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ABSTRACT

Seulki Lee: Enabling Deep Intelligence on Embedded Systems
(Under the direction of Shahriar Nirjon)

As deep learning for resource-constrained systems become more popular, we see an in-

creased number of intelligent embedded systems such as IoT devices, robots, autonomous ve-

hicles, and the plethora of portable, wearable, and mobile devices that are feature-packed with

a wide variety of machine learning tasks. However, the performance of DNNs (deep neural net-

works) running on an embedded system is significantly limited by the platform’s CPU, memory,

and battery-size; and their scope is limited to simplistic inference tasks only.

This dissertation proposes on-device deep learning algorithms and supporting hardware de-

signs, enabling embedded systems to efficiently perform deep intelligent tasks (i.e., deep neural

networks) that are high-memory-footprint, compute-intensive, and energy-hungry beyond their

limited computing resources. We name such on-device deep intelligence on embedded systems

as Embedded Deep Intelligence. Specifically, we introduce resource-aware learning strategies

devised to overcome the four fundamental constraints of embedded systems imposed on the way

towards Embedded Deep Intelligence, i.e., in-memory multitask learning via introducing the con-

cept of Neural Weight Virtualization, adaptive real-time learning via introducing the concept of

SubFlow, opportunistic accelerated learning via introducing the concept of Neuro.ZERO, and

energy-aware intermittent learning, which tackles the problems of the small size of memory,

dynamic timing constraint, low-computing capability, and limited energy, respectively.

Once deployed in the field with the proposed resource-aware learning strategies, embedded

systems are not only able to perform deep inference tasks on sensor data but also update and

re-train their learning models at run-time without requiring any help from any external system.

Such an on-device learning capability of Embedded Deep Intelligence makes an embedded intelli-
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gent system real-time, privacy-aware, secure, autonomous, untethered, responsive, and adaptive

without concern for its limited resources.
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CHAPTER 1: INTRODUCTION

1.1 Confluence of Embedded Systems and Artificial Intelligence

Along with the deepening development in computing technologies and the surge of embed-

ded, mobile, and IoT (Internet of Things) devices, more and more data is created by widespread

and geographically distributed embedded and IoT devices. For example, 45% of the 40 zettabytes

global internet data is expected to be generated by embedded devices in 2024 (Ericsson, 2019).

Meanwhile, Artificial Intelligence (AI), defined as intelligence exhibited by machines, is thriving

with the breakthroughs in machine learning algorithms such as deep neural networks (DNNs) (Good-

fellow et al., 2016) due to their superiority in solving complex machine learning problems (Young

et al., 2018; Schroff et al., 2015; Krizhevsky et al., 2012), e.g., autonomous driving (Bojarski

et al., 2017; Chen et al., 2017c, 2016b, 2015a), natural language processing (Socher et al., 2012;

Deng and Liu, 2018; Khan et al., 2016), and healthcare applications (Miotto et al., 2017; Jiang

et al., 2017; Litjens et al., 2017) with the help of billions of bytes of data generated at the embed-

ded devices. Considering that AI is functionally necessary for quickly analyzing vast volumes

of data and extracting insights, there exists a strong demand to integrate embedded devices and

AI, which gives the birth of a brand-new paradigm called Embedded Intelligence that performs

intelligent tasks on the device directly without offloading massive data from the device to the

cloud (Deng et al., 2019).

1.2 Embedded Deep Intelligence

Embedded Intelligence is not a simple combination of embedded systems and AI. The subject

of embedded intelligence is tremendous and enormously sophisticated, covering many concepts
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and technologies, which are interwoven together in a complicated manner. Currently, the formal

and acknowledged definition of Embedded Intelligence is non-existent. To deal with the prob-

lem, some researchers put forward their definitions. For example, Zhou et al. (2019) argues that

the scope of Embedded Intelligence should not be restricted to running AI models solely on the

cloud servers or devices but in the manner of the collaboration of device and cloud. They define

six levels of Embedded Intelligence, from cloud-device co-inference (level 1) to all on-device

(level 6). In this research, we focus on all on-device machine learning on embedded systems (Li

et al., 2018a; Chauhan et al., 2018; Yao et al., 2017b), the level-6 embedded intelligence defined

in (Zhou et al., 2019), especially for deep neural networks, which we call Embedded Deep Intelli-

gence.

1.3 Benefits of On-Device Learning

In fact, the offloading solutions were popular back in the days when Wireless Sensor Net-

works (WSNs) were deployed to collect data from the sensor nodes, only to be analyzed later

on a remote base station (Shaikh and Zeadally, 2016; Akhtar and Rehmani, 2015; Shaikh and

Zeadally, 2016; Lu et al., 2015). Compared to the sensor motes of those WSNs, today’s embed-

ded systems are far more advanced in terms of CPU and memory, and their energy efficiency has

improved by several orders of magnitude. For instance, the latest mixed-signal microcontrollers

from Texas Instruments (i.e., TI MSP430 series) comes with up to 16-bit/25 MHz CPU, 512 KB

flash memory, 66 KB RAM, and 256 KB non-volatile FRAM—which are comparable to the

16-bit Intel x86 microprocessors of the early 80s which ran MS-DOS. These devices are quite

capable of executing simple machine learning workloads that perform on-device classification of

sensor data (Gobieski et al., 2018b) as well as training of the model. In general, there are several

advantages of on-device learning over relaying data to a base station:

• Data Transmission Cost and Latency. Data communication between a device and a base

station introduces delays and increases energy cost per bit transmission. Using back-scatter
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communication (Lu et al., 2018) apparently lower the energy cost, but the dependency on

an external entity and the unpredictable delay in wireless communication still remains,

which we want to avoid by design.

• Privacy and Security. Private and confidential data, such as health vitals from a wearable

device, can be safely learned on-device – without exposing them to external entities. Secu-

rity problems caused by side-channel and man-in-the-middle attacks (Aziz and Hamilton,

2009; Kügler, 2003) are avoided by design when we adopt on-device processing of sensi-

tive data.

• Precision Learning and Resource Management. Many human-in-the-loop machine learning

applications running on wearable and implantable systems benefit from run-time adaptation

as different persons have different preferences and different expectations from the same

application. On-device learning helps a system adjust itself at run-time to satisfy each

individual’s needs and to optimize its own resource management.

• Adaptability and Lifelong Learning. Lifelong learning Chen and Liu (2016) is an emerging

concept in robotics and autonomous systems where the vision is to create intelligent ma-

chines that learn and adapt throughout their lifetime. On-device machine learning enables

true lifelong learning by liberating these devices from being stationary and connected to

power sources, to mobile, ubiquitous, and autonomous.

1.4 Challenges of Embedded Deep Intelligence

Unfortunately, limitations in the computational capabilities of resource-scarce embedded

systems inhibit the implementation of machine learning algorithms on them, including deep

learning algorithms that need large amounts of input data and substantial computational power to

generate results. The major challenges of Embedded Deep Intelligence are:
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• Small Size of Memory. State-of-the-art deep neural networks require between hundreds

of KB to thousands of MB of main memory (Simonyan and Zisserman, 2014; He et al.,

2016a; Szegedy et al., 2017). On the other hand, low-power SoCs and microcontrollers

and state-of-the-art embedded GPUs typically contain 8KB–512MB of RAM (TexasInstru-

ments, 2018; Holton and Fratangelo, 2012; He et al., 2016b). Hence, the maximum number

of deep neural networks that can reside in the main memory is quite limited, and packing

multiple learners into extremely scarce memory of an embedded system still remains an

open problem.

• Dynamic Timing Constraint. The time constraints of many embedded systems in the real-

world dynamically change at run-time, making deep neural networks more challenging to

be executed as a real-time task. Such dynamic time constraints are found in many modern

embedded systems such as autonomous cars (Taş et al., 2016; Pongpunwattana and Rysdyk,

2004; Shiller et al., 1991), drones (Chen et al., 2017b; Nägeli et al., 2017; Soto et al., 2007),

and smartphones (He et al., 2015; Wanpeng and Wei, 2014; Balog et al., 2002) where the

system with limited resources must deal with online changes such as run-time application

requirements, resource availability, energy level, failures, and re-configurations. Such

changes consequently cause variations in the time requirements of related-tasks (Stewart

and Khosla, 1991); e.g., data-dependent requirements where the periods depend on the

input sensor data; time-dependent requirements where the actual deadline becomes known

only at run-time when setting the actuators.

• Low-Computing Capability. High performance of machine learning or deep learning algo-

rithms requires massive computation capability to deal with complex training and inference

methodologies and large datasets (LeCun et al., 2015). Although embedded systems are

a good source of extensive data and appealing targets for machine learning applications,

they are struggling to run machine learning algorithms due to their limited computing capa-

bility within specific limitations such as form factor size which is far behind the necessary
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level for many state-of-the-art learning models, e.g., low-end microcontrollers (TexasInstru-

ments, 2018) or embedded GPUs (NVIDIA, 2019a) with limited performance.

• Limited Energy. Most embedded devices are powered by batteries that will die eventually,

which inhibits continuous learning throughout their lifetime. Given only a fixed amount of

battery power during their lifetime, they have to maximize the power efficiency to increase

the duration usage as much as possible, which results in limiting the performance and

throughput of learning algorithms that usually require a large amount of energy for their

compute-intensive workloads.

1.5 Limitations of Existing Work

The existing approaches, such as compression and pruning of deep neural networks (Ull-

rich et al., 2017; Parashar et al., 2017; Han et al., 2015a; Abbasi-Asl and Yu, 2017; He et al.,

2014; Hassibi and Stork, 1993) that are currently used to fit large sizes of DNNs into resource-

constrained embedded systems, do not entirely solve the aforementioned challenges of Embedded

Deep Intelligence for the following reasons.

• Those compression algorithms require significant re-training and fine-tuning of individual

deep neural network models in order to achieve memory-saving, which is not scalable to a

massive number of embedded devices.

• Their run-time execution is not flexible to adapt to the dynamic timing constraints of the

system due to their fixed network architecture and computation.

• They do not provide a fundamental solution to the limited energy and computing capability.

Although the size of deep neural networks can be significantly decreased by compression,

their power consumption and computational workloads are barely reduced as much as their

network size reduction, as shown in many existing works (Chen, 2018).
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• They do not learn new data and thus do not update their DNN models at run-time but

only execute an inference task of the DNN (i.e., no on-device training) based on the task

pipelines fixed at compile-time.

• They do not benefit from knowledge transfer as they are trained in isolation and thus do not

achieve the benefit of multitask learning that increases the robustness and generalization

of multiple learners running on the same system. Although by sharing network structure

between deep neural network models (typically, the first few layers), the existing multitask

learning methods (Caruana, 1997; Ruder, 2017; Zhang and Yang, 2017a,b) allow deep

intelligence on embedded systems (He et al., 2018a), its primary goal is to increase the

performance of correlated and similar-structured learners without considering resource

limitation. Thus, it does not solve executing multiple heterogeneous learners on embedded

systems in a resource-efficient manner.

1.6 Thesis Statement

”Embedded systems can perform on-device deep learning, not dependent on external sys-

tems, enabling multitasking, real-time, dynamic, enhanced, and lifelong learning on the device

beyond their scarce resources, i.e., insufficient memory, dynamic execution time, low-computing

capability, and limited energy. Such on-device deep learning is enabled by overcoming embedded

systems’ resource-constraints via the proposed in-memory multitask learning, adaptive real-time

learning, opportunistic accelerated learning, and energy-aware intermittent learning.”

1.7 Contributions

This dissertation proposes Embedded Deep Intelligence and answers the related research

challenges listed above, which need to be solved to enable high-performing machine learning

algorithms, especially deep neural networks, on resource-constrained embedded systems. The

contributions of this dissertation are summarized as follows:
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• On-Device Deep Learning Algorithms. This research proposes efficient, effective, and

lightweight learning algorithms of deep neural networks, which can be performed under the

four fundamental constraints of embedded systems, i.e., the small size of memory, dynamic

timing constraint, low-computing power, and limited energy.

• Software Frameworks (Open-Source). This research implements the proposed deep in-

telligent algorithms that can be applied to a variety of embedded platforms ranging from

low-end microcontrollers to high-end embedded GPUs. The implemented frameworks is

open-sourced at a public repository to facilitate the related researches.

• Novel Hardware Prototypes. Along with the software frameworks, this research devises

new form factors of embedded sensing and inference systems, which supports Embedded

Deep Intelligence from the system and hardware level.

• Real-World Applications. Based on the proposed algorithms, software frameworks, and

hardware prototypes, this research develops and deploy real-world applications of Embed-

ded Deep Intelligence such as an air quality monitoring system, traffic sign recognizer,

voice command listener, and autonomous mobile robot.
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CHAPTER 2: BACKGROUND

In this chapter, we discuss background materials and terminologies related to this dissertation.

We begin by introducing the concept of deep neural networks (DNNs) and the details of convo-

lutional neural networks (CNNs) on reference to O’Shea and Nash (2015) and Goodfellow et al.

(2016), which are the primary target learning models considered in this dissertation. We then

discuss the basics of embedded systems on reference to (Jiménez et al., 2013), (Lee et al., 2011),

and (Berger, 2001), which are the main hardware platforms running DNNs and CNNs with their

constrained resources in this dissertation.

2.1 Deep Neural Networks (DNNs)

Artificial Neural Networks (ANNs) are computational processing systems heavily inspired

by the way biological nervous systems (such as the human brain) operate. DNNs are mainly

comprised of a high number of interconnected computational nodes (referred to as neurons),

of which work entwine in a distributed fashion to collectively learn from the input in order to

optimize its final output. The basic structure of an DNN can be modeled as shown in Figure 2.1.

We would load the input, usually in the form of a multidimensional vector, to the input layer,

which will distribute it to the hidden layers. The hidden layers will then make decisions from

the previous layer and weigh up how a stochastic change within itself detriments or improves

the final output, and this is referred to as the process of learning. Having multiple hidden layers

stacked upon each-other is commonly called deep neural networks (DNNs) (Goodfellow et al.,

2016; O’Shea and Nash, 2015).

The two key learning paradigms in deep learning tasks are supervised and unsupervised learn-

ing.
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Figure 2.1: A simple three layered feed-forward neural network (FNN), comprised of a input
layer, a hidden layer and an output layer. This structure is the basis of many common DNN
architectures, included but not limited to Feed-forward Neural Networks (FNNs), Convolutional
Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). Figure from O’Shea and
Nash (2015).

• Supervised learning is learning through pre-labeled inputs, which act as targets. There will

be a set of input values (vectors) for each training example and one or more associated des-

ignated output values. This form of training aims to reduce the models overall classification

error by correct calculation of the output value of training example by training.

• Unsupervised learning differs in that the training set does not include any labels. Success

is usually determined by whether the network is able to reduce or increase an associated

cost function. However, it is important to note that most pattern-recognition tasks usually

depend on classification using supervised learning.

2.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are analogous to traditional DNNs in that they are

comprised of neurons that self-optimize through learning. Each neuron will still receive input and

perform an operation (such as a scalar product followed by a non-linear function) - the basis of

countless DNNs. From the input raw image vectors to the final output of the class score, the en-

tire network will still express a single perceptive score function (the weight). The last layer will
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contain loss functions associated with the classes, and all of the regular tips and tricks developed

for traditional DNNs still apply.

The only notable difference between CNNs and traditional DNNs is that CNNs are primarily

used in the field of pattern recognition within images. This allows us to encode image-specific

features into the architecture, making the network more suited for image-focused tasks - while

further reducing the parameters required to set up the model.

One of the largest limitations of traditional forms of DNN is that they tend to struggle with

the computational complexity required to compute image data. Common machine learning bench-

marking datasets such as the MNIST dataset (LeCun et al., 1998) of handwritten digits are suit-

able for most forms of DNN, due to its relatively small image dimensionality of just 28x28. With

this dataset a single neuron in the first hidden layer will contain 784 weights (28×28×1 where 1

bare in mind that MNIST is normalised to just black and white values), which is manageable for

most forms of DNN.

If you consider a more substantial colored image input of 64×64, the number of weights on

just a single neuron of the first layer increases substantially to 12,288. Also, take into account

that to deal with this scale of input, the network will also need to be a lot larger than one used to

classify color-normalized MNIST digits, then you will understand the drawbacks of using such

models.

As noted earlier, CNNs primarily focus on the basis that the input will be comprised of im-

ages. This focuses the architecture on being set up in a way to best suit the need for dealing with

the specific type of data.

One of the key differences is that the neurons that the layers within the CNN are comprised

of neurons organized into three dimensions, the spatial dimensionality of the input (height and

the width) and the depth. The depth does not refer to the total number of layers within the DNN,

but the third dimension of an activation volume. Unlike standard ANNS, the neurons within

any given layer will only connect to a small region of the layer preceding it. In practice, this

would mean that for the example given earlier, the input ’volume’ will have a dimensionality of
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64×64×3 (height, width, and depth), leading to a final output layer comprised of dimensionality

of 1×1×n (where n represents the possible number of classes) as we would have condensed the

full input dimensionality into a smaller volume of class scores filed across the depth dimension.

CNNs are comprised of three types of layers. These are convolutional layers, pooling layers,

and fully-connected layers. When these layers are stacked, a CNN architecture has been formed.

A simplified CNN architecture for MNIST classification is illustrated in Figure 2.2.

Figure 2.2: A simple CNN architecture, comprised of just five layers. Figure from O’Shea and
Nash (2015).

The basic functionality of the example CNN above can be broken down into four key areas.

• As found in other forms of ANN, the input layer will hold the image’s pixel values.

• The convolutional layer will determine the output of neurons connected to local regions of

the input by calculating the scalar product between their weights and the region connected

to the input volume. The rectified linear unit (commonly shortened to ReLu) aims to ap-

ply an ’elementwise’ activation function such as sigmoid to the output of the activation

produced by the previous layer.

• The pooling layer will then simply perform downsampling along with the given input’s

spatial dimensionality, further reducing the number of parameters within that activation.
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• The fully-connected layers will then perform the same duties found in standard ANNs and

attempt to produce class scores from the activations to be used for classification. It is also

suggested that ReLu may be used between these layers to improve performance.

Through this simple transformation method, CNNs can transform the original input layer by

layer using convolutional and downsampling techniques to produce class scores for classification

and regression purposes.

Figure 2.3: Activations taken from the first convolutional layer of a simplistic deep CNN, after
training on the MNIST dataset of handwritten digits. You can see that the network has success-
fully picked up on characteristics unique to specific numeric digits if you look carefully. Figure
from O’Shea and Nash (2015).

However, it is important to note that simply understanding the overall architecture of a CNN

architecture will not suffice. The creation and optimization of these models can take quite some

time and can be quite confusing. We will now explore in detail the individual layers, detailing

their hyperparameters and connectivities.

2.3 Basics of Embedded Systems

An embedded system can be broadly defined as a device that contains tightly coupled hard-

ware and software components to perform a single function, forms part of a larger system, is not

intended to be independently programmable by the user, and is expected to work with minimal

or no human interaction. Two additional characteristics are very common in embedded systems:

reactive operation and heavily constrained (Jiménez et al., 2013).
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Most embedded systems interact directly with processes or the environment, making deci-

sions on the fly based on their inputs. This makes it necessary that the system be reactive, re-

sponding in real-time to process inputs to ensure proper operation. Besides, these systems operate

in constrained environments where memory, computing power, and power supply are limited.

Moreover, production requirements, in most cases due to volume, place high-cost constraints on

designs.

Figure 2.4: General view of an embedded system. Figure from Jiménez et al. (2013).

2.3.1 Structure of Embedded Systems

Regardless of the function performed by an embedded system, the broadest view of its struc-

ture reveals two major, tightly coupled sets of components: a set of hardware components that

include a central processing unit, typically in the form of a microcontroller; and a series of soft-

ware programs, typically included as firmware that gives functionality to the hardware. Figure 2.4

depicts this general view, denoting these two major components and their interrelation. Typical

inputs in an embedded system are process variables and parameters that arrive via sensors and

input/output (I/O) ports. The outputs are in the form of control actions on system actuators or

processed information for users or other subsystems within the application. In some instances,

input-output information exchange occurs with users via a user interface that might include keys
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and buttons, sensors, light-emitting diodes (LEDs), liquid crystal displays (LCDs), and other

types of display devices, depending on the application.

The software is the most abstract part of the system and as essential as the hardware itself.

It includes the programs that dictate the sequence in which the hardware components operate.

When someone decides to prepare a pre-programmed meal in a microwave oven, the software

picks the keystrokes in the oven control panel, identifies the user selection, decides the power

level and cooking time, initiates and terminates the microwave irradiation on the chamber, the

plate rotation, and the audible signal letting the user know that the meal is ready. While the meal

is cooking, the software monitors the meal temperature and adjusts power and cooking time

while also verifying the correct operation of the internal oven components. In the case of detect-

ing a system malfunction, the program aborts the oven operation to prevent catastrophic conse-

quences. Despite our choice of describing this example from a system-level perspective, the tight

relation between application, hardware, and software becomes evident. In the sections below, we

take a closer view of the hardware and software components that integrate an embedded system.

Hardware Components. When viewed from a general perspective, an embedded system’s hard-

ware components include all the electronics necessary for the system to perform the function it

was designed for. Therefore, a particular system’s specific structure could substantially differ

from another, based on the application itself. Despite these dissimilarities, three core hardware

components are essential in an embedded system (Figure 2.5): The Central Processing Unit

(CPU), the system memory, and a set of input-output ports. The CPU executes software instruc-

tions to process the system inputs and make decisions that guide the system operation. Memory

stores programs and data necessary for system operation. Most systems differentiate between

program and data memories. The program memory stores the software programs executed by

the CPU. Data memory stores the data processed by the system. The I/O ports allow convey-

ing signals between the CPU and the world external to it. Beyond this point, a number of other

supporting and I/O devices needed for system functionality might be present, depending on the

application.
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Figure 2.5: Hardware elements in an embedded system. Figure from Jiménez et al. (2013).

Software Components. The software components of an embedded system include all the pro-

grams necessary to give functionality to the system hardware. These programs, frequently re-

ferred to as the system firmware, are stored in some non-volatile memory. Firmware is not meant

to be modifiable by users, although some systems could provide means of performing upgrades.

System programs are organized around some form of operating system and application routines.

The operating systems can be simple and informal in small applications, but as the application

complexity grows, the operating system requires more structure and formality. In some of these

cases, designs are developed around Real-Time Operating Systems (RTOS). Figure 2.6 illus-

trates the structure of embedded system software. The major components identified in a system

software include:

• System Tasks. The application software in embedded systems is divided into a set of smaller

programs called Tasks. Each task handles a distinct action in the system and requires the

use of specific System Resources. Tasks submit service requests to the kernel in order to

perform their designated actions. In our microwave oven example, the system operation
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Figure 2.6: Hardware elements in an embedded system. Figure from Jiménez et al. (2013).

can be decomposed into a set of tasks that include reading the keypad to determine user

selections, presenting information on the oven display, turning on the magnetron at a cer-

tain power level for a certain amount of time, just to mention a few. Service requests can be

placed via registers or interrupts.

• System Kernel. The software component that handles the system resources in an embedded

application is called the Kernel. System resources are all those components needed to serve

tasks. These include memory, I/O devices, the CPU itself, and other hardware components.

The kernel receives service requests from tasks, and schedules them according to the prior-

ities dictated by the task manager. When multiple tasks contend for a common resource, a

portion of the kernel establishes the resource management policy of the system. It is not un-

common finding tasks that need to exchange information among them. The kernel provides

a framework that enables reliable inter-task communication to exchange information and to

coordinate collaborative operation.

• Services. Tasks are served through Service Routines. A service routine is a piece of code

that gives functionality to a system resource. In some systems, they are referred to as de-
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vice drivers. Services can be activated by polling or as interrupt service routines (ISR),

depending on the system architecture.

2.3.2 Classification of Embedded Systems

The three pioneering microprocessor developments at the beginning of the 1970s, besides

initiating the modern era of embedded systems, inadvertently created two defining categories that

we can use to classify embedded systems in general: Small and High-performance.

Small Embedded Systems. The MSP430 microcontroller series (TexasInstruments, 2018),

which has become the cornerstone component of this type of embedded systems, which is by

far, the most common type. This class is typically centered around a single microcontroller chip

that commands the whole application. These systems are highly integrated, adding only a few

analog components, sensors, actuators, and user-interface, as needed. These systems operate with

minimal or no maintenance, are very low cost, and are produced in mass quantities. The software

in these systems is typically single-tasked and rarely requires an RTOS. Examples of these sys-

tems include tire pressure monitoring systems, microwave oven controllers, toaster controllers,

and electronic toy controllers, to mention just a few.

High-Performance Embedded Systems. This type of embedded system represents the class of

highly specialized embedded systems requiring fast computations, robustness, fault tolerance,

and high maintainability. These systems usually require dedicated GPUs NVIDIA (2019a) or

ASICS and might include DSPs and FPGAs as part of the basic hardware. In many cases, the

complexity of their software makes mandatory the use of RTOS’ to manage the multiplicity of

tasks. They are produced in small quantities, and their cost is very high. These are the type of

embedded systems used in military or aerospace applications, such as flight controllers, missile

guidance systems, and spacecraft navigation systems. The categories in this classification are

not mutually exclusive. Among them, we can find “gray zones” where the characteristics of two

or the three of them overlap, and applications might become difficult to associate to a single
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specific class. However, if we look at the broad range of embedded applications, in most cases, it

becomes generally easy to identify the class to which a particular application belongs.

2.3.3 Design Constraints

A vast majority of embedded systems applications end up in the heart of mass-produced elec-

tronic applications. Home appliances such as microwave ovens, toys, and dishwasher machines,

automobile systems such as anti-lock brakes and airbag deployment mechanisms, and personal

devices such as cellular phones and media players are only a few representative examples. These

are systems with a high-cost sensitivity to the resources included in a design due to the high vol-

umes in which they are produced. Moreover, designs need to be completed, manufactured, and

launched in time to hit a market window to maximize product revenues. These constraints shape

the design of embedded applications from beginning to end in their life cycle. Therefore, the list

of constraints faced by designers at the moment of conceiving an embedded solution to a problem

comes from different perspectives. The most salient constraints in the list include:

• Functionality. Every embedded system design is expected to have a functionality that

solves the problem it was designed for. More than a constraint, this is a design requirement.

• Performance. Performance in embedded systems usually refers to the system’s ability to

perform its function on time. Therefore, a measure of the number of operations per unit

time will somehow always be involved. Sometimes, performance is associated with issues

such as power consumption, memory usage, and even cost.

• Power and Energy. Power in embedded systems has become a critical constraint, not only

in portable, battery-operated systems, but for every system design. The average power

dissipation of an embedded design defines the rate at which the system consumes energy.

In battery-powered applications, this determines how long it takes to deplete the capacity

of its batteries. But aside from battery life, power affects many other issues in embedded

systems design.
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• Reliability and Maintainability. Maintainability in embedded systems can be defined as a

property that allows the system to be acted upon, to guarantee a reliable operation through-

out the end of its useful life. This property can be regarded as a design constraint because,

for maintainability to be enabled, it has to be planned from the system conception itself.

The maintainability constraint can have different levels of relevance depending on the type

of embedded system being considered.

• Size. Physical space taken by a system solution.

• Cost. The amount of resources needed to conceive, design, produce, maintain, and discard

an embedded system.
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CHAPTER 3: LEARNING STRATEGIES FOR EMBEDDED DEEP INTELLIGENCE

The goal of this dissertation is to design and implement Embedded Deep Intelligence al-

gorithms and the related hardware which will enable on-device learning, including both infer-

ence and training, under four significant constraints commonly imposed on many embedded

systems, which make on-device learning challenging, i.e., the small size of memory, dynamic

timing constraint, low-computing capability, and limited energy. We define each constraint as an

independent research problem and conduct an in-depth study to provide a novel solution, i.e., in-

memory multitask learning, adaptive real-time learning, opportunistic accelerated learning, and

energy-aware intermittent learning, as illustrated in Figure 3.1. The following sections provide

an overview of each proposed research.

Figure 3.1: An overview of the proposed research: Embedded Deep Intelligence consists of four
dimensions of resource-aware learning algorithm, i.e., in-memory multitask learning, adaptive
real-time learning, opportunistic accelerated learning, and energy-aware intermittent learning,
which enables on-device deep learning on resource-constrained embedded systems.
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3.1 In-Memory Multitask Learning

We propose in-memory multitask learning based on the concept of Neural Weight Virtual-

ization (Lee and Nirjon, 2020a) – which enables fast and scalable in-memory multitask deep

learning on memory-constrained embedded intelligent systems. The goal of neural weight virtual-

ization is two-fold: 1) packing multiple DNNs into a fixed-sized main memory whose combined

memory requirement is larger than the main memory, and 2) enabling fast in-memory execu-

tion of the DNNs. To this end, we propose a two-phase approach: 1) virtualization of weight

parameters for fine-grained parameter sharing at the level of weights that scales up to multiple

heterogeneous DNNs of arbitrary network architectures, and 2) in-memory data structure and

run-time execution framework for in-memory execution and context-switching of DNN tasks. We

implement two multitask learning systems: 1) an embedded GPU-based mobile robot, and 2) a

microcontroller-based IoT device. We thoroughly evaluate the proposed algorithms as well as the

two systems that involve ten state-of-the-art DNNs. Our evaluation shows that weight virtualiza-

tion improves memory efficiency, execution time, and energy efficiency of the multitask learning

systems by 4.1x, 36.9x, and 4.2x, respectively.

Our approach to in-memory deep multitask learning is to virtualize a portion of the main

memory, which stores a carefully generated set of constant numbers that represent the weight

parameters of one or more DNNs. We call this weight virtualization as opposed to virtualization

of main memory since the memory locations, along with their content (offline-computed fixed

numbers representing DNN weights) are virtualized. For example, a memory block, B0, may

simultaneously represent K consecutive weights of the Lthi layer of the first DNN as well as K

consecutive weights of the Lthj layer of another DNN. Weight virtualization requires us to find

a set of values to be stored in the main memory such that 1) each block of memory represents

a block of weights of one or more DNNs, and 2) significant weights (if not all) of all DNNs are

mapped to a weight page.

Chapter 4 describes the proposed in-memory multitask learning in detail.
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3.2 Adaptive Real-Time Learning

We propose adaptive real-time learning based on the concept of SubFlow (Lee and Nirjon,

2020c)—a dynamic adaptation and execution strategy for a deep neural network (DNN), which

enables real-time DNN inference and training on embedded systems of limited computing re-

sources. The goal of SubFlow is to complete the execution of a DNN task within a timing con-

straint, which may dynamically change while ensuring comparable performance to executing the

full network by executing a subset of the DNN at run-time. To this end, we propose two online

algorithms that enable SubFlow: 1) dynamic construction of a sub-network which constructs the

best sub-network of the DNN in terms of size and configuration, and 2) time-bound execution

which executes the sub-network within a given time budget for both inference and training.

We implement and open-source SubFlow by extending TensorFlow with full compatibility by

adding SubFlow operations for convolutional and fully-connected layers of a DNN. We evaluate

SubFlow with three popular DNN models (LeNet-5, AlexNet, and KWS), which shows that it

provides flexible run-time execution and increases the utility of a DNN under dynamic timing

constraints, e.g., 1x–6.7x range of execution times with average -3% of performance (inference

accuracy) difference. We also implement an autonomous robot as an example system that uses

SubFlow and demonstrate that its obstacle detection DNN is flexibly executed to meet a range of

deadlines that varies depending on its running speed.

SubFlow enables the execution of DNN inference and training tasks in such a way that the

task is completed under dynamically varying time constraints while retaining comparable per-

formance to executing the original full-size DNN. The flexible execution increases the utility

of a DNN by letting it meet a range of deadlines at run-time, which conventional DNNs cannot.

SubFlow also facilitates flexible scheduling of multitask learning where new tasks can be accom-

modated by dynamically updating the deadline of existing ones. The schedulability of a system

running multiple DNNs can be improved by taking into account the flexible execution time of

DNNs in the scheduling decision at run-time, which increases the total system utilization.

Chapter 5 describes the proposed adaptive real-time learning in detail.
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3.3 Opportunistic Accelerated Learning

We propose opportunistic accelerated learning based on the concept of Neuro.ZERO (Lee

and Nirjon, 2019)—a co-processor architecture consisting of a main microcontroller (MCU)

that executes scaled-down versions of a deep neural network1 (DNN) inference task, and an

accelerator microcontroller that is powered by harvested energy and follows the intermittent

computing paradigm Lucia et al. (2017). The goal of the accelerator is to enhance the inference

performance of the DNN that is running on the main microcontroller. Neuro.ZERO opportunis-

tically accelerates the run-time performance of a DNN via one of its four acceleration modes:

extended inference, expedited inference, ensemble inference, and latent training. To enable these

modes, we propose two sets of algorithms: 1) energy and intermittence-aware DNN inference

and training algorithms, and 2) a fast and high-precision adaptive fixed-point arithmetic that

beats existing floating-point and fixed-point arithmetic in terms of speed and precision, respec-

tively, and achieves the best of both.

To evaluate Neuro.ZERO, we implement low-power image and audio recognition applications

and demonstrate that their inference speedup increases by 1.6× and 1.7×, respectively, and the

inference accuracy increases by 10% and 16%, respectively, when compared to battery-powered

single-MCU systems.

Chapter 6 describes the proposed opportunistic accelerated learning in detail.

3.4 Energy-Aware Intermittent Learning

In order to realize embedded intelligent systems that perform lifelong learning in a prolonged

period of time without the concern for the limited battery capacity, we propose energy-aware in-

termittent learning (Lee et al., 2019) that makes energy-harvested batteryless systems capable of

1The Deep Neural Network (DNN), by definition, refers to neural networks having more than one hidden lay-
ers Hanin (2017); Lu et al. (2017); Hornik (1991); Lee and Nirjon (2019). Thus, a wide variety of networks qualify
as a DNN in the existing literature. DNNs considered in this study have up to 105 neurons and weights combined.
They fit into 256KB memory of an MCU; have convolutional, ReLU, pooling, and fully-connected structures as
regular DNNs; and perform on-device inference Gobieski et al. (2019a, 2018c).
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executing lightweight machine learning tasks intermittently based on the availability of harvested

energy. The notion of intermittent learning is similar to the intermittent computing paradigm

with the primary difference that the program that runs on the microcontroller executes a machine

learning task—involving both training and inferring.

Although it may appear to be that all machine learning tasks are merely pieces of codes that

could very well be run on platforms that support intermittent computing, for several reasons, a

machine learning task in an intermittent computing setup is quite different. The fundamental

difference between a machine learning task and a typical task on a batteryless system (e.g., sens-

ing and executing an offline-trained classifier) lies in the data and application semantics, which

requires special treatment for effective learning under an extreme energy budget. Existing works

on intermittent computing address important problems, such as ensuring atomicity Maeng et al.

(2017); Colin and Lucia (2016), consistency Maeng et al. (2017); Colin and Lucia (2016); Lucia

and Ransford (2015), programmability Hester et al. (2017), timeliness Hester et al. (2017), and

energy-efficiency Colin et al. (2018); Hester et al. (2015b); Buettner et al. (2011), which enable

efficient code execution of general-purpose tasks. We propose to complement existing literature

and specialize in a batteryless system on efficient and effective on-device learning by explicitly

considering the utility of sensor data and the execution order of different modules of a machine

learning task.

To complement and advance the state-of-the-art of the batteryless machine learning systems,

we propose the intermittent learning framework which explicitly takes into account the dynamics

of a machine learning task, in order to improve the energy and learning efficiency of an intermit-

tent learner in a systemic fashion. The fundamental difference between the proposed framework

and the existing literature is that, besides improving the efficiency of on-device inference, the inter-

mittent learning framework enables on-device training to improve the effectiveness and accuracy

of the learner over time.

Chapter 7 describes the proposed energy-aware intermittent learning in detail.
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CHAPTER 4: IN-MEMORY MULTITASK LEARNING

As deep learning algorithms for resource-constrained systems continue to become more

efficient and more accurate (Yao et al., 2017b, 2018b, 2017a), we see an increased number

of intelligent embedded systems such as home IoT devices, social robots, and the plethora of

portable, wearable, and mobile devices that are feature-packed with a wide variety of machine

learning tasks running on the same device (Taniguchi et al., 2018; Kawsar et al., 2018; Ota

et al., 2017; Billinghurst and Starner, 1999; Bariya et al., 2018; Majumder et al., 2017). Home

hubs like Amazon Echo Show and Google Nest Hub nowadays are performing speech recogni-

tion (Google, 2019c; Kim et al., 2017), speaker identification (Google, 2019f), gesture recogni-

tion (Google, 2019b), face recognition (Google, 2019d), facial expression and emotion recog-

nition (Google, 2019a) in order to closely imitate human assistants. Similar classifiers are run-

ning on social, domestic, and personal robots (Spyridon and Eleftheria, 2012; Prassler and Ko-

suge, 2008; Gates, 2007; Bohren et al., 2011; Siegwart et al., 2003), which also execute robotic

application-specific learning tasks such as object recognition (Maturana and Scherer, 2015; Red-

mon and Angelova, 2015), obstacle detection (Xie et al., 2017), scene understanding (Liao et al.,

2016), self-localization (Sarikaya et al., 2017), and navigation (Bojarski et al., 2016; Giusti et al.,

2015). While a naive approach to enable multiple classifiers on a device would be to train and ex-

ecute each classifier independently, state-of-the-art multitask learning approaches suggest jointly

training more than one correlated task in order to increase the accuracy of each learner by exploit-

ing the commonalities and differences across different tasks (Caruana, 1997; Ruder, 2017; Zhang

and Yang, 2017a,b).

Unfortunately, multitask deep learning on mobile and embedded systems is not quite as ef-

fective as running the classifiers on a high-end machine due to their limited CPU and memory.
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Figure 4.1: Neural weight virtualization packs multiple DNNs into the main memory of a system
where the total size of the DNNs is larger than the capacity of the main memory (40MB vs.
10MB). It performs complete in-memory storage and execution of DNNs at run-time, which
enables fast and real-time multitask learning on resource-constrained systems.

Using powerful processors and/or larger (or external) memory is not feasible in these systems

due to cost, space, heating, latency, and design constraints (Henzinger and Sifakis, 2006). In gen-

eral, lack of scalability and sluggish response time are the two major challenges to effective deep

multitask learning on CPU and memory-constrained embedded systems:

• Scalable Packing. State-of-the-art DNNs require between hundreds of KB to hundreds of

MB of main memory (Simonyan and Zisserman, 2014; He et al., 2016a; Szegedy et al., 2017).

On the other hand, state-of-the-art embedded GPUs and low-power SoCs and MCUs typically

contain 8KB–512MB of RAM (TexasInstruments, 2018; Holton and Fratangelo, 2012; He et al.,

2016b). Hence, the maximum number of DNNs that can reside in the main memory is quite lim-

ited. Commonsense approaches such as compression and pruning (Ullrich et al., 2017; Parashar

et al., 2017; Han et al., 2015a; Abbasi-Asl and Yu, 2017; He et al., 2014; Hassibi and Stork,

1993) DNNs do not quite solve the problem since these algorithms are applied on each DNN

separately, they require significant fine-tuning, and more importantly, as opposed to multitask

learning, these networks do not benefit from knowledge transfer as they are trained in isolation.

Although by sharing network structure (typically, the first few layers), multitask learning achieves

limited compression (He et al., 2018a), its primary goal is to increase robustness and generaliza-
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tion of correlated and similar-structured learners. Thus, packing multiple heterogeneous learners

into extremely scarce memory of an embedded system still remains an open problem.

• Low-latency Context Switching. A practical limitation of multitask learning systems in the

wild – which is often overlooked by the main-stream deep multitask learning literature – is the

overhead of switching DNN tasks at run-time. In memory-constrained multitask learning sys-

tems, where some of the DNN models must reside in the flash or the hard disk, context switching

overhead is extremely high as memory operations are typically 10–100x faster than accessing

flash or hard disks, and DNN models are large. Hence, the overhead of frequent swapping in and

out of DNNs to and from the main memory causes severe latency, which in turn, degrades the

responsiveness and usability of the system.

To address these challenges, we introduce the concept of Neural Weight Virtualization –

which treats consecutive memory locations containing weights of neural networks as resources

that can be virtualized, and thus, shared by more than one DNN. Weight virtualization enables

scalable packing of any1 number of DNNs into the main memory while achieving the fastest

possible deep multitask learning on an embedded system that incurs near-zero context switching

overhead due to complete in-memory storage and execution. An illustration of weight virtualiza-

tion is shown in Figure 4.1, where four DNNs, requiring a total of 40MB memory, are packed

into 10MB RAM of a mobile system.

Packing multiple DNNs into the main memory via weight virtualization is motivated by em-

pirical observations that only a small fraction of DNN weights have significant impacts on the

inference result, and these high-significance weights are concentrated in a few blocks in the main

memory. This guides us in designing a scalable DNN packing algorithm that matches similar

blocks of weights across multiple DNNs and combines them to construct a single new block of

virtual weights that is shared by the DNNs. The matching process is followed by an optimiza-

tion (retraining) process to gain back any loss of the inference accuracy of the DNNs. Efficient

1Although the proposed approach can pack an unlimited number of DNNs, ensuring a minimum accuracy for each
DNN does impose a limit on this number–which is still larger than alternatives such as (Mallya and Lazebnik, 2018;
Chou et al., 2018a; Kaiser et al., 2017; Aytar et al., 2017; Levi and Hassner, 2015; He et al., 2018a; Ma et al., 2019;
Misra et al., 2016; Ma et al., 2018).
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in-memory data structures and run-time framework for task management, execution, scheduling,

and context-switching have been implemented to support scalable and fast in-memory deep multi-

task learning on embedded systems. The approach is architecture agnostic – it applies to any type

of DNN, including fully-connected, convolutional, and recurrent layers.

We implement two deep multitask learning systems involving ten state-of-the-art DNNs:

1) a mobile robot that executes six DNNs (i.e., MobileNet (Sandler et al., 2018; Howard et al.,

2017), FaceNet (Schroff et al., 2015), Place205 (Zhou et al., 2014b), UrbanSound8K (Salamon

et al., 2014), GSC (Warden, 2018), and ShowAndTell (Vinyals et al., 2015)) on Jetson Nano

embedded GPU platform (NVIDIA, 2019a)), and 2) an extremely resource-constrained IoT de-

vice having an MSP430 (TexasInstruments, 2018) microcontroller that executes five compressed

DNNs (i.e., GTSRB (Stallkamp et al., 2011a), GSC (Warden, 2018), SVHN (Netzer et al., 2011),

MNIST (LeCun et al., 1998), and CIFAR-10 (Krizhevsky et al., 2009)). Our experimental results

demonstrate that with weight virtualization, these systems successfully packs all DNNs with a

4x compression ratio while achieving an improved latency of 36x and an improved energy effi-

ciency of 4.34x due to in-memory operations and multitask learning. We have made our software

open-source at a public repository2.

4.1 Overview

The general idea of virtualization technology is to create the illusion of having an extended

resource given a limited physical resource – such as hardware, storage, and networks (Plessl

and Platzner, 2004; Song and Hai, 2003; Chowdhury and Boutaba, 2010). We formulate the in-

memory multitask learning problem into a virtualization problem where multiple DNNs must

reside in the same fixed-sized RAM. We assume that the main memory is at least as large as

the largest DNN, but we do not impose any limit on the total memory required by all DNNs.

We further assume that the DNNs are already trained, and they can be of any arbitrary network

structures.

2https://github.com/learning1234embed/NeuralWeightVirtualization
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Our approach to in-memory deep multitask learning is to virtualize a portion of the main

memory, which stores a carefully generated set of constant numbers that represent the weight

parameters of one or more DNNs. We call this weight virtualization as opposed to virtualization

of main memory since the memory locations, along with their content (offline-computed fixed

numbers representing DNN weights) are virtualized. For example, a memory block, B0, may

simultaneously represent K consecutive weights of the Lthi layer of the first DNN as well as K

consecutive weights of the Lthj layer of another DNN. Weight virtualization requires us to find

a set of values to be stored in the main memory such that 1) each block of memory represents

a block of weights of one or more DNNs, and 2) significant weights (if not all) of all DNNs are

mapped to a weight page.

4.1.1 Feasibility of Weight Virtualization

Observations. Enabling weight virtualization to pack multiple DNNs in the main memory is

motivated by two key observations on the significance of weight parameters towards the clas-

sification result of a DNN. While studying 13 popular DNNs used in state-of-the-art audio and

visual learning tasks, we observe the following:

• Disparity in weights’ significance is globally sparse. It is known that the significance (aka

sensitivity or importance) of different weights of a neural network toward the classification result

is different (LeCun et al., 1990; Han et al., 2015a). When the significance is quantified (e.g.,

using Fisher information (Lehmann and Casella, 2006)), we observe a large disparity — only a

fraction of the weight parameters’ significance is markedly higher than the rest. This happens

primarily due to the inherent redundancy in most state-of-the-art DNN models (Cheng et al.,

2017; Han et al., 2015a). This observation hints us that only a small fraction of high-significance

weights per DNN must be stored unaltered in the main memory, while the rest can be altered and

stored if there is room.

• Disparity in weights’ significance is locally dense. Although only a fraction of the weight

parameters is of high significance, they tend to be located in the vicinity of each other. In other
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words, when a DNN’s weights are stored in the computer memory, a high-significance weight is

more likely to be located next to another high-significance weight, and the same is true for low-

significance weights. This is analogous to human brains, where only the neurons from a specific

locality get activated by certain stimuli or tasks. This observation hints us that when sharing

weights among multiple DNNs, we can consider an entire block of memory for possible sharing

(which we call a weight-page), as opposed to bookkeeping each memory cell individually, and

thus, expedite the memory sharing and management process.

Empirical Evidence. Of the 13 DNNs we studied, Figure 4.2 shows the significance score

(Fisher information) of individual weights of three popular DNNs3 on ImageNet classifica-

tion (Deng et al., 2009), i.e.,— Inception-v4 (Szegedy et al., 2017), ResNet-152 (He et al., 2016a),

and VGG-16 (Simonyan and Zisserman, 2014). The weights are listed in the order of layers, i.e.,

the weights of the first layer are followed by the second layer’s, and so on.

(a) Inception-v4 (b) ResNet-152 (c) VGG-16

Figure 4.2: The importance of individual weight parameter to the inference accuracy measured by
Fisher information (Lehmann and Casella, 2006): Inception-v4 (Szegedy et al., 2017), ResNet-
152 (He et al., 2016a), and VGG-16 (Simonyan and Zisserman, 2014).

As shown in the figure, a few groups of neighboring weights (marked with red boxes) dom-

inate in terms of their significance. For instance, the top 5% weights contribute to 90% Fisher

score in Inception-v4, i.e., 95% of its memory space can be used by other DNNs if need be while

retaining 90% accuracy of Inception-v4. Table 4.1 shows the percentages of weights of the 13

DNNs required to attain certain amounts of significance score.

3The remaining DNNs follow the same trend and are used in the evaluation section.
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DNN Dataset ≥70% ≥80% ≥90% ≥95% ≥99%
Inception-v4 (Szegedy et al., 2017) ImageNet (Deng et al., 2009) 1.0% 2.1% 5.0% 9.3% 23.1%
Inception-ResNet-v2 (Szegedy et al., 2017) ImageNet (Deng et al., 2009) 0.06% 0.19% 0.9% 3.2% 14.9%
RestNet-152 (He et al., 2016a) ImageNet (Deng et al., 2009) 2.5% 5.0% 11.1% 18.9% 38.5%
VGG-16 (Simonyan and Zisserman, 2014) ImageNet (Deng et al., 2009) 0.4% 0.7% 1.7% 2.8% 5.8%
PNASNet-5 (Liu et al., 2018a) ImageNet (Deng et al., 2009) 0.1% 0.3% 1.4% 4.7% 20.2%
MobileNet-v2 (Sandler et al., 2018) ImageNet (Deng et al., 2009) 0.3% 0.5% 0.8% 1.2% 2.0%
AlexNet (Krizhevsky et al., 2012) CIFAR-10 (Krizhevsky et al., 2009) 0.1% 0.4% 3.0% 8.9% 29.6%
GoogleNet (Wang et al., 2015) Place205 (Zhou et al., 2014b) 3.3% 5.8% 11.1% 17.6% 35.9%
FaceNet (Schroff et al., 2015) VGGFace2 (Cao et al., 2018) 1.9% 4.7% 10.5% 16.6% 30.3%
ShowAndTell (Vinyals et al., 2015) MS COCO (Lin et al., 2014) 0.1% 0.8% 4.4% 10.7% 28.5%
KWS (Sainath and Parada, 2015) GSC (Sainath and Parada, 2015) 0.01% 0.16% 3.1% 12.3% 47.9%
LeNet-5 (LeCun et al., 1998) MNIST (LeCun et al., 1998) 3.9% 6.0% 9.7% 13.3% 20.6%
Boosted-LeNet-4 (LeCun et al., 1995) GTSRB (Stallkamp et al., 2011a) 9.5% 14.8% 25.4% 36.9% 61.4%

Table 4.1: The percentage of weight parameters required to attain different percentages of
total significance (Fisher information (Lehmann and Casella, 2006)) in the 13 state-of-the-art
DNNs; e.g., 5.0% of weight parameters are required to attain 90% of the total significance
score in Inception-v4.

Weight Virtualization Landscape. Using three DNNs (Table 4.2 – Upper) and five datasets (Ta-

ble 4.2 – Lower), we conduct an experiment where we compare the similarity of memory blocks

of different pairs of DNNs. In Figure 4.3, we show three representative cases out of all
(
13
2

)
pairs.

In each figure, the darkness of the coordinate (x, y) represents the dissimilarity of memory block

x of a DNN (X-axis) and the memory block y of another DNN (Y-axis). The dissimilarity score

is computed using Equation 4.1 (explained later in Section 4.2), where a higher score or a darker

dot represents larger differences between the memory blocks.

Figures 4.3a and 4.3b show that 1) DNNs of similar architectures, e.g., Inception and ResNet,

tend to have similar memory blocks across the entire network except for the very beginning and

the end, and 2) the number of similar blocks decreases when two DNNs perform different tasks.

As shown in the figure, the area having paler color is smaller when the DNNs perform different

tasks, i.e., image vs. audio classification (Figure 4.3b) than the case when they perform similar

tasks, i.e., two image recognition tasks (Figure 4.3a).

Figure 4.3c shows that DNNs of different architectures, e.g., Inception and IM2TXT, perform-

ing different tasks (image vs. NLP) tend to have memory blocks containing similar weights at

specific and limited areas due to their architectural differences, i.e., convolutional (and residual)

vs. recurrent structure.
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(a) Incep-
tion(CIFAR10)/ResNet(GTSRB)

(b) Incep-
tion(CIFAR10)/ResNet(GSC)

(c) Incep-
tion(CIFAR10)/IM2TXT(MS)

Figure 4.3: The disparity in weights in the memory blocks of two DNNs having (a) similar archi-
tecture and similar tasks, (b) similar architecture but different tasks, and (c) different architecture
and different tasks.

DNN Network Architecture
Inception Convonlution+Residual (Szegedy et al., 2017)

ResNet Convonlution+Residual (He et al., 2016a)
IM2TXT Convonlution+Recurrent (Vinyals et al., 2015)

Task Dataset
Image CIFAR-10 (Krizhevsky et al., 2009), GTSRB (Stallkamp et al., 2011a),

MNIST (LeCun et al., 1998)
Audio GSC (Sainath and Parada, 2015)

NLP MS COCO (Lin et al., 2014) (Image caption)

Table 4.2: The DNN architecture and dataset.

4.1.2 Weight Virtualization Framework

We propose a two-phase weight virtualization framework (Figure 4.4) having an offline and

an online phase.

Weight Virtualization (Offline). Weight virtualization is divided into three steps. First, for each

DNN, its weight parameters are split into fixed-sized weight-pages - which is the basic unit of the

weight virtualization. In Figure 4.4, the page size is 100, and each DNN has up to four weight-

pages as the main memory size is 400. Second, the weight-pages of all DNNs are matched, and

similar weight-pages are grouped together. The matching process minimizes a cost function

(defined later by Equation 4.1) that reduces the performance loss caused by weight sharing. Fig-

ure 4.4 shows four groups of weight-pages. Third, the matched weight-pages in each group are

combined to create a single virtual weight-page by optimizing (re-training) all or some of the
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Figure 4.4: The proposed weight virtualization framework has two phases: 1) An offline weight
virtualization phase, consisting of weight-page composing, matching, and optimizing steps, and
2) an online in-memory execution phase.

DNNs. The goal of this optimization is to retain the accuracy of each DNN that shares one or

more virtual weight-pages with others. Their algorithmic details are described in Section 4.2.

In-Memory Execution (Online). The virtual weight-pages are loaded into the main memory of

the system. For each DNN, a page matching table that points a set of memory addresses of virtual

weight-pages required by the DNN is generated. At run-time, a DNN is executed in the main

memory with the necessary weight parameters obtained by dereferencing its page matching table.

Further details of this phase are in Section 4.3.

4.1.3 Benefits of Weight Virtualization

Improved Multitask Learning. Unlike existing works on multitask learning (Caruana, 1997;

Ruder, 2017; Yang and Hospedales, 2016b; Zhou and Zhao, 2015; Long et al., 2017) which are

limited to similar network architectures and related tasks (Caruana, 1997), neural weight virtu-

alization allows multitask learning involving heterogeneous tasks that may have completely dif-

ferent network architectures. Because the structure sharing happens at the granularity of weights,

weight virtualization can pack any types of networks, including fully-connected (FC), convo-

lutional (CNN), and recurrent neural networks (RNN). By isolating the memory blocks used

for weights from the network structure (graph), weight virtualization preserves the original net-

work structure of the input DNNs – which is not supported by the state-of-the-art (Ruder, 2017;
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Zhang and Yang, 2017b). This latter aspect is particularly important since nowadays there are

many DNN models available for use, and neural weight virtualization is a practical way to inte-

grate these DNNs to a system without requiring any structural modifications to them (Chou et al.,

2018b).

Efficient Parameter Representation. Virtual weight-pages not only reduce the amount of infor-

mation required to represent the weight parameters of a DNN but also enables efficient unpacking

and execution of DNNs at run-time. For example, to represent 1,000,000 weights using virtual

weight-pages of size 100, only 10,000 page-pointers are required, which is only 1% of the orig-

inal size of the weights (10,000 vs. 1,000,000). The larger the page-size, the less information

is needed to represent the same amount of weight parameters. Hence, by suitably choosing a

page-size, we can optimize the efficiency of parameter representation.

Efficient Task Management. In-memory multitask learning enables efficient management and

scheduling of DNNs. Since all DNNs reside in the main memory, tasks can be executed and

switched in real-time, enabling fast and responsive execution of multiple DNNs. By eliminating

the need for repetitive resource allocation, e.g., loading DNNs from the flash or the hard disk,

task management such as context switching and scheduling becomes simpler.

4.2 Weight Virtualization

Weight virtualization is a three-step process consisting of weight-page composing, matching,

and optimizing, which collectively virtualize (combine) the weight parameters of DNNs to virtual

weights that fit into the main memory. This is an offline process.

4.2.1 Weight-Page Composing

Weight-Page Composing. The first step of weight virtualization is to compose weight-pages

for each DNN. Given a set of pre-trained DNN tasks, τi for 1 ≤ i ≤ m, where m is the num-

ber of tasks, we define a weight-page as a sequence of s weights stored in consecutive memory
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locations of τi, where s denotes the page-size. Note that although the weights of a DNN are

mathematically expressed as matrices when stored in the computer memory, they reside in a lin-

ear address space. Thus, weight-pages represent fixed-sized logical partitions of the portion of

the main memory that contains the weight matrices. We define a weight-page set, Pi as all the

weight-pages of DNN τi. Figure 4.5 illustrates the weight-page composition for a fully-connected

layer. The process is similar for other architectures, such as convolutional and recurrent layers.

DNN task 𝒊𝒊
(𝝉𝝉𝒊𝒊)

𝚯𝚯𝟏𝟏 =
𝜃𝜃111 ⋯ 𝜃𝜃1𝑛𝑛1

1

⋮ ⋱ ⋮
𝜃𝜃𝑚𝑚11
1 ⋯ 𝜃𝜃𝑚𝑚1𝑛𝑛1

1
𝚯𝚯𝟐𝟐 =

𝜃𝜃112 ⋯ 𝜃𝜃1𝑛𝑛2
2

⋮ ⋱ ⋮
𝜃𝜃𝑚𝑚21
2 ⋯ 𝜃𝜃𝑚𝑚2𝑛𝑛2

2
𝚯𝚯𝟑𝟑 =

𝜃𝜃113 ⋯ 𝜃𝜃1𝑛𝑛3
3

⋮ ⋱ ⋮
𝜃𝜃𝑚𝑚31
3 ⋯ 𝜃𝜃𝑚𝑚3𝑛𝑛3

3

[ 𝜃𝜃111 ,𝜃𝜃121 , … ,𝜃𝜃𝑚𝑚1𝑛𝑛1−1
1 , 𝜃𝜃𝑚𝑚1𝑛𝑛1

1 , 𝜃𝜃112 ,𝜃𝜃122 , … , 𝜃𝜃𝑚𝑚2𝑛𝑛2−1
2 ,𝜃𝜃𝑚𝑚2𝑛𝑛2

2 ,𝜃𝜃113 , 𝜃𝜃123 , … ,𝜃𝜃𝑚𝑚3𝑛𝑛3−1
3 ,𝜃𝜃𝑚𝑚3𝑛𝑛3

3 ]

Weight page set (𝑷𝑷𝒊𝒊)

Weight-page 1 Weight-page 2

concatenate all weight matrices

Weight-page …page size=𝑠𝑠

Figure 4.5: The weight-page set Pi for DNN τi is composed by segmenting s consecutive weights
in memory. The matrix, Θ is an arbitrary weight or bias matrix, where θij is an individual weight
parameter.

Weight-Page-based Virtualization. We virtualize weights at the granularity of weight-pages

for two reasons. First, it retains the functional and spatial locality of a DNN inside a weight-

page, which increases the reusability of common locality patterns between DNNs. Second, it

enables efficient and flexible management of weight parameters when sharing and accessing

them. A DNN task can easily reconstruct its weight parameters by locating weight-pages in the

main memory, which is much more efficient in terms of memory and computation than finding

individual weights one by one, considering the massive number of weight parameters in many

state-of-the-art DNNs (e.g., ResNet-50 (He et al., 2016a) and VGG-16 (Simonyan and Zisserman,

2014) have 26 and 138 million weights, respectively).
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4.2.2 Weight-Page Matching

The next step of weight virtualization is to match each page within the weight-page sets of

the DNNs to each page of the virtual weight-page set, P0 where they are eventually merged. For

multitask learning scenarios having more than two tasks, we keep a task, τ0 as the final combined

task and P0 as the final virtual weight-page set, to which, τi(Pi)’s are merged iteratively one by

one, for i > 0. Hence, our goal is to find the best match between the virtual weight-page set P0

of τ0 and weight-page set Pi of the newly-added task τi – based on a one-to-one matching of each

page.

Matching Objective. Given two sets of weight-pages, Pi and P0, and a weight-page matching

cost function, C : Pi × P0 −→ R, which is defined by Equation 4.1, the goal of the matching step is

to find an injective mapping function fi : Pi −→ P0 such that
∑

p∈Pi
C(p, fi(p)) is minimized, i.e.,

finding the closest set of (p, fi(p)) pairs. Figure 4.6 illustrates a matching between task weight-

page set Pi and the virtual weight-page set P0.

Task 𝝉𝝉𝟏𝟏 (𝑷𝑷𝟏𝟏)

𝑝𝑝1,1 …

Virtual weight-pages (𝑷𝑷𝟎𝟎)

𝑓𝑓1:𝑃𝑃1 → 𝑃𝑃0 𝑓𝑓2:𝑃𝑃2 → 𝑃𝑃0

𝐶𝐶(𝑝𝑝𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑖𝑖(𝑝𝑝𝑖𝑖,𝑗𝑗))

𝑝𝑝1,2 𝑝𝑝1,|𝑃𝑃1|

𝑝𝑝0,1 𝑝𝑝0,2 𝑝𝑝0,3 𝑝𝑝0,4 … 𝑝𝑝0,|𝑃𝑃0|

Task 𝝉𝝉𝟐𝟐 (𝑷𝑷𝟐𝟐)

𝑝𝑝2,1 … …𝑝𝑝2,2 𝑝𝑝2,|𝑃𝑃2|

Task 𝝉𝝉𝒎𝒎 (𝑷𝑷𝒎𝒎)

𝑝𝑝𝑚𝑚,1 …𝑝𝑝𝑚𝑚,2 𝑝𝑝𝑚𝑚,|𝑃𝑃𝑚𝑚|

𝑓𝑓𝑚𝑚:𝑃𝑃𝑚𝑚 → 𝑃𝑃0𝑝𝑝𝑖𝑖,𝑗𝑗: 𝑗𝑗-th page of 𝑃𝑃𝑖𝑖

Figure 4.6: Each weight-page of task τi(Pi) is matched to a subset of the virtual weight-page set
P0. Each matching edge (arrows in the figure) incurs a matching cost of C(pi,j, fi(pi,j)) between
the matched weight-pages, whose summation is minimized.

Matching Cost Function. The weight-page matching cost function between two pages p and q is

given by:

C(p, q) = κ
∑

(θp∈p,θq∈q)

(θp − θq)2(F̃ (θp|τp) + F̃ (θq|τq)) (4.1)

where κ is the matching regularizer, θp is a weight in p, θq is a weight in q, τp is the task of p, τq

is the task of q, and F̃ (θp|τp) and F̃ (θq|τq) are Fisher information (Lehmann and Casella, 2006)
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of θp and θq, respectively (defined by Equation 4.2). The matching cost is minimized when two

weights become similar, and the summation of Fisher information gets smaller. The matching

cost function in Equation 4.1 primarily encourages virtualization of weights with similar values

so that weight-pages of similar patterns can be combined together. However, at the same time, the

summation of Fisher information works as a regularizer that discourages too much concentration

of highly-important weight parameters on a few weight-pages in order to ensure the performance

of virtualized DNNs by distributing the overall importance of weights over the entire memory.

Fisher Information. We use Fisher Information (Lehmann and Casella, 2006) in the matching

cost function (Equation 4.1) since the difference of weights by itself does not carry the informa-

tion on how impactful the change is to the final outputs of tasks (Kirkpatrick et al., 2017; Eskin

et al., 2004). The Fisher information of weight, θ in τi(Pi) given data X = {x1, x2, ..., xn } is

defined by:

F̃ (θ|τi) =
1

n

n∑
j=1

(
∂

∂θ
log fi(xj|θ)

)2

(4.2)

where fi(xj|θ) is τi’s probability density, i.e., the likelihood of data xj conditioned on θ. Three

key properties of Fisher score make it suitable for estimating the significance of a weight param-

eter (Kirkpatrick et al., 2017; Tu et al., 2016; Pascanu and Bengio, 2013): first, it is equivalent

to the second derivative of the loss near a minimum, second, it can be easily computed from the

first-order derivatives alone and is thus easy to calculate for large models, and third, it is guaran-

teed to be positive semi-definite.

Weight-Page Matching Problem. Given m DNN tasks, the weight-page matching is formulated

as a combinatorial optimization problem, called the assignment problem (Schrijver, 2003) aka
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maximum weighted bipartite matching problem (West et al., 1996), as follows:

min
m∑
i=1

∑
(p,q)∈Pi×P0

C(p, q) · xipq

s.t.
∑
p∈Pi

xipq = 1 1 ≤ i ≤ m and q ∈ P0

∑
q∈P0

xipq = 1 1 ≤ i ≤ m and p ∈ Pi

xipq ∈ {0, 1} 1 ≤ i ≤ m, p ∈ Pi and q ∈ P0

(4.3)

where, Pi is the weight-page set of task τi, P0 is the weight-page set for the combined task τ0,

and C(p, q) is the weight-page matching cost function between weight-page p and q in Equa-

tion 4.1. The variable xipq is one, if page p and q are matched, and zero, otherwise. Although

O(n4) polynomial-time optimal algorithm (Munkres, 1957) exists for two tasks, where n is the

number of weight-pages, for a large number of weight-pages, the computational overhead of such

matching is too high. For more than two tasks, the problem becomes a multiple-choice multiple-

assignment problem (Chen and Lu, 2007; Spieksma, 2000) of O(nnm) complexity, which is

computationally intractable.

Greedy Matching Algorithm. To solve the weight-page matching problem in Equation 4.3

which is computationally challenging, we propose an iterative greedy matching algorithm that

starts with an unmatched weight-page, p ∈ Pi having the largest Fisher information (i.e., weights

that impact the final outputs more) and greedily finds an unmatched page, q ∈ P0 that minimizes

the matching cost C(p, q) in Equation 4.1. It is based on the observation that Fisher information

of most weights has near-zero values except only a few having significant magnitudes. Algo-

rithm 1 describes the proposed greedy weight-page matching algorithm. For m tasks having n

weight-pages each, it has O(mn2/p) of computational complexity, when computing weight-page

matching cost in p-way parallel (line 10–15) using a GPU.
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Algorithm 1: Greedy Weight-Page Matching
Input: Weight-page set Pi for 0 ≤ i ≤ m, Fisher information set Fi for 0 < i ≤ m
Output: fi : Pi −→ P0 for 1 ≤ i ≤ m

1 (ck)
|P0|
k=1 = (0, ...), (uk)

|P0|
k=1 := (P0), (sk) = (vk) = (), n := 0;

2 for i← 1 to m do
3 forall (f, p) ∈ (Fi, Pi) do
4 n := n+ 1, sn := ||f ||1, vn := p;
5 end
6 end
7 sort (vk)

n
k=1 in descending order of (sk)

n
k=1;

8 for i← 1 to n do
9 (c′i)

|P0|
k=1 := (ci)

|P0|
k=1, cmin :=∞ , idxmin := 0;

10 for j ← 1 to |P0| do in parallel
11 cj := cj + C(vi, uj);
12 if cj < cmin then
13 cmin := cj , idxmin := j;
14 end
15 end
16 cidxmin

:= cmin;
17 t := task number of vi, ft(vi) := uidxmin

;
18 end
19 return fi for 1 ≤ i ≤ m

4.2.3 Weight-Page Optimization

The last step of weight virtualization is to combine the matched weight-pages into single

pages and optimize (retrain) the tasks to retain any accuracy loss due to the changed weight

parameters.

Virtual Weight-Page. Once the task weight-pages are matched, they are combined to obtain sin-

gle pages called virtual weight-pages by optimizing (retraining) all or some of the tasks. To retain

the accuracy of tasks, we minimize the side-effects of combining on the set of to-be combined

weight-pages Qi =
⋃
p∈Pi

Qi,p when optimizing task τi, which is given by:

Qi,p = { q ∈
m⋃

j=1,j 6=i

Pj | ∃f−1j (fi(p)) } (4.4)

39



where, p is the page in the weight-page set Pi of τi, m is the number of tasks, Pj is the weight-

page set of τj , f−1j is the inverse page mapping function of τj , and fi is the page mapping func-

tion of τi obtained from the weight-page matching step in Section 4.2.2.

Optimization. Task τi is optimized by minimizing the summation of 1) the original loss function

of τi, and 2) the total weight-page matching cost of Qi in Equation 4.4, which is given by:

L(τi) = Lo(τi) + κ
∑
p∈Pi

1

|Qi,p|
∑
q∈Qi,p

∑
θ∈q

(θ − θ∗)2F̃ (θ|τq) (4.5)

where Lo(τi) is the original loss of τi, κ is the matching regularizer, Qi is the weight-pages

matched to the page fi(Pi) defined in Equation 4.4, θ is the weight in the page q, θ∗ is the vir-

tual weight in fi(p) being optimized and shared between tasks, τq is the task having page q, and

F̃ (θ|τq) is the Fisher information of θ in τq. By jointly optimizing tasks with the additional loss

on weight-page matching, which is expressed by the second term in Equation 4.5, it tries to find

common local minima for the desired performance of all tasks. Even when the tasks are sequen-

tially optimized one-by-one, the virtual weights tend to stay in a low-risk region, maintaining the

performance of the previously optimized tasks (Kirkpatrick et al., 2017).

Flexible Weight Sharing. Weight virtualization enables flexible weight sharing and achieves

better performance than existing works such as continual learning (Parisi et al., 2019; Kirkpatrick

et al., 2017; Zenke et al., 2017) that tries to solve the catastrophic forgetting problem (Good-

fellow et al., 2013; French, 1999). While existing works can only share a fixed combination of

weights in the same networks, weight virtualization allows weight sharing on arbitrary combi-

nations of weights between tasks of different architectures. Furthermore, the accuracy of DNNs

with weight virtualization is expected to be higher since the weight-pages are first matched to

minimize the matching cost before optimization (retraining). Thus, similar weight-pages are

more likely to be shared – which improves the performance of weight sharing between tasks.
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4.3 In-Memory Execution

Weight virtualization enables fast, in-memory execution of multiple DNNs at run-time by

efficiently accessing the virtualized weights supported by an efficient memory model and data

structure.

4.3.1 Memory Model and Data Structure

DTCBs DNN graph

Last tensor

yield

Scheduler: Priority assignment & Scheduling

load

Main Memory (RAM)

ID
Status

Last layer*
Page matching table*

Priority

Last tensor*

DNN graph*

Weight-Page Table
Virtual Weight-Page

q1 q2 q3 q4

p1→q3 p2→q4

DNN executor

Page Matching Table

q5 q6 q7 q8

Figure 4.7: DNN Task memory map illustrating DTCB, DNN graph, DNN executor, virtual
weight-pages, and page matching table. Virtual weight-pages and DNN executor are shared
among tasks, while the other elements are exclusive to each task.

Memory Model. Figure 4.7 shows the memory model that supports neural weight virtualization,

consisting of DTCB (DNN Task Control Block), DNN graph, DNN executor, virtual weight-

pages, and page matching table. Unlike conventional multitasking models (Uyeda, 2009) that

allocate private memory spaces to individual tasks, it allows memory overlapping between tasks

for weight sharing via virtual weight-pages. Also, unlike traditional virtual memory (Toy and

Zee, 1986) that expands to second-level memory, i.e., swapping DNNs with a flash or hard disk,

it implements the entire memory hierarchy into the main memory since all DNN tasks fit into it.

DTCB. Similar to the Process Control Blocks (PCB) in modern operating systems (Silberschatz

et al., 2012), each DNN task is managed by in-memory DNN Task Control Block (DTCB) that is

updated by the system at run-time. Each DTCB corresponds to a DNN task which contains the

necessary task information, i.e., ID, status (e.g., running, suspended), priority (for scheduling),
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and pointers to DNN graph, page matching table, last layer, and last tensor as shown in the left

side of Figure 4.7.

Virtual Weight-Pages. The virtual weight-pages generated by the weight virtualization in Sec-

tion 4.2 are located in the main memory. They are shared by the DNN tasks. A task accesses to a

subset of the virtual weight-pages by using its page matching table that performs the weight-page

translation.

Page Matching Table. For each DNN task, a page matching table that translates the weight-

pages of the DNN to the virtual weight-pages based on the matching result of Section 4.2.2

is provided. It consists of 1) a mapping list between weight-pages of the DNN and the virtual

weight-pages, and 2) memory addresses of the matched virtual weight-pages. Figure 4.8 illus-

trates the access process of virtual weight-pages via a page matching table where a task locates

the memory addresses of virtual weight-pages matched to its weight-pages.

Task 𝝉𝝉𝟏𝟏 (𝑷𝑷𝟏𝟏)

𝒑𝒑𝟏𝟏,𝟏𝟏 …

Virtual weight-pages in the main memory

𝒑𝒑𝟏𝟏,𝟐𝟐 𝒑𝒑𝟏𝟏,𝟑𝟑

𝒑𝒑𝟎𝟎,𝟏𝟏 𝒑𝒑𝟎𝟎,𝟐𝟐 𝒑𝒑𝟎𝟎,𝟑𝟑 𝒑𝒑𝟎𝟎,𝟒𝟒 …𝒑𝒑𝟎𝟎,|𝑷𝑷𝟎𝟎|

…

Task 𝝉𝝉𝒎𝒎 (𝑷𝑷𝒎𝒎)

𝒑𝒑𝒎𝒎,𝟏𝟏 …𝒑𝒑𝒎𝒎,𝟐𝟐 𝒑𝒑𝒎𝒎,𝟑𝟑

𝒑𝒑𝟏𝟏,𝟏𝟏→ 𝒑𝒑𝟎𝟎,𝟑𝟑

Page matching /

0x30000000

Virtual weight-page address

𝒑𝒑𝟏𝟏,𝟐𝟐→ 𝒑𝒑𝟎𝟎,𝟒𝟒 0x40000000

𝒑𝒑𝟏𝟏,𝟑𝟑→ 𝒑𝒑𝟎𝟎,𝟏𝟏 0x10000000

Page matching Table 1

0x10000000 0x20000000 0x30000000 0x40000000 0x50000000

𝒑𝒑𝒎𝒎,𝟏𝟏→ 𝒑𝒑𝟎𝟎,𝟓𝟓

Page matching /

0x50000000

Virtual weight-page address

𝒑𝒑𝒎𝒎,𝟐𝟐→ 𝒑𝒑𝟎𝟎,𝟒𝟒 0x40000000

𝒑𝒑𝒎𝒎,𝟑𝟑→ 𝒑𝒑𝟎𝟎,𝟐𝟐 0x20000000

Page matching Table m

Address:
Page:

Figure 4.8: A page matching table translates weight-pages of a DNN task into virtual weight-
pages in the memory.

DNN Graph and Executor. Each task has metadata called the DNN graph that defines its net-

work architecture. The DNN executor is a common module, shared between all tasks, which

executes a part or entire DNN graph given input tensors and weights.
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4.3.2 Task Execution

Task Execution. For the in-memory execution of a task, a task first unfolds its DNN graph and

locates the last layer that was completed at the previous execution using its DTCB. Then, the last

tensor values (also saved at the previous execution) and the necessary weight parameter values

obtained via page matching table are passed to the DNN executor for execution. To improve

memory efficiency, only the unfinished part of the graph from the last execution is unfolded and

executed. It also allows fitting large DNNs into limited memory by unfolding and running a part

of the graph in stages when the entire DNN does not fit into the memory.

Task Scheduling and Switching. DNN tasks are scheduled after every execution of a tensor. Af-

ter executing a tensor of a task, the DNN executor gives control back to the scheduler that selects

the next task based on its scheduling policy and task priorities. When a task is context-switched,

the system saves the last layer of the current task completed by the DNN executor, including the

corresponding tensor that is passed to the DNN executor when the task is scheduled to execute

again. It allows DNN tasks to be executed by various schedulers, e.g., non-preemptive scheduling

such as cooperative multitasking (Bartel, 2011) or preemptive scheduling (Silberschatz et al.,

2018) that requires back-and-forth execution of tasks. In this chapter, we use cooperative multi-

tasking.

In-Memory Execution. Task execution and DNN context-switches – all happening in the main

memory – improves the response time and the end-to-end execution time of tasks since 1) access

time of the main memory is consistent and much faster (10X–100X) than bulk storage modules

such as flash/hard disks, and 2) the main memory is far more flexible and efficient for random

access. On the contrary, a system using secondary storage experiences not only significant but

also unpredictable overhead, e.g., disk-writes in some storage modules such as flash and solid-

state drives, have to erase an entire block before writing to it. By eliminating this overhead, in-

memory execution enables fast and responsive back-to-back execution of multiple DNNs.
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4.3.3 Response Time Analysis

The in-memory execution improves the response time of a DNN task which is defined as the

time until the task starts execution (Koopman, 2016). For example, the response time of tasks

scheduled by a preemptive scheduler is given by:

R0,0 = S0, Ri,0 = S0 + C0 + Si for i > 0

Ri,k+1 =
i−1∑
j=0

⌊
Ri,k

Pj
+ 1

⌋
· (Sj + Cj)

(4.6)

where i is task number (i=0 denotes the highest priority task), Ri,k is the response time of task

i for its k-th execution, Si is DNN context-switch time, Ci is worst-case execution time, and

Pi is period of task i (worst case). It is assumed that task i never tries to execute again until the

previous execution runs to completion.

As Si reduces to S ′i due to in-memory execution, the response time also decreases. For exam-

ple, the response time of task 1 for its first execution, i.e., R1,1 is reduced to R′1,1, and the ratio is

given by:
R′1,1
R1,1

' (S ′0 + C0 + S ′1 + P0)(S
′
0 + C0)

(S0 + C0 + S1 + P0)(S0 + C0)
(4.7)

where S ′i is the reduced context-switch time. If we let ri = Si/Ci and qi = Pi/Ci, and assume

S ′i � Si and Ci ≤ Pi, Equation 4.7 is bounded as follows:

R′1,1
R1,1

≥ 2C0

C0(r0 + 2) + C1r1
· 1

ro + 1
(4.8)

which implies that the response time is decreased more with bigger ri and smaller qi. In general,

R′i,k/Ri,k gets smaller as k → ∞ due to the recursive effect of Si in Equation 4.6. For exam-

ple, the response time is improved by at least 4x in an embedded GPU system that requires the

same amount of time for DNN execution and context-switching. The response times for other

scheduling algorithms can be deduced similarly.

44



4.4 System Implementation

We develop two real systems that implement neural weight virtualization: 1) an embedded

GPU-based multitask learning mobile robot, and 2) a microcontroller-based low-power multitask

learning IoT device. These systems are packed with 5-6 learning tasks. Figure 4.9 shows these

systems performing an image recognition task (i.e., place and traffic sign recognition).

Camera

Embedded GPU Microphone Place recognition

(a) Deep multitask learning mobile robot

Microcontroller

CameraMicrophone

Traffic sign recognition

(b) Deep multitask learning IoT device

Figure 4.9: Two application systems of neural weight virtualization: Multitask learning mobile
robot and multitask learning IoT device.

4.4.1 Deep Multitask Learning Mobile Robot

System Overview. Intelligent robots are often tasked with multiple high-level perception tasks.

For example, a social robot (Bohren et al., 2011; Siegwart et al., 2003) has to move around and

assist a user – based on various human- or environment-generated information, such as voice

and facial expression. As the first application system, we implement a multitask learning mo-

bile robot (Figure 4.9a), representing an intelligent social agent, that assists humans in various
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situations by running six state-of-the-art DNNs, i.e., objection recognition (MobileNet-v2 (San-

dler et al., 2018)), face identification (FaceNet (Schroff et al., 2015)), visual scene interpretation

(ShowAndTell (IM2TXT) (Vinyals et al., 2015)), place classification (Place205 (Zhou et al.,

2014b)), environmental sound classification (UrbanSound8K (Su et al., 2019)), and voice recogni-

tion (GoogleSpeechCommands (GSC) (Sainath and Parada, 2015)).

Hardware Platform. The robot is implemented using Jetson Nano (NVIDIA, 2019a), an embed-

ded GPU platform having an NVIDIA Maxwell GPU and an ARM A57 CPU. The robot has a

camera in the front, a microphone on the side, and two motors and wheels on both sides. We print

the body of the robot with a 3D printer and install the components on it. For the offline phase of

weight virtualization, we use an NVIDIA RTX 2080 Ti GPU. For run-time in-memory multitask

DNN execution, we use the embedded GPU of the robot.

Software Platform. We extend TensorFlow (Abadi et al., 2016) to support weight virtualization

algorithms and in-memory multitask execution.

Memory Budget. We allocate 146MB of GPU RAM to the virtual weight parameters and pack

six DNN tasks in the GPU RAM whose total memory requirement is 604MB. The memory size

of each DNN is listed in Figure 4.16 and Table 4.5.

4.4.2 Deep Multitask Learning IoT Device

System Overview. Recently, microcontroller-based embedded systems have started to support

the execution of lightweight versions of state-of-the-art DNNs (Lee and Nirjon, 2019; Yao et al.,

2018b; Wang et al., 2018; Gobieski et al., 2018a; Lane et al., 2017). For example, Google re-

cently released their TensorFlow Lite library targeting microcontrollers (MCUs) (Google, 2019e),

and Amazon Alexa services are now supported on MCUs such as ARM Cortex M (Cortex, 2004)

that have less than 1MB memory (Amazon, 2019). However, the number of DNNs that runs on

an embedded system (Chauhan et al., 2018; Gobieski et al., 2018a; Bhattacharya and Lane, 2016)

is limited by the capability of the MCU, memory-size, and battery-capacity. As the second appli-
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cation system, we implement a low-power multitask learning IoT device that performs multitask

DNN learning on an MCU, having an extremely limited memory (256KB). The system is shown

in Figure 4.9b. It packs five compressed DNNs, i.e., traffic sign recognition (German Traffic

Sign Recognition Benchmark (GTSRB) (Stallkamp et al., 2011a)), voice command recognition

(GoogleSpeechCommands (GSC) (Sainath and Parada, 2015)), house/plate number classification

(Street View House Numbers (SVHN) (Netzer et al., 2011)), digits classification (MNIST (LeCun

et al., 1998)), and object recognition (CIFAR-10 (Krizhevsky et al., 2009)).

Hardware Platform. The system is implemented on an MSP430 MCU (TexasInstruments,

2018) that consumes little energy (≤1.8mA). For in-memory multitask DNN execution, we use

256KB FRAM (Buck, 1952) built in the MCU package. The FRAM is a non-volatile memory,

performing read/write operations in nanoseconds (Cypress, 2017). For sensing, we connect a

camera and a microphone to the MCU. For the offline phase of weight virtualization, we use an

NVIDIA RTX 2080 Ti GPU.

Software Platform. We extend TensorFlow (Abadi et al., 2016) for weight virtualization al-

gorithms and implement the in-memory multitask execution framework using C language for

efficient task execution.

Memory Budget. We allocate 129 KB of FRAM for weight virtualization and pack five DNNs

whose total memory requirement is 523KB. The memory size is shown in Figure 4.21 and Ta-

ble 4.7.

4.5 Algorithm Evaluation

We first evaluate the weight virtualization phase described in Section 4.2 for the two systems

we implement in Section 4.4. We use an NVIDIA RTX 2080 Ti GPU and an Intel Core i9-9900K

CPU.

Training and Evaluation Datasets. For the training and evaluation of DNNs in the multitask

mobile robot, we use ImageNet (Deng et al., 2009), VGGFace2 (Cao et al., 2018), LFW Face (Huang
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et al., 2008), Microsoft COCO (Lin et al., 2014), Place205 (Zhou et al., 2014b), UrbanSound8K (Sala-

mon et al., 2014), and GoogleSpeechCommands (GSC) (Warden, 2018) dataset. For the multitask

IoT device, we use GTSRB (Stallkamp et al., 2011a), GSC (Warden, 2018), SVHN (Netzer et al.,

2011), MNIST (LeCun et al., 1998), and CIFAR-10 (Krizhevsky et al., 2009) dataset.

4.5.1 Weight-Page Matching

Weight-Page Size. We evaluate the effect of weight-page size on weight virtualization. Fig-

ure 4.10 plots the inference accuracy of the two application systems over different weight-page

sizes. In general, larger pages result in decreased accuracy for both systems, e.g., the accuracy of

FaceNet for the mobile robot drops from 97% to 67% when the page size is increased from 100

to one million. Since smaller pages are more finely matched with each other, higher accuracy is

achieved.
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Figure 4.10: The inference accuracy for various weight-page size for multitask learning mobile
robot and the IoT device.

However, smaller page sizes increase the total number of virtual weight-pages and page

matching time, which increases both the run-time and compile-time cost, as shown in Table 4.3

and 4.4. Thus, a suitable page size should be chosen based on the trade-off between the perfor-

mance (e.g., inference accuracy) and computation/memory cost.

Weight-Page Matching vs. Random Matching. We evaluate the performance of the weight-

page matching algorithm by comparing the weight-page matching cost defined in Equation 4.1

and the final inference accuracy of the two systems against random weight-page matching, as
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Weight-Page Total Number of Total Number of Matching
Size Virtual Weight-Pages Virtual Weights Time (s)
100 383,510 38,351,000 916.21

1,000 38,351 38,351,000 89.77
10,000 3,836 38,350,000 16.66

100,000 384 38,400,000 14.24
1,000,000 39 39,000,000 10.28

10,000,000 4 40,000,000 10.47

Table 4.3: The number of weight-pages, weights, and weight-page match-
ing time over different page sizes for the multitask mobile robot.

Weight-Page Total Number of Total Number of Matching
Size Virtual Weight-Pages Virtual Weights Time (s)

10 6,648 66,480 0.4822
100 665 66,500 0.1493

1,000 67 67,000 0.1076
10,000 7 70,000 0.1077

Table 4.4: The number of weight-pages, weights, and weight-page match-
ing time over different page sizes for the multitask IoT device.

shown in Figures 4.11 and 4.12. In random matching, the weight-pages of DNNs are randomly

matched for optimization without considering their similarity, as done in existing works (Kirk-

patrick et al., 2017; Zenke et al., 2017). For both systems, the weight-page matching outperforms

random matching, i.e., a maximum 1,140x less matching cost that results in a maximum of 72%

inference accuracy improvement in the mobile robot (GSC in Figure 4.11b). It demonstrates that

weight-page matching is an essential step for performance retention before performing weight-

page optimization (combining), which significantly decreases the chance of combining weight-

pages of big difference.

4.5.2 Weight-Page Optimization

Joint vs. Sequential Optimization. We evaluate two methods of weight-page optimization, i.e.,

joint vs. sequential optimization, by comparing their final inference accuracy. While all the DNN

tasks are optimized together in the joint optimization, only a single task is optimized at a time

after completing the optimization of the prior task in the sequential optimization. Figure 4.13 and

4.14 show the results for the two systems, respectively. Sequential optimization exhibits a pattern

that a DNN recently optimized achieves its best accuracy while DNNs optimized prior to it ex-
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Figure 4.11: The weight-page matching cost and inference accuracy of the multitask learning
mobile robot: The proposed weight-page matching vs. Random matching.
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Figure 4.12: The weight-page matching cost and inference accuracy of the multitask learning IoT
device: The proposed weight-page matching vs. Random matching.

perience accuracy degradation, e.g., from 69% to 52% for MobileNet for the mobile robot. On

the other hand, joint optimization keeps the best accuracy of all DNNs, and sometimes achieves

higher accuracy than the individual training of a DNN due to less overfitting achieved during

joint training, e.g., from 69% to 78% for GSC in the multitask learning IoT device, by optimizing

them together during the entire optimization iterations.

Matching Regularizer. We evaluate the effect of matching regularizer, κ in Equation 4.1, and

4.5, which determines the extent of matching cost that works as a penalty in optimization, i.e., the

larger κ, the more joint performance of all DNNs are considered during optimization. Figure 4.15

plots the inference accuracy with different matching regularizers, which shows that the inference

accuracy of the DNNs tends to increase as the regularizer increases but starts to decrease after

some point. That is because too large regularizer leads the optimizer to minimize the matching

cost too much, preventing it from minimizing the original losses of DNNs.

50



0
20
40
60
80

100
In

fe
re

nc
e 

ac
cu

ra
cy

 (%
)

0

10

20

30

BL
EU

 s
co

re
 (I

M
2T

XT
)

Mobile
Net

Face
net

Place
205

Urban
Sound

GSC IM2TXT

(a) Joint optimization
0

10
20
30
40
50
60
70
80
90

100

In
fe

re
nc

e 
ac

cu
ra

cy
(%

)

0

5

10

15

20

25

30

BL
EU

 s
co

re
 (I

M
2T

XT
)

Mobile
Net

Face
Net

Place
205

Urban
Sound

GSC IM2TXT

FaceNet
Training

MobileNet
Training

Urban
Sound
Training

Place205
Training

IM2TXT
Training

GSC
Training

(b) Sequential optimization

Figure 4.13: The inference accuracy of the multitask learning mobile robot: Joint vs. Sequential
optimization.
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Figure 4.14: The inference accuracy of the multitask learning IoT device: Joint vs. Sequential
optimization.
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Figure 4.15: The inference accuracy over the regularizer κ.

4.6 System Evaluation

In this section, we evaluate the run-time performance of in-memory multitask execution for

the two multitask learning systems described in Section 4.4 (i.e., mobile robot and IoT device).

The evaluation is performed on the same dataset used in Section 4.5.
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4.6.1 Deep Multitask Learning Mobile Robot

Memory Packing Efficiency. We evaluate the memory efficiency of weight virtualization by

measuring the memory usage of the DNNs, which shows the packing ratio of multiple DNNs

that reside in the limited memory. Figure 4.16 and Table 4.5 present the number of weights and

memory usage for the mobile robot, where a total of 144M weight parameters (604MB) are

virtualized to 38M virtual weights (146MB). It achieves a 4.13x packing ratio when compared to

baseline DNNs that are not virtualized.
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Figure 4.16: The mem-
ory usage of weight
parameters: Baseline
DNNs vs. Weight
virtualization for the
multitask learning
mobile robot.

Baseline Total Memory
DNNs Weights (MB)

MobileNet (Sandler et al., 2018; Howard et al., 2017; Deng et al., 2009) 14M 54
FaceNet (Schroff et al., 2015; Cao et al., 2018; Huang et al., 2008) 22M 88

IM2TXT (Vinyals et al., 2015; Lin et al., 2014) 37M 142
Place205 (Zhou et al., 2014b,a, 2016) 38M 146

UrbanSound (Su et al., 2019; Zhang et al., 2018b; Salamon et al., 2014) 23M 88
GSC (Sainath and Parada, 2015; Chen et al., 2014a; Warden, 2018; Li and Zhou, 2017) 22M 86

Total 144M 604
Weight Packed Memory

Virtualization Weights (MB)
MobileNet+FaceNet
+IM2TXT+Place205 38M 146
+UrbanSound+GSC

Packing Ratio 4.13x 4.13x

Table 4.5: Weight memory packing of the multitask learning mobile
robot with weight virtualization.

Inference Accuracy. We evaluate the inference accuracy of the virtualized DNNs, as shown in

Figure 4.17. Compared to the state-of-the-art baseline DNNs that are not virtualized, they achieve

comparable performance with a maximum of 3% accuracy drop (MobileNet) or achieve better

accuracy for some DNNs (0.4% up in UrbanSound and 0.72% up in GSC). The accuracy increase

can be explained by the fact that weight parameter sharing via virtualization leads to 1) reduce

the risk of overfitting (Baxter, 1997), and 2) provide better generalization (Ruder, 2017) with

weight-page optimization.

Execution Time. We evaluate the execution time of the virtualized DNNs against baseline

DNNs that are not virtualized. Figure 4.18 shows the end-to-end execution time of consecutive

DNNs for 1) baseline DNNs that use eMMC memory as a secondary storage module for loading
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Figure 4.17: The inference accuracy of multitask mobile robot: Baseline (state-of-the-art) vs.
Weight virtualization.

DNNs to GPU RAM, and 2) virtualized DNNs that perform in-memory loading and execution

entirely in GPU RAM. As shown in the figure, the execution time is significantly improved when

executing DNNs consecutively, e.g., 36.9x faster when executing all six DNNs successively

(39.12 vs. 1.06 seconds). Next, we breakdown the end-to-end execution time into two parts, i.e.,

1) actual DNN execution and 2) DNN-switching (loading) time, and measure each of them sepa-

rately. Figure 4.19 shows the execution time and switching (loading) time of each DNN. All the

virtualized DNNs accelerate their switching (loading) by a maximum of 87x (9.16 vs. 0.105 sec-

onds for IM2TXT) compared to the non-virtualized DNNs (the baselines), which demonstrates

that in-memory execution yields much faster response time for multitasking DNNs.

Comparison to Alternatives. We compare the inference accuracy and execution time (total time

for inference plus switching) of the virtualized DNNs against two alternative methods: 1) mul-

titask learning (MTL) and 2) individual model compression. Both use the same total amount of

146 MB memory as the virtualized DNNs. For MTL, the baseline DNNs are trained together

using the state-of-the-art K for-the-price-of 1 (Mudrakarta et al., 2018) approach, whose memory

size is limited to 146 MB. For model compression, the baseline DNNs are individually com-

pressed using pruning methods that are applicable to specific architectures (He et al., 2018b; Wu

et al., 2017; Han et al., 2015b,a; Zhang et al., 2018a). Table 4.6 provides the memory usage of

the baseline (uncompressed) and compressed DNNs. Note that the combined memory usage of

the six compressed DNNs is 146 MB.
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Figure 4.18: The end-to-end execution time of DNNs consecutively executed on the mobile robot:
Baseline (no virtualization) vs. Weight virtualization.
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Figure 4.19: The DNN execution and switching time of the mobile robot: Baseline vs. Weight
virtualization.

MobileNet FaceNet IM2TXT Place205 UrbanSound GSC
Vanilla 54 MB 88 MB 142 MB 146 MB 88 MB 54 MB

Compressed 36 MB (He et al., 2018b) 52 MB (Wu et al., 2017) 19 MB (Zhang et al., 2018a) 4 MB (Han et al., 2015a) 16 MB (Han et al., 2015a) 18 MB (Han et al., 2015b)

Table 4.6: The memory usage of the baseline DNNs (uncompressed vanilla models), and individually compressed DNNs for the multitask learning robot.
The compression algorithms are cited inside the brackets.

Figure 4.20a shows their inference accuracy where the virtualized DNNs achieve compa-

rable accuracy to the MTL and individually compression approach, i.e., they perform slightly

worse than the compression approach (-0.3%) but better than the MTL (+2.4%). However, the

virtualized DNNs run significantly faster than the other two, i.e., 10.1x on average, as shown in

Figure 4.20b. This is because 1) MTL executes the entire network for all tasks, and 2) individu-

ally compressed DNNs incur a high model switching overhead and are barely expedited due to

reduced network size (Chen, 2018). This result demonstrates that weight virtualization achieves

the best of both worlds, i.e., high accuracy and low execution latency.
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(a) Inference accuracy with fixed memory size (146 MB)

(b) Execution time with fixed memory size (146 MB)

Figure 4.20: Comparison against multitask learning (MTL) and individually compressed DNNs.

4.6.2 Deep Multitask Learning IoT Device

Memory Packing Efficiency. Figure 4.21 and Table 4.7 show the number of weights and mem-

ory usage for the low-power multitask learning IoT device, where a total of 268,692 weights

(523KB) are virtualized to 66,475 virtual weights (129KB). It achieves a 4.04x packing ratio

when compared to the baseline DNNs not virtualized.

Inference Accuracy. Figure 4.22 shows the inference accuracy of the virtualized DNNs. Com-

pared to the baseline DNNs that are not virtualized, they all achieve higher accuracy, e.g., the

accuracy of GSC increases from 69.86% to 76.38% since weight virtualization decreases overfit-

ting in the individual DNN models.

Execution Time. Figure 4.23 shows the end-to-end execution time of consecutive DNNs for 1)

baseline DNNs that use an SD card as the secondary storage for loading DNNs to FRAM, and 2)

virtualized DNNs that perform in-memory loading and execution entirely in FRAM. As shown in
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Figure 4.21: The memory
usage of weight parameters:
Baseline DNNs vs. Weight
virtualization for the IoT
device.

Baseline Total Memory
DNNs Weights (KB)

GTSRB (Lee and Nirjon, 2019; Stallkamp et al., 2011a) 66,475 129
GSC (Chen et al., 2014a; Warden, 2018) 65,531 128

SVHN (Lee and Nirjon, 2019; Netzer et al., 2011) 45,490 88
MNIST (Gobieski et al., 2019b; LeCun et al., 1998) 45,706 89

CIFAR-10 (Yao et al., 2017b; Krizhevsky et al., 2009) 45,490 88
Total 268,692 523

Weight Packed Memory
Virtualization Weights (KB)
GTSRB+GSC

+SVHN+MNIST 66,475 129
+CIFAR-10

Packing Ratio 4.04x 4.04x

Table 4.7: Weight memory packing with weight virtualization for
the IoT device.
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Figure 4.22: The inference accuracy of multitask IoT device: Baseline (scaled-down DNNs) vs.
weight virtualization.

the figure, the execution time is improved when executing DNNs consecutively, e.g., 1.76x faster

when executing all the five DNNs successively. Figure 4.24 shows the execution and switching

(loading) time of each DNN. All the virtualized DNNs accelerate their switching (loading) by

a maximum of 1,268x (2.41 vs. 0.0019 seconds in GTSRB) compared to the non-virtualized

DNNs, which demonstrates that in-memory execution yields fast and responsive execution.

Energy Consumption. We measure the energy consumption of DNN executions on the mul-

titask learning IoT device against the baseline that does not use weight virtualization by using

EnergyTrace (Instrument, 2018) of MSP430 board. Figure 4.25 shows the total energy consump-

tion of consecutive DNN executions for 1) the baseline DNNs that use an SD card, and 2) the

virtualized DNNs that perform in-memory loading and execution in FRAM. In-memory execu-

tion reduces the total energy consumption by 4.24x when executing all five DNNs successively

56



  GTSRB+GSC
+SVHN+MNIST
  +CIFAR-10

  GTSRB+GSC
+SVHN+MNIST

GTSRB+GSC
   +SVHN

GTSRB+GSC GTSRB
0

5

10

15

20

25

En
d-

to
-e

nd
 e

xe
cu

tio
n 

tim
e

(s
ec

on
ds

)

Baseline Weight virtualization

11.59

20.51
17.56

10.01

13.84

7.67
11.15

6.35 6.04
3.64

Figure 4.23: The end-to-end execution time of DNNs consecutively executed on the multitask
learning IoT device: Baseline (no virtualization) vs. Weight virtualization.
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Figure 4.24: The DNN execution and DNN-switching time of the IoT device: Baseline (no
virtualization) vs. Weight virtualization. The bars of DNN-switching time in (b) are drawn lager
than the real size.

(432.95 vs. 102.09 mJ). Next, we breakdown the total energy consumption into two parts, i.e.,

1) actual DNN execution and 2) DNN-switching (loading) energy, and measure each of them.

Figure 4.26 shows the execution and switching energy for each DNN. All the virtualized DNNs

improve their switching (loading) energy efficiency by a maximum of 7,413x (88.96 vs. 0.012 mJ

in GTSRB) compared to the non-virtualized DNNs (the baselines).

Comparison to Alternatives. To evaluate the performance of virtualized DNNs against alterna-

tives, we compare them with 1) a multitask learning (MTL) algorithm (Fang et al., 2018) and 2)

individually compressed DNNs using (Han et al., 2015a) where the memory size of MTL and the

combined memory size of all compressed DNNs is set to 129 KB for each. Table 4.8 shows the

memory usages of compressed DNNs.

Figure 4.27a shows that the virtualized DNNs achieve comparable accuracy to the MTL that

achieves the highest accuracy among all methods. The accuracy of MTL is average 3% higher
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Figure 4.25: The total energy consumption of DNNs consecutively executed on the IoT device:
Baseline (no virtualization) vs. Weight virtualization.
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Figure 4.26: The energy consumption of DNN execution and DNN-switching for the IoT device:
Baseline vs. Weight virtualization. The bars of DNN-switching energy in (b) are drawn larger
than real.

GTSRB GSC SVHN MNIST CIFAR-10
Vanilla 129 KB 128 KB 88 KB 89 KB 88 KB

Compressed 27 KB (Han et al., 2015a) 34 KB (Han et al., 2015a) 25 KB (Han et al., 2015a) 10 KB (Han et al., 2015a) 30 KB (Han et al., 2015a)

Table 4.8: The memory usage of the baseline DNNs (uncompressed vanilla models), and individually compressed DNNs for the
multitask learning IoT device. The compression algorithms are cited inside the brackets.

than the baseline DNNs, and the virtualized DNNs provides 0.1% lower accuracy on average

than the MTL. Also, the virtualized DNNs execute up to 2.8x faster than the two alternatives, as

shown in Figure 4.27b. This result demonstrates that weight virtualization provides the benefit of

multitask learning, i.e., accuracy improvement via joint training while enabling fast in-memory

execution at the same time.

4.7 Discussion

Fisher Information and Inference Accuracy. Fisher information (Lehmann and Casella, 2006)

of weight parameters is used to optimize the loss function of a DNN, which is known as the
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(a) Inference accuracy with fixed memory size (129 KB)

(b) Execution time with fixed memory size (129 KB)

Figure 4.27: Comparison against alternatives: multitask learning (MTL) and individually com-
pressed DNNs.

natural gradient descent optimization (Amari et al., 1992; Amari, 1997, 1998; Park et al., 2000;

Ollivier et al., 2017; Pascanu and Bengio, 2013). Since the weight parameters are proportionally

updated to the Fisher information matrix in the natural gradient descent optimization in order

to minimize the loss function that is closely related to the end-to-end accuracy, one can assume

that reasonable accuracy is retained when the weight parameters of high Fisher information

either remain the same or change very little. To understand their relationship, general proofs and

theoretical assessment of Fisher information regarding the end-to-end inference accuracy and

divergence from the optimal solution should be further studied. However, the exact mathematical

relationship between the Fisher information and end-to-end accuracy is difficult to derive, which

makes it challenging to provide a guaranteed inference accuracy when a large number of models

are virtualized together.
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Expansion to Secondary Storage. The proposed neural weight virtualization technique is pri-

marily designed to operate purely in the main memory – without involving any secondary storage.

An alternative design choice would be to extend the memory hierarchy of weight virtualization

to include secondary storage or disks in the similar manner as in modern operating systems. It

enables the system to retain the desired level of inference accuracy when the total model size

is too large to fit into a small memory of the system in return for partial in-memory operation.

By allowing disk-level weight virtualization, multitask learning of a more significant number of

DNNs can be enabled with limited memory at scale without experiencing accuracy degradation.

4.8 Prior Work and Their Limitations

Multitask Learning. Multitask learning jointly trains correlated tasks to increase the accuracy

of each learner by exploiting the commonalities and differences across tasks (Caruana, 1997;

Ruder, 2017; Zhang and Yang, 2017a,b). Typical approaches include common feature learn-

ing (Liu et al., 2017; Zhang et al., 2016; Misra et al., 2016; Liu et al., 2015b; Mrkšić et al., 2015;

Li et al., 2014b; Zhang et al., 2014), low-rank parameter search (Yang and Hospedales, 2016b;

Han and Zhang, 2016; McDonald et al., 2014; Agarwal et al., 2010; Chen et al., 2009; Zhang

et al., 2008), task clustering (Zhou and Zhao, 2015; Barzilai and Crammer, 2015; Han and Zhang,

2015; Kumar and Daume III, 2012; Kang et al., 2011; Thrun and O’Sullivan, 1996), and task

relation learning (Long et al., 2017; Lee et al., 2016; Zhang and Yeung, 2013a,b). Although, by

sharing network structure (typically, the first few layers) they achieve limited compression (He

et al., 2018a), their primary goal is to increase robustness and generalization of correlated and

similar-structured learners. Thus, packing multiple heterogeneous learners into extremely scarce

memory of an embedded system, as well as managing, context switching, and executing different

DNN tasks efficiently at run-time, are challenging to them, both of which are achieved by weight

virtualization.
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DNN Combining (Packing). Stacked neural networks (SNN) (Mohammadi and Das, 2016; Srid-

har et al., 1999, 1996) combine multiple DNNs by adding a layer on top of the features extracted

from the DNNs. Although it may achieve better accuracy, the weights of each DNN needs to be

maintained, which does not reduce the memory size, and the DNNs are not trained with multi-

task learning. PackNet (Mallya and Lazebnik, 2018) packs multiple DNNs to a single network

with iterative pruning based on redundancies in DNNs to free up weights that can be employed

for new tasks. However, the number of DNNs can be limited when free weights fall short as

more DNNs are packed, and only a single network is maintained. Although (Chou et al., 2018a)

merges DNNs by integrating convolutional layers, it works with only two DNNs and requires to

align layers to merge them. Learn-them-all (Kaiser et al., 2017; Aytar et al., 2017; Levi and Hass-

ner, 2015) trains a single complex DNN to handle multiple tasks simultaneously. However, it is

hard to choose a suitable architecture for learning all the tasks well in advance. Besides, learning

from a large training data from different types or sources are demanding.

DNN Weight Sharing. For a single DNN, soft weight sharing approaches (Nowlan and Hinton,

1992; Ullrich et al., 2017) such as the Dirichlet process (Roth and Pernkopf, 2018), k-means clus-

tering (Son et al., 2018; Han et al., 2015a), or quantization (Köksal et al., 2001) have been pro-

posed. These techniques do not provide much benefit in terms of memory usage since the assign-

ments of weights to connections must be stored additionally. There are several studies on weight

sharing between multiple DNNs. MultiTask Zipping (He et al., 2018a) merges DNNs for cross-

model compression with a layer-wise neuron sharing. Sub-Network Routing (Ma et al., 2019)

modularizes the shared layers into multiple layers of sub-networks. Cross-stitch Networks (Misra

et al., 2016) apply weight sharing (Duong et al., 2015) after pooling and fully-connected layers

of two DNNs. MMoE (Ma et al., 2018) learns to model task relationships from data by sharing

the sub-models and weights across tasks. Tensor factorization (Yang and Hospedales, 2016a)

divides each set of parameters into shared and task-specific parts. However, their scope and meth-

ods of weight sharing are limited by network architecture and task type, unlike neural weight

virtualization, where weights are shared without imposing a limitation on the network structure.
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DNN Compression. The need to deploy DNNs on mobile systems motivated several techniques

that reduce memory and computational costs, including knowledge distillation (Chen et al.,

2017a; Hinton et al., 2015; Romero et al., 2014), low-rank factorization (Ioannou et al., 2015;

Tai et al., 2015; Sainath et al., 2013), pruning (LeCun et al., 1990; Polyak and Wolf, 2015; Li

et al., 2016; Yu et al., 2018; Guo et al., 2016), quantization (Li et al., 2017a; Wu et al., 2016;

Han et al., 2015a), compression with structured matrices (Cheng et al., 2015; Sindhwani et al.,

2015), network binarization (Li et al., 2017b; Rastegari et al., 2016; Courbariaux et al., 2016),

and hashing (Chen et al., 2015b). However, they do not provide cross-DNN compression that

trains multiple DNNs together, unlike neural weight virtualization. Instead, each DNN is com-

pressed individually with different compression methods, which is not scalable and does not

achieve the benefits of multitask learning. Furthermore, a significantly compressed DNN does not

run nearly as significantly faster since most parameters are pruned in fully-connected layers while

convolutional layers consume most computation time, as shown in (Guo et al., 2016; Park et al.,

2016b; Han et al., 2015a).

4.9 Summary

We introduces neural weight virtualization that enables scalable and fast multitask learning

of DNNs on resource-constrained systems. By virtualizing network weights, it packs multiple

DNNs into a limited size main memory. In-memory multitask learning enabled by weight vir-

tualization improves the execution and response time, as well as the energy efficiency of the

system. We implement two multitask learning systems: a mobile robot and an IoT device, and

demonstrate that memory efficiency, execution time, and energy efficiency increases with weight

virtualization.
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CHAPTER 5: ADAPTIVE REAL-TIME LEARNING

Recently, DNNs (deep neural networks) (Goodfellow et al., 2016; LeCun et al., 2015; Schmid-

huber, 2015) have been increasingly used in many real-life applications due to their superiority in

solving complex machine learning problems (Young et al., 2018; Schroff et al., 2015; Krizhevsky

et al., 2012), e.g., autonomous cars (Bojarski et al., 2017; Chen et al., 2017c, 2016b, 2015a),

natural language processing (Socher et al., 2012; Deng and Liu, 2018; Khan et al., 2016), and

healthcare applications (Miotto et al., 2017; Jiang et al., 2017; Litjens et al., 2017). However,

their long and unpredictable execution time resulting from a significant amount of computation

often limits their deployment on real-time systems. Although high-performance hardware such

as multi-core CPUs or GPUs efficiently process the massive workload of a DNN in parallel, the

complexity and proprietary architecture of these platforms make effective scheduling of deadline-

aware DNN tasks challenging, as shown in many previous works (Dong et al., 2017b; Elliott and

Anderson, 2014; Zhou and Liu, 2014; Elliott et al., 2013; Elliott and Anderson, 2013, 2012; Kato

et al., 2012, 2011; Rossbach et al., 2011; Augonnet et al., 2010; Luk et al., 2009).

Moreover, the time constraints of many practical systems dynamically change at run-time,

making DNNs more challenging to be executed as a real-time task. Such dynamic time con-

straints are found in many modern embedded systems such as autonomous cars (Taş et al., 2016;

Pongpunwattana and Rysdyk, 2004; Shiller et al., 1991), drones (Chen et al., 2017b; Nägeli et al.,

2017; Soto et al., 2007), and smartphones (He et al., 2015; Wanpeng and Wei, 2014; Balog et al.,

2002) where the system must deal with online changes such as run-time application requirements,

resource availability, energy level, failures, and re-configurations. Such changes consequently

cause variations in the time requirements of related-tasks (Stewart and Khosla, 1991); e.g., data-

dependent requirements where the periods depend on the input sensor data; time-dependent
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SubFlow: Dynamic real-time DNN execution

Figure 5.1: SubFlow enables real-time inference and training of a DNN by dynamically execut-
ing a sub-graph of the DNN according to the timing constraint changing at run-time. For each
inference or training execution, an induced sub-graph of the DNN, whose execution is completed
in time, is constructed and executed by activating only necessary neurons, enabling time-aware
utilization of the DNN.

requirements where the actual deadline becomes known only at run-time when setting the actu-

ators. For example, autonomous vehicles impose dynamic time constraints on tasks in reaction

to a variety of road situations—a lower latency for obstacle detection is expected when traveling

at higher speeds or when a pedestrian makes a sudden appearance. Failure of a scheduler also

introduces variability in timing constraints, which reduces the amount of allowed execution time.

A task scheduler in a complex and dynamic system may fail to start a task at its latest allowed

start time and miss the deadline.

Although DNN compression techniques such as (Chen et al., 2017a; Hinton et al., 2015;

Romero et al., 2014; Ioannou et al., 2015; Tai et al., 2015; Sainath et al., 2013; LeCun et al.,

1990; Polyak and Wolf, 2015; Li et al., 2016; Yu et al., 2018; Guo et al., 2016) reduce the ex-

ecution time to some extent, they are not directly applicable to DNNs having dynamic timing

constraints since 1) they generate only one compressed network from the original DNN, which

does not dynamically adapt once deployed, 2) most of them primarily focus on reducing mem-

ory usage as opposed to speedup, and 3) most compression methods are time-consuming as they

require multiple training iterations and fine-tuning, and are limited to specific types of DNNs.
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To enable the execution of DNNs with dynamic deadline constraints, we introduce SubFlow—

an online DNN sub-graph strategy that constructs and executes a sub-graph of a DNN called the

sub-network that completes the inference or training tasks within timing constraints that may

change at run-time. The process is shown in Figure 5.1. For each execution of the DNN infer-

ence/training task, a different sub-network of different size and composition is constructed on-the-

fly and executed within the time budget. In this way, the system ensures time-aware execution of

a DNN with a flexible time budget–which also improves the CPU utilization and schedulability.

SubFlow consists of two run-time algorithms: 1) dynamic construction and 2) time-bound

execution of a sub-network. For construction, it composes the proper sub-network based on the

importance of neurons in such a way that the execution time is expected to match the time budget

while the performance loss due to the reduced size of sub-network is minimized. For execution,

we propose time-bound inference and training of convolutional and fully-connected layers of

a DNN, which are two main building blocks of a DNN. We name them time-bound since their

inference and training times are bounded by the architecture and size of the sub-network.

We implement SubFlow by extending TensorFlow (Abadi et al., 2016), one of the most

popular DNN frameworks, and we open-source it1. We develop four custom operations and

libraries for time-bound feed-forward and back-propagation (Rumelhart et al., 1985) of dy-

namic sub-networks, i.e., sub-convolution, sub-multiplication, sub-convolution-gradient, and

sub-multiplication-gradient. They support both CPUs and GPUs, and are implemented by using

Eigen (Guennebaud et al., 2010) and CUDA (NVIDIA, 2019b) libraries, respectively. DNNs

designed with TensorFlow are easily adapted to SubFlow by simply applying SubFlow operations

to the model, without requiring any architectural modifications, which makes SubFlow universal

and applicable to existing DNNs. Since a new sub-network is constructed at run-time as opposed

to constructing and saving a set of sub-networks offline, no additional memory is needed in Sub-

Flow for this purpose.

1SubFlow Project: https://github.com/learning1234embed/SubFlow
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We evaluate SubFlow for three standard DNN architectures, i.e., LeNet-5 (LeCun et al.,

1998), AlexNet (Krizhevsky et al., 2012), and KWS (Key-Word Spotting) (Sainath and Parada,

2015) on three popular datasets, i.e., MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al.,

2009), and GSC (Google Speech Commands) (Warden, 2018), respectively. Experiments are con-

ducted on various hardware platforms: CPU (x86 and ARM) and GPU (RTX 2080 Ti and Jetson

Nano (NVIDIA, 2019a)). The evaluation results show that both inference and training time of

DNNs change dynamically according to the size and configuration of the sub-networks while

achieving comparable performance to the full-sized network. For instance, the execution speed

of AlexNet (Krizhevsky et al., 2012) dynamically changes between 1x and 6.7x while only a 3%

inference accuracy drop is observed on average.

We also implement a mobile robot using an embedded GPU platform (Jetson Nano (NVIDIA,

2019a)) as an example real system that uses SubFlow where the latency requirement for obsta-

cle detection changes due to the traveling speed of the robot. In this real-life experiment, the

robot runs at various speeds and the execution of the DNN (Chakravarty et al., 2017) that detects

obstacles is adapted dynamically depending upon varying deadlines.

The main contributions of this chapter are:

•We introduce SubFlow, a real-time DNN execution strategy enabling flexible time-bound

inference and training that is completed within a dynamic time budget by constructing and exe-

cuting a sub-network of the DNN at run-time.

•We propose an online sub-network construction algorithm to determine the proper sub-

graph of a DNN with a minimum performance loss based on induced sub-graph (Diestel, 2006)

method whose execution time is matched to a dynamic time budget.

•We propose time-bound feed-forward and back-propagation of convolutional and fully-

connected layers of a DNN, where the total computation time is bounded by the size and configu-

ration of the sub-network.
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•We implement and open-source SubFlow1 by developing four custom operations of Ten-

sorFlow with full compatibility, which allows the DNN designers to transform their DNNs into

real-time dynamic DNNs easily.

•We develop and demonstrate a mobile robot as an example real system that uses SubFlow.

The robot executes a depth estimation DNN for obstacle detection with its time constraint that

dynamically changes based on the speed of the robot.

5.1 Overview

The goal of SubFlow is to enable execution of DNN inference and training tasks in such a

way that the task is completed under dynamically varying time constraints while retaining compa-

rable performance to executing the original full-size DNN. The flexible execution increases the

utility of a DNN by letting it meet a range of deadlines at run-time, which conventional DNNs

cannot. SubFlow also facilitates flexible scheduling of multitask learning where new tasks can

be accommodated by dynamically updating the deadline of existing ones. The schedulability of

a system running multiple DNNs can be improved by taking into account the flexible execution

time of DNNs in the scheduling decision at run-time, which increases the total system utilization.

An unbounded trade off of inference accuracy for real-time execution of a DNN is not de-

sirable in most systems. Hence, to limit the maximum loss of accuracy above a certain level,

SubFlow limits the execution of sub-networks whose expected accuracy is lower than the desired

level. SubFlow enables this by imposing a limit on the minimum network utilization parameter

(defined in Section 5.2) that essentially defines the size of the sub-network. The minimum net-

work utilization parameter is empirically determined and is set by the developer or the system

admin.

5.1.1 SubFlow Operations

SubFlow has three major operations, which are shown in Figure 5.2. A brief description of

each operation follows.
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Figure 5.2: SubFlow operations: SubFlow consists of three steps: ranking neurons, dynamic
construction, and time-bound execution of a sub-network. Ranking of neurons is done at compile-
time. At run-time, inference or training jobs with different time budgets are executed by forming
and executing dynamic sub-networks.

1) Ranking Neurons. Given a trained DNN on which we want to apply SubFlow, the utility/con-

tribution of each neuron to the performance (inference accuracy) of the DNN is computed. This

is calculated only once at compile-time. The details of this step are described in Section 5.3.

2) Dynamic Construction of Sub-Network. At run-time, a sub-network of the DNN is dynami-

cally constructed for each job of a DNN task according to the given time budget. For example, an

image classification task releases a job (say, every 500ms) where the job is to classify an image

taken with the camera. For every job, an induced sub-graph (Diestel, 2006) with a different sub-

set of neurons (vertices) is constructed based on their importance calculated at compile-time. The

construction of a sub-network is described in Section 5.3.

3) Time-Bound Execution of Sub-Network. Each sub-network corresponding to a job is exe-

cuted and completed within the given time budget. The execution time of a job is bounded by the

size and configuration of sub-networks. To enable the time-bound execution of the sub-network,

we propose time-bound feed-forward and back-propagation (Rumelhart et al., 1985) algorithms,

which are described in Section 5.4.
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5.1.2 An Example Application

As an application of SubFlow, we describe an autonomous mobile robot which is one of many

application-specific systems where SubFlow is applicable. We identify two real-time inference

tasks of the robot (i.e., obstacle detection and sensor-based control) that have dynamic timing

constraints. In section 5.7, as a proof of concept system, we implement and evaluate the obstacle

detection task on an embedded GPU-enabled autonomous mobile robot.

Obstacle Detection. In most autonomous cars and robots of today, data captured by cameras and

other on-board sensors are processed by convolutional neural networks (CNNs) (Li et al., 2019;

Pan et al., 2018; Gao et al., 2018; Al-Qizwini et al., 2017; Drews et al., 2017) to detect obstacles

and to take timely measures to avoid collisions. For example, Tesla’s autopilot (Ingle and Phute,

2016) constructs depth maps using cameras to create 3D point maps of their surroundings, mea-

suring objects’ distance (Wang et al., 2019; Chakravarty et al., 2017; Chen et al., 2016b; Mancini

et al., 2016; Eigen et al., 2014). The real-time requirement of obstacle detection task in these

systems becomes tighter when the vehicle is moving at a relatively higher speed – requiring the

CNN to complete its processing faster. In contrast, when the vehicle is moving at a lower speed,

the timing requirements are relaxed, allowing more time for the CNN to complete execution.

Sensor-based Control. Real-time requirements for sensor-based control systems of a mobile

robot may change dynamically at run-time (Stewart and Khosla, 1991). For example, tactile

sensors on a mobile robot measure the force (and torque) exerted on its body (Kappassov et al.,

2015; Badreddin, 1992), which helps collision avoidance (Badreddin, 1992). Depending on

whether the robot is likely to be in contact with an object, it can adapt its sampling frequency

of the sensors and thus scale its computation accordingly. Such dynamics not only changes the

timing requirements of the tactile sensing and collision inference task but also affects the timing

requirements of other inference tasks that are concurrently running in the system.
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5.1.3 Programmability

SubFlow provides a set of DNN operations fully compatible with the existing TensorFlow

operations, which allows a programmer to easily design and execute a DNN with SubFlow. List-

ing 5.1 and 5.2 show an example code of TensorFlow and SubFlow written for a convolutional

layer, respectively. The implementation of SubFlow can be found in our GitHub1.

Listing 5.1: TensorFlow programming example.

1 # DNN designing (a convolution layer)

2 output = tensorflow.nn.conv2d( input , filters , ...)

3 # DNN execution

4 sess . run (..., feed dict ={...})

Listing 5.2: SubFlow programming example.

1 # DNN designing (a convolution layer)

2 output = subflow.conv2d( input , filters , ..., activation)

3 # DNN execution

4 activation vector = get activation ( network utilization )

5 sess . run (..., feed dict ={..., activation: activaiton vector})

5.2 Background and Terminologies

SubFlow regards an inference or training task of a DNN as a real-time task τ with period T ,

execution time C, release time r, and relative and absolute deadline D and d, which is scheduled

along with other tasks in the system. A DNN task, τ releases a sequence of jobs, J corresponding

to the execution of a single iteration of inference or training that needs to be completed within the

deadline, D as shown in Figure 5.3a.
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Dynamic Execution Time Budget. We define execution time budget for the i-th job Ji as Bi =

di − si, where di is the absolute deadline and si is the start time of Ji. Since Bi for different Ji may

be different, we call it a dynamic execution time budget. It is equivalent to the maximum allowed

execution time for Ji to meet the deadline. Obviously, Ji meets its deadline if Bi ≥ Ci, where Ci

is the execution time of Ji. On the other hand, if Bi < Ci, Ji cannot meet the deadline. The latter

case, i.e., Bi = di − si < Ci happens in two situations: 1) di has decreased due to the system or

application induced run-time variations in timing requirements, and 2) si has increased due to a

scheduling failure or unavailable resources, causing Ji to be executed too late to complete within

the deadline. Figure 5.3b illustrates an example of these two cases.

0  1  2  3  4  5  6  7  8

Job release (𝑟𝑟𝑖𝑖)

Job deadline (𝑑𝑑𝑖𝑖) Job completion

0  1  2  3  4  5  6  7  80  1  2  3  4  5  6  7  8

𝑟𝑟𝑖𝑖 𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖

𝐵𝐵𝑖𝑖

𝐶𝐶𝑖𝑖

Job start (𝑠𝑠𝑖𝑖)

0  1  2  3  4  5  6  7  80  1  2  3  4  5  6  7  8

1) Deadline miss (𝑑𝑑𝑖𝑖 decrease, 𝐶𝐶𝑖𝑖 > 𝐵𝐵𝑖𝑖) 2) Deadline miss (𝑠𝑠𝑖𝑖 increase, 𝐶𝐶𝑖𝑖 > 𝐵𝐵𝑖𝑖)

1) Deadline met (𝑑𝑑𝑖𝑖 decrease, 𝐶𝐶𝑖𝑖 = 𝐵𝐵𝑖𝑖) 2) Deadline met (𝑠𝑠𝑖𝑖 increase, 𝐶𝐶𝑖𝑖 = 𝐵𝐵𝑖𝑖)

𝐶𝐶𝑖𝑖 𝐶𝐶𝑖𝑖

𝐶𝐶𝑖𝑖 𝐶𝐶𝑖𝑖

𝐵𝐵𝑖𝑖

𝐵𝐵𝑖𝑖

𝐵𝐵𝑖𝑖

𝐵𝐵𝑖𝑖

Execution time-budget (𝐵𝐵𝑖𝑖 = 𝑑𝑑𝑖𝑖 − 𝑠𝑠𝑖𝑖)
Execution time (𝐶𝐶𝑖𝑖)

𝑟𝑟𝑖𝑖 𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖 𝑟𝑟𝑖𝑖 𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖

𝑟𝑟𝑖𝑖 𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖 𝑟𝑟𝑖𝑖 𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖

(a) An example job execution of a task with T = 6 and C = 4.
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(b) Two cases of dynamic execution time budget, which causes dead-
line miss unless execution time, Ci is adapted.
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(c) The job meets the deadline by adjusting Ci to Bi for both cases.

Figure 5.3: An example of a dynamic execution time budget: Given a dynamic execution time
budget, SubFlow allows the job to meet the deadline by adjusting its execution time according to
the budget.

Sub-Network and Execution Time. SubFlow enables a DNN task, τ to complete Ji within Bi

even if Bi < Ci by reducing the execution time to the given time budget, i.e., Ci → Bi. For each
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Ji, SubFlow constructs and executes a sub-network, τ si that is a subset of the full-size network, τ ,

which is able to complete its execution within Bi. Figure 5.3c shows an example in which the job

meets the deadline by adjusting Ci to Bi.

Network Utilization. We quantify the size of a sub-network using network utilization, ui ∈ (0, 1]

which is the relative size ratio of a sub-network constructed for the job, Ji to the full-size network

as defined in Equation 5.1. Note that it is different from the task utilization used in scheduling,

i.e., Ui = Ci/Ti.

Properties of DNNs. The construction of sub-networks having different execution times is en-

abled by three unique properties of DNNs: 1) many different configurations and sizes of DNN

graphs often result in a similar performance (Hecht-Nielsen, 1992; Sussmann, 1992), 2) the over-

sized architecture of modern DNNs, i.e., the massive number of neurons and parameters allows

incorporating multiple sub-networks into a single larger network (Zhu et al., 2017), and 3) most

DNNs repeat the same computation for each layer, i.e., convolution, matrix multiplication, etc.,

which makes the estimation of computation time for a sub-network feasible (Justus et al., 2018).

Induced Sub-Graph. SubFlow constructs a sub-network based on the induced sub-graph (Dies-

tel, 2006) of a DNN graph. Given a graph G = (V,E) where S ⊂ V be any subset of vertices of

G, the induced sub-graph G[S] is defined as the graph whose vertex set is S and whose edge set

consists of all of the edges in E that have both endpoints in S.

In SubFlow, the neurons at each layer are considered as vertices, and connections between

two neurons with a weight parameter are considered as edges. By activating the right subset of

neurons and using only the edges connected to them as an induced sub-graph, a sub-network with

the desired size and configuration is constructed. We use induced sub-graph since it is based on

the selection of vertices (neurons), not edges (weight parameters). For most DNNs, the number

of neurons is several orders of magnitude smaller than weight parameters, which enables efficient

construction of sub-networks.
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5.3 Dynamic Construction of Sub-Network

The first two steps of SubFlow are the ranking of neurons and the dynamic construction of

a sub-network. This section first describes the construction step starting from the definition of

sub-network and then discusses how neurons are ranked for the construction of a sub-network.

5.3.1 Definition of Sub-Network

Basic DNN Operation. Before defining the sub-network, we describe the basic operation of

DNNs. Given a training or test dataset for a DNN, τ having n instances, we denote the entire

dataset as {(xj,yj)}nj=1. For the j-th instance, the input and output neurons of layer l is denoted

as ol−1j ∈ Rml−1 and olj ∈ Rml , respectively. The output of layer l, olj is obtained by performing

olj = σ
(
ylj
)
, where ylj = ol−1

>

j Wl + bl with Wl ∈ Rml−1×ml being the weight parameter

and bl ∈ Rml being the bias for layer l. For nonlinearity, an nonlinear function σ (·) such as

sigmoid function (Han and Moraga, 1995) is applied to ylj . Following the recent trend in state-of-

the-art DNNs such as (Szegedy et al., 2015; Simonyan and Zisserman, 2014; Krizhevsky et al.,

2012), we use the rectified linear unit (ReLU) (Glorot et al., 2011) as our σ (·). Although this is

a formulation for a fully-connected layer, it also applies to convolution layers by converting a

kernel operation with input into a matrix product as in (Yao et al., 2017b).

Sub-Output Neuron. To construct a sub-network, τ si for the job Ji from a DNN task, τ , we

first compose sub-output neuron, õlj ∈ Rml for each layer l, which is a sparse vector of the

same length with the output neuron, olj ∈ Rml at the l-th layer of τ . It consists of a subset of olj

and zeros. Having õlj for all layers, we create a sub-network by connecting only the non-zero

elements of õlj (activated vertices) based on the induced sub-graph construction (Diestel, 2006).

Depending on õlj , only a subset of weight parameter elements (edges) in Wl connected between

õl−1j and õlj is activated for the sub-network. The elements of õlj are obtained by multiplying olj

with a binary vector, ali ∈ Rml called activation vector that determines whether the corresponding

neuron element of olj is activated or not in õlj as a vertex of induced sub-graph. In summary, the
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sub-output neuron of layer l, õlj for the j-th input instance is given by:

ali ∈ {0, 1}m
l

s.t.
∥∥ali∥∥1 =

⌊
uli ·ml

⌋
or uli =

∥∥ali∥∥1
ml

ỹlj = õl−1
>

j Wl + bl
>

õlj = ali ◦ σ
(
ỹlj
)

= σ
(
ali ◦ ỹlj

)
since σ (·) is ReLU

(5.1)

where ali is the activation vector, ml is the length of õlj and olj , ‖·‖1 is `1-norm, uli is the network

utilization, Wl is the weight parameter, bl is the bias, σ (·) is the nonlinear function (ReLU), and

◦ is Hadamard (element-wise) product (Davis, 1962).

Definition of Sub-Network. We define sub-network, τ si for the job Ji as an induced sub-graph

of a DNN, τ with total L layers, where its vertices are composed of the sub-output neurons of all

layers, {õlj|1 ≤ l ≤ L} defined in Equation 5.1.

5.3.2 Construction of Sub-Network

Construction Objectives. Given a dynamic execution time budget Bi for the job Ji, a sub-

network having total layers L, τ si is constructed to achieve two objectives: 1) finding the max-

imum network utilization for each layer, ui = [u1i , u
2
i , ..., u

L
i ] in such a way that their total execu-

tion time is equivalent to or less than Bi, and 2) finding the activation vector, ali for each layer l to

determine sub-output neuron, õlj in which the number of elements of value one in ali, i.e.,
∥∥ali∥∥1 is

equivalent to
⌊
uli ·ml

⌋
as defined in Equation 5.1 in such a way that the error between õlj and olj

is minimized.

Finding Network Utilization. To find the network utilization ui, we define execution time C(ui)

of a sub-network, τ si as:

C(ui) ∝ κ

L∑
l=1

ulif
l
(
olj
)
∝ κNi

L∑
l=1

f l
(
olj
)

if uli = Ni (5.2)

74



where κ is a constant, uli ∈ (0, 1] is the network utilization of layer l, and f l
(
olj
)

is the execu-

tion time function of layer l, i.e., the time required to compute olj . We apply the same network

utilization, Ni to all layers, i.e., uli = Ni since finding a set of optimal uli is NP-hard, i.e., the

search space for all combinations of uli is exponential. Also, by activating the same proportion

of neurons at each layer, the resulting sub-network is not to be cut or broken. Hence, ui can be

obtained by finding the maximum Ni satisfying C(Ni) ≤ Bi in Equation 5.2.

Layer-Wise Error. To obtain sub-output neuron, õlj of layer l that minimizes the error from olj ,

we define layer-wise error between õlj and olj for both the j-th training instance and the total n

of training instances, similar to (Dong et al., 2017a). They are denoted as El
j(õ

l
j) and El, respec-

tively, which are defined as:

ôlj = õlj − ali ◦ olj

El
j(õ

l
j) = ôl

>

j ôlj =
∥∥õlj − ali ◦ olj

∥∥2
2

El =
1

n

n∑
j=1

El
j(õ

l
j) =

1

n

n∑
j=1

∥∥õlj − ali ◦ olj
∥∥2
2

(5.3)

where ◦ is Hadamard (element-wise) product, ‖·‖2 is `2-norm, and ôlj = õlj − al ◦ olj is the output

error vector of layer l.

Error Bound. From Equation 5.1 and ‖σ(x) − σ(y)‖2 ≤ ‖x − y‖2, the property of the ReLU,

El
j(õ

l
j) is bounded by:

El
j(õ

l
j) =

∥∥õlj − al ◦ olj
∥∥2
2

=
∥∥σ (al ◦ ỹlj

)
− σ

(
al ◦ ylj

)∥∥2
2

≤
∥∥al ◦ ỹlj − al ◦ ylj

∥∥2
2

=
∥∥∥al ◦ ((õl−1j − al−1 ◦ ol−1j + al−1 ◦ ol−1j − ol−1j

)>
Wl
)∥∥∥2

2

≤
∥∥∥al ◦ (ôl−1

>

j Wl
)∥∥∥2

2
+
∥∥∥al ◦ (((1− al−1

)
◦ ol−1j

)>
Wl
)∥∥∥2

2

(5.4)
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where ‖·‖2 is `2-norm, and 1 is a vector whose all elements are equal to 1. As shown in the last

inequality, the upper bound of El
j(õ

l
j) is determined by two results of the previous layer l − 1, i.e.,

1) the error vector, ôl−1j in the first term, and 2) the not activated elements of the output neuron,(
1− al−1

)
◦ ol−1j in the second term. Hence, the bound of El

j(õ
l
j) of layer l can be obtained by

recursively computing them for the previous layers, i.e., from the first to the (l − 1)-th layer.

Minimizing Error. Since sub-output neuron of the last layer L, õLj determines the performance

of a sub-network, we minimize EL. From Equation 5.1, 5.2 and 5.3, minimizing EL given time

budget, Bi is reduced to finding the activation vector, aLi .

argmin
aL
i ∈{0,1}m

L

EL s.t. C(Ni) ≤ Bi and
∥∥aLi ∥∥1 =

⌊
Ni ·mL

⌋
(5.5)

Since EL is obtained from the errors of previous layers as shown in Equation 5.4, it is also mini-

mized by finding {ali|1 ≤ l ≤ L} that minimizes the error of each layer l, i.e., El
j(õ

l
j), which is

achieved by minimizing their summation, i.e.,
∑L

l=1E
l
j(õ

l
j). Hence, from Equation 5.1 and 5.3,

the problem of constructing a sub-network given Bi is reformulated as:

argmin
al
i∈{0,1}m

l

1

n

n∑
j=1

L∑
l=1

El
j(õ

l
j)

= argmin
al
i∈{0,1}m

l

1

n

n∑
j=1

L∑
l=1

∥∥ali ◦ σ (ỹlj)− ali ◦ σ
(
ylj
)∥∥2

2

s.t. C(Ni) ≤ Bi and
∥∥ali∥∥1 =

⌊
Ni ·ml

⌋
(5.6)

Hence, a sub-network for the job Ji which is completed within Bi with minimum error is

dynamically constructed by finding Ni and {ali|1 ≤ l ≤ L} in Equation 5.6.

5.3.3 Neuron Ranking for Sub-Network Construction

Importance-based Ranking. While the network utilization, Ni is easily obtained by finding the

maximum Ni satisfying C(Ni) ≤ Bi in Equation 5.2, the activation vector, ali that selects the ele-
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ments of sub-output neuron, õlj from olj is required to minimize the error El
j(õ

l
j) in Equation 5.3.

We determine ali based on the importance of each neuron of olj , which represents the increased

error when it is removed. Then, El
j(õ

l
j) is minimized by composing the binary elements of ali

such that õlj consists of
⌊
Ni ·ml

⌋
number of neurons in olj having largest importance and zero for

all the other elements.

To measure the importance, we compute the second-order derivatives of the error El
j(o

l
j) w.r.t.

the output neuron, olj for each layer using Optimal Brain Surgeon algorithm (Hassibi and Stork,

1993). We use it since the heuristic methods such as magnitude-based method (Li et al., 2016; Hu

et al., 2016; Han and Zhang, 2015) may eliminate wrong neurons (LeCun et al., 1990; Hassibi

and Stork, 1993), resulting in large error and poor performance (Sharma et al., 2017).

Error Approximation. For a DNN trained to a local minimum, the error, El
j(õ

l
j) can be approxi-

mated with Taylor series as in (Hassibi and Stork, 1993) and (Arfken and Weber, 1999) w.r.t. the

output neuron, olj as follows:

δEl
j = El

j(õ
l
j)− El

j(o
l
j)

=

(
∂El

j

∂olj

)>
δolj +

1

2
δol

>

j Hlδolj +O(
∥∥δolj∥∥3)

≈ 1

2
δol

>

j Hlδolj

(5.7)

where δ is a perturbation of corresponding variable, Hl ≡ ∂2El
j/∂(olj)

2 is the Hessian ma-

trix (Upton and Cook, 2014), and O(‖δolj‖3) is the third and all higher-order terms. With the er-

ror function defined in Equation 5.3, the first and third terms are eliminated (Dong et al., 2017a).

To minimize the increase in error, δEl
j , we set the q-th element of olj , denoted as oljq, to zero,

expressed as:

δoljq + oljq = 0 or more generally el
>

q δo
l
j + oljq = 0 (5.8)
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where elq is the unit vector whose q-th element is 1 and others are all 0. With oljq being removed

from olj as shown in Equation 5.8, we minimize Equation 5.7 as follows:

min
q

1

2
δol

>

j Hlδolj s.t. el
>

q δo
l
j + oljq = 0 (5.9)

Computing Importance. To compute the importance of the q-th element of olj at layer l, oljq, we

solve Equation 5.9 with a Lagrangian function, Ll, which is given by:

Ll =
1

2
δol

>

j Hlδolj + λ(el
>
δolj + oljq) (5.10)

where λ is a Lagrange multiplier. By taking derivatives, employing Equation 5.8, and using ma-

trix inversion, the optimal increase in error and output change of oljq are obtained by:

slq =
1

2

(oljq)
2

[H−1]lqq
and δolj = −

oljq
[H−1]lqq

[H−1]lelq (5.11)

We call slq as the importance of the q-th neuron element of layer l, oljq– the amount of in-

crease in error when it is removed from a DNN. Based on slq, the activation vector, ali is deter-

mined to activate
⌊
Ni ·ml

⌋
number of neuron elements in olj having the largest importance by

setting the corresponding elements of ali to 1 and others to 0, which provides the sub-output

neuron, õlj for construction of a sub-network with minimum error. slq is computed only once at

compile-time.

5.4 Time-Bound Execution of Sub-Network

The last step of SubFlow is to execute a newly-constructed sub-network within the execution

time budget. This section describes the two run-time execution operations of SubFlow, i.e., time-
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bound feed-forward and back-propagation, which enables the time-bound completion of a sub-

network.

5.4.1 Time-bound Feed-Forward

Time-Bound Feed-Forward. The inference of a DNN is achieved by executing the DNN layer

by layer, which is called the feed-forward. Given a sub-network, an inference job, Ji completes

the feed-forward within the time budget, Bi by performing computation in Equation 5.1 only for

the non-zero elements of a sub-output neuron, õlj . The amount of computation, as well as the ex-

ecution time, are expected to be proportional to the number of non-zero elements of õlj , which is

determined by the activation vector, ali. Computation related to zero neuron elements is skipped

since multiplication by zero results in a zero, which should require no work. We name it as time-

bound feed-forward since the feed-forwarding time is bounded by the size and configuration of a

sub-network depending on a set of ali.

Existing Feed-Forward. Unfortunately, the current feed-forward algorithms, such as the low-

ering method (Sze et al., 2017) do not support the sparse-neuron-aware feed-forwarding. They

always perform the same amount of computation based on the fixed sequence of calculation re-

gardless of the number of non-zero neuron elements. To enable time-bound feed-forward, we

propose sub-convolution and sub-multiplication for a convolutional and fully-connected layer,

respectively in a similar way to the direct sparse convolution (Park et al., 2016a).

Sub-Convolution. For a convolutional layer l, layer output, Ol ∈ Rn×c′×h′×w′ is computed by

taking input, Ol−1 ∈ Rn×c×h×w from the previous layer l − 1, where n is the size of the input

batch; c′, h′, and w′ denote the channel, height, and width of the output. For input Ol−1, c, h, and

w denote its channel, height, and width. For convolution, convolutional filter (weight parameter)

denoted as Wl ∈ Rc′×c×y×x is applied to input, Ol−1, where c′, c, y, and x denote the size of the

output channel, input channel, height, and width of filter.
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Given sub-input neuron, Õl−1 and sub-output neuron, Õl composed by al−1i and ali, respec-

tively, the computational complexity of convolution operation at layer l with filter Wl, denoted as

f lc(·), is given by:

f lc(a
l−1
i , ali,W

l) = O(
∣∣ali∣∣ ∣∣Wl

∣∣− ∥∥1− al−1i

∥∥
1
−
∥∥1− ali

∥∥
1

∣∣Wl
∣∣) (5.12)

where ‖·‖1 denotes `1-norm, |·| denotes the number of elements, and 1 is a vector whose all el-

ements are 1. The first term indicates the total amount of computation at the l-th layer of the

full-size network, while the second and third term indicates the amount of computation reduced

by the sub-input and sub-output neuron, respectively. The activation vector of the previous layer,

al−1i also determines the complexity since an output of one layer is the input of the next layer.

We define sub-convolution as the convolution of a sub-network whose computational com-

plexity is determined by al−1i and ali as shown in Equation 5.12. Equation 5.13 is an example of

sub-convolution with Õl−1 ∈ R1×1×3×3, Õl ∈ R1×1×2×2, and Wl ∈ R1×1×2×2, where only two

and five elements are activated as sub-output and sub-input neuron.

��ol11 ol12
ol21�

�ol22

 =


Z
ZZo
l−1
11 ol−112 ol−113

ol−121
Z
ZZo
l−1
22
Z
ZZo
l−1
23

ol−131
Z
ZZo
l−1
32 ol−133

 ∗
wl11 wl12
wl21 w

l
22

 (5.13)

Here, ∗ denotes the convolution, ol−1ij 6= 0 and olij 6= 0 are the non-zero neuron elements, whereas

Z
ZZ

ol−1ij = 0 and
�
�olij = 0 are the zero neuron elements. With vectorization, Equation 5.13 can be

rewritten as matrix multiplication, which is given by:

[
�
�ol11 o

l
12 o

l
21�
�ol22

]
=

[
wl11 w

l
12 w

l
21 w

l
22

]

�
��Z
ZZo
l−1
11 ol−112 ol−121 �

��Z
ZZo
l−1
22

�
��ol−112 ol−113

Z
ZZo
l−1
22 �

��Z
ZZo
l−1
23

�
��ol−121
Z
ZZo
l−1
22 ol−131 �

��Z
ZZo
l−1
32

�
��Z
ZZo
l−1
22
Z
ZZo
l−1
23
Z
ZZo
l−1
32 �

��ol−133


(5.14)
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Figure 5.4 illustrates the sub-convolution of Equation 5.14, where only four out of sixteen

multiplications are performed. It efficiently performs only the necessary computation by check-

𝑜𝑜11𝑙𝑙−1 𝑜𝑜12𝑙𝑙−1 𝑜𝑜13𝑙𝑙−1

𝑜𝑜21𝑙𝑙−1 𝑜𝑜22𝑙𝑙−1 𝑜𝑜23𝑙𝑙−1

𝑜𝑜31𝑙𝑙−1 𝑜𝑜32𝑙𝑙−1 𝑜𝑜33𝑙𝑙−1

𝑤𝑤11𝑙𝑙 𝑤𝑤12𝑙𝑙

𝑤𝑤21𝑙𝑙 𝑤𝑤22𝑙𝑙
*

𝑜𝑜11𝑙𝑙 𝑜𝑜12𝑙𝑙

𝑜𝑜21𝑙𝑙 𝑜𝑜22𝑙𝑙
=

𝑜𝑜11𝑙𝑙−1

𝑜𝑜12𝑙𝑙−1

𝑜𝑜13𝑙𝑙−1

𝑜𝑜21𝑙𝑙−1

𝑜𝑜31𝑙𝑙−1

𝑜𝑜22𝑙𝑙−1

𝑜𝑜32𝑙𝑙−1

𝑜𝑜23𝑙𝑙−1

𝑜𝑜33𝑙𝑙−1

𝑜𝑜11𝑙𝑙 𝑜𝑜12𝑙𝑙 𝑜𝑜21𝑙𝑙 𝑜𝑜22𝑙𝑙

𝑤𝑤11𝑙𝑙

𝑤𝑤11𝑙𝑙𝑤𝑤12𝑙𝑙

𝑤𝑤12𝑙𝑙

𝑤𝑤21𝑙𝑙 𝑤𝑤11𝑙𝑙

𝑤𝑤21𝑙𝑙𝑤𝑤22𝑙𝑙 𝑤𝑤11𝑙𝑙𝑤𝑤12𝑙𝑙

𝑤𝑤22𝑙𝑙 𝑤𝑤12𝑙𝑙

𝑤𝑤21𝑙𝑙

𝑤𝑤21𝑙𝑙𝑤𝑤22𝑙𝑙

𝑤𝑤22𝑙𝑙

Multiplication

Addition

Not computed (since 𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙−1 = 0) 

0

1

1

1

1

0

0

0

1

𝒂𝒂𝑖𝑖𝑙𝑙−1 ○ 𝒐𝒐𝑙𝑙−1

0 1 1 0

𝒂𝒂𝑖𝑖𝑙𝑙 ○ 𝒐𝒐𝑙𝑙

Activated (𝑎𝑎𝑖𝑖𝑞𝑞𝑙𝑙−1 ≠ 0 or 𝑎𝑎𝑖𝑖𝑞𝑞𝑙𝑙 ≠ 0)

Deactivated (𝑎𝑎𝑖𝑖𝑞𝑞𝑙𝑙−1 = 0 or 𝑎𝑎𝑖𝑖𝑞𝑞𝑙𝑙 = 0)

Not computed (since 𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙 = 0)  

𝑾𝑾𝑙𝑙

𝒂𝒂𝑖𝑖𝑙𝑙−1○ 𝒐𝒐
𝑙𝑙−1 𝑾𝑾𝑙𝑙𝒂𝒂𝑖𝑖𝑙𝑙 ○ 𝒐𝒐

𝑙𝑙

Sub-output
neuron

Sub-Input
neuron

Convolution
Filter

Figure 5.4: An example of sub-convolution: Given a sub-input, sub-output neuron, and convolu-
tion filter, the sub-convolution is performed by walking through the sub-input (vertical direction)
and sub-output (horizontal direction) only once to see if the elements are zero or not. By skipping
computation related to zero-elements, the total computation time becomes proportional to the
number of non-zeros. The final output requires only four out of sixteen multiplications, i.e.,
õl−112 · wl11, õl−113 · wl12, õl−121 · wl11, and õl−131 · wl21.

ing the sub-input and sub-output neurons only once to see whether they are zero or not with

linear complexity, i.e., O(|Õl−1|+ |Õl|), while a naive algorithm takes O(|Õl||Wl|). For example,

a sub-convolution between 100 × 100 input and 10 × 10 filter, which results in 91 × 91 output,

requires only 18, 281 zero-element checks. On the contrary, a naive algorithm requires 828, 100

zero-check (i.e., 45× less efficient).

Sub-Multiplication. For a fully-connected layer l, layer output Ol ∈ Rn×ml is computed by

taking the input, Ol−1 ∈ Rn×ml−1 from the previous layer l − 1, where n is the size of the input

batch, ml−1 and ml are the input and the output size, respectively. The output, Ol is obtained by

multiplying a weight parameter Wl ∈ Rml−1×ml to the input, Ol−1.
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Given sub-input Õl−1 and sub-output Õl composed by al−1i and ali, respectively, the computa-

tional complexity of matrix multiplication with weight parameter Wl, f lm(·) is given by:

f lm(al−1i , ali,W
l) = O

(∥∥al−1i

∥∥
1

∣∣ali∣∣+
∥∥ali∥∥1 ∣∣Wl

∣∣− ∥∥ali∥∥1 ∥∥al−1i

∥∥
1

)
(5.15)

where ‖·‖1 is `1-norm, and |·| is the number of elements. Equation 5.15 is proportional to the

number of non-zero elements in the weight matrix used for multiplication. The first and second

term indicate the number of row-wise and column-wise elements in the matrix, respectively. The

last term cancels out the overlapped elements between the first and second term.

We define sub-multiplication as the matrix multiplication of a sub-network whose computa-

tional complexity is determined by al−1i and ali as shown in Equation 5.15. Equation 5.16 is an

example of sub-multiplication with 1× 3 sub-input, 1× 3 sub-output neuron, and 3× 3 weight.

[
�
�ol11 o

l
12 o

l
13

]
=

[
ol−111

Z
ZZo
l−1
12 ol−113

]
wl11 w

l
12 w

l
13

wl21 w
l
22 w

l
23

wl31 w
l
32 w

l
33

 (5.16)

With ol−112 and ol11 being zero in sub-input and sub-output neuron, respectively, (1× 3) by (3× 3)

matrix multiplication reduces to (1× 2) by (2× 2), as follows:

[
ol12 o

l
13

]
=

[
ol−111 ol−113

]w12 w14

w32 w34

 (5.17)

5.4.2 Time-Bound Back-Propagation

Time-Bound Back-Propagation. The training of a DNN is achieved by the compute-intensive

process called back-propagation (Werbos et al., 1990). The goal of back-propagation is to update

weight parameter, Wl of each layer l by computing the gradient (Bachman, 2007) of a loss func-
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tion, denoted as L, w.r.t. Wl. The back-propagation is repeated with multiple iterations until the

loss function, L converges to a particular criterion.

Given sub-output, õlj composed by ali, the gradient of the loss, L w.r.t. Wl for the j-th train-

ing instance,∇L is:

∇L =
∂L

∂Wl
=
∂L

∂õlj
· Jl =

∂L

∂
(
ali ◦ σ

(
ỹlj
)) · Jl (5.18)

where Jl ≡ ∂
(
ali ◦ σ

(
ỹlj
) )
/∂Wl is the Jacobian matrix (Kaplan, 1984), and ỹlj is defined as the

same in Equation 5.1. By computing ∇L only for the non-zero elements of a sub-output neuron,

õlj , which is determined by the activation vector, ali, a back-propagation job, Ji is completed

within the execution time budget, Bi. We name it as time-bound back-propagation since the

gradient computation time is bounded by the size and configuration of a sub-network depending

on a set of ali.

Since the sparse-neuron-aware gradient is also not supported by the existing back-propagation (Wer-

bos et al., 1990), we propose sub-convolution-gradient and sub-multiplication-gradient for convo-

lutional and fully-connected layers, respectively.

Sub-Convolution-Gradient. Given sub-input neuron, Õl−1 and sub-output neuron, Õl of a con-

volutional layer composed by al−1i and ali, respectively, the complexity of computing convolution

gradient with filter Wl, glc(·) is given by:

glc(a
l−1
i , ali,W

l
i) = O

(∥∥ali∥∥1 ∣∣Wl
∣∣−max

(∥∥1− al−1i

∥∥
1
−
∥∥ali∥∥1 ∣∣Wl

∣∣ , 0)) (5.19)

where ‖·‖1 is `1-norm, and |·| is the number of elements. The first term depends on the number

of non-zero elements in sub-output, and the second term depends on the number of non-zero

elements in sub-input.

We define sub-convolution-gradient as the gradient of the convolution of a sub-network

whose computational complexity is determined by al−1i and ali as shown in Equation 5.19. Equa-

tion 5.20 is an example of a sub-convolution-gradient for Equation 5.13, which shows only four
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out of sixteen differentiations are performed for the computation of∇L.

∇L =

[
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(5.20)

Here, the matrix on the right-hand side is the Jacobian,@
@
∂o
∂w

= 0 and
�
�∂o
∂w

= 0 denote that the

computation related to ∂o
∂w

is skipped since the corresponding sub-input and sub-output neuron

element is zero, respectively. The zero elements of sub-output neuron eliminate the correspond-

ing rows of the Jacobian, e.g., the first and last rows of the Jacobian become unnecessary since

ol11 and ol22 are zeros as shown in Equation 5.13. The zero elements of sub-input neuron result in

scattered elimination of individual derivatives in the Jacobian, e.g., ∂ol12
∂wl

21
is not computed since

the corresponding sub-input neuron element, ol−122 is zero, i.e., ∂ol12
∂wl

21
= ol−122 = 0.

Sub-Multiplication-Gradient. Given sub-input neuron, Õl−1 and sub-output neuron, Õl of

a fully-connected layer composed by al−1i and ali, respectively, the complexity of computing

multiplication gradient with weight Wl, glm(·) is:

glm(al−1i , ali,W
l) = O

(∥∥al−1i

∥∥
1

∣∣ali∣∣+
∥∥ali∥∥1 ∣∣Wl

∣∣− ∥∥ali∥∥1 ∥∥al−1i

∥∥
1

)
(5.21)

where ‖·‖1 is `1-norm, and |·| is the number of elements.

We define sub-multiplication-gradient as the gradient of matrix multiplication of a sub-

network whose computation complexity is determined by al−1i and ali as shown in Equation 5.21,

which is equivalent to the sub-multiplication (Equation 5.15).
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5.5 Implementation

We implement SubFlow as an extended version of the TensorFlow library (Abadi et al., 2016),

which is fully compatible with the existing TensorFlow operations. The programmers can easily

apply SubFlow to their DNNs in the same way they design DNNs without SubFlow. SubFlow

is implemented to run on both CPU and GPU, which makes it adaptable to a wide range of plat-

forms. For CPU, it is implemented based on the Eigen library (Guennebaud et al., 2010) that

is optimized to perform matrix operations in CPU. For GPU, it is implemented with CUDA li-

brary (NVIDIA, 2019b; Cook, 2012) to support the parallel computation of sub-networks like the

other GPGPU operations.

In constructing and executing sub-networks, SubFlow does not generate and save multiple

versions of sub-networks a priori. Based on a single DNN designed by the programmer, SubFlow

is implemented to construct and execute sub-networks at run-time based on time-bound sparse

execution.

Figure 5.5 shows the SubFlow framework, along with the TensorFlow, which consists of a

sub-network library, Python client operations, and kernel implementations.

Figure 5.5: SubFlow Framework: The SubFlow framework consists of the sub-network library,
python client operations, and kernel implementations. It is fully compatible with TensorFlow and
provides all the necessary components of the TensoFlow hierarchy.

Sub-Network Library. It is a high-level module that computes the importance of output neurons

in the DNN for the construction of sub-networks. Since the computation of the Hessian matrix

in Equation 5.11 is intractable with DNNs of considerable size, an approximation of the Hessian

using sample covariance is computed (Hassibi and Stork, 1993) instead. It is also responsible for
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the online construction of sub-networks. Based on the importance of neurons and time budget

of the i-th job, Ji, it produces ali in Equation 5.1 for all layers at run-time, except the last layer

where all the final output neurons of the DNN should be selected.

Python Client Operations. Python client operations provide the programmer with a set of wrap-

per APIs that help design a DNN model using SubFlow, which is fully compatible with other

existing operations of TensorFlow. Each API represents and corresponds to its kernel implemen-

tation that is executed with higher efficiency when a sub-network runs.

Kernel Implementations. They are the lower-level implementation of four operations used in

SubFlow, i.e., sub-convolution, sub-multiplication, sub-convolution-gradient, and sub-multiplication-

gradient. These operations are responsible for executing a sub-network of the DNN designed

with Python client operations. Written in C and C++, they are optimized to hardware platforms

and able to perform the efficient time-bound execution of sub-network with minimum overhead.

5.6 Experiment

5.6.1 Experimental Setup

Hardware and Software. We conduct experiments on a system consisting of Intel Core i9-

9900K CPU, NVIDIA RTX 2080 Ti GPU with 11 GB of memory, and 32 GB of system memory

(RAM). We use TensorFlow 1.13.1 with Eigen 3.3.90 and CUDA 10.0 (CUDNN 7.4.2) for imple-

mentation.

Datasets and DNN Models. We use three standard machine learning datasets in our evaluation,

i.e., MNIST (LeCun et al., 1998) (hand-written digits), CIFAR-10 (Krizhevsky et al., 2009) (im-

age classification), and GSC (Google Speech Commands V2) (Warden, 2018). For each dataset,

the state-of-the-art DNN model that provides the best performance for the dataset is designed

with SubFlow, i.e., LeNet-5 (LeCun et al., 1998), AlexNet (Krizhevsky et al., 2012), and KWS
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(Key-Word Spotting) architecture (Sainath and Parada, 2015). Table 5.1 summarizes the DNN

architectures and datasets.

LeNet-5 (MNIST) AlexNet (CIFAR-10) KWS (GSC)
Layer 1 Input: 28×28×1 Input: 32×32×3 Input: 61×13×1
Layer 2 Conv1: 5×5×1×6 Conv1: 3×3×3×64 Conv1: 12×6×1×64
Layer 3 Conv2: 5×5×6×16 Conv2: 3×3×64×192 Conv2: 6×3×64×64
Layer 4 FC1: 400 Conv3: 3×3×192×384 FC1: 1024
Layer 5 FC2: 84 FC1: 4096 FC2: 512
Layer 6 FC3 (Output): 10 FC2: 2048 FC3 (Output): 35
Layer 7 FC3 (Output): 10

* KWS: Key-Word Spotting, Conv: Convolution layer, FC: Fully-connected layer

Table 5.1: The DNN models and datasets used in the evaluation.

Time Measurement. The execution time of a sub-network, including individual operations, is

measured by using TensorFlow’s Timeline tool (Google, 2018b) that traces and records the exe-

cution time of all the operations of a DNN in the unit of microseconds. We analyze and compare

the execution time of different sub-networks by analyzing their tracing log files saved in the

JSON (JavaScript Object Notation) format (Ecma International, 2017).

5.6.2 End-to-End Execution Time and Performance

We evaluate the end-to-end execution time and performance (i.e., inference accuracy) of

sub-networks of different sizes determined by the network utilization, N . The inference time is

measured on both CPU and GPU by calculating the average feed-forward time on the entire test

samples as one input batch. The training time is evaluated on GPU by measuring the execution

time of one training iteration for both feed-forward and back-propagation with a mini-batch size

of 96 samples. We use separate datasets for training and testing.

Figure 5.6 shows the end-to-end inference and training time of the three DNNs for differ-

ent network utilizations, i.e., from N = 0.1 to 1.0. All three DNNs show that their inference

time decreases as N decreases without significant loss of inference accuracy. For example, the

sub-network of AlexNet with N = 0.1 achieves 6.7x speedup with only 9% drop of inference

accuracy, i.e., from 76% to 67%. The inference accuracy of LeNet-5 stays almost the same, i.e., a
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Figure 5.6: The end-to-end execution time and inference accuracy over the network utilization
(N ): The inference time is measured on both GPU and CPU, and training time is measured on
GPU.

maximum 2% drop while providing 2x speedup when N = 0.1. The training time also decreases

as N decreases, e.g., the training time of KWS is reduced by 4.4x with a sub-network of N = 0.1.

However, their speedup is not linear to N since 1) all the neurons in the first and the last layers

are activated for all sub-networks in our implementation, and 2) run-time overhead occurs.
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5.6.3 Usefulness (Utility) of DNN

We next evaluate how SubFlow improves the usefulness of a DNN given dynamic deadlines

against the same original DNNs that run without SubFlow. We measure the usefulness of infer-

ence and training tasks based on the inference accuracy and the training ratio that indicates the

ratio of the DNN components trained within the deadline, respectively. Figure 5.7 shows the use-

fulness of the three DNNs, i.e., the inference accuracy (GPU and CPU) and training ratio (GPU)

over a range of dynamic deadlines. Unlike the non-SubFlow DNNs, SubFlow makes the best

use of the DNNs for a given deadline by flexibly utilizing them, and completing the inference or

training task in time. For example, SubFlow AlexNet achieves 74% average inference accuracy,

which is 2% lower than the original DNN (76%), for the deadlines ranging between 1800µ and

5700µs, while the non-SubFlow DNN achieves 0% accuracy for the same set of deadlines as

shown in Figure 5.7d. As the deadline gets closer to the execution time of the original DNN, the

accuracy of SubFlow AlexNet approaches 76% since the full network is executed. On the other

hand, the non-SubFlow DNN results in zero usefulness unless the deadline is equivalent to or

larger than the execution time. For deadlines smaller than that, its usefulness is zero since they

are not even executed, or the execution completed after the deadline.

5.6.4 Run-time Overhead

We measure two types of run-time overheads of SubFlow: 1) the sub-network construction

overhead, and 2) the sub-network execution overhead for one single input sample which is the

additional computation time required to run a DNN with SubFlow. These two overheads are ob-

tained 1) by measuring the time needed to generate the activation vector, ali in Equation 5.6 for all

layers, which is required to construct a sub-network, and 2) by measuring the execution overhead

time and the actual execution time separately during the feed-forward and back-propagation.

Figure 5.8a shows the sub-network construction overhead of the three DNNs for different net-

work utilizations, which stays the same (LeNet-5 and KWS) or increases slightly (AlexNet) with

increased network utilization. They do not tend to change significantly with different network
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Figure 5.7: The usefulness (inference accuracy and training ratio) over dynamic deadline: Sub-
Flow vs. non-SubFlow. (a)-(c): LeNet-5 (MNIST), (d)-(f): AlexNet (CIFAR-10), and (g)-(i):
KWS (GSC).

utilization settings since the same length of activation vector is generated for sub-network of any

size; the only difference between sub-networks is the composition of ones and zeros. Also, their

absolute time costs are low since an activation vector is efficiently generated from the rank of

neurons that is pre-computed at compile-time. Figure 5.8b, 5.8c, and 5.8d show the sub-network

execution overhead, which is higher than the construction overhead. For example, the inference

overhead of AlexNet on GPU, 709µs, which is 7% of the total inference time (8915µs), is al-

most twice higher than the construction overhead of the full-size sub-network (333µs, N = 1.0).
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Figure 5.8: The run-time overhead: (a): the construction overhead for all the three DNNs. (b), (c),
and (d): the actual execution time (gray) vs. execution overhead (red) of each DNN.

The ratio of execution overhead to the total execution time increases as the sub-network size

decreases, e.g., from 7% to 27% in AlexNet with network utilization settings 1.0 and 0.1, re-

spectively. The execution overhead ratio increases for smaller sub-networks since the overhead

remains similar for all sizes of sub-network while the actual computation time decreases with the

size. It shows that the execution overhead is critical to small sub-networks and should be further

decreased so that they can be efficiently executed with tighter time constraints.

5.6.5 Comparison with the State-of-the-Art

We compare SubFlow with two state-of-the-art DNN execution algorithms: 1) BranchyNet (Teer-

apittayanon et al., 2016) that makes an early exit of the DNN for fast inference and 2) AdapDeep (Liu

et al., 2018b) that accelerates a DNN with a combination of compression techniques. Table 5.2
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provides their inference and training speeds on CPU and/or GPU, and the inference accuracy

of the two DNNs, i.e., LeNet-5 (MNIST) and AlexNet (CIFAR-10). We observe that SubFlow

achieves comparable speedup and inference accuracy to the other two. Also, it achieves flexi-

ble execution for both inference and training, unlike the other two methods that lack such flexi-

bility (AdaDeep) and training speedup (BranchyNet). For example, SubFlow AlexNet on GPU

achieves dynamic speedup for both inference (1.0x–6.7x) and training (1.0x–3.1x), while BranchyNet

achieves 1.0x–2.4x speedup only for inference without providing dynamic training speedup.

AdaDeep achieves a fixed speedup for inference (2.3x on CPU), but does not achieve training

speedup at all.

LeNet-5 Inference Speed Training Speed Inference
(MNIST) (CPU / GPU) (GPU) Accuracy
SubFlow 1.0x–1.3x / 1.0x–1.8x 1.0x–3.2x 0.97–0.99

BranchyNet (Teerapittayanon et al., 2016) 1.0x–5.4x / 1.0–4.7x N/A 0.98–0.99
AdaDeep (Liu et al., 2018b) 1.8x / N/A N/A 0.97

AlextNet Inference Speed Training Speed Inference
(CIFAR-10) (CPU / GPU) (GPU) Accuracy

SubFlow 1.0x–2.4x / 1.0x–6.7x 1.0x–3.1x 0.67–0.76
BranchyNet (Teerapittayanon et al., 2016) 1.0–1.5x / 1.0–2.4x N/A 0.75–0.79

AdaDeep (Liu et al., 2018b) 2.3x / N/A N/A 0.72

* For SubFlow, the network utilization is set as N = [0.1, 1.0].

Table 5.2: Comparison between SubFlow, BranchNet, and AdaDeep.

5.7 Application

We implement an autonomous mobile robot as an example application of SubFlow, which

detects obstacles by generating depth maps from a camera image in real-time (Chakravarty et al.,

2017; Chen et al., 2016b; Mancini et al., 2016; Eigen et al., 2014). While driving, a CNN (con-

volutional neural network) transforms an RGB image into a depth map where the required la-

tency of transformation changes based on the traveling speed of the robot. The faster it runs, the

quicker the transformation should be performed to detect an obstacle in time. Figure 5.9a shows

our mobile robot that executes a depth-estimation CNN (Chakravarty et al., 2017) with SubFlow

on its GPU for obstacle detection. It is implemented using Jetson Nano (NVIDIA, 2019a), an
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embedded GPU platform having NVIDIA Maxwell GPU, ARM A57 CPU, and 4 GB of RAM.

The robot has a camera in the front, and two motors and wheels on both sides installed on the

skeleton that we printed on a 3D printer. Table 5.3 shows the architecture of the depth estima-

tion CNN (Chakravarty et al., 2017) executed by the mobile robot. We use NYU depth dataset

V2 (Silberman et al., 2012) for training and testing.

Navigation
system

RGB image Depth CNN

Depth mapobstacle

camera

motors and wheels

(a) Depth-based obstacle detection (b) The mobile robot

Figure 5.9: SubFlow robot performing depth-based obstacle detection.
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Figure 5.10: Execution time and error over
the network utilization.

Depth CNN (NYU2)
Layer 1 Input: 60×80×3
Layer 2 Conv1: 11×11×3×96
Layer 3 Conv2: 5×5×96×256
Layer 4 Conv3: 3×3×256×384
Layer 5 Conv4: 3×3×384×384
Layer 6 FC1: 2048
Layer 7 FC2 (Output): 4800

Table 5.3: The depth es-
timation CNN architec-
ture (Chakravarty et al.,
2017).

5.7.1 End-to-End Execution Time and Performance

Figure 5.10 shows the execution time and depth estimation error of the CNN over the net-

work utilization, N . The execution time is measured the same way as in Section 5.6, and the

estimation error is measured with linear RMSE (Mancini et al., 2016), which is calculated by
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√
1
n

∑n
j=1

∥∥ỹj − y∗j
∥∥2
2
, where ỹj and y∗j is the j-th output of a sub-network and ground truth, re-

spectively. Figure 5.11 shows example depth maps generated from different sub-networks with

N = 0.1, 0.3, 0.5, 0.9, and 1.0.

(a) RGB image (b) Ground Truth (c) N = 0.1 (d) N = 0.3

(e) N = 0.5 (f) N = 0.7 (g) N = 0.9 (h) N = 1.0

Figure 5.11: Depth map images generated from different settings of N .

5.7.2 Real-World Deployment

As a real-life experiment, we evaluate the execution time and depth estimation error by run-

ning the mobile robot at various speeds that impose different execution time budgets (latency) on

the depth CNN. We deploy the robot in the corridor, kitchen, and bedroom of an apartment that

has typical furniture such as chairs, desks, and a bed (Figure 5.9b). The robot runs for three hours

and executes 50,000 CNN jobs. We randomly change the speed of the robot (2cm/s–20cm/s) to

enable dynamic deadlines that we empirically obtain during preliminary experiment. The result,

summarized in Table 5.4, shows that the execution of the CNN completes within the time budget

with a small variance.

Since obstacle detection is critical to safe driving, the robot may want to execute only the

sub-networks generating depth map with an error lower than a threshold, which makes it navigate

without a collision. To experiment in this scenario, we limit the execution of sub-networks that

cause large errors (0.068). Figure 5.12 shows the execution time and error over velocity with and
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Velocity 20 cm/s 16 cm/s 12 cm/s 8 cm/s 4 cm/s 2 cm/s
Budget 22 ms 66 ms 110 ms 154 ms 198 ms 220 ms
Avg-ET 23.1 ms 68.2 ms 112.6 ms 152.2 ms 197.6 ms 219.8 ms
Min-ET 22.5 ms 66 ms 108 ms 147 ms 192 ms 212.5 ms
Max-ET 23.62 ms 69.7 ms 114 ms 155.7 ms 202 ms 225 ms

N 0.01 0.04 0.25 0.61 0.92 1.00
Error 0.1669438 0.082438 0.054829 0.046986 0.044965 0.04365

* Velocity: Traveling speed of the robot (centimeters per second), Budget: Execu-
tion time budget (milliseconds), Avg-ET: Average execution time (milliseconds),
Min-ET: Minimum execution time (milliseconds), Max-ET: Maximum execution
time (milliseconds), N: Network utilization, Error: Depth estimation error

Table 5.4: Execution time budget, actual execution time, network utilization, and depth estima-
tion error of the mobile robot with various running speeds.
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Figure 5.12: The execution time and error over velocity with and without an error threshold:
The execution time budget that changes based on the velocity is drawn with a diagonal line. The
deadline is met if the execution time is under the diagonal line, missed otherwise.

without the error threshold. The execution time budget is shown as a diagonal line, implying that

the execution time above the line is a deadline miss. Without the threshold, Figure 5.12a shows

that the robot meets all the deadlines in the entire speed range, but generates a depth map with a

high error at high speed. On the other hand, Figure 5.12b shows that the error is limited to 0.068

for all the speeds by executing only the sub-networks with an error below the threshold, which

ensures the desired level of performance. In consequence of not performing the sub-networks

resulting in error higher than the threshold, the robot misses the deadlines when running faster

than 14 cm/s in return for the low error.
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5.8 Discussion

Scalability to Larger DNNs. Although the DNNs used in the evaluation, e.g., AlexNet (Krizhevsky

et al., 2012) (15M parameters), are smaller than ResNet (He et al., 2016a) (26M parameters),

we expect SubFlow to achieve better results with larger networks like ResNet since they have

more room for optimization (Wang et al., 2017). An induced sub-graph can be constructed with

residual connections, and SubFlow supports both convolution and fully-connected layers. In

this chapter, we followed to design our workload based on many recent works (Lee and Nirjon,

2019; Gobieski et al., 2019b; Liu et al., 2018b; Jiang et al., 2018; Yao et al., 2017b) for embed-

ded systems, which demonstrates that results hold for both low-end CPUs and embedded GPUs.

We hypothesize that smaller DNNs like LeNet-5 (LeCun et al., 1998) used in the evaluation are

harder cases for SubFlow as there is little scope for speedup and/or compression.

Accuracy Requirements. While SubFlow minimizes the loss of inference accuracy when con-

structing a sub-network for the time-bound execution, the accuracy drop is expected to increase

in general as the size of a sub-network decrease. Since the accuracy is critical for many safety-

critical applications, SubFlow limits the maximum loss of accuracy above a certain level by

controlling the network utilization parameter that limits the construction and execution of sub-

networks whose expected accuracy is lower than the desired level. The expected accuracy over

network size is obtained by running various sizes of sub-networks offline before the DNN is de-

ployed on the system. For some applications where both accuracy and real-time execution are

critical, SubFlow can provide intermediate inference results faster than the full-size network,

which serves as preliminary guidance before getting the high-accuracy result from the full-size

network.

5.9 Prior Work and Their Limitations

Dynamic Timing Constraints. Some early work argued limitations of standard timing con-

straints such as fixed deadlines and periods. For example, (Fohler, 1997) stated that only few
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tasks have ‘natural’ periods and deadlines. As an alternative, they presented dynamic timing

constraints having more expressive power, which is similar to the dynamic time budget used in

this paper; the time constraints for a single job of a task may be different for each job. (Gerber

et al., 1995b) studied relative timing constraints and design based on end-to-end deadlines (Ger-

ber et al., 1995a), and (Cheng and Agrawala, 1995) developed a scheduling algorithm for relative

timing constraints. (Schild and Würtz, 2000) proposed using constraints satisfaction methods to

schedule relative timing constraints. The slot shifting method for static schedules (Fohler, 1995)

is capable of supporting limited dynamic timing constraints.

Real-Time DNNs. There have been several studies on real-time DNNs based on the learning

algorithm and architecture of DNNs. RTDNN (Miralles and Bobi, 2016) adapts the parameters

and structure of DNN to a dataset in real-time conditions. Although it performs an adaptation

without requiring a significant number of samples, it does not support convolutional DNN and

relies on competitive learning (Martinetz and Schulten, 1994) that is not widely used in many

DNNs. Based on the constructive network model (Huang, 2003), (Huang et al., 2006) proposed

a real-time learning algorithm, which can automatically select appropriate values of neural quan-

tizers and determine the parameters of the network. However, their learning is performed without

any real-time constraints, which is different from SubFlow having definite time budgets. Above

all, none of them provide timing guarantee of DNN execution.

Imprecise Computing. The imprecise computation (Liu et al., 1994, 1991; Lin et al., 1987)

divides a time-critical task into two sub-tasks: mandatory and optional. The mandatory sub-

task is executed to completion to produce an acceptable result. The optional sub-task refines

the result to reduce the error in the result. The milestone, sieve function, and multiple version

method (Lin and Natarajan, 1988; Shih et al., 1991; Chung et al., 1990; Kenny and Lin, 1990)

are the popular algorithms for it. However, the division of a task is not trivial and increases the

complexity of scheduling by adding optional tasks to the system. Also, dividing a task into only

two parts does not provide flexible execution. SubFlow does not require an artificial division of a
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task and automatically executes the proper amount of computation based on flexible construction

and execution of sub-networks.

DNN Compression/Prunning. The need to deploy DNNs on resource constrained systems mo-

tivated techniques that can reduce the storage and computational costs, including knowledge

distillation (Chen et al., 2017a; Hinton et al., 2015; Romero et al., 2014), low-rank factoriza-

tion (Ioannou et al., 2015; Tai et al., 2015; Sainath et al., 2013), pruning (LeCun et al., 1990;

Polyak and Wolf, 2015; Li et al., 2016; Yu et al., 2018; Guo et al., 2016), quantization (Li et al.,

2017a; Wu et al., 2016; Han et al., 2015a), compression with structured matrices (Cheng et al.,

2015; Sindhwani et al., 2015), network binarization (Li et al., 2017b; Rastegari et al., 2016; Cour-

bariaux et al., 2016), and hashing (Chen et al., 2015b). However, they do not provide real-time

guarantee due to their primary focus on size reduction. Also, the significantly compressed DNNs

do not run nearly as significantly faster since most parameters are pruned in fully-connected lay-

ers while convolutional layers consume most computation time, as shown in (Guo et al., 2016;

Park et al., 2016b; Han et al., 2015a). Although some algorithms, such as DeepIoT (Yao et al.,

2018a, 2017b) compress DNNs achieving less execution time, the final network is not dynami-

cally changed once it is compressed offline. Moreover, they lack easy-to-follow procedures and

require significant effort, e.g., architecture modification, multi-rounds of retraining, fine-tuning.

In contrast, SubFlow enables the run-time execution of multiple sub-networks of the DNN in-

stead of compressing the DNN into one single network without requiring such an effort. SubFlow

also supports time-bound training, which is missing in most compression works that only focus

on the inference.

Improving Inference Speed. To improve the inference speed, parallel techniques such as SIMD (Pat-

terson and Hennessy, 2013) have been used (Vanhoucke et al., 2011), which is also employed in

the implementation of SubFlow. Also, faster algorithms specifically for 3x3 convolutional filters

have been studied (Lavin and Gray, 2016) for VGGNet (Simonyan and Zisserman, 2014) and

ResNet (He et al., 2016a). The early exit is another approach. CDL (Panda et al., 2016) adds

classifiers to each layer and monitors the output to decide whether a sample can be exited early.

98



BranchyNet (Teerapittayanon et al., 2016) enables more general branches with additional lay-

ers at each exit point. In contrast, SubFlow executes all the layers without exiting in the middle.

Instead, some neurons of each layer are selected and executed for speedup. To speed up sparse

convolution, efficient sparse DNNs such as (Liu et al., 2015a), (Li et al., 2016), and (Lebedev and

Lempitsky, 2016) have been proposed. Escoin (Chen, 2018) applies the direct sparse convolution

(Park et al., 2016a) to GPU in optimizing parallelism and locality. SparseSep (Bhattacharya and

Lane, 2016) leverages the sparsification of fully-connected layers and the separation of convolu-

tional kernels for wearable devices. Although SubFlow uses the direct sparse convolution, it does

not rely on CSR (compressed sparse row) format that incurs overhead of decoding the sparse

format, unlike them.

Improving Training Speed. While the inference latency has been an active area of research,

few studies have been conducted to improve the training speed. Dropout (Srivastava et al., 2014)

and DropConnect (Wan et al., 2013) can be used not only to increase the performance with re-

duced overfitting but also to reduce training time by performing back-propagation only for a part

of DNN. StochasticDepth (Huang et al., 2016a) starts with deep networks, but during training,

randomly drops a subset of layers and bypasses them with the identity function. Highway net-

works (Srivastava et al., 2015) proposes to modify the architecture of deep feed-forward networks

such that information flow across layers becomes easier based on LSTM (long short term mem-

ory) (Gers et al., 1999; Hochreiter and Schmidhuber, 1997). In meProp (Sun et al., 2017), only

a small subset of the gradient is computed to update the model parameters in back-propagation.

MSBP (memorized sparse back-propagation) (Zhang et al., 2019) proposes to store unprop-

agated gradients in memory for the next learning to remedy the problem of information loss

when accelerating propagation through sparseness. They either change the DNN architecture

or select weight parameters to be trained based on the magnitude, which may eliminate wrong

parameters (Hassibi and Stork, 1993; LeCun et al., 1990), unlike SubFlow that does not modify

architecture and use the second-order derivative for selection.
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5.10 Summary

We propose SubFlow that enables real-time inference and training of a DNN by dynamically

executing an induced sub-graph of the DNN according to varying time budget. We implement

SubFlow by extending TensorFlow, which allows a programmer to design time-aware DNNs

based on SubFlow. Our empirical evaluation result shows that time-bound inference and training

are achieved without experiencing significant performance loss. We implement an autonomous

robot as an application of SubFlow, which demonstrates that the object detection task is com-

pleted within the time budget that dynamically changes based on the running speed of the robot.
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CHAPTER 6: OPPORTUNISTIC ACCELERATED LEARNING

In recent years, deep neural networks (DNN) (Schmidhuber, 2015; LeCun et al., 2015) have

shown stellar performance in solving problems in machine learning and related fields (He et al.,

2016a; Schroff et al., 2015; Krizhevsky et al., 2012; Young et al., 2018; Goodfellow et al., 2016;

Cambria and White, 2014; Deng, 2014; Deng et al., 2013). Following the trend, embedded sys-

tems have started to implement lightweight versions of DNNs (Yao et al., 2018b; Wang et al.,

2018; Gobieski et al., 2018a), primarily focused on inference or generalization tasks (Lane et al.,

2017). The de facto approach to enable deep inference on resource-constrained systems is to ob-

tain a pre-trained model from some other sources and then to compress and/or prune the network

until it fits the memory and computing capacity of the embedded platform (Manessi et al., 2018;

Zhou et al., 2018; Han et al., 2016, 2015a; Gong et al., 2014). Needless to say, such compression

and pruning hacks inevitably degrade the performance, and many large-sized DNNs are quite

challenging to port on resource-constrained embedded platforms even after compression and

pruning.

+
Main MCUDeep Neural Network (DNN)

…

……

Guaranteed
Execution

Performance
Increase

Energy harvesting
(batteryless)

Accelerator

Stable power
(battery)

Figure 6.1: Neuro.ZERO: The batteryless accelerator, powered by harvested energy, opportunisti-
cally enhances the run-time performance of DNN execution without consuming power from the
main system. The main MCU (microcontroller unit) guarantees seamless execution of DNN by
using a stable power source such as a battery.
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The performance of DNNs running on an embedded system (Chauhan et al., 2018; Gob-

ieski et al., 2018a; Bhattacharya and Lane, 2016) is limited by the platform’s CPU, memory, and

battery-size; and their scope is limited to inference tasks only. To overcome this, special-purpose

co-processors, called DNN accelerators, have been proposed and productized (Apple, 2017;

Qualcomm, 2017), primarily targeted to smartphone-grade mobile systems. Although especially

architected hardware in these accelerators enables faster execution of DNNs, they have some

major practical limitations. First, DNN computations are power-hungry. The power consump-

tion of these accelerators remains as a fundamental bottleneck—prohibiting them to be used in

battery-powered systems. Second, existing accelerators primarily focus on speeding up the ex-

ecution of an offline-trained DNN inference task. In general, there is a lack of research on how

to facilitate run-time adaptation so that the inference accuracy increases over time as resources

become available or newly sampled sensor data can be used to fine-tune the performance. Third,

while application-specific hardware accelerators of different types such as FPGAs and ASICs are

effective, their lack of standardization, unavailability to system developers, and excessive price

are slowing down the development of engineered systems that could leverage DNN acceleration

in their embedded sensing and inference applications.

In this chapter, we introduce Neuro.ZERO—a novel co-processor architecture consisting of

two microcontroller units (MCUs): 1) a battery-powered main MCU that executes a scaled-down1

DNN inference task, and 2) a batteryless (energy-harvesting) accelerator MCU that enhances the

performance of DNN inference that runs on the main MCU. A high-level architectural diagram

of Neuro.ZERO is shown in Figure 6.1. Unlike existing DNN accelerators that primarily focus

on improving the inference speed (Wang et al., 2016; Gokhale et al., 2014), the accelerator in

Neuro.ZERO improves the run-time performance of the DNN on the main MCU by increasing

inference accuracy or by enabling on-device training. Since the accelerator does not draw power

from the main system, we call it a zero-energy accelerator. By having two MCUs, one powered

by a battery and one powered by harvested energy, Neuro.ZERO guarantees sensing and infer-

ence for all sensor data while enjoying opportunistic run-time performance gain without spending
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system’s energy. Neuro.ZERO is implemented on off-the-shelf, low-power, low-cost MCUs (Tex-

asInstruments, 2018), and its source code is open (Embedded Intelligence Lab (UNC Chapel

Hill), 2019b)–which helps developers build low-power, intelligent sensing, and inference systems

faster and at a lower cost.

The architecture of Neuro.ZERO falls into the general category of energy-aware hetero-

geneous multi-core systems such as ARM’s big.LITTLE (Arm, 2013; Kamdar and Kamdar,

2015) and application-specific systems (Naderiparizi et al., 2017; Lu et al., 2011). However,

Neuro.ZERO takes this to an extremity where one of the cores runs completely on harvested

energy. It flips a common practice of energy-aware heterogeneous multi-core systems where typi-

cally a lower-power core remains active, and it controls the sleep/wake cycles of a higher-power

core based on the computational demand. Instead, a new execution paradigm is introduced in

Neuro.ZERO, where the main MCU executes sensing and basic inference tasks as programmed

by a developer to meet its timing and energy constraints, and when the batteryless MCU har-

vests enough energy to execute a task by itself, it uses up that energy to improve the main MCU’s

performance in executing its accelerated inference task.

The proposed zero-energy accelerator follows standard practices of intermittently-powered

systems. Its core framework is built upon existing work on intermittent computing that address

important problems such as atomicity (Maeng et al., 2017; Colin and Lucia, 2016), consis-

tency (Maeng et al., 2017; Colin and Lucia, 2016; Lucia and Ransford, 2015), programmabil-

ity (Hester et al., 2017), timeliness (Hester et al., 2017), and energy-efficiency (Colin et al., 2018;

Hester et al., 2015b; Buettner et al., 2011) to enable efficient code execution of general-purpose

tasks. Neuro.ZERO complements existing literature and solves new and higher-level system

challenges resulting from the heterogeneous execution pattern of Neuro.ZERO cores as well as

fundamental challenges in executing accelerated inference and training on resource-constrained

and intermittently-powered systems.

Neuro.ZERO opportunistically accelerates the run-time performance of a DNN via one of its

four acceleration modes: extended inference, expedited inference, ensemble inference, and latent
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training which facilitates execution of larger sized networks, splits the given DNN for parallel

execution, improves confidence of inference via ensembling (Krogh and Vedelsby, 1995), and

updates the DNN weights via online training, respectively. To enable these modes, two sets of

algorithms have been developed. First, energy and intermittence-aware algorithms have been

developed that steps-up the DNN inference by scaling up the size of DNN based on the current

energy level and skips-out back-propagation (Werbos et al., 1990) of some weights during on-

line training as the amount of harvested energy fluctuates at run-time. Second, a fast and high-

precision adaptive fixed-point arithmetic has been proposed that beats existing floating-point

and fixed-point arithmetic in terms of speedup and precision, respectively, and achieves the best

of both. To demonstrate the efficacy of Neuro.ZERO, we implement two applications that use

camera and microphone to recognize certain images (i.e., traffic signs) and audio events (i.e.,

voice commands). These systems have been tested extensively using both standard datasets, i.e.,

MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011),

and Fashion MNIST (Xiao et al., 2017), as well as in real-world experiments.

6.1 Overview

This section describes the architectural design of Neuro.ZERO, the rationale behind the de-

sign, and two example applications.

6.1.1 System Design

The goal of Neuro.ZERO is to increase the run-time performance of DNN on resource-

constrained, MCU-based systems by having a low-power energy-harvesting MCU as an acceler-

ator, that opportunistically improves the accuracy or speed of DNN inference, without drawing

any power from the battery. Figure 6.2a shows an architectural diagram of Neuro.ZERO, which

depicts how a DNN is converted to one of four different architectures at compile time. At run-

time, the shaded part of the generated network run on the main MCU, while the rest run on the

accelerator only when it is active. The algorithms enabling these modes are shown on the right.
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Figure 6.2: Neuro.ZERO’s four modes accelerate a DNN in terms of accuracy, speed, multi-
model, and training by extending, expediting, ensembling, and training the DNN on the accelera-
tor. They are enabled by energy-aware acceleration (step-up inference and skip-out training) and
numerical acceleration (adaptive-scale fixed-point).

Basic Working Principle. Neuro.ZERO comes with a compile-time tool and a run-time system.

The compile-time tool takes a baseline DNN architecture, a training dataset, and an acceleration

mode as an input. Depending on the chosen acceleration mode, Neuro.ZERO creates two network

architectures, trains them using the given training dataset, and generates two DNNs as the output

(one for each MCU)—which are ready to be executed on the two-MCU hardware platform de-

signed for Neuro.ZERO. The DNN for the main MCU is generated based on the baseline DNN

by appending the necessary architecture for acceleration without changing the baseline DNN. It

ensures that the standalone execution of the main MCU is self-sufficient in satisfying the desired

application-level performance goals (e.g., achieving the same accuracy and speed of the original

baseline DNN). When the accelerating DNN is executed on the accelerator, the two networks

combinedly are expected to achieve a better inference accuracy and/or speed. The acceleration

does not impose significant overhead on the main MCU since the baseline DNN does not require

to be swapped in and out of the memory as the accelerator goes ON and OFF.

The run-time system of Neuro.ZERO is responsible for executing the two DNNs by managing

the coordination between the two MCUs. The run-time system also keeps track of the status of

the two MCUs and provides APIs to know whether the accelerator is active or involved in the

inference as well as APIs to turn ON/OFF the accelerator (e.g., for debugging or experiment
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purposes). To ensure the consistent execution of DNN, the accelerator executes the DNN only

when the energy harvester accrues enough energy to complete a full pass of feed-forward (from

input to output layer).

Four Modes of Acceleration. To improve the run-time performance of DNNs, Neuro.ZERO

supports four modes of acceleration. Each mode takes advantage of the intermittently-powered

accelerator in a unique manner. The extended inference mode improves the inference accuracy by

extending the DNN’s structure and running the extended part on the accelerator. The expedited

inference mode increases the inference speed by offloading some part of the original DNN to the

accelerator. In both extended and expedited modes, Neuro.ZERO ensures that the main MCU

runs a self-sufficient DNN when the accelerator is not active. The ensembled inference mode

runs a different DNN model on the accelerator as a second DNN and combines the output of the

two independent DNNs to increase the inference accuracy. The latent training mode enables

an intermittent on-device training of the baseline DNN for unseen data on the accelerator while

allowing the main MCU to keep executing the inference task. The details of these modes are

discussed in Section 6.2.

Algorithms Enabling Acceleration. The four acceleration modes of Neuro.ZERO are enabled

by a set of algorithms that accelerate the DNN inference and training on an intermittently-powered

system and expedite floating-point arithmetic. Since the accelerator runs on sporadically har-

vested energy, tasks running on it execute intermittently. Such an intermittent execution pattern

makes both the inference and the training of a DNN challenging. To address this, we propose two

novel algorithms, namely the step-up inference and the skip-out training, which accelerate the

inference and training of DNNs in proportion to the harvested energy (Section 6.3).

Despite these accelerations, we observe that the execution of DNN, in general, is extremely

slow on low-power, low-cost MCUs that do not have hardware support for floating-point oper-

ations (Anderson et al., 1967). To address this well-known issue, most low-power embedded

systems use fixed-point arithmetic (Oberstar, 2007), which is computationally efficient but nu-

merically inaccurate than floating-point. In Neuro.ZERO, we rethink the implementation of fixed-
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point operations and propose adaptive-scale fixed-point number representation that provides both

the numerical correctness of floating-point arithmetic and the speed-up of fixed-point arithmetic.

This is described in Section 6.4.

6.1.2 Design Rationale

We compare three alternative choices of processors for the accelerator in terms of their power

consumption, CPU performance (measured in Dhrystone MIPS (Weiss, 2002)), and cost in Ta-

ble 6.1. Considering the low price and ultra-low power consumption, an MCU is the most suit-

able choice for an energy harvesting system like Neuro.ZERO as they can be run intermittently

on harvested energy and wake-up more frequently due to shorter charge-discharge cycles, and

enable large scale deployment due to low-cost. For example, when an RF harvester (Powercast,

2016a,b) (generating 0.2mW–2.0mW) is used, an FPGA or an SoC would take several minutes

to hours to harvest enough energy before they can execute any workload. Such a long delay is

not suitable for Neuro.ZERO, as the accelerator is more likely to miss sensor data during its long

charging time and the value of processing the data may be lost (e.g., in time-sensitive applica-

tions) after such long delay. Although large energy harvesters and huge capacitors as energy

storage could be a makeshift solution, such systems will be bulky and expensive, and thus are not

suitable for most embedded sensing systems.

Accelerator/Processor Type Power Performance Cost
MCU – TI MSP430 (TexasInstruments, 2018) 3.8-6.2mW 13 DMIPS $3-$5

FPGA – Xilinx Spartan 6 (Shahzad and Oelmann, 2014; Xilinx, 2011) 24-109mW 166 DMIPS $30-$33
SoC – Qualcomm Snapdragon (Qualcomm, 2018) 2.1-4.8W 13,860 DMIPS $70-$199

Table 6.1: Comparison of processor choices for the accelerator.

Having an MCU as the choice for the accelerator, Table 6.2 compares four co-processor de-

signs for up to two MCUs. The first two rows show single-MCU systems, and the rest show

two-MCU systems. We observe that only when the main MCU is battery-powered, and the ac-

celerator is energy-harvesting, we achieve seamless execution of tasks (on the main MCU) and

energy-savings and increased performance (due to the energy-harvesting accelerator).
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Main Accelerator Timely/ Energy Performance
MCU’s MCU’s Seamless Harvesting Increase by

Power Source Power Source Execution (Accelerator) Accelerator
Battery - 4 - 8

Harvesting - 8 - 8

Battery Battery 4 8 4

Harvesting Harvesting 8 4 4

Battery Harvesting 4 4 4

Table 6.2: Comparison of MCU-based architectural choices.

Extensibility and Cost. Neuro.ZERO is developed as a two-MCU system. However, its design

principles and algorithms are applicable to many-MCU systems where a subset of MCUs are

battery-powered, and the rest are powered by harvested energy. Having additional MCUs in a

system adds a one-time cost, but considering their small form-factor and the low cost (<$5 per

unit), the benefit of increased accuracy and speedup clearly outweighs the cost.

6.1.3 Example Application Scenarios

We describe two example applications of Neuro.ZERO: 1) a traffic sign recognizer, and 2) a

voice command recognizer, which classifies traffic sign images and voice audio data, respectively.

In Section 6.7, we describe their implementation and evaluation results.

Wearables for Pedestrian and Biker’s Safety. Pedestrians and bikers are often not fully aware

of their surroundings, which is causing their lives (Administration, 2013). To augment perception

and cognition of pedestrians and bikers, wearable systems have been proposed that recognize

imminent dangers on the road, alert the user on time, and help them avoid injury and death (He

et al., 2017; Chen et al., 2016a; Singh, 2007). We propose to augment the ability of pedestrians

and bikers to see and recognize traffic signs by enabling road-sign recognition on camera-based

low-power wearable systems. These battery-powered systems need to process camera images

in real-time and produce accurate classification results. Using Neuro.ZERO, we can improve

the accuracy and confidence, and lower the execution time of the image recognition applications

for such wearable systems. As these systems are expected to be used outdoors, solar energy

can be harvested to power the accelerator. In this application, Neuro.ZERO can be operated
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1) in the extended inference mode when the user enters an environment that requires higher-

resolution images to detect objects, 2) in the expedited mode when the user is in a busy area, 3)

in the ensemble mode when there are multiple cameras or a different sensor (e.g., microphone)

to independently detect the same event, or 4) in the training mode when environment-specific

parameter tuning is necessary to obtain better classification results.

Voice Commands for Smarter Things. Voice-based communication with everyday objects in

natural languages is becoming a reality. Today, devices like Amazon Echo acts as a “middle-

man” to enable voice communication with smart devices such as home appliances, remote con-

trollers, thermostats, light bulbs, switches, speakers, clocks, and many more. We envision that,

in a few years, voice-communication capability will be directly built into every smart object. In

order to realize this vision, building low-power, low-cost, MCU-grade systems that recognize

voice commands are essential. Neuro.ZERO enables the development of these next-generation

smart objects that are able to sense and interpret voice commands on-device and in real-time, and

opportunistically improve their inference performance at runtime by leveraging the harvested

power from ambient RF energy at indoor environments. In this application, Neuro.ZERO can

be operated 1) in the extended inference mode when the environmental noise level is high or the

device is far, 2) in the expedited mode when the user interacts with the device more frequently

or when there are many users issues commands to the device, 3) in the ensemble mode when

there are multiple microphones and each can be specialized on detecting different subset of voice

commands, or 4) in the training mode when person or environment-specific parameter tuning is

necessary to achieve more accurate classification results.

6.2 Acceleration Modes

In this section, we describe the four modes of zero-energy acceleration in Neuro.ZERO, of

which, only one mode is active at a time, as configured by the application developer.

109



6.2.1 Extended Inference

A larger network having more neurons, in general, is a better classifier (Wang et al., 2005;

Lawrence et al., 1998, 1997). Although there are studies showing that the accuracy of a DNN

drops when its size grows beyond a certain limit (Glorot and Bengio, 2010; Hochreiter et al.,

2001), for resource-constrained embedded systems like Neuro.ZERO, we safely assume that

more neurons and connections are likely to improve its inference accuracy. The memory of an

MCU being small, a DNN residing in the main MCU of Neuro.ZERO is benefited by additional

neurons in the accelerator since some DNNs cannot be stored in a single MCU even after com-

pression. For example, SqueezeNet (470KB) (Iandola et al., 2016) is a compressed version of

AlexNet (Krizhevsky et al., 2012), but it is still too large to fit in the main MCU (256KB for

MSP430). In such cases, an accelerator becomes necessary for the system to achieve desirable

performance.

Based on this assumption, given the baseline DNN, Neuro.ZERO generates an extended ver-

sion of it by adding additional neurons to each layer. The newly added neurons are identical

in numbers and types for each layer. Figure 6.2b shows an example of an extended DNN that

has three extended convolutional (Conv) and two extended fully-connected (FC) layers having

the same dimensions as in the baseline DNN. To avoid creating a dependency between the two

MCUs which requires extensive communication between them at run-time, we intentionally reg-

ularize (remove) the connections between convolutional filters running on the two MCUs and

execute all fully connected layers on the main MCU. The benefit of this are two-fold: first, the

main MCU independently makes inferences, and second, execution of half of the convolutional

filters, which account for 45% of the total energy consumption, are offloaded to the accelerator.

For example, scaled-down versions of popular DNNs like ResNet (He et al., 2016a) can be di-

vided into two networks and accelerated by using parallel algorithms for DNNs such as (Günther

et al., 2018).

The accelerator executes the convolutional filters in an energy-aware manner by selecting a

subset of them for execution based on the current level of harvested energy. We call this step-up
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inference since the accelerator’s effort toward increasing the inference accuracy increases propor-

tionally with the harvested energy. The details of the algorithm are described in Section 6.3.1.

Exploiting the inherent parallelism in DNN architecture is a common technique to increase

the speedup of DNN execution. We leverage this parallelism in Neuro.ZERO by executing a

subset of the convolutional filters of the baseline network on the accelerator. Like the extended

inference mode, the fully connected layers run on the main MCU to ensure that the main MCU

makes inferences without requiring frequent communication with the accelerator. Since execut-

ing convolutional layers take as much as 90% of the total execution time, the expedited mode

cuts down the inference time approximately by 45%. Figure 6.2b shows an example of expedited

DNN having three convolutional layers offloaded from the baseline DNN. Although this mode

looks similar to the extended inference, the main difference between the two is that unlike the

extended mode, the expedited mode trades off accuracy for speedup.

6.2.2 Expedited Inference

Exploiting the inherent parallelism in DNN architecture is a common technique to increase

the speedup of DNN execution. We leverage this parallelism in Neuro.ZERO by executing a

subset of the convolutional filters of the baseline DNN on the accelerator. Like the extended in-

ference mode, the fully connected layers run on the main MCU to ensure that the main MCU

makes inferences without requiring frequent communication with the accelerator. Since execut-

ing convolutional layers take as much as 90% of the total execution time, the expedited mode

cuts down the inference time approximately by 45%. Figure 6.2b shows an example of expedited

DNN having three convolutional layers offloaded from the baseline DNN. Although this mode

looks similar to the extended inference, the main difference between the two is that unlike the

extended mode, the expedited mode trades off accuracy for speedup.
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6.2.3 Ensembled Inference

Unlike the above two modes, the ensembled inference mode executes an independent DNN

on the accelerator, which is given as an additional input to Neuro.ZERO. This mode enables ex-

ecution of a different DNN that performs the same inference task and provides a second opinion

on the inference result. It also allows execution of a different inference task that may complement

inference results on the main MCU. Furthermore, the accelerator may choose to use a differ-

ent sensor than the main MCU to perform the same or a different inference task than the main

MCU. Thus, this mode offers the most flexibility, but it does not necessarily improve the speedup.

However, by carefully choosing a suitable combination of sensors and inference tasks, novel

multi-modal, multi-objective sensing and inference systems can be developed with this mode—

which may effectively increase the accuracy and speedup of inference. Figure 6.2b shows an

example of an ensembled DNN. Unlike the baseline DNN having a convolutional architecture,

the accelerator runs a fully-connected DNN that learns non-spatial features. When the accelerator

is available, the output of the accelerator is combined with that of the main MCU to generate the

final inference result.

Although Neuro.ZERO is a minimalistic system that has only one main MCU and one ac-

celerator, the design can be extended to support many-MCU systems that run more complicated

tasks and ensembles of many networks. Outputs of these networks can be combined using ex-

isting techniques such as concatenation and averaging (Tyagi and Mishra, 2014; Hansen and

Salamon, 1990).

6.2.4 Latent Training

Real-time training of machine learning classifiers is a desirable feature for many mobile and

embedded systems (Foundation, 2019). In recent years, we see a growing trend of online training

of embedded classifiers in commercial products such as iPhone’s face recognition (Apple, 2017),

Google Clip’s image capturing (Google, 2018a), and Android smartphone’s key-press learning

features (Hard et al., 2018). To future-proof Neuro.ZERO, we introduce a fourth acceleration
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mode that enables retraining of the DNN on the accelerator. We call this latent training since the

training process gradually progresses over time as the accelerator harvests energy.

Figure 6.3 illustrates the process of latent training. Training happens separately on the ac-

celerator while the main MCU independently executes inference tasks. The two MCUs asyn-

chronously communicate with each other only when the DNN model has been updated via train-

ing. Then, the main MCU fetches the newly updated model and uses it from then on.

⋯⋯ ⋯

Accelerator

Main MCU

⋯ ⋯

⋯

update model

infer infer inferfetch

train trainupdate
model update & fetch

Figure 6.3: The latent training on the accelerator independently (and intermittently) trains
and updates a DNN model that is asynchronously fetched by main MCU, which increase the
performance.

Unlike the DNNs that have several millions of parameters, requiring thousands of training

examples to train, and are meant to run on high-end processors, the DNNs in Neuro.ZERO are

much smaller in size and training happens online, i.e., only one example at a time to perform a

back-propagation algorithm. However, even a single round of back-propagation is difficult on a

small system that is powered intermittently. To solve this challenge, we propose an energy-aware

back-propagation algorithm that updates the weight parameters of a DNN in proportion to the

amount of harvested energy. The details of the algorithm are in Section 6.3.2.

One caveat of on-device training is that the system requires labeled data. To handle this, we

propose several solutions: 1) applying semi-supervised learning principles that do not require

labeled data (Peikari et al., 2018; Lee, 2013; Zhu and Goldberg, 2009), 2) relying on an external,

high-accuracy inference system to obtain the labels at run-time, and 3) in a distributed sensor

network or ensemble scenario, aggregating (e.g., voting) neighboring nodes’ inference results and

treat it as the label. In our demonstration, we use 2) for the simplicity of implementation.
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6.3 Energy-Aware Acceleration

In this section, we introduce energy-aware acceleration algorithms called step-up inference

and skip-out training, which enable intermittent inference and training of DNN based on the

energy level.

6.3.1 Step-Up Inference

The step-up inference enables flexible inference acceleration of DNNs on the unpredictable

harvested-energy. It dynamically adjusts acceleration in proportion to the run-time energy level

by stepping up and down the size of DNN executed on the accelerator with multiple steps. Since

the network size grows along with steps, e.g., step four has a larger DNN than step three, etc., a

higher step is expected to achieve better performance acceleration (i.e., higher accuracy) than a

lower one. Every execution of inference, the highest step that can be executed with the current

energy level is selected among total n steps and executed on the accelerator.

Step 1 Step 2 Step 3

Step 4

3x3x1x2
3x3x2x1
3x3x1x2

3x3x1x2
3x3x2x2
3x3x2x4

3x3x1x2
3x3x2x3
3x3x3x6

3x3x1x2
3x3x2x4
3x3x4x8

3

3

3

3

3

CNN dimension

CNN filter (layer 1)

CNN filter (layer 2)

CNN filter (layer 3)

3

Figure 6.4: An example of step-up inference: The number of CNN filters running on the acceler-
ator incrementally increase along with steps, and only one step is executed based on the energy
level.

A set of n steps can be expressed as a set S = {S1, S2, ..., Sn} and the amount of energy

required to execute each step is given by another set C = {c1, c2, ..., cn}, where Si is the set of

CNN filters of i-th step, and ci is the energy consumption of the i-th step. Figure 6.4 depicts an

example of four steps having different numbers of CNN filters that incrementally increase along
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with the steps. Starting from the baseline DNN, each step grows by adding a set of new filters

to the previous step. Thus, Si+1 = Si ∪ {new CNN filters} and Si ⊂ Si+1. The step Si+1 is

obtained by training {new CNN filters} step-by-step until n while freezing Si. In this way, the

filters of the previous steps are reused without changes, and they are prevented from learning

redundant features. While the total number of steps, n can be arbitrarily set at compile-time

based on energy harvesting pattern, the total number of accelerating filters,
∑n

i=1 |Si| is limited to

the same number of filters as the baseline DNN in the main MCU.

For every inference acceleration, Neuro.ZERO determines a step to be executed by the ac-

celerator based on the currently-available energy at run-time. The step to be executed at the k-th

inference execution, sk is determined by sk = argmaxi≤n ci subject to ci ≤ ek where ek is the

current energy level at the k-th inference.

sk = argmax
i≤n

ci subject to ci < ek (6.1)

where ek is the current energy level at the k-th inference.

6.3.2 Skip-Out Training

The skip-out training enables intermittent training of DNN on the irregular energy harvesting

pattern. It accelerates a train by ensuring the completion of one execution of back-propagation

regardless of the amount of currently-available energy.

Skip-Out Back-Propagation. Unlike conventional training, the skip-out algorithm skips a back-

propagation step for some of the weights with the skip-out rate, rk at the k-th iteration of training:

rk = 1− 1

n
min

(⌊
ek

ef + eb

⌋
, n

)
(6.2)

where n is a total number of weights in a DNN, ek is the current energy level at the k-th iteration,

ef is the amount of energy needed for feed-forward of one weight, and eb is the amount of energy

115



needed for back-propagation of one weight. Given the skip-out rate, rk and a total number of

weights, n in a DNN, the number of weights to be trained at the k-th iteration, nrk is given by

nrk = bn(1− rk)c.

For each k-th iteration, the skip-out rate, rk is obtained from the current energy level, ek; and

only nrk weights are trained by back-propagation. Therefore, a different number of weights are

trained every iteration, increasing the speed of training by guaranteeing the completion of one

back-propagation regardless of the current energy level. Figure 6.5 shows back-propagation with

skip-out.

…… …

Not skipped-out weight
…

Skip-out back-propagation:
skip some weights with prob of 𝑟𝑟𝑘𝑘

Skipped-out weight

…… ……
Skip-out feed-forward:

activation with 𝑎𝑎𝑘𝑘

× 𝒂𝒂𝒌𝒌

× 𝒂𝒂𝒌𝒌

× 𝒂𝒂𝒌𝒌

× 𝒂𝒂𝒌𝒌

× 𝒂𝒂𝒌𝒌

× 𝒂𝒂𝒌𝒌

× 𝒂𝒂𝒌𝒌

× 𝒂𝒂𝒌𝒌

𝑎𝑎𝑘𝑘: Average skip-out rate

Figure 6.5: Skip-out back-propagation: Some weights are skipped with skip-out rate rk for every
k-th iteration. Skip-out feed-forward: All neurons are multiplied with the average skip-out rate
ak.

The weights to be skipped are selected using Bernoulli distribution (Uspensky, 1937) with

probability, rk with no other considerations such as their current values. This kind of skipping is

effective and is known as drop-out (Srivastava et al., 2014) since it not only increases the training

accuracy but also mitigates the overfitting problem (Hawkins, 2004). Moreover, the Bernoulli

distribution is one of the best choices for our system as any other selection algorithm, e.g., sorting

or scoring, consumes more energy, which would not leave enough energy for back-propagation.

Skip-Out vs. Drop-Out (Srivastava et al., 2014) . The difference between skip-out and drop-

out is that the skip-out rate changes at every iteration while the drop-out rate stays the same for

the entire training (e.g., 0.5). Another difference is that the skip-out algorithm leaves the se-
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lected weights as they are without training, so they are used in back-propagation for the survived

weights while drop-out completely removes them by setting their values to zero.

Skip-Out Feed-Forward. The skip-out-based feed-forward activation computation at the k-th

iteration of training is given by:

o
(l)
j =

∑
i

w
(l)
i,j · ϕ(o

(l−1)
i ) · ak and ak =

1

k

k∑
i=1

ri (6.3)

where o(l)j is the j-th neuron in the l-th layer, wi,j is the (i, j)-th weight in the l-th layer, ϕ(·) is

an activation function, ri is the skip-out rate at the i-th iteration, and ak is the average skip-out

rate until the k-th iteration. Unlike the skip-out back-propagation that skips some weights, the

skip-out feed-forward does not skip any weights for activation computation. Instead, the average

skip-out rate, ak until the k-th iteration in Equation 6.3 is applied to the activation of all neurons.

Figure 6.5 shows feed-forward with skip-out.

Skip-out trains a DNN with a different number and combination of weights for each iteration.

Since weights are trained with the probability of 1− rk for k-th iteration in the back-propagation,

it is averaged by ak in the feed-forward. Hence, any weight trained for a specific DNN does not

dominate feed-forward. In general, an averaged feed-forward of different DNNs results in a better

performance than a feed-forward based on one particular DNN (Srivastava et al., 2014).

Convergence of ak. The average skip-out rate ak used for feed-forward converges after a number

of training iterations. By using Equation 6.2, ak in Equation 6.3 can be re-written as:

ak '
1

k

k∑
i=1

(
1− ei

n(ef + eb)

)
=

1

k

k∑
i=1

1− µek
n(ef + eb)

(6.4)

where µek = 1
k

∑k
i=1 ei is the mean of ei. Since n, ef , and eb are constants and µek tends to

converge to a constant as k →∞, ak also converges. If we consider ei as an independent random

variable, its distribution tends toward a normal distribution as ei ∼ N (µek , σek) where µek is
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mean, and σek is variance regardless of its original distribution as i → ∞ based on the Central

Limit theorem (ROUAUD, 2012).

6.4 Numerical Acceleration

In this section, we present an underlying numerical acceleration of Neuro.ZERO called

Adaptive-Scale Fixed-Point (ASFP) arithmetic that adjusts the scaling factor of fixed-point (FP)

numbers during arithmetic operations. It produces more reliable numerical results than fixed-

point while being faster than floating-point operations.

6.4.1 Fixed-Point Numbers

The standard 32-bit IEEE-754 floating-point numbers are either not supported or compu-

tationally very slow in embedded systems that do not have an on-board Floating Point Unit

(FPU) (Anderson et al., 1967). For these reasons, most embedded systems that have no hard-

ware support for floating-point operations, use fixed-point (FP) arithmetic (Oberstar, 2007) which

is numerically less accurate than floating-point.

Fixed-Point Representation. Given total n bit-width, a number x is represented with FP format

using xf number of fractional bits (Qxf ), i.e., x = xb · 2−xf for 1 ≤ f ≤ n − 1 where xb is

the integer base ranging from −2n−1 to 2n−1 − 1 for a signed number. For example, 1.625 is

represented as 1664 · 2−10 with Q10.

Increasing the scaling factor increases the range and reduces precision. On the contrary, re-

ducing it reduces the range and increases precision. Hence, FP is a special number format having

a unique shared fixed exponent with a trade-off between the range and precision. Since the scal-

ing factor is fixed for every number, overflow and precision loss occurs in compute-intensive

DNN tasks.

Given total n bit-width, a number x is represented with FP format using xf number of frac-

tional bits (Qxf ), i.e., x = xb2
−xf for 1 ≤ xf ≤ n− 1 where xb is the integer base ranging from
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−2n−1 to 2n−1 − 1 for a signed number, e.g., 1.625 is represented as 1664 · 2−10 with Q10. In-

creasing the scaling factor increases the range and reduces precision. On the contrary, reducing it

reduces the range and increases precision. Hence, FP is a number format having a unique shared

fixed exponent with a trade-off between the range and precision. Since the scaling factor is fixed

for every number, overflow and precision loss occurs in compute-intensive DNN tasks.

6.4.2 Adaptive-Scale Fixed-Point Arithmetic

To overcome the limitations of fixed-point (FP), we propose adaptive-scale fixed-point

(ASFP) numbers that adjust the scaling factor when performing the four fundamental arith-

metic operations. An ASFP-based DNN can be trained with significantly less error by mitigat-

ing the overflow and precision loss problem of FP. Here, we describe adaptive-scale Multiply-

Accumulate (MAC) operation that is frequently performed in DNNs. To understand it, the two

parts of MAC, i.e., addition and multiplication are first discussed.

ASFP Addition. Addition of two FP number x = xb2
−xf and y = yb2

−yf (xf ≥ yf ) given total n

bit-width is given by:

x+ y = xb2
−xf + yb2

−yf = (xb2
yf−xf + yb)2

−k2−(yf−k) (6.5)

where (xb2
yf−xf + yb)2

−k is new integer base and (yf − k) is new number of fractional bits for the

addition result. If (xb2
yf−xf + yb)2

−k does not fit into the maximum integer base range between

−2n−1 to 2n−1 − 1, the result will overflow and end up being inaccurate. On the other hand, if it

is too small, it will not overflow but end up being too coarse with relatively small fractional bits,

which scarifies its precision. Hence, to provide the most fine-grained precision without overflow,

new integer base |xb2yf−xf + yb|2−k needs to be maximized by finding minimum k such that:

k ≥ dlog2 |xb2yf−xf + yb|e − (n− 1); and, k ≥ yf − (n− 1) (6.6)
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Figure 6.6: For addition of two binary number 10.11 (Q2) and 01.10 (Q2), FP produces 00.01
using the fixed scaling factor (-2). On the other hand, ASFP produces 100.0 by adapting the
integer base (1000) and the scaling factor (-1) which is closer to the actual result 100.01.

dlog2(·)e is computed by finding the most significant bit (MSB). It is efficiently obtained ei-

ther using bit-shifting operations, which is extremely fast or using a near constant-time algorithm

such as De Bruijn sequence (de Bruijn, 1975). As an example, adaptive-scale addition of two bi-

nary FP number 10.11 (Q2) and 01.10 (Q2) with 4 bit-widths is given in Figure 6.6, which shows

ASFP produces more accurate result than FP by preventing overflow.

ASFP Multiplication. Multiplication of two FP number x = xb2
−xf and y = yb2

−yf given total

n bit-width is given by:

xy = xb2
−xf · yb2−yf = xbyb2

−k2−(xf+yf−k) (6.7)

where xbyb2−k is new integer base and (xf + yf − k) is new number of fractional bits for the

multiplication result. The integer base and scaling factor of the multiplication result are adjusted

by finding minimum k such that:

k ≥ dlog2 |xb|e+ dlog2 |yb|e − (n− 1); and, k ≥ xf + yf − (n− 1) (6.8)

Same as the addition, the calculation of dlog2(·)e and k can be efficiently performed. Once

a multiplication is performed, the log value of the multiplication result does not need to be com-

puted any more since it stays as (n− 1) from then on, which results in the even faster computation

for future multiplications.
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ASFP MAC. By combining the adaptive-scale addition and multiplication, the MAC computa-

tion is effectively performed with numerical accuracy similar to floating-point, which provides a

more reliable result than FP. Also, it is computationally more efficient than floating-point since its

basic format is based on FP.

Given two vectors, it first performs element-wise multiplication and updates the scaling factor

and the integer base for each multiplication result using Equation 6.8. After all the results are

added up, the final summation is obtained by finding the best integer base and the scaling factor

based on Equation 6.6. By providing a unified MAC operation, its computational efficiency is

further improved when compared to performing individual multiplication and addition.

Algorithm 2 describes adaptive-scale MAC computation using ASFP multiplication and

addition.

Algorithm 2: Adaptive-Scale MAC operation
Input: Vector x and y with length l, bit-width n
Output: zb, zf for xTy = z = zb · 2−zf

1 zb := 0, zf := 0, k = 0, vector m with length l;
2 for i← 1 to l do
3 k := x[i]f + y[i]f , lx, ly := MSB index of |x[i]b|, |y[i]b|;
4 k := k −max(k − (lx + ly), 0);
5 m[i]b := x[i]by[i]b >> k, m[i]f := x[i]f + y[i]f − k + n− 1;
6 end
7 zf := k := min(m[1]f to m[l]f );
8 for i← 1 to l do
9 zb := zb + (m[i]b >> (m[i]f − zf ));

10 end
11 lz := MSB index of |zb|, zb = zb >> max(lz − (n− 1), 0);
12 k := k −max(lz − k, 0);
13 zf := zf − k + n− 1, zb := zb << (n− 1− k);
14 return zb, zf

6.5 Implementation

The Neuro.ZERO platform consists of two MCUs, memory space, sensors, and energy stor-

age, which is shown in Figure 6.7a.
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Figure 6.7: Neuro.ZERO hardware platform: a custom-built dual-MCU prototype for zero-energy
acceleration.

The Main MCU and Accelerator. The Neuro.ZERO platform has two microcontrollers (MSP

430FR5994 (TexasInstruments, 2018)), serving as the main MCU and the accelerator, which

can operate with low power (118µA–1.8mA) supplied from an energy harvester. Two power

connectors dedicated to each MCU allow separate power supplies, i.e., stable power (battery) and

energy-harvesting power (batteryless).

Memory Space. A memory module is connected to both the main MCU and the accelerator.

It works as a common data storage for the shared data, e.g., intermediary data or sensor read-

ings. A FRAM (Buck, 1952) is chosen to be placed between two MCUs since it is a nonvolatile

memory performing read/write operation in nanoseconds with high energy efficiency (Cypress,

2017). These attributes of FRAM minimize data sharing overhead between the main MCU and

the accelerator.

Sensors. Sensors are connected to both the main MCU and the accelerator so that the data is ac-

cessible by both without any lag. They are powered from the battery for reliable and timely data

collection. They are connected through the pin-headers on the below surface, e.g., we connect a

camera and microphone for the traffic sign and voice command recognizer, respectively.

Energy Storage. A capacitor charged by an energy harvester works as the energy buffer for the

accelerator. When the energy level of the capacitor exceeds the required energy level for acceler-
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ation, the system gets accelerated. The amount of energy needed for acceleration is statistically

obtained from multiple energy measurements.

6.6 Algorithm Evaluation

Prior to describing the performance of Neuro.ZERO in real-world scenarios (Section 6.7),

we conduct dataset-driven experiments to evaluate the two core algorithms of Neuro.ZERO, i.e.,

energy-aware acceleration (step-up inference and skip-out training) and adaptive-scale fixed-point

(ASFP). The evaluation of the step-up and skip-out algorithms is conducted on a GPU machine

(GTX 1080 Ti) using four datasets, i.e., MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky

et al., 2009), SVHN (Netzer et al., 2011), and Fashion MNIST (Xiao et al., 2017). We use a

variation of LeNet architecture (LeCun et al., 1998) as the baseline DNN, which is also used later

in the traffic sign recognizer (Section 6.7.1). The performance of ASFP is evaluated on an MCU.

6.6.1 Energy-Aware Acceleration

Evaluation of Step-up Inference. To evaluate the effectiveness of the step-up inference, we

measure the inference accuracy of the extended inference mode by varying the step from step

1 to step 5 for each of the four datasets. For training, we use a learning rate of 10−3 with Adam

optimizer (Kingma and Ba, 2014), L2 regularization parameter of 10−6, and a mini-batch size of

96. A separate test dataset (different from the training data) is used to evaluate the accuracy of

each network. The test accuracy, along with the size of the DNN and the number of CNN filters

for each step are shown in Figure 6.8.

For all datasets, the accuracy increases as steps are increased, i.e., from 92.7% to 99.0%,

67.7% to 77.1%, 74.5% to 90.2%, and 91.7% to 98.9% for MNIST, CIFAR-10, SVHN, and

Fashion MNIST dataset, respectively. However, the increment in accuracy is relatively smaller

as the network grows. For example, the delta in accuracy for SVHN dataset is initially 7% from

step 1 to step 2, but later it drops to 1% from step 4 to step 5. Since the gain in accuracy tends to
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Figure 6.8: Performance of step-up inference for different steps.

maximize during the first few steps of the step-up algorithm, executing extended inference for

smaller steps is an effective strategy to improve the inference performance.

Evaluation of Skip-out Training. We compare the inference accuracy of the skip-out algorithm

running at different skip-out rates against two baseline solutions: DNNs that do not implement

skip-out (no skip-out) and thus it is expected to set the upper limit for skip-out; and DNNs that

implement drop-out (sets 50% weights to zero). These DNNs are trained and tested on different,

non-overlapping subsets of the dataset. Figure 6.9 shows how the accuracy (evaluated on the test

dataset) varies as the number of training iteration (on the training dataset) is increased.

We observe that for every dataset, the accuracy of skip-out converges to no skip-out. For

instance, a skip-out rate between 0.0–0.4 results in a similar accuracy to no skip-out with a neg-

ligible (0.4%-0.9%) loss in accuracy for any dataset. Furthermore, skip-out yields a similar or

higher accuracy to drop-out given similar skip-out rates. In general, the performance of skip-out

depends on its rate; as the rate gets closer to zero, its accuracy gets closer to no skip-out.
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Figure 6.9: Performance of skip-out at different skip-out rates.

We also observe that skip-out requires a shorter training time to achieve comparable accuracy

to no skip-out (not shown in the figure). For instance, skip-out (0.0-0.6) reaches 80% of accuracy

about 100 iterations earlier than no skip-out. This is because the number of weights trained at

each iteration in skip-out algorithm is flexibly changed based on the energy, which is usually

much smaller than the total number of weights. Although the gain in accuracy after each training

iteration in skip-out is generally smaller than no skip-out, larger training iterations, given the

same time, compensates for the sluggish increase in accuracy, and sometimes it slightly increases

the overall accuracy. Skip-out saves training time and energy consumption and guarantees the

completion of an iteration regardless of the energy level. This incremental and quick pace of

training is more suitable for intermittent online learning.
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6.6.2 Numerical Acceleration

To evaluate the effectiveness of adaptive-scale fixed-point (ASFP), its MAC operation error

and execution time are compared against fixed-point (FP). Figure 6.10a shows the MAC opera-

tion errors of ASFP, and four FP formats (Q19, Q17, Q13, Q1) for two randomly generated 64×1

vectors having 20 bit-widths. Here, Qx denotes that x number of bits are used to represent the

fractional part. The error is calculated as |(f − x)/f | × 100, where f is MAC result of floating-

point (32bit) and x is the MAC result of ASFP or FP. As shown in the figure, ASFP provided

average 0.71% error, which is ten times less than the best-performing FP (Q7, 7.32%). The er-

rors of other FPs are numerically intolerable (more than 100%). Although the execution time

(measured in clock cycles) of ASFP is 1.5 times slower than fixed-point, it is 3.4 times faster than

floating-point with only 0.71% numerical difference, which is shown in Figure 6.10b.

0 200 400 600 800 1000
Number of MAC

10-2

10-1

100

101

102

103

E
rr

or
 (

%
)

FP(Q7) FP(Q13)FP(Q1)

ASFP

FP(Q19)

(a) MAC error

0 200 400 600 800 1000
Number of MAC

0

1

2

3

4

5

C
lo

ck
 c

yc
le

 (
x1

04 )

FP(Q13)

Floating Point

FP(Q1) FP(Q7)

ASFP FP(Q19)

(b) MAC execution time

0 200 400 600 800 1000
Number of multiplication

10-4
10-3
10-2
10-1
10-0
101
102
103
104

E
rr

or
 (

%
)

FP(Q7)

FP(Q19) FP(Q13)

ASFP

FP(Q1)

(c) Overflow error

0 200 400 600 800 1000
Number of multiplication

10-4
10-3
10-2
10-1
100
101
102
103

E
rr

or
 (

%
)

FP(Q19)

FP(Q13)

FP(Q7)FP(Q1)

ASFP

(d) Precision error

Figure 6.10: The MAC error, MAC execution time, overflow error, and precision error of ASFP
and four FPs (Q1, Q7, Q13, and Q19).
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To investigate the results further, we measure the overflow and precision errors separately.

The overflow error is measured by multiplying two random numbers ranging from -128 to 128

and the precision error is measured by the multiplication of two random numbers between -2 and

2. Among FPs, Figure 6.10c and 6.10d show that Q7 yields the smallest error of 0.009% in the

overflow test, while Q19 achieves the smallest error of 0.005% in the precision test. The overflow

and precision errors of ASFP are 0.005% and 0.123%, respectively. It demonstrates that unlike

ASFP, a single fixed-point format can only provide either a small overflow error (Q7) or a small

precision error (Q19), but not both. Hence, ASFP achieves better numerical correctness regarding

both overflow and precision at the same time, which a fixed-point format cannot.

6.7 Application Evaluation

6.7.1 Traffic Sign Recognizer

We implement a traffic sign recognizer, which uses a camera to capture and classifies 43 dif-

ferent types of traffic signs, as shown in Figure 6.11b. The system is powered by a 5V@40mA

solar energy harvester. The camera first takes a 64×48 image with RGB565. The MCU converts

the image into a grayscale image (32×32) and passes it to the DNN. The baseline DNN running

on the main MCU consists of seven layers including the input and the output layers: 32×32×1

(input), 3×3×1×2 (Conv), 3×3×2×4 (Conv), 3×3×4×8 (Conv), 64 (FC), 128 (FC), 43 (out-

put), which is a variant of the LeNet architecture (LeCun et al., 1998) with an additional conv

layer. Table 6.3 describes the network architecture during acceleration. We use ASFP with 16

bit-width for all numerical operations.

Performance of the Accelerator. We evaluate the performance of four acceleration modes of

Neuro.ZERO. We take photos of traffic signs from the GTSRB dataset (Stallkamp et al., 2011b)

using the setup shown in Figure 6.11a. We capture 39,209 training images and 12,630 test images

from 43 classes using a camera sensor connected to Neuro.ZERO as the images appear on the

screen of a laptop. We also evaluate the performance of the traffic recognizer using the original
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Traffic sign

Neuro.ZERO
with a 

camera

(a) Traffic sign photoshoot (b) Example images taken by the camera

Figure 6.11: Traffic sign recognizer: (a) Traffic signs are captured using a camera. (b) Examples
of images taken.

Main MCU Accelerator
Extended baseline1 step 1: 3×3×1×2, 3×3×2×1, 3×3×1×2

step 2: 3×3×1×2, 3×3×2×2, 3×3×2×4
step 3: 3×3×1×2, 3×3×2×3, 3×3×3×6
step 4: 3×3×1×2, 3×3×2×4, 3×3×4×8

Expedited step1: baseline2 step 1: 3×3×1×2, 3×3×2×1, 3×3×1×8
step2: baseline3 step 2: 3×3×1×2, 3×3×2×2, 3×3×2×8

Ensembled baseline 32×32×1, 64, 128, 128, 64, 43 (FC DNN)
Latent Train baseline baseline with skip-out rate (0.0–0.4)

* Baseline1: 32×32×1, 3×3×1×2, 3×3×2×4, 3×3×4×8, 96, 192, 43
* Baseline2: 32×32×1, 3×3×1×2, 3×3×2×3, 3×3×3×8, 64, 128, 43
* Baseline3: 32×32×1, 3×3×1×2, 3×3×2×2, 3×3×2×8, 64, 128, 43

Table 6.3: The DNN architecture of the traffic sign recognizer

traffic sign images from the GTSRB dataset as the input and compare it to the performance of the

camera-taken images.

Figure 6.12a shows the recognition accuracy of the extended inference with four steps of

incremental extension. Every two hours, a different set of 3,000 traffic signs (43 classes) is classi-

fied by the baseline DNN as well as the four steps to measure the accuracy. It shows that higher

accuracy is achieved with further steps providing more extension of DNN. For instance, the base-

line accuracy is improved from 80% to 83%, 86%, 87%, and 88% on average by each step with

the camera-taken traffic sign images. Figure 6.12b shows the execution time of the expedited

inference measured by clock cycle of the main MCU and the accuracy given two steps of incre-

mental offloading. Compared to the baseline DNN, the execution time is decreased by 25% and

38%, accelerating the execution speed by 1.3× and 1.6× for step one and two, respectively. Both
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Figure 6.12: The inference accuracy of the traffic sign recognizer for all four modes of accelera-
tion. Results are shown for both camera-taken images as well as the original GTSRB images.

the camera-taken and original images experience only 1% of accuracy degradation by the maxi-

mum for the speed acceleration. Figure 6.12c shows the recognition accuracy of the ensembled

inference with the second DNN consisting of six FC layers. The output of the two DNNs in the

ensemble are combined using a fully-connected layer as done in (Mohammadi and Das, 2016).

By ensembling the FC DNN, the accuracy is improved from 80% to 85% and from 87% to 93%

on average for the camera-taken and original GTSRB images, respectively.

Figure 6.12d shows the training accuracy over time for 20 classes of traffic signs performed

by the latent training on the accelerator. Each single training example is trained online using

SGD (Stochastic Gradient Descent (Robbins and Monro, 1985; Kiefer and Wolfowitz, 1952))

with the momentum algorithm (Rumelhart et al., 1988). As shown in the figure, the latent training
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Figure 6.13: Energy level of the capacitor during the execution of traffic sign recognizer.

keeps improving the accuracy over time up to 65% and 70% for the camera-taken and origi-

nal GTSRB images, respectively. However, their accuracy is about 15% lower than the offline-

trained DNNs (80% and 85%) on average since it uses SGD and ASFP instead of mini-batch and

floating-point which usually provide better training performance.

Execution Pattern of the Accelerator. We evaluate the execution pattern of four accelerations

regarding the available energy of the accelerator. We measured the run-time energy level of the

capacitor charged from a solar-harvesting panel (5V@40mA) for three hours (9 am - 12 pm)

while executing each mode of acceleration every ten seconds which consume the energy in the

capacitor.

Figure 6.13 shows the remaining energy level of the capacitor (harvesting minus consuming)

over time and the amount of energy required by each step of four accelerations, i.e., the extended,

expedited, ensembled inference, and the latent training. The horizontal lines on the figures indi-

cate the minimum energy threshold required for executing the acceleration with each step. When

the current energy level is above one of the thresholds, the corresponding step is executed accord-

ingly. For instance, as shown in Figure 6.13a, the extended inference with step 3 is executed at

hour one since the energy level (7.35mJ) is larger than the step 3 threshold (6.29mJ) but smaller

than the step 4 threshold (8.54mJ). Unlike the extended and expedited inference, the ensemble
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inference has only one energy threshold since the second DNN running on the accelerator is

executed not in an energy-aware manner. Without the step-up inference algorithm, it is either

executed or not. The latent train also has one energy threshold (train or not), but it runs with the

skip-out that provides better utilization of energy. When the energy level is above the training

threshold, it spends all the energy by training a portion of DNN proportionate to the current en-

ergy level.

The execution pattern of accelerations depends on the available energy (harvesting) and the

energy required for acceleration (consuming). Table 6.4 shows the execution pattern of accelera-

tions with each step out of total 1,080 executions. The baseline column indicates the standalone

execution of main MCU (no acceleration) whereas the rests indicate the step-up accelerations

on the accelerator. For the ensembled inference and latent training, we put their accelerations

(ensembling/training) in the step 1 column. The execution patterns are different from each other

since each acceleration with a different step consumes a different amount of energy.

Mode Baseline Step 1 Step 2 Step 3 Step 4
Extended 42 (3.8%) 56 (5.1%) 140 (12.9%) 729 (67.5%) 113 (10.4%)

Expedited 195 (18.0%) 169 (15.6%) 716 (66.2%) - -
Ensembled 172 (15.9%) 908 (84.0%) - - -

Latent Training 862 (79.8%) 218 (20.1%) - - -

Table 6.4: The execution pattern of accelerations (traffic sign)

6.7.2 Voice Command Recognizer

We implement a limited-vocabulary speech recognition system that recognizes ten voice

commands sensed through a microphone (Figure 6.7): {yes, no, on, off, up, down, go, stop, left,

right} by using an RF energy harvester (Powercast, 2016a,b). To generate input for the DNN, the

microphone first samples voice data at 8kHz. Then, it is divided into small frames consisting of

256 samples having an overlap of 128 samples between two frames. Frequency information is

obtained for each frame using FFT with the help of the DSP module (TexasInstruments, 2018)

in the MCU. Finally, MFCCs are generated as input data for the DNN by filling Mel-filter banks.

The baseline DNN consists of total six layers including input and output: 61×13×1 (input),
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Figure 6.14: The inference accuracy of the voice command recognizer for all four modes of
acceleration. Results are shown for both microphone-captured utterances as well as the GSC
dataset.

12×6×1×4 (Conv), 6×3×4×8 (Conv), 64 (FC), 96 (FC), 10 (output), which is based on the

small-footprint keyword spotting architecture (Sainath and Parada, 2015). Table 6.5 describes the

detailed network architecture for acceleration. We apply the proposed adaptive-scale fixed point

(ASFP) with 16 bit-width for all numerical operations.

Performance of the Accelerator. We evaluate the performance of four accelerations by collect-

ing voice commands from four people. In total, 10,000 commands (8,000 for train and 2,000 for

test) from ten-word classes were captured through the microphone on our voice command recog-

nizer. We also evaluate the performance with GSC dataset (Google Speech Command) (Warden,
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Figure 6.15: Energy level of the capacitor during voice command recognition.

Mode Main MCU Accelerator
Extended baseline1 step 1: 12×6×1×1, 6×3×1×2

step 2: 12×6×1×2, 6×3×2×4
step 3: 12×6×1×3, 6×3×3×6
step 4: 12×6×1×4, 6×3×4×8

Expedited step1: baseline2 step 1: 12×6×1×1, 6×3×1×8
step2: baseline3 step 2: 12×6×1×2, 6×3×2×8

Ensembled baseline 61×13×1, 64, 128, 128, 64, 10 (FC DNN)
Latent Training baseline baseline with skip-out rate (0.0–0.4)

* Baseline1: 61×13×1, 12×6×1×4, 6×3×4×8, 96, 144, 10
* Baseline2: 61×13×1, 12×6×1×3, 6×3×3×8, 64, 96, 10
* Baseline3: 61×13×1, 12×6×1×2, 6×3×2×8, 64, 96, 10

Table 6.5: The DNN architecture of the voice command recognizer

2018) (84,843 training words in 35 classes and 11,005 test words) with the same experimental

setup and compare it with the microphone-captured commands.

Figure 6.14a shows the recognition accuracy of the extended inference with four steps of

incremental extension. For the microphone-captured commands, a different set of 500 commands

(10 classes) is classified by the baseline DNN as well as the four steps to measure the accuracy

every hour. For GSC dataset, a different set of 2,500 commands (35 classes) is classified every

two hours. For both datasets, the accuracy is improved along with the steps from 76% to 92%

(microphone) and from 68% to 77% (GSC) by the maximum. Figure 6.14b shows the execution

time of the expedited inference measured by clock cycle of the main MCU and the accuracy

given two steps of incremental offloading. Compared to the baseline DNN, the execution time is
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decreased by 21% and 43%, accelerating the execution speed by 1.2× and 1.7× for step one and

two, respectively. Both the microphone-captured and GSC commands experience only 1.3% of

accuracy degradation for the speed acceleration. Figure 6.14c shows the recognition accuracy of

the ensembled inference with the second DNN consisting of six FC layers. By ensembling, the

accuracy is improved from 77% to 80% and from 68% to 75% on average for the microphone-

captured and GSC commands, respectively.

Figure 6.14d shows the training accuracy over time performed by the latent training. Based

on SGD and momentum algorithm, 10 and 16 classes of voice command are trained for the

microphone-captured and GSC commands system, respectively. The accuracy keeps improv-

ing over time and converges to 65% and 60% for the microphone-captured and GSC commands,

which are about 11% and 8% lower than the offline-trained DNNs (76% and 68%).

Execution Pattern of the Accelerator. We evaluate the execution pattern of four accelerations

regarding the available energy of the accelerator. We measured the run-time energy level of the

capacitor charged from an RF energy harvester (Powercast, 2016a,b) for three hours while exe-

cuting each mode of acceleration every ten seconds which consume the energy in the capacitor.

Figure 6.15 show the remaining energy level of the capacitor (harvesting minus consuming) over

time and the amount of energy required by each step of four accelerations. For instance, as shown

in Figure 6.15b, the expedited inference with step 2 is executed at hour two since the energy level

(10.27mJ) is larger than the step 2 threshold (8.34mJ). Table 6.6 shows the execution pattern out

of total 1,080 executions.

Mode Baseline Step 1 Step 2 Step 3 Step 4
Extended 0 (0%) 0 (0%) 448 (41.4%) 615 (56.9%) 17 (1.5%)

Expedited 0 (0%) 81 (7.5%) 999 (92.5%) - -
Ensembled 5 (0.4%) 1075 (99.5%) - - -

Latent Training 902 (83.5%) 178 (16.4%) - - -

Table 6.6: The execution pattern of accelerations (voice command)
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6.7.3 Overhead of Acceleration

Although the accelerator runs only on harvested energy, the main MCU needs to process the

data from the accelerator, which causes an overhead on the main MCU. We evaluate this over-

head by measuring the additional power consumption and clock cycles required for acceleration,

compared to standalone execution of the main MCU. Table 6.7 shows the overhead of the main

MCU for four modes of acceleration for the traffic sign recognizer. The percentages indicate their

relative amount compared to standalone execution of the main MCU without the accelerator. For

latent training, the overhead refers to the cost of fetching a trained model from the accelerator

to the main MCU. We observe that the three inferences require less than 1% extra energy and

clock cycles for acceleration, while the overhead of latent training is relatively higher. This is

because the amount of data moved between two MCUs are different for inference and latent train-

ing. During inference, the two MCUs exchange relatively small chunks of data for input/output

and intermediate results, whereas latent training requires movement of relatively larger sized

classifier models. However, the frequency of fetching models is much lower than the frequency

of interaction between the two MCUs in other three modes since a model is fetched occasionally,

only when it has been improved by completing a predefined number of training iterations on the

accelerator.

Mode Energy Overhead Clock Cycle Overhead
Extended Inference 0.065 mJ (0.7%) 256× 103 (0.9%)

Expedited Inference 0.058 mJ (0.9%) 240× 103 (1.4%)
Ensembled Inference 0.055 mJ (0.6%) 240× 103 (0.9%)

Latent Train (fetching) 3.4 mJ (-%) 15, 344× 103 (-%)

Table 6.7: The overhead of the main MCU due to acceleration.

6.8 Discussion

Unpredictable Harvested Energy. Due to the unpredictable nature of harvested energy, the

accelerator may not be available at desired instants. To enable timely wake-up, specially designed

energy management unit, along with scheduling algorithms for energy harvesting systems (Luo
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and Nirjon, 2019; Chetto and El Ghor, 2019; Baknina and Ulukus, 2017; Audet et al., 2011;

Moser et al., 2007) should be implemented alongside Neuro.ZERO. To meet the varying energy

demands of the running application, reconfiguration energy storage (Colin et al., 2018) and/or

multi-capacitor systems (Hester et al., 2015b) should be implemented to scale and/or partition

harvested energy for efficient and timely use.

Caveats to On-Device Training. There are certain caveats to on-device online training on

Neuro.ZERO. First, a mini-batch size of one is used in our implementation of the latent train-

ing mode of Neuro.ZERO, which might increase noise and cause abrupt changes in the training

process (Masters and Luschi, 2018; Li et al., 2014a; Bengio, 2012). To mitigate this, multiple

examples should be stored and trained together as a batch instead of training only one. Second,

a large learning rate may never converge to an optimal solution but to a sub-optimal one (Good-

fellow et al., 2016; Attoh-Okine, 1999). To handle this, the learning rate should be decayed after

a number of training iterations. Alternatively, transfer learning techniques (Torrey and Shavlik,

2010; Pan and Yang, 2009) such as retraining only the last few layers as opposed to training the

whole network could be employed.

Using Battery as a Backup. Besides the energy harvester, the accelerator could use a battery of

its own as a backup source. Although such a design allows waking-up the accelerator in times of

need, eventually, the battery will die, and the design will fall back to our current implementation

of Neuro.ZERO. Another alternative design is to design a single-MCU system that has both

a battery and a harvester. Although such a design increases the battery-life of the MCU, the

performance-gain in DNN acceleration on a single-MCU system is never going to be as high as a

multi-MCU system like Neuro.ZERO, which has more computational capacity.

6.9 Prior Work and Their Limitations

Embedded DNN Accelerator. DNN inference accelerators using FPGAs such as (Qiu et al.,

2016; Wang et al., 2016; Zhang et al., 2015; Farabet et al., 2011) have been widely studied due to
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their high performance and reconfigurability. Also, there are some accelerators based on different

platforms, e.g., embedded GPU (Han et al., 2016; Cavigelli et al., 2015) or ARM microproces-

sors (Gokhale et al., 2014). However, they only focus on speeding up DNN inference given a

pre-trained model, unlike the proposed accelerator that enables accuracy improvement as well as

training. Although some work introduced trainable accelerators, they depend on a specific plat-

form such as NVIDIA GPU (Dundar et al., 2017) or specific hardware (Chen et al., 2014b; Kim

et al., 2014; Merolla et al., 2014). None of these works utilize energy harvesters as their power

source in an energy-aware manner.

DNN with Fixed-Point. Fixed-point arithmetic for DNNs has been explored in earlier works

ranging from the theoretical analysis (Draghici, 2002; Holi and Hwang, 1993) to implemen-

tations (Gupta et al., 2015; Courbariaux et al., 2014). Recently, (Lin et al., 2015) showed that

DNNs could be effectively trained using only fixed-point arithmetic and many approaches have

been proposed to increase accuracy and efficiency. Most popular approaches are based on com-

pression of a pre-trained model, including quantization of weights (Hubara et al., 2017; An-

war et al., 2015; Gong et al., 2014; Vanhoucke et al., 2011) and extremely low-precision (1-3

bits) (Courbariaux et al., 2015; Hwang and Sung, 2014). However, the proposed adaptive-scale

fixed-point is applicable to general DNNs without requiring any compression. Although a pre-

trained DNN model can be effectively reduced for fixed-point by compressing, (Rastegari et al.,

2016; Lin et al., 2015) showed that training DNN models with fixed-point results in better accu-

racy. In accordance with these results, we train DNNs from scratch using adaptive-scale arith-

metic, i.e., MAC, multiplication, and addition. Similar to our work, (Gupta et al., 2015) trained

DNNs by taking a maximum integer base using stochastic and near-rounding. However, unlike

ours, their scaling factor is fixed for the entire training.

Intermittent Computing. Existing work on intermittent computing address some important

system-level problems, such as atomicity (Maeng et al., 2017; Colin and Lucia, 2016), consis-

tency (Maeng et al., 2017; Colin and Lucia, 2016; Lucia and Ransford, 2015), programmabil-

ity (Hester et al., 2017), timeliness (Hester et al., 2017), and energy efficiency (Colin et al., 2018;
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Hester et al., 2015b; Buettner et al., 2011). Although they enable efficient code execution of

general-purpose tasks on batteryless systems, none of them considers the learning aspects of a

DNN such as their accuracy or training. Recently, (Gobieski et al., 2018a) implemented intermit-

tent inference on harvested energy using a microcontroller. However, its execution of inference

is not guaranteed unlike the proposed system since it entirely depends on harvested energy. For

DNN training, (Nirjon, 2018) proposed layer-by-layer training approach with the concept of

lifelong learning, which repeatedly trains a fixed number of weights without skipping out.

6.10 Summary

We introduce Neuro.ZERO, an intermittently-powered accelerator that draws no system en-

ergy and opportunistically accelerates the performance of a DNN based on the four modes of

acceleration. To enable zero-energy acceleration, energy-aware acceleration algorithms, and

adaptive-scale fixed-point are proposed. A traffic sign and a voice command recognizer are imple-

mented, and they have been demonstrated that the inference accuracy and speed increase.
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CHAPTER 7: ENERGY-AWARE INTERMITTENT LEARNING

We envision a future where batteryless embedded platforms will be an effective alternative

to battery-powered systems. Being batteryless will reduce environmental hazard caused by bil-

lions of batteries containing toxic and corrosive materials that are dumped in the environment

every year (Zeng et al., 2012). The prolonged life of batteryless systems will eliminate the cost

and effort of recharging and replacing batteries and make IoT scalable (Gartner, Inc., 2016). In

the absence of batteries, electronic devices will be lightweight and miniature. We will be able

to develop batteryless implantables and wearables that monitor and control a person’s health

vitals throughout their entire lifetime (Mosa et al., 2017). With this vision in mind, batteryless

computing platforms have been proposed in recent years.

With the emergence of batteryless computing platforms, we are now able to execute computer

programs on embedded systems that do not require a dedicated energy source. These platforms

are typically used in sensing applications (Yerva et al., 2012; Sudevalayam and Kulkarni, 2011;

Seah et al., 2009; Kansal and Srivastava, 2003; Gorlatova et al., 2010), and their hardware archi-

tecture consists primarily of a sensor-enabled microcontroller that is powered by some form of

harvested energy such as solar, RF or piezoelectric (Priya and Inman, 2009). Programs that run

on these platforms follow the so-called intermittent computing paradigm (Maeng et al., 2017; Van

Der Woude and Hicks, 2016; Xie et al., 2016; Lucia et al., 2017) where a system pauses and re-

sumes its code execution based on the availability of harvested energy. Over the past decade, the

efficiency of batteryless computing platforms has been improved by reducing their energy waste

through hardware provisioning, through check-pointing (Ransford et al., 2012) to avoid restart-

ing code execution from the beginning at each power-up (Balsamo et al., 2015), and through

discarding stale sensor data (Hester et al., 2017) which are no longer useful. Despite these ad-
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Figure 7.1: An intermittent learner intermittently executes on-device online machine learning
algorithms using harvested energy.

vancements, the capability of batteryless computing platforms has remained limited to simple

sensing applications only.

In this study, we introduce the concept of intermittent learning (Figure 7.1), which makes

energy harvested embedded systems capable of executing lightweight machine learning tasks.

Their ability to run machine learning tasks inside energy harvesting microcontrollers pushes the

boundary of batteryless computing as these devices are able to sense, learn, infer, and evolve

over a prolonged lifetime. The proposed intermittent learning paradigm enables a true lifelong

learning experience in mobile and embedded systems and advances sensor systems from being

smart to smarter. Once deployed in the field, an intermittent learner classifies sensor data as well

as learns from them to update the classifier at run-time—without requiring any help from any

external system. Such on-device learning capability makes an intermittent learner privacy-aware,

secure, autonomous, untethered, responsive, adaptive, and evolving forever.

The notion of intermittent learning is similar to the intermittent computing paradigm with the

primary difference that the program that runs on the microcontroller executes a machine learn-

ing task—involving both training and inferring. Although it may appear to be that all machine

learning tasks are merely pieces of codes that could very well be run on platforms that support

intermittent computing, for several reasons, a machine learning task in an intermittent computing

setup is quite different. The fundamental difference between a machine learning task and a typ-

ical task on a batteryless system (e.g., sensing and executing an offline-trained classifier) lies in

the data and application semantics, which requires special treatment for effective learning under

an extreme energy budget. Existing works on intermittent computing address important problems,

such as ensuring atomicity (Maeng et al., 2017; Colin and Lucia, 2016), consistency (Maeng
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et al., 2017; Colin and Lucia, 2016; Lucia and Ransford, 2015), programmability (Hester et al.,

2017), timeliness (Hester et al., 2017), and energy-efficiency (Colin et al., 2018; Hester et al.,

2015b; Buettner et al., 2011), which enable efficient code execution of general-purpose tasks.

Our work complements existing literature and specializes a batteryless system on efficient and

effective on-device learning by explicitly considering the utility of sensor data and the execution

order of different modules of a machine learning task.

Three key properties of intermittent learning make it unique and a harder problem to solve.

First, when energy is scarce, an intermittent learning system needs to decide the best action (e.g.,

learn vs. infer) for that moment so that its overall learning objective (e.g., the completion of learn-

ing a desired number and types of examples) is achieved. Second, since not all training examples

are equally important to learning, an intermittent learning system should smartly decide to keep

or discard examples at run-time, and thus be able to eliminate a large number of unnecessary and

energy-wasting training actions. Third, a system that pauses and resumes its executing based on

the state of its energy harvester runs a greater risk of missing real-world events that it wants to de-

tect or learn. When both the generation of energy and the generation of training/inferable sensor

data are intermittent and uncertain, the problem of learning becomes an extremely challenging

feat. None of the existing intermittent computing platforms consider these issues, and thus they

are not effective in learning when we execute machine learning tasks on them.

In this chapter, we address these aforementioned challenges and propose the first intermit-

tent learning framework for intermittently powered systems. The framework is targeted to a

class of learning problems where the presence of energy implies the presence of data—which

means either the cause of energy and data are the same, or they are highly correlated, or data is

always available for best-effort sensing and inference (e.g., sporadic classification of air qual-

ity). Furthermore, we focus on long-term and online machine learning tasks where a batteryless

system is expected to run for an extended period in time, and its learning performance is ex-

pected to improve over time. In our proposed framework, the availability of labeled data is not

an absolute necessity. In other words, we study unsupervised (Russell and Norvig, 2016) and
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semi-supervised (Chapelle et al., 2009) machine learning problems in this chapter, although the

framework can be easily extended to incorporate supervised (Russell and Norvig, 2016) and re-

inforcement learning (Russell and Norvig, 2016) tasks by enabling real-time feedback from the

environment or humans.

We provide a programming model that allows a programmer to develop an intermittent learn-

ing application that executes correctly when a system is intermittently powered. Based on the

action-based (task-based) intermittent programming model (Colin and Lucia, 2018; Yıldırım

et al., 2018; Maeng et al., 2017; Hester et al., 2017; Colin and Lucia, 2016; Lucia and Ransford,

2015), the proposed framework provides application programmers with an energy pre-inspection

tool that helps them split an existing application code into sub-modules called action that can

be executed to completion with intermittently harvested energy. The user study of the intermit-

tent learning programming model shows that the concept of action-based intermittent learning is

intuitive and applicable to a variety of applications, and the intermittent learning framework pro-

vides the necessary components to write on-device machine learning programs on intermittently

powered systems.

We envision a wide variety of applications where the proposed intermittent learning paradigm

applies. Three such applications are implemented and evaluated in this chapter to demonstrate the

efficacy of the proposed intermittent learning framework. The first one is an air quality learning

system where sunlight and air-quality sensitive environmental sensors are powered by harvesting

solar energy to detect an anomaly in the air quality. This batteryless learner has been monitoring,

classifying, and learning air-quality indices continuously since September 2018. We have devel-

oped a webpage showing its real-time learning status1. The second application is an RF energy-

based human presence learning system which learns to detect humans passing by it in indoor

spaces from the variation in RSSI patterns. The last application is a vibration monitoring scenario

(applicable to human health and machine monitoring applications) where an accelerometer-based

sensing system is powered by harvesting piezoelectric energy. To demonstrate that the proposed

1Intermittent air quality learning system: https://www.cs.unc.edu/˜seulki/intermittent-
learning/air-quality-learning.html
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framework is portable to different platforms, we have used an AVR, a PIC, and an MSP430-based

microcontroller to implement these three applications, respectively. The framework is imple-

mented in C and has been open-sourced (Embedded Intelligence Lab (UNC Chapel Hill), 2019a).

The main contributions of this chapter are the following:

• This is the first work that introduces the intermittent learning concept and proposes an

intermittent learning framework that enables energy harvested computing platforms to perform

on-device machine learning training.

•We define a set of action primitives for intermittent learners and devise an algorithm to

determine a sequence of actions to achieve the desired learning objective while maximizing

energy efficiency.

•We propose three learning-example selection heuristics that enable an intermittent learner to

decide whether to learn or to discard examples—which increase the efficiency in learning under

tight energy constraints.

•We provide a programming model and development tool of intermittent learning, which

allows a programmer to implement an intermittent learning application based on the action-based

intermittent execution.

•We implement and evaluate three intermittent learning applications: an air quality, a hu-

man presence, and a vibration learning system. We demonstrate that the proposed framework

improves the energy efficiency of a learning task by up to 100% and cuts down the learning time

by 50%.

•We have open-sourced the software framework to the community to facilitate the widespread

use of the proposed intermittent learning framework. The anonymized code repository can be ac-

cessed here (Embedded Intelligence Lab (UNC Chapel Hill), 2019a).

7.1 Overview

The goal of intermittent learning is to enable efficient and effective execution of a class of

machine learning tasks on embedded systems that are powered intermittently from harvested
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energy. Throughout the lifetime, an intermittent learner sporadically senses, infers, learns (trains),

and thus evolves its classier and model parameters over time, and get better at detecting and

inferring events of interest. Like existing intermittent computing systems, an intermittent learner

also pauses its execution when the system runs out of energy and resumes its execution when

the system has harvested enough energy to carry out its next action. However, due to the nature

of the data and application semantics of a machine learning task, an intermittent learner has to

do a much better job in deciding what actions to perform and what data to learn—so that it can

ensure its progress toward learning and inferring events of interests, while making the best use of

sporadically available harvested energy.

7.1.1 Motivation Behind Intermittent Learning

On-device machine learning on embedded systems is an emerging research area (Li et al.,

2018a; Chauhan et al., 2018; Yao et al., 2017b). Batteryless systems have also joined this revo-

lution. Recent literature on intermittent computing routinely uses on-device inference as one of

many example applications (Li et al., 2018b; Li and Zhou, 2018; Truong et al., 2018; Gobieski

et al., 2018a; Hester et al., 2017; Ransford et al., 2012). For example, (Li et al., 2018b; Li and

Zhou, 2018) harvests energy from the ambient light to power up a gesture recognition system

that implements Constant False Alarm Rate (CFAR) algorithm (Scharf and Demeure, 1991), Cap-

Band (Truong et al., 2018) implements a Convolutional Neural Network (CNN) to classify hand

gestures on a batteryless system that is powered by a combination of solar and RF harvesters,

(Gobieski et al., 2018a) implements a deep network compression algorithm (Han et al., 2015a) to

fit a Deep Neural Network (DNN) into a resource-constrained microcontroller (MSP430) which

runs on energy harvested from RF sources. While these application-specific systems have in-

spired our work, we observe that these systems are capable of only making on-device inferences

using an offline-trained classifier. These systems treat machine learning tasks the same way as

any other computational load, and thus, they are not able to optimize the execution of machine

learning-specific tasks. Furthermore, the pre-trained classifiers running on these systems are fixed
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and non-adaptive, which does not allow these applications to adapt automatically at run-time to

improve the accuracy of the classifier.

To complement and advance the state-of-the-art of the batteryless machine learning systems,

we propose the intermittent learning framework which explicitly takes into account the dynamics

of a machine learning task, in order to improve the energy and learning efficiency of an intermit-

tent learner in a systemic fashion. The fundamental difference between the proposed framework

and the existing literature is that, besides improving the efficiency of on-device inference, the inter-

mittent learning framework enables on-device training to improve the effectiveness and accuracy

of the learner over time.

7.1.2 Alternatives to Intermittent Learning

An alternative to on-device learning on batteryless systems would be to sense and transmit

raw or semi-processed sensor data from a batteryless system to a base station that executes

the inference and/or training tasks. In fact, such offloading solutions were popular back in the

days when Wireless Sensor Networks (WSNs) were deployed to collect data from the sensor

nodes, only to be analyzed later on a remote base station (Shaikh and Zeadally, 2016; Akhtar and

Rehmani, 2015; Shaikh and Zeadally, 2016; Lu et al., 2015). Compared to the sensor motes of

those WSNs, today’s microcontroller-based systems are far more advanced in terms of CPU and

memory, and their energy efficiency has improved by several orders of magnitude. For instance,

the latest mixed-signal microcontrollers from Texas Instruments (i.e., TI MSP430 series) comes

with up to 16-bit/25 MHz CPU, 512 KB flash memory, 66 KB RAM, and 256 KB non-volatile

FRAM—which are comparable to the 16-bit Intel x86 microprocessors of the early 80s which

ran MS-DOS. These devices are quite capable of executing simple machine learning workloads

that perform on-device classification of sensor data (Gobieski et al., 2018b). In general, there are

several advantages of on-device intermittent learning over relaying data to a base station:

Data Transmission Cost and Latency. Data communication between a device and a base sta-

tion introduces delays and increases energy cost per bit transmission. Using back-scatter com-
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munication (Lu et al., 2018) apparently lower the energy cost, but the dependency on an external

entity and the unpredictable delay in wireless communication still remain, which we want to

avoid by design.

Privacy and Security. Private and confidential data, such as health vitals from a wearable device,

can be safely learned on-device – without exposing them to external entities. Security problems

caused by side-channel and man-in-the-middle attacks (Aziz and Hamilton, 2009; Kügler, 2003)

are avoided by design when we adopt on-device processing of sensitive data.

Precision Learning and Resource Management. Many human-in-the-loop machine learning

applications running on wearable and implantable systems benefit from run-time adaptation as

different persons have different preferences and different expectations from the same application.

On-device learning helps a system adjust itself at run-time to satisfy each individual’s need and to

optimize its own resource management.

Adaptability and Lifelong Learning. Lifelong learning (Chen and Liu, 2016) is an emerging

concept in robotics and autonomous systems where the vision is to create intelligent machines

that learn and adapt throughout their lifetime. Intermittent learning enables true lifelong learning

by liberating these devices from being stationary and connected to power sources, to mobile,

ubiquitous, and autonomous.

We acknowledge that some of the pitfalls of offloading machine learning tasks to base sta-

tions can be avoided via alternative methods. For instance, on-device data encryption arguably

can ensure security and privacy, backscatter techniques can reduce communication energy cost,

and over-the-air code updates could make the classifier adaptive. However, each of these comes

with their limitations and overheads, and none are maintenance-free. Hence, considering the au-

tonomy and maintenance-free nature of intermittent learners, combined with the full package of

benefits mentioned earlier, we opt for batteryless on-device learners as our design choice.
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7.1.3 The Scope of Intermittent Learning

We limit the scope of this paper to specific types of machine learning problems and study the

corresponding research challenges.

Online Unsupervised and Semi-Supervised Learning. Based on the availability and use of

labeled ground-truth data, a machine learning problem can be categorized into supervised, semi-

supervised, and unsupervised types (Russell and Norvig, 2016). Since batteryless computers

are meant to last long and operate unattended, we exclude purely supervised learning (where

labeled data is a must) from the scope of this work. Instead, we focus on the other two types,

where either labeled data are unnecessary (unsupervised) or some labeled data are available for

use (semi-supervised). For instance, a motion-activated intermittent learner can observe sensor

readings over time and look for statistical anomalies (e.g., using an outlier detection or a cluster

analysis algorithm) in its data stream. In many applications, these statistical anomalies are the

ones that correspond to events of interests such as fall detection, aggressive behavior recognition,

and intruder detection. Furthermore, we consider online machine learning problems where exam-

ples (i.e., a vector of sensor readings that we want to classify or learn) come one at a time, and

the classifier is incrementally trained and updated as they arrive.

Selection of Training Data. In an online learning task, a learner’s model parameters are updated

as new training examples arrive. A typical learning algorithm takes hundreds of iterations of

model updating – one iteration for each training example – before the learner attains a reason-

able classification accuracy. However, in a real-world online learning scenario, a system might

continue to receive too many similar examples and use them all to update the learner’s model

parameters. In such cases, the learner wastes a significant amount of energy and compute cy-

cles in repeatedly learning the same example where learning only one representation example

would have been sufficient. In summary, since not all training examples are equally important to

learning, it is beneficial to discard examples that do not contribute to a learner’s gain in accuracy.
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Choice of Actions at Run-time. A machine learning task includes several sub-tasks (or, actions)

such as sampling the sensors, assessing the utility of sensor values in learning, saving sensor

values for later use, updating the classifier model upon sensing a new data point, classifying the

sensor data, and sending alerts to external systems. When the system harvests enough energy

to take one or more of these actions, it must determine the best action for that moment so that

its overall learning objective (e.g., the completion of its learning task and/or learning a desired

number and types of examples) can be fulfilled.

For instance, suppose, a system has harvested just enough energy to either update the current

model parameters by training the learner with recently sampled data or to classify the new data

using the current model. Based on the learner’s performance of that moment, either action can

be a valid choice. If the learner is under-performing, retraining is a more sensible action. On

the other hand, if the learner is performing at its best, it makes more sense to do frequent classi-

fications than training. Hence, dynamically choosing a proper action is an important aspect of

intermittent learning, which is not considered by existing intermittent computing systems.

If we employ existing intermittent computing frameworks like MayFly (Hester et al., 2017) to

execute machine learning tasks, the system would blindly use every incoming training example

to update the model parameters and thus drain the harvested energy much faster than needed.

Although it considers the staleness of data to increase the system lifetime, it does not help a

learner as the data can be fresh, yet their utility toward an application’s high-level goal can be

null. Likewise, data can be stale, yet their utility in a learning algorithm can be high. Hence, we

need to devise a mechanism to smartly choose or discard examples at run-time, and thus be able

to eliminate a large number of unnecessary and energy-wasting training actions.

Occurrence of Sample Data and Energy Harvesting Cycles. An intermittent learner learns and

infers physical world events. Occurrences of these events are, in general, unpredictable. Energy

harvesting cycles also depend on physical world phenomena such as motion, sunlight, or radio

signals, and thus, the time and amount of harvested energy are unpredictable as well. Hence, an
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intermittent learner has to learn through these dual uncertainties. We identify two cases when

intermittent learning is suitable.

In some applications, the physical phenomena behind the event of interest and energy harvest-

ing are either the same or strongly correlated. For instance, piezoelectric harvesters that generate

energy from motion are used in many people-centric machine learning applications, such as

vibration-related health condition monitoring, sleep motion detection, and fall detection, where

the core learning task is to classify human motions. In this class of applications, data and energy

are available at the same time, and they are correlated. Intermittent learning framework applies to

these applications with greater certainty of learning.

There is another class of sensing and inference applications where the data are either always

available, or the rate of change in data is so low that an intermittently powered system can gather

sufficient data during its operating cycles. Examples include environmental monitoring applica-

tions such as detecting pollutants or gaseous anomaly in the air (e.g., excessive carbon dioxide

concentration), and sound pollution monitoring. An intermittent learner in these scenarios learns

and infers in a best-effort manner.

7.2 Framework

7.2.1 Intermittent Learning Framework Overview

We propose an intermittent learning framework for intermittently powered systems that want

to execute an end-to-end machine learning task which involves data acquisition, learning, and

inferring. Figure 7.2 shows a high-level architectural diagram of the proposed framework. The

three main modules of the proposed framework corresponding to energy management, machine

learning, and task planning are briefly discussed as follows:

Energy Harvester. Batteryless computing platforms consist of one or more energy harvesters

such as piezoelectric, RF, or solar panels that harvest energy from various types of sources such

as the sunlight, motion, RF, vibration, wind, heat, and chemical. This subsystem monitors the
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Figure 7.2: The intermittent learning framework showing energy sources, energy harvesters,
learning algorithms, and a dynamic action planner.

energy generated by the energy harvester and generates an interrupt that triggers an intermit-

tent execution of learning tasks whenever a sufficient amount of energy is generated. In certain

systems, such as (Truong et al., 2018), where multiple energy harvesters are used to guaran-

tee continuous energy supply, e.g., RF for indoors and solar for outdoors, the energy harvester

subsystem takes care of selecting and switching to the preferred harvester transparently.

Library of Learning Algorithms. We have developed a library of machine learning algorithms

which contains specialized implementations of commonly used unsupervised or semi-supervised

algorithms for an intermittently powered system. These algorithms are split into small pieces

of code so that they are suitable for executing the intermittently powered system. Currently, the

library contains the implementation of three common machine learning algorithms as templates:

k-nearest neighbors, k-means, and a neural network (described later in this section). While these

are able to solve many practical learning problems, if a new learning algorithm needs to be imple-

mented for an intermittent execution, a developer can follow the modular implementation of these

classifiers to get inspired on how to implement a custom algorithm in an intermittent fashion.

Dynamic Action Planner. This module is the heart of the framework, which is responsible for

selecting the right action at the right moment in order to advance the learning task toward achiev-
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ing its desired learning objectives. It contains implementations of intermittently executable meth-

ods and algorithms to schedule actions, to select what to learn, and to evaluate the progress of an

intermittent learner toward task completion. This module is described in detail in Section 7.3.

7.2.2 Action Primitives

We identify eight basic operations—which we refer to as actions—that an intermittent learner

may execute in its lifetime. A complete list of actions and their brief description are presented

in Table 7.1. Breaking a task into pieces is similar to existing task-based intermittent computing

frameworks (Colin and Lucia, 2018; Yıldırım et al., 2018; Maeng et al., 2017; Hester et al., 2017;

Colin and Lucia, 2016; Lucia and Ransford, 2015) with the difference that each action in an

intermittent learning framework is associated with a semantic meaning, and the set of actions

being exhaustive, we are able to optimize their execution better than a general-purpose program.

Some of these actions such as sense, extract, learn, and infer are self-explanatory. The action

decide makes a decision to execute either a learn or an infer action based on the learning objec-

tive (desired goal states) of a learner described in Section 7.3.2. Select is related to choosing a

suitable training example for learning. Heuristics for choosing training examples are described in

Section 7.4. Learnable is used to enforce preconditions of a learning algorithm, e.g., clustering

algorithms require a minimum number of examples so that they can form clusters. The action

evaluate is related to the performance of the current learning model and action planning, which is

described in Sections 7.3.

learnable

evaluate

decide learn

LearningAcquiring

Evaluating

select
infer

sense

extract

learning
inferring
returning

Figure 7.3: Action state diagram showing all actions and how they interact with each other.
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Action Description
sense Sense and convert data to an example.

extract Extract features from an example.
decide Decide to learn or infer.
select Determine whether a training example

increases the learning performance.
learnable Check prerequisites of a learn action.

learn Execute a learning algorithm intermittently.
evaluate Evaluate the learning performance.

infer Make an inference using the current model.

Table 7.1: List of Action Primitives.

7.2.3 Action State Diagram

A learning task involves a subset of the actions that must be executed in a certain order. An

intermittent learner has to enforce this ordering of actions when executing them at run-time. For

instance, sense precedes all actions as this is where raw sensor readings are converted into an

object, which we call an example, that is processed further. Similarly, learn or infer cannot be

executed until we execute extract to extract features from an example to represent them in terms

of feature vectors. Figure 7.3 shows a state diagram consisting of all eight actions along with

the direction of data flow between two consecutive actions in an execution order. For ease of

understanding, we categorize them into groups of acquiring, learning, and evaluating actions.

7.2.4 Intermittent Action Execution

Several of the actions in Table 7.1 are larger than what it takes to execute them at one shot

by an intermittent learner. The limit comes from the size of the energy storage, i.e., the size of

the capacitor that stores harvested energy, that can keep the system awake for a limited period

in time. The size of the capacitor cannot be made arbitrarily large as that increases the charging

time, and a longer charging time will result in excessive delays in sensing and processing of new

data. In general, an intermittent learner sleeps and wakes up multiple times during the execution
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of an action. In this section, we describe how an action is implemented to make it suitable for

intermittent execution by the proposed framework.

How to program actions for an intermittent execution? An application developer implements

or overrides all or a subset of the action primitives. Corresponding to each action, there is an

ordered list of functions, where each function executes a part of the action that is small enough

for running to completion at one shot (i.e., without interruptions). Actions can be bypassed (not

programmed) if a learning algorithm does not require them. Listing 7.1 shows an example of

four user-programmed actions (sense, extract, select and learn). The learn action being large, it

has been split into three smaller functions. An array of function pointers is implemented in the

framework to facilitate an orderly execution of these parts of an action.

How to determine if an action requires splitting? Application programmers are provided with

a battery-powered development tool that guides the action splitting process. The tool checks if

each action written by the programmer can be completed using a certain amount of energy, which

is also specified by the programmer. We call this energy pre-inspection– which is an automated

tool that identifies and warns if an action requires more energy than the target. This tool helps

a programmer interactively split implemented modules until they fit into the target energy. The

details of action decomposition are described in Section 7.2.5.

Listing 7.1: User-programmed action example.

1 /* actions .c */

2 /* learning actions programmed by user */

3 int sense () { /* user−defined code of sense */ }

4 int extract () { /* user−defined code of extract */ }

5 int select () { /* user−defined code of select */ }

6 int learn 1 () { /* user−defined 1st part of learn */ }

7 int learn 2 () { /* user−defined 2nd part of learn */ }

8 int learn 3 () { /* user−defined 3rd part of learn */ }

9
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10 /* list of each action */

11 int (*sense []) () = { sense };

12 int (* extract []) () = { extract };

13 int (* select []) () = { select };

14 int (* learn []) () = { learn 1 , learn 2 , learn 3 };

Listing 7.2: Brief workflow of intermittent learning.

1 /* intermittent learning .c */

2 int (* dynamic action planner () ) () {

3 // code for selecting next action

4 return next action ;

5 }

6 void action trigger () { // action − trigger event ISR

7 action = dynamic action planner () ; // next action

8 action () ; // execute selected next action

9 }

10 void main() {

11 init actions () ; // executed only once

12 set interrupt () ; // setup action − trigger event

13 sleep () ; // enter low−power mode

14 }

Who invokes these actions? At each wake-up, the dynamic action planner routine is called upon

by the framework to select an action to execute. Listing 7.2 shows a code snippet showing three

functions, including the main(). The function action trigger() is executed at each wake

up and it calls dynamic action planner() to get a pointer to an action to execute.
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7.2.5 Intermittent Learning Programming Model

We provide a programming interface that allows a programmer to develop an intermittent

learning application that executes correctly when a system is intermittently powered.

Original code

2) Energy pre-inspection

Intermittent Learning
Framework

1) Compile and build

Target device

Energy log profiling

Load and run
with test dataset

2) Deployment and run

1) Action programming (decomposing)

Actions

fail: decompose the code again

pass: ready to run
▪ Setup goal state parameters
▪ Deploy and run

split

split

split

application() {
…
…
…
…
…
…
…

}

sense() {
… }

learn() {
… }

infer() {
… }

Intermittent Learning
Application Programmer

Figure 7.4: Illustration of the programming model.

Action-based Programming. Similar to the task-based intermittent computing platforms (Colin

and Lucia, 2018; Yıldırım et al., 2018; Maeng et al., 2017; Hester et al., 2017; Colin and Lucia,

2016; Lucia and Ransford, 2015), an action in the proposed intermittent learning framework is a

user-defined block of code. An action, given sufficient energy to execute to completion, is guar-

anteed to have memory-consistency and control-flow that can be equivalently achieved with a

continuously-powered execution. If power fails during an action’s execution, the intermittent

learning framework discards the intermediate results, and the action starts over from the begin-

ning when power becomes available again by keeping track of the completion status of each

action. Actions that consume more energy than the maximum energy budget that the hardware

can support need to be decomposed into smaller actions.

Memory Model. Similar to task-based intermittent computing platforms (Maeng et al., 2017),

atomicity of actions is guaranteed by maintaining two types of data — global data that are shared

155



between actions and local data that reside in a single action. Different actions can share global

data by using action-shared variables, which are named in the global scope and allocated in the

non-volatile memory. Once an action completes writing a value to an action-shared variable, the

value can be read by any action by referencing the variable name. Local data are scoped only to a

single action like ordinary local variables in a function and are allocated in the volatile memory.

Application Development. Figure 7.4 depicts the development process of an intermittent learn-

ing application. To develop a new application, the programmer decomposes the application code

into actions by implementing or overriding all or a subset of action primitives which are executed

in the order defined by the state diagram. Once actions are implemented, energy pre-inspection is

performed to make sure that no action consumes more energy than the hardware can support. The

energy pre-inspection is performed by a custom tool that we developed by extending TI’s Ener-

gyTrace++ (Instrument, 2018), which comes with the intermittent learning framework. The tool

first loads and runs the compiled binary on the battery-powered target device and measures the

energy consumption of each action using EnergyTrace. In order to obtain the worst-case energy

consumption of an action at reasonably high confidence, the target device runs all test cases from

all datasets as the input. This is done to maximize the chances of the system to execute different

control flows and data-based branches. The tool analyzes the log file of energy measurements and

lists all actions that consumed more energy than the maximum allowed and prompts the program-

mer to split those actions further until all actions pass the test. Finally, the binary that passes the

energy pre-inspection is pushed to the target batteryless device.

User Study. We conduct a user study to understand 1) whether the concept of action-based in-

termittent learning is intuitive and applicable to applications, and 2) the intermittent learning

framework provides the necessary components to write on-device machine learning programs on

intermittently powered systems.

The study involved 35 undergrad computer science students (15 female and 20 male) who

were provided with an application code having three large functions (actions), and were asked

to decompose and reprogram it into actions having a certain energy budget. Prior to the study, a
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short introduction to the concept of intermittently-powered systems and the energy constraints

associated with programming such systems was provided. After the 30 minute experiment, the

participants assessed the difficulty and intuitiveness of the programming model by answering

the questions shown in Table 7.2. On average, the participants assessed that the difficulty level

of decomposition is moderate (5.4 and 5.6), and they spent 14 minutes to split the code. We ac-

knowledge that the study is limited due to small sample size and difficulty in testing multiple

applications. Nevertheless, the user study shows that the developers with basic programming

knowledge can easily program an intermittent learning application without any significant trou-

ble.

Avg Min Max
Q1. In a scale 1-to-10, how easy did you find to understand the concept of 5.4 2 10
action-based intermittent learning?
Q2. In a scale 1-to-10, how easy did you find to split the code? 5.6 2 10
Q3. In a scale 1-to-10, how easy did you find to calculate the total energy 3.7 1 10
consumption of the code?
Q4. How much time did you spend to split the code (in minutes)? 14 3 30

Table 7.2: The result of the user study. The scale for questions Q1-Q3: 1 = the easiest, and 10 =
the most difficult.

7.2.6 Example: An Intermittent Neural Network

Among all the actions in Table 7.1, in general, the learn action has a higher complexity than

most others. Hence, we discuss an intermittent execution of it as an illustration. In particular, we

illustrate how a feed-forward neural network learner is executed intermittently (Figure 7.5). We

choose an execution strategy where each layer of the neural network is processed at a time. This

is the same network which is later used in the neural network-based k-means algorithm in the

vibration learning application in Section 7.5.3.

Figure 7.5 shows that when the dynamic action planner decides to launch a learn action, each

of the m layers of the original neural network {l1, l2, . . . , lm} gets executed sequentially in the

forward direction (feed-forward) and then in the backward direction (back-propagation) to com-
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Intermittent neural network
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Figure 7.5: An example of intermittent execution of back-propagation algorithm to train a neural
network. The original network is segmented into layers and each layer is intermittently executed.
Both feed-forward and back-propagation are performed layer by layer in an intermittent manner.

plete one cycle of learning. The system continues to execute each layer li as long as the current

energy level is higher than required. Once a cycle is completed, the dynamic action planner gets

back the control and chooses the next action.

7.3 Dynamic Action Planner

In this section, we describe the dynamic action planner which determines a sequence of

actions in an online manner. Whenever a sufficient amount of energy is harvested to execute at

least one action, the planner dynamically selects the best action that should be performed next,

considering the current energy level and the performance of the learner over a short time horizon

in the future.

7.3.1 System State and Transitions

We define the state of the proposed system in terms of the examples that are currently in the

system and their execution status. Note that the state of the system is different from the action

state diagram (Figure 7.3) which does not involve the execution status of the examples.

For instance, at the beginning of the system, there is no example inside the system. The

first time the system harvests enough energy to act, it senses new data xi and then waits for the
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next action. We denote this state as {(xi, sense)}. The next time the system harvests energy,

it has more options depending upon the amount of harvested energy, e.g., it can either sense a

new data xi+1, or execute the next action extract on xi. This results in two possible next states:

{(xi, sense), (xi+1, sense)} and {(xi, extract)}. In general, given a set of examples in the sys-

tem, X = {x1, . . . , xN} and the supported actions by the system, A = {a1, . . . , aK}, the state of

the system, S is defined by a set of two-tuples {(xi, aj)} ⊂ X × A, which denotes that the most

recent action performed on xi is aj .

A transition from one state S to another state S ′ happens in one of the following two ways:

• The dynamic action planner may choose to sense new data. In this case, a new example

xN+1 enters the system, resulting in an addition of a new tuple of the form (xN+1, sense) to the

system state. Hence, S ′ = S ∪ {(xN+1, sense)}.

• A tuple (u, v) ∈ S is chosen by the dynamic action planner. The system determines the next

action v′, for example, u in accordance with the action state diagram of Figure 7.3, and either

takes action v′ on u, or u leaves the system if there are no next actions. Hence, the new state S ′ is

either {S − (u, v)} ∪ {(u, v′)}, or just S − {(u, v)}.

7.3.2 Desirable Goal States

The goal of the dynamic action planner is to advance the current system state toward a de-

sirable goal state via a series of state transition decisions. The goal state of an online learning

system, especially in the absence of labeled ground truth data, is defined in terms of the rate of

examples learned, the rate of inferences performed, or a combination of these two rates. For in-

stance, a common strategy is to maintain a desirable learning rate, ρl (i.e., learned examples in L

energy harvesting cycles) in the beginning, and once the system has learned a desirable number

of example nl, the goal is reset to maintaining a desirable inference rate, ρc (i.e., inferring the

desired number of examples in L energy harvesting cycles). Parameters such as ρl, nl, ρc, L are

application dependent and are determined via empirical studies and from domain expertise.
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However, for some applications, the empirical parameters may not bring the desired behavior

as the learning environment (e.g., distribution of input examples) changes over time. To over-

come this, intermittent learning systems should learn and update the goal state parameters. For

example, by evaluating the need for further learning (e.g., via human feedback or obtaining infer-

ence results from more capable externals systems) the parameters can be readjusted at run-time.

The system can also continue to build statistics on the frequency of learning based on the utility

of learning examples obtained from the example selection methods discussed in Section 7.4. In

our current implementation of the framework, we use empirically determined parameters. We

leave the research on automatic parameter adaptation strategy as future work.

7.3.3 Selecting an Action

Action Selection. For a learner that learns and evolves throughout its lifetime, the process of

selecting the best action at every decision point is a never-ending search process as the decision

horizon consisting of all future steps is open-ended and infinite. Furthermore, since each state has

more than one possible next states, the state-space of the system grows exponentially. Hence, if

we aim at selecting a globally best sequence of decisions, depending on the nature of the desired

goal state, the optimization algorithm may take forever to find a solution.

To handle this state explosion problem, we consider a finite decision horizon on which we

search for a locally best solution. In other words, at each decision point, the action planner looks

ahead at all possible resultant states due to the next L transitions to find a sequence of state transi-

tions that take the system closest to a goal state. From our experience, L should be in the order of

the longest path on the action state diagram. Once the sequence is obtained, only the first action

corresponding to the first state transition is selected for execution.

Increasing Planning Efficiency. Even within a finite horizon of length L, the planner has to con-

sider a large number of states. For instance, assuming N examples currently in the system and a

horizon of length L, there are O(NL) states for the planner to explore. To improve the efficiency

of the search, we take additional measures during state-space unfolding, i.e., limiting the num-
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ber of admitted examples, limiting the value of L, bypassing some boolean actions like select

and learnable at random (with a low probability) and using their default return value instead,

and combining lightweight actions with succeeding actions. The last two refinements reduce the

dwell time of an example in the system, and thus reduces the average number of active examples

within the decision horizon.

7.4 Selecting Examples to Learn

An intermittent computing system must be very keen on exploiting every opportunity to

save energy. In an intermittent learning scenario, a substantial amount of energy is saved when

a learner selects a minimal subset of training examples that yield a comparable learning perfor-

mance to using the full training set. This section describes how the framework decides whether

an example should be used to retrain the current classifier. At first, we describe four well-known

example selection criteria in machine learning (Kabkab et al., 2016; Brown and Mues, 2012).

Then we describe three heuristics that meet one or more of these criteria and are currently imple-

mented in the proposed framework.

7.4.1 Desired Criteria for Selecting Examples

Before proposing metrics to quantify the utility of an example toward learning performance,

we list a set of desired criteria for the chosen subset, B of a given training set, T .

Uncertainty. The current learning model, θ should be less certain about an example x ∈ B

belonging to any class, y. Otherwise, x does not bring new information to the current learner.

This can be expressed as:

x = argmax
x∈B

(
−
∑
y

P (y|x, θ) logP (y|x, θ)
)

(7.1)
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Balance. The set of chosen examples B should have a balanced selection from all classes. Other-

wise, the learner will be biased toward the class that has more training examples.

Diversity. The chosen examples x ∈ B should be diverse within themselves. Otherwise, the set

of chosen examples will have redundancy. Therefore, given a dissimilarity metric d(xi, xj), we

maximize the mean distance between all pairs of selected examples:

argmax
B⊂T

1

|B|2
∑
xi∈B

∑
xj∈B

d(xi, xj) (7.2)

Representation. The left-out examples should have representatives in the chosen set, B. Oth-

erwise, a learner will miss important information that may be left out in the non-selected set.

Therefore, we should minimize the average distance between selected and non-selected exam-

ples:

argmin
B⊂T

1

|B| × |T −B|
∑
xi∈B

∑
xj∈T−B

d(xi, xj) (7.3)

The balance criterion has been analytically proven by the machine learning community to

increase the convergence rate of gradient-based iterative learning algorithms (Brown and Mues,

2012). Likewise, the other three criteria, i.e., uncertainty, diversity, and representation have been

also proven to increase learning performance (Kabkab et al., 2016).

7.4.2 Proposed Online Example Selection Heuristics

Selecting a subset of the training set that satisfies all or most of the above criteria are com-

putationally expensive. Furthermore, in an online learning scenario, the full training set is not

readily available as the learner observes examples one at a time over its lifetime. Hence, in order

to determine if an example should be learned by an intermittent learner, we devise three simple

yet effective heuristics that are incorporated into the framework:

Round-Robin . To ensure balance, selected examples fall into k clusters in a round-robin fash-

ion. Assuming n examples have so far been used to obtain clusters with centroids µ1, . . . , µk,
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example xn+1 is selected if the following condition is true:

1 + n mod k = argmin
1≤j≤k

d(xn+1, µj) (7.4)

k-Last Lists. To ensure diversity and representation, we maintain two k-element lists B and

B′ that keep track of the last 2k examples that were selected and not selected, respectively. The

diversity and representation scores (as described in the previous subsection) are calculated using

the lists B and B′. A new example xi is selected if both of the following conditions are met:

diversity (B ∪ {xi}) > diversity (B)

representation (B ∪ {xi}, B′) < representation (B,B′)

(7.5)

Randomized Choice. To ensure uncertainty, we select an example xi with a probability of pi.

Here, the value of pi can be used as a threshold for entropy to meet the uncertainty criterion

(mentioned in the previous subsection) or can simply be a value to control the selection rate of

examples.

Note that none of these above heuristics require the knowledge of the complete training set.

These are applicable to unsupervised and semi-supervised learners as they do not require the

class labels. The effectiveness of these heuristics largely depends on the nature of the online

learning problem. A comparison of these is presented in the evaluation section.

7.5 Application Implementation

We implement three intermittent learning applications that monitor, learn, and classify air

quality indices, human presence, and vibration pattern. These systems are powered by solar, RF,

and piezoelectric harvesters, respectively. To demonstrate the portability of the proposed frame-

work, these systems are implemented on three different microcontroller platforms, i.e., an AVR,

a PIC, and an MSP430-based microcontroller, respectively. This section describes the imple-
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mentation of these systems along with their end-to-end classification performance, deferring the

in-depth evaluation to Section 7.6.

7.5.1 Air Quality Learning (Solar)
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Figure 7.6: Air quality learning system uses a custom-built platform and is powered by solar
energy.

Overview. The air quality learning system detects and notifies abnormalities in air quality in-

dices such as the ultraviolet radiation (UV), equivalent carbon dioxide (eCO2), and total volatile

organic compound (TVOC) by learning their normal levels on harvested solar energy. Unlike

sensing systems that just report the absolute sensing values, it learns the evolving status of air

quality and provides environmental context-based notifications, which is smarter than reporting

simple index values.

The system has been deployed in the real-world (near a window of an apartment), and it is

active since September 21, 2018. We have an anonymous website showing the real-time status of

the learner, which is updated every 10 minutes1. For demonstration purpose, we use an additional

gateway device that reads the classification results from the batteryless learner and sends them to

the web.

System. As the experimental platform, we develop a custom printed circuit board (PCB) which

is shown in Figure 7.6(a). The board consists of an ATmega328p microcontroller having a 1KB

internal EEPROM, light and temperature sensors, a 32KB external non-volatile EEPROM, a
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0.2F supercapacitor as the energy reservoir, output indicator LEDs, and energy harvester cir-

cuitry. Although more advanced energy management hardware such as multiple capacitors (Colin

et al., 2018; Hester and Sorber, 2017; Hester et al., 2015a) can be used for more efficient use of

harvested energy, we keep our hardware design simple to focus on the feasibility, behavior, and

performance of the learning framework. The air-quality sensors measuring UV, eCO2, and TVOC

are externally connected to the PCB (not shown in the figure). The board harvests solar energy

and executes machine learning algorithms following the proposed intermittent learning frame-

work. As shown in Figure 7.6(b), the air quality learning system utilizes the custom PCB as the

learning platform and a small solar panel for energy harvesting. When the sunlight is available,

the solar panel charges the supercapacitor and powers up the circuitry to wake up the learner.

Upon wake up, the system collects data from sensors and executes the learning actions. Note

that although the sunlight is present for the most of the day, as the system is powered through a

limited sized capacitor that drains quickly when the system runs, the input power to the system

is intermittent, and thus requiring the framework to save/restore the intermediate system states

into/from the non-volatile memory.

Learning Algorithm. The k-nearest neighbor algorithm is used to learn and detect an anomaly

in the ambient air quality. We choose the k-nearest neighbor algorithm for clustering among other

alternatives such as autoencoders since the application does not deal with high dimensional data

and the carefully-designed features (described next) are more compute- and energy-efficient than

autoencoders. Following the proposed framework, we implement the sense action that reads three

sensor values (UV, eCO2, and TVOC) every 32 seconds. For every 60 sensor readings, the extract

action generates five features– mean, standard deviation, median, root mean square (RMS), and

peak-to-peak amplitude (P2P). The five features generated by the extract action constitute an

example which is used for learning (i.e., the learn action) or detecting an anomaly (i.e., the infer

action).

Prior to learning, the select action determines whether the newly-obtained example should be

learned or discarded using the example selection heuristic. If the example is selected for learn-
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ing, the learn action updates the threshold score for anomaly detection by learning the latest set

of examples, including the newly-obtained one. The anomaly score ASi for the ith example ei

in an example set is calculated as ASi =
∑k

j=1 d(ei, ej), where ej is the jth nearest neighbor

example of ei, k is the number of nearest neighbors in the set, and d(·) is the feature distance

function (Cola et al., 2015). The feature distance between two examples ei and ej is defined as

d(ei, ej) =
√∑n

m=1(f
ei
m − f ejm )2, where f eim is the mth feature of the example ei, f

ej
m is the mth

feature of the example ej , and n is dimension of the feature vector. After computing the anomaly

score for all examples in the set, an anomaly threshold ASTH is determined by taking the 90th

percentile of the anomaly score.

To detect an anomaly (i.e., the infer action), the system calculates the anomaly score ASnew

for the newly-obtained example. It is classified as abnormal, if ASnew > ASTH , and normal,

otherwise. Note that the anomaly threshold ASTH evolves over time as new examples are learned

at run-time.

Figure 7.6(c) shows the anomaly detection accuracy of the system for the three indicators, i.e.,

UV, eCO2, TVOC for 20 weeks. The anomalies are detected with 81%–83% average accuracy

for the air quality indicators. To calculate the accuracy of the learners, we download the classifi-

cation results as well as the raw data from the device once every week. The raw data is visualized

and inspected by human experts to obtain the ground truth labeling, which is compared with the

classification results of the learner to calculate the accuracy.

7.5.2 Mobile Human Presence Learning (RF)

Overview. We implement a mobile human presence learning system that is powered by harvest-

ing RF energy. It detects the presence of a person in indoor space by observing the short-term

variation in the received signal strength indicator (RSSI) values and by learning a dynamic thresh-

old that helps it determine if a person is present or not. This is different from an RSSI threshold-

based human presence detection system which does not generalize across different physical

world environments or when the RF properties of the same environment change. Using the pro-
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Figure 7.7: Mobile human presence learning on RF energy.

posed intermittent learning framework, the human presence learner continuously learns the RF

pattern and thus it is able to learn and adapt its model parameters to accurately detect the pres-

ence of humans—even when the system is moved from one place to another. Using this learner,

a mobile social robot (Lemaignan et al., 2017) can perceive the presence of humans when other

types of sensors are ineffective (e.g., cameras in the dark).

System. The system consists of three major parts that are shown in Figure 7.7(a) – an RF an-

tenna (850-950 MHz) (Powercast, 2016a), an RF harvesting circuit (P2110) (Powercast, 2016b)

and a PIC24F16KA102 microcontroller. Additionally, a 50mF capacitor and a 512-byte EEP-

ROM (built-in the microcontroller) are used as the energy reservoir and non-volatile data storage,

respectively. Figure 7.7(b) shows that both energy and data come from the RF signal. When the

capacitor is charged by harvesting energy from the RF power source, the system starts to measure

RSSI and learns to detect human presence or absence. The learning examples consist of the fea-

tures obtained from RSSI values, and the learning model is saved in the non-volatile memory so

that when the power goes off, the system does not lose its state.

Learning Algorithm. Similar to the air quality learning system, a k-nearest neighbor learner is

used for anomaly detection. First, the RSSI power levels received at the antenna (ranging from

0.04mW to 50mW) are measured and calculated by the sense action to collect a set of 10 to 30

values. The number and rate of RSSI readings constituting the set depends on the strength and

the power of the signal. Four features (i.e., mean, standard deviation, median, and root mean

167



square (RMS) of RSSI values) are extracted by the extract action from a set of RSSI values. The

extracted features constitute an example which is used either for learning (learn) or for human

presence detection (infer) as dictated by the dynamic action planner. Since the learning and in-

ferring algorithms in this application are similar to the air quality learning system, their details

are omitted. The main difference between these two systems is that the human presence learner

learns and updates its model more frequently and more intermittently (between tens of millisec-

onds and seconds) than the air quality learner (between minutes and hours) since RF signals

change much faster than air quality sensor values.

In order to evaluate the performance of the system and its ability to adapt in a new environ-

ment, we deploy and measure its accuracy at three different areas by moving it from one place

to another. The accuracy is compared against a baseline system that uses a threshold changing

over time based on the run-time mean of the RSSI values to detect human presence. Figure 7.7(c)

shows the accuracy of the system at three different locations as the system is moved. The accu-

racy is tested every hour using 30 test cases of human presence and absence. As shown in the

figure, when the intermittent learning system is moved to a new area, it recovers its detection

accuracy within a few hours by adapting its model parameters to the new RF environment which

is very different from the previous one. For instance, the accuracy drops to 38% at hour 11 af-

ter moving to area 2, but it rises back to 76% at hour 15 and increases to 82% at hour 20. The

baseline system’s accuracy stays below 50% for all areas.

7.5.3 Vibration Learning (Piezoelectric)

Overview. The vibration of machines such as industrial machinery, HVAC equipment, vehicles,

and household appliances carries the signature of their state of operation and health status. By

observing and learning their regular vibration pattern, we can predict their impending failure

when there is a deviation or irregularity in their vibration pattern. Vibration anomaly detection

systems can also be used in human health and wellness applications. For example, a gait anomaly

detector can give a warning sign of walking abnormalities such as the freezing of gait (Giladi and
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Figure 7.8: Vibration learning on piezoelectric energy.

Fahn, 1998) or a sudden fall by learning and classifying a user’s walking pattern. Early detection

of Parkinson’s disease is possible by noticing tremors (hand or foot shaking) (Zimmermann et al.,

1994), and detecting leg shaking (SPINDLES) (Xia et al., 2017) are examples of people-centric

vibration sensing and inference application.

We develop a vibration learning system that is powered by harvesting piezoelectric energy. It

detects a potential malfunction of a vibrating object or a human limb by monitoring and learning

the regular vibration pattern using an accelerometer sensor, and then detects and reports anoma-

lies. The system is shown in Figure 7.8(b). The system can be attached to a target to learn the

level of vibration that may relate to an impending breakdown or an anomaly.

System. As shown in Figure 7.8(a), a piezoelectric harvester (PPA-2014) (Corporation, 2017),

generating power between 1.8mW and 36.5mW, is connected to an MSP430FR5994 microcon-

troller via a piezoelectric harvesting circuit (LTC3588). A 6mF capacitor stores the harvested

energy. We use the microcontroller’s built-in 256KB FRAM as the non-volatile storage to save

the system state. A low-power accelerometer sensor (LIS3DH) attached to the tip of the piezo-

electric harvester senses the three-dimensional vibration at the sampling rate of 50Hz.

Learning Algorithm. We implement a cluster-then-label (Goldberg and Zhu, 2010; Zhu, 2005)

learner that utilizes both labeled and unlabeled data where the training examples first go through

a clustering step, and then the clusters are labeled. The learner classifies new examples by find-

ing the cluster it belongs to and then uses the label of the cluster to classify the example. This
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approach falls under the general category of semi-supervised learning but is different from alter-

natives such as label propagation (Xiaojin and Zoubin, 2002).

For clustering, we implement a two-layer neural network-based k-means algorithm (Mars-

land, 2015) where the input and output layers correspond to the feature vector of an example

and the two clusters (normal and abnormal vibration), respectively. Unlike typical k-means algo-

rithms that have all examples in its batch learning setup, only one example (at a time) is available

to our online learner, and the cluster means are unknown. Hence, we feed one example to the

neural network at a time and approximate the cluster means by moving the neuron closer to the

current input example—making that center even more likely to be the best match next time that

input is seen.

The learn action implements the clustering algorithm which uses feature vectors extracted by

the extract action consisting of the mean, standard deviation, median, root mean square (RMS),

peak-to-peak amplitude (P2P), zero-crossing rate (ZCR), and average absolute acceleration vari-

ations (AAV). Two output neurons corresponding to the two clusters (normal and abnormal vi-

bration) are fully connected to the input layer neurons. An activation value, aj for each neuron

is calculated by aj =
∑n

i=1wijxi, where wij is the weight between the ith element of the input

vector and the jth neuron, xi is the ith element of the input vector, and n is the length of the input

vector, x. We implement competitive learning where only the neuron with the largest activation

value wins and only the weights connected to the winner are updated at each iteration since the

winner neuron corresponds to the cluster that is the closest to the current input. The weights of

the winner neuron, wij are updated by ∆wij = η(xi−wij), where η is the learning rate. To classify

new data (i.e., infer action), features of new example are extracted and fed into the neural net-

work as the input. The output neuron with the highest activation value is chosen as the predicted

class.

We conduct a set of controlled experiments with the vibration anomaly detector. We attach

the system to an arm of a person and let the system learn to cluster the arm shaking into two cat-

egories: gentle vs. abrupt shaking. Gentle and abrupt arm movements are performed by shaking
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the arm less than five times and more than ten times in five seconds, respectively. Figure 7.8(c)

shows the classification accuracy for four hours of the experiment. 100 gentle shaking gestures

are performed during the first and the third hour, while 100 abrupt shaking gestures are per-

formed during the second and the fourth hour. As shown in the figure, the system learns and

classifies the two movements with 76% average accuracy using the kinetic energy generated by

the arm shaking gestures.

7.6 Evaluation

We conduct in-depth experiments to evaluate various aspects of the three applications de-

scribed in the previous section. First, their performance is compared with 1) state-of-the-art

intermittent computing systems that execute learning and inference steps periodically, and im-

plements neither the dynamic action planner nor the example selection heuristics (Section 7.6.1),

and 2) three popular offline machine learning algorithms for anomaly detection (Section 7.6.2).

Second, we evaluate the effect of example selection heuristics (Section 7.6.3) and energy har-

vesting patterns (Section 7.6.4) on the performance of the learner. Third, we measure the energy

consumption and execution time of each action and quantify the overhead of the system (Sec-

tion 7.6.5).

7.6.1 Comparison with the State-of-the-Art Intermittent Computing Systems

We compare the accuracy of the three intermittent learners (air-quality, human presence, and

vibration learning) against two state-of-the-art task-based intermittent computing systems: Al-

paca (Maeng et al., 2017) and Mayfly (Hester et al., 2017). Both of the baseline systems execute

the same learning algorithm as ours, but they do not implement the proposed framework. Instead,

the two baseline systems repeat a fixed sequence of actions periodically, and they duty-cycle the

execution of learn and infer actions according to a predefined schedule. For example, Alpaca

with a duty-cycle parameter of [90% learn, 10% infer] executes the learn action 90% of the time

and the infer action 10% of the time, after executing the sense and extract actions. Mayfly works
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Inter. Alpaca Alpaca Alpaca
Lean Duty Duty Duty

10/90 50/50 90/10

UV 81% 48% 61% 74%
eCO2 81% 54% 66% 79%

TVOC 83% 57% 61% 81%
Human 82% 60% 71% 81%

Presence
Vibration 76% 40% 59% 78%

Table 7.3: Average detection ac-
curacy (%): Intermittent learner
vs. Alpaca.

Figure 7.10: Accuracy comparison with Alpaca (no dynamic action planner and example selec-
tion)

the same way as Alpaca with the exception that it discards stale examples by setting a data expira-

tion interval. None of the baseline solutions implement example selection heuristics.

Figures 7.10(a)-(e) and 7.12(a)-(e) compare the accuracy of the intermittent learners against

Alpaca and Mayfly-based implementation of the same applications. We use three duty-cycle pa-

rameters for the baseline solutions: [10% learn, 90% infer], [50% learn, 50% infer], and [90%

learn, 10% infer]. Table 7.3 and 7.4 summarize the results. Overall, the intermittent learning sys-

tems achieve 80% average accuracy while Alpaca and Mayfly-based implementations achieve

54%–79% and 59%–78% average accuracy, respectively, depending on the duty-cycle parameters.

For both Alpaca and Mayfly, as the amount of learn action increases from 10% to 90%, the ac-

curacy increases, and finally, it becomes comparable to the accuracy of the intermittent learning

systems when the duty-cycle has 90% learn actions. However, the intermittent learning systems

achieve 80% accuracy by executing 50% less number of learn actions compared to Alpaca and

Mayfly for [90% learn, 10% infer] duty-cycle. As a result, the intermittent learners increase the
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Inter. Mayfly Mayfly Mayfly
Lean Duty Duty Duty

10/90 50/50 90/10

UV 81% 61% 69% 79%
eCO2 81% 61% 71% 81%

TVOC 83% 63% 71% 83%
Human 82% 56% 66% 84%

Presence
Vibration 76% 56% 63% 65%

Table 7.4: Average detection ac-
curacy (%): Intermittent learner
vs. Mayfly.

Figure 7.12: Accuracy comparison with Mayfly (no dynamic action planner and example selec-
tion)

inference throughput by performing more infer actions than the baseline intermittent computing

systems that waste time and energy in performing unproductive learn actions. We also observe

that different actions are chosen by the dynamic action planner at run-time based on the state of

the system, while the baseline systems follow a repeated fixed-sequence of actions, e.g., 90%

of the time [sense, extract, learn] and 10% of the time [sense, extract, infer] sequence without

caring for the learning performance.

Figures 7.13(a)-(c) compare the total energy consumption of the intermittent leaning frame-

work and Alpaca-based implementation of the three applications over time. For all three applica-

tions, the intermittent learning system consumes less energy than Alpaca with [90% learn, 10%

infer] and [50% learn, 50% infer] duty-cycle parameters, but consume slightly more energy than

Alpaca with [10% learn, 90% infer] duty-cycle parameters. For instance, the proposed system

consumes 37% less energy than Alpaca with [90% learn, 10% infer] duty-cycle at hour 30 for the

human presence learning experiment in Figure 7.13(b), but still achieves similar average accu-
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Figure 7.13: Energy consumption comparison with Alpaca (no dynamic action planner and
example selection)

racy to Alpaca with [90% learn, 10% infer] duty-cycle. In other words, the intermittent learning

system achieves at least 1.6× higher accuracy than Alpaca when both the systems consume the

same amount of energy. This is because the dynamic action planner intelligently selects actions at

run-time, which leads the system to spend less energy and time. Furthermore, the data selection

module trains the system with examples that are likely to improve its learning performance and

prevents the system from wasting energy in learning examples that do not.

7.6.2 Comparison with Offline Machine Learning Algorithms

We compare the accuracy of anomaly detection of the three intermittent learners against

three widely used offline anomaly detectors that are based on: 1) one-class SVM (Support Vector

Machine) (Manevitz and Yousef, 2001) with RBF (Radial Basis Function) kernel, 2) isolation

forest (Liu et al., 2012, 2008), and 3) Auto-Regressive Integrated Moving Average (ARIMA)-

based clustering. Unlike the proposed framework which selects examples to learn at run-time,

these offline detectors use all the examples for anomaly detection at once. Figures 7.15(a)-(e)

compare the accuracy of the intermittent learners against the offline anomaly detectors. The

average accuracy of these detectors are summarized in Table 7.5. We observe that the intermittent

learners achieve a comparable accuracy (80%) to the three offline detectors (78%, 86% and 83%

for the one-class SVM, isolation forest and ARIMA, respectively) while selecting and learning
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Inter. One- Isolation ARIMA
Learn class Forest

SVM

UV 81% 81% 88% 84%
eCO2 81% 78% 88% 80%

TVOC 83% 75% 89% 80%
Human 82% 70% 85% 79%

Presence
Vibration 76% 79% 85% 83%

Table 7.5: Average detection ac-
curacy (%): Intermittent learner
vs. offline machine learning
anomaly detectors.

Figure 7.15: Accuracy comparison with offline machine learning anomaly detectors (one-class
SVM, isolation forest and ARIMA).

only 44% of the input examples and judiciously discarding 56% of the examples that are unlikely

to increase the accuracy of the learner by using the round-robin selection method.

7.6.3 Effect of Example Selection Heuristics

To evaluate the effect of example selection heuristics, we compare the three proposed training

example selection heuristics, i.e., round-robin, k-last lists, and randomized selection against no

data selection strategy, i.e., every example is used for training. Figures 7.16(a)-(c) plot the detec-

tion accuracy over the number of learned-examples for each heuristic. We observe that all three

heuristics consistently demonstrate higher accuracy than the no data selection policy. This may

seem counter-intuitive at first, but the reason for a higher accuracy by any of the heuristics than

the no data selection policy is that in Figures 7.16(a)-(c), we report the actual number of exam-

ples learned by the four strategies, which is not generally the same as the number of examples
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Figure 7.16: Effect of example selection heuristics: accuracy vs. number of learned-examples
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Figure 7.17: Effect of example selection heuristics: accuracy vs. energy

entering the system. For instance, the no data selection policy learns all of the 180 examples it

encounters and achieves 60%; whereas the round-robin heuristic achieves 80% accuracy after

learning 180 examples, but it has encountered much more than 180 examples and chose to learn

only the best 180 ones. By skipping examples that are unlikely to improve the accuracy, the inter-

mittent learning systems with these selection heuristics achieve the same level of accuracy with

less energy, which is evident from Figures 7.17(a)-(c).

In both air quality and human presence learning systems, the k-last lists selection increases

the accuracy rapidly in the beginning as shown in Figure 7.16(a) and 7.16(b). The round-robin

and randomized heuristic catch up with the accuracy of k-last lists as more examples are seen

and finally the accuracy converges to 82% and 80% for air quality and human presence learning

systems, respectively. For the vibration learning system in Figure 7.16(c), the k-last lists and

the randomized selection reach a similar level of accuracy (83–84%) after learning about 100

examples, but the randomized selection heuristic reaches the highest accuracy (87%) earlier than
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the k-last lists. The round-robin heuristic shows a better performance for a smaller number of

examples (20–45 examples) in the beginning, but gets caught up by the other two after learning

50–70 examples. Considering the high computational complexity and energy cost of k-last lists,

we conclude that randomization or round-robin heuristics are reasonable choices for systems

having tighter energy constraints.

7.6.4 Effect of Energy Harvesting Pattern

In Figure 7.18(a)-(c), we plot the energy harvesting patterns (voltage level) of the energy har-

vesters (solar, RF and piezoelectric harvester) for the three systems and evaluate their accuracy

over time. In order to assess the effect of energy harvesting pattern on the detection accuracy,

the time period is divided into segments that are expected to have different energy harvesting

patterns.

Figure 7.18(a) shows the solar energy harvesting pattern, along with the accuracy of the air

quality learning system for three consecutive days. As shown in the figure, the detection accu-

racy improves during the daytime (8 am–5 pm) as the system learns new examples using the

harvested energy. At night, the system is essentially off, and in the next morning, the system

resumes learning new examples, and its accuracy improves over time. We also occasionally ob-

serve interruptions in the otherwise continuous energy harvesting pattern during the daytime due

to inadequate sunlight. During these periods of inadequate energy supply when a full cycle of

learning is not possible, the system senses, selects, and saves the examples that have the potential

to improve accuracy. When sufficient energy is harvested again, the system resumes learning

the saved examples. Thus, the intermittent learner does not require sensor data to be acquired

and processed simultaneously in real-time. Acquired data are buffered by the system in the non-

volatile memory, and the CPU processes it when energy is available. This cannot be achieved by

the state-of-the-art intermittent computing system (Hester et al., 2017) that collects sensor data

without considering their utility towards learning and discards them when they are stale—which

leaves no data to learn when energy becomes available.
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Figure 7.18: Effect of Energy Harvesting Pattern

Figure 7.18(b) shows the RF energy harvesting pattern and the detection accuracy of the hu-

man presence learning system for nine hours. Every three hours, the system is placed at different

distances (3, 5, and 7 meters) from the RF energy source, and the amount of energy harvested

at each distance is measured. As expected, less amount of energy gets harvested as the distance

increases with an average of 3.1V, 2.2V, and 0.9V at 3, 5, and 7 meters, respectively—which re-

sults in a decrease in detection accuracy with the distance, i.e., 86%, 74%, and 46% at hour 3, 6,

and 9, respectively. Since a change of location causes changes in the RSSI pattern, the system

needs to learn a new RSSI pattern whenever it relocates. However, due to the less harvested en-

ergy at a longer distance, it takes more time to harvest energy to execute the learn and the infer

actions, which slows down the execution rate of both learning and inference. The difficulty in

learning RSSI patterns from weaker signals at a longer distance is another reason for the decrease

in accuracy.

Figure 7.18(c) shows the piezoelectric energy harvesting pattern and the detection accuracy

of the intermittent vibration learning system. The time period is divided into four one-hour seg-

ments. To capture different harvesting patterns, the harvester is shaken gently during the first

and third hour and abruptly during the second and the fourth hour. The accuracy of the learner

increases over time and converges to 80% at hour 4, irrespective of the shaking type and conse-

quent energy harvesting pattern (2.29V, 2.81V 2.27V, and 2.92V on average at hour 1, 2, 3, and

4, respectively). The energy harvesting pattern, in this case, does not seem to affect the accuracy

much since the amount of energy harvested from both gentle and abrupt shakes are above the
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minimum operation voltage (2V) of the system which allows it to select learning data and execute

learn action stably.

7.6.5 Time and Energy Overhead

We measure the energy consumption and execution time of all the action primitives, the dy-

namic action planner, and the three example selection heuristics to quantify the overhead of the

proposed framework. We use an MSP430FR5994 as the experimental platform and measure the

energy consumption of each module using the EnergyTrace tool (Instrument, 2018).

10-3 10-2 10-1 100 101 102

Energy consumption (mJ)

sense
extract
decide
select

learnable
learn

evaluate
infer

A
ct

io
n

0.3796

9.309

0.084
0.057

0.606
3.8

0.0014

0.0773

(a) Energy consumption (k-NN)

10-1 100 101 102 103 104

Execution time (ms)

sense
extract
decide
select

learnable
learn

evaluate
infer

A
ct

io
n

64.98
1.26

1551

4.305
151

7.91

2.47
0.37

(b) Execution time (k-NN)

10-3 10-2 10-1 100 101 102

Energy consumption (mJ)

sense
extract
decide
select

learnable
learn

evaluate
infer

A
ct

io
n 5.417

0.062

3.62

0.31

2.26

0.0027

0.0784
0.632

(c) Energy consumption (k-means)

10-1 100 101 102 103 104

Execution time (ms)

sense
extract
decide
select

learnable
learn

evaluate
infer

A
ct

io
n

0.4792
9.47

953.6
0.4

4.4

1104
400.6

41.1

(d) Execution time (k-means)

Figure 7.19: Energy consumption and execution time of actions in two different learning algo-
rithms. (a) and (b): k-nearest neighbors (k-NN). (c) and (d): neural network-based k-means
(k-means). All plots are in log-scale.

Figures 7.19(a) and 7.19(b) show the energy and time required by each action of the k-NN

algorithm used in the air quality learning system. As expected, learn consumes the highest

9.309mJ energy, which is decomposed into three sub-actions for intermittent execution. The
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Figure 7.20: Overhead (energy and execution time) of the dynamic action planner and three
example selection algorithms. All plots are in log-scale.

energy consumption of sense is relatively large (3.8mJ) since it acquires raw data from three

sensors (UV, eCO2, and TVOC). Similar to energy consumption, learn takes the longest time

(1551ms) to execute, followed by extract (151ms) and infer (64.98ms).

Figures 7.19(c) and 7.19(d) show the energy and time required by each action of the neural

network-based k-means algorithm used in the vibration learning system (Marsland, 2015). The

sense and extract actions consume the second (3.62mJ) and third (2.26mJ) largest energy after

the learn (5.417mJ) since they process acceleration sensor data at a high sampling rate. The

learn and infer use the same neural network, but their overheads are different. The overhead of

learn (5.417mJ and 953.6ms) is about 100X higher than infer (0.0632mJ and 9.47ms) since learn

involves several orders of magnitude more arithmetic operations and more iterations than infer.

Figure 7.20 shows the energy and time overhead of the dynamic action planner and the three

example selection heuristics of the vibration learning system. We set the maximum number of

admitted examples to two for the dynamic action planner, and the k-last lists uses three exam-

ples. As shown in Figures 7.20(a) and 7.20(b), the dynamic action planner has an energy and

time overhead of 57µJ and 4.3ms, respectively. Although the action planner is executed more

frequently than any of the actions (once after each action), its total overhead is below 3.5% com-

pared to end-to-end processing of an example. In more detail, 2.9% of energy and 1.4% of time

overhead is imposed for learning, while 4.2% of energy and 4.3% of time overhead is imposed
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for inference of an example, compared to the same system that does not run the dynamic action

planner.

Figure 7.20 also compares the example selection heuristics. Among the three heuristics, the

k-last lists consumes the highest 270µJ energy, whereas the randomized selection consumes the

lowest 1.8µJ. This is because the k-last lists computes the diversity and the representation scores

for 2k examples (O(k2)) while the random heuristic only needs to generate a random number

without looking into the acquired data.

7.7 Limitations

This work proposes the first step towards the intermittent machine learning on embedded

devices, which enables them to adapt their learning capability over a prolonged period of time

without a battery. Despite the promising results, our work has several limitations that need to be

further studied in future work.

Usability. The type and scope of intermittent learning applications can be limited by intermit-

tent energy sources and their relationship to the data of interests to learn and infer. First, the

desired learning algorithm or system setup (e.g., high-resolution sensor) cannot be employed

if the expected amount of energy intermittently harvested from available energy sources, e.g.,

environment or human is not sufficient for it. Next, the occurrence of sensing data and the energy-

harvesting source might be uncorrelated or independent in many cases, which results in low

performance in learning. Unless the data is always available like the air-quality monitoring appli-

cation implemented in this paper, where UV data is available all daytime, the events of interest

can be missed due to the timing mismatch between energy-harvesting and data-occurrence pat-

tern.

Programmability. Decomposing a source code into actions associated with energy constraints

is a challenging problem. Although the intermittent learning framework provides an energy pre-

inspection tool that helps the programmer write actions, the tool might fail to estimate the exact
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amount of energy required by an action. Our approach that measures the worst-case energy con-

sumption of action by iteratively feeding all the available data during development is based on

the assumption that machine learning modules usually follow a standard control-flow for learning.

However, this iterative and statistical approach does not guarantee that the system experiences

all the possible execution scenarios (e.g., different control-flow or data-based branching). Also,

the dynamic changes at run-time introduce a variation in energy consumption of an action, e.g.,

system failure, re-configuration, deterioration of hardware, which makes the execution of action

incomplete.

Learning Algorithm. The intermittent learning framework is designed to perform supervised

and unsupervised learning. It does not fully support supervised learning since it requires labeled

data that is not usually available in online. Relying on an external, high-accuracy inference sys-

tem to obtain the labels at run-time can be an option; however, it causes energy cost for data

transmission and increases latency, which is not desirable to an intermittently powered system.

Alternatively, reinforcement learning (Russell and Norvig, 2016) can be used to enable real-time

feedback from the environment or humans in trying to maximize the reward. Also, deep neural

networks, the state-of-the-art learning algorithm, are still challenging to be executed on embed-

ded devices with intermittent power. Although we demonstrate that a simple neural network can

be intermittently executed in our application, large sizes of deep neural networks are not eas-

ily applied to an intermittent learning system in practice due to their small amount of available

energy and limited computing power.

7.8 Prior Work and Their Limitations

Intermittent Computing Platform. Several application-specific energy harvesting systems have

been proposed that run on harvested RF (Philipose et al., 2005; Sample et al., 2008; Buettner

et al., 2009; Naderiparizi et al., 2015; Zhang et al., 2011) or piezoelectric (kinetic) energy (Huang

et al., 2016b; Rodriguez et al., 2017). In general, the goal of general-purpose intermittent com-
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puting platforms is to overcome the challenges due to the irregular and scarce power-supply.

Mementos (Ransford et al., 2012) transforms general-purpose programs into interruptible com-

putations that are protected from frequent power losses by automatic, energy-aware checkpoint-

ing. Ratchet (Van Der Woude and Hicks, 2016) proposes a compiler-based technique that adds

lightweight checkpoints to unmodified programs that allow existing programs to execute across

power cycles correctly. To eliminate the need for checkpoint placement heuristics, Hibernus (Bal-

samo et al., 2015, 2016) puts the system to hibernation by monitoring the voltage and saving

the system state when power is about to be lost. Chinchilla (Maeng and Lucia, 2018) runs un-

modified C programs efficiently by overprovisioning the program with checkpoints to assure

that the system makes progress, even with scarce energy. Approaches that are not based on the

checkpointing technique have also been proposed. Chain (Colin and Lucia, 2016) utilizes a set

of programmer-defined tasks that compute and exchange data through channels. Alpaca (Maeng

et al., 2017) preserves execution progress at the granularity of a task by privatizing the shared

data between tasks that are detected using idempotence analysis. Clank (Hicks, 2017) proposes

a set of hardware buffers and memory access monitors that dynamically maintain idempotency.

Several studies (Hester et al., 2015b; Colin et al., 2018) focus on the power management of bat-

teryless systems.

Unlike the proposed intermittent learning system, none of these work considers how on-

device machine learning can be performed effectively on harvested energy by considering the

semantics of machine learning tasks. Several work propose sensing systems (Yerva et al., 2012;

Sudevalayam and Kulkarni, 2011; Seah et al., 2009; Kansal and Srivastava, 2003) whose role is

to sense data and forward them to other systems for further processing, but they do not perform

on-device learning. Furthermore, these systems neither consider the utility of data nor provide

any analysis of a system’s expected task completion based on energy. Mayfly (Hester et al., 2017)

considers the timeliness of data, but neither takes into account the usefulness of data nor provides

any energy analysis. Some energy prediction models such as (Kansal et al., 2007) based on

Exponentially Weighted Moving-Average filter (Cox, 1961) or Weather-Conditioned Moving
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Average algorithm (Piorno et al., 2009) require complex models designed for specific energy

(solar) harvesters. Both use conventional time-domain energy analysis and prediction techniques,

which is difficult to make in practice while the proposed framework performs energy event-based

analysis.

Embedded Machine Learning. Machine learning algorithms that run on low-performance pro-

cessors have been studied. Bonsai (Kumar et al., 2017) develops a tree-based algorithm for ef-

ficient inference on IoT devices having limited resources (e.g., 2KB RAM and 32KB read-only

flash). ProtoNN (Gupta et al., 2017) proposes compressed and accurate k-nearest neighbors

algorithm for devices with limited storage. Deep neural networks have been implemented to

run on embedded devices by reducing redundancy in their network model (Denil et al., 2013).

Neural network compression techniques such as quantization and encoding (Han et al., 2015a),

fixed-point number or binary representation (Courbariaux et al., 2015), HashedNets (Chen et al.,

2015b), Sparse Neural Networks (Bourely et al., 2017), multiplications using shift and addi-

tion (Ding et al., 2017), vector quantization (Gong et al., 2014), circulant weight matrix (Kotagiri,

2014), and structured transform (Sindhwani et al., 2015) significantly reduce the size of neural

network and run them on some high-performance embedded systems such as mobile devices.

Several hardware architectures have been introduced to surmount the computational lim-

itation of embedded machine learning. (Lee and Verma, 2013) proposes a custom processor

integrating a CPU with configurable accelerators for discriminative machine-learning functions.

Mixed-signal circuits such as (Murmann et al., 2015) explore a variety of design techniques that

are leveraged in the design of embedded ConvNet ASICs. In computer vision domain, a number

of accelerators have been proposed for embedded systems, e.g., NeuFlow (a bio-inspired vision

SoC) (Pham et al., 2012), ShiDianNao (Convolutional Neural Network within an SRAM) (Du

et al., 2015), and a scalable non-von Neumann architecture (Merolla et al., 2014).

Machine Learning on Harvested Energy. Recently, an intermittent neural network inference

system (Gobieski et al., 2018a,b) has been proposed. But these work are quite different from the

proposed framework and is limited in several ways. For instance, they only execute an inference

184



task (i.e., no on-device training), the task pipeline is fixed at compile time (i.e., no dynamic task

adjustment), and the evaluation reads pre-loaded in-memory processed data (i.e., no real sensing).

Whereas the proposed intermittent learning systems consider all aspects of a machine learning

task (including on-device training), portions of these learning tasks (i.e., actions) are dynamically

scheduled at run-time by the dynamic action planner, and our evaluation has multiple end-to-end

real systems. There exist batteryless systems that are designed for specific applications, such

as eye-tracking (Li and Zhou, 2018) and gesture recognition (Li et al., 2018b), that use a sim-

ple threshold-based CFAR algorithm. CapBand (Truong et al., 2018) combines two energy har-

vesters (solar and RF) to recognize hand gestures using a Convolutional Neural Network (CNN).

Although these systems intermittently classify sensor data, their implementation is application-

specific, and they neither consider the data and application level semantics of machine learning

algorithms nor implement on-device training and adaptation.

7.9 Summary

A new paradigm called the intermittent learning for embedded systems that are powered

by harvested energy is introduced. To learn and build up intelligence from harvested energy, a

learning task is divided into actions such as sensing, selecting, learning, or inferring, and they

are dynamically executed based on an algorithm which chooses the best action to execute that

maximizes learning performance under the energy constraints. The proposed system not only

optimizes the sequence of actions but also makes a decision which examples should be learned

while considering their potential to improve the learning performance as well as the energy level.

A programming model and development tool of intermittent learning are proposed based on the

action-based model with which three example applications are implemented, i.e., air-quality

monitoring, human presence detecting, and vibration learning systems. The evaluation results

show that the learning tasks of the three applications are intermittently executed with both energy-

and data-efficiency based on the dynamic action plan and the example selection heuristics.
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CHAPTER 8: CONCLUSION

8.1 Summary of Results

Focusing on enabling deep intelligence on resource-constrained embedded systems, the re-

sults presented in this dissertation can be summarized as follows.

Weight Virtualization Algorithm for Fast and Scalable Deep Multitask Learning. In chap-

ter 4, we proposed in-memory multitask learning based on the concept of Neural Weight Virtu-

alization (Lee and Nirjon, 2020a) – which enables fast and scalable in-memory multitask deep

learning on memory-constrained embedded intelligent systems. The goal of neural weight virtual-

ization is two-fold: 1) packing multiple DNNs into a fixed-sized main memory whose combined

memory requirement is larger than the main memory, and 2) enabling fast in-memory execu-

tion of the DNNs. To this end, we proposed a two-phase approach: 1) virtualization of weight

parameters for fine-grained parameter sharing at the level of weights that scales up to multiple

heterogeneous DNNs of arbitrary network architectures, and 2) in-memory data structure and

run-time execution framework for in-memory execution and context-switching of DNN tasks.

We implemented two multitask learning systems: 1) an embedded GPU-based mobile robot,

and 2) a microcontroller-based IoT device. We thoroughly evaluate the proposed algorithms

as well as the two systems that involve ten state-of-the-art DNNs. Our evaluation showed that

weight virtualization improves memory efficiency, execution time, and energy efficiency of the

multitask learning systems by 4.1x, 36.9x, and 4.2x, respectively.

Real-Time Dynamic Sub-Network Construction and Execution. In chapter 5, we proposed

adaptive real-time learning based on the concept of SubFlow (Lee and Nirjon, 2020c)—a dy-

namic adaptation and execution strategy for a deep neural network (DNN), which enables real-
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time DNN inference and training on embedded systems of limited computing resources. The goal

of SubFlow is to complete the execution of a DNN task within a timing constraint, which may

dynamically change while ensuring comparable performance to executing the full network by ex-

ecuting a subset of the DNN at run-time. To this end, we proposed two online algorithms that en-

able SubFlow: 1) dynamic construction of a sub-network which constructs the best sub-network

of the DNN in terms of size and configuration, and 2) time-bound execution which executes the

sub-network within a given time budget for both inference and training.

We implemented and open-sourced SubFlow by extending TensorFlow with full compatibility

by adding SubFlow operations for convolutional and fully-connected layers of a DNN. We evalu-

ated SubFlow with three popular DNN models (LeNet-5, AlexNet, and KWS), which shows that

it provides flexible run-time execution and increases the utility of a DNN under dynamic timing

constraints, e.g., 1x–6.7x range of execution times with average -3% of performance (inference

accuracy) difference. We also implemented an autonomous robot as an example system that uses

SubFlow and demonstrate that its obstacle detection DNN is flexibly executed to meet a range of

deadlines that varies depending on its running speed.

Run-Time Performance Improvement with Zero Energy. In chapter 6, we proposed oppor-

tunistic accelerated learning based on the concept of Neuro.ZERO (Lee and Nirjon, 2019)—a

co-processor architecture consisting of a main microcontroller (MCU) that executes scaled-down

versions of a deep neural network1 (DNN) inference task, and an accelerator microcontroller that

is powered by harvested energy and follows the intermittent computing paradigm Lucia et al.

(2017). The goal of the accelerator is to enhance the inference performance of the DNN that is

running on the main microcontroller. Neuro.ZERO opportunistically accelerates the run-time

performance of a DNN via one of its four acceleration modes: extended inference, expedited in-

ference, ensemble inference, and latent training. To enable these modes, we proposed two sets

1The Deep Neural Network (DNN), by definition, refers to neural networks having more than one hidden lay-
ers Hanin (2017); Lu et al. (2017); Hornik (1991); Lee and Nirjon (2019). Thus, a wide variety of networks qualify
as a DNN in the existing literature. DNNs considered in this study have up to 105 neurons and weights combined.
They fit into 256KB memory of an MCU; have convolutional, ReLU, pooling, and fully-connected structures as
regular DNNs; and perform on-device inference Gobieski et al. (2019a, 2018c).
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of algorithms: 1) energy and intermittence-aware DNN inference and training algorithms, and

2) a fast and high-precision adaptive fixed-point arithmetic that beats existing floating-point and

fixed-point arithmetic in terms of speed and precision, respectively, and achieves the best of both.

We implemented low-power image and audio recognition applications and demonstrate that

their inference speedup increases by 1.6× and 1.7×, respectively, and the inference accuracy in-

creases by 10% and 16%, respectively, when compared to battery-powered single-MCU systems.

On-Device Machine Learning on Intermittently Powered Systems. In chapter 7, we proposed

energy-aware intermittent learning (Lee et al., 2019) that makes energy-harvested batteryless

systems capable of executing lightweight machine learning tasks intermittently based on the

availability of harvested energy. The notion of intermittent learning is similar to the intermittent

computing paradigm with the primary difference that the program that runs on the microcon-

troller executes a machine learning task—involving both training and inferring.

To complement and advance the state-of-the-art of the batteryless machine learning systems,

we proposed the intermittent learning framework which explicitly takes into account the dy-

namics of a machine learning task, in order to improve the energy and learning efficiency of an

intermittent learner in a systemic fashion. The fundamental difference between the proposed

framework and the existing literature is that, besides improving the efficiency of on-device infer-

ence, the intermittent learning framework enables on-device training to improve the effectiveness

and accuracy of the learner over time.

8.2 Looking into the Future

This dissertation has just made the first step towards Embedded Artificial Intelligence (EAI)

by tackling a few of the challenges of employing artificial intelligence technologies on resource-

constrained embedded systems. Based on that, the dimensionality of state-of-the-art EAI will

be extended by 1) enabling intelligent systems to adapt to the new learning environment on the

device, 2) exploring new learning paradigm better suited to resource-constrained embedded
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systems beyond deep learning, and 3) performing smarter learning via physical interaction as

cyber-physical intelligent systems. The followings provide an overview of each research plan.

8.2.1 On-Device Adaptation to Non-Stationary Environment

Problem Statement. In the real world, the learning conditions in which we use intelligent sys-

tems will differ from the conditions in which they were trained. Especially, environments are non-

stationary, and sometimes the difficulties of matching the development scenario to the use are too

significant or too costly. This learning environment mismatch is called dataset shift. An exam-

ple of a dataset shift is a face recognition algorithm trained predominantly on younger faces, yet

the real dataset has a much larger proportion of older faces. Unfortunately, mainstream machine

learning methods work by ignoring these differences and presuming that the real environment

and training environment match.

In this research, the following research questions will be asked about how to adapt an embed-

ded intelligent system on the device to an ever-evolving learning environment when the possibil-

ity of dataset shift is allowed (Figure 8.1), which happens to many practical, intelligent systems

deployed in the wild.

• Dataset Shift Detection: When to perform the on-device adaptation to the environment?

• Efficient Adaptation: How to enable the on-device adaptation using limited resources of the

system?

• Learning Example Selection: What (which) online learning examples to learn for on-device

adaptation?

Research Direction. This problem can be formulated as an on-device dataset adaptation prob-

lem and answer those three research questions by updating the learning model of the system as

described in the following.

• Dataset Shift Detection: The model adaptation is initiated when the feature distribution of

real examples becomes different from that of train examples, and the difference is greater than the

level where re-training of the current model is required due to the potential performance decrease
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Figure 8.1: Embedded systems adapt to the new environment via on-device adaptation.

caused by a dataset shift. After a few iterations of re-training, the adaptation is terminated when

the distribution becomes stabilized.

• Efficient Adaptation: Only the last layer’s weight parameters are updated via re-training of

the model, similar to the transfer learning, but without back-propagation that is computationally

too expensive for many embedded systems (Ng, 2016; Pratt, 1993). The lightweight on-device

dataset adaptation (re-training of the model) becomes possible by utilizing the computational

outputs of feed-forward execution for inference. Also, the re-training effect of the model for

each example is maximized by weighting the importance of the loss for every single example

constituting a re-training batch, which works as a dynamic learning rate.

• Learning Example Selection: Learning examples are selected in two steps. First, each in-

coming example’s learning utility is examined based on their uncertainty, which is measure by

their gradient norm without requiring ground-truth labels. Then, only the labels of input exam-

ples with high learning utility are obtained as active learning based on diversity criteria to com-

pose a re-training batch.

Preliminary Result. Figure 8.2 shows the on-device adaptation of MNIST and CIFAR-10

datasets on MSP430 microcontroller, where examples of different datasets come to the system,

causing three dataset shifts (noise, rotation, and permutation). It shows how inference accuracy

changes over the data examples by the proposed adaptation. When the data is shifted, the accu-

racy drops and stays the same until the adaptation is initiated. Once the shift is detected, the deep
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(a) MNIST (b) CIFAR-10

Figure 8.2: The end-to-end on-device adaptation (inference accuracy) on MNIST and CIFAR-10.

model is successfully adapted to the new data to recover the inference accuracy with examples of

new dataset (Lee and Nirjon, 2020b).

8.2.2 Next Learning Model Beyond Deep Learning

Problem Statement. While Deep Neural Networks (DNNs) have started to run on embedded

systems, their lack of decomposability into understandable components makes them hard to in-

terpret. Although many works such as model distillation and feature importance tried to interpret

DNNs, they still remain as black boxes in most cases, limiting their deployment on real systems.

Their inexplicability is impeding the deployment of today’s high-performing DNNs on embedded

systems of limited resources, which usually requires to customize a large size of DNNs until they

become executable on embedded systems. However, since the knowledge of how DNNs work

is missing, such DNN manipulation is usually conducted with trial-and-error approaches that in-

volve multiple iterations of re-training, e.g., compression or pruning techniques. Moreover, such

heuristic methods not based on the analytical understanding of DNNs are prone to deform DNNs

inadvertently, resulting in unpredictable behavior of the DNNs.

In this research, the following research questions will be asked about a new learning model

that can approximate a black-box DNN to an understandable computer program consisting of

functions written in high-level programming languages, which is optimized to run on resource-

constrained embedded systems.
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Figure 8.3: A DFN approximates a black-box DNN into human-understandable functional
program easy to deploy on resource-constrained embedded systems.

• Learning Model: What kind of learning model should be an alternative to today’s DNNs?

• Representation: In what form, the new learning model should be represented?

• Training (Learning): How to efficiently as well as effectively train (or learn) the new learn-

ing model?

Research Direction. We propose Deep Functional Network (DFN) that approximates a DNN

to a human-understandable computer code consisting of programming functions written in high-

level languages. It would be an alternative to many inexplicable, massive, and rigid DNNs that

are onerous to run on resource-constrained embedded systems. Based on the explainability of the

problem-solving process, which allows a precise description of the solution, a well-interpreted

DFN will achieve the same goal of the DNN with better resource efficiency. Also, modular func-

tions and their data flow presented in a DFN will enable flexible and analytical optimization

based on the system requirements, e.g., execution time, energy, or memory.

• Learning Model: Our new learning model takes two steps to generate a DFN from a DNN.

First, it searches for a set of functions representing independent algorithms (e.g., AVG, FFT),

which are expected to be required by the final program via the process called function estimation.

Second, it finds the data flow between the functions and builds a network architecture of DFN in

the form of a DAG, which achieves the task of DNN, under the run-time constraints of the system

via the process called network formation.
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• Representation: A DFN is represented in the form of a directed acyclic graph (DAG) by

using functional programming, which interprets the DNN as a tree consisting of a set of functions

(vertices) and their connections (edges). The functional programming of the DNN makes it easier

to understand by allowing function definitions to be trees of expressions that each return an out-

put based on the declarative programming paradigm. Figure 8.3 shows a diagram of the proposed

DFN in which a DNN is first interpreted into a DFN with four functions (e.g., FFT, CONV, AVG)

and then converted into an executable program under the resource budget of the target system.

max_pool:0

multiply:0

rfft2d:0
rfft2d:1

cross:0

conv1d:0

input

output

depthwise_conv2d:0

max_pool:1

Figure 8.4: An example of DFN (ResNet/MNIST)

• Training (Learning): A DFN is generated (trained) by approximating the DNN such that it

provides the same output through the similar inner workings of the DNN. The internal behavior

of the DFN becomes similar to that of the DNN by enforcing the derivatives of the DFN output

w.r.t. the input to be identical to that of the DNN during the solution search. It is different from

the curve-fitting that finds the best fit to input/output data points without taking into account how

the solution gets to the answer.

Preliminary Result. Figure 8.4 shows the DFN interpreted from the ResNet-152 DNN trained

on MNIST. It shows a promising possibility that many state-of-the-art DNNs performing differ-

ent tasks can be successfully interpreted into DFNs. The DFN achieves comparable classification

accuracy on MNIST to ResNet-152, i.e., 97% vs. 99%, with 1,235x memory efficiency.
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8.2.3 Smarter Learning via Physical Interaction

Problem Statement. In general, AI algorithms are applied to the data only obtained from the

given circumstances due to their inability to involve with the physical environment. Since they

usually do not directly engage with or influence the physical world, they cannot actively seek

or create a favorable learning environment where their learning objective can be maximized.

Although reinforcement learning considers the consequences of an agent’s action to the environ-

ment, it assumes that the environment is an external factor that the agent cannot change and thus

does not try to create or find a better learning environment. In contrast, many embedded systems

are capable of sensing the physical world and taking physical actions via actuation (Lee and

Nirjon, 2018), e.g., a mobile robot can sense through a camera and use its wheels to move around.

Thus, such sensing- and actuation-capable intelligent systems can proactively seek and change its

surroundings to better achieve their learning objective, instead of learning in a given environment

passively.

Figure 8.5: Smart learning of embedded intelligent systems via physical interaction (i.e., sensing
and actuation) given heterogeneous environments.

In this research, the following research questions will be asked about if intelligent systems

can improve their learning performance by actively sensing the physical world and taking actions
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via actuation based on the concept called Cyber-Physical Intelligent Systems (CPIS), unlike the

conventional AI approaches that do not involve with physical processes.

• Finding Best Condition: What is the optimal physical condition maximizing the learning

objective?

• Optimal Action Planning: What actions should be taken to promote the best physical condi-

tion?

• Balance between Activeness and Passiveness: How much and when the system should

perform physical interaction with the environment?

Research Direction. We propose smarter learning of intelligent systems via physical interaction

(i.e., sensing and actuation) given heterogeneous environments, which enhances the system’s

learning objective (Figure 8.5). By proactively finding the best learning environment via active

sensing and promoting such an environment to the system via actuation, the system’s learning

performance is improved. To this end, we propose learning condition exploration, a dynamic

physical-intelligent action planner, and a conditional action trigger, as described in the follow-

ing.

• Finding Best Condition: The best physical environment is defined as the learning condition

that provides useful learning data of high utility, improving the system’s learning performance.

To find such an environment, the system first senses various environments of different learning

conditions and then performs actuation to bring the best one to the system. we propose learning

condition exploration based on reinforcement learning, which enables efficient exploration of

the environments of various learning conditions by building statistics of learning conditions. For

example, a mobile robot that has fully learned a particular type of data in one place can search

for other sites and move to the next best place where a different kind of data that can enhance its

learning performance is available.

• Optimal Action Planning: Since an intelligent system capable of physical actuation per-

forms multiple heterogeneous actions such as sensing, feature extracting, inferring, rotating

motors, rolling the wheels, etc., the search space of optimal actions not only increases exponen-
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tially but also involves with both physical and learning-related actions. To solve this problem, we

propose a dynamic physical-intelligent action planner that determines a set of actions the system

needs to take at run-time by taking account of two orthogonal types of actions simultaneously,

i.e., physical and learning-related actions, similar to (Lee et al., 2019). To make a feasible action

plan, the decision horizon is limited to finite next steps in which the locally optimal solution is

searched instead of the globally optimal solution.

• Balance between Activeness and Passiveness: Since there is a risk that physical actions

fail to promote the desired environment due to various reasons such as the insufficient physical

capability of the system or changing environment, we propose to invoke active actions only when

it is expected to promote the desired learning condition, namely the conditional action trigger. It

also considers the trade-off between physical action-induced active learning and passive learning

with no physical involvement, such as increased energy consumption of actuation or miss of

important learning data due to the environment change.
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