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ABSTRACT 

Megan M. Ford: Phosphorylation and Beyond: Exploration of TOR-mediated PTM Signaling in 
Chlamydomonas reinhardtii 

(Under the direction of Leslie M. Hicks) 

Target of rapamycin (TOR) is a highly conserved master regulatory kinase involved in 

the control of most essential biological processes including cell growth, nutrient sensing, and 

autophagy. While TOR is well-studied in mammalian species and yeast, comparatively little is 

known about its regulatory roles in other organisms, particularly in phototrophs. To fill this 

knowledge gap, the plant community is applying -omic strategies to assess the role of TOR in 

regulating metabolic pathways, particularly proteomics, which provides insight into expression 

levels and modifications that is missing in other techniques. Post-translational modifications 

(PTMs) to activate/deactivate functional proteins are an essential component of cellular signaling 

used by TOR and other regulators. This has propelled innovations in PTM analysis to probe 

metabolic pathways. Chlamydomonas reinhardtii is a model phototroph that is easily culturable 

and has a fully sequenced genome, making it an attractive organism for studying algal TOR 

signaling. The aim of this dissertation is to establish and apply PTM-focused proteomic methods 

in Chlamydomonas to characterize the role of protein phosphorylation and reversible oxidation in 

TOR’s regulation of signaling networks. 

First, this work investigates reversible oxidation sites under the control of TOR in 

Chlamydomonas through a quantitative inhibition study (Chapter 2). Next, a quantitative 

workflow for phosphopeptide analysis in Chlamydomonas that can be used to assess 

phosphorylative TOR signaling is described in detail with technical replicates to assess its 
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overall reproducibility (Chapter 3). Application of the quantitative phosphoproteomic pipeline 

was then employed to study the impact of inositol polyphosphates on TOR signaling (Chapter 4). 

Techniques for performing in vitro kinase screening to identify direct targets of phosphorylation, 

are discussed including heterologous expression of kinase samples, preparation of a library of 

potential targets, screening parameters, and sample preparation for LC-MS/MS analysis (Chapter 

5). This workflow provides insight into signaling pathways that cannot be gleaned from 

proteomic in vivo studies alone. Using these techniques, this kinase screening platform was 

validated using the pyruvate dehydrogenase kinase of Arabidopsis thaliana, and then applied to 

attempt to identify putative direct targets of Chlamydomonas TOR (Chapter 6). While this 

technique was unable to identify direct TOR targets, the success of the validation suggests that 

with further optimization of the expression and purification of the kinase construct, screening of 

TOR may be possible. Combined, the work shared herein highlights the importance of TOR in 

algal signaling and provides valuable information on the regulatory modifications under TOR 

control. 



 
 
 

v 

Soli Deo gloria 

  



 
  
 
 
 
 
 
 

vi 

ACKNOWLEDGMENTS 

I would like to begin by thanking Leslie M. Hicks, who has been not only my advisor, but 

a mentor and advocate. Her leadership helped to shape the Hicks laboratory into a special place 

to work and it has been a privilege to be a part of such an exceptional group of researchers. I 

want to thank all of the members of the Hicks group that I have spent countless hours working 

with. I will always be grateful for your support, encouragement, honest editing, and humor. 

Special thanks to my fellow classmates who made my experience in graduate school, particularly 

those early years, so enjoyable and memorable. I also want to thank all of my friends in the math 

and computer science departments for the many nights of trivia, board games, and fun! 

My husband Andrew and I made a home in North Carolina thanks in large part to the 

wonderful people we met at Church of the Good Shepherd. Through this community, we found 

more than just friendship, we found family. Thank you to our young adult friends for the 

countless board game nights, Monday Growler Grlz hangouts, and potlucks. In particular, I want 

to thank the members of our small group who have been there for the ups and downs of graduate 

school, new marriages, and pet parenting. 

Above all, I need to thank my family and friends for their endless support and 

encouragement. Thank you for all the cards, care packages, and trips to NC to come see us! I 

want to thank my in laws for their love, kindness, and generosity.  To my sister, I could not have 

imagined how close we would become as adults. You, Hunter, and Baby J mean the world to me. 

To my mom and dad, you never let myself or others set limits on who I can become. Without 

your unwavering love and support this would not have been possible. Thank you. I need to thank 



 
 
 

vii 

Gonzo, my lovable dog, who knows the true healing that a good cuddle can bring and that any 

situation can be made better if snacks are included. But most importantly, I thank Andrew, my 

wonderful husband, number one supporter, and partner in life. Words cannot express how much 

your love and encouragement mean to me.  I love you and I like you. 

  



 
  
 
 
 
 
 
 

viii 

TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................................ xv 

LIST OF FIGURES ..................................................................................................................... xvi 

LIST OF ABBREVIATIONS AND SYMBOLS ...................................................................... xxiii 

CHAPTER 1: Introduction ............................................................................................................. 1 

1.1 Target of Rapamycin ...................................................................................................... 1 

1.2 TOR in Chlamydomonas reinhardtii .............................................................................. 2 

1.3 Post-Translational Modifications in Algal Signaling ..................................................... 3 

1.3.1 Reversible Oxidation ................................................................................................... 5 

1.3.2 Phosphorylation ........................................................................................................... 6 

1.4 Kinases ............................................................................................................................ 7 

1.4.1 Kinase-Substrate Identification ................................................................................... 8 

1.5 Scope of Dissertation .................................................................................................... 10 

REFERENCES ......................................................................................................................... 12 

CHAPTER 2: Inhibition of TOR in Chlamydomonas reinhardtii Leads to 
Rapid Cysteine Oxidation Reflecting Sustained Physiological 
Changes ............................................................................................................. 20 

2.1 Introduction ................................................................................................................... 20 

2.2 Materials and Methods .................................................................................................. 22 

2.2.1 Strain, Culture Growth and Treatment Conditions.................................................... 22 



 
 
 

ix 

2.2.2 Spectroscopic Cell Density and Cell Diameter ......................................................... 23 

2.2.3 Pigment Extraction .................................................................................................... 23 

2.2.4 Cell Dry Weight Measurement .................................................................................. 23 

2.2.5 Lipid Analysis ........................................................................................................... 24 

2.2.6 Biochemical Composition ......................................................................................... 24 

2.2.7 Chlorophyll Fluorescence Induction in vivo.............................................................. 25 

2.2.8 Pulse Amplitude Modulated (PAM) Fluorescence.................................................... 26 

2.2.9 Protein Extraction for Proteomics Analyses.............................................................. 27 

2.2.10 Global Proteomics ..................................................................................................... 27 

2.2.11 Oxidized Cys Enrichment.......................................................................................... 28 

2.2.12 Solid-Phase Extraction .............................................................................................. 29 

2.2.13 LC-MS/MS Analysis ................................................................................................. 29 

2.2.14 Database Searching and Label-Free Quantification .................................................. 30 

2.2.15 Data Analysis and Statistics ...................................................................................... 31 

2.2.16 Data Availability ....................................................................................................... 33 

2.3 Results ........................................................................................................................... 34 

2.3.1 Cell Growth ............................................................................................................... 34 

2.3.2 Bulk Cell Composition .............................................................................................. 34 

2.3.3 Photosynthetic Output ............................................................................................... 35 

2.3.4 Coverage and Differential Analysis of the Reversibly Oxidized 
Thiol Proteome Upon TOR Inhibition ...................................................................... 37 

2.4 Discussion ..................................................................................................................... 40 



 
 
 

x 

2.4.1 Lipid Metabolism ...................................................................................................... 40 

2.4.2 Protein Translation .................................................................................................... 41 

2.4.3 Carbohydrate Metabolism ......................................................................................... 43 

2.4.4 TOR Pathway-Related Proteins ................................................................................. 44 

2.4.5 Photosynthesis ........................................................................................................... 45 

2.5 Conclusions ................................................................................................................... 47 

2.6 Tables ............................................................................................................................ 48 

2.7 Figures .......................................................................................................................... 49 

REFERENCES ......................................................................................................................... 59 

CHAPTER 3: Label-Free Quantitative Phosphoproteomics for Algae ........................................ 67 

3.1 Introduction ................................................................................................................... 67 

3.2 Materials ....................................................................................................................... 70 

3.2.1 Cell Culture ............................................................................................................... 70 

3.2.2 Protein Extraction ...................................................................................................... 71 

3.2.3 Reduction, Alkylation, and Digestion ....................................................................... 71 

3.2.4 Desalting .................................................................................................................... 72 

3.2.5 Phosphopeptide Enrichment ...................................................................................... 72 

3.2.6 Sample Purification ................................................................................................... 72 

3.2.7 LC-MS/MS ................................................................................................................ 73 

3.2.8 Data Analysis............................................................................................................. 73 

3.3 Methods ........................................................................................................................ 73 

3.3.1 Culturing .................................................................................................................... 73 



 
 
 

xi 

3.3.2 Protein Extraction ...................................................................................................... 74 

3.3.3 Reduction, Alkylation, and Digestion ....................................................................... 76 

3.3.4 Desalting .................................................................................................................... 76 

3.3.5 Phosphopeptide Enrichment ...................................................................................... 77 

3.3.6 Sample Purification ................................................................................................... 78 

3.3.7 LC-MS/MS ................................................................................................................ 78 

3.3.8 Data Analysis............................................................................................................. 79 

3.4 Notes ............................................................................................................................. 81 

3.5 Figures .......................................................................................................................... 85 

REFERENCES ......................................................................................................................... 88 

CHAPTER 4: Investigating the Interdependence of Insp and TOR Signaling in 
Chlamydomonas ................................................................................................ 91 

4.1 Introduction ................................................................................................................... 91 

4.2 Materials and Methods .................................................................................................. 93 

4.2.1 Cell Culturing and Rapamycin Treatment ................................................................. 93 

4.2.2 Protein Extraction ...................................................................................................... 93 

4.2.3 Protein Reduction, Alkylation, and Digestion ........................................................... 94 

4.2.4 Solid-Phase Extraction .............................................................................................. 94 

4.2.5 Phosphopeptide Enrichment and Desalting ............................................................... 95 

4.2.6 LC-MS/MS Acquisition and Data Processing ........................................................... 96 

4.2.7 Downstream Bioinformatic Analysis ........................................................................ 98 

4.3 Results and Discussion ............................................................................................... 100 



 
 
 

xii 

4.3.1 Phosphoproteomic Analysis .................................................................................... 100 

4.3.2 Hierarchical Clustering and Gene Ontology Analysis ............................................ 101 

4.3.3 Phosphosites Modulated by TORC1 Inhibition – Known and 
Putative TOR Substrates.......................................................................................... 102 

4.3.4 Regulation of Photosynthesis Through Phosphorylation ........................................ 106 

4.3.5 Phosphorylation of InsP Signaling-Related Proteins .............................................. 110 

4.4 Conclusions ................................................................................................................. 114 

4.5 Figures ........................................................................................................................ 115 

REFERENCES ....................................................................................................................... 122 

CHAPTER 5: Standard Operating Procedures for Protein Kinase Expression, 
Peptide Library Preparation and in vitro Kinase Screening ........................... 130 

5.1 Introduction ................................................................................................................. 130 

5.2 Recombinant Kinase Production ................................................................................ 131 

5.2.1 Selection of an Expression System.......................................................................... 131 

5.2.2 Kinase Mutant Construction .................................................................................... 133 

5.2.3 E. coli Culturing ...................................................................................................... 139 

5.2.4 Heterologous Protein Expression of Kinases .......................................................... 141 

5.2.5 E. coli Lysis and Soluble Protein Extraction ........................................................... 143 

5.2.6 Protein Purification of Chlamydomonas Kinases .................................................... 144 

5.2.7 AtPDK Affinity Purification ................................................................................... 146 

5.2.8 Confirmation via SDS-PAGE.................................................................................. 148 

5.3 Substrate Library Preparation ..................................................................................... 149 

5.3.1 Algal Culturing ........................................................................................................ 149 



 
 
 

xiii 

5.3.2 Protein Extraction and Clean Up ............................................................................. 151 

5.3.3 Protein Digestion and C18-Clean Up ...................................................................... 153 

5.3.4 Library Dephosphorylation ..................................................................................... 156 

5.4 Kinase Screening and Analysis ................................................................................... 157 

5.4.1 Screening ................................................................................................................. 158 

5.4.2 Phosphopeptide Enrichment .................................................................................... 160 

5.4.3 LC-MS/MS Analysis ............................................................................................... 162 

5.4.4 Data Processing ....................................................................................................... 163 

5.5 Conclusions ................................................................................................................. 167 

5.6 Tables .......................................................................................................................... 169 

5.7 Figures ........................................................................................................................ 175 

REFERENCES ....................................................................................................................... 183 

CHAPTER 6: Developing an in vitro Platform for Investigating TOR Pathway 
Kinase-Substrate in Chlamydomonas reinhardtii ........................................... 186 

6.1 Introduction ................................................................................................................. 186 

6.2 Materials and Methods ................................................................................................ 190 

6.2.1 Bacterial Expression and Purification of AtPDK .................................................... 190 

6.2.2 Design of CrTOR Constructs .................................................................................. 192 

6.2.3 Creation of CrTOR-EKD Construct ........................................................................ 193 

6.2.4 Creation of Inactive CrTOR-EKD D239A Mutant Construct ................................. 193 

6.2.5 Synthesis of the CrS6K Construct ........................................................................... 195 

6.2.6 Bacterial Expression and Purification of CrTOR Constructs .................................. 195 



 
 
 

xiv 

6.2.7 Synthesis of Peptide Targets ................................................................................... 197 

6.2.8 Preparation of Chlamydomonas Peptide Library .................................................... 198 

6.2.9 Preparation of CrS6K Digests ................................................................................. 199 

6.2.10 Kinase Screening Assay .......................................................................................... 200 

6.2.11 Phosphopeptide Enrichment .................................................................................... 201 

6.2.12 LC-MS/MS .............................................................................................................. 202 

6.2.13 Data Analysis........................................................................................................... 203 

6.3 Results and Discussion ............................................................................................... 206 

6.3.1 Platform Validation ................................................................................................. 206 

6.3.2 Screening of CrTOR-EKD ...................................................................................... 208 

6.4 Conclusions and Future Directions ............................................................................. 211 

6.5 Tables .......................................................................................................................... 214 

6.6 Figures ........................................................................................................................ 218 

REFERENCES ....................................................................................................................... 226 

CHAPTER 7: Conclusions and Future Directions...................................................................... 231 

7.1 Conclusions ................................................................................................................. 231 

7.2 Future Directions ........................................................................................................ 233 

REFERENCES ....................................................................................................................... 236 

 

  



 
 
 

xv 

LIST OF TABLES 

 

Table 2.1 OJIP parameters for AZD8055-treated and non-treated cells. ..................................... 48 

Table 5.1 Plasmid size and concentration needed for Genewiz Sanger 
Sequencing. ................................................................................................................ 169 

Table 5.2 Primers for plasmid mutagenesis for expression of inactive kinase 
mutants. ...................................................................................................................... 170 

Table 5.3 Configuration for Waters M Class UPLC operation .................................................. 171 

Table 5.4 Hardware Configuration for Thermo Fisher Q Exactive HF-X MS 
Operation .................................................................................................................... 172 

Table 5.5 Method Parameters for Thermo Fisher Q Exactive HF-X MS 
Operation .................................................................................................................... 173 

Table 5.6 Screening Mascot search parameters ......................................................................... 174 

Table 6.1 XIC peak areas and percent phosphorylation from AtPDK screening 
with synthetic target peptide YHGHSMSDPSTYR. ................................................. 214 

Table 6.2 XIC peak areas and percent phosphorylation from AtPDK screening 
with synthetic target peptide GHSLADPDELR. ....................................................... 215 

Table 6.3 XIC peak areas and percent phosphorylation from CrTOR-EKD 
screening with synthetic target peptide GRFDGFTYVAPCF. .................................. 216 

Table 6.4 XIC peak areas and percent phosphorylation from CrTOR-EKD 
screening with synthetic target peptide LISELEGK. ................................................. 217 

 

  



 
 
 

xvi 

LIST OF FIGURES 

   

Figure 2.1 Workflow for proteomic oxidative cysteine analysis of C. 
reinhardtii with AZD8055 treatment. After protein extraction, 
reduced cysteine thiols are blocked with N-ethylmalemide (NEM), 
before reversibly oxidized cysteines are reduced using dithiothreitol 
(DTT). An oxidized cysteine resin-assisted capture method 
(OxRAC) is used to enrich proteins containing oxidized cysteines 
and samples are processed for bottom-up liquid chromatography—
tandem mass spectrometry (LC-MS/MS) analysis. ..................................................... 49 

Figure 2.2 a.) Treatment and sampling timeline for physiological 
measurements. C. reinhardtii cultures were grown to stationary 
phase prior to treatment with AZD8055. b.) Treatment and 
harvesting timeline for proteomic oxidative cysteine thiol analysis 
and photosynthetic measurements. Cultures were grown to an OD750 
of ~0.5 prior to treatment. ............................................................................................ 50 

Figure 2.3 The growth curves of cultures with and without AZD8055 
exposure. The error bars represent standard deviation and statistical 
differences indicate a difference between the inhibited and non-
inhibited cultures at one time point. Significance is denoted by 
asterisks, where *** indicates p ≤ 0.001, and **** indicates p ≤ 
0.0001. a.) The turbidity (optical density) of C. reinhardtii following 
dosing with AZD8055. Cells were dosed in mid-exponential phase. 
Control cultures were dosed with DMSO, the solvent used for 
AZD8055. b.) The total dry mass of the cultures with and without 
AZD8055 treatment. c.) The cell diameter of the cultures with and 
without AZD8055 treatment. d.) The Chl a content of cultures 
following treatment in mid-exponential phase. Chl a is an indication 
of both organismal health as well as photosynthetic productivity. .............................. 51 

Figure 2.4 The cell number of cultures with and without AZD8055 exposure. 
The error bars represent standard deviation and statistical differences 
indicate a difference between the inhibited and non-inhibited 
cultures at one time point. Significance is denoted by asterisks, 
where *** indicates p ≤ 0.001, and **** indicates p ≤ 0.0001. .................................. 52 

Figure 2.5 Compositional analysis of C. reinhardtii cultures with and without 
AZD8055 treatment, taken over time. The error bars represent 
standard deviation and statistical differences indicate a difference 
between the inhibited and non-inhibited cultures at one time point. 
Significance is denoted by asterisks, where * indicates p ≤ 0.05, ** 
indicates p ≤ 0.01, *** indicates p ≤ 0.001, and **** indicates p ≤ 
0.0001. a.) The total protein content of the cultures, measured in 



 
 
 

xvii 

mg/mg dry mass, with and without AZD8055 treatment. b.) The 
total lipid content of cultures, measured in mg/mg dry mass. c.) The 
total carbohydrate content of cultures, measured in mg/mg dry mass. 
d.) Neutral lipid content of the cultures with and without AZD8055 
treatment measured using Nile Red staining. ............................................................... 53 

Figure 2.6 Photosynthesis measurements taken after treatment. The error bars 
represent standard deviation and statistical differences indicate a 
difference between the inhibited and non-inhibited cultures at one 
time point. Significance is denoted by asterisks, where * indicates p 
≤ 0.05, and **** indicates p ≤ 0.0001. a.) Chl a fluorescence OJIP 
parameters of AZD-dosed cultures over the course of 1 h, where t0 
is normalized to 1, enabling visualization of rapid changes in the 
photosynthetic apparatus. Changes in OJIP parameters relative to the 
control, as well as the derivations and explanations of all 
parameters, can be found in supplemental materials. b.) FV/FM, the 
measure of quantum efficiency of PSII following dark adaptation, of 
the cultures with and without AZD treatment. c.) The photochemical 
yields of photosystem II with and without treatment with AZD8055 
measured using PAM fluorescence. d.) The nonphotochemical 
quenching of the cultures with and without AZD8055 treatment 
measured using PAM fluorescence. ............................................................................. 54 

Figure 2.7 The B0 of cultures with and without AZD8055 inhibition, measured 
using the double pulse method of OJIP fluorescence. B0 indicates 
the relative number of inactive reducing centers; thus, as B0 
increases, the activity decreases. The error bars represent standard 
deviation and statistical differences indicate a difference between the 
inhibited and non-inhibited cultures at one time point. Significance 
is denoted by asterisks, where ** indicates p ≤ 0.01, and **** 
indicates p ≤ 0.0001. .................................................................................................... 55 

Figure 2.8 Differential analysis of the reversibly oxidized cysteine thiol 
proteome. a.) Hierarchical clustering of the 510 identifiers 
significantly changing (p < 0.05, FC > ±2) into two clusters. b.) 
Gene ontology (GO) summary of significantly changing identifiers 
in clusters A and B from hierarchical clustering analysis. The 
number and shading correspond to the number of unique proteins in 
each category for each cluster. ..................................................................................... 56 

Figure 2.9 Differential analysis of the reversibly oxidized cysteine thiol 
proteome. a.) Hierarchical clustering of the 510 identifiers 
significantly changing (p < 0.05, FC > ±2) into four clusters. b.) 
Gene ontology (GO) summary of significantly changing identifiers 
in clusters from hierarchical clustering analysis. The number and 
shading correspond to the number of unique proteins in each 
category for each cluster. ............................................................................................. 57 



 
 
 

xviii 

Figure 2.10 Reversible oxidation on photosynthetic machinery. Adapted from 
KEGG pathway map for photosynthesis 
(https://www.genome.jp/dbget-bin/www_bget?pathway:map00195). 
Protein names are labeled in diagram with gene names listed in 
boxes below. Components with C. reinhardtii homologs are in 
yellow. Proteins with identified reversible oxidation sites are in 
green with the Cys sites identified listed above. Proteins with 
significantly increasing (red) or decreasing (blue) identifiers upon 
inhibition of TOR also include the maximum fold change listed 
above. ........................................................................................................................... 58 

Figure 3.1 Phosphoproteomic workflow for Chlamydomonas reinhardtii cells. 
Briefly, Chlamydomonas cultures are harvested, resuspended in 
lysis buffer and sonicated. The lysate is collected and soluble 
proteins are reduced, alkylated and digested with trypsin. 
Phosphopeptides are enriched for using a titanium dioxide-based 
(TiO2) enrichment before being subjected to LC-MS/MS analysis. 
For the data reported here, samples were pooled after resuspension 
and aliquoted into three technical replicates to remove any 
biological variation....................................................................................................... 85 

Figure 3.2 Summary of quantitation results between three replicate samples. 
A.) Number of phosphopeptides, phosphoproteins, and statistics for 
each individual replicate and combined data with filtered and 
imputed data. B.) Histogram of the % CV for quantitated 
phosphosites. ................................................................................................................ 86 

Figure 3.3 Plots comparing the log2 transformed abundances between replicate 
samples. ........................................................................................................................ 87 

Figure 4.1 Proteomic workflow for analysis of vip1-1 and wild-type CC-1690 
mt+ C. reinhardtii cells treated with rapamycin and DMSO (control) 
for 15 min. After treatment, proteins were extracted and digested 
with trypsin. A 25 µg global protein aliquot was taken of each 
sample while 1 mg was enriched for phosphopeptides before all 
samples were analyzed via LC-MS/MS. .................................................................... 115 

Figure 4.2 Global proteomic results. Volcano plot of two-tailed equal variance 
t-tests between each strain with and without rapamycin (Rap.) 
treatment with a Benjamani-Hochberg FDR adjustment. .......................................... 116 

Figure 4.3 Phosphoproteomic results. Volcano plots of two-tailed equal 
variance t-tests between each strain with and without rapamycin 
(Rap.) treatment (a. and b.) and between strains (c. and d.). ...................................... 117 

Figure 4.4 Hierarchical clustering of the identifiers significantly changing (p < 
0.05, FC > ±2) in: a.) vip1-1 and b.) wild-type. ......................................................... 118 



 
 
 

xix 

Figure 4.5 vip1-1 Phosphoproteomic Gene Ontology (GO) Analysis. a.) Count 
of the number of proteins in the top 5 biological process (black), 
cellular component (green) and molecular function (purple) GO 
terms with a fold-change enrichment of at least 1.5 from identifiers 
significantly more abundant in vip1-1 with rapamycin treatment. 
Cells are shaded to reflect fold-change for each GO term. b.) Count 
of the number of proteins in the top 5 biological process (black), 
cellular component (green) and molecular function (purple) GO 
terms with a fold-change enrichment of at least 1.5 from identifiers 
significantly less abundant in vip1-1 with rapamycin treatment. Cells 
are shaded to reflect fold-change for each GO term. ................................................. 119 

Figure 4.6 Wild-type Phosphoproteomic Gene Ontology (GO) Analysis. a.) 
Count of the number of proteins in the top 5 biological process 
(black), cellular component (green) and molecular function (purple) 
GO terms with a fold-change enrichment of at least 1.5 from 
identifiers significantly more abundant in the wild-type strain with 
rapamycin treatment. Cells are shaded to reflect fold-change for 
each GO term. b.) Count of the number of proteins in the top 5 
biological process (black), cellular component (green) and molecular 
function (purple) GO terms with a fold-change enrichment of at 
least 1.5 from identifiers significantly less abundant in the wild-type 
strain with rapamycin treatment. Cells are shaded to reflect fold-
change for each GO term. .......................................................................................... 120 

Figure 4.7 The differential phosphorylation of the photosynthetic apparatus in 
the vip1-1 mutant compared to the parent strain. Proteins colored 
green show proteomic coverage in the dataset while proteins colored 
grey do not. Each significantly changing phosphosite was localized 
on a unique phosphopeptide. Non-transformed fold changes are 
reported. ..................................................................................................................... 121 

Figure 5.1 Overview of the high throughput kinase screening workflow. 
Briefly, a plasmid is designed that encodes for a fusion protein of 
the kinase of interest and an affinity purification tag. Active kinase 
sample is recombinantly produced by heterologous expression, and 
then affinity purified. A library of potential substrates is prepared 
from a cell lysate. The lysate is reduced, alkylated, and digested to 
form peptides. Then the library is dephosphorylated to remove most 
of the endogenous phosphorylation prior to screening. For kinase 
screening, the active kinase sample is combined with the prepared 
peptide and an isotopic analog of ATP. This analog has four 18-
Oxygens on the γ-phosphate group, so the resulting phosphorylation 
event has three 18-Oxygens, making it 6 Da heavier than any 
endogenous phosphorylation that may be present. After screening, 



 
 
 

xx 

phosphopeptides are selectively enriched using TiO2 before LC-
MS/MS analysis. ........................................................................................................ 175 

Figure 5.2 Map of the pGEX-6P1 vector pAC1 with CrTOR-EKD sequence 
inserted. This plasmid encodes for the fusion protein GST-CrTOR-
EKD as well as β-lactamase, which provides resistance to ampicillin 
for selection of cells transformed with the plasmid. pGEX vectors 
use the lac operon for induced expression of the fusion protein, so 
the lac repressor gene is encoded on the plasmid in addition to the 
replication origin. Similar plasmids were also constructed for 
CrS6K, CrGSK3, and CrPDK1. ................................................................................. 176 

Figure 5.3 The sequences for CrS6K, CrPDK1, CrTOR-EKD, and CrGSK3. 
The kinase domains for each protein are underlined, and the 
conserved HRD domains are bolded and highlighted in blue. ................................... 177 

Figure 5.4 Overview of the creation of inactive kinase mutants using the Q5 
site-directed mutagenesis kit. NEBaseChanger was used to design 
non-overlapping primers that contain a single base change that 
modifies the aspartic acid of the HRD motif to an alanine on the 
forward primer. PCR is used to exponentially amplify the plasmid 
using the mutant primers and the Q5 Hot Start High-Fidelity DNA 
Polymerase. After PCR, the amplified DNA is added to the Kinase-
Ligase-DpnI (KLD) enzyme mix for phosphorylation and ligation of 
the mutant plasmids as well as digestion of the parent template. 
After this the plasmids are transformed into competent E. coli cells, 
and colonies containing the plasmid are selected for using antibiotic 
resistance. Sequencing was done on the resulting plasmid to confirm 
correct substitution. .................................................................................................... 178 

Figure 5.5 Streaking format for E. coli plates to allow for growth of individual 
colonies. Plates are streaked one quadrant at a time, as denoted by 
the numbering and color coding, with each quadrant using a fresh 
inoculation loop. The first quadrant is streaked from a small amount 
of the glycerol stock with each subsequent quadrant diluting from 
the previous with a single stroke with the fresh inoculation loop. ............................. 179 

Figure 5.6 Gel results of optimization of kinase expression and purification. 
Expression of CrTOR-EKD with 500 µL 1 M IPTG stock a.) vs 100 
µL 1 M IPTG stock b.) showed no apparent difference in total 
purified protein abundance. Expression of CrS6K at 37 °C for 4 h c.) 
vs at 10 °C overnight d.). Little to no soluble CrS6K was seen when 
expressed at a higher temperature, but appeared to be slightly higher 
in concentration when expressed for longer at a lower temperature. 
Expression of CrTOR-EKD without e.) and with f.) ε-ACA. More 
CrTOR-EKD is seen in the elution when ε-ACA is added. ....................................... 180 



 
 
 

xxi 

Figure 5.7 Expression results of the kinase constructs and their corresponding 
mutants, where relevant. Expression was monitoring using SDS-
PAGE, with gel samples taken before and after expression, after 
lysis, and before and after purification. LC-MS/MS confirmed 
expression of all of the constructs, but CrTOR-EKD D239A and 
CrS6K D812A in particular were challenging to express, with no 
visible band present in the elution samples. ............................................................... 181 

Figure 5.8 Full gel expression results for the kinase screening constructs. 
Expression was monitored using SDS-PAGE, with gel samples 
taken before and after expression, after lysis, and before and after 
purification. a.) Gel results of AtPDK expression. There is some 
evidence of partial expression of the construct based on the presence 
of multiple bands in the elution. b.) Gel results of CrTOR-EKD 
expression. c.) Gel results of CrPDK1 expression. A large band is 
seen at the molecular weight corresponding to the GST tag. This 
could be due to partial expression of the fusion protein, cleavage of 
the tag from CrPDK1 after expression, or enrichment of endogenous 
GST. d.) Gel results of CrGSK3 expression. Similar to CrPDK1, a 
large band is seen at the molecular weight corresponding to GST. e.) 
Gel results of CrS6K expression. ............................................................................... 182 

Figure 6.1 The TOR kinase signaling pathway based on homology from 
mammalian TOR. Proteins with known homologs in 
Chlamydomonas are blue, and the kinases with constructs made for 
this screening work are in purple. .............................................................................. 218 

Figure 6.2 Results of screening AtPDK with synthetic peptide target, 
YHGHSMSDPSTYR. a.) TIC of screening sample and XICs of 
unphosphorylated and phosphorylated peptide m/z’s. b.) MS2 of 
target phosphopeptide with localization of the phosphorylation on 
Ser5. ........................................................................................................................... 219 

Figure 6.3 Screening results of AtPDK with C. reinhardtii peptide library and 
synthetic target peptide spike-in. a.) After performing a t-test 
between the kinase and control samples, six phosphopeptides were 
found to be significantly more abundant in the kinase samples (red), 
including the target peptide YHGHSMSDPGSTYR. b.) MS2 of 
target phosphopeptide with localization of the phosphorylation on 
Ser5. ........................................................................................................................... 220 

Figure 6.4 BLASTp results of AtPDCe1α and CrPDCe1α with target 
phosphopeptides identified in AtPDK screening highlighted in red 
along with their matching/similar residues. ............................................................... 221 



 
 
 

xxii 

Figure 6.5 Results of screening AtPDK with synthetic peptide target, 
GHSLADPDELR. TIC of screening sample and XICs of 
unphosphorylated and phosphorylated peptide m/z’s. ............................................... 222 

Figure 6.6 CrTOR-EKD screening results against CrS6K. a.) CrTOR-EKD 
screened against a CrS6K tryptic digest. No peptides from CrS6K 
were identified as being phosphorylated by CrTOR-EKD, but one 
peptide target from an E. coli protein was identified (red). b.) 
CrTOR-EKD screened against a Glu-C S6K digest. No peptides 
were identified as being phosphorylated by CrTOR-EKD. ....................................... 223 

Figure 6.7 Results of screening CrTOR-EKD with synthetic peptide target, 
GRFDGFTYVAPCF. TIC of screening sample and XICs of 
unphosphorylated and phosphorylated peptide m/z’s. ............................................... 224 

Figure 6.8 CrTOR-EKD screening results. a.) Screening CrTOR-EKD with 
Chlamydomonas peptide library. One peptide from acidic ribosomal 
protein P2 was identified as a potential target of CrTOR (red). b.) 
Screening of CrTOR-EKD against synthetic peptide LISELEGK. 
TIC of screening sample and XICs of unphosphorylated and 
phosphorylated peptide m/z’s. .................................................................................... 225 

 

  



 
 
 

xxiii 

LIST OF ABBREVIATIONS AND SYMBOLS 

 

Abs absorbance 

ε-ACA ε-aminocaproic acid 

ACN acetonitrile 

AGC automatic gain control 

Akt Ak strain transforming 

AMPK AMP kinase 

ANOVA analysis of variance 

Arg arginine 

Asp aspartic acid 

ATG autophagy related protein 

AtPDK Arabidopsis thaliana PDK 

AUC area under the curve 

B0 number of inactive reducing centers 

BH Benjamini and Hochberg 

BLAST Basic local alignment search tool 

BSA bovine serum albumin 

CBBC Calvin-Benson-Bassham cycle 

CDK cyclin dependent kinase 

CDPKK2 calcium/calmodulin dependent kinase kinase 

Chl a Chlorophyll a 

CrTOR-EKD Chlamydomonas reinhardtii TOR – extended kinase domain 



 
 
 

xxiv 

CV coefficient of variation 

Cys cysteine 

Da unified atomic mass unit 

DD-MS2 data dependent MS2 

DMSO dimethyl sulfoxide 

DTT dithiothreitol 

ETC electron transport chain 

EtOH ethanol 

FM fluorescence at step P  

FO fluorescence at step O 

Fv variable fluorescence 

FA formic acid 

FDR false discovery rate 

FNR ferredoxin-NADP reductase 

FRB FKBP12-rapamycin binding 

GO gene ontology 

GSK3 glycogen synthase kinase 3 

GST glutathione S-transferase 

His histidine 

HRD His-Arg-Asp 

IAM iodoacetamide 

IMAC ion metal affinity chromatography 

IMPK nositol polyphosphate multikinase 



 
 
 

xxv 

InsP inositol polyphosphate 

IPTG isopropyl β-D-1-thiogalactopyranoside 

IT injection time 

KLD kinase-ligase-Dpn1 

KOG1 kontroller of growth 1 

LARP La-domain RNA-binding protein 

LB lysogeny broth 

LC liquid chromatography 

LFQ label-free quantification 

LHC light-harvesting complex 

LST8 lethal with sec-13 protein 8 

Lys lysine 

M0 relative rate of primary QA reduction 

MBP maltose binding protein 

MEK1 mitogen-activated protein kinase and extracellular signal-related kinase kinase 1 

MeOH methanol 

MGF Mascot generic file 

MOAC metal oxide affinity chromatography 

MS mass spectrometry 

MS/MS tandem mass spectrometry 

MTBE methyl tert-butyl ether 

MWCO molecular weight cutoff 

m/z mass-to-charge ratio 



 
 
 

xxvi 

NCE normalized collision energy 

NEM N-ethylmaleimide 

NPQ non-photochemical quenching 

OD optical density 

OxRAC oxidized cysteine resin-assisted capture 

PAGE polyacrylamide gel electrophoresis 

PAM pulse amplitude modulated 

PAR photosynthetically active radiation 

PBS phosphate-buffered saline 

PCR polymerase chain reaction 

PetA cytochrome f 

PetF ferredoxin 

PGRL1 proton-gradient related-like protein 1 

PIabs performance index per absorption 

PIKK phosphatidylinositol kinase-related kinase 

PDCelα pyruvate dehydrogenase complex e1 alpha subunit 

PDK pyruvate dehydrogenase kinase 

PDK1 phosphoinositide-dependent protein kinase 1 

PGK phosphoglycerate kinase 

PI4K phosphatidylinositol 4-kinase 

PIP phosphatidyl inositol 

PI-PLC phosphoinositide-specific PLC 

PKA c-AMP dependent protein kinases 



 
 
 

xxvii 

PLC phospholipase C 

PP2A protein phosphatase 2A 

PP2C protein phosphatase 2C 

PSI photosystem I 

PSII photosystem II 

PsaC photosystem I iron-sulfur center 

PsbO PSII oxygen evolution enhancer protein 

PsbR PSII 10kDa polypeptide 

PSR1 phosphorus starvation response protein 1 

PTM post-translational modification 

R2 coefficient of determination 

RAPTOR regulatory-associated protein of TOR 

RF radio frequency 

RICTOR companion of TOR 

RNS reactive nitrogen species 

ROS reactive oxygen species 

RPM rotations per minute 

RPS6 ribosomal protein S6 

RT room temperature 

S6K ribosomal protein S6 kinase 

SDS sodium dodecyl sulfate 

Ser serine 

SIM selected ion monitoring 



 
 
 

xxviii 

Sin1 stress-activated map kinase-interacting protein 1 

SOP standard operating procedure 

SPE solid-phase extraction 

SRM selected reaction monitoring 

STL1 sugar transporter-like protein 1 

STN state transition kinase 

TAG triacylglycerol 

TAP Tris-acetate-phosphate 

TB terrific broth 

TFA trifluoroacetic acid 

Thr threonine 

TIC total ion chromatogram 

TiO2 titanium dioxide 

TOP terminal oligopyrimidine 

TOR target of rapamycin 

TORC1 TOR complex 1 

TORC2 TOR complex 2 

TPS6B Thiopropyl Sepharose 6B 

Trp tryptophan 

TR0/RC trapped energy flux per PSII reaction center 

Tyr tyrosine 

UPLC ultra-performance liquid chromatography 

VIP1 inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1 



 
 
 

xxix 

WKS1 wheat kinase STARTS1 

XIC extracted ion chromatogram 

YII electron flow through PSII 



 
  
 
 
 
 
 
 

1 

CHAPTER 1:  Introduction 

This dissertation investigates the post-translational signaling controlled by the target of 

rapamycin kinase (TOR) pathway in Chlamydomonas reinhardtii. Post-translational 

modifications (PTMs) are a critical component of the regulation of cellular activity, and are often 

required to create functional, active proteins. Reversible oxidation and phosphorylation, two of 

the most common eukaryotic PTMs, are signaling mechanisms used by the master regulatory 

kinase pathway TOR, in the control of nearly all essential biological processes. This chapter will 

introduce Chlamydomonas as a model organism for the study of TOR in algal species and frame 

the current knowledge of the TOR pathway, specifically the roles PTMs play in its regulation 

and signaling. Further, a brief background on the protein kinase enzyme family is included, 

along with the approaches used to study TOR-regulated PTMs, namely in vivo large-scale 

proteomic profiling and in vitro kinase-substrate identification methods. 

1.1 Target of Rapamycin 

TOR is a master regulator that is part of the phosphatidylinositol kinase-related kinase 

(PIKK) family, and is conserved across all eukaryotes. It is known to regulate cell growth by 

controlling protein synthesis and degradation through phases of translation, ribosome 

biosynthesis, amino acid transport, transcription, and autophagy1. Additionally, TOR plays 

critical roles in response to nutrients, energy, and stress2–6.  

In mammals and yeast where it is well studied, TOR is found in two distinct complexes, 

target of rapamycin complex 1 (TORC1) and 2 (TORC2)2. TORC1 contains three components: 

TOR, lethal with sec-13 protein 8 (LST8), and regulatory-associated protein of TOR (RAPTOR) 
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in mammalian cells or the ortholog kontroller of growth 1 (KOG1) in yeast7. TORC1 is known to 

regulate growth in response to nutrients, cellular energy state, and growth factors. TORC2 also 

contains LST8 and TOR, but also has the unique proteins companion of TOR (RICTOR) and 

stress-activated map kinase-interacting protein 1 (Sin1). TORC2 regulates Ak strain 

transforming (Akt) signaling and modulates cytoskeletal polarization8. Unlike TORC1, which is 

inhibited by rapamycin, TORC2is not directly sensitive to rapamycin treatment8. 

Rapamycin is a known indirect inhibitor of TOR that complexes with the protein FKBP12 

and binds to the FRB domain of the TORC1 complex to allosterically inhibit the kinase activity9. 

In addition to rapamycin other known inhibitors to TOR include AZD8055 and Torin1, which 

are both direct inhibitors of TOR, meaning they are ATP-competitive inhibitors.  Kinase activity 

involves the transfer of the γ-phosphate of ATP to a target protein substrate, and ATP 

competitive inhibitors block this by  binding directly to the active site domain10. These inhibitors 

more fully inhibit TOR, resulting in a more pronounced response physiologically and 

proteomically when compared to rapamycin treatment.  Use of these inhibitors in TOR studies 

allows for a more complete interrogation of the functions of TOR, including those not inhibited 

by rapamycin.  

1.2 TOR in Chlamydomonas reinhardtii 

Unlike other eukaryotic cells, photosynthetic organisms only contain homologs of 

TORC1 and no secondary TOR complex has been identified11. In Arabidopsis thaliana and other 

higher order plants, little to no TOR inhibition is seen when treated with rapamycin, likely a 

consequence of  the Arabidopsis FKBP12  not strongly associating with rapamycin12. However, 

other ATP-competitive inhibitors are still effective in regulating TOR activity13. Unlike its 

higher order counterparts, a homolog for FKBP12 has been identified in the algal organism 



 
 
 

3 

Chlamydomonas, making it susceptible to rapamycin treatment14. This unique feature of 

Chlamydomonas allows for a more comprehensive investigation of the TOR pathway, and it has 

been shown that inhibition with these three drugs produce unique phosphorylation changes 

across the proteome15. 

Chlamydomonas is a model photosynthetic organism, in part due to its simple life cycle, 

rapid growth rate and fully sequenced genome16.Microalgal processes such as triacylglycerol 

(TAG) accumulation17–19 and cell cycle control20 have been extensively studied in 

Chlamydomonas. Genomic, transcriptomic, and proteomic efforts have advanced the current 

understanding of molecular infrastructure and metabolic signaling18,21–25. Specifically, previous 

studies have shown that nutrient deprivation results in triacylglycerol (TAG) and starch 

accumulation17–19, but research into algal metabolism regulation is still needed.  Similar to 

nutrient deprivation, inhibition of TOR in Chlamydomonas has shown an increase in TAG 

accumulation5,26–29, supporting the role of TOR in regulating nutrient response. Investigation of 

TOR in Chlamydomonas could help delineate how microalgae and phototrophs more generally 

respond to stressors and nutrient loss, providing insight into the fundamentals of algal and plant 

metabolism.  

1.3 Post-Translational Modifications in Algal Signaling 

PTMs, like the phosphorylation events controlled by kinases like TOR, are a critical 

component of the regulation of cellular activity. PTMs are typically catalyzed enzymatically and 

result in covalent modification of the translated protein. These modifications contribute to the 

complexity of the proteome, and cannot be predicted based on the genetic makeup of an 

organism. There are hundreds of known PTMs30,31
, including phosphorylation, reversible 

oxidation, acetylation, ubiquitination, glycosylation, and sumoylation. These PTMs control 



 
 
 

4 

protein folding, structure, and diversify functional proteoforms32 - unique forms of a protein 

product from a single gene. Many PTMs, including those used by TOR to regulate cellular 

processes, are reversible and signal the activation/deactivation of proteins.  

Nearly all metabolic responses to environmental stressors in Chlamydomonas and other 

organisms are modulated by PTMs33. Regulatory PTMs have been identified on many enzymes 

involved in primary metabolism including the Calvin-Benson-Bassham cycle, glycolysis, and 

photosynthesis34. Despite their importance, mapping PTMs is a continued challenge due to their 

complexity and low abundance, requiring targeted experiments or enrichment strategies for 

reliable identification and quantification. While targeted approaches such as western blots, pull-

downs, and selected ion/reaction monitoring (SIM/SRM) provide detailed information on a 

specific protein, proteoform, or complex, enrichment strategies enable proteome-wide 

investigation of a modification. Enrichment strategies are well suited to examine TOR signaling 

pathways because it is involved in regulating diverse biological processes.   

 The development of robust LC-MS/MS proteomic platforms has enabled large-scale in-

depth proteomic profiling of PTMs for studying protein signaling. These workflows assess 

changes in a modification upon perturbation (e.g., nutrient deprivation, chemical inhibition, 

biotic stress) by combining a reproducible enrichment strategy with a quantitative proteomics 

workflow. Studying how PTM events change in vivo enables the identification of key proteins 

and modification sites involved in signaling and other essential biological processes. In 

particular, reversible oxidation of cysteine thiols and phosphorylation are among the most crucial 

modifications and known to be regulators of stress response 35–38, nutrient availability39–41 and 

the cell cycle27,42–44.  



 
 
 

5 

1.3.1 Reversible Oxidation 

Cysteine contains a reactive sulfur group that is susceptible to oxidation by reactive 

oxygen species (ROS) and reactive nitrogen species (RNS). ROS/RNS are usually produced as 

toxic byproducts from electron transport, enzymatically from oxidases, or from exogenous 

stressors. Depending on the ROS reaction(s), cysteine oxidation can be reversible, including 

sulfenic and sulfinic acid, disulfide bonds, glutathionylation, and nitrosylation, with 

modifications regulated by enzymes or the presence of ROS/RNS or reductive species. However, 

when a cysteine reaches an overly oxidized state, sulfonic acid, the modification becomes 

irreversible, leading to dysfunctionality and eventual protein degradation45. Reversible oxidation 

is a regulatory mechanism, modulating protein activity and participating in stress response 

signaling cascades. In photosynthetic organisms, reversible oxidation sites have been identified 

on enzymes involved in signaling, stress response, transcription, translation, and metabolism, 

reflecting the broad scope and importance of this PTM26,27,35,46–49.  

Measurements of in vivo cysteine oxidation can be challenging due to the labile and 

reactive nature of thiols. Additionally, cysteines only account for ~2% of amino acids in 

eukaryotes50. Given that only a subset is oxidized at any point, enrichment methods are needed in 

order to stabilize, concentrate, and identify cysteine oxidation sites of biological significance. 

Generally, these methods can be direct, involving a label or enrichment that targets oxidized 

cysteines, or indirect where reversibly oxidated sites are chemically reduced and these newly free 

thiols are identified. Many probes for direct detection are limited by reaction rate and efficiency, 

making them unappealing for proteome-wide experiments51–53. Indirect detection methods 

typically involve blocking free thiols with an alkylating agent, followed by reduction of the 

oxidatively modified cysteines. This reduction can be modification specific, such as arsenite for 
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reduction of sulfenylation54,55,  or can reduce all reversible oxidation using reagents like 

dithiothreitol (DTT). The previously oxidized cysteines can then be modified using a marker 

such as a fluorophore or isotope-coded affinity tag56,57, or enriched via biotin-avidin or thiol 

affinity purification58,59 as part of a quantitative proteomic workflow.  

1.3.2 Phosphorylation 

Phosphorylation is the most common PTM and an estimated one third of proteins are 

predicted to be targets of phosphorylation in eukaryotes 60. It is known to impact  essential 

cellular processes in phototrophs including cell cycle, autophagy metabolism, stress response, 

photosynthesis and signaling transduction61–63. Protein kinases catalyze phosphorylation by 

transferring the γ-phosphate group from ATP to an amino acid on a target protein. This 

modification is reversible, with removal of the phosphate group catalyzed by phosphatases. 

While phosphorylation occurs on many different residues64–66, it is most commonly found on the 

hydroxyl group of serine, threonine, or tyrosine.  

While this phosphorylation is one of the most well-studied PTMs, many known 

phosphosites, particularly in phototrophs, are not yet associated with a biological function or 

process. A major cause of this ambiguity is the relatively low abundance of phosphorylated 

peptides after digestion of a eukaryotic cell lysate. In addition to their substoichiometric levels, 

phosphopeptides tend to have decreased ionization efficiency in positive electrospray ionization 

compared to their non-phosphorylated counterparts resulting in reduced signal during MS-based 

whole proteome analysis 67. To address these issues in large-scale proteomic analyses, an 

efficient and selective enrichment method is usually implemented. While many different 

methods for phosphopeptide enrichment have been developed, the two most common techniques 

include ion metal affinity chromatography68 (IMAC) and metal oxide affinity chromatography 
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(MOAC), specifically TiO2
69. When combined with careful sample preparation, enrichment 

allows for the identification/quantification of thousands of phosphorylation events in a single 

analysis. 

1.4 Kinases 

Protein kinases, the enzymes responsible for protein phosphorylation, are one of the largest 

enzyme families in eukaryotes70. Generally, they have a highly conserved active region called 

the kinase domain, which has a number of conserved motifs. These include an activation loop 

that interacts with the residues adjacent to the phosphosite, and a His-Arg-Asp (HRD) motif 

directly involved in the transfer of the γ-phosphate from ATP to the substrate. Chlamydomonas 

is known to have nearly 16,000 phosphorylation events catalyzed by 355 kinases71,72.  Generally, 

kinases are site-specific enzymes, likely due to the importance of phosphorylation in controlling 

essential biological processes, but the number of targets for a given kinase can vary greatly. For 

example, the mammalian protein mitogen-activated protein kinase and extracellular signal-

related kinase kinase 1 (MEK1) is known to phosphorylate only four proteins while cyclin 

dependent kinases (CDKs) are predicted to phosphorylate hundreds of substrates 73,74. However, 

given the estimated 700,000 potential phosphorylation sites  based on the prevalence of Ser, Thr, 

and Tyr residues, the average size of proteins, and the average number of proteins in a typical 

mammalian cell, even the most promiscuous kinases, like CDKs, are relatively specific with their 

targets73.  

A number of factors contribute to kinase specificity73,75. Broadly speaking, most protein 

kinases are classified by their target residues (either Ser/Thr or Tyr). In the active domain of 

many kinases, the conserved activation loop interacts with adjacent residues and certain motifs, 

distinctive sequences of amino acids, are required in order to complete phosphorylation. This 
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results in a consensus sequence motif that is conserved across a kinase’s substrates. Some 

kinases require phosphorylation on an adjacent residue to be present, called priming 

phosphorylation, in order to phosphorylate their target residue. Outside of the kinase domain, the 

kinase can interact with its substrate at other locations on the protein, called docking sites, or 

interact with a third scaffolding protein, that brings together the kinase and substrate in the 

correct orientation. 

Phosphorylation events can also be categorized based on the substrate. In trans-

phosphorylation, a kinase phosphorylates a protein translated from a different gene, while auto-

phosphorylation occurs when a kinase phosphorylates a protein that is translated from the same 

gene76. Autophosphorylation can occur between two of the same kinase (kinase A1 

phosphorylates kinase A2) or as self-phosphorylation wherein a kinase phosphorylates itself77. 

Many kinases are themselves phosphorylated through one of these modes, and when combined, 

kinases form signaling cascades that regulate cellular functions. By characterizing kinases and 

identifying their substrates, these signaling pathways can be delineated, providing more 

information on how biological processes are regulated. 

1.4.1 Kinase-Substrate Identification 

As described previously, the use of enrichment techniques combined with LC-MS-based 

phosphoproteomics enables identification and quantification of thousands of phosphorylation 

events. However, the precise connections between the identified phosphorylation sites and 

protein kinases are missing.  A common approach to investigating phosphorylation signaling is 

in vivo studies using kinase inhibitors or kinase knockout strains with differential 

phosphoproteomic analysis. Using this technique phosphorylation sites related to a kinase can be 

identified, but there is no way to differentiate between direct substrates, which are 
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phosphorylated by the kinase being investigated, and indirect substrates, which are targets of 

kinases downstream of the kinase of interest. Additionally, this technique is limited to kinases 

with inhibitors, or it requires the creation of a mutant strain, which can be time intensive and is 

infeasible for some essential enzymes. For many kinases with known consensus sequence motifs 

and docking domains, there are tools that can predict potential substrates from protein databases 

for a given kinase78–80. This generates a subset of potential substrates that can be further 

characterized with additional studies to confirm which proteins are valid kinase targets. These 

tools can help reduce a potential substrate pool, yet are limited to kinases that are at least 

partially characterized or part of a family of well-studied kinases with known consensus 

sequences and conserved substrate domains. 

Given the limitations of these techniques, many studies are using in vitro approaches to 

investigate kinase-substrate pairings. These studies generally take a high-throughput approach to 

screening kinases where a kinase is incubated with tens to thousands of potential substrates and 

then phosphorylated substrates are identified using mass spectrometric approaches very similar 

to those used for quantitative phosphoproteomic studies81–84. Most screening approaches can be 

broken down into four steps: generation of an active kinase sample, creation of a substrate 

library, screening of the kinase, and analysis of the screening. Kinase samples are purified from 

their native organism, or heterologously expressed and purified using a protein expression 

system. Kinase purification strategy is dependent on abundance in the native organism, 

molecular weight, and knowledge of complex PTMs or scaffolds needed for activity. Substrate 

libraries are created either synthetically or produced from the proteome of the native organism. 

They can vary in their complexity depending on how they are prepared and contain peptides or 

intact proteins as potential substrates. Peptide libraries can provide information on a kinase’s 



 
 
 

10 

consensus sequence and can potentially give a larger number of putative substrates that could be 

further validated. Protein libraries provide additional modes of specificity that result in a more 

targeted screening. Optimization of screening and analysis is also an important part of the 

screening process, taking into account any additional cofactors needed for the kinase activity as 

well as any enrichment or library preparation needed post-screening in order to identify putative 

targets. 

1.5 Scope of Dissertation 

This dissertation uses the study of PTMs to investigate the TOR pathway in Chlamydomonas 

to better understand the signaling mechanisms that drive essential cellular functions. This work 

uses label-free proteomics combined with specific PTM enrichment strategies optimized for 

studying reversible oxidation and phosphorylation. First, Chapter 2 investigates the crosstalk 

between TOR kinase signaling and reversible oxidation by performing differential redox analysis 

in TOR-inhibited Chlamydomonas. Chapter 3 is a comprehensive explanation of the label-free 

quantitative phosphoproteomic workflow for experiments in Chlamydomonas used in the Hicks 

laboratory. This also includes assessment strategies for determining reproducibility and quality 

of the proteomic data. This platform is then applied (Chapter 4) to study the differential 

phosphoproteomes of a rapamycin hypersensitive mutant of Chlamydomonas after TOR 

inhibition and rapamycin-treated wild-type cells. Then standard operating procedures (SOPs) are 

detailed for an in vitro screening platform for identifying putative kinase-substrate relationships 

(Chapter 5). These SOPS are optimized to heterologously express kinases of interest and 

prepare a substrate library from a Chlamydomonas cell lysate. Finally, in Chapter 6, the 

screening platform is validated using a well-studied, highly specific kinase from Arabidopsis, the 
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pyruvate dehydrogenase kinase (AtPDK) and applied in the identification of putative targets of 

Chlamydomonas TOR (CrTOR).  
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CHAPTER 2:  Inhibition of TOR in Chlamydomonas reinhardtii Leads to Rapid Cysteine 
Oxidation Reflecting Sustained Physiological Changes1 

2.1 Introduction 

Target of rapamycin (TOR) is a conserved Ser/Thr kinase and master regulator of cellular 

growth and homeostasis in eukaryotes, with significant control over nutrient-responsive 

pathways including macromolecular anabolism and catabolism as well as vacuole formation and 

autophagy1–7. In yeast, mammals, and other complex eukaryotes, TOR has been identified in two 

distinct complexes, TORC1 and TORC22,8–11, but in photosynthetic organisms only the 

components of TORC1 have been identified2,4. While the role of TOR in mammalian species and 

yeast has been studied extensively2,12,13, its role in photosynthetic organisms is less established4,5. 

Specific chemical inhibitors of TOR have been used to delineate some of the targets of the 

TOR pathway in mammalian cells14, yeast15, and photosynthetic organisms16–18 through 

proteomics and transcriptomic analyses as well as physiological characterization. Directly 

inhibiting TOR results in similar phenotypic changes observed under nitrogen deprivation19,20, 

including an increase in triacylglycerol (TAG) content and a decrease in protein synthesis21. This 

suggests that the eukaryotic “lipid switch”—the protein(s) responsible for upregulating lipid 

formation under nutrient limitation—is regulated by the TOR pathway19–23. TAG induction is a 

response to autophagy24,25, a process highly regulated by TOR in algae. TOR inhibition of the 

model algal species Chlamydomonas reinhardtii (C. reinhardtii) induces vacuolization, cell 

 
1 Reprinted with permission from Ford, M. M.; Smythers, A. L.; McConnell, E. W.; Lowery, S. C.; Kolling, D. R. J; 
Hicks, L. M. Inhibition of TOR in Chlamydomonas reinhardtii Leads to Rapid Cysteine Oxidation Reflecting 
Sustained Physiological Changes. Cells 2019, 8(10), 1171. 
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bleaching, and production of autophagy-specific cell markers1,26. Additionally, TOR is involved 

in the regulation of protein synthesis, with the small molecule inhibitor rapamycin decreasing 

protein synthesis through the phosphorylation of BiP, an endoplasmic reticulum chaperone and 

member of the HSP70 superfamily involved in post-translational protein folding27. Furthermore, 

TOR has a significant role in the overall nutrient metabolism of the cell, including the 

aforementioned TAG synthesis pathways as well as the tricarboxylic acid cycle, which is 

downregulated under TOR inhibition and decreases carbohydrate catabolism18,28. 

In addition to phosphorylation, protein oxidation can play an important role in the regulation 

of stress response, as studied previously using exogenous H2O2 in algae29. However, little work 

has been done to look at the role of oxidative signaling in response to the TOR pathway, either 

through regulation of the TOR pathway via oxidation or the TOR pathway controlling oxidative 

stress response in the cell. Oxidative stress can cause increased protein oxidation on the reactive 

thiol groups of cysteines (Cys) in the form of disulfide bonds, S-glutathionylation, S-

nitrosylation, and S-sulfenylation, all of which can leverage a reversible regulatory mechanism. 

TOR itself has been shown in mammalian cells to be regulated by the reversible formation of 

disulfide bonds by thioredoxin-130. In photosynthetic organisms, reversible oxidation sites have 

been previously identified on enzymes involved in signaling, stress response, transcription and 

translational control, and metabolism22,31–35; all of these are pathways also known to be regulated 

by TOR, indicating that TOR is likely utilizing reversible oxidative signaling. While many 

targets of the TOR pathway have known sites of reversible oxidation, the extent to which 

reversible oxidation is implemented in TOR signaling is unknown, as are the resulting 

physiological responses. 
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Herein, quantitative proteomics of TOR inhibition in C. reinhardtii via enrichment of 

reversibly oxidized Cys (Figure 2.1) reveals significant increases in reversible oxidation 

throughout the proteome over the first hour of inhibition, including sites related to lipid 

synthesis, carbohydrate synthesis and catabolism, and photosynthesis. Physiological changes 

measured up to 48 h, including increases in TAG and carbohydrate content, correlate with 

oxidative changes, delineating the impact of TOR inhibition on changing cell metabolism. 

Additionally, inhibition of photosynthesis in response to TOR inhibition was characterized for 

the first time. This analysis demonstrates the overlap of physiological control and signaling 

regulation of the TOR pathway through reversible oxidation of thiols. 

2.2 Materials and Methods 

2.2.1 Strain, Culture Growth and Treatment Conditions 

Wild-type C. reinhardtii strain CC-2895 6145c mt- and Hutner’s trace elements were 

purchased from the Chlamydomonas Resource Center (St. Paul, MN, USA) and batch cultures 

were maintained photoheterotrophically on Tris-acetate-phosphate (TAP) agar plates. For 

physiological experiments, C. reinhardtii was inoculated into 25 mL of TAP medium using a 

250 μL inoculum in a 50 mL Erlenmeyer flask top capped with aluminum foil. For proteomic 

experiments, cells were inoculated into 250 mL of TAP liquid medium36 in 500 mL sterile 

Erlenmeyer flasks. Cultures were grown photoheterotrophically in quadruplicate, using a 2.5 mL 

inoculum from a mid-exponential-phase (OD750 nm 0.4–0.5) culture and grown under constant 

white-light conditions of 30 µmol photons   m-2   s-1 at 25 °C and at an orbital rotational speed of 

120 rpm on a VWR International model 1000 standard orbital shaker (Radnor, PA, USA). 

AZD8055 (MedChem Express; Monmouth Junction, NJ, USA) dissolved in dimethyl 

sulfoxide (DMSO; Fisher Scientific, Waltham, MA, USA) was added when cells reached an 
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OD750 nm of 0.4 ± 0.1 to the saturating concentration of 700 nM16. Control cultures were given an 

equal volume of DMSO without AZD8055. For physiological measurements, the cells were 

harvested immediately after dosing and then every 12 h through 48 h of treatment (Figure 2.2a). 

For proteomics experiments, the cells were harvested immediately after dosing as well as 15 min, 

30 min, and 1 h post-dosing (Figure 2.2b). Cells were harvested by centrifuging for 2 min at 

3220× g and discarding the supernatant. Cell pellets were flash-frozen using liquid nitrogen and 

stored at −80 °C until use. 

2.2.2 Spectroscopic Cell Density and Cell Diameter 

Spectroscopic cell density (turbidity) was measured using a Shimadzu UV-1800 

spectrophotometer (Shimadzu Corp., Kyoto, Japan) at 750 nm as previously described37,38. Cell 

diameter was determined using a micrometer slide on a VistaVision light microscope (VWR 

International), at 1000× magnification. FIJI software was used for image analysis39. 

2.2.3 Pigment Extraction 

Pigments were extracted as previously described and measured from 470 to 700 nm37. 

Chlorophyll a content (Chl a) was calculated using the following equation40: [Chl a] = (12.47 × 

Abs665.1) – (3.62 × Abs649.1). 

2.2.4 Cell Dry Weight Measurement 

Dry mass was measured as previously reported38. Briefly, 1 mL of cells were pelleted and 

rinsed with H2O and filtered onto pre-weighed 1 μm, 25 mm GF/B Whatman glass microfiber 

filters (Whatman International Ltd., Maidstone, UK) using a Büchner funnel. Filters and cells 

were dried in an incubator at 75 °C for 24 h before being weighed on a Secura 125-1S analytical 

balance (Sartorius, Göttingen, Germany). 
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2.2.5 Lipid Analysis 

Lipid extractions were performed as previously described using a modified methyl tert-butyl 

ether (MTBE) extraction41. A 10 mL sample was pelleted and the supernatant discarded. Cell 

pellets were lysed with 1 mL of methanol (Fisher Scientific) and incubated in a 9 mL tube with 4 

mL of MTBE (Fisher Scientific) for 1 h before adding 1 mL H2O and incubating for another 15 

min. Suspensions were centrifuged for 15 min at 10,000× g and the organic layer was removed 

by a Pasteur pipette into a pre-weighed 4 cm tube and dried under vacuum. The extraction was 

completed twice to ensure near-complete recovery of lipid mass. Tubes were weighed on a 125-

1S Secura analytical balance. Neutral lipids were measured using Nile Red (Sigma-Aldrich, St. 

Louis, MO, USA) fluorescent staining42. Cells were incubated in the dark for 10 min following a 

1:1 dilution in 2 μg · mL-1 Nile Red in DMSO. Fluorescence was measured using a SpectraMax 

M2 (Molecular Devices, LLC, San Jose, CA, USA) with a nine-point well scan and an excitation 

wavelength of 530 nm and emission wavelength of 580 nm.  

2.2.6 Biochemical Composition 

Terminal carbohydrates were assayed as previously described using the acid-phenol 

assay38,43. Briefly, 100 µL of sample was collected in triplicate from each culture and pelleted, 

discarding the supernatant. The pellet was then resuspended with 100 µL H2O before adding 500 

µL concentrated H2SO4 (Fisher Scientific) and vortexing. After a 15 min incubation at room 

temperature (RT), 100 µL of 5% (w/v) phenol (Fisher Scientific) in H2O was added and 

vortexed. After 15 min, the absorbance of each sample was measured at 490 nm using a 

Shimadzu UV-1800 spectrophotometer. Calibration curves were prepared daily using a freshly 

prepared 0.05 mg/mL D-glucose (Sigma-Aldrich) stock solution. 
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Terminal proteins were extracted following a previously described method 44 and were 

assayed using a modified Lowry assay45,46. A stock of Lowry Reagent D was prepared daily in a 

48:1:1 ratio of Lowry Reagents A (2% w/v Na2CO3 in 0.1N NaOH; Fisher Scientific), B (1% w/v 

NaK tartrate; Fisher Scientific), and C (0.5% w/v CuSO4·5H2O; Fisher Scientific) and the Folin-

Ciocalteu reagent (Sigma-Aldrich) was prepared daily with a 1:1 ratio of H2O. All biological 

replicates were measured in triplicate by adding 50 µL of protein extract to 950 µL of Lowry 

Reagent D before vortexing and incubating at RT for 10 min. Following incubation, 100 µL of 

diluted Folin-Ciocalteu reagent was added before thoroughly vortexing and incubating at RT for 

30 min. The absorbance of each sample was measured at 600 nm using a Shimadzu UV-1800 

spectrophotometer and quantified daily using a five-point calibration curve prepared from a 2 mg 

· mL-1 bovine serum albumin stock solution (Fisher Scientific). 

2.2.7 Chlorophyll Fluorescence Induction in vivo 

The Chl a OJIP transient is a highly sensitive measurement of photosynthesis that is used to 

infer information about the efficiency of electron transport through photosystem II (PSII)47. 

When a dark-adapted phototrophic sample is exposed to actinic light, the Chl a fluorescence 

emits in a polyphasic rise with four characteristic ‘steps,’ O, J, I, and P. The O step corresponds 

with the origin, or minimal fluorescence, the J and I are for the inflections at 2 and 30 ms, 

respectively, and the P is the maximum fluorescence output. Using the O and P steps, it is 

possible to calculate the FV/FM, in which FV denotes the variable fluorescence calculated by 

taking the difference between FM and FO and FM is the fluorescence at the P step (Table 2.1). 

FV/FM is a measure of the maximum quantum yield of primary photochemistry in a dark-adapted 

state and is frequently used to express overall photosynthetic efficiency. The steps of the OJIP 
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transient have also been shown to correspond to the oxidation state of the plastoquinone pool; as 

the steps increase in intensity, the overall oxidation state of the pool also increases48.  

Photosynthetic electron transfer fluxes were inferred from Chl a fluorescence using a Photon 

Systems Instruments FL 3500 fluorometer (Drasov, Czech Republic) as previously described38. 

The OJIP protocol included a 1s actinic illumination using a 630 nm light at an intensity of 2,400 

µmole photons · m-2 · s-1. Fluorometry OJIP parameters (JIP test) were calculated as outlined by 

Stirbet47. 

Additionally, Chl a fluorescence was used to determine the proportion of active reducing 

centers, as using two subsequent actinic pulses separated by 1 s of darkness allows further 

information regarding the redox state of the QB reducing centers of PSII. While the first pulse 

was conducted following dark adaptation, meaning that all the reaction centers were open, the 

second pulse only excited so-called ‘fast-opening’ reaction centers, allowing for the calculation 

of non-reducing centers (centers which are unable to open in time for the second pulse) through 

the equation: 

 

where FV/FM is derived from the first pulse and FV*/FM* is derived from the second pulse.  

2.2.8 Pulse Amplitude Modulated (PAM) Fluorescence 

When photons (or excitons) reach PSII reaction centers, they have one of three fates: they 

may be used for photochemistry, emitted as fluorescence, or dissipated as heat via an internal 

conversion phenomenon called non-photochemical quenching (NPQ). These three fates combine 

to be unity, meaning that a change in the abundance of one will result in proportional changes in 
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the others. Thus by determining the amount of NPQ and photochemistry through fluorescence 

techniques, a total picture of photon fate can be generated49.  

To measure NPQ, a quenching analysis of PAM fluorescence was used on dark-adapted 

cells with an actinic intensity of 300 µmol photons · m-2 · s-1, a saturating pulse intensity of 

64,000 µmol photons · m-2 · s-1, and a measuring flash voltage of 80%. There was a dark 

relaxation duration of 20 s between pulses50. Photochemical coefficients were calculated as 

previously reported48.  

2.2.9 Protein Extraction for Proteomics Analyses 

Frozen cell pellets (0.3 g FW from 50 mL of culture) were lysed in 10 mL of phosphate-

buffered saline (PBS) with 0.5% SDS (Sigma-Aldrich), 0.1% Triton X-100 (Sigma-Aldrich), and 

¼ tablet of cOmplete, EDTA-free protease inhibitor cocktail (Roche, Basel, Switzerland). 

Reduced Cys were blocked using 100 mM N-ethylmaleimide (NEM; Sigma-Aldrich) by adding 

1 mL of 1 M NEM dissolved in 50% ethanol (Fisher Scientific). The reaction was incubated for 

2 h at RT protected from light before centrifuging for 5 min at 3220× g and 4 °C to form a white 

pellet of cell debris. The supernatant was added to 10 mL of cold acetone (Fisher Scientific) and 

incubated for 30 min at –20 °C before centrifuging to pellet proteins. Samples were resuspended 

in 10 mL of PBS with 0.25% SDS and 4 M urea (Sigma-Aldrich) by aspirating back and forth 

with a 1 mL pipette tip. Protein concentration was estimated using the CB-X Protein Assay (G-

Biosciences, St. Louis, MO, USA) and normalized to 1 mg/mL with resuspension buffer. 

Aliquots were taken for global proteomic (100 µg) and oxidized Cys enrichment analysis (1 mg). 

2.2.10 Global Proteomics 

Sample lysates (100 µg) were incubated on a covered ThermoMixer (Eppendorf, Hamburg, 

Germany) set to 25 °C and 1000 rpm. Disulfide bonds were reduced with 10 mM dithiothreitol 



 
 
 

28 

(DTT; Sigma-Aldrich) for 30 min before directly adding 30 mM NEM for 30 min to alkylate Cys 

residues. Samples were mixed with 1 mL of cold acetone to precipitate proteins and centrifuged 

for 5 min at 10,000× g and 4 °C. Pellets were resuspended (500 µL) in 50 mM Tris, pH 8 with 2 

M urea and digested with 2.5 µg of Trypsin Gold (Promega, Madison, WI, USA) overnight (> 16 

h). The digestion was quenched (20 µL) with 5% trifluoroacetic acid (TFA; Fisher Scientific) 

and desalted with solid-phase extraction (SPE). 

2.2.11 Oxidized Cys Enrichment 

Reversible oxidation changes were measured using an oxidized Cys resin-assisted capture 

enrichment strategy, abbreviated as OxRAC, that has been described previously (Figure 2.1)35,51. 

Briefly, protein lysates (1 mg) were incubated with 10 mM DTT for 1 h at RT to reduce all 

reversibly oxidized Cys before precipitating proteins with 10 mL of cold acetone. Samples were 

incubated for 30 min at –20 °C before centrifuging for 5 min at 3220× g and 4 °C to collect 

proteins. Samples were resuspended in 1 mL of 50 mM Tris, pH 8 with 0.5% SDS and 4 M urea 

by aspirating back and forth with a 1 mL pipette. 

Thiopropyl Sepharose 6B (TPS6B; GE Healthcare, Pittsburgh, PA, USA) resin was 

rehydrated in water and washed with 50 mM Tris, pH 8 before suspending to a 100 mg/mL 

slurry. Each sample was mixed with 50 mg of TPS6B resin (0.5 mL slurry) and incubated with 

end-over-end rotation for 2 h to covalently enrich proteins with reduced Cys. Samples were 

transferred to a MobiSpin column (Boca Scientific, Westwood, MA, USA) and nonspecifically 

bound proteins were removed by washing the resin (400 µL each) in 50 mM Tris, pH 8 with 

0.5% SDS, 50 mM Tris, pH 8 with 2 M NaCl (Sigma-Aldrich), 80% acetonitrile (Fisher 

Scientific) with 0.1% TFA, and 50 mM Tris, pH 8. On-resin digestion of Cys-bound proteins 

was performed in 250 µL of 50 mM Tris, pH 8 with 2.5 µg of Trypsin Gold (Promega) and 
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incubated overnight (> 16 h) with agitation at RT. The unbound peptide flow-through was 

separated from the Cys-bound peptides by briefly centrifuging the spin columns. Samples were 

washed (400 µL) using 50% acetonitrile and subsequently water. Bound Cys-containing peptides 

were eluted from the resin using 50 mM DTT (250 µL) for 15 min with agitation at RT and 

centrifuged to collect. The resin was washed twice with 50% acetonitrile (200 µL) and collected 

with the eluate. Samples were dried by vacuum centrifugation and SPE desalted as described 

below. 

2.2.12 Solid-Phase Extraction 

Desalting of samples was performed using 50 mg/1.0 mL Sep-Pak C18 cartridges (Waters, 

Milford, MA, USA) held in a SPE 24-position vacuum manifold (Phenomenex, Torrance, CA, 

USA) at a maximum flow rate of 1 drop/s. Resin was first pre-eluted using 1 mL of 80% 

acetonitrile with 0.1% TFA before equilibration with 1 mL of water with 0.1% TFA. Samples 

were acidified to pH 3 using 5% TFA and loaded onto the cartridges in two passes before 

washing with 1 mL of water with 0.1% TFA. Peptides were eluted using 1 mL of 80% 

acetonitrile with 0.1% TFA and dried by vacuum centrifugation. 

2.2.13 LC-MS/MS Analysis 

Samples were analyzed using a nanoAcquity UPLC (Waters) coupled to a TripleTOF 5600 

mass spectrometer (AB Sciex, Framingham, MA, USA). Mobile phase A consisted of water with 

0.1% formic acid (Fisher Scientific) and mobile phase B was acetonitrile with 0.1% formic acid. 

Injections (5 µL) were made to a Symmetry C18 trap column (100 Å, 5 µm, 180 µm x 20 mm; 

Waters) with a flow rate of 5 µL/min for 3 min using 99% A and 1% B. Peptides were then 

separated on a HSS T3 C18 column (100 Å, 1.8 µm, 75 µm x 250 mm; Waters) using a linear 

gradient of increasing mobile phase B at a flow rate of 300 nL/min. Mobile phase B increased 
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from 5% to 35% in 90 min before ramping to 85% in 5 min, where it was held for 5 min before 

returning to 5% in 2 min and re-equilibrating for 13 min. The mass spectrometer was operated in 

positive polarity and the NanoSpray III source had ion source gas 1 set to 15, curtain gas at 25, 

IonSpray voltage floating at 2400, and interface heater temperature at 150. MS survey scans 

were accumulated across m/z range of 350–1600 for 250 ms. For data-dependent acquisition, the 

mass spectrometer was set to automatically switch between MS and MS/MS experiments for the 

first 20 features above 150 counts having +2 to +5 charge state. Precursor ions were fragmented 

using rolling collision energy and accumulated in high sensitivity mode across m/z range 100–

1800 for 85 ms. Dynamic exclusion for precursor m/z was set to 8 s. Automatic calibration was 

performed every 8 h using a tryptic digest of BSA protein standard (Thermo Scientific) to 

maintain high mass accuracy in both MS and MS/MS acquisition. 

2.2.14 Database Searching and Label-Free Quantification 

Acquired spectral files (*.wiff) were imported into Progenesis QI for proteomics (Nonlinear 

Dynamics, version 2.0; Northumberland, UK). Peak picking sensitivity was set to maximum of 

five and a reference spectrum was automatically assigned. Total ion chromatograms (TICs) were 

then aligned to minimize run-to-run differences in peak retention time. Each sample received a 

unique factor to normalize all peak abundance values resulting from systematic experimental 

variation. Alignment was validated (> 80% score) and a combined peak list (*.mgf) was exported 

for peptide sequence determination and protein inference by Mascot (Matrix Science, version 

2.5.1; Boston, MA, USA). Database searching was performed against the Chlamydomonas 

reinhardtii UniProt database (https://www.uniprot.org/proteomes/UP000006906, 18,828 

canonical entries) with sequences for common laboratory contaminants 

(https://www.thegpm.org/cRAP/, 116 entries) appended. Searches of MS/MS data used a trypsin 
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protease specificity with the possibility of two missed cleavages, peptide/fragment mass 

tolerances of 15 ppm/0.1 Da, and variable modifications of protein N-terminus acetylation, and 

methionine oxidation. Alkylation of Cys with NEM (+125.0477 Da, C6H7NO2) was set as a fixed 

modification for global proteomic samples and variable for oxidized Cys enrichments. 

Significant peptide identifications above the identity or homology threshold were adjusted to less 

than 1% peptide FDR using the embedded Percolator algorithm52 and imported to Progenesis for 

peak matching. Identifications with a Mascot score less than 13 were removed from 

consideration in Progenesis before exporting both “Peptide Measurements” and “Protein 

Measurements” from the “Review Proteins” stage. 

2.2.15 Data Analysis and Statistics 

For physiological measurements, the data were analyzed through multiple comparisons of 

means conducted using Welch’s t-tests. The family-wise error rate for each figure was 

maintained at 0.05 through the use of the Holm-Bonferroni method, unless stated otherwise. To 

determine statistical significance of changes over time, data was analyzed through one-way 

repeated measures analysis of variance (ANOVA) conducted with Graphpad Prism (Graphpad 

Software, v7.01;San Diego, CA, USA). Statistical significance is indicated numerically through 

increasing asterisks, where * indicates p ≤ 0.05, ** indicates p ≤ 0.01, *** indicates p ≤ 0.005, 

and **** indicates p ≤ 0.001. Figures show the means of quadruplicate data and the error bars 

denote the standard error of the measurement. 

For LC-MS/MS-based proteomics, data were parsed using custom scripts written in R for 

pre-processing and statistical analysis (https://github.com/hickslab/QuantifyR). 

For global proteomic analysis, leading protein accessions were considered from the “Protein 

Measurements” data and kept if there were ≥ 2 shared peptides and ≥ 1 unique peptide assigned. 
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Proteins were removed if there was not at least one condition with 3/4 nonzero values across the 

Progenesis-normalized abundance columns. Values were log2-transformed and we applied a 

conditional imputation strategy using the imp4p package53, where conditions with at least one 

nonzero value had missing values imputed using the impute.rand function with default 

parameters. For cases where a condition had only missing values, the impute.pa function was 

used to impute small numbers centered on the lower 2.5% of values in each replicate. Statistical 

significance was determined using a two-tailed, equal variance t-test and the method of 

Benjamini and Hochberg (BH) was used to correct p-values for multiple comparisons54. Fold 

change was calculated by the difference of the mean abundance values between conditions being 

compared. Only observations with FDR-adjusted p < 0.05 and log2-transformed fold change +/– 

1.5 were considered significantly different. 

For the OxRAC experiment, we summarized the “Peptide Measurements” data, which 

contains peak features with distinct precursor mass and retention time coordinates matched with 

a peptide sequence identification from the database search results. 

Some features were duplicated and matched with peptides having identical sequence, 

modifications, and score, but alternate protein accessions. These groups were reduced to satisfy 

the principle of parsimony and represented by the protein accession with the highest number of 

unique peptides found in the “Protein Measurements” data for this experiment, else the protein 

with the largest confidence score assigned by Progenesis. Some features were also duplicated 

with differing peptide identifications and were reduced to just the peptide with the highest 

Mascot ion score. 

Results were then filtered for reversibly oxidized Cys-peptides only, defined here by the 

absence of NEM modification on at least one Cys residue in the peptide sequence. An identifier 
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was created by joining the protein accession of each peptide to the particular site(s) of 

modification in the protein sequence. Each dataset was reduced to unique identifiers by summing 

the abundance of all contributing peak features (i.e., different peptide charge states, missed 

cleavages, and combinations of additional variable modifications). Identifiers were represented 

by the peptide with the highest Mascot score in each group. 

Identifiers were removed if there was not at least one condition with 3/4 nonzero values 

across the Progenesis-normalized abundance columns. Values were log2-transformed and we 

applied the same conditional imputation strategy as used for the global proteomic analysis.  

Statistical significance was determined using one-way analysis of variance (ANOVA) and p-

values were BH-corrected. Only observations with FDR-adjusted p < 0.05 and log2-transformed 

fold change +/– 2 in the 60 min condition relative to the 0 min control were considered 

significantly different. Unsupervised hierarchical clustering was performed on significantly 

different identifiers to group together similarly changing abundance trends across conditions 

(i.e., with time). Gene ontology (GO) annotations were pulled from UniProt and 

summarized/visualized for each cluster. 

2.2.16 Data Availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository55 and can be accessed with the identifier 

PXD014819. 
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2.3 Results 

2.3.1 Cell Growth 

Cell growth of both control and TOR inhibitor-treated cultures increased by 142 and 68%, 

respectively, from the point of dosage until 48 h (Figure 2.3a). However, treatment with 

AZD8055 inhibited the amount of overall growth when compared to the control, with a final 

turbidity 32% less than the control cultures, showing that while AZD8055 treatment did not 

completely result in the stagnation of cell density, it did lead to a severe decrease in rate of cell 

growth. Dry mass measurements were congruent with the OD750 nm measurements (Figure 2.3b). 

While the optical density of AZD8055-exposed cells was increasing, the cell size also 

significantly increased over time, whereas the cell size of control cultures did not change 

significantly (Figure 2.3c). This suggests that the increasing optical density of AZD8055-treated 

cultures is due to an increase in cell size rather than cell number, which is further supported by 

cell counting (Figure 2.4). Additionally, while Chl a in AZD8055-treated cells was significantly 

less than in non-inhibited cells, this accumulation did not change significantly in treated cells 

over time, indicating that the cells are not chlorotic - the penultimate step in photoautotrophic 

autophagy (Figure 2.3d)56.  

Rather, it appears as though Chl a synthesis is inhibited without a subsequent increase in 

chlorophyll degradation. Thus, cell division of AZD8055-dosed cells was significantly inhibited 

in comparison with the control cultures, but cell death does not appear to be initiated as a result 

of TOR inhibition. 

2.3.2 Bulk Cell Composition  

Cells were assayed for protein, lipid, and carbohydrate content every 12 h (Figure 2.5a–c). 

No differences between control and AZD8055-treatment were observed in total protein or total 
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lipids, with the overall compositional percent staying within error throughout the time points 

measured (Figure 2.5a, b). However, neutral lipids had significant increases in AZD8055-

exposed cells, with 2.6x the control at 48 h (Figure 2.5d).  

Carbohydrates also significantly increased by 36 h post-dosage, with AZD8055-treated 

cultures accumulating 2.4x the carbohydrates vs. control cultures when normalized to dry mass 

(Figure 2.5c).  

This is likely due to an increase in starch accumulation, as previous work has shown TOR-

inhibition to favor lipid cycling to storage macromolecules57. This also could explain the increase 

in AZD8055-treated cell size, as cells with higher accumulations of starch are likely to have 

higher water accumulation that could increase the overall cell diameter58,59. 

2.3.3 Photosynthetic Output  

In order to determine if TOR inhibition affects photosynthetic productivity, Chl a (OJIP) 

fluorescence and PAM fluorescence were used in vivo following AZD8055 treatment (Figure 

2.6). Analysis of the OJIP transient following TOR inhibition revealed a decrease in PIabs, the 

performance index on a per absorption basis, to 47% of its pre-AZD8055 productivity after just 1 

h of exposure, showing that TOR has a significant and quick effect on photosynthetic electron 

transport (Figure 2.6a). Over time, this decrease in photosynthetic activity becomes more 

pronounced. The decrease in FV/FM (which shows that PSII is affected by AZD8055 even in a 

dark-adapted state) when compared to the control paired with the increase in the overall 

amplitude of the OJ phase of the transient indicates that the decline in photosynthetic efficiency 

is the result of a decrease in the overall reduction of QA centers in PSII60 (Figure 2.6b). 

Furthermore, the averaged trapped energy flux per PSII reaction center (TR0/RC), the relative 
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number of photons absorbed through the antenna that are trapped by PSII reaction centers, 

decreases to 60% of the control by 36 h post-dosage (Table 2.1).  

Additionally, the two-pulse method of collecting OJIP traces indicated that the AZD8055-

treated cultures decreased in reduction capacity (when compared to the control) only at 12 and 

24 h after treatment, after which it was not statistically different from the control (Figure 2.7). 

This shows that the lack of electron flux was not a result of damage to the acceptor side of PSII, 

as the increase in B0 does not explain the continuing decrease in photoactivity following the 24 h 

measurement61. However, while PAM fluorescence indicated that the electron flow through PSII 

(YII) was significantly diminished with a decrease of 1.8x after 1 h of AZD8055 treatment, the 

NPQ parameter was not increased (Figure 2.6c, d). As all absorbed photons must be accounted 

for through photochemistry, NPQ, or fluorescence, the decrease in photochemical flow in this 

case must be reallocated to fluorescence, showing a decrease in available PSII to further reduce 

the plastoquinone pool. 

However, the M0 parameter of the OJIP analysis, representative of the relative rate of 

primary QA reduction, increases over the first hour of AZD8055 inhibition, suggesting that the 

plastoquinone pool is being reduced more rapidly after TOR inhibition (Figure 2.6a). An 

increase in fluorescence paired with the increase in M0 suggests that the plastoquinone pool is 

either not being sufficiently oxidized downstream or being re-reduced via cyclic electron 

transport, decreasing the availability of plastoquinone for the QA site of PSII and increasing the 

likelihood of charge recombination and subsequent fluorescence. 
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2.3.4 Coverage and Differential Analysis of the Reversibly Oxidized Thiol Proteome Upon 
TOR Inhibition 

A total of 16 C. reinhardtii cultures, four biological replicates for each time point, were 

grown to mid-exponential phase before treatment. Previous TOR inhibition studies have shown 

that changes in signaling occur rapidly after treatment, in as little as two min62. Previous work in 

both C. reinhardtii and Arabidopsis thaliana has shown that after treatment with H2O2, changes 

in reversible oxidation are seen in as little as ten min34,63. Given these documented rapid changes 

and to minimize the impact of protein turnover in the experiment, time points of 0, 15, 30, and 60 

min were selected to assess reversible oxidation upon TOR inhibition. Global differential 

proteomic analysis was performed between the 0- and 60-min time points to confirm the absence 

of protein turnover. Of the 1346 proteins identified across these samples, only one 

(A0A2K3DLA1, Ubiquinol oxidase) was shown to be significantly changing in abundance. 732 

of these proteins identified in this global analysis, or 54%, were also measured in the oxidized 

Cys analysis. Thus, the observed changes in oxidation of the identified Cys sites in the time 

course can be confidently assessed and with little to no false positives resulting from protein 

turnover or expression changes.  

Identification and site-specific quantification of reversible thiol oxidation has been readily 

performed via differential alkylation-based methods utilizing thiol-disulfide exchange 

chromatography64,65 that have been tailored for specific modifications including S-

nitrosylation66,67, S-glutathionylation68,69, and S-acylation70. By using DTT rather than a 

modification-specific reductant, it is possible to map the entirety of the cellular redox proteome. 

Herein, we have applied this strategy for quantitative profiling of reversible Cys oxidation using 

OxRAC in the C. reinhardtii proteome following in situ TOR inhibition with exogenous 

AZD8055. 
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Cys reactivity was quenched during cell lysis under denaturing conditions in the presence of 

NEM to block reduced thiols, which has been shown to be rapid and efficient in alkylation71,72. 

All reversibly oxidized Cys-residues were later reduced by DTT and nascent thiols enriched at 

the protein-level using Thiopropyl Sepharose 6B (TPS6B) resin. On-resin trypsin digestion of 

Cys-bound proteins was performed and unbound peptides were washed away. Cys-bound 

peptides were eluted from the resin and analyzed by LC-MS/MS. 

Overall, 5177 unique oxidized Cys sites were identified, quantified by 4755 peptides, 

referred to as identifiers, from 2234 proteins. Most of these peptides had only one modification 

site (85% of 4755), which was most likely due to Cys being particularly rare. Most proteins in 

the C. reinhardtii proteome have Cys residues (93%, 17571/18828), but there are relatively 

fewer Cys compared to other amino acids (i.e., on average 1.6% Cys per protein compared to 

11% Gly and 16% Ala), making peptides with multiple Cys residues a less frequent occurrence. 

Nearly half the proteins identified had only one modified site (48% of 2234). 

These sites were compared with literature where specific redox modifications were targeted 

in C. reinhardtii including S-glutahionylation32, S-nitrosylation73, and thioredoxin-dependent 

reduction74. Of the proteins identified in this dataset, 22 were shown previously to be S-

glutathionylated, 100 were S-nitrosylated, and 188 were thioredoxin-dependent. 

The most modified protein had 41 oxidized Cys sites quantified by 36 identifiers and was a 

large (870 residues), predicted protein (A8JFZ2_CHLRE) localized to the Golgi membrane 

(GO:0000139) with a Cys-rich repeat (PF00839) known to form intra-chain disulfide bonds75. 

While most Cys sites on this protein were unchanged during the treatment, one Cys identifier 

(C632–646) increased 2.3-fold by 60 min and could provide mechanistic insight to this otherwise 

uncharacterized protein. 
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To assess overall change in oxidation across all four time points, a one-way ANOVA test 

was performed. After FDR-correction, 510 identifiers from 401 proteins had a significant 0–60 

min fold change, with 135 identifiers decreasing in oxidation and 375 identifiers increasing in 

oxidation following TOR inhibition. A p < 0.05 after FDR correction and at least a two-fold 

change in oxidation was needed for an identifier to be considered significantly changing. 

Hierarchical clustering was performed on the identifiers that were significantly changing with 

AZD8055 treatment (Figure 2.8a). These identifiers, when sorted into two clusters, separate 

based on those identifiers that generally increase in oxidation (361 identifiers), and those that 

decrease (149 identifiers), suggesting the most pronounced change in oxidative state occurs after 

60 min of treatment. However, there are identifiers within these data that, when a four-cluster 

analysis is used, show that some Cys sites have a maximum fold change before 60 min (Figure 

2.9). This implies either a recovery of the oxidation state prior to treatment, or oxidation of the 

site to an extent that it becomes irreversibly oxidized. GO analysis revealed that proteins within 

cluster A from the two-cluster analysis, which are generally increasing in oxidation, include 

many physiologically important processes including translation, photosynthesis, and 

transcription (Figure 2.8b), as well as proteins with inorganic binding sites such as metal ion and 

ATP-binding enzymes. Many proteins in cluster B, which generally decrease in reversible 

oxidation, are involved with cell redox homeostasis. This finding suggests that these proteins 

may be highly reactive to oxidation under TOR inhibition, and rather than seeing a decrease in 

reversible oxidation through reduction, these Cys residues instead might be hyper-oxidized to an 

irreversible sulfinyl or sulfonyl modification. 
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2.4 Discussion 

While previous research has shown the connection between TOR inhibition, lipid 

accumulation, and the similar phenotypic response seen with H2O2 treatment29, this study 

indicates that large-scale reversible oxidative signaling is part of TOR pathway regulation and 

impacts all major aspects of metabolism. By investigating the 401 proteins with statistically 

significant changes in oxidation, focusing specifically on the proteins involved in lipid synthesis, 

protein translation, carbohydrate metabolism, the TOR pathway, and photosynthesis, it was 

possible to integrate observed physiological changes with the oxidized Cys-containing peptides, 

providing a framework for determining how TOR impacts the changing phenotype of C. 

reinhardtii.  

2.4.1 Lipid Metabolism 

The physiological response following TOR inhibition shows an increase in neutral lipids 

while overall lipid content remains steady. These data, when paired with the increase in cell size 

of AZD8055-treated cultures, is indicative of carbon reallocation in which the cells are 

redistributing lipids from phospholipids into TAGs for long-term storage—a phenomenon that 

has been characterized in C. reinhardtii following nitrogen deprivation20. These results are 

supported by the regulation of 48 lipid-related proteins through changes in reversible oxidation 

upon TOR inhibition. Of the 106 identifiers, eight were seen to significantly increase in 

oxidation upon inhibition including Cys302 on glycerol-3-phosphate acyltransferase (H9CTH0, 

FC: 49.67), Cys35-Cys39-Cys44 on phospholipase A2 (A8I2I2, FC: 9.59), Cys387-Cys390 on 

chloroplast ω6 desaturase (O48663, FC: 5.82), Cys653 on phospholipase B-like 

(A0A2K3DXV3, FC: 4.86), and C278 on phosphoglycerate kinase (A8JC04, FC: 2.74). Both 

phospholipases are involved in the cleavage of fatty acids in phospholipids, hydrolyzing the 
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major component of the cell membrane. It has been previously shown that under nitrogen 

deprivation there is an increase in phospholipase abundance and other components responsible 

for membrane remodeling, reflecting a similar response in regulation between these two 

stressors20. Phospholipases are also known to be Cys-rich, with many of these Cys residues 

involved in disulfide bonds76. While the impact of these oxidation sites is unknown, previous 

work has shown that oxidized Cys in mammalian cells regulate the activity of phospholipases76. 

Conversely, chloroplast ω6 desaturase is involved in lipid synthesis, introducing a double bond 

in the biosynthesis of 16:3 and 18:3 fatty acids, an important component of plant membranes77. 

The diversion of lipids from membrane components to TAGs suggests that this oxidation site 

may regulate the activity of this desaturase. Phosphoglycerate kinase (PGK) is involved in 

glycolysis and in carbon metabolism, catalyzing the reaction of 1,3-bisphosphoglycerate into 3-

phosphoglycerate in glycolysis and the reverse reaction in the Calvin-Benson-Bassham Cycle 

(CBBC)78. This enzyme is known to be highly regulated by oxidation, with previous work in 

cyanobacteria showing that the conserved Cys residue found in this study plays an important role 

in regulating the activity of this kinase78. This previous work showed that oxidation of this Cys 

greatly diminished the activity of PGK, suggesting that the increase in oxidation seen in this 

study could be inhibiting the kinase, demonstrating regulation of glycolysis/CBBC by the TOR 

pathway via reversible oxidation78. 

2.4.2 Protein Translation 

Although there was not a significant physiological change in total protein due to treatment, a 

number of translation-related proteins were identified as being regulated by reversible oxidation 

upon TOR inhibition. The latter better correlates to previous research studying physiological 

changes in C. reinhardtii following TOR inhibition27. A total of 204 identifiers were quantified 
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on 101 unique proteins involved in translation. Of these identifiers, 17 were found to increase in 

oxidation, while three significantly decreased. One of these identifiers is Cys82 on elongation 

factor Tu (P17746, FC: 3.23), a protein that promotes binding of aminoacyl-tRNA to the 

ribosomal A-site during protein synthesis. This protein has been shown to be oxidized in a 

number of different bacteria79–81, and although the exact function of this oxidation is unknown, 

the conservation across multiple bacterial strains as well as in C. reinhardtii suggests this post-

translational modification may be important for regulation of its activity.  

Many ribosomal proteins were shown to contain reversible oxidation sites, including 121 

identifiers on 62 proteins, nine of which significantly increased and two that significantly 

decreased. Ribosomal proteins in yeast have been shown to be regulated by reversible oxidation 

with many of these proteins containing a conserved CX2C-X9-47-CX2,4C site where oxidation 

occurs on one of these Cys residues82. These conserved motifs have been shown to be Zn+2 

binding, stabilizing in protein folding, and their activity is redox-regulated. Two of the proteins 

in this study, ribosomal protein L37a (A8HY08) and ribosomal protein L36a (A8IM74), have 

this conserved motif. Ribosomal protein L37a demonstrated reversible oxidation on Cys39, the 

first Cys in the conserved motif, although it was not shown to be significantly changing. 

Ribosomal protein L36a had significantly changing oxidation on Cys86 (FC: 2.05), a Cys outside 

the conserved motif. Ribosomal protein L10 (A8IZK3) also has an identifier, Cys140, that 

significantly increases 2.07-fold in oxidation upon inhibition of TOR. This site is conserved in 

yeast, and is shown to be oxidized with H2O2 treatment, suggesting this site is involved in the 

response to chemical stressors82. 
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2.4.3 Carbohydrate Metabolism 

The assessment of cell composition after treatment with AZD8055 showed a significant 

increase in the percentage of carbohydrates as a function of dry mass in the cells beginning 36 h 

after treatment (Figure 2.5c). Previous work in plants and a red alga supports this, also showing 

an increase in starch accumulation with inactivity of TOR83,84. This result is further reflected in 

the changes in thiol oxidation found in this study, with 214 identifiers on 74 proteins showing 

reversible oxidation, 15 of these identifiers increasing in oxidation and one decreasing. The 

increase in carbohydrate content is supported more specifically by the oxidative regulation of 

several important enzymes involved in carbohydrate metabolism. NADP-malate dehydrogenase 

(Q9FNS5), has one site, Cys389, increasing in oxidation upon treatment (FC: 3.20). This is the 

chloroplastic isoform of the dehydrogenase, and is well-known to be redox-regulated in higher-

order plants85 and C. reinhardtii86, but this is the first time it has been linked to TOR regulation. 

This Cys residue is conserved in sorghum and has been shown to be part of a regulatory disulfide 

bond, with the enzyme being fully active when it is completely reduced87, suggesting that the 

increase in oxidation observed is decreasing the overall activity of the dehydrogenase. 

The large subunit of isopropylmalate dehydratase (A8JG03) also has a Cys site significantly 

increasing in oxidation, Cys444 (FC: 2.47). This is a highly modified site, with previous work 

identifying S-glutathionylation32, S-nitrosylation73, and regulation via thioredoxin74 on this Cys. 

Although the exact function of this Cys is unknown, it appears to be an important site for 

oxidative signaling in the cell.  

The identifier with the largest fold change on a carbohydrate-related enzyme is a 

hypothetical protein (A0A2K3DY10, FC: 20.92) with a sequence almost identical to that of 

chloroplastic sedoheptulose-1,7-bisphosphatase (P46284), which shares this identifier. This 
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Cys116 site is known to be part of a disulfide bond controlled by thioredoxin, which activates the 

enzyme upon reduction of the disulfide88. With its important role in carbon fixation, the 

regulation of this enzyme could be contributing significantly to the increase in carbohydrate 

content that is seen in the cell.  

2.4.4 TOR Pathway-Related Proteins 

A total of 28 identifiers on 10 proteins of the known TOR signaling pathway had reversible 

oxidation identified in this study. Of those identifiers, only one, Cys26 on the TOR complex 

subunit Lethal with SEC-13 (LST8, A8JDD2), was shown to be significantly changing, with a 

four-fold increase in oxidation. Although a previous study on mTORC1 has shown that TOR 

activity is redox regulated89, this is the first time that an oxidation site has been identified on 

LST8, which could impact the formation and activity of the TOR complex. While not shown in 

this dataset, the presence of oxidative sites on the other components of the TORC complex, TOR 

and Regulatory-associated protein of TOR (RAPTOR), each of which contain several cysteine 

residues, cannot be excluded; however, more specific enrichment/fractionation methods would 

need to be used to get the coverage needed for this determination. 

A majority of the other TOR-pathway-realted identifiers were from vacuolar ATPases, many 

of which have been previously shown to be associated with the TOR pathway in mammalian 

systems90. This class of enzymes has high sequence homology, with conserved domains and 

subunits, and is known to be regulated by Cys oxidation. Although none of these identifiers in 

this study are changing with TOR inhibition, Cys oxidation was identified on V-type proton 

ATPase subunits C (A8HYU2), F (A8HZ87), and H (A8HQ97), as well as vacuolar ATP (V-

ATP) synthase subunits A (A8I164), B (A8IA45), and E (A8IW47). Interestingly, Cys247 on V-

ATP synthase subunit A is a conserved Cys shown to modulate its activity in Arabidopsis91. 
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Although not changing, oxidation on this subunit suggests that this site may have a similar 

mechanism in C. reinhardtii, but is not regulated by TOR under the presented conditions. 

However, Subunit B of V-ATP synthase has been previously shown to be regulated by TOR via 

phosphorylation on Ser816. With ATPases’ important role of maintaining cell homeostasis under 

stress, this subunit could be an important component of TOR’s regulatory pathway, but further 

studies would be required to assess its exact role. 

2.4.5 Photosynthesis 

There were 20 photosynthesis-related proteins with 21 significantly changing reversible 

oxidation identifiers, suggesting that inhibition TOR plays a role in regulating the light reactions 

of photosynthesis, a novel finding. Looking specifically at the protein components of 

photosynthetic machinery, 13 proteins were found to have oxidation on Cys with a total of 60 

identifiers (Figure 2.10). Two of these proteins, photosystem I iron-sulfur center (PsaC, Q00914) 

and Ferredoxin—NADP reductase (FNR, A8J6Y8) have an identifier significantly increasing in 

oxidation (FC: 2.46 and 3.80, respectively) and two proteins, Cytochrome f (PetA, P23577) and 

Ferredoxin (PetF, A8IV40), have identifiers significantly decreasing in oxidation (FC: 0.39 and 

0.36, respectively). OJIP analysis suggests that TOR inhibition results in decreased electron flow 

through PSII, likely stemming from an overly reduced plastoquinone pool due to downstream 

effects, resulting in decreased overall turnover of PSII and linear (oxygen-producing) 

photosynthetic activity. This diminished activity is irreversible and begins within 15 min of 

inhibition and continues through the full 48 h of treatment. While the lack of chlorosis 

(degradation of chlorophyll) suggests the photosynthetic apparatus is still intact, these data 

suggests that TOR inhibition results in a marked inhibition of electron flux through PSII. 

Furthermore, the increased reduction of the plastoquinone pool downstream of PSII suggests that 
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either downstream proteins of PSII have been damaged or that PSI is participating in cyclic, 

rather than linear, electron transport. Cyclic electron transport results in greater production of 

ATP as FNR is bypassed, resulting in electron transfer to cytochrome b6f via the stromal side, 

increasing the proton gradient needed for ATP synthesis while decreasing the production of 

NADPH. This leads to a more reduced quinone pool, as fewer electrons are transferred to CO2 

via NADPH. 

A shift to cyclic electron transport is supported by proteomic analysis, as there is a 3.8x FC 

in oxidation of FNR (A8J6Y8), showing a decrease in enzyme activity (FNR is reduced by 

ferredoxin following reduction by PSI)92. If FNR was generating NADPH, an increase in 

reduction, not oxidation, would be expected, as it would be reduced in the process of shuttling 

electrons. A shift toward cyclic electron transport is further indicated by the pairing of decreased 

PSII activity with the decrease in oxidation of Cys52-Cys55 of cytochrome f (P23577, FC: 0.39), 

the subunit of cytochrome b6f responsible for electron transfer to plastocyanin. An increase in the 

reduction of cytochrome f suggests an increased electron load; while the b6f complex is a rate-

limiting step in both linear and cyclic electron transport93, it would likely be more substantial 

under cyclic electron transport as electrons are supplied from both plastoquinol and ferredoxin. 

However, when paired with the increased oxidation of other regulatory Cys, such as PsaC 

(Q00914, FC: 3.36), a PSI subunit containing one of the iron-sulfur centers, it is also possible 

that damages downstream of PSII are causing a “traffic jam” for electrons, resulting in a more 

reduced plastoquinone pool that decreases the available plastoquinone for PSII. It could possibly 

be a combination of these two phenomena, wherein the ETC converts to cyclic electron transfer 

due to stress, while simultaneously decreasing capacity due to oxidative changes downstream of 

PSII.  
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2.5 Conclusions 

While TOR is a known master regulator with significant control over nutrient-responsive 

pathways, its role in the metabolic regulation of photosynthetic eukaryotes is still not completely 

understood. By characterizing the physiological effects of AZD8055-mediated TOR inhibition 

on C. reinhardtii and pairing it with label-free quantitative proteomics following OxRAC, a 

network of reversible thiol oxidation was unveiled. This complex oxidation network was cell-

wide, overlapping all major metabolic processes and indicating an essential role for thiol 

oxidative signaling in TOR regulation. TOR targets for thiol oxidation included important lipases 

involved in lipid cycling and TAG biosynthesis, directly linking oxidative signaling to 

upregulation of TAGs following TOR inhibition. Additionally, for the first time, photosynthesis 

was shown to be regulated by the TOR pathway with inhibition of TOR causing a decrease in the 

photosynthetic efficiency of PSII, and a shift toward cyclic electron transport. Future studies will 

benefit from modification-specific redox analysis, through which the individual regulatory 

mechanisms could be determined.  
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2.6 Tables 

Table 2.1 OJIP parameters for AZD8055-treated and non-treated cells.
 AZD8055-dosed cells Control 

 t0 12 h 24 h 36 h 48 h t0 12 h 24 h 36 h 48 h 

FV/FM 0.686 0.627 0.559 0.532 0.53 0.685 0.713 0.703 0.634 0.607 
M0 0.804 1.123 1.091 1.115 1.214 0.872 0.78 0.777 0.832 0.824 
ΦE0 0.345 0.269 0.25 0.241 0.23 0.346 0.369 0.346 0.315 0.313 
Ψ0 0.503 0.429 0.446 0.454 0.433 0.505 0.518 0.493 0.497 0.515 

Abs/RC 2.351 3.141 3.522 3.829 4.044 2.571 2.273 2.178 2.608 2.802 
TR0/RC 1.614 1.967 1.97 2.038 2.142 1.76 1.619 1.531 1.652 1.701 
Et0/RC 0.81 0.843 0.879 0.924 0.928 0.888 0.839 0.754 0.821 0.877 
Piabs 0.946 0.405 0.291 0.248 0.215 0.876 1.187 1.062 0.66 0.59 
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2.7 Figures 

 

 

Figure 2.1 Workflow for proteomic oxidative cysteine analysis of C. reinhardtii with AZD8055 
treatment. After protein extraction, reduced cysteine thiols are blocked with N-ethylmalemide 
(NEM), before reversibly oxidized cysteines are reduced using dithiothreitol (DTT). An oxidized 
cysteine resin-assisted capture method (OxRAC) is used to enrich proteins containing oxidized 
cysteines and samples are processed for bottom-up liquid chromatography—tandem mass 
spectrometry (LC-MS/MS) analysis.  
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Figure 2.2 a.) Treatment and sampling timeline for physiological measurements. C. reinhardtii 
cultures were grown to stationary phase prior to treatment with AZD8055. b.) Treatment and 
harvesting timeline for proteomic oxidative cysteine thiol analysis and photosynthetic 
measurements. Cultures were grown to an OD750 of ~0.5 prior to treatment.  
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Figure 2.3 The growth curves of cultures with and without AZD8055 exposure. The error bars 
represent standard deviation and statistical differences indicate a difference between the inhibited 
and non-inhibited cultures at one time point. Significance is denoted by asterisks, where *** 
indicates p ≤ 0.001, and **** indicates p ≤ 0.0001. a.) The turbidity (optical density) of C. 
reinhardtii following dosing with AZD8055. Cells were dosed in mid-exponential phase. Control 
cultures were dosed with DMSO, the solvent used for AZD8055. b.) The total dry mass of the 
cultures with and without AZD8055 treatment. c.) The cell diameter of the cultures with and 
without AZD8055 treatment. d.) The Chl a content of cultures following treatment in mid-
exponential phase. Chl a is an indication of both organismal health as well as photosynthetic 
productivity. 
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Figure 2.4 The cell number of cultures with and without AZD8055 exposure. The error bars 
represent standard deviation and statistical differences indicate a difference between the inhibited 
and non-inhibited cultures at one time point. Significance is denoted by asterisks, where *** 
indicates p ≤ 0.001, and **** indicates p ≤ 0.0001. 
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Figure 2.5 Compositional analysis of C. reinhardtii cultures with and without AZD8055 
treatment, taken over time. The error bars represent standard deviation and statistical differences 
indicate a difference between the inhibited and non-inhibited cultures at one time point. 
Significance is denoted by asterisks, where * indicates p ≤ 0.05, ** indicates p ≤ 0.01, *** 
indicates p ≤ 0.001, and **** indicates p ≤ 0.0001. a.) The total protein content of the cultures, 
measured in mg/mg dry mass, with and without AZD8055 treatment. b.) The total lipid content 
of cultures, measured in mg/mg dry mass. c.) The total carbohydrate content of cultures, 
measured in mg/mg dry mass. d.) Neutral lipid content of the cultures with and without 
AZD8055 treatment measured using Nile Red staining. 
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Figure 2.6 Photosynthesis measurements taken after treatment. The error bars represent standard 
deviation and statistical differences indicate a difference between the inhibited and non-inhibited 
cultures at one time point. Significance is denoted by asterisks, where * indicates p ≤ 0.05, and 
**** indicates p ≤ 0.0001. a.) Chl a fluorescence OJIP parameters of AZD-dosed cultures over 
the course of 1 h, where t0 is normalized to 1, enabling visualization of rapid changes in the 
photosynthetic apparatus. Changes in OJIP parameters relative to the control, as well as the 
derivations and explanations of all parameters, can be found in supplemental materials. b.) 
FV/FM, the measure of quantum efficiency of PSII following dark adaptation, of the cultures with 
and without AZD treatment. c.) The photochemical yields of photosystem II with and without 
treatment with AZD8055 measured using PAM fluorescence. d.) The nonphotochemical 
quenching of the cultures with and without AZD8055 treatment measured using PAM 
fluorescence. 
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Figure 2.7 The B0 of cultures with and without AZD8055 inhibition, measured using the double 
pulse method of OJIP fluorescence. B0 indicates the relative number of inactive reducing centers; 
thus, as B0 increases, the activity decreases. The error bars represent standard deviation and 
statistical differences indicate a difference between the inhibited and non-inhibited cultures at 
one time point. Significance is denoted by asterisks, where ** indicates p ≤ 0.01, and **** 
indicates p ≤ 0.0001.  
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Figure 2.8 Differential analysis of the reversibly oxidized cysteine thiol proteome. a.) 
Hierarchical clustering of the 510 identifiers significantly changing (p < 0.05, FC > ±2) into two 
clusters. b.) Gene ontology (GO) summary of significantly changing identifiers in clusters A and 
B from hierarchical clustering analysis. The number and shading correspond to the number of 
unique proteins in each category for each cluster. 
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Figure 2.9 Differential analysis of the reversibly oxidized cysteine thiol proteome. a.) 
Hierarchical clustering of the 510 identifiers significantly changing (p < 0.05, FC > ±2) into four 
clusters. b.) Gene ontology (GO) summary of significantly changing identifiers in clusters from 
hierarchical clustering analysis. The number and shading correspond to the number of unique 
proteins in each category for each cluster. 
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Figure 2.10 Reversible oxidation on photosynthetic machinery. Adapted from KEGG pathway 
map for photosynthesis (https://www.genome.jp/dbget-bin/www_bget?pathway:map00195). 
Protein names are labeled in diagram with gene names listed in boxes below. Components with 
C. reinhardtii homologs are in yellow. Proteins with identified reversible oxidation sites are in 
green with the Cys sites identified listed above. Proteins with significantly increasing (red) or 
decreasing (blue) identifiers upon inhibition of TOR also include the maximum fold change 
listed above.  

https://www.genome.jp/dbget-bin/www_bget?pathway:map00195
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CHAPTER 3:  Label-Free Quantitative Phosphoproteomics for Algae1 

3.1 Introduction 

The unicellular alga Chlamydomonas reinhardtii is a model organism for the study of 

microalgal processes, particularly photosynthesis due to its photoheterotrophic growth1. More 

recently, Chlamydomonas research has expanded to include the utilization of microalgae for 

biofuel production due to their ability to produce large amounts of triacylglycerol while having 

rapid growth potential and tolerance to environmental conditions2. Along with genomic and 

transcriptomic studies3–5, proteomic analysis of Chlamydomonas has led to an increased 

understanding of its metabolic signaling as well as a growing interest in the elucidation of its 

phosphorylation networks, particularly those related to biofuel production6,7. 

Protein phosphorylation is a post-translational modification (PTM) that serves as a rapid and 

reversible means to modulating protein activity and signal transduction in the cell. This 

modification involves the addition of a phosphate group to an amino acid by a protein kinase, 

which together with phosphatases, can act as a molecular switch to regulate complex signaling 

networks. Protein phosphorylation has been extensively studied for more than 60 years due to its 

widespread prevalence and its critical involvement in the regulation of nearly all basic cellular 

processes8,9. Dynamic protein phosphorylation plays a central role in cell proliferation, 

metabolism, signaling, and survival, emphasizing the need for an efficient and selective method 

of analysis. However, studying these events remains an analytical challenge.  

 
1 Reprinted with permission from Ford, M. M.; Lawrence, S. R., II.; Werth, E. G.; McConnell, E. W.; Hicks, L. M. 
Label-Free Quantitative Phosphoproteomics for Algae. In: Jorrin-Novo, J.; Valledor, L.; Castillego, M.; Rey, M. D. 
(eds) Plant Proteomics Methods in Molecular Biology 2020, 2139. Humana, New York, NY. 
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One important challenge stems from the labile nature of phosphorylation. As a PTM that is 

tightly linked to protein function, the phosphorylation status of proteins continually changes in 

response to specific conditions and stimuli. Thus, understanding phosphorylation requires 

detection and quantification of the same phosphoprotein(s) in multiple states, or proteoforms, 

across different conditions while using sample preparation techniques, such as flash freezing and 

the use of phosphatase inhibitors, to ensure the signal being analyzed is answering the biological 

question of interest. An additional challenge arises from the large dynamic range of 

phosphorylation events in the cell, which is dependent on the abundance of the protein in the 

cell, that can  span many orders of magnitude10,  and the occupancy of the phosphorylation site, 

which is generally low at any given time10. Also, while phosphorylation occurs on thousands of 

proteins, many of them share little sequence homology, increasing the difficulty in identifying 

dynamic changes in phosphorylation across an entire phosphoproteome11.  

To date several enrichment approaches have been employed to address the challenges in 

assessing protein phosphorylation12. Among these, titanium dioxide metal oxide affinity 

chromatography (TiO2-MOAC) is one of the most common shotgun enrichment methods for 

phosphopeptides from complex biological samples13–15. TiO2-based enrichments have been 

shown to be more selective15, and are less sensitive to interferents such as salts and detergents 

than immobilized metal affinity chromatography16,17. However, they show preference to singly 

phosphorylated peptides over those with multiple phosphosites, potentially due to stronger 

interactions between TiO2 and multi-phosphorylated peptides making elution of these peptides 

challenging18. At acidic pH, TiO2 has a high affinity for phosphorylated species, forming a 

bidentate bond with the titanium surface and two of the oxygen atoms18. To minimize co-

purification of acidic peptides, the use of organic acids, such as phthalic, 2,5-dihydroxybenzoic, 
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or lactic acid, as an additive for binding enhances the overall selectivity of this enrichment 

method12.  

LC-MS/MS offers highly reproducible and accurate systems-level analysis that can be paired 

with enrichment for the study of large-scale protein phosphorylation19. For quantification, a 

label-free approach can provide advantages over label-based techniques, primarily in 

experimental design flexibility20. Label-free quantitation (LFQ), with a number of software 

programs available to aid in data analysis20, allows for rapid, straight-forward, and cost-effective 

measurements of a wide range of protein abundances. Typically, LFQ is employed via one of 

two approaches: changes in ion intensity from LC-peak areas [i.e., area under the curve (AUC)] 

of the peptides, or based on spectral counting of peptides from MS2 analysis. The latter approach 

is limited in its ability to quantify proteins of low abundance6 due in part to the variability in 

spectral count response for each peptide making it necessary to observe many spectra for a given 

protein to assume a linear response between counts and abundance. Additionally, many 

experiments employ a dynamic exclusion of ions already selected for fragmentation, making 

accurate quantitation with this method challenging21. In phosphoproteomics, quantitation is 

performed on a single peptide for each phosphorylation site, making AUC quantitation generally 

preferable for these studies. However, AUC requires highly reproducible chromatography and 

high mass accuracy because it relies on accurate peak alignment and mass measurement for 

quantification.  

Here we present a method to quantify the phosphoproteome of Chlamydomonas that uses a 

combination of efficient extraction, TiO2-based phosphopeptide enrichment and LFQ to provide 

in depth coverage of the phosphoproteome (Figure 3.1). Using this method, analysis of replicate 

samples resulted in the quantification of 3595 phosphosites on 1775 phosphoproteins. 
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Assessment of the reproducibility of this method shows the technical replicates are highly 

similar, with a 21 % median CV. These results are similar to previous studies performed using a 

similar approach that uses identical sample preparation and LC separation with a different 

make/model of mass spectrometer19,22. While our quantitative breadth of coverage is extensive, 

qualitative studies have shown that the global phosphoproteome is still drastically larger than can 

be obtained in a shotgun LFQ approach. A previous study23, which used two enrichment methods 

and additional fractionation to create a total of 60 samples subjected to LC-MS/MS, identified 

over 4500 phosphoproteins from nearly 16,000 phosphosites, showing that there is room for 

improvement in the depth of coverage obtained in these phosphoproteomic studies. 

Implementation of an orthogonal fractionation prior to analysis would help improve this depth of 

coverage, but at the cost of increased instrument time and variability from the added sample 

preparation. Although providing moderate depth of coverage, the method outlined here provides 

an accurate and high-throughput approach for analyzing algal phosphoproteomic samples. 

3.2 Materials 

3.2.1 Cell Culture  

1. Hutner’s Trace Elements stock24. This can be purchased as a stock solution or prepared 

in lab (see Note 1). 

2. TRIS-Acetate-Phosphate (TAP) Media: 20 mM TRIS Base, 17.5 mM acetic acid, 1.65 

mM K2HPO4, 945 µM KH2PO4, 287 µM CaCl2, 405 µM MgSO4, 7.01 mM NH4Cl, and 

Hutner’s Trace Elements. Stock solutions can be made for easy preparation of TAP 

media (see Note 2).  

3. TAP agar media plates, 1.5% agar: To TAP media (see 3.2.1 step 2), add Bacto Agar and 

autoclave. Cool media to 52 °C and pour plates into petri dishes, 100 x 15 mm, in 
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biosafety cabinet, about 10 mL per plate. Let plates solidify overnight, parafilm to seal 

each plate and store at 4 °C. 

4. Chlamydomonas reinhardtii, strain CC-2895 (6145c mt-). 

5. 100 µE m-2 sec-1 white light source. 

6. Platform shaker. 

7. Liquid nitrogen, 0.5 L. 

3.2.2 Protein Extraction 

1. Lysis buffer: 100 mM TRIS, pH 8.0, 1% Sodium dodecyl sulfate (SDS), 1x cOmplete 

protease inhibitor cocktail (Roche, Risch-Rotkreuz, Switzerland) and 1x phosSTOP 

phosphatase inhibitor cocktail (Roche). Stock solutions can be made for easy preparation 

of lysis buffer (see Note 3). When preparing the lysis buffer, stir slowly when fully 

dissolving contents to minimize agitation and bubble formation from the SDS. 

2. Covaris 2 mL milliTUBEs and 24 Place milliTUBE rack. 

3. 100 mM ammonium acetate in methanol (MeOH).  

4. 70% Ethanol (EtOH). 

5. 100 mM TRIS, pH 8.0. Using a 1 M TRIS stock (see Note 3) is recommended for ease of 

buffer preparation. 

6. Resuspension buffer: 8 M Urea, 100 mM TRIS, pH 8.0.  

7. CB-X Protein Assay Kit (G-Biosciences, St. Louis, MO, USA) or equivalent protein 

quantification assay. 

3.2.3 Reduction, Alkylation, and Digestion 

1. Reduction buffer: 500 mM dithiothreitol in 100 mM TRIS, pH 8.0.  

https://www.google.com/search?sa=X&rlz=1C1CHBF_enUS792US792&biw=1688&bih=862&q=Risch-Rotkreuz&stick=H4sIAAAAAAAAAOPgE-LUz9U3MI83zbJUAjPTynMKC7S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQCcivuGRAAAAA&ved=2ahUKEwjCsMn3wuHfAhWKnOAKHbdDA14QmxMoATAYegQIAhAH
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2. Alkylation buffer: 500 mM iodoacetamide (IAM) in 100 mM TRIS, pH 8.0. Make fresh 

for each experiment and cover tube with aluminum foil or keep buffer in the dark to 

prevent degradation of light-sensitive IAM solution.  

3. Trypsin resuspension buffer: 50 mM acetic acid.  

4. Promega (Madison, WI, USA) Trypsin Gold, Mass Spectrometry grade. 

5. 20% trifluoroacetic acid (TFA).  

3.2.4 Desalting 

1. Waters (Milford, MA, USA) Sep-Pak C18 1 cc Vac Cartridge, 50 mg, 55-105 µm particle 

size. 

2. 0.1% TFA (LC-MS grade).  

3. 80% acetonitrile (ACN, LC-MS grade), 0.1% TFA (LC-MS grade).  

4. Vacuum manifold with 24-port cover (Phenomenex, Torrance, CA, USA) or equivalent 

setup. 

3.2.5 Phosphopeptide Enrichment 

1. Wash Buffer: 80% ACN (LC-MS grade), 1% TFA (LC-MS grade). 

2. Resuspension Buffer: 80% ACN (LC-MS grade), 1% TFA (LC-MS grade), 25 mg/mL 

phthalic acid. This can be made by adding phthalic acid to the Wash Buffer. 

3. Elution Buffer: 20% ACN (LC-MS grade), 5% aqueous ammonia. 

4. TiO2 phosphopeptide enrichment tips, 3 mg. TitansphereTM Phos-TiO Spin Columns (GL 

Sciences, Torrance, CA, USA) recommended. 

5. Spin column centrifuge adaptors. 

3.2.6 Sample Purification 

1. 1% formic acid (FA, LC-MS grade), 2% ACN (LC-MS grade).  



 
 
 

73 

2. 0.1% FA (LC-MS grade).  

3. 60% ACN (LC-MS grade), 0.1% FA (LC-MS grade).  

4. Millipore (Burlington, MA, USA) C18 ZipTips. 

3.2.7 LC-MS/MS 

1. 5% ACN (LC-MS grade), 0.1% TFA (LC-MS grade).  

2. LC-MS total recovery vials. 

3. Symmetry C18 trap column (100 Å, 5 µm, 180 µm x 20 mm; Waters). 

4. HSS T3 C18 column (100 Å, 1.8 µm, 75 µm x 250 mm; Waters). Mobile Phase A: 0.1% 

FA. Add 1 mL of Optima LC-MS grade FA to 1 L of Optima LC-MS grade water. 

5. Mobile Phase B: 0.1% FA in ACN (LC-MS grade).  

6. NanoAcquity UPLC system (Waters). 

7. Q Exactive HF-X Hyrid Quadrupole Orbitrap mass spectrometer (ThermoFisher, 

Waltham, MA, USA). 

3.2.8 Data Analysis 

1. Progenesis QI for Proteomics v2.0 (Nonlinear Dynamics, Durham, NC, USA). 

2. Mascot Daemon v3.5.1 (Matrix Science, Boston, MA, USA). 

3. R script for processing phosphoproteome data. The code used for processing these data is 

available on GitHub (https://github.com/hickslab/QuantifyR). 

3.3 Methods 

3.3.1 Culturing 

1. Maintain Chlamydomonas strain on TAP agar plates under continuous light, streaking a 

fresh plate from a single colony on a previous plate every 1-2 weeks. 

https://github.com/hickslab/QuantifyR
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2. Grow a 100 mL starter culture of Chlamydomonas using TAP media in a 250 mL flask. 

In a biosafety cabinet, select a single colony from a TAP agar plate and suspend it in the 

TAP media. Grow the culture 4-5 days shaking at 120 rpm and under continuous light 

until a growth density of OD750 0.4-0.5 is reached. 

3. Prepare 6x350 mL liquid culture of Chlamydomonas in TAP media. Transfer 3.5 mL of a 

starter culture to fresh TAP media. Use a 1 L flask for 350 mL of culture to provide 

sufficient room for consistent mixing. Shake at 120 rpm with 100 μmol m-2 s-1 white light 

at room temperature. Grow for 3-4 days until an OD750 of 0.4-0.5 is reached (see Note 4). 

4. Centrifuge each culture for 5 min at 6,000 x g at 4 °C in a 1 L centrifuge bottle to harvest. 

5. Decant the supernatant from each culture while not disturbing the cell pellet in the 

centrifuge bottle. 

6. Resuspend the Chlamydomonas pellets in 10 mL of fresh TAP media and transfer each 

solution to a 15 mL conical centrifuge tube. 

7. Centrifuge each culture for 2 min at 3,200 x g, at 4 °C. 

8. Decant the supernatant from each culture while not disturbing the cell pellet in the 

centrifuge bottle. 

9. Place the conical centrifuge tubes containing cell pellets in liquid nitrogen until fully 

frozen. Store at -80 °C until performing plant-based protein extraction. 

3.3.2 Protein Extraction 

1. Resuspend cell pellets in 4 mL lysis buffer (see Note 5) and transfer to Covaris 2 mL 

tubes. Keep samples on ice during resuspension. 

2. Sonicate samples in a 4°C water bath for 3 min at 200 cycles/burst, 100 W power, and 

13% duty cycle using an E220 focused ultra-sonicator (Covaris, Woburn, MA, USA).  
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3. Transfer samples from Covaris tubes to 2 mL centrifuge tubes, keeping the samples on 

ice. 

4. Centrifuge cell lysates at 16,000 x g for 10 min at 4 °C and collect the supernatant into a 

50 mL conical tube. 

5. Add 1 mL of fresh lysis buffer to the pelleted cell debris and vortex. 

6. Centrifuge this sample again at 16,000 x g for 10 min at 4 °C. Collect the supernatant and 

combine with the first extraction in a 15 mL conical tube. 

7. Precipitate proteins by adding 5 volumes (about 30 mL) of cold 100 mM ammonium 

acetate in MeOH. Incubate samples overnight at -80 °C. 

8. Collect protein pellet by centrifuging for 5 min at 2,000 x g. Decant the supernatant 

without disturbing the pellet. 

9. Perform two additional washes with 30 mL fresh 100 mM ammonium acetate in MeOH 

followed by a wash with 30 mL 70% EtOH. For each wash, resuspend the pellet by 

vortexing before centrifuging for 5 min at 2,000 x g.  

10. Allow protein pellets to dry for 5 min in a fume hood at room temperature.  

11. Resolubilize the pellets in 1-2 mL minimal resuspension buffer. Incubate for 1 h to 

ensure protein is fully dissolved. 

12. Use a 10 µL aliquot of each replicate to perform protein quantification using the CB-X 

Protein Assay. Complete assay using manufacturer’s protocol (see Note 6). 

13. Normalize each replicate to 4 mg/ml and use a 0.5 ml aliquot (2 mg) of each sample to 

continue through the remaining steps in the protocol. 
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3.3.3 Reduction, Alkylation, and Digestion 

1. Reduce samples using 10 mM DTT. Add 10 µL reduction buffer to each sample. 

Incubate for 30 minutes at room temperature while shaking (500-850 rpm). 

2. Alkylate samples using 40 mM IAM (see Note 7). Add 40 µL of alkylation buffer to each 

sample. Incubate for 45 min in the dark at room temperature while shaking.  

3. Following alkylation, diluted the samples 5-fold using 100 mM TRIS, pH 8.0 so the 

concentration of urea is <2 M, which is a requirement for effective tryptic protein 

digestion. For 0.5 ml samples, add 2 ml of 100 mM TRIS, pH 8.0. 

4. Perform overnight digestion using mass spectrometry-grade trypsin (Trypsin Gold from 

Promega is recommended) at a protease to protein ratio of 1:50 at 25 °C. For 2 mg lysate, 

40 µg trypsin is needed. Gently invert or shake the samples during digestion. 

5. Following digestion, quench the reaction by adding 20% TFA to the samples until their 

pH is less than 3 when measured with a pH test strip. Usually 0.2-0.4% final volume 

TFA, or 5-10 µL for 2.5 ml samples, is sufficient. 

6. Freeze samples at -80 °C following digestion until desalting using 50 mg SepPak 

(Waters) cartridges is performed. 

3.3.4 Desalting 

1. Thaw samples on ice and centrifuge them for 5 min at 10,000 x g to pellet. Remove 

undigested protein pellet from soluble peptide mixture to avoid clogging the cartridges. 

2. Set up one cartridge for each sample on a vacuum manifold using test tubes to collect the 

flow through from the cartridges. 

3. Wet cartridges by adding 1 mL of 80% ACN, 0.1% TFA (see Note 8).  

4. Equilibrate cartridges using 2 mL of 0.1% TFA. 
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5. Load peptide samples onto the cartridge and recover the flow through in a new test tube.  

6. Reapply this flow through to the cartridge. 

7. After the flow through passes through, switch to a new test tube and flow 2 mL of 0.1% 

TFA are added to the cartridges to remove salts.  

8. Elute desalted peptides into a new 2 mL tube by adding 1.5 mL of 80% ACN, 0.1% TFA 

to the cartridge. Once the elution flows all the way through the cartridge, apply vacuum 

for about 5 seconds to collect the remaining solvent from the packed bed.  

9. Following peptide elution, freeze the samples and vacuum centrifuge to dryness. 

3.3.5 Phosphopeptide Enrichment 

1. Each sample uses one TiO2 tip placed in a microcentrifuge tube using an adaptor. Pre-

elute the tips using 100 µL of elution buffer (see Note 9). 

2. Condition each tip with 100 µL of wash buffer twice, for a total of 200 µL, followed by 3 

washes using 100 µL of resuspension buffer. 

3. Resuspend the dried peptides in 150 µL of resuspension buffer. Centrifuge the samples at 

10,000 x g for 5 min to prevent clogging and load onto the tips. Use a new centrifuge 

tube to recover the sample flow through. 

4. Reapply the flow through five times. 

5. Following binding using a new centrifuge tube, wash the tips using 100 µL of 

resuspension buffer twice and then wash three times with 100 µL of wash buffer.  

6. Using a new centrifuge tube to collect the buffer, elute the phosphopeptide-enriched 

samples using 2 aliquots of 100 µL of elution buffer, combining them for a total of 200 

µL of elution. 
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7. Flash-freeze the elution with liquid nitrogen and vacuum centrifuge to dryness with the 

concentrator set to room temperature. 

3.3.6 Sample Purification 

1. Resuspend phosphopeptide-enriched samples in 15 µL 1% FA, 2% ACN. 

2. Centrifuge the samples at 15,000 x g for 5 min and transfer to a new tube, taking care not 

to disturb the pellet if present, to remove any insoluble portion of the sample. 

3. Aliquot 15 µL 60% ACN, 0.1% FA for each sample into its own tube to elute samples 

from the ZipTip. 

4. Perform a C18 ZipTip purification on each sample, using a new tip each time (see Note 

10). 

5. Attach a ZipTip to a 10 µL pipette. With pipette set to 10 µL, draw up LC-MS grade 

ACN to wet the tip. Discard the ACN while keeping the resin wet. Repeat twice for a 

total of three pre-elution steps. 

6. Equilibrate the ZipTip by pipetting 0.1% FA three times, discarding the solvent each time 

while keeping the resin wet. 

7. Pipette the sample 10 times to load the peptides onto the ZipTip.  

8. Wash six times with 0.1% FA.  

9. Elute the peptides by pipetting 10 times using aliquoted elution solvent from step 4, 

expelling all of the solvent from the pipette tip.  

10. Dry down all of the eluted peptide samples. 

3.3.7 LC-MS/MS 

1. Resuspend phosphopeptide samples in 20 µL and whole cell samples in 40 µL of 5% 

acetonitrile, 0.1% TFA and transfer to a Total Recovery Vial (Waters). 
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2. Inject 5 µL of each sample and perform LC-MS/MS analysis on each sample using a 

NanoAcquity UPLC system (Waters) coupled to a Q Exactive HF-X Hybrid Quadrupole 

Orbitrap mass spectrometer (ThermoFisher) via a Nanospray Flex Ion Source 

(ThermoFisher). Inject the peptide mixture to a Symmetry C18 trap column (100 Å, 5 µm, 

180 µm x 20 mm; Waters) with a flow rate of 5 µL/min for 3 min using 99% A and 1% B, 

then separate on a HSS T3 C18 column (100 Å, 1.8 µm, 75 µm x 250 mm; Waters) using 

a gradient of increasing mobile phase B at a flow rate of 300 nL/min for 120 min total. 

Increase mobile phase B from 5-35% in 90 min, ramp to 85% in 5 min, hold for 5 min, 

return to 5% mobile phase B in 2 min, and re-equilibrate for 13 min. 

3. Use the following MS parameters: Use a tune file set with positive polarity, 2.2 kV spray 

voltage, 325 °C capillary temperature, and 40 S-lens RF level. In the instrument method, 

include lock masses best of 371.10124 and 445.12003 background polysiloxane ions. 

Select full MS/DD-MS2 scan type and set method duration to 120 min and default charge 

state to 2. Perform MS survey scan in profile mode across 350-1600 m/z at 120,000 

resolution until 50 ms maximum IT or 3x106 AGC target is reached. Select the top 20 

features above 5000 counts excluding ions with unassigned, +1, or > +8 charge state. 

Collect MS2
 scans at 45,000 resolution with NCE at 32 until 100 ms maximum IT or 

1x105 AGC target. Set the dynamic exclusion window for precursor m/z to 10 s and an 

isolation window of 0.7 m/z. Check the system’s performance every 8 h using an injection 

of BSA tryptic digest run with the same instrument method. 

3.3.8 Data Analysis 

1. Upload acquired spectral files (*.raw) into Progenesis QI for Proteomics (Nonlinear 

Dynamics). Use automatically assigned reference spectrum to align the total ion 
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chromatograms to minimize run-to-run differences in retention time and normalize peak 

abundances. Design experiment so that replicates are grouped together as one subject. 

Export a combined peak list (*.mgf). 

2. Upload and determine peptide sequence and protein inference using Mascot (Matrix 

Science). Use the following search parameters: Search against the database containing the 

proteome for the organism of interest, in this case the Phytozome Chlamydomonas 

proteome (https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Creinhardtii; 

19,526 entries) appended with the NCBI mitochondrial (NC_001638.1; 8 entries) and 

chloroplast databases (BK000554.2; 68 entries) along with the sequence for common 

laboratory contaminants (www.thegpm.org/cRAP; 116 entries). Use a target decoy 

MS/MS search with trypsin protease specificity with up to two missed cleavages, a 

peptide mass tolerance of 15 ppm, and a fragment mass tolerance of 0.1 Da. Set a fixed 

modification of carbamidomethylation at cysteine and include the following variable 

modifications: acetylation at the protein N-terminus, oxidation at methionine, and 

phosphorylation at serine, threonine, and tyrosine. After the search is complete, adjust the 

false discovery rate of the significant peptide identifications to be less than 1% using the 

embedded Percolator algorithm. Export matches (*.xml) and reupload data to Progenesis. 

3. From Progenesis, export the “Peptide Measurements” from the “Review Proteins” tab. 

These data can be used to determine the number of phosphosites and phosphoproteins 

identified in each replicate (Figure 3.2A) and the reproducibility can be assessed (Figure 

3.3). 

https://phytozome.jgi.doe.gov/pz/portal.html%23!info?alias=Org_Creinhardtii
https://www.ncbi.nlm.nih.gov/nuccore/NC_001638.1
https://www.ncbi.nlm.nih.gov/nuccore/BK000554.2
https://d.docs.live.net/5c2112662f523cbc/Documents/2020/Defense/Dissertation/Drafts/Ch3BookChapter/www.thegpm.org/cRAP


 
 
 

81 

4. The proteomics data have been deposited to the ProteomeXchange Consortium 

(www.proteomexchange.org) via the PRIDE partner repository25 with the dataset 

identifiers PXD012261. 

5. Parse data using custom R script found at GitHub 

(https://github.com/hickslab/QuantifyR) or using similar parsing technique. This script 

groups together features matched with identical sequence, modifications, and score with 

differing protein accessions, representing them by the protein accession with the highest 

number of unique peptides and largest confidence score assigned by Progenesis. Features 

duplicated by multiple peptide identifications are reduced to a single peptide with the 

highest Mascot ion score. The results are then limited to only peptide with one or more 

phosphosites. Identifiers are made by joining the protein accession of each feature with 

the single-letter amino acid code of the modified residue and location of the modification. 

The data are then reduced to unique identifiers by summing the abundance of all 

contributing features (charge states, missed cleavages, etc.). Each identifier group is 

represented in the final dataset by the peptide with the highest Mascot score. Using these 

parsed results, the total number of phosphosites, phosphoproteins, and %CV can be 

calculated for the three replicates (Figure 3.2A, B). 

3.4 Notes 

1. Hutner’s Trace Elements stock preparation taken from Chlamydomonas Resource Center 

(www.chlamycollection.org). Stock preparation is extensively described on the 

Chlamydomonas Resource Center Website and by Hutner, et al24. 

2. TAP Salts Stock (40x): Add 15.00 g of NH4Cl, 4.00 g MgSO4·7H2O, and 2.00 g 

CaCl2·2H2O to 1 L water. Stir until dissolved and autoclave. TAP Phosphate Stock 

https://d.docs.live.net/5c2112662f523cbc/Documents/2020/Defense/Dissertation/Drafts/Ch3BookChapter/www.proteomexchange.org
https://github.com/hickslab/QuantifyR
http://www.chlamycollection.org/
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(1000x): Add 288.00 g K2HPO4 and 144.00 g KH2PO4 to 1 L of water. Stir until 

dissolved and autoclave. TAP Acetate Stock, pH 7.0 (50x): Add 121.00 g TRIS base and 

50 mL of glacial acetic acid to 950 mL water. Stir to dissolve and filter sterilize. For 1 L 

of media combine the following amounts of stock solutions and autoclave: 25 mL TAP 

Salts Stock, 1 mL TAP Phosphate Stock, 20 mL of TAP Acetate Stock, 1 mL of Hutner’s 

Trace Elements. 

3. 1 M TRIS Stock (10x), pH 8.0: Dissolve 121.10 g of TRIS base in 800 mL of water, 

adjust the pH to 8.0 by adding concentrated HCl, and add water to a final volume of 1 L. 

20% SDS Stock: Add 20.00 g SDS to 80 mL water, slowly mix to dissolve keeping the 

speed low to prevent frothing and heating if needed to no higher than 68°C, and adjust to 

final volume of 100 mL with water. For 10 mL of buffer, add 1 mL 1 M TRIS Stock 

solution, 1 protease inhibitor tablet, 1 phosphatase inhibitor tablet, and 0.5 mL 20% SDS 

stock solution to 8.5 mL of distilled water. 

4. An OD750 of 0.4-0.5 was identified as mid-log phase growth for this strain of 

Chlamydomonas based on the known growth patterns22. Growth curves should be 

measured and used to identify the optical density where mid-log growth occurs when 

using this method to study other strains or algal species. This ensures that the cells are 

actively growing, there is no shortage of any nutrients, and enough material is harvested 

for each sample to perform phosphoproteomic analysis. 

5. Three Chlamydomonas cultures were harvested, resuspended in lysis buffer, combined 

and re-aliquoted into three technical replicates to assess the reproducibility of this method 

and normalize any biological variability in the samples.  When using this method for 
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differential studies, each culture should be a biological replicate, with no recombination 

step. 

6. For CB-X protein assay, take a 10 µL aliquot of the protein sample and perform the assay 

according to the manufacturer’s instructions. Briefly, add 1 mL of CB-X reagent and 

vortex. Centrifuge the sample at 15,000 x g for 5 min. Remove the supernatant without 

disturbing the pelleted protein. Add 50 µL of Solubilization Buffer 1 and 50 µL 

Solubilization Buffer 2 and pipette to resuspend the pellet. Incubate for one minute before 

adding 1 ml CB-X Assay Dye.  Incubate for 5 minutes before measuring the absorbance 

of the sample at 595 nm. 

7. IAM in solution is unstable and light sensitive. Keep IAM solution in the dark before and 

during alkylation to prevent degradation. Covering the tubes or mixer with aluminum foil 

works well for this. 

8. When using C18 SepPak cartridges, a manifold can be used to apply vacuum to the 

samples to increase the flow rate through the cartridges. Vacuum can be used for all of 

the steps in the procedure except for the initial loading of the peptides onto the cartridge 

and the elution of the peptides. Flow rate should not exceed 1 mL/min when vacuum is 

used. The bed of the cartridges should stay wet throughout the procedure by keeping a 

small amount of solvent above the packed bed at all times. 

9. For each step in the enrichment, centrifuge the tips at 1000 x g at room temperature to 

pass buffer through the column. For steps using 100 µL and 150 µL buffer, centrifuge the 

tips for 3 min and 5 min, respectively. 

10. ZipTips work by drawing solvent through the resin using a micropipette to aspirate up 

and down. It is important that the resin remains wet throughout the purification by 
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leaving a small amount of solvent visible above the resin bed at all times until the sample 

is ready for elution. 
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3.5 Figures 

 

 

Figure 3.1 Phosphoproteomic workflow for Chlamydomonas reinhardtii cells. Briefly, 
Chlamydomonas cultures are harvested, resuspended in lysis buffer and sonicated. The lysate is 
collected and soluble proteins are reduced, alkylated and digested with trypsin. Phosphopeptides 
are enriched for using a titanium dioxide-based (TiO2) enrichment before being subjected to LC-
MS/MS analysis. For the data reported here, samples were pooled after resuspension and 
aliquoted into three technical replicates to remove any biological variation.  
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Figure 3.2 Summary of quantitation results between three replicate samples. A.) Number of 
phosphopeptides, phosphoproteins, and statistics for each individual replicate and combined data 
with filtered and imputed data. B.) Histogram of the % CV for quantitated phosphosites. 
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Figure 3.3 Plots comparing the log2 transformed abundances between replicate samples.   
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CHAPTER 4:  Investigating the Interdependence of Insp and TOR Signaling in 
Chlamydomonas 

4.1 Introduction 

Inositol polyphosphates (InsPs) are versatile metabolites that store and rapidly proliferate 

inorganic phosphate throughout the cell1. With a myo-inositol ring that can be sequentially and 

reversible phosphorylated on all six carbons, InsP derivatives have distinct properties that allow 

them to be used across signaling cascades for the regulation of biological processes throughout 

the cell, including nutritional sensing, metal transport, and hormone signaling2–4. The 

pervasiveness of InsP signaling is in part due to their multitude of signaling mechanisms, as 

InsPs can influence protein-protein interactions, allosterically regulate via conformational 

changes, compete with phosphoinositide substrates, and non-enzymatically pyrophosphorylate 

phospho-serine residues1. While InsP signaling has been widely researched in animals and yeast, 

the study of its regulation in photosynthetic eukaryotes is in its infancy, despite the identification 

of plant-specific InsP modulated pathways5–7  and high accumulation of InsP6
8,9. InsP7 and InsP8, 

generated from the phosphorylation of InsP6, are unique InsPs that contain high-energy 

pyrophosphate bonds  serve as energy storage molecules9. However, their low abundance and 

high turnover rates imply other unknown roles beyond this10,11. 

Recently, InsP signaling was shown to operate synergistically with Target of Rapamycin 

(TOR) kinase, a master regulator that influences protein translation, cell proliferation, carbon 

metabolism, and autophagy12–16. TOR’s network extends throughout cellular processes 

combining  phosphorylation signaling with reversible oxidation for rapid response and 
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acclimation to changing conditions17–20.  The components of TORC1 are conserved across 

eukaryotes, including the model algal organism Chlamydomonas reinhardtii, and include TOR 

(Cre09.g400553.t1.1), regulatory associate protein target of rapamycin (RAPTOR, 

Cre08.g371957.t1.1), and lethal with sec-13 protein 8 (LST8, Cre17.g713900.t1.2)21,22. While 

quantification of differentially phosphorylated proteins following TOR inhibition has provided 

some insights19, a map of the signaling network throughout the TOR pathway has still not been 

realized.  

TOR is partly regulated by phosphate availability, as phosphate deprivation results in a 

decreased abundance of LST8 that subsequently downregulates TORC1 activity23. This suggests 

that InsPs, which have a proposed role in the buffering of intracellular phosphate concentrations 

as well as metal ion homeostasis via chelation2, may be able to directly modulate TOR activity 

through the flux of intracellular phosphate. However, studies in yeast have shown contradictory 

effects of phosphate deprivation on the accumulation of InsPs4,24,25. This suggests that the 

overlap of metabolic signaling in C. reinhardtii is likely highly complex and dependent on 

growth and stress conditions, as shown through the influence of acetate on the physiological state 

of a hexakisphosphate kinase insertional mutant of C. reinhardtii26. 

This study seeks to characterize the relationship between TOR and InsP signaling in C. 

reinhardtii. A previously characterized rapamycin-hypersensitive mutant (vip1-1)26 with an 

established loss of function for a conserved inositol hexakisphosphate kinase is used to 

differentially analyze the phosphoproteome during TOR inhibition. Through this work we can 

begin to deconvolute the mechanistic roles InsPs play in the regulation and proliferation of TOR 

signaling. These data suggest a prominent role of InsP signaling in cellular metabolism, 

specifically the regulation of energy transformation via photosynthesis.  
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4.2 Materials and Methods 

4.2.1 Cell Culturing and Rapamycin Treatment  

Generation of the vip1-1 mutant is described previously26. Briefly, the parental strain CC-

1690 mt+ (Sager 21 gr) (Chlamydomonas Resource Center, St. Paul, MN, USA) was used to 

generate the rapamycin-hypersensitive strain via insertional mutagenesis27 of the hygromycin 

resistance gene, aph7”28. Transformation was performed as described previously29 and 

rapamycin-hypersensitive mutants were identified via differences in growth on Tris-Acetate-

Phosphate (TAP) and TAP with 500 nM rapamycin agar plates. For phosphoproteomic studies, 

as previously described19,30, vip1-1 and wild-type cultures were maintained 

photoheterotrophically on TAP agar plates. 3.5 mL cells from a culture grown to exponential 

phase (1–2 x 106 cells ml -1) were inoculated into 350 mL TAP in 1 L Erlenmeyer flasks. 

Triplicate cultures were grown photoheterotrophically to mid-exponential phase (1–2 x 106 cells 

ml -1) under constant light. When the cultures reached mid-exponential phase, rapamycin 

(Research Products International, Mt Prospect, IL, USA) in dimethyl sulfoxide (DMSO, Sigma 

Aldrich, St. Louis, MO, USA) was added to a concentration of 500 nM26 for treated cultures and 

an equal volume of DMSO was added to the control cultures. Cells were treated for 15 min and 

then quenched with 40% methanol and then harvested via centrifugation as previously 

described19. The supernatant was discarded, and the pellets were flash-frozen using liquid 

nitrogen and stored at -80 °C until extraction. 

4.2.2 Protein Extraction 

 Frozen cell pellets were lysed in 4 mL of buffer containing 100 mM Tris, pH 8.0, 1% 

sodium dodecyl sulfate, 1x cOmplete EDTA-free protease inhibitor cocktail (Roche, Basel, 

Switzerland), and 1x PhosSTOP phosphatase inhibitor cocktail (Roche). Cell were lysed via 
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sonication using an E220 focused ultrasonicator (Covaris, Woburn, MA, USA) for 180 s at 200 

cycles/burst, 100 W power, and 13% duty cycle. After sonication, samples were centrifuged at 

15,000 x g for 10 min at 4 °C and the supernatant was collected. The cell pellet was resuspended 

in 1 mL of fresh lysis buffer, incubated for 30 min at 4 °C, and centrifuged again. Supernatants 

were combined and proteins were precipitated using four volumes of cold 100 mM ammonium 

acetate in methanol, incubating overnight at -80 °C. Proteins were pelleted by centrifugation at 

3220 x g for 5 min and washed twice with fresh 100 mM ammonium acetate in methanol. 

Proteins were allowed to dry for 5 min before resuspension in 2 mL 8 M urea in 100 mM Tris, 

pH 8.0. Protein concentration was measured using the CB-X Protein assay (G-Biosciences, St. 

Louis, MO, USA) according to the manufacturer’s protocol, and samples were normalized to the 

same concentration (0.5 mg/mL) and volume (2 mL) using resuspension buffer. 

4.2.3 Protein Reduction, Alkylation, and Digestion 

 Protein thiols were reduced using 10 mM dithiothreitol at room temperature for 30 min 

followed by alkylation with 40 mM iodoacetamide for 45 min at room temperature while 

protected from light. Samples were diluted 5-fold after alkylation with 100 mM Tris, pH 8.0 to 

reduce the concentration of urea to 1.6 M. Samples were then digested with Trypsin Gold 

(Promega, Madison, WI, USA) at a 1:50 enzyme:protein ratio overnight at room temperature, 

rotating end-over-end. The digestion was quenched with 20% trifluoroacetic acid (TFA, Fisher 

Scientific, Waltham, MA, USA) to a final concentration of 0.4% TFA and a pH < 3.0. 

4.2.4 Solid-Phase Extraction 

 After digestion, samples were desalted using 50 mg/1.0 mL Sep-Pak C18 cartridges 

(Waters, Milford, MA, USA) using a vacuum manifold (Phenomenex, Torrance, CA, USA). 

Resin was pre-eluted with 1 mL 80% acetonitrile, 0.1% TFA and then equilibrated with 2 mL 
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0.1% TFA at a flow rate of ~1 drop/s. Samples were first centrifuged at 3220 x g for 5 min to 

pellet undigested protein before loading onto the cartridges using gravity flow. Samples were 

then reloaded once, and cartridges were washed with 2 mL of 0.1% TFA followed by elution of 

the peptides in 1.5 mL of 80% acetonitrile, 0.1% TFA. The samples were then dried by vacuum 

centrifugation and 25 µg aliquots of each sample were reserved for global proteomics. 

4.2.5 Phosphopeptide Enrichment and Desalting 

 Phosphopeptide enrichment was performed on each sample as previously described using 

3 mg Titansphere Phos-TiO2 kit spin columns (GL Sciences, Torrance, CA)19,30. Following each 

step in the enrichment, columns were centrifuged at 1000 x g for 5 min until dry. Columns were 

pre-eluted with 100 µL 20% acetonitrile, 5% aqueous ammonia, and the equilibrated with 100 

µL 80% acetonitrile, 1% TFA twice, and 100 µL 80% acetonitrile, 1% TFA with 25 mg/ml 

phthalic acid three times. Samples were resuspended in 200 µL of 80% acetonitrile, 1% TFA 

with 25 mg/mL phthalic acid, and then centrifuged at 15,000 x g for 5 min to pellet any 

precipitant and prevent column clogging. Samples were loaded onto the column a total of five 

times, reapplying the flow through after each centrifugation step. Columns were then washed 

using 100 µL 80% acetonitrile, 1% TFA with 25 mg/mL phthalic acid twice, and 100 µL 80% 

acetonitrile, 1% TFA three times. Phosphopeptides were eluted in 100 µL 20% acetonitrile, 5% 

aqueous ammonia twice, for a total of 200 µL of elution. Samples were then dried using vacuum 

centrifugation.  

Following phosphopeptide enrichment, samples were desalted using 0.6 µL C18 ZipTips 

(MilliporeSigma, Burlington, MA, USA). After drying, samples were resuspended in 15 µL 0.1 

TFA and centrifuged for 5 min at 15,000 x g to remove any precipitant and prevent tip clogging. 

Tips were first pre-eluted three times with 10 µL of 80% acetonitrile, 0.1% TFA, followed by 
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equilibration with 10 µL 0.1% TFA three times. The samples were then loaded on the tip by 

passing the phosphopeptides through ten times. Following loading, the tips were then washed six 

times with 10 µL of 0.1% TFA and the eluted by passing 15 µL of 80% acetonitrile, 0.1% TFA 

through the tip ten times. The samples were then dried down using vacuum centrifugation. 

4.2.6 LC-MS/MS Acquisition and Data Processing 

 Phosphopeptide samples were resuspended in 20 µL of 5% acetonitrile, 0.1% TFA while 

global samples were resuspended to a concentration of 0.2 µg/µL in 5% acetonitrile, 0.1% TFA. 

Global and enriched samples were analyzed using an Acquity M-Class UPLC system (Waters) 

coupled to a Q Exactive HF-X Hybrid Quadrupole Orbitrap mass spectrometer (ThermoFisher, 

Waltham, MA, USA) via a Nanospray Flex Ion Source (ThermoFisher) with a spray voltage 

flowting at 2.1 kV. Mobile phase A was water with 0.1% formic acid and mobile phase B was 

acetonitrile with 0.1% formic acid. 2 µL of each enriched and global sample was injected with a 

5 µL/min flow rate for 3 min onto a Symmetry C18 trap column (100 Å, 5 µm, 180 µm x 20 mm, 

Waters) using 99% A. Samples were separated with a 300 nL/min flow rate on an HSS T3 C18 

column (100 Å, 1.8 µm, 75 µm x 250 mm, Waters). Separation was performed in a gradient of 5-

35% B over 90 min, followed by a ramp to 85% B in 5 min with a 5 min hold and a return to 5% 

B in 2 min with a re-equilibration time of 13 min, for a 120 min total run time.  

 The mass spectrometer was operated in positive polarity with a 2.1 kV spray voltage, 

325°C capillary temperature and S-lens RF level of 40. Lock masses of background polysiloxane 

ions were included. Full MS/DD-MS2 scan type was used with a method duration of 120 min. 

MS survey scan was performed in profile mode across 350-1600 m/z at 120,000 resolution with a 

50 ms maximum IT and 3x106 AGC target. The top 20 features with a +2 to +7 charge state 

above 5000 counts were selected. MS2 scans were collected at 45,000 resolution with NCE at 32 
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until 100 ms maximum IT or 1x105 AGC target. The dynamic exclusion window was set to 10 s 

and an isolation window of 0.7 m/z for precursor ions. The mass spectrometry proteomics data 

and supplemental tables have been deposited to the ProteomeXchange Consortium via the 

PRIDE partner repository 31 and can be accessed with the Identifier PXD023250 (Username: 

reviewer_pxd023250@ebi.ac.uk,  Password: NqKCEDEV). 

 The acquired spectral files (*.raw) were uploaded into Progenesis QI for Proteomics 

(Nonlinear Dynamics, Waters) and data analysis was performed as described previously 20. 

Separate experiments were created for the analysis of the global and enriched samples. An 

automatically assigned reference spectrum was used to align the total ion chromatograms and a 

peak picking sensitivity was set to the maximum of 5. Alignment was validated with a score 

>90%, and replicates were grouped based on sample type before being exported as a combined 

peak list (*.mgf). The peaklist was uploaded into Mascot (Matrix Science, version 2.5.1, Boston, 

MA, USA) and database searching was performed against the Chlamydomonas reinhardtii JGI 

v5.6 Phytozome database (https://phytozome-next.jgi.doe.gov/info/Creinhardtii_v5_6, 19,523 

entries) appended with the entries from the NCBI chloroplast (BK000554.2, 68 entries) and 

mitochondrial (NC_001638.1, 8 entries) databases. Sequences for common laboratory 

contaminants (www.thegpm.org/cRAP, 116 entries) were also included in the database. A target 

decoy MS/MS search was performed with trypsin specificity of up to two missed cleavages, a 

peptide mass tolerance of 15 ppm, and a fragment mass tolerance of 0.02 Da. 

Carbamidomethylation of cysteine was included as a fixed modification with acetylation at the 

protein N-terminus, oxidation of methionine, and phosphorylation of serine, threonine, and 

tyrosine included as variable modifications. After completion of the search, the false discovery 

rate was adjusted to be less than 1% using the embedded Percolator algorithm32, and matches 

https://www.ncbi.nlm.nih.gov/nuccore/BK000554.2
https://www.ncbi.nlm.nih.gov/nuccore/NC_001638.1
http://www.thegpm.org/cRAP
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were exported (*.xml) and reuploaded into Progenesis for peak matching. After matching, 

identifications with a Mascot score less than 13 were removed before exporting protein 

measurements for global samples, and the protein and peptide measurements for the enriched 

samples from the “Review Proteins” stage. 

4.2.7 Downstream Bioinformatic Analysis 

 For proteomic analysis, data were parsed using custom R scripts designed for global and 

phosphoproteomic data (https://github.com/hickslab/QuantifyR). For global proteomic analysis, 

leading protein accessions from the protein measurements were used to identify each protein. 

Proteins were kept if there were at least 2 shared peptides and at least 1 unique peptide assigned. 

Only proteins identified across all three replicates in at least one condition were kept, and their 

Progenesis-normalized abundance columns were log2-transformed and conditional imputation 

was applied using the imp4p package33 to fill in any missing values. For conditions with at least 

one nonzero value, the impute.rand function was used with default parameters. For conditions 

were there were only missing values, the impute.pa function was used to impute small numbers 

centered at the lowest 2.5% of the values in each replicate. Statistical significance was calculated 

using a two-tailed, equal variance t-test with a Benjamini and Hochberg (BH) correction34. Fold-

change was calculated from the difference of the mean abundance values between conditions. 

Observations with an FDR-adjusted p-value <0.05 and a log2 transformed fold change of ±1 

were considered significantly changing. 

 For phosphoryation-enriched samples, groups in the peptide measurements data were 

reduced to satisfy the principle of parsimony, removing duplicated and matched peptides with 

identical sequence, modifications, and score. These were represented by the protein accession 

with the highest number of unique peptides, which was found in the protein measurements data, 

https://github.com/hickslab/QuantifyR
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else the protein with the highest confidence score assigned via Progenesis. For identical features 

with differing peptide identifications, duplicates were reduced to the peptide with the highest 

Mascot ion score. These results were filtered for only peptides containing phosphorylation. 

Identifiers were created for each of these features by joining the protein accession for each 

peptide to the amino acid and location of the site(s) of modification in the protein sequence. The 

data were then reduced to only unique identifiers by summing all of the contributing peak 

features which may come from different charge states, missed cleavages, and the presence of 

additional variable modifications. The peptide with the highest Mascot score in each group 

represented the corresponding identifier. Identifiers were then removed if they did not have at 

least one condition where all three replicates had nonzero values for their Progenesis-normalized 

abundances. These abundances were log2-transformed and imputation was applied to assign 

missing values using the same strategy outlined above. Statistical significance was calculated 

using a two-tailed, equal variance t-test and fold-change was calculated from the difference of 

the mean abundance values between conditions. Observations with a p-value <0.05 and a log2 

transformed fold change of ±1 were considered significantly changing. Protein accessions for 

each protein listed in the proteomic dataset and each identifier in the phosphoproteomic dataset 

were matched to their corresponding Uniprot accession using the Basic Local Alignment Search 

Tool (BLAST)35. These accessions were used to assign Gene Ontology (GO) terms for each 

accession in the global and identifier in the phosphorylation-enriched datasets. GO terms for the 

proteins and identifiers significantly changing were compared to the GO terms of the entire 

dataset to determine the fold-change enrichment and number of proteins/identifiers for each 

term. The top five GO terms for the significantly changing proteins/identifiers with a fold-change 

of at least 1.5 were identified.  
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4.3 Results and Discussion 

To examine the relationship between protein phosphorylation and inositol polyphosphates, 

phosphoproteomic differences between vip1-1 and its parent strain under normal and TOR 

inhibited (15 min rapamycin treatment) conditions were assessed (Figure 4.1). Phosphorylation 

changes can be seen in C. reinhardtii19 and other organisms36–38 with 15 min of TOR inhibition 

while protein turnover is minimized, ensuring differential measurements are the result of changes 

in phosphorylation and not overall protein abundance. This experimental design allows 

investigation of changes (1) in phosphorylation with the loss of inositol hexakisphosphate and 

diphosphoinositol-pentakisphosphate kinase (VIP1), and (2) in the response of each strain when 

TOR is inhibited, revealing ties between inositol polyphosphate and TOR signaling.   

Differential global proteomics performed between the four conditions quantified a total of 

2,460 proteins with a median CV of 23% (Table S4.1). Of these proteins, 646, or 26% had 

phosphosites detected in the phosphoproteomic analysis. No proteins were significantly changing 

when a t-test was performed between the control and rapamycin treated conditions for each strain 

(Figure 4.2), confirming that protein turnover is minimal with 15 min treatment.  

4.3.1 Phosphoproteomic Analysis 

Phosphopeptide enrichment resulted in the quantification of 3986 phosphopeptides with a 

unique set of phosphorylation modifications, referred to as identifiers, with a median CV of 29% 

across biological replicates (Table S4.2). These identifiers came from 1935 proteins, with the 

majority of proteins only having one identifier (57%). Nearly 90% of identifiers contained only 

one phosphorylation site in this dataset, following the established global phosphoproteome of C. 

reinhardtii39. Following rapamycin treatment, 1,029 identifiers were significantly changing in 

vip1-1, 228 decreasing and 801 increasing (Figure 4.3a), while 217 identifiers were significantly 
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changing in the parent strain, 129 decreasing and 88 increasing (Figure 4.3b). Comparisons 

between the two strains yielded 1625 identifiers significantly changing between the control wild-

type and vip1-1 conditions (Figure 4.3c) and 346 significantly changing between the rapamycin-

treated conditions (Figure 4.3d). The decrease in significantly changing phosphosites with 

rapamycin treatment is suggestive that the two strains move toward a similar state of 

phosphorylation in response to the stress of rapamycin treatment, despite having significantly 

different phosphoproteomes under normal conditions. Given that there are no significant changes 

in protein expression within a given strain in the global proteomic samples with rapamycin 

treatment (Table S4.1), the changes quantified here are likely observed changes in 

phosphorylation rather than changes in protein abundance. This is further supported by previous 

work showing little change in the global proteome of C. reinhardtii after an hour of TOR 

inhibition20. The higher number of identifiers significantly changing in phosphorylation in vip1-1 

(Figure 4.3a) in response to rapamycin treatment compared to that of wild-type (Figure 4.3c), 

suggests that the loss of VIP1 impacts the TOR signaling cascade, with more phosphorylation-

mediated regulation required to circumvent the loss of InsP in the absence of VIP1. 

4.3.2 Hierarchical Clustering and Gene Ontology Analysis 

Hierarchical clustering was performed on the identifiers significantly changing with 

rapamycin treatment in vip1-1 and wild-type (Figure 4.4). Some of these identifiers, when sorted 

into four clusters, separate based on those that have the same trend with rapamycin treatment 

between the two strains (B and D in Figure 4.4a, 282 identifiers; A and C in Figure 4.4b, 101 

identifiers), while others have the opposite trend with treatment (A and C in Figure 4.4a, 747 

identifiers; B in Figure 4.4b, 62 identifiers). This shows there is a distinct delineation between 
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phosphorylation that is dependent on VIP1 following TOR inhibition, and that the loss of VIP1 

generates a phosphoproteomic response distinct from the response seen in the parent strain. 

 GO analysis of the significantly changing identifiers in vip1-1 (Figure 4.5) revealed 

significantly increasing identifiers are enriched in the biological processes of spliceosome 

mRNA splicing, rRNA processing, and mRNA processing among others, as well as molecular 

functions of RNA and DNA binding. Identifiers significantly decreasing in vip1-1 with 

rapamycin treatment were enriched in photosynthesis-related GO terms, including photosystem 

II (PSII) assembly, PSII stabilization, and the PSII oxygen evolving complex. Most of the GO 

terms found to be enriched in the significantly changing identifiers of vip1-1 are unique to this 

strain, with a mostly unique set of GO terms enriched in the identifiers significantly changing in 

wild-type (Figure 4.6). 

4.3.3 Phosphosites Modulated by TORC1 Inhibition – Known and Putative TOR 
Substrates 

 A total of 42 identifiers from 22  proteins with homology to known TOR signaling 

pathway components21 had phosphorylation identified in this study (Table S4.3). Of those 

identifiers, 12 significantly increased and two significantly decreased in vip1-1 following 

rapamycin treatment. In the parent strain, one identifier significantly increased following 

rapamycin treatment and four significantly decreased. Interestingly, vip1-1 and the parent strain 

did not share any of the same significantly changing identifiers, indicating that the loss of InsP 

signaling resulting from the absence of VIP1 has a fundamental change on the TOR signaling 

pathway, further demonstrating the previously proposed synergism between TOR and InsPs26. 

This is illustrated by the identification of an uncharacterized phosphosite on TOR 

(Cre09.g400553.t1.1, S2598), which significantly increased in the vip1-1 mutant following 

rapamycin treatment (FC: 4.98), but did not change in the parent strain. This site was previously 
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identified in a C. reinhardtii TOR inhibition study19, but was not seen significantly changing 

with inhibition. This site does not align with the known regulatory phosphosites (S2159/T2164) 

of human mammalian TOR (mTOR, Uniprot P42345) or the autophosphorylation site they 

promote (S2481)40, making it hard to determine the exact significance of this site. However, its 

significant increase in vip1-1 with rapamycin treatment, along with its position in the kinase 

domain based on homology with mTOR, suggests that it may play a role in regulating the 

activity of TOR and possibly connect to InsP signaling, as well as contributing to the 

hypersensitivity of vip1-1 to TOR inhibition.  

 The La-domain RNA-binding protein (LARP, Cre10.g441200.t1.2) had four significantly 

changing identifiers, with two identifiers (S670, S812) increasing in the vip1-1 mutant. The 

parent strain had significantly increased phosphorylation on S958 and significantly decreased 

phosphorylation on S817, the latter of which was previously identified following TOR 

inhibition19. Despite the identification of LARP as a downstream target of TOR and S6K in both 

Chlamydomonas and Arabidopsis19,41, the role of LARP in phototrophs has not been fully 

elucidated. However, heat stress in Arabidopsis generates LARP-dependent degradation of 

mRNA42, connecting stress response – and TOR by association – to LARP, as predicted from 

mammalian signaling pathways. In mammalian cells, LARP phosphorylation requires TOR 

activity and is also a target of both mTORC1 and S6K, as mirrored in Arabidopsis and 

Chlamydomonas43–45. Additionally, studies in mammalian cells have shown that non-

phosphorylated LARP interacts with 5’ and 3’ UTRs of mRNAs, inhibiting their translation46, 

while others have shown mTORC1 uses LARP to control Terminal Oligopyrimidine (TOP) 

mRNA translation46,47. In Chlamydomonas, TOR inhibition leads to a decline in protein 

translation, similar to that shown in mammalian cells12. Thus, the significantly decreased 
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phosphorylation on S817 in the parent strain of C. reinhardtii may mirror the mTOR pathway by 

inhibiting translation of mRNA. However, this site was not significantly decreased in the vip1-1 

mutant following rapamycin treatment, suggesting a potential dependence on InsP signaling on 

the dephosphorylation event. While mammalian inositol polyphosphate multikinase (IMPK) 

binds to mTOR and RAPTOR to mediate mTOR signaling via amino acids, no other direct 

connections between LARP, TOR, and InsPs are currently known48.   

In mammalian cells, RAPTOR can be directly phosphorylated by AMP kinase (AMPK), 

Glycogen Synthase Kinase 3 (GSK3), and nemo-like kinase, the latter of which has no 

homologue in Chlamydomonas49–51. Both AMPK and GSK3 phosphorylation significantly 

changed in the vip1-1 mutant, with S29-S32 from the β2 subunit of AMPK (Cre10.g457500.t1.1) 

significantly decreasing (FC: 0.25) and both S322 (FC: 2.95) and Y323 (FC: 2.28) significantly 

increasing on GSK3 (Cre12.g511850.t1.2). The β2 subunit of AMPK was previously observed to 

have an increase of FC 2.27 on S25 following rapamycin inhibition19; although this site was 

observed in the current study, it did not significantly change in either strain. The increase in 

phosphorylation of S29-S32 on the vip1-1 mutant, however, suggests an overlap of InsP 

signaling with either the TOR or AMPK pathway. In mammalian cells, phosphorylated IMPK 

binds to AMPK as a nutritional sensor, whereby the AMPK pathway is activated following 

glucose intake52. It is possible that cross-talk between AMPK and InsPs performs a similar 

function to signal changes in nutritional availability to TOR in plants; however, additional 

studies are needed to fully delineate this role.  

GSK3 also experienced changes in phosphorylation in the vip1-1 mutant not previously 

identified in the wildtype, further suggesting a dependence on InsPs for a fully functional TOR 

pathway.  The tyrosine phosphorylation on Y323 is located in the activation loop and is 
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conserved in higher order eukaryotes as a known regulator of GSK3 kinase activity53,54. In 

mammalian cells, GSK3 is a component of a feedback loop with TOR, acting as an upstream 

regulator of TOR through the tuberous sclerosis complex, but also inhibited indirectly by TOR 

through S6K phosphorylation55. Whereas active TOR promotes protein translation and cell cycle 

progression, this is inhibited by active GSK3. In the vip1-1 mutant, the increase in 

phosphorylation on Y323 suggests GSK3 activation, which would further participate in the 

feedback loop to inhibit TOR. This elevated secondary inhibition may contribute to the 

hypersensitivity of the vip1-1 mutant to rapamycin, compared to the parent strain. Further, this 

rapid inactivation of GSK3 in the vip1-1 mutant that is not observed in the parent strain suggests 

that InsP signaling is used to modulate the effects of nutritional sensing in wild type 

Chlamydomonas, potentially buffering the sensitivity of cells to perturbations that may be an 

artifact of small-scale environmental changes.     

TORC1 is known to regulate autophagy through phosphorylation of ATG13, which in 

turn prevents the activation of the ATG1 complex and inhibits autophagy 56. With inhibition of 

TOR, rapid dephosphorylation of ATG13 is observed, resulting in autophagy induction through 

the ATG1 complex activation57. Following rapamycin treatment, S1176 of ATG17 

(Cre16.g651350.t1.1), a scaffolding protein in the ATG1 complex58, increased by a FC of 3.29 in 

the vip1-1 mutant. In mammalian and yeast cells, ATG17 along with ATG13, ATG11, and 

ATG1 kinase form the ATG1 complex when ATG13 and ATG1 are dephosphorylated, initiating 

autophagy. This phosphorylation is known to be controlled at least in part by the TOR pathway. 

While TOR has been implicated in autophagy in C. reinhardtii59, further experimentation is 

needed to map and compare the algal signal mechanisms to the pathways of other eukaryotes in 

order to distinguish the role this ATG17 phosphorylation has on the induction or inhibition of 
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autophagy. However, its increase in phosphorylation in the vip1-1 mutant may suggest that InsP 

signaling is required for its activation or deactivation. 

4.3.4 Regulation of Photosynthesis Through Phosphorylation 

 It is well-established that protein phosphorylation plays a pivotal role in the regulation of 

phosphorylation through changes in molecular recognition, ligand binding, and protein 

interactions60–63. In a previous study, TOR was shown for the first time to regulate 

photosynthesis based on changes in reversible oxidation20, but little is known about how TOR 

and InsP signaling coordinate together to impact the regulatory phosphosites of photosynthetic 

machinery. In this work, 80 identifiers from 34 photosynthesis-related proteins were quantified, 

17 of which have unique differential phosphorylation in vip1-1 compared to the parent strain 

following TOR inhibition (Table S4.4). When global proteomic changes between the two strains 

were analyzed, PSII was particularly prominent in the analysis, with significant decreases to four 

of its six catalytic subunits, including D1 and D2 (gi|41179021|ref|NP_958377.1 and 

gi|41179063|ref|NP_958420.1, respectively), both with FCs of 0.23, and the two reaction center 

proteins, C43 and C47 (gi|41179065|ref|NP_958422.1 and gi|41179032|ref|NP_958388.1, 

respectively), with FCs of 0.27 and 0.22. Without these subunits, PSII is rendered useless, and 

can no longer use electrons to oxidize water nor participate in linear electron transfer64. When the 

phosphoproteomic results are combined with global abundances showing severely diminished 

PSII and, by association, linear electron transport (Table S4.1), these data indicate an expediency 

toward cyclic electron transport (CET) in the vip1-1 mutant that supersedes that of the parent 

strain, indicating a pronounced role for InsP signaling in the maintenance of linear electron 

transport.  
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 The most well established regulator of CET is proton-gradient related-like protein 1 

(PGRL1, Cre07.g340200.t1.1)65. In C. reinhardtii, PGRL1 combines with photosystem I (PSI), 

light harvesting complex 1 (LHC1), light harvesting complex II (LHCII), cytochrome b6f, and 

ferredoxin-NADPH oxidoreductase (FNR) to form a supercomplex through which the mode of 

photosynthetic electron flow is determined66. PGRL1 is differentially phosphorylated in response 

to distinct environmental cues, enabling precise modulation of electron flow through which cells 

can rapidly adjust to exogenous stressors67. Following rapamycin treatment, the parent strain had 

significantly decreased phosphorylation on S50 by a FC of 0.25. This site was also shown to be 

decreasing in previous work following rapamycin inhibition, but did not meet the threshold for 

significance19. Since we have previously observed changes in photosynthetic electron fluxes 

reminiscent of CET following TOR inhibition in Chlamydomonas20, it is likely that the decrease 

in phosphorylation on S50, in addition to the previously shown significant increase in oxidation 

on C63, is related to the upregulation of CET. This is further demonstrated when comparing the 

parent strain with vip1-1 before rapamycin treatment, where the phosphorylation of S50 is 

decreased by a FC of 0.23 in the mutant strain (Figure 4.7). This decreased phosphorylation, 

which is of similar magnitude to the change in phosphorylation following rapamycin in the 

parent strain, occurs in the presence of significant decreases in global abundance of the catalytic 

components of PSII. Combined, these results suggest that the vip1-1 strain has already converted 

to CET, even before rapamycin inhibits TOR. 

 In Arabidopsis, PGRL1 is phosphorylated by state transition kinase 8 (STN8) in order to 

“fine-tune” the shift between linear and cyclic electron flow and slow the transition back to 

linear transport following a decrease in stress conditions68. While there is no direct homolog in 

Chlamydomonas, the most similar protein is sugar transporter-like protein 1 (STL1, 
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Cre12.g483650.t1.2), a functionally uncharacterized thylakoid protein kinase69. One novel 

phosphosite on STL1 significantly increased in the vip1-1 mutant following rapamycin treatment 

(T126, FC: 3.52). Previously characterized phosphorylation has shown an increase on T167 via 

an state transition protein kinase 7 (STN7)-dependent manner only in state 2, suggesting that 

STN7 acts upstream of STL1 in a phosphorylation-mediated signaling pathway69. 

Phosphorylation on T126 may play a similar role in activating or deactivating STL1 in response 

to TOR inhibition. Additionally, this identifier increases in wild type with inhibition as well (FC: 

1.41), suggesting that the absence of VIP1 upregulates this signaling pathway. 

  Photosynthetic state transitions involve the reversible shift of light harvesting antennas 

between PSII and PSI, through which light capture can be modulated to decrease the occurrence 

of overexcitation on either photosystem70. The transition from state 1 to state 2 induces the 

switch to CET, where the binding of LHCII to PSI initiates CET. This transition is modulated 

through cross-talk between redox and phosphorylation signaling; imbalances in the excitation 

between the two photosystems are reflected in a change in redox state, which then modulates the 

phosphorylation of the LHCs71. In this study, phosphorylation was observed on light harvesting 

minor chlorophyll a/b binding protein of photosystem II (CP26, Cre16.g673650.t1.1), a 

component of LHCII with several established phosphorylation sites 72. Of the four identifiers 

quantified from this protein, one significantly increased in the parent strain following rapamycin 

treatment (T10, FC: 2.44) while another significantly decreased in vip1-1 following treatment 

(S202, FC: 0.22). Phosphorylation on T10 has previously been identified as a target of 

phosphorylation in Chlamydomonas without the presence of external stressors 39. However, 

while both CP26 and CP29, another minor LHC protein, have been shown to be phosphorylated 

under optimal conditions, both increase in phosphorylation while in state 273, further supporting 
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an enhanced role of CET following TOR inhibition. Thus, while the exact function of T10 

phosphorylation is unknown, it may play a role in modulating the antenna complex toward the 

shift to CET. The decrease in the vip1-1 mutant on S202, a site that does not differentially 

change in the parent strain, likely occurs because the vip1-1 mutant is already shifted toward 

CET, making this decrease likely related to a further heightened stress condition. This is 

supported through the rapamycin induced increase in phosphorylation on S43 of the PSII 10 kDa 

polypeptide (PsbR, Cre06.g261000.t1.2, FC: 2.41), which only occurred in the vip1-1 mutant. 

S43 has been previously identified in C. reinhardtii phosphoproteomic studies 39,69,74,75, but is 

only phosphorylated under state 2 conditions69,76. Thus, the pronounced increased in vip1-1 

following rapamycin treatment, likely represents heightened stress beyond the established 

transition of CET.  

One of the first indications of stress on the photosynthetic apparatus is the loss of the 

extrinsic proteins of PSII, through which oxygen production and the corresponding linear 

electron flow is severely diminished. These extrinsic proteins, particularly photosystem II 

oxygen evolution enhancer protein 1 (PsbO, Cre09.g396213.t1.1), have been shown to be highly 

phosphorylated72, indicating a substantial role for phosphorylation in photoassembly and 

disassembly. In this work, a total of 15 identifiers were quantified, with four of these identifiers 

significantly decreasing in phosphorylation following TOR inhibition in the vip1-1 mutant 

(Table S4.4). While phosphorylation of PsbO by wheat kinase STARTS1 (WKS1) in wheat 

reduces photosynthetic efficiency77, the role of phosphorylation on PsbO in C. reinhardtii is still 

unknown72. However, PsbO phosphorylation in Chlamydomonas has been proposed to play a 

role in causing the monomerization of PSII during the PSII repair cycle78. Large scale 

differential changes in global abundance across the PSII repair cycle pathway suggests an overall 
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increase in damaged PSII in the vip1-1 mutant. The decrease in phosphorylation on PsbO may 

therefore indicate an abandonment of the PSII repair pathways, as the photosynthetic apparatus 

irreversibly shifts to CET. A permanent shift to state 2 conditions following rapamycin treatment 

could be a contributing factor to the rapamycin hypersensitivity observed in the vip1-1 mutant. 

4.3.5 Phosphorylation of InsP Signaling-Related Proteins 

Myo-inositol derivatives perform a variety of essential functions in eukaryotic cells and are 

present in both water-soluble InsPs as well as water-insoluble phosphatidylinositols (PIPs)79. 

Whereas InsPs are primarily responsible for signaling activity, PIPs and InsPs are inherently 

linked; signal-activated phospholipase C (PLC) hydrolyzes PIP to generate InsP6 through inositol 

dual specificity polyphosphate multi-kinases80. Additionally, PIP can be converted to PIP2, 

which uses PLC to release InsP3 and diacylglycerol, the latter of which is phosphorylated via 

diacylglycerol kinase to generate phosphatidic acid81. The released InsP3 can be further 

phosphorylated to generate InsP6, which activates a secondary Ca2+ signaling cascade and is later 

phosphorylated to generate InsP7 and InsP8
82. Hence it is not surprising that the vip1-1 mutant 

produced a varied pattern of phosphorylation, both before and after rapamycin treatment, 

compared to the parent strain. 

Before rapamycin treatment, vip1-1 produced significantly different phosphorylation across 

39 identifiers from 23 unique proteins (Table S4.5). Of these 39 identifiers, seven were 

increasing in phosphorylation including S1079 of calcium/calmodulin dependent kinase kinase 

(CDPKK2, Cre17.g705350.t1.1, FC: 6.6), and S255-S264 of phosphorus starvation response 1 

protein (PSR1, Cre12.g495100.t1.2, FC: 6.0). Both CPDKK2 and PSR1 regulate components of 

the TOR pathway. CDPKK2 is proposed to relate to nutritional sensing where it is activated via 

phosphorylation following a depletion in energy reserves83. Following nitrogen deprivation, 
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S1210 increased in phosphorylation by 1.9-fold, which deactivated the protein phosphatase 2A 

(PP2A) network, activated the AMP kinase signaling network, and led to the downregulation of 

TOR. Although our study did not identify phosphorylation on S1210, the increase in 

phosphorylation on S1079 may relate to the hypersensitivity of the vip1-1 mutant to rapamycin 

treatment. Similar to CDPKK2, PSR1 operates upstream of TOR, downregulating LST8 and 

subsequently downregulating TOR activity following phosphorus starvation23. This is the first 

known study to identify phosphorylation on PSR1. However, the phosphorylation of PSR1 may 

relate to downregulation of TOR via LST8; the loss of InsPs in the vip1-1 mutant likely decrease 

the availability of inorganic phosphate in the cell, thus resulting in a pseudo-starvation response, 

supported through the increase in TAGs observed in vip1-126.   

The remaining 40 identifiers with significant differences in phosphorylation are all decreased 

in phosphorylation that the parent strain, with fold changes ranging from 0.0067 – 0.38. The 

largest decrease in phosphorylation was observed on S803 of the phosphoprotein phosphatase 

2C-like protein (PP2C, Cre07.g334750.t1.1, FC: 0.0067). In mammalian cells, secondary 

messengers of insulin activate PP2C in order to inactivate GSK3 and AMPK, thus implicating 

PP2C in nutritional sensing upstream of mTOR84. Although PP2C has not been well 

characterized in C. reinhardtii, it has previously been shown to increase in phosphorylation 

following both rapamycin and AZD8055 treatment, indicating that it is likely related to 

nutritional sensing and the TOR pathway in algae as well19. 

Upstream of PP2C, there was a 0.19 FC decrease on T231 of phosphoinositide-specific 

phospholipase C family protein (PI-PLC, Cre06.g270200.t1.1) in vip1-1 compared to the parent 

strain. Plant PI-PLC is involved in signaling transduction for guard cell signaling, biotic and 

abiotic stress response, systemic acquired resistance, and  carbon fixation, but little is known 
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about the role of phosphorylation in regulating these activities in plants specifically85. In 

mammalian cells, PI-PLC is a known target of phosphorylation by c-AMP dependent protein 

kinases (PKA) and protein kinase C at multiple sites that impact the enzyme’s activity, with 

phosphorylation by PKA inhibiting the activity of the enzyme while phosphorylation from 

protein kinase C does not seem to impact PI-PLC activity directly86. Protein kinase C does not 

have a known homolog in phototrophs80.  However, PI-PLC enzymatically generates InsP3, 

which can undergo a string of phosphorylations to form the high-energy InsP7 and InsP8, both of 

which are significantly downregulated in the vip1-1 mutant compared to the parent strain26. 

Therefore, the decrease in phosphorylation may result in decreased catalysis and subsequent 

InsP3 in C. reinhardtii.  

Phosphoprotein phosphatase 2A also contained differential basal phosphorylation in the vip1-

1 mutant compared to the parent strain, demonstrating addition overlap between the TOR 

pathway and InsP signaling. There was significantly less phosphorylation on three PP2A 

identifiers in the vip1-1 mutant including two from the regulatory subunit PR55 

(Cre01.g055420.t1.1; S168, FC: 0.21; S159, FC: 0.27) and one from the PP2A regulatory subunit 

related (Cre06.g260600.t1.2, S108, FC: 0.28). There is a well-defined relationship between TOR 

signaling and autophagy13; PP2A is associated through the dephosphorylation of ATG13, 

allowing for the formation of the ATG1 complex which initiates autophagy87,88. PP2A is a 

holoenzyme composed of three subunits: a scaffolding subunit (A), catalytic subunit (C), and 

regulatory subunit (B). Depending on the organism, there can be many types/families of the B 

type regulatory subunit, which contributes to its specificity89. Genomic analysis of C. reinhardtii 

revealed four catalytic subunits, two scaffold units, and five regulatory units of PP2A based on 

sequence similarity89. The catalytic subunit of PP2A is known to be regulated via post-



 
 
 

113 

translational modifications, including phosphorylation of a conserved C-terminal tyrosine that 

diminishes PP2A activity90. However, this is the first evidence that there may also be 

phosphorylation events on regulatory subunits that could be involved in the activation of 

autophagy. 

Interestingly, rapamycin treatment only significantly changed the phosphorylation of five 

identifiers from four proteins in the parent strain, none of which significantly changed in the 

vip1-1 mutant. However, 25 unique identifiers significantly changed in the vip1-1 mutant, with 

four decreasing and 21 increasing. While the loss of VIP1 clearly causes a stressed state in C. 

reinhardtii in addition to an altered pattern of phosphorylation, rapamycin treatment seems to 

equilibrate the two strains toward a similar state. This is illustrated by S1020 on 

phosphatidylinositol 4-kinase (PI4K, Cre05.g245550.t1.1), which significantly increased with 

rapamycin treatment in vip1-1 by a fold change of 4.08. Additionally, while the protein 

abundance of PI4K did not significantly change following rapamycin treatment, it was 

significantly less abundant in the vip1-1 mutant compared to the parent strain without rapamycin 

treatment, with a FC of 0.059. As the phosphopeptide abundance is not normalized to the global, 

the reported increase in phosphorylation is therefore a severe underestimation of the increase in 

phosphorylation compared to the parent strain. PI4K synthesizes phosphatidylinositol 4-

phosphate, an important membrane-bound component of the InsP signaling pathway, which is 

further phosphorylated to form PIP2. PIP2 is hydrolyzed to generate diacylglycerol and InsP3, a 

precursor to VIP1 target InsP6
91. Previous work has shown numerous phosphorylation sites on 

human PI4K, which may weakly impact its activity. However the exact mechanism through 

which this regulation occurs is not known, and the site identified here is not conserved in the 

sites identified on mammalian PI4K92. Interestingly, this site did not change in the parent strain 
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following rapamycin treatment. Additionally, comparing the abundance after rapamycin 

treatment in the vip1-1 mutant with the parent strain shows that the phosphorylation is not 

significantly different. This suggests that the vip1-1 mutant, while under stress before the 

treatment, reorients to a phosphorylation state similar to that of the parent strain.  

4.4 Conclusions 

The link between InsP signaling and the TOR pathway has only been recently established. 

Through the phosphoproteomic characterization of vip1-1, it is clear that InsPs are necessary to 

maintain basal metabolic networks. Differential phosphorylation sites were identified in the TOR 

pathway that were unique to vip1-1 with rapamycin treatment, suggesting that VIP1 and InsP 

signaling is necessary for the regulation of the TOR pathway following inhibition. This work 

also supports a link between TOR, InsP and autophagy regulation, with several novel regulatory 

phosphosites identified on critical components of autophagy activation. While more work is still 

needed to characterize the exact mechanisms by which these phosphorylation events are 

regulated, this data set provides a preliminary examination into the interplay between InsPs, 

specifically InsP7 and InsP8 and TOR, providing a list of potential targets for additional 

validation and mechanistic studies. 
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4.5 Figures 

 

 

Figure 4.1 Proteomic workflow for analysis of vip1-1 and wild-type CC-1690 mt+ C. reinhardtii 
cells treated with rapamycin and DMSO (control) for 15 min. After treatment, proteins were 
extracted and digested with trypsin. A 25 µg global protein aliquot was taken of each sample 
while 1 mg was enriched for phosphopeptides before all samples were analyzed via LC-MS/MS.  
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Figure 4.2 Global proteomic results. Volcano plot of two-tailed equal variance t-tests between 
each strain with and without rapamycin (Rap.) treatment with a Benjamani-Hochberg FDR 
adjustment.  
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Figure 4.3 Phosphoproteomic results. Volcano plots of two-tailed equal variance t-tests between 
each strain with and without rapamycin (Rap.) treatment (a. and b.) and between strains (c. and 
d.). 
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Figure 4.4 Hierarchical clustering of the identifiers significantly changing (p < 0.05, FC > ±2) 
in: a.) vip1-1 and b.) wild-type.  
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Figure 4.5 vip1-1 Phosphoproteomic Gene Ontology (GO) Analysis. a.) Count of the number of 
proteins in the top 5 biological process (black), cellular component (green) and molecular 
function (purple) GO terms with a fold-change enrichment of at least 1.5 from identifiers 
significantly more abundant in vip1-1 with rapamycin treatment. Cells are shaded to reflect fold-
change for each GO term. b.) Count of the number of proteins in the top 5 biological process 
(black), cellular component (green) and molecular function (purple) GO terms with a fold-
change enrichment of at least 1.5 from identifiers significantly less abundant in vip1-1 with 
rapamycin treatment. Cells are shaded to reflect fold-change for each GO term.  
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Figure 4.6 Wild-type Phosphoproteomic Gene Ontology (GO) Analysis. a.) Count of the number 
of proteins in the top 5 biological process (black), cellular component (green) and molecular 
function (purple) GO terms with a fold-change enrichment of at least 1.5 from identifiers 
significantly more abundant in the wild-type strain with rapamycin treatment. Cells are shaded to 
reflect fold-change for each GO term. b.) Count of the number of proteins in the top 5 biological 
process (black), cellular component (green) and molecular function (purple) GO terms with a 
fold-change enrichment of at least 1.5 from identifiers significantly less abundant in the wild-
type strain with rapamycin treatment. Cells are shaded to reflect fold-change for each GO term.   
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Figure 4.7 The differential phosphorylation of the photosynthetic apparatus in the vip1-1 mutant 
compared to the parent strain. Proteins colored green show proteomic coverage in the dataset 
while proteins colored grey do not. Each significantly changing phosphosite was localized on a 
unique phosphopeptide. Non-transformed fold changes are reported.  
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CHAPTER 5:  Standard Operating Procedures for Protein Kinase Expression, Peptide 
Library Preparation and in vitro Kinase Screening 

5.1 Introduction 

High throughput in vitro approaches to delineate kinase-substrate relationships can vary 

in complexity and procedure based on the organism and kinase of interest. In the Hicks lab, we 

are interested in studying the kinases and their targets that are involved in the target of rapamycin 

(TOR) signaling pathway in photosynthetic organisms. One approach we use is a high 

throughput kinase screening method (Figure 5.1), where peptide targets of a kinase of interest are 

identified via mass spectrometry. This screening platform consists of four primary steps: 

generation of a kinase of interest, preparation of a substrate library from a cell lysate, screening, 

and analysis of the putative substrates. Screenings require a purified active kinase sample, which 

is either purified from its host organism or expressed using recombinant DNA technology. 

Library preparation must be optimized for each species of interest, including culturing and 

extraction conditions.  When screening, cofactors and the concentrations of all of the 

components need to be optimized to maximize kinase activity. Additionally, after screening an 

enrichment method is required to concentrate putative substrates prior to analysis by LC-

MS/MS. This chapter focuses on the standard operating procedures optimized and utilized in the 

in vitro screening of kinases from Chlamydomonas, specifically kinases suggested to be involved 

in the TOR signaling pathway, using a peptide substrate library. These procedures are used in 

Chapter 6, which describes the validation of this screening platform. 
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5.2 Recombinant Kinase Production 

5.2.1 Selection of an Expression System 

Protein purification is a critical step in most characterization techniques aimed at identifying 

a protein’s function, structure, and interactions.  For the kinases studied in this work, there are 

several characteristics that were considered when designing the expression system used to create 

active enzymes. Based on previous transcriptomic analysis1, target of rapamycin (TOR) and 

ribosomal S6 kinase (S6K) as well as other kinases thought to be involved in TOR signaling are 

likely expressed at low levels, making it challenging to purify enough material from 

Chlamydomonas without the use of an overexpression system. While constitutive overexpression 

of genes in Chlamydomonas has been successfully implemented before2, more traditional 

expression systems using Escherichia coli allow for higher protein yields in a shorter amount of 

time and are generally easier to culture. With this in mind, an inducible expression system in E. 

coli strain BL21(DE3) (New England Biolabs) was used to express fusion protein kinases with a 

glutathione S-transferase (GST) tag for affinity purification. This strain of E. coli uses the highly 

specific T7 RNA polymerase for selective overexpression of the protein of interest and is lacking 

the Lon protease to reduce enzymatic cleavage of the protein product3.  The pGEX 6P-1 and 

pMAL vectors are both used in this work and contain the tac promoter, a synthetic combination 

promoter of the lac and trp operons4 induced by the addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG), a nondegradable analog of allolactose. Induction of protein 

expression typically occurs when cultures are in exponential growth and translation is maximal. 

The gene for each Chlamydomonas kinase was inserted to a pGEX 6P-1 vector (New 

England Biolabs, https://www.addgene.org/vector-database/2887/) that encodes for ampicillin 

resistance as well to allow for antibiotic-based selection. A sample vector, pAC1, which encodes 
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for the Chlamydomonas TOR extended kinase domain construct (CrTOR-EKD) is shown in 

Figure 5.2 along with a list of all of the Chlamydomonas kinase vector constructs in the Hicks 

lab. 

Plasmids for the other Chlamydomonas protein kinases of interest, Glycogen Synthase 

Kinase 3 (GSK3) Phosphoinositide-dependent Protein Kinase 1 (PDK1), and S6K were 

commercially synthesized. However, unpublished work from the Umen lab (Danforth Center) 

fully sequenced CrS6K, and confirmed that a portion of the protein is missing in the original 

sequence included in the Chlamydomonas database available on Phytozome. For this work, this 

portion of sequence was added to the CrS6K plasmid construct for expression of the complete 

protein. This was done commercially by Biomatik with the original CrS6K vector and the 

missing portion as double stranded DNA synthesized by Genewiz. The full sequences of the 

synthesized Chlamydomonas proteins can be found in Figure 5.3, with the inserted portion of 

CrS6K highlighted. 

The construction of an expression system for CrTOR was more challenging. One of the 

considerations when designing a recombinant expression system to overexpress a protein is the 

size of the expressed protein construct. Studies have shown that the probability of successful 

expression decreases considerably with constructs above 60 kDa due to problems with protein 

solubility, folding, and aggregation5. This is of great concern with the expression of 

Chlamydomonas TOR (CrTOR), which is 291 kDa in size and composed of 2691 amino acids 

(Cre09.g400553.t1.1). To address this issue, a construct was designed that contains only a 

portion of the protein corresponding to the kinase domain identified using the alignment of 

CrTOR to mammalian TOR (mTOR) via the Basic Local Alignment Search Tool (BLAST). 

While in vitro CrTOR activity has never been investigated using only the kinase domain, 
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previous work has shown recovery of TOR function in Arabidopsis TOR mutants with the 

expression of the a portion of the protein that includes the kinase domain and a portion of the 

FKBP12-rapamycin binding (FRB) domain6. Additionally, it has been shown when the kinase 

domain of CrTOR is heterlogously expressed and then immobilized, it has enough structural 

similarity to full-length CrTOR that it can bind and precipitate Chlamydomonas lethal with 

SEC13 protein 8 (CrLST8), a known component of TORC1, from a cell extract7. Based on this 

work, the corresponding section of CrTOR was identified, amplified by PCR from a 

Chlamydomonas cDNA library, digested and cloned into a pGEX6P-1 plasmid for expression in 

E. coli cells. This construct is referred to as the Chlamydomonas TOR Extended Kinase Domain 

(CrTOR-EKD) (Figure 5.3).  

Arabidopsis pyruvate dehydrogenase kinase (AtPDK), a well-studied highly specific kinase, 

was used to validate this platform. A strain of E. coli already transformed with a pMAL vector 

encoding for AtPDK with a maltose binding protein (MBP) affinity tag and a β-lactamase gene 

to confer for ampicillin resistance was obtained from the Miernyk lab at the University of 

Missouri. With the use of a different vector and affinity tag, a unique set of parameters are used 

for the expression (5.2.4) and purification (5.2.7) of this protein. 

5.2.2 Kinase Mutant Construction 

For screening negative controls, we were interested in designing a construct that would allow 

for the control to be as similar to the active samples as possible, without any phosphorylation 

occurring. To do this, inactive kinase mutants were designed which can be expressed and 

purified alongside the active kinase. These inactive mutants were made using the Q5 Site 

Directed Mutagenesis Kit (New England Biolabs) with a single base pair substitution (Figure 

5.4). In the conserved kinase domain of nearly all kinases, there is a conserved His-Arg-Asp 
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(HRD) motif, and it is well established that mutation of the Asp results in inhibition of any 

catalytic activity8-12. Based on the conserved kinase domains for each kinase of interest, DNA 

encoding for the HRD motif was identified (Figure 5.3) and non-overlapping primers were 

designed using NEBaseChanger and then synthesized by Integrated DNA Technologies (Table 

5.1). The primers contain a single base change that modifies the aspartic acid of the HRD motif 

to an alanine on the forward primer. PCR is used to exponentially amplify the plasmid using the 

mutant primers and the Q5 Hot Start High-Fidelity DNA Polymerase. After PCR, the amplified 

DNA is added to the Kinase-Ligase-DpnI (KLD) enzyme mix for phosphorylation and ligation 

of the mutant plasmids as well as digestion of the parent template. After this the plasmids are 

transformed into competent E. coli cells, and colonies containing the plasmid are selected for 

using antibiotic resistance. Sequencing was done on the resulting plasmid to confirm correct 

substitution. 

Day 1: 

1. Streak the E. coli strain transformed with the corresponding plasmid construct you wish 

to mutate from a glycerol stock onto a lysogeny broth (LB) agar plate with ampicillin 

(made in the Hicks lab, see below) at a concentration of 100 µg/mL. Streak one quadrant 

of the plate at a time, using a fresh inoculation loop for each quadrant. The first quadrant 

is streaked from a small amount of the glycerol stock with each subsequent quadrant 

diluting from the previous with a single stroke from a fresh inoculation loop (Figure 5.5). 

Individual colonies typically for after 16 – 18 h incubation, so streaking after 3:00 pm is 

recommended for overnight incubation. 

a. When making LB agar plates, 500 mL of broth makes about 1 sleeve of plates (20-25 

total).  
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i. Add 17.5 g of LB agar (BD Difco) to 500 mL MilliQ water in a 1 L small mouth 

media bottle.  

ii. Autoclave media for 45 minutes and let cool in the hot water bath set to 51 °C for 

one h.  

iii. Add 500 µL of 100 mg/mL ampicillin in water stock to the media. It is important 

to add the antibiotic after the media has cooled in the hot water bath to prevent 

degradation of the antibiotic. 

iv. Open one sleeve of empty petri dishes in the biosafety cabinet and place them in 

stacks of 3-4 dishes based on how many you can pick up with a single hand.  

v. Remove media from the water bath, wipe the bottle dry, and pour the media into 

the petri dishes starting with the bottom plate of each stack. Hold the rest of the 

stack and cover in one hand, and pour the media into the bottom dish so that the 

bottom of the plate is just covered (about 4-6 mm in thickness). Replace the cover 

and bottom of the next dish over the poured plate. Repeat this for each stack of 

plates until all of the media is poured. The last plate may need to be discarded if 

there is not sufficient media to pour a complete plate or if agar begins to solidify, 

resulting in lumps.  Plates should be stacked in the corner of the hood to solidify 

overnight. 

b. 100 mg/mL ampicillin stocks are made in bulk and stored in 1 mL aliquots at -20 °C. 

i. Dissolve 1 g of ampicillin, sodium salt in 10 mL of MilliQ water. (Anhydrous 

ampicillin is not readily soluble in water without adjusting the pH.) 

ii. Filter sterilize the stock by running it through a 0.22 µm syringe filter. 

iii. Divide the stock into 1 mL aliquots and store them at -20 °C. 



 
 
 

136 

2. Label the plate with the corresponding strain, construct, date, and initials, and place in the 

stationary incubator at 37 °C overnight.  

Day 2: 

1. Remove plate from the incubator, seal with parafilm, and store at 4 °C after 16-18 h of 

incubation. Plates can be stored at 4 °C for up to two weeks. 

2. After 3:00 pm, prepare a starter culture. Dispense 5 mL of LB into a 15 mL culture tube, 

using flame sterilization to minimize contamination, flaming the lid of the bottle and the 

pipette prior to collection of the media from the stock. Keep the culture capped between 

each step to minimize contamination. 

a. LB media is prepared in the Hicks lab. In a 500 mL small mouth bottle, add 12.5 g of 

LB broth powder to 500 mL MilliQ water. Stir until fully dissolved, place the cap on 

top of the bottle without tightening, and secure with a piece of autoclave tape. 

Autoclave for 45 min and store properly labeled in Kenan B328. 

3. Add 5 µL of 100 mg/mL ampicillin in water stock into the culture tube.  

4. Collect a single E. coli colony from the previously prepared LB plate using an autoclaved 

pipette tip. Insert this tip into the starter culture and pipette up and down several times to 

inoculate the culture. Cap the cultures to the first stopping point to allow airflow. 

5. Incubate this culture overnight for 16-18 h at 37 °C, 240 rpm, positioned at an angle in an 

orbital shaker incubator to maximize aeration. The starter cultures should be cloudy after 

incubation, indicating adequate cell density. 

6. Extract the plasmid DNA from this culture using the Qiagen QIAprep Spin Miniprep Kit 

following the manufacturers protocol. 
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7. Using a nanodrop microvolume spectrometer, measure the concentration of the extracted 

plasmid, and add Buffer EB from the Miniprep kit or 1mM TrisHCl, pH 8.5 to dilute the 

sample concentration to 10-25 ng of DNA per µL. 

8. Using nuclease-free water, suspend the synthesized primers to a stock concentration of 

100 µM, and then create a working stock of 10 µM for each primer using nuclease free 

water. 

9.  Using the manufacturer’s protocol, perform site directed mutagenesis on the purified 

plasmid using the Q5 Site-Directed Mutagenesis kit with the following suggestions: 

a. Cycling conditions in the first step will vary depending on the melting temperature of 

the primers. Use the annealing temperature (Ta) recommended by NEBaseChanger 

when the primers were designed. 

b. Chemically competent cells are kept at -80 °C, and should be thawed on ice for 30 

min prior to transformation with the KLD mix. 

c. Heat shock should be performed with the water bath set to 42 °C. 

d. Use LB + ampicillin plates for selection after transformation. These plates should be 

removed from the fridge and allowed to warm to room temperature for about an hour 

prior to plating. 

e. When plating, spread 800 µL across two selection plates (400 µL each) to increase 

likelihood of colonies forming. 

10. After overnight incubation, the selection plates should have colonies present, which 

indicate successful transformation of the plasmid. The number of colonies can vary 

depending on the construct and success of the mutagenesis, from 3 to more than 50. 
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11. Select a single colony from a selection plate and prepare a starter culture from this colony 

as described above. 

12. Use 500 µL of this starter culture to make a glycerol stock, and purify the plasmid from 

the remaining 4.5 mL using the Qiagen QIAprep Spin Miniprep Kit. 

a. To make a glycerol stock, combine 500 µL of culture with 500 µL 50% glycerol in a 

2 mL screw top cryovial. Pipette mixture until fully incorporated. Label cryovial with 

plasmid name, construct and date before flash freezing with liquid nitrogen and 

storing at -80 °C. 

13. Use this purified plasmid to confirm mutagenesis was successful by submitting a sample 

containing this plasmid and a sequencing primer to Genewiz for Sanger sequencing. (See 

the sample submission guidelines on the Genewiz website for more details.) 

a. The plasmid should be diluted with EB Buffer or 50 mM TrisHCl, pH 8.5 to a 

concentration that is dependent on the size of the plasmid (Table 5.2). 

b. Prepare your sequencing samples in 8-strip PCR tubes. Each sample should have 10 

µL or plasmid and 5 µL of sequencing primer diluted to 5 pmol/µL. 

c. The sequencing primer should be 100-500 bp away from the mutation site either on 

the forward or reverse strand. For all of the Chlamydomonas kinases, primers already 

existed within the range needed to sequence across the mutation site. These were 

either designed to confirm insertion of the gene into the vector, confirmed the 

insertion of the missing portion of the CrS6K sequence, or were standard primers for 

the pGEX-6P-1 vector available for free from Genewiz that are added to the purified 

plasmid sample after it is received. These standard primers can be found on the 
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Genewiz website. If a primer needs to be designed, recommendations on design can 

be found on the Genewiz website. 

d. Submit the sequencing samples to Genewiz no later than 3:00 pm on the Genewiz 

website. Place the PCR tubes and printed order information sheet into a sealed 

sandwich bag. Drop the sandwich bag into the Genewiz submission box, mounted to 

the wall outside room 3102 in Murray Hall. Sequencing results are typically available 

by 12:00 pm the next day via your Genewiz account. 

e. Use SnapGene Viewer to open the sequence file and confirm the successful mutation 

of the base pair needed to create the mutant kinase construct. 

5.2.3 E. coli Culturing 

All steps are performed under reproducible conditions in Kenan B328, using sterile 

techniques as needed. All cultures are started from a frozen glycerol stock stored at -80 °C. For 

growth, a small amount of the stock is streaked onto a LB agar plate with ampicillin and 

incubated at 37 °C until visible single colonies are formed, typically overnight. The presence of 

ampicillin selects for colonies containing the plasmid encoding for the kinase of interest. These 

plates are stable for up to two weeks when sealed and stored at 4 °C. 

Bacterial liquid starter cultures, each inoculated from a single agar colony, allow for more 

uniform growth across multiple large cultures than starting each culture separately from an agar 

colony. Cultures are incubated overnight (12-16 h) at 37 °C, shaking at 240 rpm in an incubator 

ensuring that the cultures have enough time to reach saturation so roughly the same number of 

cells are present in each culture. For this work, four starter cultures were used for each 1 L large 

culture to reduce the incubation time needed to reach mid-log growth phase.  
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Cultures for this work are grown by the liter in Fernbach flasks in terrific broth (TB; 

Research Products International), a highly enriched bacterial media made for high-density 

culturing. The cultures are inoculated with starter culture and ampicillin before incubation. For 

expression of AtPDK, glucose is also added to the cultures to minimize the production of 

amylase that may interfere with purification. Cultures are monitored via absorbance-based 

optical density until they reach mid-log phase, when the bacteria are adapted to their growth 

conditions, rapidly replicating, and not yet nutrient limited. For bacteria cultures, this is 

measured using optical density (OD600), with a range of 0.4-0.8 being about mid-log phase. The 

total volume of bacterial culture needed for adequate protein yield, ideally >20 µg of expressed 

kinase to allow for multiple screenings with multiple replicates, varied greatly depending on the 

construct, but was generally achievable with 2 L of culture. AtPDK, CrGSK3, CrGSK3 D288A, 

CrPDK1, CrTOR-EKD, and CrTOR-EKD D239A all express well with yields typically > 1 mg 

protein per L of culture. CrPDK1 D151A, CrS6K, and CrS6K D812A have lower yields, but 

typically can express 10-50 µg of kinase per L of culture. This yield is generally dependent on 

protein toxicity and solubility13, along with batch culturing conditions, which have been 

optimized here for the protein constructs of interest. 

Day 1: 

1. After 3:00 pm, streak the E. coli strain transformed with the corresponding plasmid 

construct from a glycerol stock onto an LB + ampicillin plate as described above (5.2.1 

Day 1).  

2. Label the plate with the corresponding strain, construct, date, and initials, and place in the 

stationary incubator at 37 °C overnight. 

Day 2: 
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1. Remove plate from the incubator, seal with parafilm, and store at 4 °C after 16-18 h of 

incubation. 

2. Prepare and autoclave TB in Fernbach flasks, 1 L per flask. To each flask add 5.2 g (4 

mL) of glycerol. It is easiest to set the flask directly on the scale and dispense using a 

scoopula rather than measuring the glycerol by volume. Then add 1 L of MilliQ water to 

each flask and 47.6 g of TB powdered broth. Stir until dissolved, cover the mouth of the 

flask with aluminum foil and secure the foil to the flask with autoclave tape. Autoclave 

for 45 min and let cool overnight prior to use. 

3. After 3:00 pm, prepare the starter cultures, 4 starters per L of large culture, as described 

above (5.2.1 Day 2).  

a. For expression of AtPDK only: Add 20 µL of 50% glucose stock to each starter 

culture. 

Day 3: 

1. To each Fernbach flask containing 1 L TB, add 1 mL of 100 mg/mL ampicillin. 

2. For AtPDK expression only: Add 4 mL 50% glucose stock to each flask. 

3. Add four 5 mL starter cultures to each flask. 

4. Incubate the cultures at 37 °C, 240 rpm, monitoring their growth via optical density at 

600 nm (OD600) until mid-log growth is reached, typically OD600 0.4-0.8 for BL21(DE3). 

This generally takes about 3 h. 

5.2.4 Heterologous Protein Expression of Kinases 

To optimize protein expression, additives are sometimes needed to improve protein yields, as 

they can improve solubility14 or minimize proteolytic cleavage15. Optimized expression for the 

kinases of interest included the addition of a protease inhibitor, ε-aminocaproic acid (ε-ACA), 
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which improved protein yield. Additionally, optimization of IPTG concentration, expression 

temperature and expression time were performed to increase overall expression efficiency for 

these kinase constructs (Figure 5.6). To track the effectiveness of the expression and purification 

system, aliquots of the cultures are taken at each step in the process and analyzed via sodium 

dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE). When specified, phosphate-

buffered saline (PBS) contains 8 mM Na2HPO4, 2 mM KH2PO4, 2.7 mM KCl, and 137 mM 

NaCl dissolved in ultrapure water and adjusted to pH 7.4 using 1 M HCl. 

Day 3: 

1. After reaching mid-log phase, OD600 ~0.5-0.8, take a 30 µL pre-induction gel aliquot 

from each culture. 

2. Add 1 mL of 1 M ε-ACA in water stock to each culture followed by 1 M IPTG in water 

stock. ε-ACA stock is stored at 4°C protected from light and is stable for up to a month. 

IPTG stocks are kept in 1 mL aliquots at -20 °C. 

a. For AtPDK add 300 µL IPTG stock, and for the Chlamydomonas kinase expression 

add 100 µL IPTG stock. 

3. For expression of AtPDK, incubate cultures at 37 °C, 240 rpm for 4 hrs. Incubate induced 

Chlamydomonas kinase cultures at 10 °C, 240 rpm overnight. 

Day 3/4: 

1. After expression, take a 30 µL post-induction gel aliquot of each culture. 

2. Transfer the cultures to 1 L centrifuge bottles, and pellet using centrifugation at 2300 x g 

and 4 °C for 10 min. 

3. Decant the supernatant, treat with 10% bleach for 5-10 min, and dispose down the drain. 
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4. Resuspend each protein pellet in 10 mL of lysis buffer. For AtPDK, resuspend in amylose 

column buffer (20 mM Tris-HCl, pH 7.4, 200 mM NaCl, 1mM EDTA), and for the 

Chlamydomonas kinases resuspend in phosphate-buffered saline (PBS), pH 7.4. Combine 

samples into 50 mL conical tubes, one tube for every two cultures. 

5. Flash freeze the cultures with liquid nitrogen and store at -80 °C. 

5.2.5 E. coli Lysis and Soluble Protein Extraction 

Many techniques exist for lysing cells, and generally Gram-negative bacteria are easier to 

lyse in comparison to Gram-positive bacteria16. With different expression systems, increasing 

protein yield while maintaining kinase activity dictates the selection of lysis techniques and 

parameters. Here, two methods are used in tandem to maximize protein extraction, chemical lysis 

with lysozyme and mechanical lysis with sonication, while keeping the cultures on ice to 

minimize protein denaturing. Additionally, the probe ultrasonicator used for lysis is pulsed with 

one-minute rest periods between sonication rounds to help reduce sample heating.  

Day 1: 

1. Defrost cell pellets in an ice-water bath. 

2. Keeping the sample on ice, add 1 mg lysozyme per mL of sample, inverting the tube until the 

enzyme is dissolved. 

3. Sonicate each sample using a probe ultrasonicator for 1 min with a 50% duty cycle a total of 

three times, resting for 1 min between each sonication while keeping the sample on ice. 

4. Aliquot 20 µL for a total protein gel sample. The sample may be challenging to pipette due to 

its viscosity. 
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5. Split the samples evenly between two centrifuge tubes and centrifuge at 20,000 x g at 4° C 

for 30 min. 

6. Combine the supernatants containing the soluble proteins for each sample into a 50 mL 

conical tube. 

7. Aliquot 20 µL for a soluble protein gel sample. 

5.2.6 Protein Purification of Chlamydomonas Kinases 

Proteins can be separated and purified based on a number of characteristics including 

solubility, size, charge, and binding affinity17. One advantage of recombinant protein expression 

is the ability to express a fusion protein, adding a tag to the protein of interest for affinity 

purification. For these constructs, a glutathione S-transferase (GST) tag is included on the N-

terminus of each protein, which can be used to purify the construct with a high level of 

specificity. In addition to being a tool for purification, GST tags can also promote greater 

expression and solubility due to its rapid folding and highly soluble nature18. GST is a 26 kDa 

protein that has a high binding affinity to glutathione, a tripeptide that is an oxidant in 

eukaryotes. Glutathione Sepharose 4B resin is composed of a glutathione ligand coupled to 

highly cross-linked agarose which allows for specific binding of GST and elution from the resin 

using a mild, nondenaturing buffer with high concentrations of reduced glutathione. This 

protocol uses a batch-style purification method, where resin is incubated with the sample and 

collected for washes and elution steps using centrifugation. This method is a quick way to purify 

proteins that requires minimal equipment.  

Procedure: 

1. If frozen, thaw soluble protein samples in an ice-water bath or at 4 °C. 
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2. Invert stock of Glutathione Sepharose 4B resin until resin is completely resuspended. 

Add 100 μL of resin solution for every 1 L of culture to a 2 mL tube. Centrifuge at 5,000 

x g, 4 oC for 5 min and remove supernatant. 

3. Wash resin three times with 1 mL of PBS buffer, centrifuging at 5,000 x g 4 oC for 5 min 

and remove the supernatant between each wash. 

4. Use 1 mL of soluble protein sample to resuspend the resin. Transfer the resin back into 

the tube containing the remaining soluble protein. Rotate the sample end-over-end at 4 °C 

for at least 2 h. 

5. Centrifuge at 5,000 x g, 4 °C for 5 min to pellet resin. 

6. Remove the supernatant, resuspend resin in 1 mL fresh PBS buffer, and transfer to a 2 

mL tube. 

7. Centrifuge sample at 5,000 x g 4 °C for 5 min, discarding the supernatant. Wash the resin 

an additional 3 times with 1 mL fresh PBS buffer. Centrifuging after each wash step to 

collect the resin at the bottom of the tube. 

8. Resuspend resin pellet in 300 μL Elution Buffer (50 mM Tris HCl, 10 mM reduced 

glutathione, pH 8.0) for every 100 µl resin. Rotate sample for 10 min end-over-end at 

4°C. Centrifuge at 5,000 x g, 4°C for 5 min to pellet the resin and collect supernatant. 

Repeat twice with fresh Elution Buffer, combining all elutions. 

9. Take 30 µL of elution to use as a gel sample. Add glycerol to the remaining elution at a 

concentration of 10-25% to keep sample stable. Store at 4°C until ready for buffer 

exchange and screening, within 24 hours of purification. Storage of the protein for a 

longer period of time or freezing of the sample causes protein degradation and impact the 

activity of the kinase. 
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5.2.7 AtPDK Affinity Purification 

Amylose resin is an affinity matrix that can be used for the purification of fusion proteins 

with an MBP tag. Similar to GST, MBP is a large fusion tag, roughly 42 kDa in size that can also 

be useful for protein solubility. With amylose resin a hybrid approach between batch and column 

purifications is recommended for higher levels of specificity for smaller purification amounts. 

For this procedure, batch purification for incubating the resin and protein is combined with a 

gravity column washing and elution approach for the purification of AtPDK. All steps must be 

completed on ice or at 4°C to prevent protein degradation.  

Procedure: 

1. If frozen, thaw soluble protein samples in an ice-water bath or at 4 °C. 

2. Invert stock of amylose resin until resin is completely resuspended. Add 100 μL of resin 

solution for every 5 mL of soluble protein into a 2 mL tube. Centrifuge at 5,000 x g, 4 oC 

for 5 min and remove supernatant. 

3. Wash resin three times with 1 mL of amylose column buffer, centrifuging at 5,000 rpm, 4 

oC for 5 min, removing the supernatant between each wash. 

4. Use 1 mL of soluble protein sample to resuspend the resin. Transfer the resin back into 

the tube containing the remaining soluble protein. Rotate the sample end-over-end at 4 °C 

for at least 2 h. 

5. Prepare one disposable 10 mL gravity flow Poly-prep column (Bio-Rad) for each liter of 

culture. Parafilm the top of a 50 mL conical tube and cut a small slit into the center of the 

film. Insert the disposable column through the slit in the parafilm and place the falcon 

tube into a cooler of ice. 
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6. Pour the soluble protein into the Poly-prep column(s) evenly. The soluble protein will 

flow through the column, collecting the resin with the bound protein. 

7. After sample flows through leaving only a small amount of liquid above the resin bed, 

transfer the column to a new conical tube with parafilm. 

8. Wash the resin column with 10 mL of fresh amylose column buffer leaving only a small 

amount of liquid above the resin bed. 

9. Transfer the column to a new 15 mL conical tube and add 2 mL of elution buffer 

(amylose column buffer with 10 mM maltose). Allow the column to run dry and pool the 

elutions from all of the columns into one 15 mL conical tube. 

10. Take 30 µL of elution to use as a gel sample. Add glycerol to the remaining elution at a 

concentration of 10-25% to keep sample stable. Store at 4 °C until ready for buffer 

exchange and screening, within 24 hours of purification. Storage of the protein for longer 

than this or freezing of the sample causes protein degradation and impacts the activity of 

the kinase. 

11. Directly before screening, use a 10 kDa 4 mL MWCO filter to concentrate sample and 

buffer exchange into kinase screening buffer: 20 mM HEPES-KOH, pH 7.4, 5 mM 

MgCl2 1 mM dithiothreitol (DTT), 1x protease inhibitor cocktail (Roche) and 1x 

PhosSTOP phosphatase inhibitor (Roche). Concentrate the sample to ~0.5 mL volume 

per 1 L of culture originally expressed. 

12. Measure the concentration of the kinase sample using a nanodrop microvolume 

spectrometer and adjust the concentration to ~0.5 mg/mL with additional screening 

buffer. 



 
 
 

148 

5.2.8 Confirmation via SDS-PAGE 

After completion of protein expression and affinity purification, the gel samples taken at 

various points in the procedure can be run via SDS-PAGE to determine the effectiveness of the 

method and the overall purity of the final protein sample. With the varying concentrations and 

complexity of the protein samples, some dilution is necessary prior to analyzing these samples. 

Procedure: 

1. Thaw out gel samples from expression and purification. 

2. Dilute total and soluble proteins 4-fold with water. 

3. Prepare gel buffer by adding 10 µL 2-mercaptoethanol to 190 µL of 4x Laemmli buffer 

(Bio-Rad). 

4. For each sample, aliquot 30 µL into a fresh tube and add 10 µL of gel buffer. 

5. Heat samples on the heat block at 95°C for 5 min. 

6. Use a 4-20% SDS-PAGE gel (Criterion gel by Bio-Rad recommended) for the separation. 

Rinse with ultrapure water and prepare the gel, loading it into the gel box. 

7. Fill the box and upper gel compartment with SDS Running Buffer (0.25 M Tris Base, 

1.92 M Glycine, 1% sodium dodecyl sulfate). 

8. Load 40 µL of each gel sample into the lanes in the order that they were collected. 

9. Load the remaining empty wells with 10 µL of gel buffer and each of the outer gel lanes 

with 5 µL of Precision Plus Dual Color Protein Standard (Bio-Rad). 

10. Run the gel for 10 min at 100 V to allow the samples to migrate into the gel. Continue at 

200 V for 30-40 min until the dye front reaches the bottom of the gel. 

11. Rinse with ultrapure water and stain the gel with Coomassie dye (50% methanol, 10% 

acetic acid, 1 g/L bromophenol blue) for at least one hour. 
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12. Destain the gel using 50% methanol, 10% acetic acid until bands are clearly visible and 

image.  A summary of the gel results for each construct can be seen in Figure 5.7 and full 

gel images are shown in Figure 5.8.  

5.3 Substrate Library Preparation 

Kinase screening requires the presence of a library of putative substrates to incubate with the 

kinase. For this work, a peptide library is prepared from a Chlamydomonas cell lysate to create a 

pool of potential substrates for a kinase of interest to phosphorylate. This creates a more 

biologically-relevant pool of substrates than using a library of synthesized peptides; the in vivo 

targets of the kinase of interest are likely to be present in the library. This library is prepared by 

digesting a protein extract of Chlamydomonas, followed by a dephosphorylation step to remove 

the endogenous phosphorylation present.  

5.3.1 Algal Culturing 

Since the isolation of Chlamydomonas by Gilbert Smith19,20, a number of standard strains as 

well as mutants have been designed for laboratory purposes. The Chlamydomonas Resource 

Center (https://www.chlamycollection.org/) hosted at the University of Minnesota, Twin Cities 

serves as a repository for thousands of these strains including CC2895, the wild-type strain of 

choice for many experiments performed by the Hicks laboratory21-24. 

While the procedures for this culturing are similar to those used in the quantitative 

proteomics workflows implemented by the Hicks lab21-24, there is less stringency needed for 

reproducible growth conditions. Liquid cultures are prepared in the biosafety cabinet and then 

grown on the bench top in Kenan B328. Although this growth area generally has more variability 

due to the exposure to temperature fluctuations and inconsistent overhead lighting, it allows for a 

higher volume of culturing for higher quantities of peptide library in each preparation. This 
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growth area is exposed to cool, white fluorescent bulbs that provide photosynthetically active 

radiation (PAR) between 400-700 nm at 50-100 µmol m-2 s-1 as measured by a PAR meter (Sun 

Systems) and constantly mixed on a platform shaker at 120 rpm. Cultures are usually grown in 1 

L flasks, with room for up to 12 flasks on the benchtop shaker, though for ease of harvesting, 

cultures are usually grown with eight replicates at a time. 

To help ensure even growth rates and to provide cells the opportunity to equilibrate to the 

growth conditions of liquid media, all cultures grown simultaneously are inoculated from a 

single starter culture that is grown and prepared beforehand. The cultures are mixotrophically 

grown with acetate as a carbon source provided in the Tris-acetate-phosphate (TAP)25 media 

along with light exposure to maximize growth rate.  

Day 1: 

1. Measure 350 mL of liquid TAP media with a graduated cylinder and pour into an 

autoclaved 1 L Erlenmeyer flask with an aluminum foil lid. 

2. Inoculate the culture with 3.5 mL of the starter culture. 

3. Secure cultures on the shaker platform on the benchtop and shake at 120 rpm for 3-4 

days. 

Day 4: 

1. After three days of growth, check that cultures have reached an OD750 ~0.4 corresponding 

approximately to mid-log phase growth. While cultures may be grown to a higher cell 

density, this is the point of harvest for most quantitative phosphoproteomic studies 

performed in the Hicks lab17, making the peptide library prepared from these cultures 

more representative of the phosphoproteome analyzed in in vivo studies. 
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2. Harvest cultures by pouring into 1 L centrifuge bottles and centrifuging for 5 min at 2300 

x g and 4°C before decanting the supernatant. 

3. Resuspend the pellets in 5-10 mL of fresh TAP, transfer this to pre-weighed 15 mL 

conical tubes, and centrifuge again for 5 min at 3220 x g and 4°C. 

4. Decant the supernatant and invert conical tubes on a paper towel to dry (~30 s) before 

replacing the cap and weighing the cell pellet. 

5. Flash-freeze samples in liquid nitrogen and store pellets at -80 °C until ready for 

extraction. 

5.3.2 Protein Extraction and Clean Up 

Chlamydomonas, like many photosynthetic organisms, have a tough outer cell wall made up 

of complex glycoproteins that make protein extractions challenging26. For peptide library 

preparation, maximum protein yields are needed to ensure both library complexity and efficient 

extraction of potential substrates for kinase screening. With that in mind, this work uses two 

approaches to lysis, a chemical detergent-based extraction method as well as physical lysis using 

ultrasonication. The combination of these two methods produces protein yields greater than 10 

mg protein/g fresh cell pellet weight. The lysis buffer consisted of 100 mM Tris, pH 8.0, 1% 

SDS, 1x cOmplete protease inhibitor (Roche) and 1x PhosSTOP phosphatase inhibitor (Roche). 

After lysis, a precipitation technique is used to remove small molecule contaminants from the 

lysate before protein quantitation. During lysis and clean up, samples are kept on ice to minimize 

protein degradation. 

Procedure: 

1. Resuspend cell pellets in 1 mL lysis buffer for every 0.1 g of wet cell pellet weight. 
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2. Transfer the samples to 2 mL Covaris ultrasonication vials and load into a 24 spot 2 mL 

microtube rack. 

3. Sonicate cells using an E220 focused ultrasonicator (Covaris) in the UNC High 

Throughput Sequencing Center (https://www.med.unc.edu/genomics/, located in GSB 4th 

floor red pod). Set the water bath to 4 °C and sonicate for 3 min per tube with 200 

cycles/burst, 100 W power and a 13% duty cycle. 

4. After sonication, transfer the samples to 2 mL Eppendorf tubes and centrifuge at 16,000 x 

g and 4 °C for 10 min. 

5. Transfer the clarified lysate into a 50 mL conical tube  

6. Add 0.5 mL fresh lysis buffer to each 2 mL Eppendorf tube containing the remaining 

cellular debris and vortex until resuspended. 

7. Centrifuge samples again for 10 min at 16,000 x g, 4 °C and combine with previous 

supernatant.  

8. For each sample, separate lysate into multiple 50 mL conical tubes with a maximum of 

10 mL per tube. 

9. Precipitate proteins using 4x volume of cold 100 mM ammonium acetate in methanol. 

Vortex each sample briefly and incubate at -80 °C for four hours to overnight. 

10. Centrifuge the samples for 5 min at 3220 x g to pellet precipitated proteins. Decant the 

resulting supernatant. 

11. Perform two additional washes with fresh 100 mM ammonium acetate in methanol and 

an additional wash with 70% ethanol, each followed with centrifugation and decanting as 

described in step 10. 

https://www.med.unc.edu/genomics/
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12. Dry pellets for about 5 min in the hood and then resolubilize in 1-2 mL 8 M urea, 100 

mM Tris, pH 7.4 with repeated pipetting. 

13. Incubate samples for 1 h at room temperature to solubilize. 

14. Centrifuge samples at 3220 x g and 4°C for 5 min to pellet any insoluble protein. 

Combine supernatants from the same sample into one 15 mL conical tube.  

15. Add an additional 0.5 mL 8 M urea, 100 mM Tris to each pellet, resuspend and repeat 

centrifugation. Combine with the supernatant from the previous resuspension. 

16. Take a 10 µL aliquot of soluble protein and perform protein quantification using the CB-

X protein assay (G-Biosciences) following the manufacturer’s protocol. Normalize to ~2 

mg protein / mL. 

17. Store samples at -80 °C until ready for protein digestion. 

5.3.3 Protein Digestion and C18-Clean Up 

The overall workflow to this screening method is very similar to a bottom up proteomics 

analysis and requires reduction, alkylation, and digestion of the protein lysate. While this 

procedure can be scaled for any amount of protein, typical library preparation is performed in 

bulk; therefore, the specifics of this procedure are written with that in mind. Screening of a single 

kinase in triplicate including control samples requires 3 mg of digested protein, 500 µg peptide 

library each for the three replicates of kinase and control samples. With that in mind, typically 3-

12 mg of protein is digested for substrate library depending on the number of screenings planned.  

After digestion, various salts and detergents are present that need to be removed prior to 

screening to ensure optimal conditions for kinase activity. Sold-phase extraction (SPE) using 

C18 resin is a common purification technique for typical bottom-up proteomics that is also well-

suited for these kinase screening experiments. In the Hicks laboratory, various C18 SPE 
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purification techniques are used depending on the amount of protein sample. For samples with 

smaller protein amounts in the range of a few micrograms, C18 ZipTips (Millipore) are used. 

The SPE resin is packed into a 10 µL micropipette tip and uses a micropipette for loading, 

washing, and eluting the sample. For larger amounts of protein, Sep-Pak C18 cartridges (Waters) 

are used, which range in size from 50 mg to 1 g of bed volume. The sample loading capacity for 

Sep-Pak C18 cartridges is estimated to be 1 mg of trypsin-digested proteome per 50 mg sorbent. 

For samples with > 1 mg digested proteome, both the sorbent weight and solvent volumes should 

be increased in proportion. For preparing a peptide library, typically a Sep-Pak C18 cartridge is 

used with either a 500 mg or 1 g bed volume depending on the amount of library digested. The 

procedure below is written for a bed volume of this size. The Hicks Laboratory owns a 24-

position vacuum manifold (Phenomenex) that features 2-way stopcocks to secure SPE cartridges 

and allows for batch sample processing to minimize technical variability. 

Procedure: 

Reduction, Alkylation, and Digestion: 

1. Thaw frozen samples to room temperature. There will be roughly 1.5 to 6 mL of sample 

from extraction above, depending on the total amount of library being prepared. 

2. Prepare 1 mL of 500 mM DTT solution in 100 mM Tris, pH 8.0. Reduce proteins in the 

lysate by adding 20 µL of 500 mM DTT per 1 mL of protein sample. 

3. Incubate the sample for 30 min at room temperature, rotating end-over-end. 

4. While reducing the sample, prepare 2 mL of 500 mM iodoacetamide (IAM) solution in 

100 mM Tris, pH 8.0, protecting the solution from light, as IAM is light-sensitive in 

solution. 
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5. After reduction of proteins, alkylation is performed by adding 80 µL of 500 mM IAM 

solution per 1 mL of protein sample. 

6. Incubate the sample rotating end-over-end, protecting it from light for 30 min at room 

temperature. 

7. Following alkylation, dilute the sample 5-fold using 100 mM Tris, pH 8.0 so the 

concentration of urea is less than 2 M, which is a requirement for effective protein 

digestion with trypsin. This will vary depending on the amount of library being prepared 

but is typically 5 to 30 mL total volume. 

8. Digestion is performed overnight using Trypsin Gold (Promega) at a protease:protein 

concentration of 1:50 at room temperature. Add the corresponding amount of 0.5 µg/µL 

trypsin in 50 mM acetic acid stock solution to the sample and rotate end-over-end for at 

least 16 hours.  

9. Quench the protein digestion by adding 20% trifluoroacetic acid (TFA) to a final 

concentration of about 0.2% or until the pH of the sample is less than 3. 

10. Store samples at -80°C or proceed directly to C18 clean up. 

SPE C-18 Clean Up: 

1. Once samples are acidified and thawed as needed, centrifuge the sample for 5 min at 

maximum speed to pellet any precipitated protein. 

2. Pre-elute 500 mg or 1 g Sep-Pak cartridge on the vacuum manifold with 5 mL of 80% 

acetonitrile, 0.1% TFA. Apply vacuum as needed to maintain a constant flow of about 1 

drop per second. Leave a small amount of liquid visible at the top of the bed to ensure 

C18 resin does not dry out while performing the clean-up. 
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3. Equilibrate the cartridge with 10 mL of water with 0.1% TFA. 

4. Load the peptide sample onto the column using only gravity flow, collecting the flow 

through in clean test tubes. 

5. Re-apply this flow-through to the cartridge, this time using vacuum as needed at a rate of 

1 drop per second. 

6. Wash the cartridge with 10 mL of 0.1% TFA to remove any salts that may be non-

specifically bound to the bed.  

7. Finally, elute the peptides from the cartridge using 5 mL 80% acetonitrile, 0.1% TFA 

with gravity flow into 2 mL Eppendorf tubes. When cartridge is no longer eluting, apply 

increasing vacuum to the manifold until the bed is completely dried and all liquid is 

eluted from the column. 

8. Freeze the elution and then dry using vacuum centrifugation. Resuspend peptides in each 

tube using 100 µL of 80% acetonitrile, 0.1% TFA and combine into a single tube. 

Refreeze and then dry using vacuum centrifugation.  

5.3.4 Library Dephosphorylation 

Using a peptide library prepared from a cell lysate means that there are likely post-

translational modifications present, including endogenous phosphorylation. The presence of 

phosphorylation on these residues makes them more likely to be biologically significant, 

implying they could be important targets to include in the substrate library. To make these sites 

accessible to the kinase of interest during screening, this endogenous phosphorylation first needs 

to be removed. This work uses rAPid alkaline phosphatase (Bio-Rad), which removes 

phosphorylation from numerous phosphate esters including primary and secondary alcohols, 

saccharides, cyclic alcohols, phenols, and amines. Not all of the phosphorylation in the library 
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can be removed due to accessibility of the phosphorylation site to the phosphatase, but it serves 

to increase the number of phosphosites available to the kinase during the screening. Overnight 

incubation of the library with the phosphatase allows the maximum amount of dephosphorylation 

to occur. 

Procedure: 

1. Resuspend the peptide sample in 10 µL of 1x phosphatase buffer provided with the rAPid 

alkaline phosphatase for every 50 µg of peptide. 

2. Add phosphatase to the sample at a ratio of 1 U (1 µL) phosphatase: 10 µg peptide. 

3. Incubate the sample overnight at 37 °C in the Thermomixer (Eppendorf), rotating at 850 

rpm. 

4. Heat the sample at 75 °C for 5 min to inactivate the phosphatase. 

5. Freeze the sample and dry via vacuum centrifugation. Glycerol is present in the stock of 

rAPid alkaline phosphatase, so sample will not dry completely. 

5.4 Kinase Screening and Analysis 

This screening platform is designed to help identify biologically-relevant putative substrates 

for kinases, but there are other more simplistic kinase assays designed to measure a kinase’s 

activity27-32. While we have attempted to implement an absorbance-based assay in the Hicks lab, 

thus far we have been unsuccessful. Primarily, we have focused on implementation of the non-

antibody phosphorylation detection reagent (pIMAGO) and the phosphatase-coupled universal 

kinase assay (R&D Systems) as a way to detect the phosphorylation of a substrate library from a 

kinase. Therefore, to ensure maximum activity of the kinase of interest without being able to 

directly measure its activity, screening is performed within 24 hours of purification of the kinase. 
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Screenings are typically performed in triplicate with three kinase samples and three control 

samples, which uses the inactive mutant form of the kinase. Although the library is 

dephosphorylated prior to screening, there is likely some amount of endogenous phosphorylation 

still present. To differentiate between this phosphorylation and phosphorylation that is a product 

of the kinase screening, an isotopic analog of ATP is used. This analog, which has been used 

previously for kinase screening33, contains four 18O’s on the γ-phosphate group (Cambridge 

Isotope Laboratories). When this group is transferred by the kinase to the substrate, the resulting 

phosphorylation modification is 6 Da heavier than endogenous phosphorylation, which is 

referred to here as “heavy” phosphorylation, making the two modifications easily distinguishable 

via mass spectrometry.  

After screening, a TiO2 phosphopeptide enrichment step is needed prior to LC-MS/MS 

analysis to concentrate the kinase targets and remove non-substrate peptides. Glycerol is still 

present from the library dephosphorylation step, which needs to be removed using SPE prior to 

phosphopeptide enrichment to prevent clogging in the TiO2 column. After enrichment, a final 

clean up step is performed to remove residual phthalic acid, an additive in the enrichment that 

helps to minimize non-specific binding of acidic residues to the TiO2 resin. 

5.4.1 Screening 

When screening, a number of cofactors are included to help ensure the kinase is in its active 

form. Buffer is used to maintain a neutral pH, and glycerol is present from the kinase stock to 

help improve protein stability. A small concentration of DTT is included in the assay to create a 

reduced environment, which has been shown to improve kinase activity in in vitro assays34,35, 

along with MgCl2 as a metal cofactor. These conditions are based off of the screening conditions 

previously used for AtPDK, but the exact conditions needed for each kinase can vary depending 
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on the pH, cofactors, and other contributors needed for activity which may need to be optimized 

before activity is seen. Kinase activity in this assay can vary and false positives are often present. 

Replicate screenings facilitate statistical testing to identify significant substrates. Inactive 

mutants, such as those prepared for Chlamydomonas kinases, minimize the differences between 

the control and kinase screening samples to help keep false positives to a minimum. 

Procedure: 

1. Prepare 5 mL of 10x stock of the screening buffer: 200 mM HEPES-KOH, pH 7.4, 50 

mM MgCl2, 10 mM DTT. 

2. Prepare the following stocks in 20 mM HEPES-KOH, pH 7.4: 

a. 5 mg/mL peptide library 

b. 10 mM 18O4-ATP 

c. 0.5 mM kinase sample (see section 5.2.6). 

3. Prepare control samples in triplicate with the following components in a 1.5 mL tube: 

a. 20 µL 10x screening buffer 

b. 20 µL 10 mM 18O4-ATP 

c. 100 µL peptide library 

d. 56 µL Milli-Q water 

e. 4 µL inactive kinase mutant (for Chlamydomonas kinases) or 4 µL water for AtPDK. 

4. Prepare kinase samples in triplicate using the same components as step 3 but add 4 µL of 

active kinase for step e. 

5. Incubate screenings overnight at room temperature using the Thermomixer (Eppendorf) 

rotating at 850 rpm. 

6. Store screenings at -80 °C until ready for C18 clean up. 
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7. Prior to C18 clean up, add 300 µL 0.1% TFA to each sample and check to confirm pH <3 

prior to clean up. 

8. Perform SPE clean up using a 50 mg Sep-Pak for each sample and the protocol used in 

2.3.3 with solvent volumes reduced five times to accommodate smaller Sep-Pak volume 

(e.g. use 1 mL to pre-elute each column). 

9. Dry down sample elutions using vacuum centrifugation and store at -80°C until ready for 

phosphopeptide enrichment. 

5.4.2 Phosphopeptide Enrichment 

The following protocol uses commercially available 1 mg TiO2 phosphopeptide enrichment 

columns (GL Sciences).  500 µg of peptide library is enriched in this protocol, concentrating 

both the heavy phosphopeptides from the kinase screening and phosphopeptides that were not 

completely dephosphorylated in the peptide library. Each sample will require a 1 mg TiO2 

column, a centrifuge adaptor, 2 x 1.5 mL tubes, and 1 x 2 mL waste collection tube. All 

centrifugation steps in this procedure are performed at 1,000 x g at room temperature for 3 min 

unless otherwise noted. To remove any residual phthalic acid from the sample, C18 ZipTips 

(Millipore) are used to desalt the samples prior to LC-MS/MS. LC-MS grade solvents are used 

for all of the solutions used in these procedures. 

Phosphopeptide Enrichment Procedure: 

1. Prepare the following buffers: 

a. 20 mL of Buffer A: 80% acetonitrile, 1% TFA. 

b. 10 mL of Buffer B: 80% acetonitrile, 1% TFA, 25 mg/mL phthalic acid. This can be 

made by adding 300 mg of phthalic acid to 10 mL of Buffer A. 
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c. 5 mL of Buffer C: 20% acetonitrile, 5% aqueous ammonia. 

2. Resuspend the samples in 70 µL Buffer B. Centrifuge the samples at 15,000 x g for 5 min 

to pellet any insoluble material to prevent tip clogging. 

3. Pre-elute each column into a 2 mL waste collection tube by adding 50 µL of Buffer C and 

centrifuging. 

4. Condition each column with 50 µL Buffer A twice and 50 µL Buffer B three times, 

centrifuging in the 2 mL waste collection tube for all steps. 

5. Switch to a new 1.5 mL tube, apply sample to the column, and centrifuge for 3 - 5 min 

until all of the sample has run through the column. 

6. Re-apply the flow-through to the column five times, centrifuging between each step. 

7. Switch the column back to the 2 mL waste collection tube and wash the column with 50 

µL Buffer B three times and 50 µL Buffer A twice, centrifuging between each step. 

8. Switch the column to a new 1.5 mL tube and elute phosphopeptides with 50 µL of Buffer 

C. Repeat elution with an additional 50 µL of Buffer C, combining this elution with the 

previous. Dry the elutions using vacuum centrifugation and store at -80 °C until ready for 

ZipTip clean up. 

C18 ZipTip Clean Up Procedure: 

1. Prepare a 1 mL aliquot of acetonitrile, and 0.1% TFA in water. 

2. For each sample prepare a 1.5 mL tube with 15 µL of 80% acetonitrile, 0.1% TFA to use 

for elution. 

3. Resuspend each sample in 15 µL of 0.1% TFA and centrifuge at 15,000 x g for 5 min to 

pellet any insoluble material. Transfer the sample to a fresh 1.5 mL tube. 



 
 
 

162 

4. Attach a ZipTip to a 10 µL pipette set to 10 µL. Use a new ZipTip for each sample, 

making sure that no air is drawn through the tip during the procedure when pipetting up 

and down until the elution step by keeping a small volume of solvent above the bed of the 

column at all times. 

5. Pre-elute the ZipTip by pipetting acetonitrile three times, discarding into waste each time. 

6. Equilibrate the ZipTip with 0.1% TFA three times, discarding into waste each time. 

7. Load the sample by pipetting up and down ten times, discarding the sample back into its 

tube each time. 

8. Wash the ZipTip by pipetting up 0.1% TFA and discarding the waste. Repeat this five 

times for a total of six wash steps. 

9. Elute the sample into the tube containing 80% acetonitrile, 0.1% TFA prepared in step 

two, pipetting up and down ten times. On the last elution, press the pipette all the way to 

the second stop to expel any remaining buffer from the tip before discarding the tip in the 

solid waste. 

10. Dry samples using vacuum centrifugation. 

5.4.3 LC-MS/MS Analysis 

Phosphopeptide samples are resuspended in 20 µL of 5% acetonitrile/0.1%TFA. This 

resuspension volume allows for the desired injection loading level of 1 µg with an injection 

volume of about 2-4 µL. This loading can be hard to predict and may vary based on the 

promiscuity and activity of the kinase influencing the number of phosphopeptides that are 

enriched prior to LC-MS/MS. A 1 µL test injection should be performed to determine the 

appropriate loading level. 
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Configurations for the UPLC are listed in Table 5.3. Mobile phase A is water with 0.1% 

formic acid and mobile phase B is acetonitrile with 0.1% formic acid. Injections are made with a 

5 µL/min flow rate for 3 min onto a Symmetry C18 trap column (100 Å, 5 µm, 180 µm x 20 mm, 

Waters) using 99% A. Samples are separated with a 300 nL/min flow rate on an HSS T3 C18 

column (100 Å, 1.8 µm, 75 µm x 250 mm, Waters). Separation is performed in a gradient of 5-

35% B over 90 min, followed by a ramp to 85% B in 5 min with a 5 min hold and a return to 5% 

B in 2 min with a re-equilibration time of 13 min, for a 120 min total run time.  

The mass spectrometer is operated (Table 5.4) in positive polarity with a Nanospray Flex Ion 

Source (ThermoFisher) with a 2.1 kV spray voltage, 325 °C capillary temperature and S-lens RF 

level of 40. Lock masses of background polysiloxane ions are included. Full MS/DD-MS2 scan 

type is used with a method duration of 120 min. During acquisition (Table 5.5) MS survey scans 

are performed in profile mode across 350-1600 m/z at 120,000 resolution (at m/z 200) with a 50 

ms maximum IT and 3x106 AGC target. The top 20 features with a +2 to +7 charge state above 

5000 counts are selected. MS2 scans are collected at 45,000 resolution with NCE at 32 until 100 

ms maximum IT or 1x105 AGC target. The dynamic exclusion window is set to 10 s and an 

isolation window of 0.7 m/z for precursor ions.    

5.4.4 Data Processing  

Following data acquisition, steps to align experimental runs, infer protein identifications, and 

provide quantitative information are necessary to identify putative kinase substrates.  This is 

done using Progenesis QI for Proteomics (Nonlinear Dynamics) as discovery analysis software, 

Mascot Daemon (Matrix Science) for protein identification, and custom R scripts for data 

filtering. These scripts are adapted from the label-free quantitative workflow used by the Hicks 

Lab and are available via GitHub (https://github.com/hickslab/QuantifyR). 

https://github.com/hickslab/QuantifyR
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Procedure: 

1. Create a new experiment in Progenesis QI for Proteomics (v 2.0, Waters). Make sure 

“Profile data” and “High resolution mass spectrometer” are selected. 

2. Import acquired spectra, selecting the “Thermo(.raw)” file type. 

3. Start automatic processing.  

a. Allow an alignment reference to be assigned automatically. 

b. Allow Progenesis to automatically align the runs and perform peak picking with the 

peak picking setting set to the maximum sensitivity under the peak picking limits tab 

of the parameters. 

c. Unselect the box labeled “Set up experiment design.” 

d. Allow Progenesis to perform protein quantitation with default settings of “Relative 

Quantitation using Hi-N” and N set to 3 with protein grouping selected. 

4. After automatic processing is complete, check to make sure all runs aligned and have an 

alignment score > 80%. 

5. In the “Experiment Design Setup” stage, set up a “Between-subject Design” and select to 

group the runs manually. 

a. Select all of the control runs and add them to a condition. 

b. Select the remaining kinase runs and add them to a separate condition. 

6. Complete the sections in Progenesis until the “Identify Peptides” stage. Select “Mascot” 

from the drop-down list of search programs, and then export the MS/MS spectra. This 

will create a merged peak list in a *.mgf file format. 
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7. Perform a Mascot database search using the parameters outlined below (Table 5.6). 

Upload the *.mgf file, select the appropriate parameter file, and name the task in the 

upper right corner, before submitting the search. The parameter file should include: 

a. The Chlamydomonas reinhardtii JGI v5.6 Phytozome database (https://phytozome-

next.jgi.doe.gov/info/Creinhardtii_v5_6, 19,523 entries) appended with the entries 

from the NCBI chloroplast (BK000554.2, 68 entries) and mitochondrial 

(NC_001638.1, 8 entries) databases as well as the sequences for common laboratory 

contaminants (www.thegpm.org/cRAP, 116 entries). 

b. Select to perform a target decoy MS/MS search. 

c. Select trypsin specificity of up to two missed cleavages for enzyme. 

d. Use a peptide mass tolerance of 15 ppm, and a fragment mass tolerance of 0.02 Da.  

e. Include carbamidomethylation of cysteine as a fixed modification with acetylation at 

the protein N-terminus, oxidation of methionine, and heavy phosphorylation (18O-

Phospho) of serine, threonine, and tyrosine included as variable modifications. This 

modification that is a custom modification added to the Hicks lab Mascot Daemon. 

8. After completion of the search, adjust the false discovery rate to be less than 1% using 

the embedded Percolator algorithm36, and export the search results as an *.xml. 

9. Upload this file into Progenesis in the Identify Peptides tab for peak matching. After 

matching, remove identifications with a Mascot score less than 13 in the “Refine 

Identifications” stage. 

10. Export the protein and peptide measurements for the enriched samples from the “Review 

Proteins” stage, using the default options. 

http://www.thegpm.org/cRAP
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11. In RStudio, create a new R script and copy the code under the “Phosphorylation” LFQ 

workflow from the Hicks Lab GitHub 

(https://raw.githubusercontent.com/hickslab/QuantifyR/master/workflow/Phospho-

LFQ.R). 

12. Set the working directory on line 21, selecting the folder where the protein and peptide 

measurement *.csv files are located. In this folder, add the *.fasta file for the 

corresponding database used to perform the Mascot search. 

13. Make the following changes to the Process portion of the R script: 

a. On line 31 and 35, add in the name of the peptide and protein measurement file 

names, respectively. 

b. On line 42, add in the name of the database used to perform the Mascot search. 

c. On line 48, set the values to correspond with the peptide measurements file columns 

where the normalized abundance values are located. 

d. On lines 57 and 58, set the modification for the filter and get_identifier functions to 

“18O-Phospho”. 

14. Run the Process portion of the script and save the output to a *.csv file. 

15. Make the following adjustments to the R script in the Analyze portion: 

a. Set the column indices for the control (a) and kinase (b) conditions. Adjust the names 

for these groups on line 87 and 89 to match the conditions and the comparison being 

performed. 

b. On line 99, set the number of nonzero values to 2. 

16. Run the Analyze portion of the script through the calculate_ttest function and save the 

output to a *.csv file. This file can be opened in Excel and filtered by fold-change and p-

https://raw.githubusercontent.com/hickslab/QuantifyR/master/workflow/Phospho-LFQ.R
https://raw.githubusercontent.com/hickslab/QuantifyR/master/workflow/Phospho-LFQ.R
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value to identify potential substrates of the kinase of interest (i.e. those heavy 

phosphopeptides that are significantly higher in abundance in the kinase samples when 

compared to the control). 

17. Optional: Use the Volcano Plot under the Plot portion of the script to visualize the p-

values and fold changes of the identified heavy phosphorylation sites. 

5.5 Conclusions 

 Completion of all of the steps contained in this procedure typically takes 2-3 weeks in 

total. The peptide substrate library can be prepared in bulk well ahead of screening and stored in 

aliquots at -80 °C. A practice expression and purification that is then checked via SDS-PAGE is 

recommended prior to creation of a kinase sample that is then used for screening. With using 

freshly prepared kinase sample, it can be challenging to run a gel confirming successful 

purification prior to screening, so being comfortable with the procedure is important. Any new 

constructs that are expressed should have their sequences confirmed via MS prior to using them 

for any screening, particularly confirmation of the mutation site of any new inactive kinase 

mutants. Confirmation of correct substrate library preparation via MS is also recommended. The 

most challenging portions of this procedure is the timing associated with preparing the kinase 

sample directly before screening. Two full uninterrupted sequential lab days are needed for cell 

lysis, affinity purification, buffer exchange, and screening. 

In the future, implementation of an easy kinase activity confirmation assay could ease the 

scheduling burden of this method and allow for more flexibility in the timing of the preparation 

of the kinase and screening samples. There appear to be challenges with the activity of the 

Chlamydomonas kinase constructs that may require additional optimization of the screening 

parameters to see detectable phosphorylation in this method. The availability of a simple way to 
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measure the activity of a given kinase construct would make this optimization significantly 

easier. Additionally, while batch-style purification is a quick and simple method for affinity 

purification, implementation of a chromatographic based approach with the use of Fast Protein 

Liquid Chromatography (FPLC) could provide a better purification with a higher protein yield. 

Automation of preparative chromatography could also allow for additional purification steps, 

such as implementation of size-exclusion to create a more purified sample. While there is room 

for improvements in this procedure, they provide a good basis for the heterologous expression 

and purification of kinases (and other enzymes) as well as creation of peptide libraries from cell 

lysates for screening of enzymes or other in vitro analyses. 
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5.6 Tables 

Table 5.1 Plasmid size and concentration needed for Genewiz Sanger Sequencing. 
DNA length including 

vector (kb) 
Template concentration 

(ng/µL) in 10 µL 
Template Total 
Mass (ng) 

<6 ~50 ~500 

6-10 ~80 ~800 

>10 ~100 ~1,000 
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Table 5.2 Primers for plasmid mutagenesis for expression of inactive kinase mutants. 
Primer 
Name 

Target 
Gene Function Sequence Melting 

Temp (°C) 

MF014 CrTOR-
EKD Forward 5’-GGCCTGGGCGcCCGCCACCCC-3’ 82 

MF015 CrTOR-
EKD Reverse 

5’-
CAGGATGTAGCCCACCATGGACATGAC

GGC-3’ 
78 

MF011 CrS6K Forward 5’-GTTCATCGTGcTCTGAAACCG-3’ 59 

MF013 CrS6K Reverse 5’-AATACCGCGTGAATGCAG-3’ 63 

MF009 CrGSK3 Forward 5’-TGTCATCGTGcTATTAAACCG-3’ 56 

MF010 CrGSK3 Reverse 5’-AATGCCCATTTTATGAATAC-3’ 56 

MF011 CrPDK1 Forward 5’-GTTCATCGTGcTCTGAAACCG-3’ 59 

MF012 CrPDK1 Reverse 5’-AACCTGTGCTTTACGCAG-3’ 63 
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Table 5.3 Configuration for Waters M Class UPLC operation 
UPLC system Waters M Class 

Mobile phase A 0.1% formic acid in water 
Mobile phase B 0.1% formic acid in acetonitrile 

Trap column Waters Symmetry C18 
(100 Å, 5 µm, 180 µm x 20 mm) 

Trapping conditions 5 µL/min for 3 min 
99% A and 1% B 

Analytical column Waters HSS T3 C18 
(100 Å, 1.8 µm, 75 µm x 250 mm) 

Flow rate 300 nL/min 
Run time 120 min 
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Table 5.4 Hardware Configuration for Thermo Fisher Q Exactive HF-X MS Operation 
MS system Thermo Fisher Q Exactive HF-X 
Ion source Thermo Fisher Nanospray Flex Ion Source 

Polarity Positive 
Spray voltage 2.1 kV 

Capillary temperature 325 °C 
S-lens RF level 40 
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Table 5.5 Method Parameters for Thermo Fisher Q Exactive HF-X MS Operation 
Software Xcalibur 

MS1 survey scan 350-1600 m/z 
MS1 resolution 120,000 

MS1 maximum accumulation time 50 ms 
MS1 AGC target 3x106 

DDA selection criteria 
Top 20 features 

+2 to +7 charge state 
>5000 counts 

MS2 resolution 45,000 
Normalized collision energy 32 

MS2 maximum accumulation time 100 ms 
MS2 AGC target 1x105 

Dynamic exclusion window 10 s 
Isolation window 0.7 m/z 
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Table 5.6 Screening Mascot search parameters 

Database 

JGI v5.6 Phytozome Chlamydomonas 
reinhardtii database appended with NCBI 
mitochondria and chloroplast database and 

common laboratory contaminants 
MS/MS search Target decoy enabled 

Enzyme specificity Trypsin, up to 2 missed cleavages 
Peptide mass tolerance 15 ppm 

Fragment mass tolerance 0.02 Da 
Fixed modification Carbamidomethylation (Cys) 

Variable modifications Acetylation (Protein N-term), Oxidation 
(Met), 18O-Phospho (Ser, Thr, Tyr) 
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5.7 Figures 

 

 

Figure 5.1 Overview of the high throughput kinase screening workflow. Briefly, a plasmid is 
designed that encodes for a fusion protein of the kinase of interest and an affinity purification 
tag. Active kinase sample is recombinantly produced by heterologous expression, and then 
affinity purified. A library of potential substrates is prepared from a cell lysate. The lysate is 
reduced, alkylated, and digested to form peptides. Then the library is dephosphorylated to 
remove most of the endogenous phosphorylation prior to screening. For kinase screening, the 
active kinase sample is combined with the prepared peptide and an isotopic analog of ATP. This 
analog has four 18-Oxygens on the γ-phosphate group, so the resulting phosphorylation event 
has three 18-Oxygens, making it 6 Da heavier than any endogenous phosphorylation that may be 
present. After screening, phosphopeptides are selectively enriched using TiO2 before LC-MS/MS 
analysis.  
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Figure 5.2 Map of the pGEX-6P1 vector pAC1 with CrTOR-EKD sequence inserted. This 
plasmid encodes for the fusion protein GST-CrTOR-EKD as well as β-lactamase, which 
provides resistance to ampicillin for selection of cells transformed with the plasmid. pGEX 
vectors use the lac operon for induced expression of the fusion protein, so the lac repressor gene 
is encoded on the plasmid in addition to the replication origin. Similar plasmids were also 
constructed for CrS6K, CrGSK3, and CrPDK1.  
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Figure 5.3 The sequences for CrS6K, CrPDK1, CrTOR-EKD, and CrGSK3. The kinase domains 
for each protein are underlined, and the conserved HRD domains are bolded and highlighted in 
blue.  
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Figure 5.4 Overview of the creation of inactive kinase mutants using the Q5 site-directed 
mutagenesis kit. NEBaseChanger was used to design non-overlapping primers that contain a 
single base change that modifies the aspartic acid of the HRD motif to an alanine on the forward 
primer. PCR is used to exponentially amplify the plasmid using the mutant primers and the Q5 
Hot Start High-Fidelity DNA Polymerase. After PCR, the amplified DNA is added to the 
Kinase-Ligase-DpnI (KLD) enzyme mix for phosphorylation and ligation of the mutant plasmids 
as well as digestion of the parent template. After this the plasmids are transformed into 
competent E. coli cells, and colonies containing the plasmid are selected for using antibiotic 
resistance. Sequencing was done on the resulting plasmid to confirm correct substitution.  
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Figure 5.5 Streaking format for E. coli plates to allow for growth of individual colonies. Plates 
are streaked one quadrant at a time, as denoted by the numbering and color coding, with each 
quadrant using a fresh inoculation loop. The first quadrant is streaked from a small amount of the 
glycerol stock with each subsequent quadrant diluting from the previous with a single stroke with 
the fresh inoculation loop. 
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Figure 5.6 Gel results of optimization of kinase expression and purification. Expression of 
CrTOR-EKD with 500 µL 1 M IPTG stock a.) vs 100 µL 1 M IPTG stock b.) showed no 
apparent difference in total purified protein abundance. Expression of CrS6K at 37 °C for 4 h c.) 
vs at 10 °C overnight d.). Little to no soluble CrS6K was seen when expressed at a higher 
temperature, but appeared to be slightly higher in concentration when expressed for longer at a 
lower temperature. Expression of CrTOR-EKD without e.) and with f.) ε-ACA. More CrTOR-
EKD is seen in the elution when ε-ACA is added.  
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Figure 5.7 Expression results of the kinase constructs and their corresponding mutants, where 
relevant. Expression was monitoring using SDS-PAGE, with gel samples taken before and after 
expression, after lysis, and before and after purification. LC-MS/MS confirmed expression of all 
of the constructs, but CrTOR-EKD D239A and CrS6K D812A in particular were challenging to 
express, with no visible band present in the elution samples.  
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Figure 5.8 Full gel expression results for the kinase screening constructs. Expression was 
monitored using SDS-PAGE, with gel samples taken before and after expression, after lysis, and 
before and after purification. a.) Gel results of AtPDK expression. There is some evidence of 
partial expression of the construct based on the presence of multiple bands in the elution. b.) Gel 
results of CrTOR-EKD expression. c.) Gel results of CrPDK1 expression. A large band is seen at 
the molecular weight corresponding to the GST tag. This could be due to partial expression of 
the fusion protein, cleavage of the tag from CrPDK1 after expression, or enrichment of 
endogenous GST. d.) Gel results of CrGSK3 expression. Similar to CrPDK1, a large band is seen 
at the molecular weight corresponding to GST. e.) Gel results of CrS6K expression.   
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CHAPTER 6:  Developing an in vitro Platform for Investigating TOR Pathway Kinase-
Substrate in Chlamydomonas reinhardtii 

6.1 Introduction 

Since the discovery of glycogen phosphorylase activation via phosphorylation by Fisher and 

Krebs over 60 years ago1,2 the regulation of enzymes through phosphorylation has been 

extensively studied. In plants, reversible protein phosphorylation and dephosphorylation by 

kinases and phosphatases, respectively, has been shown to control signal transduction pathways 

that regulate many essential cellular activities including the cell cycle3, metabolism4, and stress 

response5. Despite the importance of phosphorylation in cell regulation, kinase-substrate 

relationships are not well characterized. While it is estimated that 30% of eukaryotic proteins are 

targets of phosphorylation6, less than 3% of phosphorylation events detected in humans are 

linked to a specific kinase experimentally7 and even fewer for plant model organisms. This lack 

of information is due in part to the large scale of these signaling networks, particularly in 

photosynthetic organisms. Arabidopsis thaliana, a model plant species, has an estimated 942 

kinases8, nearly double the number predicted in humans9, and over 55,000 phosphorylation 

sites10–12, while Chlamydomonas reinhardtii, a model photosynthetic microalgal organism, has 

an estimated 355 kinases13 with 18,000 potential phosphorylation sites14. The prevalence, 

importance, and complexity of phosphorylation signaling in phototrophs drives the interest in 

studying kinase-substrate relationships using high-throughput screening approaches.  

In plants, strategies that have been implemented to identify substrates for kinases include 

two-hybrid screening, tandem affinity purification, and in vitro screening processes15. Both two-
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hybrid screening and tandem affinity purification rely on capturing the protein-protein 

interaction of a kinase and its substrate, which can be challenging with substrates of weak 

affinity. This makes in vitro processes appealing alternatives as they allow for targeted 

screenings without restrictions to kinase type based on the formation of strong enzyme-substrate 

complexes. In vitro approaches in plants usually involve the creation of a library of potential 

substrates, either intact proteins or smaller peptides, that are then incubated with a kinase of 

interest. This library can be either (1) synthesized or (2) derived from the organism of interest. In 

the case of (1), synthetic peptide libraries are designed to have amino acids held fixed at a 

specific position relative to the potential site of phosphorylation to identify conserved substrate 

sequence motifs for a kinase of interest16,17. The library is incubated with an active form of the 

kinase obtained either through heterologous expression or purification from its native organism. 

Synthetic peptide libraries allow for control of substrate abundance, and are easily modified for 

bead-, surface-, and polymer-based enrichment techniques. However, these screening methods 

can be laborious because they involve library synthesis, and screening may not result in 

physiologically relevant motifs or target phosphosites or reveal any unpredicted substrate motifs, 

contributing to the movement toward naturally produced substrate libraries18–22. With (2), a 

substrate library produced from the kinase’s endogenous organism, targets for the kinase are 

likely to be present either intact in the case of a protein library or in peptidyl form, and screening 

these libraries can provide potential protein substrate targets that can then be validated. However, 

substrate abundances in these libraries are hard to control with concentrations of potential 

substrates being dependent on expression levels at the time of harvest and varying by several 

orders of magnitude. While a protein library derived from an organism of interest provides a 

higher level of protein specificity, allowing for specificity factors such as distal docking sites and 



 
 
 

188 

scaffold proteins, peptidyl libraries can often simplify the screening process. Dephosphorylation 

of endogenous phosphorylation is more complete with peptide libraries than protein libraries, 

creating more potential targets for the kinase. Additionally, protein libraries can contain 

additional active kinases that need to be inhibited prior to screening to minimize false positives 

phosphorylation events.  

This work presents validation of an in vitro kinase screening approach to identify potential 

substrates for kinases in C. reinhardtii, and preliminary screening results of the Chlamydomonas 

Target of Rapamycin (CrTOR) kinase. This screening platform, which is explained in detail in 

Chapter 5, uses a peptide substrate library created from a proteome extracted from the organism 

of interest along with an isotopic analog of ATP to identify targets of a kinase of interest by mass 

spectrometry (Figure 5.1). This is adapted from previous work showing the use of protein and 

peptide lysates as substrate libraries for peptide screenings18–22 with additional label-free 

quantitative proteomic strategies implemented to prioritize target substrates and minimize false 

positive identifications. While this platform is adaptable to any source of purified kinase, the 

kinases were heterologously expressed in E. coli and affinity purified using a protein fusion tag 

for this work. The peptide library was prepared from a C. reinhardtii protein digest, and 

dephosphorylated using rAPid alkaline phosphatase, a commercially produced recombinant 

enzyme, to remove the majority of endogenous phosphorylation prior to screening. The purified 

kinase along with the peptide library were incubated with γ-18O4-ATP, which resulted in a 

“heavy” phosphorylation on the target substrate that contains three Oxygen-18’s, making it 6 Da 

heavier than endogenous phosphorylation. With this mass shift, heavy phosphorylation is easily 

differentiated from any remaining endogenous phosphorylation by mass spectrometry. Herein, 

validation experiments use the well-studied pyruvate dehydrogenase kinase from Arabidopsis 
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thaliana (AtPDK) to demonstrate that this platform can successfully identify its known 

phosphorylation site from the E1α subunit of the pyruvate dehydrogenase complex 

(AtPDCe1α)23.    

Once the platform is validated, the workflow is applied to investigation of the 

Chlamydomonas TOR pathway. TOR is a serine/threonine kinase conserved in most eukaryotes 

that has been shown to be a master regulator, and responsible for many cellular signaling 

pathways involved in metabolism, stress response, response to nutrients, and anabolic 

functions24. It has been shown that TOR signaling in fungi and animals comes from two protein 

complexes, TORC1 and TORC225. In photosynthetic organisms only homologs of TORC1 have 

been identified26, and the exact targets and functions of TOR are not well characterized27,28. 

Based on what is known about mammalian TOR (mTOR), a number of components of the TOR 

pathway can be predicted in Chlamydomonas (Figure 6.1)29, including ribosomal S6 kinases 

(S6Ks) which are known direct targets of TOR across many plant and animal species. While both 

mammalian systems and Arabidopsis have two S6K genes, only one homolog of S6K has been 

identified in Chlamydomonas (CrS6K, Cre13.g579200.t1.2)30. Studies in other organisms 

including human cells lines31, Arabidopsis32, rice32, and yeast33 have identified a Thr in the 

hydrophobic motif of S6Ks that is a direct target of TOR and an additional Ser that is known to 

be TOR-mediated, though its exact regulatory mechanism is less established30. These two 

potential phosphorylation sites are also conserved in CrS6K (Thr1006 and Ser989), but are not 

confirmed as CrTOR targets.  

This work shows the successful validation of our in vitro screening platform with 

Arabidopsis thaliana (AtPDK) along with the results from the preliminary screening of a fusion 

protein construct containing the kinase domain of CrTOR (referred to as CrTOR-EKD, see 5.2.1 
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for details). This includes screenings against digests of heterologously expressed CrS6K, a 

synthetic peptide containing the conserved TOR-targeted S6K phosphosite and a 

Chlamydomonas peptide library. Constructs of other kinases in the TOR pathway were designed 

(highlighted in Figure 6.1), but are not included in the preliminary results here. A full list of 

these kinase constructs, expression and purification conditions can be found in Chapter 5. While 

a phosphorylation site was not identified on CrS6K in any of the screenings, one potential target 

peptide was identified from acidic ribosomal protein P2 (Cre02.g143050.t1.2), which may have a 

role in controlling ribosomal performance or specificity. However, when CrTOR was screened 

against a synthetic peptide of the same sequence, this activity was not observed. 

6.2 Materials and Methods 

6.2.1 Bacterial Expression and Purification of AtPDK 

A thorough procedure including troubleshooting tips for the methods included here can be 

found in Chapter 5. E. coli cells strain BL21(DE3) transformed with a pMAL DNA vector 

construct encoding for AtPDK with a MBP fusion protein tag was provided the Miernyk lab 

from the University of Missouri. Cells were stored as a frozen glycerol stock at -80 °C. Cells 

were taken from the glycerol stock and grown on a lysogeny broth (LB) agar plate supplemented 

with 100 µg/mL ampicillin at 37 °C until single colonies were visible. 40 mL of starter culture 

were prepared in 5 mL aliquots of LB supplemented with 100 µg/mL ampicillin and 2% glucose. 

Each 5 mL aliquot was inoculated with cells from a single colony on the LB agar plate. These 

starter cultures were incubated overnight at 37 °C and 240 rpm, giving the cultures adequate time 

to reach saturation. AtPDK was expressed as 2 1 L cultures from Terrific Broth (TB) 

supplemented with 100 µg/mL ampicillin and 2% glucose. Cultures were inoculated with cells 

from 20 mL of starter culture and grown at 37 °C and 240 rpm, monitoring cell density until 
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mid-log growth was reached, an OD600 of approximately 0.5. Stock aminocaproic acid (ε – ACA) 

solution was added to a final concentration of 1 mM followed by induction with 300 µM IPTG. 

Cultures were incubated at 37 °C and 240 rpm for 4 h, before cells were harvested via 

centrifugation, resuspended in 20 mL of amylose column buffer (20 mM Tris-HCl, pH 7.4, 200 

mM NaCl, 1 mM EDTA) and combined. The resuspension was then flash frozen and stored at -

80 °C.  

The sample was thawed in an ice-water bath, and then lysozyme was added at a 

concentration of 1 mg/mL. The sample was then sonicated using a probe ultrasonicator (Heat 

Systems) for 1 min with a 50% duty cycle a total of three times, resting for 1 min between each 

sonication, keeping the sample on ice. The lysate was collected by centrifuging to remove cell 

debris and insoluble components. 

400 µL of amylose resin was washed three times with amylose column buffer before it was 

added to the cell lysate. The lysate and resin were incubated for 2 h at 4 °C, rotating end over 

end. Two 50 mL conical tubes were parafilmed over the top and a slit was cut in the center. A 

Poly-prep column (Biorad) was inserted through the slit so it was suspended in the conical tube 

and the conical tube was placed on ice. The lysate and resin were poured evenly into the two 

columns, and the liquid was allowed to flow through the column until a small volume was left 

above the resin bed. The resin was washed with 10 mL fresh amylose column buffer before 

bound proteins were eluted in 2 mL elution buffer, amylose column buffer with 10 mM maltose. 

Samples were stored at 4 °C overnight. The elution was concentrated and buffer exchanged into 

20 mM HEPES-KOH with 1x protease inhibitor cocktail (Roche) and 1x PhosSTOP phosphatase 

inhibitor (Roche) to a final volume of ~0.5 mL. Kinase sample concentration was measured 
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using a NanoDrop 1000 microvolume spectrometer (ThermoFisher) and adjusted to a 

concentration of 0.5 mg/mL.  

6.2.2 Design of CrTOR Constructs 

When using a recombinant host to overexpress a protein, the success of expression is limited 

by the size of the protein construct. Studies have shown that the probability of successful 

expression decreases considerably with constructs above 60 kDa due to problems with protein 

solubility, folding, and aggregation34. This is a concern with the expression of CrTOR, which is 

over 290 kDa in size and composed of almost 2700 amino acids. To address this issue, a 

construct was designed that contains only a portion of the protein corresponding to the kinase 

domain identified using the alignment of CrTOR to mammalian TOR (mTOR) via BLAST35. 

While CrTOR activity has never been investigated using only the kinase domain, previous work 

has shown recovery of TOR function in Arabidopsis TOR (AtTOR) knockout mutants when the 

strain is complemented with a portion of AtTOR that includes the kinase domain and part of the 

FKBP12-rapamycin binding (FRB) domain36.  Additionally, it has been shown when the kinase 

domain of CrTOR is heterlogously expressed and then immobilized, it has enough structural 

similarity to full-length CrTOR that it can bind and precipitate Chlamydomonas lethal with 

SEC13 protein 8 (CrLST8), a known component of TORC1, from a cell extract37.. Based on this 

work, the corresponding section of CrTOR was identified, amplified by PCR from a 

Chlamydomonas cDNA library, digested and cloned into a pGEX6P-1 plasmid for expression in 

E. coli cells. This construct is referred to as the Chlamydomonas TOR extended kinase domain 

(CrTOR-EKD). 

To help reduce the number of false positives that may arise during screening, an inactive 

mutant form of CrTOR-EKD was used as the negative control for this assay. This mutant was 
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created using a single amino acid substitution of Asp to Ala in the CrTOR-EKD construct, 

resulting in the TOR-EKD D239A inactive mutant. The aspartic acid selected for mutation is 

part of the conserved HRD motif in the kinase domain of TOR that is directly involved in the 

transfer of the γ-phosphate group from ATP to the target substrate38. Mutation at this amino acid 

results in an inactive domain that is still structurally similar to CrTOR-EKD. Inactive mutants 

were designed for the other constructs of known TOR pathway kinases. Information on these 

mutants and gel results confirming their expression can be found in Chapter 5. 

6.2.3 Creation of CrTOR-EKD Construct 

CrTOR-EKD construct was created through collaboration with Soon Goo Lee (current 

affiliation: UNC-W). A cDNA fragment of 999 bp length containing the kinase domain and a 

portion of the FRB domain of Chlamydomonas TOR was amplified from Chlamydomonas 

mRNA by RT-PCR using the primers 5′-TGGGACCTGTACTACCACGTC-3′ and 5′-

GAGCAGGCGCCAGTTGATGAG-3′ obtained from the Crespo lab from previous work 

studying the CrTOR kinase domain37. The PCR amplified cDNA fragment was cloned into the 

pCR-Blunt II-TOPO cloning vectors (Invitrogen), followed by subcloning into the pGEX-6P-1 

expression vector containing a GST tag (GE Healthcare). 

6.2.4 Creation of Inactive CrTOR-EKD D239A Mutant Construct 

The vector encoding for CrTOR-EKD was mutated using the Q5 Site-Directed Mutagenesis 

Kit (New England Biolabs) using the manufacturers protocol. Briefly, NEBaseChanger (New 

England Biolabs) was used to design a forward primer (5’-GGCCTGGGCGcCCGCCACCCC-

3’) with a single bp substitution to mutate the Asp239 to Ala239 and a reverse primer (5’-

CAGGATGTAGCCCACCATGGACATGACGGC-3’). These primers were synthesized by IDT 

DNA and resuspended in nuclease-free water to a concentration of 10 µM. 12.5 µL Q5 Hot Start 
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High-Fidelity 2x Master Mix, 1.25 µL of each primer, 1 µL of template DNA and 9 µL nuclease 

free water were added to a PCR tube. The reagents were mixed and the tube was cycled in a 

Mastercycler Nexus PCR Cycler (Eppendorf) using the conditions described in the 

manufacturer’s protocol. Following this, 1 µL of this sample was added to a fresh PCR tube 

along with 5 µL 2X kinase-ligase-Dpn1 (KLD) Reaction Buffer, 1 µL 10X KLD Enzyme Mix 

and 3 µL nuclease-free water. The reagents were mixed and incubated at room temperature for 5 

min.  

A tube of NEB 5-alpha competent E. coli cells were thawed on ice. 5 µL of the sample from 

the KLD reaction was added to the tube of thawed cells. The tube was flicked five times to mix 

and then placed on ice for 30 seconds. The tube was then transferred to a 42 °C hot water bath 

and heat shocked for 30 seconds. The sample was then placed on ice for 5 min, followed by the 

addition of 950 µL SOC into the tube. The tube was then incubated at 37 °C, 250 rpm for 60 

minutes, before 100 µL of cells were removed and spread onto a selection plate of LB agar with 

100 µg/mL ampicillin and incubated overnight at 37 °C. A single colony from this plate was 

inoculated into 5 mL LB with 100 µg/mL ampicillin and the liquid culture was incubated 

overnight at 37°C, 240 rpm. From this culture a glycerol stock was made and plasmid was 

purified from 1 mL of culture using the Qiagen Plasmid Purification kit. This plasmid was 

sequenced by Genewiz to confirm the mutation with the primer 5’-

CTCCGCTATCGCTACGTGAC-3’, which anneals across the multiple cloning site of the 

vector. Additional plasmid was then purified and transformed into BL21(DE3) competent cells 

(New England Biolabs) using the sample procedure and a glycerol stock of this strain was made. 
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6.2.5 Synthesis of the CrS6K Construct 

A pUC57 vector encoding for the CrS6K sequence provided by the Chlamydomonas 

database from Phytozome (v5.5) was synthesized by Biomatik. This sequence was then spliced 

into the pGEX-6P-1 vector. Double-stranded DNA encoding for the missing portion of the 

CrS6K gene was synthesized by IDT DNA and this was inserted into the pGEX-6P-1 vector 

containing the original gene sequence by Biomatik. Sequencing of the new plasmid (Genewiz) 

using the primer 5’-CAATACCGCGTGAATGCAG-3’ confirmed the insertion and the new 

plasmid was transformed into BL21(DE3) competent cells as previously described. 

6.2.6 Bacterial Expression and Purification of CrTOR Constructs  

E. coli cells strain BL21(DE3) transformed with pGEX-6P-1 plasmids encoding for 

CrTOR-EKD, CrTOR-EKD D239A, and CrS6K were taken from glycerol stocks and grown on a 

lysogeny broth (LB) agar plate supplemented with 100 µg/mL ampicillin at 37 °C until single 

colonies were visible. 120 mL of starter culture were prepared in 5 mL aliquots of LB 

supplemented with 100 µg/mL ampicillin for each construct. Each 5 mL aliquot was inoculated 

with cells from a single colony on the LB agar plate. These starter cultures were incubated 

overnight at 37 °C and 240 rpm, giving the cultures adequate time to reach saturation. The 

kinases were expressed as 6 1 L cultures from Terrific Broth (TB) supplemented with 100 µg/mL 

ampicillin. Each culture was inoculated with cells from 20 mL of starter culture and grown at 37 

°C and 240 rpm, monitoring cell density until mid-log growth was reached, an OD600 of 

approximately 0.5. Stock aminocaproic acid (ε – ACA) solution was added to a final 

concentration of 1 mM followed by induction with 100 µM IPTG. Cultures were incubated at 10 

°C and 240 rpm overnight, before cells were harvested via centrifugation, resuspended in 10 mL 
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of PBS, pH 7.4 per L of culture and combined by construct. The resuspension was then flash 

frozen and stored at -80 °C.  

CrS6K was lysed and purified first, with CrTOR-EKD and CrTOR-EKD D239A being lysed 

and purified directly before screening to minimize free-thaw cycles. The samples were thawed in 

an ice-water bath, and then lysozyme was added at a concentration of 1 mg/mL. The sample was 

then sonicated using a probe ultrasonicator (Heat Systems) for 1 min with a 50% duty cycle a 

total of three times, resting for 1 min between each sonication, keeping the sample on ice. The 

lysate was collected by centrifuging to remove cell debris and insoluble components. 

600 µL of Glutathione Sepharose 4B resin was used to purify each construct. The resin was 

washed three times with PBS before it was added to the cell lysate. For all steps, resin is 

collected via centrifugation at 5,000 x g, 4 °C for 5 min. The lysate and resin were incubated for 

2 h at 4 °C, rotating end over end. The resin was then collected via centrifugation, washed three 

times with PBS, and then each resin pellet was resuspended in 300 µL Elution Buffer (50 mM 

Tris HCl, 10 mM reduced glutathione, pH 8.0). The sample was rotated end over end at 4 °C for 

10 min. The resin was collected via centrifugation and the elution was collected. This was 

repeated twice with fresh elution buffer, and all elutions were combined and stored at 4 °C. 

For CrTOR-EKD and CrTOR-EKD D239A, the elution was concentrated and buffer 

exchanged into 20 mM HEPES-KOH with 1x protease inhibitor cocktail (Roche) and 1x 

PhosSTOP phosphatase inhibitor (Roche) to a final volume of ~0.5 mL. Kinase sample 

concentration was measured using a NanoDrop 1000 microvolume spectrometer (ThermoFisher) 

and adjusted to a concentration of 0.5 mg/mL. 
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6.2.7 Synthesis of Peptide Targets 

Peptides were synthesized via semi-automated flow chemistry by the Wommack 

laboratory at High Point University using an instrument built in-house39. Synthesis used 200 mg 

of 2-chlorotrityl chloride resin (200-400 mesh) pre-loaded with the C-terminal amino acid (0.80 

mmol/g). Fmoc-protected amino acids (1 mmol) were solubilized in 2.5 mL of fresh 0.38 M 

hexafluorophosphate benzotriazole tetramethyl uranium in dimethylformamide (DMF). Rapid 

Fmoc solid-phase peptide chemistry began after the instrument was prepared with appropriate 

levels of DMF for washing (40 mL per residue) and 20% piperidine in DMF for Fmoc 

deprotection (7 mL per residue), heating the water bath to 60 ºC for immersion of the sealed 

reactor, programing the pump flow rate to 20 mL/min, and assembling the reactor containing 

pre-weighed resin. To activate the amino acid solutions for coupling, 450 μL of N,N-

diisopropylethylamine (or 250 μL with His, Cys, or Trp) was added and gently mixed. After 

syringe pump administration of the activated coupling solution at 6 mL/min, the resin was 

immediately washed at 20 mL/min with DMF for 20 sec, Fmoc deprotected with 20% piperidine 

in DMF for 30 sec, and washed with DMF for 1 min. Following the coupling and deprotection of 

the final amino acid, the reactor was disassembled and the resin-bound peptide was eluted with a 

10 min incubation at 60 ºC using 10 mL of 94% TFA/4% triisopropylsilane/2% H2O. The crude 

peptide solution was filtered and the volume was reduced to 5 mL under N2 gas. The crude 

peptide solution was cooled to 4 ºC before precipitating with cold diethyl ether. Following 

centrifugation at 3,000 rpm for 10 min at 4 ºC to collect the crude peptide precipitate, the white 

solid was resuspended in cold diethyl ether and the centrifugation was repeated. The pellet was 

dried in vacuo to deliver crude peptide. Each synthesized peptide was resuspended in 20 mM 

HEPES-KOH, pH 7.4 to a final concentration of 1 µg/µL, except for the peptide 
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GRFDGFTYVAPCF, which was resuspended in 20% acetonitrile, 80% 20 mM HEPES-KOH, 

pH 7.4. 

6.2.8 Preparation of Chlamydomonas Peptide Library 

Chlamydomonas peptide library was generated using a protocol similar to previous work40. 

Briefly, Chlamydomonas strain CC-2289 6145c mt- (Chlamydomonas Resource Center) cultures 

were maintained photoheterotrophically on Tris-acetate-phosphate (TAP) agar plates. A culture 

was grown to mid-log phase (OD750 0.3-0.5) before 3.5 mL of this culture were inoculated into 

350 mL TAP in 1 L Erlenmeyer flasks. Four 350 mL cultures were grown photoheterotrophically 

to mid-exponential phase (OD750 0.5) under constant light conditions of 39 µmol photons/m2s at 

25 °C and at an orbital rotational speed 120 rpm on a VWR International model 1000 standard 

orbital shaker. Once grown, cultures were harvested via centrifugation at 3220 x g, 4 °C for 5 

min. The supernatant was discarded and then pellets were flash frozen in liquid nitrogen and 

stored at -80 °C. 

Frozen cell pellets were lysed in 4 mL of buffer containing 100 mM Tris, pH 8.0, 1% sodium 

dodecyl sulfate, 1x cOmplete EDTA-free protease inhibitor cocktail (Roche), and 1x PhosSTOP 

phosphatase inhibitor cocktail (Roche). Cell were lysed via sonication using an E220 focused 

ultrasonicator (Covaris) for 180 s at 200 cycles/burst, 100 W power, and 13% duty cycle. After 

sonication, samples were centrifuged at 15,000 x g for 10 min at 4 °C and the supernatant was 

collected. The cell pellet was resuspended in 1 mL of fresh lysis buffer, incubated for 30 min at 4 

°C, and centrifuged again. Supernatants were combined and proteins were precipitated using four 

volumes of cold 100 mM ammonium acetate in methanol, incubating overnight at -80 °C. 

Proteins were pelleted by centrifugation at 3220 x g for 5 min and washed twice with fresh 100 

mM ammonium acetate in methanol. Proteins were allowed to dry for 5 min before resuspension 
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in 2 mL 8 M urea in 100 mM Tris, pH 8.0. All samples were combined and protein concentration 

was measured using the CB-X Protein assay (G-Biosciences,) according to the manufacturer’s 

protocol. 

Protein thiols were reduced using 10 mM dithiothreitol at room temperature for 30 min 

followed by alkylation with 40 mM iodoacetamide for 45 min at room temperature while 

protected from light. Samples were diluted 5-fold after alkylation with 100 mM Tris, pH 8.0 to 

reduce the concentration of urea to 1.6 M. Samples were then digested with Trypsin Gold 

(Promega) at a 1:50 enzyme:protein ratio overnight at room temperature, rotating end-over-end. 

The digestion was quenched with 20% trifluoroacetic acid (TFA, Fisher Scientific) to a final 

concentration of 0.4% TFA and a pH < 3.0. 

 After digestion, samples were desalted using 50 mg/1.0 mL Sep-Pak C18 cartridges 

(Waters) using a vacuum manifold (Phenomenex). Resin was pre-eluted with 1 mL 80% 

acetonitrile, 0.1% TFA and then equilibrated with 2 mL 0.1% TFA at a flow rate of ~1 drop/s. 

Samples were first centrifuged at 3220 x g for 5 min to pellet undigested protein before loading 

onto the cartridges using gravity flow. Samples were then reloaded once, and cartridges were 

washed with 2 mL of 0.1% TFA followed by elution of the peptides in 1.5 mL of 80% 

acetonitrile, 0.1% TFA. The samples were then dried by vacuum centrifugation. 

6.2.9 Preparation of CrS6K Digests 

 After affinity purification, the CrS6K sample was precipitated using four volumes of cold 

100 mM ammonium acetate in methanol, incubating for 1 h at -80 °C. Proteins were pelleted by 

centrifugation at 3220 x g for 5 min and washed twice with fresh 100 mM ammonium acetate in 

methanol. Proteins were allowed to dry for 5 min before resuspension in 0.5 mL 4 M urea in 100 

mM Tris, pH 8.0. Protein concentration was measured using the CB-X Protein assay (G-
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Biosciences) according to the manufacturer’s protocol, and 5 mg were aliquoted from the 

sample. 

Protein thiols were reduced using 10 mM dithiothreitol at room temperature for 30 min 

followed by alkylation with 40 mM iodoacetamide for 45 min at room temperature while 

protected from light. Samples were diluted 4-fold after alkylation with 100 mM Tris, pH 8.0 to 

reduce the concentration of urea to 1 M. Samples were digested with Trypsin Gold (Promega) at 

a 1:50 enzyme:protein ratio overnight at room temperature, rotating end-over-end. The digestion 

was quenched with 20% trifluoroacetic acid (TFA, Fisher Scientific) to a final concentration of 

0.4% TFA and a pH < 3.0. For Glu-C S6K digest, additional CrS6K digest was prepared as 

described above, except resuspension was performed with 4 M urea, 100 mM phosphate buffer, 

pH 7.4, and dilution was performed with 100 mM phosphate buffer, pH 7.4 to a urea 

concentration of 1 M. The sample was then digested overnight with Glu-C (sequencing grade, 

Sigma Aldrich) at 37 °C with an enzyme:protein ratio of 1:50. 

Sample digestion was quenched with the addition of 20% TFA until samples reached a pH < 

3.0. After this, samples were desalted using 50 mg/1.0 mL Sep-Pak C18 cartridges as described 

in Section 6.2.8, and dried to completeness. 

6.2.10 Kinase Screening Assay 

10x screening buffer was prepared with 50 mM MgCl2, and 10 mM DTT in 20 mM HEPES-

KOH, pH 7.4. Peptide library and CrS6K digests were resuspended at a concentration of 10 

mg/mL in 20 mM HEPES-KOH, pH 7.4. 10 mM aliquots of 18O4-ATP were made in 20 mM 

HEPES-KOH, pH 7.4.  

Kinase screening was performed in triplicate at 25 °C overnight with a 100 µL per sample 

volume. Each sample had 1 mM 18O4-ATP, 20 µg of target peptide with 1 µg kinase were used 
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for synthetic peptide screens, and 500 µg digested CrS6K or peptide library with 2 µg of kinase 

for other screens. Triplicate control samples were also prepared and incubated overnight with no 

kinase added for the AtPDK controls and CrTOR-EKD D239A used in the CrTOR-EKD 

screening controls. 

6.2.11 Phosphopeptide Enrichment 

Phosphopeptide enrichment was performed on each sample as previously described using 1 

mg Titansphere Phos-TiO2 kit spin columns (GL Sciences)40,41. Following each step in the 

enrichment, columns were centrifuged at 1000 x g for 5 min until dry. Columns were pre-eluted 

with 50 µL 20% acetonitrile, 5% aqueous ammonia, and the equilibrated with 50 µL 80% 

acetonitrile, 1% TFA twice, and 50 µL 80% acetonitrile, 1% TFA with 25 mg/ml phthalic acid 

three times. Samples were resuspended in 70 µL of 80% acetonitrile, 1% TFA with 25 mg/mL 

phthalic acid, and then centrifuged at 15,000 x g for 5 min to pellet any precipitant and prevent 

column clogging. Samples were loaded onto the column a total of five times, reapplying the flow 

through after each centrifugation step. Columns were then washed using 50 µL 80% acetonitrile, 

1% TFA with 25 mg/mL phthalic acid twice, and 50 µL 80% acetonitrile, 1% TFA three times. 

Phosphopeptides were eluted in 50 µL 20% acetonitrile, 5% aqueous ammonia twice, for a total 

of 100 µL of elution. Samples were then dried using vacuum centrifugation.  

Following phosphopeptide enrichment, samples were desalted using 0.6 µL C18 ZipTips 

(MilliporeSigma). After drying, samples were resuspended in 15 µL 0.1 TFA and centrifuged for 

5 min at 15,000 x g to remove any precipitant and prevent tip clogging. Tips were first pre-eluted 

three times with 10 µL of 80% acetonitrile, 0.1% TFA, followed by equilibration with 10 µL 

0.1% TFA three times. The samples were then loaded on the tip by passing the phosphopeptides 

through ten times. Following loading, the tips were then washed six times with 10 µL of 0.1% 
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TFA and the eluted by passing 15 µL of 80% acetonitrile, 0.1% TFA through the tip ten times. 

The samples were then dried down using vacuum centrifugation. 

6.2.12 LC-MS/MS 

Samples were resuspended in 5% ACN, 0.1% TFA to a concentration of 0.2 µg/µL for 

library/digest samples and 20 ng/µL for synthetic peptide samples. Samples were analyzed using 

an Acquity M-Class UPLC system (Waters) coupled to a Q Exactive HF-X Hybrid Quadrupole 

Orbitrap mass spectrometer (ThermoFisher) via a Nanospray Flex Ion Source (ThermoFisher) 

with a spray voltage of 2.1 kV, except for samples of AtPDK screens against GHSLADPDELR, 

which were analyzed using a nanoAcquity (Waters) coupled to a TripleTOF 5600 mass 

spectrometer (AB Sciex). For all samples, mobile phase A was water with 0.1% formic acid and 

mobile phase B was ACN with 0.1% formic acid. 1 µL of each sample was injected with a 5 

µL/min flow rate for 3 min onto a Symmetry C18 trap column (100 Å, 5 µm, 180 µm x 20 mm, 

Waters). Samples were separated with a 0.3 µL/min flow rate on an HSS T3 C18 column (100 Å, 

1.8 µm, 75 µm x 250 mm, Waters). Library/digest samples separation used a gradient of 5-35% 

B over 90 min, followed by a ramp to 85% B in 5 min with a 5 min hold and a return to 5% B in 

2 min with a re-equilibration time of 13 min, for a 120 min total run time. Synthetic peptide 

sample separation used a ramp of 5%−50% B over 30 min instead, for a 60 min total run time.  

For most samples, the mass spectrometer was operated in positive polarity with a 2.1 kV 

spray voltage, 325°C capillary temperature and S-lens RF level of 40. Lock masses of 

background polysiloxane ions were included. Full MS/DD-MS2 scan type was used. MS survey 

scan was performed in profile mode across 350-1600 Da at 120,000 resolution with a 50 ms 

maximum IT and 3x106 AGC target. The top 20 features with a +2 to +7 charge state above 5000 

counts were selected. MS2 scans were collected at 45,000 resolution with NCE at 32 until 100 ms 
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maximum IT or 1x105 AGC target. The dynamic exclusion window was set to 10 s and an 

isolation window of 0.7 m/z for precursor ions. For AtPDK screens against GHSLADPDELR, 

the mass spectrometer was operated in positive-ion, high-sensitivity mode with the MS survey 

spectrum using a mass range of 350−1600 Da in 250 ms and information-dependent acquisition 

(IDA) of MS/MS data. The first 20 features above 150 counts with a charge state of +2 to +5 

were fragmented using rolling collision energy (±5%). Auto calibration was performed every 

eight samples with a BSA tryptic digest. The mass spectrometry proteomics data and 

supplemental tables have been deposited to the ProteomeXchange Consortium via the PRIDE 

partner repository42 and can be accessed with the Identifier PXD023453 (Username: 

reviewer_pxd023453@ebi.ac.uk, Password: OsGKUzTy). 

6.2.13 Data Analysis 

For peptide screening samples, peak areas were measured using Analyst (AB Sciex) or 

Xcaliber (ThermoFisher). Individual samples were converted to peak lists (*.mgf) for database 

searching using the MSConvertGUI (ProteoWizard) with the following settings: peakPicking, 

vendor MS level 1-2; remove extra zero samples; HCD activation; threshold count of 5000 most 

intense peaks. The peaklist was uploaded into Mascot (Matrix Science, version 2.5.1) and 

database searching was performed against the E. coli BL21(DE3) Uniprot database 

(https://www.uniprot.org/proteomes/UP000002032, 4,156 entries) with appended target peptide 

and kinase sequences. Sequences for common laboratory contaminants (www.thegpm.org/cRAP, 

116 entries) were also included in the database. A target decoy MS/MS search was performed 

with trypsin specificity with up to two missed cleavages, a peptide mass tolerance of 15 ppm, 

and a fragment mass tolerance of 0.02 Da. Carbamidomethylation of cysteine was included as a 

fixed modification with oxidation of methionine, and heavy phosphorylation (P18O3) of serine, 

https://www.uniprot.org/proteomes/UP000002032,
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threonine, and tyrosine included as variable modifications. After completion of the search, the 

false discovery rate was adjusted to be less than 1% using the embedded Percolator algorithm, 

and matches were exported. 

For library/digest screenings, the acquired spectral files (*.raw) were uploaded into 

Progenesis QI for Proteomics (Nonlinear Dynamics, Waters) for label-free quantification. An 

automatically assigned reference spectrum was used to align the total ion chromatograms and a 

peak picking sensitivity was set to the maximum of 5. Alignment was validated with a score 

>90%, and replicates were grouped based on sample type before being exported as a combined 

peak list (*.mgf). The peaklist was uploaded into Mascot (Matrix Science, version 2.5.1) and 

database searching was performed against the Chlamydomonas reinhardtii JGI v5.6 Phytozome 

database (https://phytozome-next.jgi.doe.gov/info/Creinhardtii_v5_6, 19,523 entries) appended 

with the entries from the NCBI chloroplast (BK000554.2, 68 entries) and mitochondrial 

(NC_001638.1, 8 entries) databases for peptide library screenings. CrS6K digest screenings were 

searched against E. coli BL21(DE3) database with appended target peptide and kinase 

sequences. Sequences for common laboratory contaminants (www.thegpm.org/cRAP, 116 

entries) were also included in the databases. A target decoy MS/MS search was performed with 

trypsin or Glu-C specificity with up to two missed cleavages, a peptide mass tolerance of 15 

ppm, and a fragment mass tolerance of 0.02 Da. Carbamidomethylation of cysteine was included 

as a fixed modification with acetylation at the protein N-terminus, oxidation of methionine, and 

heavy phosphorylation (P18O3) of serine, threonine, and tyrosine included as variable 

modifications. After completion of the search, the false discovery rate was adjusted to be less 

than 1% using the embedded Percolator algorithm, and matches were exported and reuploaded 

https://phytozome-next.jgi.doe.gov/info/Creinhardtii_v5_6
https://www.ncbi.nlm.nih.gov/nuccore/BK000554.2
https://www.ncbi.nlm.nih.gov/nuccore/NC_001638.1
http://www.thegpm.org/cRAP
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into Progenesis for peak matching. After matching, identifications with a Mascot score less than 

13 were removed before exporting protein/peptide measurements. 

Data were parsed using custom R scripts designed for phosphoproteomic data 

(https://github.com/hickslab/QuantifyR). Groups in the peptide measurements data were reduced 

to satisfy the principle of parsimony, removing duplicated and matched peptides with identical 

sequence, modifications, and score. These were represented by the protein accession with the 

highest number of unique peptides, which was found in the protein measurements data, else the 

protein with the highest confidence score assigned via Progenesis. For identical features with 

differing peptide identifications, duplicates were reduced to the peptide with the highest Mascot 

ion score. These results were filtered for only peptides containing heavy phosphorylation. 

Identifiers were created for each of these features by joining the protein accession for each 

peptide to the amino acid and location of the site(s) of modification in the protein sequence. The 

data were then reduced to only unique identifiers by summing all of the contributing peak 

features which may come from different charge states, missed cleavages, and the presence of 

additional variable modifications. The peptide with the highest Mascot score in each group 

represented the corresponding identifier. Identifiers were then removed if they did not have at 

least one condition where 2/3 replicates had nonzero values for their Progenesis-normalized 

abundances. These abundances were log2-transformed and imputation was applied to assign 

missing values. Statistical significance was calculated using a two-tailed, equal variance t-test 

and fold-change was calculated from the difference of the mean abundance values between 

conditions. Observations with a p-value <0.05 and a log2-transformed fold change of ±1 were 

considered significantly changing. 

https://github.com/hickslab/QuantifyR
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6.3 Results and Discussion 

6.3.1 Platform Validation 

6.3.1.1 AtPDK Screening with Synthetic Target Peptide 

To confirm successful expression and purification of active AtPDK, screening was first 

performed using a synthetic peptide corresponding to the sequence of the tryptic peptide 

containing the target phosphorylation site from AtPDCe1α (YHGHSMSDPGSTYR). AtPDK 

was incubated with the target peptide in the presence of γ-18O4-ATP and then analyzed via LC-

MS/MS. Extracted ion chromatograms (XICs) confirmed that the unphosporylated target peptide 

was present in all samples and that the heavy phosphorylated peptide was only present in the 

kinase samples (Figure 6.2a). While phosphopeptides are generally found to have worse 

ionization efficiency than there unphosphorylated counterparts, the difference appears to be 

relatively small when using electrospray ionization43, allowing for a rough comparison of the 

abundances to conservatively estimate phosphorylation efficiency of the kinase. Comparing the 

summed peak areas of the unphosphorylated and phosphorylated peptides (Table 6.1) shows that 

only about 1-1.5% of the present peptide was phosphorylated by AtPDK but this suggests the 

kinase is active. 

To further validate the activity of AtPDK, the kinase samples were searched using Mascot 

against a custom database containing the AtPDCe1α sequence, including heavy phosphorylation 

as a variable modification on serine, threonine, and tyrosine residues. In the search results (Table 

6.S1), the target peptide was identified in its unmodified, oxidized, and phosphorylated states 

and phosphorylation was localized to the serine (Ser5) targeted by AtPDK (Figure 6.2b). This 

localization was confirmed based on the presence of the y8 and y9 ions and a Mascot delta 

localization score of 27.7 between Ser 5 and Ser7. Additionally, neutral loss from the 
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phosphorylation was identified as an H3PO18O3, characteristic of a β-elimination reaction rarely 

seen in phosphotyrosine fragmentation44, preferencing phosphorylation on Ser5 over Tyr1. 

6.3.1.2 AtPDK Screening with Peptide Library 

For platform validation, the synthetic target peptide was spiked into a C. reinhardtii digest 

peptide library at a physiologically-relevant concentration (100 ng in a 500 µg library) to ensure 

target identification in the presence of a more complex library. After screening, the samples were 

enriched for phosphopeptides and analyzed via LC-MS/MS. A label-free quantitative proteomic 

workflow, and statistical testing using custom R scripts adapted from the QuantifyR LFQ 

phosphorylation workflow (https://github.com/hickslab/QuantifyR) was used to perform a t-test 

between the control and kinase samples, giving a list of potential target substrates that were 

significantly more abundant in the kinase samples. A total of 37 peptides were identified with 

heavy phosphorylation, six of which were significantly more abundant in the kinase samples 

(Figure 6.3a, Table 6.S2). One of these was the synthetic AtPDCe1α target peptide, which was 

3.75x more abundant in the kinase samples. Again, the phosphorylation event was successfully 

localized using MS2 fragmentation (Figure 6.3b). This confirms that this platform can screen an 

active kinase and identify its potential target substrates. 

The other five peptides shown to be significantly more abundant in the kinase samples may 

also be targets of phosphorylation of AtPDK from the C. reinhardtii peptide library. One of these 

identified peptides was GHSLADPDELR, which was found to be 20.5x more abundant in the 

kinase samples. This peptide is from the C. reinhardtii homolog of the PDCe1α subunit 

(CrPDCe1α, Cre02.g099850.t1.1), and when the sequences of AtPDCe1α and CrPDCe1α were 

aligned using BLAST35, a 56% positive alignment was seen between the two homologs, with the 

two peptides found in the screening aligning with one another (Figure 6.4). The two peptides 
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have four conserved amino acids, Gly and His at the -2 and -1 positions, and Asp and Pro at the 

+3 and +4 positions, with two additional residues that are similar, suggesting that this peptide 

could also be a target of phosphorylation by AtPDK. However, when AtPDK was screened 

against a synthetic version of this peptide, XICs did not show the presence of a heavy 

phosphopeptide in the kinase samples (Figure 6.5, Table 6.2), showing that this substrate 

identification was most likely a false positive. This implies that AtPDK has a high level of 

selectivity and has a consensus motif more specific than the conserved amino acids found 

between this potential target and the known tryptic substrate from AtPDCe1α. 

6.3.2 Screening of CrTOR-EKD 

6.3.2.1 CrTOR-EKD Screening with Tryptic CrS6K Digest 

With the validation of the screening approach successful, it was applied to identification of 

CrTOR targets using the CrTOR-EKD construct. For a more targeted screening approach, 

instead of screening against a full Chlamydomonas peptide library, CrTOR-EKD was first 

screened against CrS6K, which is suspected to be a direct target of TOR based on homology. A 

vector construct encoding for CrS6K was synthesized commercially based on the corrected 

CrS6K from the Umen lab (Danforth Center) (see corrected sequence in Figure 5.3). Their 

unpublished work confirmed that a portion of the protein is missing in the original sequence 

included in the Chlamydomonas database available on Phytozome. For this work, this portion of 

sequence was added to the CrS6K plasmid construct for expression of the complete protein and 

the sequence for S6K included in the customized database was updated accordingly. Using this 

vector construct, CrS6K was heterologously expressed, purified, and then digested using trypsin. 

This tryptic digest was used as a substrate library for screening CrTOR-EKD.   
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A total of 41 peptides were identified with heavy phosphorylation, two from CrS6K while 

the remaining 39 were from E. coli protein contaminants that were digested along with CrS6K 

during peptide library preparation (Figure 6a, Table 6.S3). Of these heavy phosphopeptides, one 

from E. coli was found to be significantly more abundant in the CrTOR-EKD samples when 

compared to the CrTOR-EKD D239A control samples (Figure 6a). This peptide is not a 

biologically relevant target of CrTOR, and not found in any protein in the Chlamydomonas 

database. While it could provide information on TOR consensus motif specificity, additional 

target peptides would be needed to establish a putative motif. 

6.3.2.2 CrTOR-EKD Screening with Glu-C CrS6K Digest 

Tryptic digestions are often used in bottom-up proteomic experiments because it typically 

produces a large number of small peptides within the mass range of most high resolution mass 

spectrometers45. However, like many proteins, not all portions of CrS6K are produce reasonably 

sized tryptic peptides. Specifically, Thr1006, the conserved residue that is known to be a target 

of TOR in other organisms, is part of a 6.4 kDa C-terminal peptide that is likely too large to be 

easily ionized. Containing no Arg and Lys residues and only one His, this peptide is likely to 

have low charge states that are outside of the mass range of many mass analyzers. As a result, it 

was not detected in the previous screening. In an attempt to obtain coverage on this site and 

determine if it is a target of CrTOR, CrS6K was digested with Glu-C instead of trypsin, which 

produces a peptide containing Thr1006 that is 1.4 kDa in size. 

When CrTOR-EKD was screened against the Glu-C CrS6K digest, 3779 peptides were 

identified, 10 of which had heavy phosphorylation modifications (Table 6.S4). However, the 

peptide containing Thr1006 was only identified in its unphosphorylated form, no heavy 

phosphopeptides were identified from CrS6K, and none of the identified phosphopeptides were 
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found to be significantly changing in the kinase samples when compared to the control (Figure 

6b). The other phosphorylation site known to be regulated by TOR in mammalian cells 31 is also 

conserved in CrS6K, Ser1003, but the corresponding Glu-C digest peptide was not detected in 

these data.  

Additionally, a synthetic peptide was produced containing the target Thr1006 with six 

residues of the CrS6K sequence on either side, GRFDGFTYVAPCF. This peptide was screened 

against CrTOR-EKD in the presence of heavy ATP, but the phosphorylated form of the peptide 

was not identified, suggesting the kinase did not have activity against the Thr1006 target or that 

the kinase construct is not active. (Figure 6.7, Table 6.3). 

6.3.2.3 CrTOR-EKD Screening with Chlamydomonas Peptide Library 

When CrTOR-EKD was screened against a Chlamydomonas tryptic peptide library, a total of 

19 heavy phoshopeptides were identified, with only one peptide significantly higher in 

abundance in the CrTOR-EKD samples when compared to the CrTOR-EKD D239A control 

samples (Table 6.S5, Figure 6.8a). This peptide is from acidic ribosomal protein P2 

(Cre02.g143050.t1.2), and phosphorylation was identified on the tryptic peptide containing 

Ser44 (LISELEGK, FC: 1.78). While this protein has never been identified as a target of TOR 

phosphorylation, ribosomal P proteins are known to be regulated via phosphorylation46–49, with 

the p-protein complex of eukaryotic ribosomes thought to assist in the elongation phase of 

translation when in its active, multiply phosphorylated form50. While the exact role of this 

phosphorylation site is unknown, it could aid the p-protein complex through either increased 

activity or additional specificity, but more work is needed to determine its exact role. TOR is 

known to regulate translation through phosphorylation of S6K and indirectly ribosomal protein 

S6 (RPS6)29, but this result suggests that TOR may have additional ribosomal targets. 
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In an attempt to validate the phosphorylation site identified as a potential target on acidic 

ribosomal protein P2, a synthetic version of the tryptic peptide containing the target was made 

and screened against CrTOR-EKD in the presence of heavy ATP. However, XICs did not show 

the presence of any phosphorylation, so this protein has not been validated and is either no a 

direct substrate of CrTOR, or this further suggests that the CrTOR-EKD construct is not active. 

(Figure 6.8b, Table 6.4). However, further studies are required to determine the exact cause of 

inactivity seen from CrTOR-EKD. 

6.4 Conclusions and Future Directions 

While this in vitro screening approach was able to successfully identify phosphorylation 

of the target peptide of AtPDK, the platform was not successful in identifying potential 

substrates of CrTOR. This could be due to a number of issues, but the inactivity of the CrTOR-

EKD is likely a contributing factor.  

Heterologous expression and purification of active enzymes, and kinases in particular, 

can be challenging. Many kinases suffer from poor solubility, incorrect folding or aggregation 

when expressed in prokaryotic hosts 51. Previous work has shown that the kinase domain of 

CrTOR, when heterologously expressed as a fusion protein with MBP, is still able to bind 

CrLST8 in vitro which would imply that the construct is structurally folded enough for this 

interaction to occur37. However, CrTOR-EKD is a fusion protein with a different tag, GST, but 

this is s known for acting as a chaperone for protein folding and can help with solubility52. The 

successful purification of CrTOR-EKD suggests that the fusion GST tag is folded correctly to the 

extent that it is able to properly able to bind glutathione, and the construct appears to be soluble. 

However, further investigation is needed to determine the structure of the CrTOR-EKD construct 

and whether the GST fusion tag helps in the solubility and folding, or if the bulky tag interferes 
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with the activity of the kinase. This construct, like many fusion proteins, encodes for a site-

specific protease recognition sequence that could allow for the tag to be removed prior to 

screening.  

This screening platform is designed to help identify biologically-relevant putative substrates 

for kinases, but there are other more simplistic kinase assays designed to measure a kinase’s 

activity53–58. While we have attempted to implement an absorbance-based assay in the Hicks lab 

to confirm construct activity prior to screening, thus far we have been unsuccessful. Primarily, 

we have focused on implementation of the non-antibody phosphorylation detection reagent 

(pIMAGO) and the phosphatase-coupled universal kinase assay (R&D Systems) as a way to 

detect the phosphorylation of a substrate library from a kinase. CrTOR is particularly challenging 

to screen for activity because there is not a confirmed phosphorylation target that can be used as 

a positive control. While CrS6K would be an obvious candidate given its homology with the 

known direct target of mTOR, no phosphorylation has ever been detected in in vivo experiments 

perturbing TOR activity via phosphoproteomics40. 

Another factor of concern for heterologous kinase expression is the potential for 

heterogeneous auto-phosphorylation, where the kinase can phosphorylate itself at different sites 

as expression occurs decreasing the activity of the kinase51. To address this, kinases are often 

partially or completed dephosphorylated in vitro and then a particular phosphoform is purified 

using chromatography. Alternatively, a phosphatase can be co-expressed along with the kinase, 

increasing the yield of the non-phosphorylated form of the kinase. 

Successful screening of CrTOR-EKD and the other kinases selected from the TOR signaling 

pathway will require additional optimization of expression, purification, and screening 

parameters necessary to ensure each construct is active. This may require techniques to 
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determine the structural characteristics of the constructs under different conditions as well as 

mapping of the modifications needed to ensure kinase activity. This approach will likely be most 

successful in cases where a known kinase substrate can be used to identify changes in activity 

and will be challenging to implement in the absence of a known substrate. 

In addition to these proposed improvements to kinase activity, adaptations of the substrate 

library used in screening may help improve identification of putative substrates. While the work 

herein used a lysate of Chlamydomonas cells grown under favorable conditions for library 

creation, implementation of a stressor such as nutrient deprivation or chemical treatment could 

provide a unique library derived from the expression levels of the proteome under stressed 

conditions. This could increase the concentration of substrates of interest, particularly for kinases 

like TOR, which are known to regulate nutrient and stress response. Additionally, the peptide 

substrate library could be pre-enriched for phosphopeptides prior to dephosphorylation18. This 

pool of peptides represents a subset of potentially more biologically relevant targets as they are 

found endogenously in their phosphorylated form. These adaptations to the substrate pool along 

with further kinase expression and screening optimization could create a platform that is more 

amenable for screening TOR in addition to Chlamydomonas kinases. The combination of this in 

vitro work with the in vivo studies of earlier chapters, could provide a thorough investigation of 

the Chlamydomonas TOR signaling pathway, providing insight into a complex, but essential 

regulatory network. 
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6.5 Tables 

Table 6.1 XIC peak areas and percent phosphorylation from AtPDK screening with synthetic 
target peptide YHGHSMSDPSTYR. 

 Unphosphorylated Phosphorylated Total Peak Areas 
Percent 
Phos. 

Sample +2 +3 +4 +2 +3 +4 Unphos. Phos. 

Control 
1 

6.87 
E+10 

2.08 
E+11 

1.03 
E+10 

3.61 
E+06 

3.13 
E+07 

1.35 
E+06 

2.87 
E+11 

3.62 
E+07 0.01% 

Control 
2 

1.30 
E+11 

3.37 
E+11 

1.46 
E+10 

1.38 
E+08 

9.51 
E+08 

1.68 
E+08 

4.82 
E+11 

1.26 
E+09 0.26% 

Control 
3 

8.35 
E+10 

2.41 
E+11 

1.11 
E+10 

1.02 
E+08 

8.37 
E+08 

1.34 
E+08 

3.36 
E+11 

1.07 
E+09 

0.32% 

Kinase 
1 

1.33 
E+11 

3.51 
E+11 

1.42 
E+10 

9.51 
E+08 

5.49E
+09 

1.72 
E+08 

4.98 
E+11 

6.62 
E+09 1.31% 

Kinase 
2 

1.45 
E+11 

3.63 
E+11 

1.45 
E+10 

1.42 
E+09 

7.35 
E+09 

1.42 
E+08 

5.23 
E+11 

8.91 
E+09 1.68% 

Kinase 
3 

1.28 
E+11 

3.54 
E+11 

1.44 
E+10 

9.81 
E+08 

5.25 
E+09 

1.36 
E+08 

4.96 
E+11 

6.36 
E+09 1.27% 
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Table 6.2 XIC peak areas and percent phosphorylation from AtPDK screening with synthetic 
target peptide GHSLADPDELR. 

 Unphosphorylated Phosphorylated Total Peak Areas 
Percent 
Phos. 

Sample +2 +3 +2 +3 Unphos. Phos. 

Control 1 3.29E+08 2.14E+08 2.13E+06 0.00E+00 5.43E+08 2.13E+06 0.391% 

Control 2 3.45E+08 1.11E+08 1.12E+05 8.76E+04 4.56E+08 2.00E+05 0.044% 

Control 3 3.21E+08 2.10E+08 9.97E+04 5.95E+04 5.31E+08 1.59E+05 0.030% 

Kinase 1 3.32E+08 2.14E+08 8.99E+04 9.42E+04 5.46E+08 1.84E+05 0.034% 

Kinase 2 3.04E+08 2.02E+08 1.13E+05 1.30E+05 5.06E+08 2.43E+05 0.048% 

Kinase 3 2.73E+08 1.84E+08 1.19E+05 9.81E+04 4.57E+08 2.17E+05 0.048% 
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Table 6.3 XIC peak areas and percent phosphorylation from CrTOR-EKD screening with 
synthetic target peptide GRFDGFTYVAPCF. 

 Sample Control 1 Control 2 Control 3 Kinase 1 Kinase 2 Kinase 3 

U
np

ho
sp

ho
ry

la
te

d +1 2.13E+10 1.98E+10 1.95E+10 1.96E+10 1.92E+10 2.05E+10 

+2 4.05E+11 3.92E+11 3.74E+11 3.69E+11 3.76E+11 4.08E+11 

+3 1.28E+07 9.16E+06 5.62E+06 1.01E+07 1.20E+07 8.87E+06 

+4 1.56E+05 9.85E+04 1.17E+06 2.43E+06 1.59E+06 3.95E+05 

Ph
os

ph
or

yl
at

ed
 +1 0.00E+00 3.94E+05 1.22E+06 0.00E+00 0.00E+00 0.00E+00 

+2 1.36E+09 1.51E+09 1.40E+09 1.11E+09 9.98E+08 1.39E+09 

+3 3.83E+07 4.28E+07 3.13E+07 4.16E+07 3.79E+07 3.58E+07 

+4 1.50E+06 2.59E+06 2.58E+06 2.94E+06 3.74E+06 3.51E+06 

To
ta

l A
re

as
 

Unphos. 4.27E+11 4.12E+11 3.93E+11 3.88E+11 3.95E+11 4.28E+11 

Phos. 1.40E+09 1.55E+09 1.43E+09 1.16E+09 1.04E+09 1.43E+09 

 Percent Phos. 0.33% 0.38% 0.36% 0.30% 0.26% 0.33% 
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Table 6.4 XIC peak areas and percent phosphorylation from CrTOR-EKD screening with 
synthetic target peptide LISELEGK. 

 Unphosphorylated Phosphorylated Total Peak Areas 
Percent 
Phos. 

Sample +1 +2 +1 +2 Unphos. Phos. 

Control 
1 4.08E+11 1.12E+12 8.40E+07 7.25E+08 1.52E+12 8.09E+08 0.053% 

Control 
2 3.76E+11 1.02E+12 5.33E+07 4.65E+08 1.40E+12 5.18E+08 0.037% 

Control 
3 3.99E+11 1.10E+12 4.67E+07 4.52E+08 1.50E+12 4.99E+08 0.033% 

Kinase 1 3.97E+11 1.09E+12 4.68E+07 4.35E+08 1.49E+12 4.82E+08 0.032% 

Kinase 2 3.81E+11 1.07E+12 2.70E+07 2.42E+08 1.46E+12 2.69E+08 0.019% 

Kinase 3 3.68E+11 1.01E+12 2.43E+07 2.32E+08 1.38E+12 2.56E+08 0.019% 
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6.6 Figures 

 

 

Figure 6.1 The TOR kinase signaling pathway based on homology from mammalian TOR. 
Proteins with known homologs in Chlamydomonas are blue, and the kinases with constructs 
made for this screening work are in purple. 
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Figure 6.2 Results of screening AtPDK with synthetic peptide target, YHGHSMSDPSTYR. a.) 
TIC of screening sample and XICs of unphosphorylated and phosphorylated peptide m/z’s. b.) 
MS2 of target phosphopeptide with localization of the phosphorylation on Ser5. 
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Figure 6.3 Screening results of AtPDK with C. reinhardtii peptide library and synthetic target 
peptide spike-in. a.) After performing a t-test between the kinase and control samples, six 
phosphopeptides were found to be significantly more abundant in the kinase samples (red), 
including the target peptide YHGHSMSDPGSTYR. b.) MS2 of target phosphopeptide with 
localization of the phosphorylation on Ser5. 
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Figure 6.4 BLASTp results of AtPDCe1α and CrPDCe1α with target phosphopeptides identified 
in AtPDK screening highlighted in red along with their matching/similar residues. 
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Figure 6.5 Results of screening AtPDK with synthetic peptide target, GHSLADPDELR. TIC of 
screening sample and XICs of unphosphorylated and phosphorylated peptide m/z’s. 

  



 
 
 

223 

 

 

Figure 6.6 CrTOR-EKD screening results against CrS6K. a.) CrTOR-EKD screened against a 
CrS6K tryptic digest. No peptides from CrS6K were identified as being phosphorylated by 
CrTOR-EKD, but one peptide target from an E. coli protein was identified (red). b.) CrTOR-
EKD screened against a Glu-C S6K digest. No peptides were identified as being phosphorylated 
by CrTOR-EKD. 
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Figure 6.7 Results of screening CrTOR-EKD with synthetic peptide target, 
GRFDGFTYVAPCF. TIC of screening sample and XICs of unphosphorylated and 
phosphorylated peptide m/z’s. 
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Figure 6.8 CrTOR-EKD screening results. a.) Screening CrTOR-EKD with Chlamydomonas 
peptide library. One peptide from acidic ribosomal protein P2 was identified as a potential target 
of CrTOR (red). b.) Screening of CrTOR-EKD against synthetic peptide LISELEGK. TIC of 
screening sample and XICs of unphosphorylated and phosphorylated peptide m/z’s. 
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CHAPTER 7:  Conclusions and Future Directions 

7.1 Conclusions 

Despite the known importance of TOR and its regulatory mechanisms in mammalian cells, 

there is still limited understanding of its role in stress signaling and nutrient response in 

phototrophs. The work presented in this dissertation focused on investigation of TOR pathway 

regulation via post-translational modifications in Chlamydomonas. Specifically, we focused on 

identifying points of regulation of various cellular processes via TOR-modulated reversible 

oxidation and phosphorylation, using inhibition studies combined with label-free quantitative 

proteomics as well as in vitro kinase screening assays to identify modification sites under the 

regulation of TOR. 

With its role as a model photosynthetic organism for studying algal biological processes, 

there is growing interest in elucidation of Chlamydomonas signaling networks. Previous work in 

the Hicks lab established OxRAC as an indirect method of identifying reversibly oxidized 

cysteines1, which was implemented to discern oxidative pathways after TOR inhibition (Chapter 

2). After treating Chlamydomonas with the TOR inhibitor AZD8055, OxRAC was combined 

with label-free proteomics to identify oxidation sites regulated by TOR. We identified 401 

proteins with significant changes in oxidation on 510 peptides following TOR inhibition. These 

differences mirrored characterized physiological changes, supporting the role of reversible 

oxidation in TOR regulation of TAG production, protein translation, carbohydrate catabolism 

and photosynthesis.  
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TOR is a conserved kinase and phosphorylation is one of the most prevalent regulatory 

PTMs, thus motivating the study of this signaling mechanism in Chlamydomonas and other 

organisms. To this end, we presented a comprehensive label-free workflow for accurate and 

reproducible phosphoproteomic quantification (Chapter 3). With this method, we identified 3595 

phosphosites from 1775 phosphoproteins with a median CV of 21% across three technical 

replicates. This workflow was then applied to delineate the coordination between TOR and InsP 

signaling (Chapter 4). Using vip1-1, a mutant strain lacking the VIP1 protein responsible for 

InsP7 and InsP8 synthesis, phosphorylation differences were compared to wild-type 

Chlamydomonas. Rapamycin was used to assess differential phosphorylation with TOR 

inhibition in the two strains to investigate the intersection of TOR regulatory pathways and InsP 

signaling. With its hypersensitivity to rapamycin treatment, we hypothesized there would be 

stark differences in TOR-regulated phosphorylation between the two strains. Of the 3,986 

phosphopeptides identified, 217 and 1,029 were found to be significantly changing in wild-type 

and vip1-1, respectively, with rapamycin treatment. From these data, it is clear that several 

crucial processes have TOR signaling points that are dependent on VIP1 including autophagy 

and photosynthesis. 

In addition to the quantitative work investigating TOR in vivo, an in vitro screening approach 

was validated and implemented in an attempt to identify the direct targets of TOR. A detailed 

procedure is delineated for the heterologous expression and purification of kinases, creation of a 

Chlamydomonas peptide library, kinase screening, phosphopeptide enrichment, and LC-MS/MS 

analysis including method modification options and troubleshooting tips (Chapter 5). Validation 

of this platform with AtPDK showed successful identification of the corresponding known target 

tryptic peptide from AtPDCe1α upon screening (Chapter 6). However, screening of a CrTOR-
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EKD construct did not successfully reveal any putative in vivo targets of TOR phosphorylation. 

This may be due to a lack of activity from the CrTOR-EKD construct, and more work is needed 

to optimize the expression and purification parameters needed to obtain a concentrated, active 

form of CrTOR.  

Combined, the work shared in Chapters 2 and 4 highlights the importance of TOR in algal 

signaling and provided valuable information on the regulatory modifications under TOR control. 

They also lay the framework for future work including validation of identified sites and analysis 

of other mutant strains. 

7.2 Future Directions 

The label-free PTM-based work presented here takes a broad look at the PTM-level 

changes regulated by TOR. While this is useful to identify regulatory points and provide context 

to TOR signaling mechanisms, further studies are needed to validate specific sites and identify 

the physiological impact of these PTMs. In Chapter 2, differential reversible oxidation following 

TOR inhibition was quantified, but the exact oxidation modifications (e.g., disulfide bond, 

sulfenic acid, etc.) are lost in this enrichment method. Adaptations of this method exist that allow 

for selective enrichment of certain reversible oxidation modifications, including S-nitrosylation 

2,3, S-glutathionylation 4,5, and S-acylation6  that could allow for more insight into the role of the 

TOR regulated sites identified in this work. Previous work has shown that there is only a small 

overlap between the thiols targeted by each form of reversible oxidation7, implying that each 

form may have its own unique regulatory roles. Selective enrichment could provide insight into 

what these roles may be based on the sites identified. The methods for the selective enrichment 

of nitrosylation, glutathionylation and acylation would be relatively easy to incorporate into the 

OxRAC platform as they are resin-assisted capture-based methods similar to what was presented 
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here, but selective enrichments have not been developed for all reversible cysteine modifications. 

Additionally, the Thiopropyl Sepharose 6B resin used in this work is no longer commercially 

available, requiring the additional step of synthesizing the thiol resin prior to use8. 

With proteomic data, there is a trend whereby authors are required to include some 

orthogonal validation that supports the results obtained via mass spectrometry, most typically 

using a western blot approach with antibodies specific to a given protein 9. While these 

experiments are relatively straight forward when assessing global proteomic changes, it can be 

more challenging when assessing PTM-level changes, particularly for reversible oxidation 

modifications. However, the use of phospho-specific antibodies has become more common for 

validation of phosphoproteomic studies, allowing for quantification of changes in the relative 

abundance of  a given phosphorylation site 10,11.  

As shown by the phosphoproteomic work performed in vip1-1, the use of mutant strains 

can provide insight into how TOR regulates different biological processes or how different 

signaling networks interact with one another. For Chlamydomonas, a library of insertional 

mutants (called the CLiP library, https://www.chlamylibrary.org/) was created12,13 and is 

available through the Chlamydomonas Resource Center. The mutant strains require confirmation 

of gene disruption prior to use, but a number of TOR pathway-related mutants are available 

including insertions in LARP, S6K, and GSK3. Expansion of our investigation of TOR signaling 

in Chlamydomonas into some of these mutant strains may help to delineate the roles of the 

altered proteins with respect to TOR and how they help regulate biological processes. 

The size and relatively low abundance of CrTOR and its related proteins, present a 

challenge in identifying the proteins that associated with CrTOR14, whether it be associations to 

form a complex or as a target of phosphorylation. However, in addition to in vitro screening 
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methods, there are other approaches that could be helpful in the investigation of TOR’s 

interactions. Previous work has localized CrTOR to regions adjacent to the plasmid membrane 

and membranous structures15. Implementing isolation steps where cytosolic proteins, including 

CrTOR, are separated from organelle proteins such as those in the chloroplast16 or nucleus17, 

could act as an enrichment and improve coverage on CrTOR and its interactors. In addition to 

these isolation strategies, the Hicks laboratory is currently optimizing a procedure for in vitro 

crosslinking of protein complexes using affinity-labeled MS-cleavable crosslinkers18. This 

technique would allow for proteomic digestion followed by enrichment of crosslinked peptides 

that still retains the crosslinker intact until cleaved in MS2, so interactions across multiple 

complexes can be identified in a single sample. This crosslinking could preserve the interactions 

of the TORC1 complex, including potential phosphorylation targets. When combined with 

sample fractionation, this could allow for the enrichment and depth of coverage needed to 

identify CrTOR and its interactors. While the work shared in the previous chapters highlights the 

importance of TOR in algal signaling and provided valuable information on the regulatory 

modifications under TOR control, many avenues of discovery remain and can build upon the 

knowledge obtained in this work. 
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