily mined watersheds (Co. - In West, Co. - In. East, and 

In. - Puerto), and three watersheds are located upstream (Upstream Manu, Reserve, and Manu 

- Co; Figure 2.2).  

 

 

Figure 2.1: Comparison of historical (1987; Landsat) and current (2020; Google Earth from Maxar, 
Airbus, and CNES) landcover for mining-impacted locations. Locations along the Colorado River 
(left), adjacent to the Inambari River (middle), and in the Inambari headwaters (right) show the 
proliferation of mining ponds and deforestation. Specific locations can be seen in Appendix B: 
Figure S1. Top and bottom panels cover the same spatial extent. Note that in 1987, the Inambari 
area shown contained 100% forest cover 



 

46 

Section 2: Materials and Methods 

Section 2.1: Sample Collection 

All samples for Hg analysis were collected in July and August 2019 during the dry 

season (Appendix B: Figure S1). River samples were collected from the Madre de Dios River 

mainstem, upstream of a river confluence, downstream of a confluence, and from each tributary. 

One water sample was taken from near the water surface at each sampling point after the boat 

motor had been off for at least one minute. For oxbow lakes and mining ponds, one water 

sample was taken from the water surface. Water samples were collected using the clean hands-

dirty hands protocol (EPA Method 1669) in new polyethylene terephthalate copolyester glycol 

(PETG) bottles and acidified to 0.4% with trace grade hydrochloric acid (HCl) within 24 hours of 

collection. Water samples were stored on ice in the field and then stored at 4°C until analysis. 

Note that all water samples are unfiltered, and all Hg values reported represent the 

concentration for the total water column. River sediment samples were collected underwater 

from the channel margins by compositing surficial sediment from at least five sampling points 

along a 30-meter transect using a shovel. These samples were taken during the dry season; 

during the wet season, the sampling locations are closer to the center of the channel since the 

width of the river increases by tens of meters. We therefore assume that the river sediment 

samples we collected are representative of well-mixed fluvial sediments. Oxbow lake and 

mining pond sediments were collected as channel margin sediment using a shovel (collected 

underwater as surficial sediment) and from three points in the center of the lake using an 

Eckman grab sampler. Sediment samples were collected using the clean hands-dirty hands 

protocol, double-bagged, frozen on dry ice in the field, and stored frozen until sample 

processing. Note that mining ponds were sampled in the La Pampa region, a watershed located 

adjacent to the Colorado watershed. La Pampa is an area that, until recently, contained 

widespread ASGM. It has been under military control since February 2019 (Operacion Mercurio) 

making it a safe area for field sampling. Due to logistical and safety concerns stemming from a 
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lack of police or military presence, it was not possible to sample mining ponds from the other 

actively mined watersheds examined in this study; however, mining practices in La Pampa are 

representative of those in the region. 

Water samples for TSS were collected immediately after collecting water samples for Hg 

analysis. Water from just below the surface was pumped through a drill-operated pump with in-

line glass fiber filter (pre-weighed), and the amount of water filtered was recorded. The filter was 

stored frozen until sample processing. A filter field blank was also taken and frozen for analysis. 

Section 2.2 Laboratory Analyses 

Unfiltered water samples were analyzed for total Hg via oxidation with bromine chloride 

for a minimum of 24 hours, purge and trap, cold vapor atomic fluorescence spectroscopy 

(CVAFS), and gas chromatographic (GC) separation (EPA Method 1631, revision E) on a 

Tekran 2600 Automated Total Mercury Analyzer. Calibration and continuous calibration 

verification (CCV) were performed using Brooks Rand Instruments Total Mercury Standard (1.0 

ng/L) and initial calibration verification (ICV) was performed using SPEX Centriprep Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS) Multi-Element in Solution Standard 2A. 

Instrument detection limit was 0.5 ng/L. All standards had average recoveries within 10% of the 

accepted values. The field blank, digestion blanks, and analysis blanks were below detection 

limit (BDL). 

After lyophilization for at least five days, sediment samples were analyzed for total Hg on 

a Milestone Direct Mercury Analyzer (DMA-80) via thermal decomposition, catalytic reduction, 

amalgamation, desorption, and atomic absorption spectroscopy (EPA Method 7473). Calibration 

of the DMA-80 was performed using Brooks Rand Instruments Total Mercury Standard (1.0 

ng/L). CCV and matrix spike (MS) were performed using NIST standard reference material 

1633c (coal fly ash, 1005 ng/g), and QCS was performed using NIST certified reference 

material 2709a (San Joaquin Soil, 1100 ng/g). Instrument detection limit was 0.5 ng Hg. All 

samples were run in duplicate, with values accepted when the relative percent difference 
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between the two samples was within 10%. All standards and MS had average recoveries within 

10% of the accepted values, and all blanks were BDL. 

For MeHg, unfiltered water samples were extracted with trace grade sulfuric acid for a 

minimum of 24 hours (Munson et al., 2014). Samples were analyzed by aqueous ethylation with 

sodium tetraethylborate, purge and trap, CVAFS, GC, and ICP-MS on an Agilent 770 (EPA 

Method 1630) (Imura et al., 1971; Hintelmann and Evans, 1997). Calibration and CCV were 

performed using Brooks Rand Instruments Methylmercury Standard (1 ng/L). Method detection 

limit was 1 pg. All standards had average recoveries within 13% of the accepted values, and all 

blanks were BDL. 

For TSS, filters were placed in the oven at 105°C for 48 hours. Filters were then 

reweighed. TSS was defined as the difference in filter mass before and after filtration divided by 

the volume of water that passed through the filter. The filter field blank had a negligible 

difference in mass. 

Section 2.3: Surface Water Extent Analyses 

Annual surface water extent for the study area was calculated using the JRC Global 

Surface Water Mapping Layers v1.1 (Pekel et al., 2016) in Google Earth Engine (Gorelick et al., 

2017). This dataset includes global surface water masks at 30-meter resolution annually 

between 1984 and 2018. Due to gaps in the annual water masks caused by cloud cover, areas 

classified as seasonal and permanent water were overlaid in two-year intervals starting in 1985. 

The resulting yearly masks are therefore the maximum extent of surface water from the 

designated year and the year prior. Although this method may slightly overestimate water 

surface extent, it remains constant throughout the study, so proportional changes in lentic and 

lotic systems remain unaffected.  

Lentic versus lotic environments were delineated by overlaying the annual surface water 

masks with the Global River Widths from Landsat (GRWL) database (Allen and Pavelsky, 

2018). GRWL includes centerlines for all rivers wider than 30 meters globally. Lotic water pixels 
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located within river channels were identified using cumulative cost mapping with GRWL 

centerlines as source pixels (Yang et al., 2020). Cumulative cost mapping integrates the ‘cost’ 

of traversing given pixels out from a source node. By assigning water pixels a ‘cost’ of 0 and 

land pixels a ‘cost’ of 1, it is possible to effectively determine connectivity to the GRWL 

centerline. Morphological changes over time cause some adjacent ponds and oxbow lakes to 

sporadically overlap with river centerlines. This overlap may cause misclassification of lentic 

environments as lotic. As a result, our estimates of lentification are likely conservative. Similarly, 

to limit misclassification in heavily mined landscapes with significant connectivity between 

mining ponds and the river channel, cumulative cost mapping was limited to within 1,500 meters 

of the GRWL centerlines. Thus, some small gaps in the river channel mask exist where the river 

has moved laterally further than 1,500 meters from the historic centerline. As a final step, small 

gaps in the river channel mask along narrow river segments at the edge of satellite detectability 

were filled by dilating and then eroding the river channel mask by two Landsat pixels (60 

meters). All surface waters outside of the river channel mask were considered lentic. Trends in 

annual changes in surface water extent for both lentic and lotic systems were calculated on a 

watershed basis using linear regression.  

Deforestation within the study period was calculated using the Hansen Global Forest 

Change dataset v1.6 (Hansen et al., 2013), which contains 30-meter resolution global forest 

change annually between 2001 and 2018. Since all deforestation mobilizes soil and therefore 

creates opportunities for Hg transport, reported deforestation includes that caused by all 

sources (e.g., ASGM, natural river erosion, development), which potentially reduces the overall 

signal from deforestation directly linked to mining. Conversion rates to aquatic systems and 

barren soil were calculated by overlaying the water mask with the deforestation mask lagged by 

one year (i.e., delineated into areas that were water the year following deforestation versus land 

the year following deforestation). Total areas for both barren and aquatic conversion were then 

calculated for each watershed within the study area. 
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Section 2.4: Data Analyses and Statistical Analyses 

All statistical analyses were performed using R version 3.6.0 statistical software. 

Statistical tests were performed using an alpha of 0.05. Since data were not normally 

distributed, comparisons were performed using the Kruskal-Wallis Analysis of Variance on 

Ranks followed by the Dunn’s Test for pairwise comparisons. In all figures, we report statistically 

significant differences between groups (p<0.05) using letters, with groups sharing a letter having 

no statistically significant difference. Reported mercury concentrations in the manuscript 

represent the mean and standard error. 

Section 3: Results 

Section 3.1: Changes to the hydroscape 

Our results highlight the 'lentification' (increased extent of slow-moving pond and lake 

ecosystems) of the Madre de Dios region that accompanies extensive ASGM activities, with 

lentic systems increasing by an average of 16 km2 (670%) in heavily mined watersheds from the 

period 1985-1989 to 2014-2018, compared to only 0.83 km2 (20%) in less impacted areas. 

Though we found that between 1985 and 2018, both lotic (all eight watersheds) and lentic 

systems (six of eight watersheds) increased overall in surface water extent (p < 0.0001), these 

changes vary by orders of magnitude between watersheds with and without extensive ASGM 

activity. In heavily mined watersheds, average surface extent of lakes and rivers over the 34 

years increased by 0.53 km2 yr-1 (6.63% yr-1) and 1.22 km2 yr-1 (2.13% yr-1), respectively. 

Comparatively, in less heavily mined watersheds, the average change in lake area was roughly 

sixteen times smaller (0.02 km2 yr-1, 0.41% yr-1), and the rate of change in river surface area 

was substantially lower (0.39 km2 yr-1, 1.06% yr-1). Most of this increase in lake surface area was 

due to the proliferation of mining ponds after the year 2000 (Figure 2.2). This result parallels 

documented increases in AGSM activity, which were generally low from 1984 to 2000 and 

began to rise rapidly thereafter, with the largest increases following the 2008 global economic 

recession, and remaining consistently high since 2010 (Asner et al., 2013; Espejo et al., 2018). 
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The increase in river surface area in mined regions is primarily due to the expanded connectivity 

between the main channel and adjacent mining operations. These changes are likely similarly 

driven by ASGM operations on riverbanks. Although water classifications as lotic or lentic near 

riverbanks change between the two states due to seasonal changes in connectivity, these intra-

annual changes are small relative to interannual trends in lentic area throughout the study 

period.  

 

Figure 2.2: Spatial and temporal distribution of surface water extents in Madre de Dios, Peru. A) Map 
of the study area with historical surface water extent. Colors represent the first year a given area was 
detected as water. Historic river channels which pre-date satellite observations appear in yellow, while 
recent morphological changes and the expanse in mining ponds appear in magenta. B) Time series of 
normalized surface water extent broken down by watershed and lentic versus lotic environments. All 
water pixels connected to the main river channel for a given year are considered lotic; water pixels 
isolated from the main river channel are considered lentic. Basemap imagery from Google Earth 
(2020, from Landsat/Copernicus). See associated website for enhanced visualization of hydroscape 
changes. Sampling locations for mercury analysis are shown in Appendix B: Figure S1. 

https://sntopp.users.earthengine.app/view/mdd-hydroscape-explorer


 

52 

 Previous studies have shown that ASGM leads to extensive deforestation of the 

landscape (Asner and Tupayachi, 2017; Espejo et al., 2018). To examine the extent of 

previously forested land that has been converted into aquatic systems, we partitioned 

deforestation into areas converted to barren ground and areas converted to aquatic systems for 

the year following the deforestation. We found that 66 km2 of the 914 km2 of deforested land in 

our study area (7.2% of previously forested areas) has been converted directly to lotic or lentic 

environments, with most of this conversion occurring in areas heavily impacted by mining 

(Appendix B: Figure S2). As deforestation mobilizes soil, it leads to increased sedimentation 

and Hg transport into surrounding water bodies (Diringer et al., 2020), potentially increasing net 

Hg methylation rates and disproportionately affecting aquatic organisms inhabiting areas directly 

converted from forested to aquatic landscapes. 

Section 3.2: Landscape patterns in mercury concentration 

We found that mercury loading was highest in river segments containing floodplain 

mining or downstream of significant ASGM activity (hereafter referred to as downstream rivers; 

p < 0.0001; Figure 2.3). Total Hg concentrations in these river waters were ~10 times that of 

other water bodies: 10.1 ± 2.8 ng Hg/L (n=12; reported as mean ± standard error), compared to 

1.7 ± 0.4 ng Hg/L (n=12) in mining ponds and 1.3 ± 0.3 ng Hg/L (n=10) in downstream oxbow 

lakes. Average downstream river water total Hg concentration was 1,100 times the 

concentration of upstream river water and represented nine of the ten samples with the highest 

water column total Hg concentrations. Similar trends of elevated Hg concentration in rivers 

downstream of ASGM have previously been reported, including in Peru (Diringer et al., 2015; 

Gerson et al., 2018), but this is the first study to our knowledge that concurrently examines Hg 

trends from ASGM in both lake and river systems.  

Given the correlation between total suspended solids (TSS) and water column total Hg 

concentration found in this study (p < 0.0001, r2=0.62; Appendix B: Figure S3) and other studies 

(Maurice-Bourgoin et al., 2003; Biber et al., 2015; Moreno-Brush et al., 2016), as well as the 
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higher concentration of TSS in downstream rivers compared to the other measured water 

bodies (p < 0.0001; Appendix B: Figure S4), we expect that Hg is transported bound to 

sediment particles (i.e., as particulate Hg) rather than in the dissolved fraction. Our finding of 

higher total Hg concentrations in oxbow lake sediments compared to downstream river 

sediments (p = 0.030; Appendix B: Figure S5) and the higher percent carbon content of oxbow 

lakes compared to other water bodies (p < 0.005) supports this assumption. Given this finding, it 

is important to note that sampling took place during dry season low flow conditions. During the 

Figure 2.3. Concentration and distribution of water column total Hg (THg), methylmercury (MeHg), and 
percent Hg as MeHg across water bodies upstream and downstream of artisanal gold mining in Madre de 
Dios, Peru. Right column distribution data are observations shown in order of decreasing Hg values to 
highlight clustering among sampling locations. Letters represent statistically significant differences between 
values at each location according to a Kruskal-Wallis Analysis of Variance on Ranks followed by Dunn’s 
Test. 
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wet season (~Oct.-Apr.), precipitation increases 3-5 times, leading to meter-scale increases in 

river stage (Cañas and Waylen, 2012). While these increased flows historically created a highly 

seasonal flux of suspended sediment into the river, ASGM-driven erosion during the dry season 

is inverting historical seasonal patterns of suspended sediment concentrations in heavily mined 

areas of the watershed (Dethier et al., 2019), potentially exacerbating Hg transport and 

subsequent contamination of downstream aquatic environments.  

Although water column total Hg concentrations were highest in downstream rivers, we 

found that the mining ponds and oxbow lakes were significantly more net efficient in converting 

Hg to the bioavailable form of MeHg (determined by the percent of Hg as MeHg; p = 0.0032,  p 

= 0.0003, respectively). It is thus a combination of transport processes and residence times that 

is important for the fate of Hg in this landscape. On average, downstream river water contained 

1.1 ± 0.3% of Hg as MeHg (n=12; reported as mean ± standard error), compared to 5.8 ± 1.2% 

(n=12) in mining ponds and 7.9 ± 2.1% in downstream oxbow lakes (n=10). Despite different 

total Hg loadings, downstream rivers, oxbow lakes, and mining ponds contained the same 

average concentration of MeHg (p>0.05). These trends are likely driven by the biogeochemical 

factors that promote methylation within lentic systems compared to lotic systems, as oxygen-

limited systems generally have higher MeHg production than well-oxygenated systems 

(Todorova et al., 2009; Fleck et al., 2016). Note also that water column MeHg concentrations 

were not significantly correlated with TSS (p=0.18; Appendix B: Figure S3), suggesting that 

factors other than TSS are driving trends in MeHg. The combined effects of higher net 

methylation efficiency found in oxbow lakes and ponds and the 'lentification' of the hydroscape 

are highly likely to be increasing the risk of exposure to MeHg across ASGM-impacted regions 

beyond what might be anticipated based on the enhanced Hg loading alone. 

Section 4: Discussion 

ASGM within the Madre de Dios region of Peru creates a synergistic effect between Hg 

loading and landscape 'lentification' by expanding the systems that promote methylation of 
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inorganic Hg into MeHg. Between 1985-1989 and 2014-2018, the total surface area of lentic 

and lotic environments in heavily mined areas has increased by 670% and 98% respectively. 

Our results show that net MeHg production is 5-7 fold greater in lentic than in lotic systems 

within the study area. In combination, landscape ‘lentification’ and Hg loading are substantially 

increasing Hg bioavailability. This trend is likely to continue as long as gold prices remain high 

and ASGM activities remain a feasible livelihood for local populations living in less regulated 

areas. Increased Hg bioavailability in this global biodiversity hotspot poses a serious threat to 

local communities, including recently contacted indigenous groups, that consume high trophic-

level fish (Gonzalez, 2015) as well as to endangered species like the iconic Giant Otter 

(Pteronura brasiliensis) that depend on lentic systems for habitat and foraging grounds (Gutleb 

et al., 1997). 

To our knowledge, this is the first examination of interactions between Hg fate and 

transport and landscape hydrology associated with ASGM practices. Our results clearly show 

that the Madre de Dios region is vulnerable to the synergistic effects of lentification and Hg 

loading. Although this region is of particular concern due to its high levels of biodiversity, it is 

likely that Hg bioavailability is also increasing in other ASGM hotspots throughout the world. To 

determine whether this landscape lentification is a pervasive trend associated with ASGM, we 

examined the changing hydroscape in three additional ASGM hotspots around the globe (Figure 

2.4). Watersheds with heavy mining activity in Venezuela (García-Sánchez et al., 2006), Ghana 

(Ferring and Hausermann, 2019), and Indonesia (Bruno et al., 2020) have all had three-to-eight-

fold increases in the extent of lentic environments over the last 34 years. Assuming similar 

relative net methylation rates as in the Madre de Dios region, the ASGM-associated increase in 

lentic environments across the globe promotes net Hg methylation and bioaccumulation 

throughout the food chain. This process increases the threat from ASGM activities to vulnerable 

communities around the globe while simultaneously leading to severe ecological degradation. 

Thus, in evaluating the effects of Hg from ASGM, we need to consider not just the overall 
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loading of Hg into the aquatic ecosystem, but also how changes in the hydroscape might be 

influencing the processing of this Hg, particularly in global biodiversity hotspots.  

 

 

  

Figure 2. 4. Global examples of landscape 
lentification from three countries heavily impacted by 
ASGM. The left column shows the relative lentic 
surface area of the study country (in purple) 
compared to the heavily mined basins in Peru. The 
right column shows the historic water masks of the 
study country with colors denoting the first year a 
given pixel was classified as water. The main 
channel in the Offin River is smaller than 30 meters 
wide and below the remote sensing detection 
threshold; therefore, only surrounding mining ponds 
are measured. Black areas in the figures on the right 
represent pixels classified as land throughout the 
study period. 
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Chapter 3: Shifting patterns of lake color phenology in over 26,000 US lakes  

Section 1: Introduction 

Section 1.1: Summary 

Lakes are often defined by seasonal cycles. The seasonal timing, or phenology, of many 

lake processes, such as primary productivity, are changing in response to human activities. 

However, long-term records exist for few lakes, and extrapolating patterns observed in these 

lakes to entire landscapes is exceedingly difficult using the limited number of in situ 

observations that are available. Limited landscape level observations means we do not know 

how common shifts in lake phenology are at macroscales. Here, we use a new remote sensing 

dataset, LimnoSat-US, to analyze U.S. summer lake color phenology between 1984 and 2020 

across more than 26,000 lakes. Our results show that summer lake color seasonality can be 

generalized into five distinct phenology groups that follow well-known patterns of phytoplankton 

succession. The frequency with which lakes transition from one phenology group to another is 

tied to lake and landscape level characteristics. Lakes with high discharge and low variation in 

their seasonal extent are generally more stable while lakes in areas with high interannual 

variations in climate and catchment population density show less stability. Our research reveals 

previously unexamined spatiotemporal patterns in lake seasonality and demonstrates the utility 

of LimnoSat-US, which, with over 22 million remote sensing observations of lakes, creates novel 

opportunities to systematically examine changing lotic ecosystems at a national scale.  

Section 1.2: Background  

Lakes are critical freshwater resources that are highly sensitive to stressors such as 

climate change (Woolway et al., 2020) and altered land use (Martinuzzi et al., 2014). Globally, 

these stressors are shortening the duration of ice cover (Sharma et al., 2019), increasing rates 
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of lake carbon burial (Heathcote and Downing, 2012), increasing evaporative water loss (Wang 

et al., 2018), warming surface waters (O’Reilly et al., 2015), and changing mixing regimes 

(Woolway and Merchant, 2019; Maberly et al., 2020), all of which influence lake productivity and 

ecological state. These changes manifest themselves in the seasonality of lake processes. Just 

like a deciduous forest that comes to life in the spring, inland water bodies are characterized by 

a predictable seasonal succession of biological processes (Sommer et al., 2012). In the spring, 

many lakes experience a diatom bloom, followed by a ‘clear-water’ phase where zooplankton 

rapidly devour the newly plentiful phytoplankton (Matsuzaki et al., 2020). Summer algal biomass 

is constrained by nutrient availability, with nutrient-rich eutrophic lakes experiencing near-

constant summer phytoplankton blooms, and nutrient-poor oligotrophic lakes experiencing 

relatively clear waters (Sommer et al., 1986). The difference between these states is visible to 

the naked eye, as the predominant color of a lake lies along a spectrum of blue (oligotrophic) to 

green (eutrophic); or as dissolved carbon concentrations increase, brown (dystrophic) (Webster 

et al., 2008).  

The color of a lake reveals a lot about lake productivity and ecological state. A green 

lake will have a greater abundance of phytoplankton and a higher rate of carbon burial than a 

blue lake (Heathcote and Downing, 2012). Browning or greening of oligotrophic lakes may result 

in oxygen depletion and anoxic conditions (Müller et al., 2012; Knoll et al., 2018), which impacts 

nutrient cycling. Shifts in the magnitude and timing of annual color changes are indicators of 

short-term external (weather, nutrient, and carbon loading) and internal (biology) factors and/or 

long-term climate, watershed, and food web changes. These changes are not confined to single 

lakes, with landscape-level drivers impacting the color regimes of entire regions. For instance, 

shortened ice cover durations (Sharma et al., 2019) are shifting the spring-phytoplankton bloom 

earlier (Winder and Schindler, 2004), increases in dissolved organic carbon are browning lakes 

(Roulet and Moore, 2006; Monteith et al., 2007), and invasive zebra mussels are increasing 

water clarity (Binding et al., 2007), all at regional scales. 
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For a single lake, observing the annual pattern of lake color provides insight into the 

local ecosystem. At larger scales, simultaneously observing the annual patterns of many lakes 

provides evidence of the impacts of climate and land-use change and is critical in understanding 

the role of inland waters in carbon production and sequestration. Remote sensing enables this 

macroscale freshwater analysis because it captures a wide range of hydrologic conditions (e.g., 

Allen et al., 2020) with regular sampling intervals and global coverage. The Landsat series of 

satellites specifically provides over three decades of observations and can be used to 

accurately estimate water quality parameters such as chl-a and algal blooms (Dekker and 

Peters, 1993; Ho et al., 2019; Cao et al., 2020), colored dissolved organic matter (CDOM) 

(Griffin et al., 2018b; Olmanson et al., 2020), suspended sediments (Ritchie and Cooper, 1988; 

Dekker et al., 2001), water clarity (Olmanson et al., 2008; McCullough et al., 2013), and primary 

productivity (Kuhn et al., 2020). To infer water quality, these studies build models based on 

relationships between optically active constituent concentrations and their impact on water 

surface reflectance. These efforts are becoming increasingly accessible due to emerging 

datasets that match satellite observations with field measurements of water quality parameters 

for model training and development (Ross et al., 2019; Dethier et al., 2020; Spyrakos et al., 

2020), as well as online processing and data storage platforms such as Google Earth Engine 

(Gorelick et al., 2017). 

Here, we present a 36 year analysis of U.S. lake color phenology using LimnoSat-US, a 

new analysis-ready remote sensing dataset for inland waters. LimnoSat-US contains all cloud-

free Landsat observations of U.S. lakes larger than 0.1 km2 between 1984-2020. As either a 

stand-alone resource, or when combined with existing datasets such as AquaSat (Ross et al., 

2019) and RiverSR (Gardner et al., 2020), LimnoSat-US provides opportunities for novel 

analyses of remotely sensed, macroscale patterns in U.S. freshwater resources. Through this 

initial application of LimnoSat-US, we attempt to identify the dominant phenology patterns in 
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U.S. lakes, how those patterns have changed over time, and what lake and landscape level 

characteristics control the stability of a given lake's seasonal cycle. 

Section 2: Materials and Methods 

Section 2.1: Database Development 

We constructed the LimnoSat-US database (Topp et al., 2020b) by extracting USGS 

Tier 1 Landsat Surface Reflectance (T1-SR) (Rs) values over 56,792 lakes (HydroLAKES, 

Messager et al., 2016) across >328,000 scenes from Landsat 5 Thematic Mapper (TM), 

Landsat 7 Enhanced Thematic Mapper (ETM+), and Landsat 8 Optical Land Imager (OLI) 

sensors dating back to 1984. These observations include lakes throughout the conterminous 

United States and those directly adjacent to its border. While these surface reflectance products 

were originally developed for terrestrial applications, a growing body of research shows that 

they can be used to accurately estimate inland water quality parameters and perform on par 

with water-specific atmospheric correction algorithms (Griffin et al., 2018b; Kuhn et al., 2019; 

Olmanson et al., 2020). Within the T1-SR catalogues, Landsat 5 and Landsat 7 imagery are 

atmospherically corrected using the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) (Masek et al., 2006) while Landsat 8 images are corrected using the Landsat 

Surface Reflectance Code (LaSRC) (Vermote et al., 2016; Dwyer et al., 2018). We extracted 

reflectance values using an optimized workflow within Google Earth Engine (Gorelick et al., 

2017) comprised of three key steps: 1) the calculation of the ‘deepest’ point (Chebyshev Center, 

Shen et al., 2015) for each lake within HydroLAKES; 2) water masking and extracting summary 

optical properties surrounding each deepest point; and 3) standardization of reflectance values 

across sensors (Appendix C: Figure S1). 

Previous studies have used the centroids of lake polygons as representative locations 

for deep-water lake conditions (e.g., Soranno et al., 2017). However, there is no guarantee that 

the location of the centroid lies within the area defined by the polygon, nor that the centroid is 

necessarily the furthest point from the lake shore (Appendix C: Figure S2). Pulling satellite 
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reflectance values from centroids that fall within shallow littoral waters increases the likelihood 

of influence from the bed and nearshore land pixels (Volpe et al., 2011). To remedy this 

problem, we instead used the Chebyshev Center, or “deepest point”, of a lake polygon. The 

Chebyshev Center is defined as the center of the largest circle that can fit entirely within a given 

polygon’s boundary (Shen et al., 2015). We estimated the deepest point for each lake in Google 

Earth Engine (Gorelick et al., 2017) by identifying the location of the pixel that is furthest away 

from the lake shoreline (Yang, 2020) 

Pixels within 120 meters of the deepest point were classified using the USGS Dynamic 

Surface Water Extent algorithm (DSWE) (Jones, 2015, 2019) and the USGS Landsat Tier 1 

Surface Reflectance pixelQA band as derived by the CFMask cloud detection algorithm (Zhu et 

al., 2015). Observations were removed if any clouds, cloud shadow, snow, or ice were detected 

within the 120 meter buffer around the deepest point. Median values for all bands were 

subsequently calculated from high confidence water pixels as defined by DSWE (observations 

with less than 9 pixels of high confidence water were removed). While conservative, we assume 

the process of taking the median of only high confidence water pixels within 120 meters of the 

deepest point limits the impacts of adjacency effects, bottom reflectance, and possible noise 

due to wind-induced sun glint and surface or benthic macrophytes that may be prevalent in 

shallower waters. Final values are based solely on high confidence water pixels, but total counts 

of high confidence water pixels and partial surface water (vegetated) pixels were calculated in 

order to provide an indication of potential mixed pixels and/or noise in the final reflectance 

values. To address sensor variation and differences in atmospheric correction procedures, 

bands for each sensor were standardized following Gardner et al. (2020). Specifically, 

reflectance values were filtered to coincident time periods (1999-2011 for Landsat 5 and 7; 

2012-2020 for Landsat 7 and 8) and Landsat 5 and 8 were standardized to Landsat 7 values 

through a second order polynomial regression of the 1-99th percentile values of each sensor 
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(Appendix C: Figure S3). Similar efforts focused on terrestrial applications have shown that 

statistical sensor correction can effectively improve multi-sensor continuity (Roy et al., 2016). 

This process was optimized by iterating over Landsat WRS tiles and applying all 

necessary calculations in a single pass over each image/lake center. This approach 

dramatically speeds up computation on the Earth Engine servers by reducing the number of 

distinct image stacks generated and reducing the number of passes necessary to extract 

summary metrics from each lake within a given image. These performance operations become 

increasingly important as the size of analysis increases. While it varies with Earth Engine traffic, 

the optimized pipeline presented here decreases computation time for the >328,000 images in 

the analysis from approximately 30 days to 5 days for the contiguous U.S. when compared to 

pipelines using multiple passes and/or iterating by lake rather than WRS tile. 

Section 2.2: Estimating Lake Color 

Water color, as perceived by the human eye, is an intuitive measure of lake water 

properties. Color can be directly measured by any optical imager with bands in the visible 

spectrum and does not require knowledge of the inherent optical properties of water (Woerd and 

Wernand, 2015; Giardino et al., 2019b). We quantified lake color as the dominant wavelength 

(𝛌d) within the human visible spectrum by transforming surface reflectance into the chromaticity 

colorspace following Wang et al. (2015). Tristimulus values (X,Y,Z, Equation 1) were calculated 

from surface reflectance values (red, green, blue) and then converted into chromaticity 

coordinates (x, y, z, Equation 2).  

𝑋 = 2.7689𝑅 +  1.7517𝐺 +  1.1302𝐵 

𝑌 = 1.0000𝑅 +  4.5907𝐺 +  0.0601𝐵  

𝑍 = 0.0565𝐺 +  5.5943𝐵 

        (Equation 1)   

𝑥 =  
𝑋

𝑋 + 𝑌 + 𝑍
           𝑦 =  

𝑌

𝑋 + 𝑌 + 𝑍
          𝑧 =  

𝑍

𝑋 + 𝑌 + 𝑍
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        (Equation 2)    

Using these coordinates, the hue angle is calculated (Equation 3) and converted into 𝛌d 

using the International Commission on Illumination (CIE) look-up tables. 

𝛼 = (𝑎𝑟𝑐𝑡𝑎𝑛2
𝑥 − 0.33

𝑦 − 0.33
)

180

𝜋
 

        (Equation 3) 

In addition to dominant wavelength, which has known non-linearities in its distribution, 

we also calculated lake color within the Forel-Ule Color Index (FUI) space (Wang et al., 2015). 

The FUI is a discrete set of 21 colors that were developed specifically to identify water-color 

typologies (Barysheva, 1987). FUI values can be accurately calculated from multispectral 

imagery (Van der Woerd & Wernand, 2018; Wang et al., 2020) using either dominant 

wavelength or hue angle. Here, we use FUI values to more precisely show how we perceive 

various dominant wavelengths, the water-color typologies different wavelengths are associated 

with, and to assist in the visualization of color distributions.  

Section 2.2: Seasonal lake color phenology 

The development of the LimnoSat-US database provides novel opportunities for 

examining macrosystem patterns in U.S. lake dynamics. Clustering analysis is one common 

approach for extracting patterns from time series datasets that have no a priori assumptions 

about group membership (Liao, 2005) with successful applications in fields such as hydrology 

(Savoy et al., 2019; Brunner et al., 2020), ecology (Xue et al., 2014; Zhang and Hepner, 2017), 

and biogeochemistry (Byrnes et al., 2020). The overall goal of clustering analysis is to partition 

group membership based on within-group similarity and between-group dissimilarity. Here, we 

apply clustering analysis to time series of lake color to better understand the drivers of variation 

in lake seasonality over the past 36 years. 

Lake color observations generated from the LimnoSat-US database were filtered to 

those between May and October to remove missing data caused by snow and ice. Observations 
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were broken into 6 distinct periods - (1984, 1990], (1990, 1996], (1996, 2002], (2002, 2008], 

(2008, 2014], (2014, 2020] - and were filtered to those with at least three observations per 

month per period, resulting in 26,607 lakes with enough data to calculate periodic seasonality 

for the analyses. Within each period, lake color phenology was calculated for both raw dominant 

wavelength and lake/period z-normalized dominant wavelength using a Nadaraya–Watson 

kernel regression (Watson, 1964; Nadaraya, 1964) implemented with the kmsooth function from 

the stats package in R (RCore Team, 2019). Application of the kernel regression allowed for the 

calculation of a weekly color value based on a gaussian weighted average of all observations 

within a window of 21 days from the point calculated. Extreme outliers (>4 standard deviations 

from the lake/period mean) were removed prior to the kernel regression for each series. The 

resulting time series consist of weekly estimates of lake color from May to October for each lake 

for each period (Figure 3.1). 

Normalization of the time series is critical for accurately clustering lake phenologies 

using the dynamic time warping (DTW) method described below (Keogh and Kasetty, 2003; 

Mueen and Keogh, 2016). However, by standardizing the variance across time series, we 

artificially impose equal seasonal variation between lakes/periods that are relatively monotonic 

(i.e. aseasonal) and those that show true seasonality in the phenology of their color. 

Examination of the mean and standard deviation of dominant wavelength for the non-

normalized time series shows that this is particularly problematic for end member lakes on 

either end of the color spectrum that show very little seasonal variation (𝜎 < 5 nm, Appendix C: 

Figure S4). This can be seen in Figure 3.1, where oligotrophic Crater Lake shows minimal 

seasonality when compared to known eutrophic waterbodies (Lake Mendota and Lake 

Okeechobee). To address this issue while still following best practices of normalization for 

clustering analysis, those lakes/periods with a dominant wavelength standard deviation of less 

than 5 nm were classified a priori as aseasonal. This threshold guarantees that seasonal 
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variation within any remaining time series is at least ~10 nm around the mean color while 

effectively classifying aseasonal, monotonic, and end-member lakes as their own grouping. 

This process resulted in 109,643 individual time series available for cluster analysis and 

an additional 46,759 classified a priori as aseasonal. These time series were clustered using 

dynamic time warping (DTW) (Sakoa and Chiba, 1978) within a partitional clustering framework 

with barycenter averaging (Sarda-Espinosa et al., 2019). Dynamic time warping allows points 

within two time series to be compared within a user-defined window as opposed to using a one-

to-one comparison found in traditional metrics like Euclidean distance. This elasticity reduces 

the impacts of noise, minor temporal shifts, and outliers, making it ideal for ecological systems 

with natural interannual variations (Xue et al., 2014; Zhang and Hepner, 2017; Savoy et al., 

2019). The final number of clusters was determined by comparing the Davies-Bouldin (Davies 

and Bouldin, 1979) and Modified Davies-Bouldin (Kim and Ramakrishna, 2005) cluster validity 

Figure 3.1. Examples of the calculated seasonal phenologies for three well studied lakes of 
different trophic states. Phenologies are composed of one observation per 7 days calculated by 
taking a gaussian weighted average of all points +/- 21 days from each calculated point. 
Lakes/periods marked by an asterisk were classified as aseasonal and placed in the a priori 
aseasonal cluster. 
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indexes (CVI) across iterations ranging from 2 to 8 clusters. The Davies-Bouldin and Modified 

Davies Bouldin were chosen because of their computational efficiency and strong performance 

when compared to other common CVIs (Arbelaitz et al., 2013). 

One important validation of clustering analysis is how sensitive final clusters are to 

sample variations in their input, the idea being that stable, or ‘universal’, clusters will emerge 

across differing sampling schemes (Jain and Moreau, 1987). Here, we addressed issues of 

cluster stability using the Jaccard Similarity Index across 100 iterations of bootstrap sampling of 

our input time series. At each iteration, the original input time series were sampled with 

replacement, clustered, and the resulting clustering algorithm used to predict groupings for the 

original data. The Jaccard Similarity Index was then calculated based on how similar each new 

cluster was to the corresponding original cluster. The index ranges from 0 to 1, indicating that 

clusters share all or no members, with values greater than 0.5 generally indicating cluster 

stability and representativeness of true patterns within the data (Savoy et al., 2019). Significant 

differences in the distribution characteristics of the final clusters were identified using the non-

parametric Kruskall Wallace Analysis of Variance on Ranks (Hollander and Wolfe, 1973) 

followed by Dunn’s Test with a Bonferroni p-value correction (Dunn, 1961). 

Finally, we examined the spatial autocorrelation of clusters and the overall stability of 

individual lake phenologies. Spatial autocorrelation was measured by randomly sampling 30% 

of the lakes, assigning them their most common cluster, and calculating the proportion of same 

cluster lakes versus different cluster lakes within 50 km windows moving outward from each 

lake in the subsample. Overall lake phenology stability was calculated by examining the number 

of times a given lake shifted between clusters throughout the 6 periods of study. Lakes were 

categorized on a scale from 0 (stable) to 5 (unstable) based on the total number of cluster 

transitions they made between 1984 and 2020. Lake and landscape level factors from 

HydroLAKES (Messager et al., 2016) and the Global Lake Area, Climate, and Population 

database (Meyer et al., 2020) were then used to assess lake characteristics that influence the 
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stability of a lake's seasonal phenology over time. Variables that potentially influence stability 

were identified through linear regression of lake stability (0-5) on the median value of the 

lake/climate attribute within each stability class. Those attributes with a coefficient p-value of 

less than 0.05 were further examined as correlates with lake stability.   

Section 3: Results 

The final LimnoSat-US database includes reflectance values spanning 36 years for 

56,792 lakes across > 328,000 Landsat scenes. After initial quality control measures, the 

database contains over 22 million individual lake observations with an average of 393 +/- 233 

(mean +/- standard deviation) observations per lake over the entire study period. While 

observations date back to 1984, the total number for any given year approximately doubles with 

the launch of Landsat 7 in 1999 (Figure 3.2). 

 

Figure 3.2. Temporal and spatial distributions of satellite observations contained within the 
LimnoSat-US database. 
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Section 3.1: Classes of lake color phenology. 

Our final clustering partitions resulted in one of three membership classes for each 

lake/period that was not a priori classified as aseasonal (Figure 3.3). We describe these groups 

as Spring Greening, Summer Greening, or Bimodal. High mean Jaccard Similarity Indices 

across bootstrap sampling iterations (0.77, 0.80, 0.94 respectively) show these clusters are 

relatively universal, and that regardless of the initial sample, the same lakes are consistently 

clustered together. Within these clusters, we refer to red-shifted portions of the time series 

(increasing values) as greening or green-shifted and blue shifted portions of the time series 

(decreasing values) as blueing or blue-shifted. We highlight this terminology because even 

though red is the end-member of the upper wavelengths, the vast majority of the colors do not 

extend beyond the green portion of the spectrum. Descriptions of the summary attributes for 

each cluster are as follows: 

1) Spring Greening (n = 55,378, 35.4%): Lake color is green-shifted in May/June and 

gradually moves towards the blue end of the spectrum throughout the summer and fall months. 

Median dominant wavelengths for these phenologies are significantly bluer (p < 0.0001) than 

those in the Summer Greening, Bimodal, or Aseasonal clusters (median 𝛌d = 513). They have 

the highest average coefficient of variation within each individual time series (p < 0.0001), with 

an average range of 37 nm for a given lake/period compared to 34 nm, 33 nm, and 12 nm for 

Summer Greening, Bimodal, and Aseasonal clusters, respectively. The distribution of colors 

within the cluster is concentrated around a mode 498 nm and skewed towards the greener 

portion of the spectrum.  

2) Summer greening (n = 24,580, 15.7%): Lake color is characterized by gradual 

greening from May-August after which time it drops towards the blue end of the color spectrum. 

The distribution of colors shows a mode of 542 nm and a median of 524 nm with a blue-skewed 

distribution. On average, each individual time series within this class shows significantly less 
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variation than Spring Greening lakes/periods (p < 0.0001) but no significant difference from 

Bimodal lakes/periods.  

3) Bimodal (n = 29,685, 19.0%): Lake color is most green-shifted in May/June and again 

in September/October, with a somewhat blue-shifted phase in the intervening months. 

Phenologies within this cluster are significantly more green-shifted (p < 0.0001) than lakes 

within either the Spring or Summer Greening clusters and show less variation (p < 0.0001) than 

Figure 3.3. Results of cluster analysis for over 26,000 lakes and 156,000 seasonal time 
series. Black lines represent medians with grey ribbons representing the 1st-3rd quartile 
of each cluster. Clusters are shown both in their (a) z-normalized form used in the cluster 
analysis and (b) their raw dominant wavelength form. Distributions of color observations 
in each cluster are displayed using their associated Forel-Ule Index color. Note that the 
range of wavelengths associated with each Forel-Ule Index value varies.  
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those in the Spring Greening clusters. The distribution of colors is concentrated around 553 nm 

with a much less pronounced peak at 507 nm.  

4) Aseasonal (n = 46,759, 29.9%): The overall color distribution of this cluster is distinctly 

bimodal, with a primary mode at 559 nm and a secondary mode at 492 nm. This bimodal 

distribution, combined with the small variance in any given lake/period in the cluster, suggests it 

contains predominantly blue and predominantly green time series with very few observations in 

the intermediate green/blue space common within the three other clusters. The cluster also 

contains both the most green-shifted and most blue-shifted time series included within the 

analyses. Because of the crisp partition contained within the cluster and the ecological 

significance of blue versus green aseasonal time series, we further partition this cluster into 

Aseasonal (Blue) (n = 15,934) and Aseasonal (Green) (n = 30,825) lakes for the remainder of 

the analysis. Time series with a median dominant wavelength less than or greater than the anti-

mode of the distribution (525 nm) are considered Aseasonal (Blue) and Aseasonal (Green) 

respectively. 

Section 3.2: Lake stability over time 

Aseasonal Green lakes showed the most stability over time, with an average of 73% +/- 

6% (mean +/- standard deviation) of lakes remaining within the cluster between consecutive 

time periods. Aseasonal (Blue) and Spring Greening clusters showed similar retention rates of 

57% +/- 17% and 57% +/- 9% respectively, while Bimodal and Summer Greening showed 

similar retention rates of 46% +/- 8% and 45% +/- 7%. However, of these, only the differences 

between Aseasonal (Green) and Bimodal/Summer Greening clusters were statistically 

significant at a 95% confidence interval. For Spring Greening, Aseasonal (Green), and 

Aseasonal (Blue) distributions, the number of lakes retained between each period was 

significantly higher than the number of lakes that transitioned to a different cluster (p = 0.047, p 

= 0.007, and p = 0.0001 respectively). Summer Greening and Bimodal clusters showed no 

significant difference between the proportion of lakes retained and lakes that transitioned to 
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other clusters, indicating less stability than the other three classes. However, these transitions 

showed distinct patterns, with lakes transitioning more commonly between similar clusters. As 

an example, on average 27% of Summer Greening lakes transitioned to Spring Greening lakes 

between periods, but only 4% of Summer Greening lakes transitioned to Aseasonal (Green) 

(Figure 3.4). Similarly, less than 0.2% of lakes in Aseasonal (Green) and Aseasonal (Blue) 

transitioned between the two clusters in any two consecutive periods indicating that state shifts 

between dominantly blue lakes and dominantly green lakes are very uncommon.  

Lake stability, or the number of times a lake moved from one class to another (ranging 

from 0 transitions to 5), showed that lakes with three transitions were most common (n = 6,458) 

and lakes with five transitions least common (n = 1254) (Appendix C: Figure S5). We also 

calculated the number of unique clusters a lake occupied throughout its transitions. For 

Figure 3.4. Sankey diagram showing the distribution of lake phenology transitions between periods. 
Each ribbon is proportional to the number of lakes that moved from one cluster class to another. 
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instance, a lake could change states between all five periods, giving it a stability score of five, 

but only be changing between two of the potential five clusters, giving it two unique states. Of 

the 26,067 lakes, 4,339 (16.6%) remained within the same cluster through all periods while only 

21 (< 0.1%) occupied all five clusters at some point. For those lakes in between, lakes 

occupying two distinct states (n = 11,091; 42.5%) were most common followed by three states 

(n = 8,942; 34.3%) and four states (n = 1,674; 6.5%) respectively. Linear regressions between 

lake and landscape level metrics with overall lake stability showed significant relationships (p 

<0.01) with 5 out of 26 possible metrics (Appendix C: Table S1), although some of these metrics 

have significant cross-correlation (Appendix C: Figure S6). 

Section 4: Discussion  

Section 4.1: Lake seasonal phenology types 

Existing paradigms regarding the seasonality of lake color are generally derived from 

individual lakes with rich sampling histories of water quality observations; however these long-

term field records are rare and limited to a small subsample of lakes (Stanley et al., 2019). 

While these data-rich study lakes are essential for understanding fine-scale ecosystem 

processes, they lack the spatial coverage to generalize across entire landscapes (Soranno et 

al., 2014; Collins et al., 2019). Within our clustering analysis, we found that lake color phenology 

can largely be categorized as Aseasonal, Spring Greening, Summer Greening, or Bimodal. 

These phenologies show distinct regional patterns and spatial auto-correlation, with the 

probability of two lakes being in the same cluster showing a significant relationship to the 

distance between those two lakes (p < 0.0001) up to a distance of ~1,500 km (Figure 3.5b).  

Each cluster has a unique distribution of dominant wavelengths (Figure 3.5), which 

suggests that the timing of seasonal variation in color is connected with lake biogeochemistry. 

This conclusion is supported by long-standing models of freshwater phytoplankton succession 

(Sommer et al., 1986) and observations of annual cycles of chlorophyll-a, a proxy for 

phytoplankton biomass (Winder and Cloern, 2010). Oligotrophic temperate lakes often show the 
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archetypal pattern of a spring phytoplankton bloom followed by low summer concentrations. 

This was the dominant phenology in our observations (35.4%), which is in-line with a study of 

125 aquatic systems that found that nearly half of the sites displayed a dominant 12-month 

cycle with one phytoplankton peak per year (Winder and Cloern, 2010). As nutrient availability 

increases, eutrophic lakes tend to experience discrete phytoplankton blooms in the spring and 

late-summer/fall (Marshall and Peters, 1989). This pattern is captured in our Bimodal cluster, 

where the raw dominant wavelength values are significantly greener than those in any other 

cluster except for Aseasonal (Green). The summer-greening cluster captures eutrophic to 

hyper-eutrophic lakes featuring prolonged summer blooms with highly variable summer algal 

concentrations (Huisman et al., 2018; Carpenter et al., 2020). The characterization of Bimodal 

and Summer Greening lakes/periods as eutrophic is further supported by the low levels of 

variation we observe in dominant wavelengths when compared to Spring Greening 

lakes/periods. Dominant wavelength saturates with high amounts of suspended matter, chl-a, 

and/or CDOM (Bukata et al., 1997), meaning that highly productive, algae-filled lakes with 

significant amounts of these constituents would show low variation as dominant wavelength 

saturates. It is also possible that lakes in these categories are dystrophic CDOM-dominated 

lakes, as they include some of the most red-shifted (brown) waterbodies within the study. 

The proportion of lakes that fall within different clusters does not show an overall trend 

over time; however, since the 1996-2002 period, the number of lakes classified as either 

Bimodal or Aseasonal (Blue) have increased while the number classified as Spring Greening 

have been decreasing (Figures 3.4, 3.5). Much of the increase in Aseasonal (Blue) lakes is 

concentrated in the Pacific Northwest and occurred prior to 2008, whereas the decrease in 

Spring Greening Lakes has predominantly occurred in higher-latitude lakes that may be more 

sensitive to changes in snowmelt and ice cover regimes which control nutrient and sediment 

fluxes that influence lake productivity (Gerten and Adrian, 2002; Sharma et al., 2019). Patterns 

in the Aseasonal (Green) cluster show much less variation both spatially and temporally, being 
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largely concentrated in the agriculturally dominated central and northern plains and showing no 

distinct temporal pattern in quantity. While the increase in Aseasonal (Blue) lakes is potentially 

indicative of reduced sediment and nutrient inputs in certain parts of the country, the increase in 

Bimodal lakes, when taken with its close match to eutrophic phytoplankton succussion patterns, 

indicates increases in lake productivity across portions of the U.S. since the mid 1990s. This 

Figure 3.5. a) The modal cluster within each 100 km x 100 km grid across time periods. Mixed grids 
are those where there is no dominant cluster (i.e. two or more clusters are equally prevalent). b) The 
frequency of same cluster pairs to different cluster pairs using each lake's modal cluster. The 
frequency distributions were calculated within 50 km windows for a random sample of 30% of the 
study lakes. The dotted line represents the expected frequency if the distribution was random without 
any spatial autocorrelation. 

 



 

75 

pattern supports recent research showing a transition from bluer lakes to murky chlorophyll-a 

and CDOM-dominated lakes throughout the US between 2007 and 2012 (Leech et al., 2018). 

However, dominant wavelength, and optical water color more generally, is controlled by a 

variety of optically active water color constituents in addition to phytoplankton (Mobley, 1994; 

Gholizadeh et al., 2016), and partitioning these optical components is beyond the scope of this 

analysis. The result does, however, merit further research using a database like LimnoSat-US to 

examine country wide trends in lake chlorophyll-a content.  

Section 4.2: Factors influencing lake stability over time 

Lake stability, or the number of times a lake moved between clusters during the study 

period, showed significant relationships with multiple lake and landscape level metrics from 

HydroLAKES and the Global Lake, Climate, and Population database (GLCP) (Figure 3.6, 

Appendix C: Table S1). These relationships can generally be categorized as either hydrological 

properties or landscape properties. Important hydrological properties related to stability include 

lake size and discharge (both positively correlated with stability). This result supports existing 

research suggesting that larger water bodies are less reactive to perturbations than smaller, 

shallower lakes that can fluctuate among multiple productivity regimes (Scheffer and van Nes, 

2007). We also find that hydrologically dynamic lakes are consistently less stable, with lakes 

showing large interannual variations in seasonal surface extent exhibiting less stability. It is 

likely that these hydrologically dynamic lakes are more sensitive to seasonal variations in runoff 

and resuspension of lakebed sediments leading to large interannual variations in nutrient and 

sediment load.  

The landscape level metrics that showed the strongest relationship with lake stability 

were catchment population and elevation (p < 0.01) followed by mean temperature and mean 

monthly precipitation (p < 0.05). Similarly, for the subset of these variables where we had 

observations at annual timescales, we found that high coefficients of variation between years 

(interannual variation) of these metrics showed strong linear relationships to stability. The 
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impact of these landscape-level metrics on stability supports work showing that lakes integrate 

surrounding climatic and land cover changes (Rose et al., 2017). These results are of particular 

interest for relatively pristine high-elevation lakes that will be disproportionately impacted by 

changing precipitation and temperature regimes through climate change (Oleksy et al., 2020b, 

2020a). Finally, we found that lakes in catchments with higher populations were generally more 

stable; however, lakes in catchments with high variation in population (likely increasing urban 

areas) showed less stability. Overall, our examination of landscape level metrics shows that the 

stability of a lake often follows the stability of its environment, with lakes subject to interannual 

variations in climate or anthropogenic stressors generally showing less stability in their overall 

seasonal phenology. 

Section 5: Conclusion 

Remote sensing has the capability to substantially increase our understanding of 

macroscale aquatic ecosystem processes. Here, we contribute to a growing body of inland 

Figure 3.6. Lake and 
landscape level metrics that 
showed the most significant 
relationships with stability, or 
the number of times a given 
lake moved from one cluster 
to another between periods 
(p < 0.01 with the exception 
of discharge, p = 0.019). 
Center bars represent 
median values while boxes 
span the 1st-3rd quartiles. 
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water remote sensing resources with LimnoSat-US, which contains >22,000,000 remotely 

sensed lake observations. Prior to this study, large-scale analyses of lake phenologies were 

limited to dozens to hundreds of waterbodies (Marshall and Peters, 1989; Winder and Cloern, 

2010; Ho et al., 2019). Here, we were able to analyze U.S. summer lake color phenology across 

more than 26,000 lakes over 36 years, showing both temporal and spatial patterns and trends, 

as well as linking phenology to lake and landscape-level metrics. Better understanding the full 

distribution of lake phenology will allow for more accurate scaling of global nutrient and carbon 

cycling. While the analysis presented here relies simply on lake color, combining LimnoSat-US 

with databases such as AquaSat (Ross et al., 2019), RiverSR (Gardner et al., 2020), and 

LIMNADES (Spyrakos et al., 2020), will allow for more explicit modelling and analysis of specific 

water quality components, allowing researchers to partition the patterns observed here into 

optically active water quality components including chlorophyll-a, suspended sediments, and 

CDOM. 
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Chapter 4: Multi-Decadal Improvement in U.S. Lake Water Clarity  

Section 1: Introduction 

Section 1.1: Summary  

Across the globe, recent work examining the state of freshwater resources paints an 

increasingly dire picture of degraded water quality. However, much of this work either focuses 

on a small subset of large waterbodies or uses in situ water quality datasets that contain biases 

in when and where sampling occurred. Using these unrepresentative samples limits our 

understanding of landscape level changes in aquatic systems. In lakes, overall water clarity 

provides a strong proxy for water quality because it responds to surrounding atmospheric and 

terrestrial processes. Here, we use satellite remote sensing of over 14,000 lakes to show that 

lake water clarity in the U.S. has increased by an average of 0.52 cm yr-1 since 1984. The 

largest increases occurred prior to 2000 in densely populated catchments and within smaller 

waterbodies. This is consistent with observed improvements in water quality in U.S. streams 

and lakes stemming from sweeping environmental reforms in the 1970s and 1980s that 

prioritized point-source pollution in largely urban areas. The comprehensive, long-term trends 

presented here emphasize the need for representative sampling of freshwater resources when 

examining macroscale trends and are consistent with the idea that extensive U.S. freshwater 

pollution abatement measures have been effective and enduring, at least for point-source 

pollution controls. 

Section 1.2: Background  

Recent large-scale studies of the aquatic ecosystems have been facilitated by a growing 

number of easy to use to global (Filazzola et al., 2020) and sub-continental (Fölster et al., 2014; 

Soranno et al., 2017; Read et al., 2017) datasets of field water quality measurements. However, 
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research into one of the largest such datasets (Soranno et al., 2017) suggests that historical 

field samples tend to be biased towards larger, problematic waterbodies and often lack the 

temporal continuity necessary for detecting long term trends (Stanley et al., 2019). Using this 

unrepresentative data to understand regional to national scale lake dynamics can lead to 

significantly different results when compared to statistically-representative samples (Paulsen et 

al., 1998; Peterson et al., 1999). While this problem of representativeness is increasingly 

acknowledged in sampling efforts (e.g., the U.S. National Lake Assessment; NLA) (Pollard et 

al., 2018) systematic sampling programs are costly, can have limited temporal resolution and 

continuity, and require compromise between scientific rigor and logistical practicality (Hughes 

and Peck, 2008). No such sampling program is available at continental scales over multiple 

decades. 

One response to the challenges represented by field studies is to use remote sensing to 

estimate water quality parameters. Over the past decade, inland water quality remote sensing 

research has increasingly focused on larger spatial and temporal domains in order to address 

challenging science questions (Olmanson et al., 2008; Ho et al., 2019; Topp et al., 2020a). 

Here, we use remote sensing to conduct the first multi-decadal, national-scale assessment of 

U.S. lake water clarity by developing a carefully validated data-driven model that is 

generalizable across more than three decades for the entire contiguous U.S. We calculate 

regional summer lake water clarity trends from 1984-2018 across nine U.S. ecoregions in two 

different samples of lakes: a statistically stratified sample (n = 1,029 lakes) defined by the 2012 

NLA (Peck et al., 2013) and a large random sample (n = 13,362 lakes) from the National 

Hydrography Dataset (NHDPlusV2) (McKay et al., 2019). We compare the overarching trends 

from these remotely-sensed estimates to each other and to the entirety of the available in situ 

data from the Water Quality Portal (WQP) (Read et al., 2017) and LAGOS-NE (Soranno et al., 

2017), which jointly have over 1 million field observations of U.S. lake clarity dating back to 

1984. In doing so we observe the impact of different sampling approaches and illustrate the 
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biases that exist when using historical field samples to identify long term trends. To complement 

the ecoregion analysis and compare our work to existing studies focusing on larger lakes (Ho et 

al., 2019), we add all U.S. lakes larger than 10 km2 to our NLA and random samples and 

examine trends in lakes with over 25 years of observations (n = 8,897) to identify how lake-

specific trends vary with lake size and population density.  

Section 2: Materials and Methods 

Section 2.1: Data Processing and Acquisition 

Figure S1 (Appendix D) depicts a summary of the project workflow. Data for model 

training and validation was derived from a variant of the AquaSat database (Ross et al., 2019) 

which combines historical water quality measurements from the Water Quality Portal (Read et 

al., 2017) and LAGOS-NE (Soranno et al., 2017) with coincident (+/- 1 day) satellite images 

from the USGS tier 1 surface reflectance collections for Landsat 5, 7, and 8. While the 

atmospheric corrections used to generate these surface reflectance products were originally 

developed for terrestrial applications, a growing body of research shows that they can be used 

to accurately estimate inland water quality parameters and perform on par with water-specific 

atmospheric correction algorithms (Griffin et al., 2018b; Kuhn et al., 2019; Olmanson et al., 

2020). Site IDs from AquaSat were spatially joined to lake polygons from NHDPlusV2 (McKay et 

al., 2019) (NHD) and then linked to catchment level metrics from the LakeCat database (Hill et 

al., 2018). From the initial AquaSat database, observations were removed if: 

• they did not coincide with a lake polygon from NHDPlus V2 

• over half of the water pixels within 120 meters of the sample site were classified 

as anything other than high confidence water by the USGS Dynamic Surface 

Water Extent water mask (Jones, 2019) 

• the Landsat scene contained over 50% cloud cover 
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• one or more Landsat bands was beyond a reasonable reflectance for water (0-

0.2)  

• the Fmask (Zhu et al., 2015) indicated the presence of clouds, cloud shadows, or 

ice over the sample site 

• the observation was impacted by topographic shadow 

• recorded field water clarity (measured as Secchi disk depth) was < 0.1 meters or 

> 10 meters (the limits used for the NLA field sampling). 

• two identical clarity observations occurred on the same day within the same lake 

as a result of duplication between WQP and LAGOS-NE (WQP observations 

were kept while LAGOS-NE observations were removed in these circumstances) 

Similarly, reflectance values for analyzing national clarity trends were calculated using 

the same filters and methodology described above using the lake center as the sample point 

and taking the median value of high confidence water pixels within 120 meters for all study 

lakes. As an additional test, the predictions using lake center median values were compared 

with predictions using whole lake median values for the 2012 NLA lake sample. The two sets of 

predictions showed strong agreement (R2 = 0.95, Appendix D: Figure S2), so lake centers were 

used for consistency with AquaSat’s point based method. All reflectance values were extracted 

from Google Earth Engine (Gorelick et al., 2017) for the three samples of interest within the 

study: the statistically stratified NLA 2012 sample (n = 1,038), a large random sample of 2,000 

lakes per ecoregion (n = 18,000), and all lakes greater than 10 km2 (n = 1,170). 

Each subsample contained a portion of lakes that were ultimately removed through the 

quality control measures described above. Spot checking of the removed waterbodies revealed 

that the most common cause for removal was lack of Landsat visible pure water pixels caused 

by either irregular waterbody shape (long and narrow), surface vegetation on the waterbody, 

overhanging vegetation along the shoreline, or a misclassification of a lake within NHD. 
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Removal of these waterbodies led to total lake counts of 1,029 for the NLA sample, 13,362 for 

the random sample, and 1,105 for lakes over 10 km2 (for a total of 14,971 unique lakes). While 

conservative, this filtering approach ensured minimal error from mixed pixels, sun glint, and 

surrounding adjacency effects from nearby land.   

Reflectance values from the differing Landsat sensors were normalized following 

Gardner et al. (2020). For each satellite pair (Landsat 5/7 and Landsat 7/8), the reflectance 

values observed over the entirety of the NLA sample of lakes were first filtered to coincident 

time periods when both sensors were active (1999-2012 for Landsat 5 and 7 and 2013-2018 for 

Landsat 7 and 8). We assume that the distribution of collected reflectance values for a given 

band should be identical given a sufficient number of observations over the same array of 

targets regardless of sensor. Based on this assumption, we calculated the 1st-99th reflectance 

percentiles for each sensor/band during periods of coincident satellite activity. Since Landsat 7 

spans the time periods of both Landsat 5 and Landsat 8, each band in 5 and 8 was corrected to 

Landsat 7 values through a 2nd order polynomial regression of the 1st-99th percentiles of 

reflectance values between the two sensors for the overlapping time period (Appendix D: Figure 

S3). The resulting regression equations were then applied to all Landsat 5 and 8 values within 

AquaSat as well as for all the included study lakes. Ultimately, applying these corrections to the 

reflectance values reduced the final model mean absolute error by 0.2 meters, suggesting that 

standardizing the reflectance values between sensors successfully reduced errors from sensor 

differences. 

Application of the above quality control measures for AquaSat resulted in a model 

training and testing database of 250,760 observations of Secchi Disk depth, associated Landsat 

reflectance, and site specific lake and catchment properties for an optically diverse sample of 

waterbodies across the United States dating back to 1984 (Appendix D: Figure S4). Reflectance 

values for specific bands and band ratios within the training dataset were analyzed for 

correlations with atmospheric optical depth derived from the MERRA2 reanalysis data (Randles 
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et al., 2017). Correlations were examined both over the entire study period and between 1991 

and 1993, when aerosol optical depth values were particularly high due to the eruption of Mt. 

Pinatubo. Optical parameters that showed the least correlation to atmospheric optical depth (r < 

0.15 during 1992 and 1993 and r < 0.1 for the study period) were then chosen for inclusion in 

the modelling pipeline. These included Blue/Green and Nir/Red ratios and the dominant 

wavelength as described by Wang et al. (2015). 

Of the non-optical parameters from the LakeCAT database, we included those that could 

impact water clarity and were mostly static over time (Appendix D: Table S1). Static 2006 values 

for catchment level percent impervious surfaces, percent urban landcover, percent forested 

landcover, percent cropland, and percent wetland landcover were included despite potentially 

being unrepresentative of the entire study period in some catchments. These variables were 

deemed important based on existing research (Lottig et al., 2017; Rose et al., 2017), domain 

expertise, and various preliminary empirical tests of feature importance, and therefore were 

included in the modelling pipeline. All lake and landscape-level variables were rounded to the 

nearest tenth or whole number, depending on the variable scale, in order to prevent certain 

variables from acting as location identifiers and to avoid overfitting during model training. This 

initial reduction in the feature space of the training dataset resulted in three optical variables and 

27 static lake/landscape variables for each AquaSat matchup observation. 

Section 2.2: Model Development and Validation 

Non-parametric, supervised machine learning algorithms are increasingly popular within 

the remote sensing community due to their robustness, ease of use, and relatively low 

computational requirements (Li et al., 2016). Among these algorithms, extreme gradient 

boosting (Xgboost) has been shown to outperform similar non-parametric classification and 

regression schemes for urban land cover classification (Georganos et al., 2018), determining 

aerosol optical depth (Just et al., 2018), and modeling solar radiation (Fan et al., 2018). Xgboost 

classifiers are ensemble models that combine a suite of ‘weak’ classifiers in order to minimize 
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overall error. Within each iteration, estimates with large errors from the previous iteration are 

weighted in order to force the model to maximize its performance on the most challenging 

calibration data. The iterations are additive, meaning that the final model is the sum of the 

previously weighted regressions.  

Here, we use the generalized linear module of Xgboost as it was found to outperform the 

tree based module for low values of water clarity. This implementation of Xgboost creates a 

generalized linear model using elastic net regularization (Zou and Hastie, 2005) and coordinate 

descent optimization (Friedman et al., 2010). To better understand the structure of the final 

model, as well as the influence of each input feature on model predictions, we calculated the 

feature importance and accumulated local effects (ALE) (Apley and Zhu, 2020) for all model 

inputs (Appendix D: Figure S5). ALE values represent the average marginal impact of a feature 

on final predictions as the feature value increases or decreases within a ‘local’ window of 

values. Examining ALE values is an effective method for interpreting machine learning models 

that are otherwise opaque in their structure (i.e. black boxes) (Molnar, 2020).  

In order to avoid model overfitting and limit the final number of input variables, we 

incorporated forward feature selection (FFS) (Meyer et al., 2018) with target oriented leave-

location-leave-time out cross validation (LLLTO-CV) (Meyer et al., 2019) into our Xgboost model 

development. FFS and LLLTO-CV effectively reduce overfitting by cross-validating the model on 

locations and times not used for model training and removing variables with high spatial or 

temporal correlations with observed clarity. We set aside 20% of the training dataset (n = 

50,153) to use for post-development model testing and trained our initial model with the 

remaining 80% (n=200,607) using FFS and LLLTO-CV. This process reduced the overall 

number of input variables from 30 to 11 (3 optical properties and 8 static lake/landscape 

variables) (Appendix D: Table S1). Finally, the hyperparameters of the model were tuned using 

a grid search approach with conservative hyperparameter values.  
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Section 2.3: Annual Lake Water Clarity Predictions 

Lake observations downloaded from Google Earth Engine were limited to those between 

May and September in order to remove the influence of snow and ice while maximizing the 

number of cloud free images captured. For any given lake and year, the median of all cloud free 

predictions was taken as representative of summer lake clarity. These summer clarity 

predictions were then averaged across the nine ecoregions defined within the NLA to generate 

estimates of annual regional water clarity. For the NLA sample of lakes, this process led to an 

average of 883 observations spread across 103 lakes being averaged for each regional 

estimate of summer water clarity. The NLA provides weights for lakes used in analyses at the 

state and national scale; however, no ecoregion scale weights are provided, and therefore 

regional means calculated here represent the unweighted regional means of the 2012 NLA 

sample lakes. 

Model error was propagated into the mean regional estimates through 1000 iterations of 

bootstrap sampling. Within each iteration, annual lake median values within each region were 

sampled with replacement, and the new subsample was used to calculate the annual mean for 

the region. This bootstrapping procedure effectively propagates a different amount of model 

noise into each estimate of mean summer clarity by incorporating a different sample of lakes 

into each iteration of the regional estimate. This resampling results in a distribution of 1000 

estimates of clarity for each year/region. We take the mean +/- the standard deviation of these 

distributions to generate 90% confidence bounds for each annual estimate of clarity.  

In order to analyze overarching regional trends, we calculated Thiel-Sen Slopes for each 

of the generated time series based on the mean of the bootstrap sampling procedure. Thiel-Sen 

Slope is a nonparametric measure of the magnitude of monotonic trends that is insensitive to 

outliers within the dataset (Sen, 1968). It determines overall trends by calculating slopes 

between each pair of points in a time series and then taking the median of all slopes. It is often 

used in conjunction with Mann-Kendall trend analysis to quantify the more binary Mann-Kendall 
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tau statistic (Kendall, 1948). The trends presented here are based on the full remote sensing 

time series; however, we also calculated trends excluding the years in which atmospheric 

optical depth was potentially impacted by the Mt. Pinatubo eruption (1991-1993). Overall trends 

using the filtered timeseries showed only minor differences from the full-time series (Appendix 

D: Figure S6) indicating that the reported patterns observed here are not artefacts of the 

abnormal atmospheric conditions in the early 1990s. Trends for the field data were analyzed 

using the same method as the remote sensing predictions by first taking the summer median of 

each sampling point, averaging the median values by year/region, and calculating Thiel-Sen 

slopes from the resulting regional estimates. 

Finally, we identified lakes with more than 25 years of observations to conduct lake-

scale analysis (n = 8,897). We calculated Thiel-Sen Slopes for each individual time series of 

median summer clarity to examine the distribution of trends at the lake scale. Individual lake 

trends were binned by lake size and catchment population density to analyze the impact of 

these lake characteristics on overall clarity trends. The resulting distributions across size 

classes and catchment population density showed longer tails towards positive trends and were 

therefore analyzed using non-parametric Mann-Whitney tests rather than the more common 

parametric t-test. While we did not explicitly propagate model error into these individual lake 

time series, we attempt to reduce the impact of model noise by examining distributions rather 

than individual lakes and calculating the median trend for each binned distribution. 

Section 3: Results 

Section 3.1: Model Validation 

Validation of our data-driven remote sensing model (Figure 4.1, Appendix D: Figure S7) 

indicates that it performs on par with existing regional remote sensing models developed using 

either traditional regression methods or semi-analytical modelling (Olmanson et al., 2008; Ren 

et al., 2018; Page et al., 2019). However, unlike previous regional models that are only 

applicable to a specific scene, sensor, or area, the model presented here is generalizable for 



 

87 

over three decades for the entire contiguous United States. Model error was calculated using 

the hold-out data (n=50,153) not used in model training. Error metrics were calculated at the 

observation level as well as at the aggregated ecoregion level used in the final analysis. 

Examination of the model residuals shows a consistent normal distribution over time. This is 

important both because it reaffirms the sensor correction procedure described above and 

because it leads to more accurate regional estimates, as over and underpredictions cancel each 

other out. Observation level error metrics for the final model include a mean absolute error of 

0.71 meters (mape = 38%) and bias of < 0.01 meters. Regional/annually aggregated error 

Figure 4.1. Model 
validation based on 
hold-out data not used 
in model development. 
Clockwise from the 
upper left: Point based 
model performance, 
model performance 
aggregated by year 
and region, and 
regional timeseries of 
aggregated validation. 
Note that the time 
series shown only 
include hold-out 
estimates coincident 
with field 
measurements used 
for validation and do 
not represent the final 
time series of the 
study. They are 
provided to illustrate 
that the validation 
captures regional 
temporal patterns seen 
in the field data. 
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metrics include a mean absolute error of 0.25 meters (mape = 14%) and a bias of -0.02 meters. 

The distributions of estimates generated through the bootstrap sampling procedure have an 

average standard deviation of 0.09 meters around the mean estimate. As each re-sampling 

propagates varying amounts of model error into the final mean annual value for a region, this 

low standard deviation suggests that the bootstrapping procedure likely further reduces the 

uncertainty of our annual regional estimates.  

Feature importance, measured as gain (i.e. the improvement in accuracy when a given 

feature is included), shows that optical variables, especially the dominant wavelength, contribute 

the most predictive capability to the model (Appendix D: Figure S5). To further validate the 

contribution of optical variables to the model, we validated a second, purely optical model on the 

same training and testing data which resulted in an RMSE of 1.3 m. The purely optical model 

was able to explain 50% of the total variance (R2) within the validation dataset compared to 72% 

from the combined landscape model. This difference indicates that the optical parameters 

contributed up to 70% (0.50/0.72) of the explained variance within the final combined landscape 

model, with the static lake and landscape variable characteristics contributing at least 30%. The 

calculation of ALE values provides additional detail on the underlying structure of the model as 

well as evidence that the model is capturing many of the physical relationships we would 

expect. For example, we see that as the dominant wavelength of an observation moves from 

475 nm (within the blue spectrum) to 560 nm (within the green spectrum) the impact on clarity 

predictions goes from a 50 cm increase to a 75cm decrease. This difference likely captures 

decreased clarity as algae and suspended sediment increases. 

Model performance was also broken down by lake size, satellite, data source, and time 

to ensure that predicted trends were not artefacts of lake or sensor characteristics (Appendix D: 

Figure S7). While variations in model fit across lake sizes, sensors, and data sources are 

nominal, the validation did show a slight increase in bias over time, with clarity in earlier years 

being slightly overpredicted on average and clarity in later years being slightly underpredicted. 
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However, if anything, this small change in bias over time makes our trend predictions 

conservative as later years are generally underpredicted. We included a breakdown by data 

source because LAGOS-NE field measurements are all geolocated to lake center points while 

WQP uses explicit sampling site coordinates (Ross et al., 2019). For observations recorded in 

both, we deferred to WQP because of the spatial specificity. However, validation results from 

both datasets show strong agreement, likely because the vast majority of lakes are small 

enough that there is minimal variation between lake center points and nearby sampling 

locations. This similarity also supports the above stated decision to predict clarity based on 

median center point reflectance values rather than median whole lake reflectance values.  

As an additional check, we conducted two comparisons of model performance against 

known benchmarks in the field. First, we compared our regional estimates of lake water clarity 

to those of the 2007 and 2012 National Lake Assessments and found strong agreement 

between the reported field values and our model predictions (mape = 17.7%) (Appendix D: 

Figure S8). Second, we generated mean summer predictions for the individual lakes included in 

LakeBrowser (Olmanson et al., 2008), a well-validated water clarity remote sensing project 

focused on over 10,000 lakes in Minnesota (https://lakes.rs.umn.edu/). Comparison of the 

predictions from the two modelling approaches show agreement when comparing annual 

estimates at the ecoregion level used by LakeBrowser (R2 = 0.82) and when compared to field 

data from the WQP and LAGOS-NE (Appendix D: Figure S9). 

Section 3.2: Trends in U.S. Lake Water Clarity 

Time series generated for the NLA sample of lakes show that, on average, water clarity 

in U.S. lakes increased at a rate of 0.52 cm yr-1 from 1984-2018. Seven of the nine NLA 

ecoregions show significant positive trends (p < 0.05) that varied from 0.23 cm yr-1 (p = 0.040) in 

the Coastal Plains to 1.00 cm yr-1 (p < 1e-5) in the Northern Appalachians (Figure 4.2). 

Significant trends were absent in the Southern Appalachian and Southern Plains regions, but no 

https://lakes.rs.umn.edu/
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region had a significant decline in clarity. All regions with significant trends show clarity shifts 

throughout the study period that are greater in magnitude than their mean confidence interval.  

Interannual variations in percent clarity change between ecoregions are significantly 

correlated (p < 0.05) in 24 of the 36 (67%) possible region pair combinations (Appendix D: 

Figure S10). Additionally, during 29% (n=10) of the observed years, at least eight of the nine 

Figure 4.2. Regional modelled trends in water clarity for the statistically stratified sample of 
NLA lakes that are Landsat visible and a large random sample of Landsat visible lakes. Trends 
and their associated confidence intervals represent the mean and standard deviation of values 
calculated through 1000 iterations of bootstrap sampling of the NLA and random sample lakes 
respectively. Points on maps represent individual lakes included in the sample. Asterisks 
indicate significance levels of trends determined by Thiel-Sen slopes at 90% (*), 95% (**), and 
99% (***) confidence levels for the NLA sample of lakes. 
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ecoregions showed synchronous increases or decreases in clarity compared to the previous 

year. While some of these years line up with discrete events (e.g., 1987 was heavily impacted 

by the Pacific Decadal Oscillation), ascribing this synchrony to specific climatological or 

anthropogenic drivers is difficult due to the multiscale controls on lake water clarity (Soranno et 

al., 2014; Rose et al., 2017). However, the scale of the changes suggests that drivers of water 

clarity function at national scales for at least some parts of the study period.  

Section 3.3: Impacts of lake size and population  

Recent studies of large-scale drivers of inland water quality suggest both that 1) a 

variety of anthropogenic and climate forcings are leading to an increase in algal blooms and 

concomitant decreases in water clarity in many lakes (O’Neil et al., 2012; Ho et al., 2019), and 

that 2) nutrient loading of U.S. rivers, particularly near urban areas, is decreasing (Keiser and 

Shapiro, 2019; Stets et al., 2020), a trend that should translate to decreased algal growth in 

downstream waters, particularly if these receiving systems have relatively short mean water 

residence times or are isolated from non-point sources of nutrient inputs (Jeppesen et al., 2005; 

Schindler, 2010). These contradictory narratives may reflect limited use of representative 

samples at large spatial scales, with most studies systematically under-sampling smaller 

waterbodies despite their numerical dominance and ecological significance (Downing et al., 

2006).  

To better compare our analysis to previous work focusing on larger lakes and river 

systems, we generated annual water clarity time series for all U.S. lakes larger than 10 km2 (n = 

1,105) in addition to our NLA and random samples to create a full dataset of 14,971 unique 

lakes. From this sample, we selected only those lakes with at least 25 years of cloud-free 

remote sensing observations (nlakes = 8,897 lakes, nobservations = 2,727,021) and binned them by 

size class (<1, 1-10, 10-100, and >100 km2) and catchment population density (20% quantiles) 

to compare how trends differed by lake size and examine potential links to improving stream 

water quality in urban areas. The resulting distributions of trends show that the most significant 
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clarity improvements are occurring in smaller waterbodies and in densely populated areas 

(Figure 4.3). Lake size and population density are not significantly correlated, nor are these 

results related to differences between natural lakes and reservoirs, which show no significant 

difference in their distribution of trends (p = 0.69). For lake size, median trends for lakes in the 

smallest to largest size classes are 0.28, 0.19, 0.08, and 0.02 cm yr-1, respectively, with all but 

the last class significant at a 99% confidence level. Trends for lakes in catchments within the 

lowest population density quintile (20%) were approximately four times smaller than for lakes in 

the most urban upper quintile (p = 2.2e-16). Given these trends and the important controls of 

population density and lake size, research focusing primarily on large lakes may accurately find 

that water clarity is not increasing. However, the more systematic analysis presented here 

provides a more complex story in which clarity dynamics are dependent on lake-specific 

limnological and geographic attributes.  

 

Figure 4.3. Distribution of modelled trends in lakes with greater than 25 years of 
observations by (left) lake size class (<1 km2, n= 7,339; 1-10 km2, n=509; 10-100 km2, 
n= 925; >100 km2, n=124) and (right) 2010 catchment population density quantiles. 
Actual values for quintiles in terms of people per km2: [0-1], (1-3], (3-11], (11-43], (43, 
3,970]. Y-axis limits set to -5 to 5 for visualization.  
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Section 3.4: Sampling impact on patterns of water clarity 

To examine the effect of lake sampling on observed patterns in water clarity, we 

replicated our NLA analysis using: 1) remote sensing estimates for a large random sample of 

lakes (n = 13,362, Figure 4.2), and 2) the entirety of field data from both LAGOS-NE and WQP, 

two of the largest national field databases of water quality in the U.S (n = 1,296,659 

observations between 1984 and 2018). Results of this comparison show that the NLA sample of 

lakes accurately reflects temporal patterns of lake clarity across ecoregions compared to a 

random sample, with some minor geographical exceptions (Figure 4.2). Regardless of these 

differences, regional temporal patterns in water clarity are highly correlated between the NLA 

and random samples, with Pearson’s Correlation Coefficients ranging from 0.55 (p = 5.4e-4) in 

the Southern Plains to 0.91 in the Upper Midwest (p = 1.0e-5). These high correlations between 

Figure 4.4. Differences in observed ecoregion trends when conducting the analysis with all the 
in situ samples from the WQP/LAGOS-NE and the modelling results from the NLA lake 
sample and a large random sample. Asterisks indicate significance levels of trends determined 
by Thiel-Sen slopes at 90% (*), 95% (**), and 99% (***) confidence levels. 
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samples suggest that the NLA sample is representative of a larger random sample of lakes and 

that observed trends are insensitive to lake sampling given a large enough sample size and 

regular sampling intervals.  

Conversely, comparison of the remotely sensed NLA and large random samples to 

historical field observations from LAGOS-NE and WQP reveals substantial discrepancies in 

overall trends (Figure 4.4). Time series of historical regional clarity calculated with the full set of 

field data lack significant correlations (p < 0.01) with the time series from the NLA sample in 

seven of the nine study regions. Slopes differ by orders of magnitude from the closely-matched 

random and NLA samples, in some cases with significant trends in the opposite direction. These 

results emphasize that conducting an identical analysis with spatiotemporally inconsistent and 

potentially ad hoc field sampling leads to substantially different trends in water clarity compared 

to the same analysis using representatively sampled remote sensing estimates. 

Section 4: Discussion 

Our analysis of long-term trends in lake water clarity across the United States highlights 

that: 

• Overall clarity in U.S. lakes increased between 1984 and 2018. This increase 

was concentrated largely in lakes smaller than 10 km2 and in more urban areas. 

• A systematic understanding of national patterns in lake water clarity requires a 

representative sample of lakes. These macrosystem-level patterns are not 

reflected in aggregated historical field data. 

By applying our model across both the NLA sample of lakes and a larger random 

sample, we successfully capture long-term patterns in U.S. lake water clarity that are 

unobservable in historic and contemporary field sampling efforts. The NLA represents the 

current best-practice in large scale field monitoring across the U.S.; however, we show that lake 

clarity nationally has distinct temporal patterns that are not fully captured with the 5-year return 

period of the NLA field sampling efforts. High correlations between trends observed with 
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different lake samples, high correlations in time series among regions, and periods of uniform 

change at the national scale all point to the influence of one or more drivers of lake water clarity 

operating at a national scale or larger. We examined relationships between observed water 

clarity patterns and potential forcing variables (temperature, precipitation, sulfate deposition, 

and the Pacific Decadal Oscillation, Appendix D: Figure S11) and found that the regional 

impacts of these correlations varied, likely due to complex, cross-scale interactions that lead to 

variable regional influences as different drivers interact with each other (Soranno et al., 2014; 

Rose et al., 2017; Read et al., 2017). However, while more difficult to quantify, the period 

analyzed here begins directly after a round of sweeping environmental legislation in the 1970s 

and 1980s. These major national level policies include the Clean Water Act (CWA 1972; 

amended 1977 and 1987), the National Environmental Policy Act (NEPA 1969), the Clean Air 

Act (CAA 1963, amended 1965, 1966, 1967, 1969, 1970, 1977, 1990), the Safe Water Drinking 

Act (SWDA 1974, amended 1986,1996), and the Endangered Species Act (ESA 1973), all of 

which targeted freshwater resources and habitat to varying extents. 

Our results are consistent with recent studies showing regional (Wong et al., 2018; Ator 

et al., 2019) and national (Keiser and Shapiro, 2019; Stets et al., 2020) improvements to U.S. 

streams and rivers (Wong et al., 2018; Ator et al., 2019; Keiser and Shapiro, 2019; Stets et al., 

2020) and lakes (Keiser and Shapiro, 2019) directly attributable to the CWA. Specifically, they 

show declining nutrient concentrations in urban areas caused by reductions in point source 

pollution and improved stormwater management emphasized by the CWA. Although agricultural 

streams have not undergone significant changes in nutrient loads, they have shown declines in 

suspended sediments, consistent with improved sediment management practices (Stets et al., 

2020). These recorded improvements in streams and rivers provide a mechanism for increasing 

lake water clarity, as changes in fluvial systems often equate to changes in sediment and 

nutrient inputs to lakes (Fraterrigo and Downing, 2008). This argument assumes that the 

observed improvements in clarity can be attributed to declining suspended sediment and 
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nutrient concentrations rather than the other contributor to water clarity – ‘colored’ dissolved 

organic matter (cDOM) because where cDOM patterns exist in lakes, they are predominantly 

positive (Monteith et al., 2007) and therefore not contributing to increases in clarity.  

Evaluating long-term nutrient dynamics is more challenging because of limitations in 

data availability over the period of study at the national scale. An analysis of the 17-state region 

represented by the LAGOS database revealed that total nitrogen decreased while total 

phosphorus concentrations have neither decreased nor increased in the vast majority of lakes 

sampled during summer months between 1990 and 2013 (Oliver et al., 2017). While this 

nutrient decrease alone potentially contributed to increased lake clarity in nitrogen-limited 

waterbodies, the study lacks lake water quality data that corresponds to the period of greatest 

change observed in streams, which was steepest from 1982-1992 within urban areas (Stets et 

al., 2020). The diminishing improvements in stream water quality after this period are likely 

because investment in municipal and industrial water pollution control efforts began to gradually 

taper off in the mid-1990s (Keiser et al., 2019). Even allowing for a delay in water quality 

response to phosphorus reductions (Jeppesen et al., 2005), these funding patterns are 

consistent with the greatest gains in water clarity occurring over the first two decades of the 

CWA within lakes in densely settled areas and smaller waterbodies that tend to be more 

responsive to management activities because of their shorter average water residence times. 

Our results support this conclusion, with smaller lakes showing over three times the median 

increase in clarity than larger lakes (p = 4.7e-8), with lakes in catchments with higher population 

density showing over four times the median increase in clarity than lakes in low population 

density catchments (p = 2.2e-16) (Figure 4.3), and a slowdown of clarity improvements after 

2000 due to diminishing returns of reduced point source pollution. This slowdown was likely 

exacerbated due to difficulties reducing nonpoint sources of pollution, particularly in some 

regions of the country where changes in the precipitation regime are exacerbating nutrient 

loading to surface waters (Ballard et al., 2019).  
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Comparison of observed trends across the NLA sample of lakes, a large random 

sample, and historical field records provides both empirical support for the representativeness of 

the NLA and evidence for the shortcomings of relying solely on potentially biased historical field 

samples for systematic monitoring of freshwater resources. Examining trends at the lake and 

regional level highlights the potential for an unrepresentative sample of lakes to inaccurately 

depict system-wide patterns. Specifically, when we restrict analysis to larger waterbodies, we 

find only nominal change in U.S. lake clarity, but the more inclusive analysis presented here 

suggests that overall lake water clarity within the United States has increased over the past 35 

years. While this is the first study of trends in lake water clarity at a national scale, it extends 

regional studies throughout the northeast that have found water quality in lakes is either largely 

stable or improving (Peckham and Lillesand, 2006; Binding et al., 2015; Canfield et al., 2016; 

Oliver et al., 2017), as well as work in China and Sweden indicating that national management 

policies are decreasing eutrophication rates (Fölster et al., 2014; Ma et al., 2020; Wang et al., 

2020). While more work is required to understand the multiscale drivers of water clarity, the 

results presented here bring us closer to realizing research goals dating back more than 20 

years emphasizing that representative sampling is required for effective monitoring of 

freshwater resources (Paulsen et al., 1998; Peterson et al., 1999).  
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APPENDIX A: SUPPLEMENTARY MATERIAL FOR CHAPTER 1 

This Appendix includes: 

Tables S1:S4 

 Link to the inland water quality remote sensing index in its entirety here: 

 https://docs.google.com/spreadsheets/d/1GMka4B-E16FmXBWjv0lhBN0T-

 07oeZT4riepMMHvZz4/edit?usp=sharingusp=sharing 
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Table S1. Summary of the optically active water quality indicators measured through inland water remote sensing studies. Specific 
studies, sensor information, and modelling approaches focusing on the listed parameters and included in the review can be accessed 
through the inland water quality remote sensing index linked to in Appendix A. For a more detailed, technical discussion of specific 
algorithms and spectral responses for each parameter see Matthews (2011), Gholizadeh et al. (2016), and Giardino et al. (2019)  

Parameter Parameter Description Measurement Purpose Dominant Spectral Response 
Number 

of Studies 
Reviewed 

Chlorophyll-a 
Photosynthetically active compounds found in 
plants, algae, and cyanobacteria that convert 

light into energy for photosynthesis 

Lake productivity/trophic state, harmful 
algal bloom detection 

Fluorescents - 680 nm; Absorption - 
450-475 nm and 670 nm; 

Backscattering: ~550 nm and ~700 
nm 

132 

Total 
Suspended 

Solids 

Inorganic and organic particles held in 
suspension throughout a water column 

Inorganic sediment flux, 
biogeochemical cycling, light conditions 

Reflectance peak between ~500 and 
~800 depending on concentration 

94 

Colored 
Dissolved 

Organic Matter 
Colored portion of total dissolved organic carbon 

Carbon production and cycling, light 
conditions 

Highly absorptive, especially below 
500 nm 

30 

Water Clarity 
Measure of total light penetration into a 

waterbody, typically measured as Secchi Disk 
Depth or turbidity 

Lake productivity/trophic state, light 
conditions, sediment concentrations, 

harmful algal bloom detection 

Highly dependent on the 
composition of the previous 

parameters with generally higher 
reflectance across the spectrum at 

lower values 

89 
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Table S2. Summary of the common approaches to algorithm development for remote sensing of inland waters studies.   

Modelling 
Approach 

Description Benefits Limitations 
Number of 

Studies 
Reviewed 

Empirical 

Algorithms involving empirical relationships 
between spectral bands and band ratios and 

the water quality parameter of interest, 
typically through linear regression. 

Transparent, easily interpretable, no 
a priori assumptions required 

Non-generalizable beyond the 
range and setting of the training 
data, unable to handle complex 

non-linear interactions 

279 

Semi-Empirical 
Spectral band-ratio algorithms based on the 

physical properties of the water quality 
constituent of interest 

Easily interpretable, more 
generalizable than empirical 

approaches 

Unable to handle non-linear 
interactions, requires site-specific 

calibration and validation 
15 

Semi-
Analytical 

Analytical inversion-based models calibrated 
using field observations 

Theoretically generalizable, 
mechanistic, potential for cross-

sensor transferability 

Requires representative field data 
for calibration and validation, 

computationally more expensive 
61 

Machine 
Learning 

A subset of empirical methods which leverage 
large amounts of data and iterative learning to 

extract relationships between spectral 
properties and water quality parameters  

Capable of handling non-linear 
relationships, no a priori 

assumptions required, generalizable 
depending on training data 

Prone to overfitting, opaque, 
computationally expensive 

29 
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Table S3. Summary of collected information for the detailed literature review index. 

 

Index Parameter Parameter Description 

Identifying information 
Composed of an index number, author(s), journal, title, year of publication, DOI, and total citation count pulled from 

SCOPUS. 

Locational Information Country of focus and central latitude and longitude of the study area. 

Study Scale 

The order of magnitude of the study area in km2. The surface area of the waterbody for single waterbody studies, total 

area of all waterbodies for spatially discontinuous studies, or the total area of the entire region if the study area was 

contiguous. Represented as 10^1 km2, 10^2 km2, 10^3 km2, etc. 

Study Period 
The duration of the study. If no temporal analysis was conducted than the period was marked na. Total study length was 

determined as the date of the first image to the date of the final image. 

Sensor Information Satellite and/or airborne sensors utilized and the spectral resolution of each sensor (hyperspectral or multispectral) 

Atmospheric Correction A binary yes/no regarding the application of an atmospheric correction for the final model. 

Parameters The water quality parameters included in the study.  

Waterbody Type The waterbody of focus (Rivers, Lakes/Reservoirs, Estuaries, or Deltas) 

Modeling Approach 

Information 

The model inputs, chosen modelling methodology, and total number of models used. Also included is information on if 

different modelling approaches were compared (i.e. empirical vs semi-analytical approaches). 

Number of Methodology 

Figures 

The total count of figures focused on background information. These include study area maps, flow charts, tables with 

input data, and other figures depicting the theory or method behind the modelling approach. 

Number of Validation 

Figures 
The total count of figures focused on model validation. These include tables of error metrics and actual vs. predicted plots. 

Number of Trend, Impact, 

and Driver Figures 

The total count of figures and tables depicting some spatial or temporal trend. These include maps, timelines, figures 

depicting correlations between water quality parameters and climatic or anthropogenic drivers, and figures or tables 

examining the impacts of changing water quality parameters on ecological or anthropogenic systems. 

Paper Category The final classification of the paper based on total figure counts and proposed hypothesis/science questions. 

Model Fit Error Reported error metrics for model fit. 

Model Validation Error Reported error metrics for model validation based on data not used in model development. 
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Table S4. Summary of studies using remote sensing to analyze impacts and drivers of water 
quality and classified as water quality science papers within the analysis. 

 Author 
Scale 
(km2) 

Durati
on 

Water
body 

Appro
ach 

Constit
uent 

Analysis Summary 

Anthropo
genic  

Drivers 

(Ren et al., 
2018) 

10^3 
1-5 

Years 
Lakes 

Empiri
cal 

SDD 

Examines spatiotemporal variations 
in water clarity and sediment 

discharge connected to the Three 
Gorges Dam. Finds that certain 

areas have inversely corelated clarity 
driven by surface flow dynamics. 

(Hou et al., 
2017) 

10^5 
>10 

Years 
Lakes 

Empiri
cal 

TSS 

Examines the spatiotemporal 
response of TSS in the Yangtze 

River Basin to the construction of the 
Three Gorges Dam. Found that the 
reservoir construction drove varying 

regional effects, and that recent 
improvements in TSS are likely 

correlated with increased NDVI in the 
area. 

(Cui et al., 
2013) 

10^3 
5-10 

Years 
Lakes 

Empiri
cal 

TSS 

Examines the spatiotemporal trends 
of TSS in a Chinese lake and how it 
correlates with dredging activities 

and climactic drivers. 

(McCullough et 
al., 2012) 

10^4 
>10 

Years 
Lakes 

Empiri
cal 

SDD 

Utilizes Landsat data to examine 
water clarity in Maine over 15 years. 

Finds that decreased clarity is 
somewhat correlated to the presence 
of timber harvesting in a watershed. 

Cui, Wu, and 
Liu, 2009 

10^3 
1-5 

Years 
Lakes 

Empiri
cal 

SDD 

Examines the interactions between 
elevated TSS levels driven by river 
backflow into Poyang Lake (China) 
and lake dredging. Finds that the 
combined impact is greater than 

either event by itself. 

(Wu et al., 
2007) 

10^3 
5-10 

Years 
Lakes 

Empiri
cal 

SDD 
Utilizes Landsat and MODIS data to 
measure the effect of dredging on 

water clarity. 

Climatic  
Drivers 

Lymburner et 
al., 2016 

10^5 
>10 

Years 
Lakes 

Semi 
Analyti

cal 
TSS 

Examines interactions between 
decadal climate variations (ENSO) 
and TSS concentrations in optically 
heterogenous lakes across western 

Australia. 

(Robert et al., 
2017) 

10^2 
>10 

Years 
Lakes 

Empiri
cal 

TSS 
Examines climactic drivers of TSS 
extremes and seasonal cycles in 

Mali lakes. 

(Huang et al., 
2015) 

10^3 
< 1 

Month 
Lakes 

Empiri
cal 

TSS, 
Chl-a, 

TP 

Examines how the provision of 
phosphorous from sediment 

resuspension controls TSS and chl-a 
dynamics in a shallow lake. 

Zhang et al., 
2016 

10^3 
5-10 

Years 
Lakes 

Empiri
cal 

TSS 

Analyzes spatiotemporal dynamics of 
river plumes in a shallow lake and 

their correlation with rainfall 
magnitude. 

Zhu et al., 2014 10^3 
1-5 

Years 
Lakes 

Semi 
Empiri

cal 

Algal 
Blooms 

Examines how typhoon induced 
sediment resuspension and nutrient 

mixing impact the development 
dynamics of algal blooms. 
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 Author 
Scale 
(km2) 

Durati
on 

Water
body 

Appro
ach 

Constit
uent 

Analysis Summary 

Curtarelli et al., 
2015 

10^2 
< 1 

Year 
Lakes 

Empiri
cal 

Chl-a 

Combines remote sensing with 
hydrodynamic modelling to examine 
the role of thermal stratification and 

mixing on chl-a dynamics. 

Matthews, 2014 10^3 
>10 

Years 
Lakes 

Empiri
cal 

Chl-a 

Identifies long term trends in chl-a 
and cyanobacteria blooms across 50 
lakes in South Africa. Discusses how 
clustering of overarching trends and 

lake trophic state follow 
biogeophysical landscape properties. 

Huang et al., 
2014 

10^3 
>10 

Years 
Lakes 

Semi 
Empiri

cal 
Chl-a 

Examines the role of wind, 
precipitation, decadal climate 

signals, and resuspension driven 
nutrient availability on the 

presence/dynamics of algal blooms. 

(Duane Nellis et 
al., 1998) 

10^2 
< 1 

Year 
Lakes 

Semi 
Analyti

cal 
TSS 

Examines the impacts of a flood 
event on sediment concentration, 

pool size, and water quality 
dynamics in a Kansas reservoir. 

(Wang et al., 
2012) 

10^3 
5-10 

Years 
Multipl

e 
Empiri

cal 
Turbidit

y 

Examines the role of hurricanes in 
controlling turbidity levels in Florida’s 

Lake Okeechobee and two 
connected estuaries. 

Ng et al., 2011 10^2 
< 1 

Year 
Lakes 

Semi 
Empiri

cal 
Chl-a 

Incorporates remote sensing data 
into a 3D hydrological model to 

analyze dinoflagellate dispersion 
within a lake ecosystem. Finds that 

bloom growth is controlled by 
stratification while dispersion is 

driven by wave forces. 

(Sass et al., 
2008a)a 

10^3 
>10 

Years 
Lakes 

Empiri
cal 

Chl-a 

Examines variations in trophic state 
within boreal lakes driven by 
climactic variables. Finds that 

growing season length and May 
temperatures are key drivers. 

(Bayley et al., 
2007) 

10^2 
>10 

Years 
Lakes 

Empiri
cal 

Chl-a 

Tests the 'stable states' hypothesis 
regarding trophic status for boreal 

lakes and finds that most lakes in the 
study area have one dominate state 

rather than two. 

(Feng et al., 
2015) 

10^4 
5-10 

Years 
Lakes 

Semi 
Empiri

cal 
Chl-a 

Identifies high risk eutrophication 
areas and their relationship to 
connectivity and precipitation. 

(Duan et al., 
2017) 

10^2 
>10 

Years 
Lakes 

Machi
ne 

Learni
ng 

Chl-a 

Analyzes spatiotemporal distributions 
of phycocyanin and chl-a and 

develops a hazard assessment map 
to identify safe areas for drinking 

water outlets. 

Landsca
pe Level 
Drivers 

(Dvornikov et 
al., 2018) 

10^2 
Snaps

hot 
Lakes 

Empiri
cal 

CDOM 

Analyzes landscape level drivers of 
CDOM in arctic lakes and finds 

significant relationships between 
thermocirque presence and elevated 

CDOM levels. 

(Sass et al., 
2008b) 

10^3 
>10 

Years 
Lakes 

Empiri
cal 

Chl-a 

Examines connectivity, wetland area, 
and concentrations of Ca and Mg 

that control the trophic state of boreal 
lakes. 
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 Author 
Scale 
(km2) 

Durati
on 

Water
body 

Appro
ach 

Constit
uent 

Analysis Summary 

(Rose et al., 
2017) 

10^5 
>10 

Years 
Lakes 

Empiri
cal 

SDD 

Examines how watershed and 
riparian zone characteristics drive 

water clarity and finds that during wet 
years, watershed scale drivers 

dominate while for dry years riparian 
characteristics are more important. 

Forecasti
ng 

(Qin et al., 
2015) 

10^3 
1-5 

Years 
Lakes 

Empiri
cal 

Chl-a 

Develops a dynamic forecasting 
model incorporating wind, 

precipitation, and remotely sensed 
chl-a concentration to predict algal 
bloom development in Lake Taihu, 
China. The applied model helped 

remove over 1,000,000 tons of algal 
scum from the lake. 

(Imen et al., 
2015) 

10^3 
1-5 

Years 
Lakes 

Machi
ne 

Learni
ng 

TSS 

Utilizes remotely sensed TSS data to 
construct a real-time forecasting 

model for predicting degraded water 
quality near drinking water outlets in 

Lake Mead. 

(Zhang et al., 
2013) 

10^3 
< 1 

Month 
Lakes Mixed Chl-a 

Develops forecasting model capable 
of predicting algal blooms 3-5 days in 

advance in shallow Lake Taihu in 
China. 

Water 
Quality  
Impacts 

(Sandström et 
al., 2016) 

10^3 
5-10 

Years 
Lakes 

Produ
ct 

Chl-a 

Utilizes remotely sensed water 
quality parameters to identify and 

explain variations in fish habitat and 
species composition. Found that 
habitat was highly correlated with 

CDOM and chl-a levels. 

Torbick et al., 
2014 

10^5 
1-5 

Years 
Lakes 

Empiri
cal 

Chl-a 

Examines distribution of algal blooms 
in relation to reported cases of 

amyotrophic lateral sclerosis (ALS) 
to identify high risk areas for the 

disease. 

(Potes et al., 
2012) 

10^2 
1-5 

Years 
Lakes 

Empiri
cal 

Turbidit
y 

Incorporates remotely sensed 
turbidity into a two-layer bulk model 

to predict surface water temperature. 

(Finger et al., 
2014) 

10^3 
5-10 

Years 
Lakes 

Produ
ct 

Chl-a 

Incorporates remotely sensed chl-a 
data into a model examining the 
dynamics and drivers of cholera 

outbreaks in the Democratic 
Republic of Congo. 

Pavelsky and 
Smith, 2009 

10^3 
< 1 

Year 
Lakes/
River 

Empiri
cal 

TSS 

Utilizes remotely sensed TSS 
concentration to examine river 

velocity, flow reversal, and 
hyrodologic recharge of floodplain 

lakes in the Peace-Athabasca Delta. 

(Telmer et al., 
2006) 

10^5 
>10 

Years 
Rivers 

Empiri
cal 

TSS 

By using the correlation between 
TSS and mercury, the authors 
present a remote estimation of 

mercury concentrations, which they 
use to examine likely drivers of 

increased mercury concentrations 
from gold-mining. 

(Overeem et al., 
2017) 

10^4 
>10 

Years 
Rivers 

Empiri
cal 

TSS 

Examined flux of suspended 
sediment from Greenland ice sheet, 
highlighting disproportionately high 

global contribution of sediment.  
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 Author 
Scale 
(km2) 

Durati
on 

Water
body 

Appro
ach 

Constit
uent 

Analysis Summary 

Water 
Quality 

Dynamic
s 

(Griffin et al., 
2011) 

10^4 
5-10 

Years 
Rivers 

Empiri
cal 

CDOM 

Used remote sensing of CDOM and 
DOC to highlight the interannual 

variability of both, while also 
highlighting that the spatial and 
temporal variability likely causes 
underestimates of DOC flux from 

Kolyma River. 

(Walker, 1996) 10^5 
1-5 

Years 
Estuari

es 

Semi 
Analyti

cal 
TSS 

With remote sensing estimates of 
suspended sediments, Walker 

explores causes of plume variability 
in the Mississippi River.  

(Falcini et al., 
2012) 

10^4 
< 1 

Year 
Rivers 

Produ
ct 

TSS 

Used remote estimates of TSS to 
examine sedimentation in wetlands 

and link them to hydrodynamics with 
implications for wetland restoration 
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APPENDIX B: SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

This Appendix includes: 

Figures S1-S5 

Table S1 
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Figure S1: Map of sampling locations for Hg analysis. Black lines indicate the study basins, as 
displayed in Figure 2.2. Mining ponds within the study basins themselves were inaccessible due 
to safety limitations. However, samples were obtained at La Pampa, an area which recently 
experienced heavy mining but was taken over by the Peruvian military in 2019. Mining practices 
at La Pampa are representative of those throughout the region. 
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Figure S2: Cumulative forest loss by watershed and conversion type from any cause between 
2000 and 2018. 
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Figure S3: Relationship between water column total Hg (left), MeHg (right), and total suspended 
solids (TSS) across water bodies upstream and downstream of artisanal gold mining in Madre 
de Dios, Peru. Note that the axes are in log-log scale. 

 

 

 

Figure S4: Concentration and distribution of water column total suspended solids (TSS) across 
water bodies upstream and downstream of artisanal gold mining in in Madre de Dios, Peru. 
Letters represent statistically significant differences (p < 0.05) between values at each location, 
according to a Kruskal-Wallis Analysis of Variance followed by Dunn’s Test. 

 



 

110 

 

 

Figure S5: Concentration and distribution of sediment total Hg (THg) across water bodies 
upstream and downstream of artisanal gold mining in in Madre de Dios, Peru. Letters represent 
statistically significant differences (p < 0.05) between values at each location, according to a 
Kruskal-Wallis Analysis of Variance followed by Dunn’s Test. 
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Table S1: Total mercury (THg), methylmercury (MeHg), total suspended solids (TSS) and 
percent carbon (%C) data for water and sediment samples collected in rivers, oxbow lakes, and 
mining ponds in Madre de Dios, Peru in summer 2019. 

Site 
ID 

Site Type Latitude Longitude [THg] 
water 
(ng/L) 

[MeHg] 
water 
(ng/L) 

%MeHg 
water 

Average 
[THg] 
sedime

nt (g/g) 

[TSS] 
(mg/L) 

%C 
sedime
nt 

R1 river.downstream -12.71525 -69.73079 18.41 0.06 0.34 0.03 294.96 0.12 

R2 river.downstream -12.72855 -69.75352 34.35 0.07 0.22 0.09 266.18 0.86 

R3 river.downstream -12.70092 -69.75365 8.14 0.06 0.75 0.01 266.67 0.18 

R4 river.downstream -12.639 -69.897 10.27 0.05 0.48 0.01 213.84 0.12 

R5 river.downstream -12.57847 -70.0741 2.09 0.03 1.56 0.01 38.26 0.04 

R6 river.downstream -12.58666 -70.0468 7.17 0.05 0.71 0.02 190.09 0.25 

R7 river.downstream -12.57132 -70.10258 2.69 0.05 1.87 0.04 174.03 0.86 

R8 river.downstream -12.58002 -70.13416 6.39 0.04 0.65 1.79 109.85 0.07 

R9 river.downstream -12.62084 -70.22094 5.44 0.04 0.71 0.01 94.62 0.15 

R10 river.downstream -12.61061 -70.39618 20 0.09 0.46 0.01 157.89 0.04 

R11 river.downstream -12.59836 -70.39838 0.86 0.03 3.96 0.02 39.91 0.44 

R12 river.downstream -12.6071 -70.37541 5.9 0.05 0.89 0.01 182.68 0.06 

R13 river.upstream -12.58797 -70.43443 1.08 0.03 3 0.03 43.69 0.93 

R14 river.upstream -12.4986 -70.56638 1.49 0.02 1.55 0.03 31.88 0.96 

R15 river.upstream -12.49175 -70.57346 0.19 0.01 5.29 0 4.48 0.08 

R16 river.upstream -12.47754 -70.5872 1.57 0.04 2.55 0.01 56.14 0.15 

R17 river.upstream -12.3868 -70.71183 0.84 0.04 5.17 0.03 0.93 0.87 

R18 river.upstream -12.40611 -70.71347 1 0.04 3.8 0.02 43.35 0.15 

R19 river.upstream -12.37264 -70.71174  0.03  2.65 32.43 0.07 

R20 river.upstream -12.29333 -70.77677 0.95 0.03 3.45 0.01 38.99 0.13 

R21 river.upstream -12.27949 -70.93287 0.37 0.02 5.24 3.35 8.12 0.2 

R22 river.upstream -12.26895 -70.94278 0.74 0.03 4.51 0 29.41 0.04 

R23 river.upstream -12.26912 -70.94264  0.02  0.01 10.68 0.26 

OL1 oxbow.lake.downstrea
m 

-12.59852 -70.07249 2.43 0.19 7.87 0.1 28.92 1.48 

OL2 oxbow.lake.downstrea
m 

-12.61479 -70.11527 0.65 0.08 11.84 0.57 24.06 1.39 

OL3 oxbow.lake.downstrea
m 

-12.62844 -70.2504 4.09 0.05 1.33 0.13 40.69 0.76 

OL4 oxbow.lake.downstrea
m 

-12.57176 -70.4486 1.05 0.03 2.63 0.09 21.23 0.27 

OL5 oxbow.lake.upstream -12.55659 -70.46041 0.63 0.03 4.2 0.96 22.54 1.03 

OL6 oxbow.lake.upstream -12.45771 -70.67259 0.66 0.03 4.45 0.05 42.53 1.85 

OL7 oxbow.lake.upstream -12.40622 -70.71348 0.2 0.02 7.8 0.05 6.28 1.46 

OL8 oxbow.lake.upstream -12.26912 -70.94264    0.04  0.87 

OL9 oxbow.lake.upstream -12.45953 -70.604 0.44 0.05 12 0.09 6.47 1.56 

OL10 oxbow.lake.downstrea
m 

-12.59755 -70.4237 0.89 0.04 4.29 0.08 20.69 0.57 
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OL11 oxbow.lake.downstrea
m 

-12.61335 -70.04083 0.31 0.02 6.09 0.09 12.44 4.4 

OL12 oxbow.lake.downstrea
m 

-12.66187 -69.8934 0.45 0.05 10.34 0.74 6.25 2.42 

OL13 oxbow.lake.downstrea
m 

-12.62909 -69.53897 0.7 0.09 12.65 0.04 11.87 0.67 

OL14 oxbow.lake.downstrea
m 

-12.659388 -69.542938 2.07 0.05 2.43 0.01 25.81 0.8 

OL15 oxbow.lake.downstrea
m 

-12.73096 -69.59354 1.9 0.05 2.49 0.04 42.01 0.62 

OL16 oxbow.lake.downstrea
m 

-12.72838 -69.79144 2.03 0.07 3.67 0.05 23.98 0.62 

OL17 oxbow.lake.downstrea
m 

-12.58058 -70.08558 0.35 0.06 18.4 0.04 12.63 1.21 

OL18 oxbow.lake.downstrea
m 

-12.57036 -70.08096 0.32 0.01 3.55 0.04 12.25 2.26 

OL19 oxbow.lake.downstrea
m 

-12.63518 -70.03457 0.29 0.06 22.25 1.53 4.08 4.03 

MP1 mining.pond -13.04659 -69.92761 2.73 0.06 2.35 0.07 8.81 0.34 

MP2 mining.pond -13.0416 -69.93137 0.64 0.06 8.69 0.03 12.62 0.53 

MP3 mining.pond -13.04051 -69.92562 5.41 0.03 0.56 0.05 17.95 0.50 

MP4 mining.pond -13.04005 -69.91745 0.91 0.06 6.89 0.06 5.76 0.84 

MP5 mining.pond -13.03922 -69.9162 0.49 0.08 16.18 0.12 9.38 0.45 

MP6 mining.pond -13.03837 -69.91466 2.35 0.09 3.98 0.03 8.42 0.39 

MP7 mining.pond -13.03691 -69.90986 0.64 0.04 6.77 0.04 12.07 0.52 

MP8 mining.pond -13.03893 -69.90997 2.42 0.06 2.45 0.06 8.38 0.88 

MP9 mining.pond -12.04069 -69.91524 1.14 0.08 6.99 0.05 8.82 0.53 

MP1
0 

mining.pond -13.01114 -69.94402 1.52 0.11 7.33 0.07 33.53 0.96 

MP1
1 

mining.pond -13.00044 -69.94968 1.11 0.04 3.93 0.05 6.86 0.22 

MP1
2 

mining.pond -12.99166 -69.95575 0.63 0.02 2.91 0.06 18.44 0.29 
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APPENDIX C: SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

This Appendix includes: 

Figures S1-S6 

Table S1 
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Figure S1. Workflow diagram of key steps in the LimnoSat-US database production. 
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Figure S2. Examples of comparisons between lake centroids and the deepest point calculated 
using the Chebyshev Center method in (A) Indiana, (B) Wyoming, (C) Maine, and (D) Arkansas. 
For (D), the centroid doesn’t fall within the lake's surface.   
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Figure S3. 
Examples of the 
distributions of 
satellite reflectance 
values between 
sensors before and 
after the described 
correction 
procedure. Red 
lines indicate 1:1 
lines. Note that 
plots are in log-log 
scale. 
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Figure S4. Mean and standard deviation of dominant wavelengths for each non-normalized 
lake/period time series. Red line represents the cut-off point for the a priori aseasonal cluster. 
Colors represent associated Forel-Ule Indexes (grey points are outside the forel-ule range).  
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Figure S5. Total counts for lake stability classes (x-axis) colored by the number of unique states 
each lake occupied throughout the course of the study period.   
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Figure S6. Correlation matrix for variables from HydroLakes and GLPC used to analyze drivers 
of lake phenology stability.  
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Table S1. 
Results from 
regressions 
of lake and 
landscape 
metrics with 
lake stability 
ordered by 
level of 
statistical 
significance.  
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APPENDIX D: SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

This Appendix includes: 

Figures S1-S11 

Table S1 
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Figure S1: A summary of the project workflow including data sources, lake samples, and 
intermediate processing steps.  
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Figure S2. Comparison of predictions using median reflectance values from a buffered lake 
center point and median reflectance values from the entire lake polygon for (left) the full NLA 
2012 sample of lakes and (right) NLA lakes over 10 km2 where there is the highest potential 
difference for variation between center point and full lake reflectance values. Red line indicates 
1:1 while the color indicates the density of points for a given location.  
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Figure S3. Results of sensor corrections for Landsat 5 and Landsat 8 to Landsat 7 values. 
Reflectance values from the 1st-99th percentile were taken from the distributions of values 
during coincident flight years over the entirety of the NLA dataset (n = 1,029 lakes) and 
corrected to Landsat 7 values through second order polynomial regression. Red lines are 1:1 
lines and R2 values are for corrected reflectance and Landsat 7 reflectance. 

 

  



 

125 

 

Figure S4. Distribution of coincident satellite and field observations used for model training and 
validation aggregated by HUC 8 watershed. Distributions largely follow the geographical 
concentration of lakes. Areas shown as dark grey contain no coincident observations. 
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Figure S5. A) Feature importance as measured by model gain for all the model inputs. B) 
Accumulated local effects (ALE) for each feature. Values along the y-axis represent the average 
impact to model predictions as you move along a localized window of feature values. Values 
along with x-axis are the feature values within the training dataset. Density distribution plots 
above the ALE plots show the distribution of each feature (5th-95th percentile) within the 
training set. 

  

A)                   B) 
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Figure S6. A) Comparison of estimated Sen Slopes for the 2012 NLA sample of lakes for the full 
timeseries and omitting years with high atmospheric optical depth due to the Mt. Pinatubo 
eruption. Trends for all regions remain positive within the filtered timeseries and only one region, 
the Coastal Plains, is no longer statistically significant at a 95% confidence interval. B) Hold-out 
validation metrics for the full timeseries compared to 1991-1993. Bias is ~4 cm higher in 1991-
1993, indicating that if anything clarity is slightly underpredicted for the years in question 
compared to the full time period.  

B) 

A) 
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Figure S7. Breakdown of model validation by (A) lake size, (B) sensor, (C) data source, and (D) 
time. Red lines represent 1:1 lines.  
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Figure S8. Comparison of predicted regional summer water clarity values with field 
measurements from the 2007 NLA (left) and 2012 NLA (right). Points represent regional means 
and error bars represent one standard deviation. 



 

130 

 

Figure S9. Comparison of predicted mean annual clarity for individual lakes from (A) 
LakeBrowser and (B) this study for those lakes/years with field data from the Water Quality 
Portal or LAGOS-NE. Predictions from LakeBrowser are those available from their data portal 
and represent the mean clarity estimate from 1-2 Landsat scenes per year. This study’s 
predictions were derived by filtering cloud free Landsat scenes for each year down to only those 
months considered by LakeBrowser; however, since specific source scene data is unavailable 
from LakeBrowser, our summer estimates are the mean of all available scenes in the coincident 
time period (generally 2-4 scenes per lake per year), and therefore do not exactly match those 
from LakeBrowser.  
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Figure S10. Pearson’s correlation matrix for time series between regions using the NLA sample 
of lakes. One, two, and three asterisks represent significance at the 90th, 95th, and 99th 
percent confidence intervals respectively. 
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Figure S11. Ecoregion scale correlations. Clockwise from the top left: Ecoregion mean annual 
summer temperature from PRISM, Ecoregion mean annual summer precipitation from PRISM, 
Pacific Decadal Oscillation, and mean regional SO4 deposition from the National Atmospheric 
Deposition Program.  
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Table S1. Variables included in modelling pipeline. Variables included in the final model after 
FFS with LLLTO-CV procedure are indicated in bold. 
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