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Introduction: Childhood-onset nephrotic syndrome has a variable clinical course. Improved predictive

markers of long-term outcomes in children with nephrotic syndrome are needed. This study tests the

association between baseline urinary epidermal growth factor (uEGF) excretion and longitudinal kidney

function in children with nephrotic syndrome.

Methods: The study evaluated 191 participants younger than 18 years enrolled in the Nephrotic Syndrome

Study Network, including 118 with their first clinically indicated kidney biopsy (68 minimal change disease;

50 focal segmental glomerulosclerosis) and 73 with incident nephrotic syndrome without a biopsy. uEGF

was measured at baseline for all participants and normalized by the urine creatinine (Cr) concentration.

Renal epidermal growth factor (EGF) mRNA was measured in the tubular compartment microdissected

from kidney biopsy cores from a subset of patients. Linear mixed models were used to test if baseline

uEGF/Cr and EGF mRNA expression were associated with change in estimated glomerular filtration rate

(eGFR) over time.

Results: Higher uEGF/Cr at baseline was associated with slower eGFR decline during follow-up (median

follow-up ¼ 30 months). Halving of uEGF/Cr was associated with a decrease in eGFR slope of 2.0 ml/min

per 1.73 m2 per year (P < 0.001) adjusted for age, race, diagnosis, baseline eGFR and proteinuria, and

APOL1 genotype. In the biopsied subgroup, uEGF/Cr was correlated with EGF mRNA expression (r ¼ 0.74;

P < 0.001), but uEGF/Cr was retained over mRNA expression as the stronger predictor of eGFR slope after

multivariable adjustment (decrease in eGFR slope of 1.7 ml/min per 1.73 m2 per year per log2 decrease in

uEGF/Cr; P < 0.001).

Conclusion: uEGF/Cr may be a useful noninvasive biomarker that can assist in predicting the long-term

course of kidney function in children with incident nephrotic syndrome.
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Commentary on Page 383
M
ost cases of primary nephrotic syndrome in
children are caused by 1 of 2 disorders: minimal

change disease (MCD) or focal segmental glomerulo-
sclerosis (FSGS).1 MCD is a generally favorable condi-
tion that presents with edema and proteinuria and is
initially responsive to corticosteroid therapy in 75% to
90% of cases, depending on age of onset and ancestry.2

However, MCD subsequently follows a chronic course,
and many children experience multiple relapses
requiring second-line immunosuppressive therapy to
control disease.3–5 Moreover, in addition to initial
treatment resistance, an additional 20% develop late
steroid resistance over time.6,7 In contrast, nearly 50%
of patients with FSGS are unresponsive to current
treatment regimens, either at disease onset or later in
the course of their illness.8,9 Patients with treatment-
resistant primary nephrotic syndrome, whether from
MCD or FSGS, are at high risk of progression to end-
stage kidney disease.10,11

Standard assessment of kidney biopsies can yield
more than the histological diagnosis of MCD or FSGS.
The severity of interstitial fibrosis and tubular atrophy
(IFTA) has been associated with kidney disease pro-
gression.12 However, IFTA is not uniformly present
throughout the kidney. Consequently, IFTA assess-
ment from kidney biopsies is subject to sampling bias.
Because young children with uncomplicated disease
have a high likelihood of MCD, the standard of care in
children younger than 12 years with new-onset
nephrotic syndrome is to treat empirically with corti-
costeroids without routinely performing a kidney bi-
opsy.13 Finally, there is considerable variability in
clinical practice in the performance of a kidney biopsy
later in the course of childhood nephrotic syndrome.

With or without a kidney biopsy, there is no clinical
method to accurately distinguish at presentation the
patients who are likely to have progressive loss of
kidney function from those who will maintain kidney
function long-term. The availability of a noninvasive
test to improve prognostic evaluation for children with
nephrotic syndrome could help guide decision making
about further diagnostic assessment, therapy, and pa-
tient monitoring.

EGF is the prototypical peptide growth factor of the
EGF/EGF receptor signaling pathway, which plays
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important roles in proliferation, differentiation, and
migration of a variety of cell types, especially epithelial
cells.14 In the kidney, EGF promotes tubular cell pro-
liferation and has been linked to modulating the re-
covery from acute kidney injury.15,16 Our recent work
has shown that EGF is inversely correlated with IFTA,
that is, increased urinary excretion of EGF was asso-
ciated with a lower degree of IFTA in renal biopsies
obtained from adults with primary nephrotic syndrome
or chronic kidney disease from a variety of causes.17

Further, the addition of EGF measures to de-
mographic and clinical features improved the ability
to predict progression of chronic kidney disease.17

Urinary EGF was recently reported to be associated
with kidney disease progression in children with
Alport syndrome18 and in a cohort of children pre-
dominantly with nonglomerular chronic kidney disease
(CKD) (w70% congenital anomalies of kidney and
urinary tract).19 The utility of this urinary biomarker
has not been assessed in children with nephrotic
syndrome.

Therefore, we conducted the following study
among a cohort of pediatric nephrotic syndrome pa-
tients to test the hypotheses that (i) urinary EGF
excretion is associated with tubular compartment
renal gene expression profiles of children with bio-
psied MCD and FSGS, and (ii) urinary EGF excretion is
associated with cross-sectional and longitudinal kid-
ney function in children with nephrotic syndrome,
independent of demographic and clinical markers of
disease.

METHODS

Study Design

This longitudinal study used existing prospectively
collected data and specimens from the National In-
stitutes of Health–sponsored Nephrotic Syndrome
Study Network (NEPTUNE).20 The primary outcome
was the person-specific eGFR slope over follow-up, and
the main predictor was uEGF at baseline.

Study Data and Specimen Source

NEPTUNE, launched in 2010, is an ongoing prospec-
tive observational cohort study of children and
adults with primary proteinuric kidney diseases.20

NEPTUNE data capture includes demographic data,
clinical information of symptoms, diagnoses, physical
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examination, medications, laboratory values, biopsy
tissue, patient-reported outcomes, health care utiliza-
tion, procedures, and collection of urine and blood
biosamples. The study includes 2 cohorts: an incident,
nonbiopsy childhood-onset nephrotic syndrome
(CO-NS) cohort and a biopsy cohort. The study visit
schedule includes a baseline assessment within 45 days
of onset of CO-NS nonbiopsied children or within 45
days of the kidney biopsy for biopsied children.
Follow-up visits are conducted at months 1.5, 3, 8, and
12 (CO-NS), or every 4 months during the first year for
the biopsy cohort. All enrolled participants are subse-
quently followed every 6 months. For this analysis, we
excluded participants older than 18 years at the base-
line visit; those with a biopsy diagnosis other than
MCD, FSGS, or CO-NS; and those who did not have a
baseline uEGF measurement. Institutional review board
approval for this study was obtained at all partici-
pating sites with appropriate consent and assent forms.

Serum creatinine was measured in the central labo-
ratory from specimens collected during study visits
and enriched with data collected from local health re-
cords. GFR was estimated using the bedside serum
creatinine–based pediatric estimating equation.21

Glomerular hyperfiltration was defined in this study
as eGFR >120 ml/min per 1.73 m2. To reduce the effect
of outlier measurements during periods of hyper-
filtration wherein reduction in eGFR from hyper-
filtration to normal range is considered improvement,
all longitudinal eGFR measurements were Winsorized
to 120 ml/min per 1.73 m2.22

Urine protein and creatinine were measured in the
central laboratory from 24-hour or spot urine samples
as available. Urine protein:creatinine ratios (UP:C) were
expressed as mg/mg. These central measures were
enriched by results collected from local medical
records.

APOL1 risk alleles were genotyped directly via
Sanger sequencing of the last 250 bases of exon 7.23

Participants were classified as having 2 (high risk)
versus 0 or 1 risk alleles. No distinction was made
between G1(rs73885319 and rs60910145) and the G2
indel (rs71785313). Participants who were nonblack
were classified as having zero risk alleles based on the
concept that APOL1 high-risk alleles are rarely present
in individuals of European or Asian ancestry. African
American participants who were genotyped but found
to have 0 or 1 APOL1 risk alleles were similarly
classified.

The local clinical kidney biopsy report was redacted
of participant identifiers and submitted via the
NEPTUNE electronic data capture system for review.
Glass slides from the local clinical diagnostic kidney
biopsy were submitted to the NEPTUNE Digital
416
Pathology Repository for scanning and subsequent
scoring by the NEPTUNE Core Pathology Committee.24

A single core of kidney biopsy tissue collected for
research purposes during the initial local clinical kid-
ney biopsy was preserved in RNAlater and submitted
to NEPTUNE laboratories at the University of Michi-
gan. Biopsy tissue was microdissected into tubular and
glomerular compartments and renal gene expression
data were generated using Affymetrix GeneChip Hu-
man Genome ST2.1.23 The details of tissue harvesting,
microdissection, RNA isolation, reverse transcription,
linear amplification, and target preparation followed
published strategies.25,26 The fragmentation, hybridi-
zation, staining, and imaging were performed accord-
ing to the Affymetrix Expression Analysis Technical
Manual. The .CEL files were processed and normalized
by the Robust MultiArray method and annotated with
the Human Entrez Genes custom Chip Description File
(http://brainarray.mbni.med.umich.edu).27 Normalized
expression value data were log2 transformed and batch
corrected using ComBat.28

uEGF was assessed in duplicate from urine collected
at study visits using enzyme-linked immunosorbent
assay (R&D Systems, Inc., Minneapolis, MN) and
optimized in the laboratory as previously reported.17

uEGF was normalized for urine creatinine concentra-
tion (uEGF/Cr ng/mg) to adjust for differences in urine
concentration between participants.

Data Analyses

Descriptive analyses were conducted on all participants
who had a baseline uEGF measurement using fre-
quencies and percentages for categorical variables and
medians and interquartile ranges for continuous vari-
ables. Comparisons across disease categories were made
using c2 tests for categorical variables and Kruskal-
Wallis tests for continuous variables. To reduce
skewness, a log2 transformation was applied to the
mean of the uEGF/Cr duplicate values. Pearson corre-
lations were calculated to examine potential associa-
tions between log2(uEGF/Cr) and log2(renal EGF mRNA
expression) when both samples were collected within a
7-day interval. All eGFR values were Winsorized
(capped) at 120 ml/min per 1.73 m2.

Longitudinal linear mixed effects models with
random intercepts and slopes were used to predict the
outcome of eGFR. Analyses began at the earliest time of
study data collection: time of biopsy for the MCD and
FSGS cohorts; time of nephrotic syndrome onset for the
nonbiopsied CO-NS cohort. Covariates of primary in-
terest were time from biopsy, baseline uEGF/Cr, and an
interaction term between time and uEGF/Cr to test
whether trajectories of eGFR differ by uEGF/Cr at
baseline. For example, a significant main effect for
Kidney International Reports (2020) 5, 414–425
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uEGF/Cr would yield parallel eGFR slopes over follow-
up, differing by a linear function of uEGF/Cr at
baseline; a significant interaction would indicate
nonparallel (fan-shaped) slopes in eGFR over time,
reflecting both a shift up or down and a change in slope
as a linear function of baseline uEGF/Cr. Other vari-
ables included in the models were baseline values of
age, prior disease duration, prior therapy, UP:C, and
eGFR, as well as sex, race, ethnicity, kidney disease
diagnosis, and APOL1 genotype. Interaction terms be-
tween time and each predictor of interest were tested as
potential predictors of eGFR slope, using Wald tests to
assess significance. All variables were included in a
backwards multivariable model selection. The back-
wards selection process ensured the model was hier-
archically well-formulated. First, nonsignificant
interactions with time were removed in descending
order of P value. Then main effects underwent back-
wards selection, but any main effects terms part of a
statistically significant interaction with time were
retained in the final models. In addition, age was
included in all models (regardless of significance) to
account for the known inverse relationship between
EGF and age.29 Although Wald tests are standard for
routine assessment of significance, the variable of pri-
mary interest, uEGF/Cr, was also tested by likelihood
ratio tests, which are generally more accurate.

A separate analysis was conducted in the biopsied
participants alone to further examine whether or not
renal biopsy IFTA, global sclerosis, or EGF RNA
expression were predictors of eGFR slope using the
same longitudinal mixed models and backwards selec-
tion approach. Sensitivity analyses were conducted
refitting final models using age-normalized values of
Figure 1. Flow diagram of included participants. CO-NS, childhood-
onset nephrotic syndrome not biopsied; FSGS, focal segmental
glomerulosclerosis; MCD, minimal change disease; uEGF, urinary
epidermal growth factor.
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uEGF/Cr. Normalization was done using median-
interquartile range age-normalization of uEGF/Cr
based on data from healthy children reported by
Meybosch et al.29,30 All analyses were conducted using
SAS v9.4 (SAS Institute, Inc., Cary, NC). A significance
level of 0.05 and 2-sided testing were used throughout;
95% confidence intervals (CIs) were reported.

RESULTS

As of May 2019, there were 713 participants enrolled in
NEPTUNE, 326 of whom were <18 years old at the
baseline visit (Figure 1). Of these, 37 were excluded
because they had a diagnosis other than FSGS, MCD, or
CO-NS, and a further 98 did not have a baseline uEGF/
Cr measurement, leaving 191 participants for analysis.
Baseline characteristics of these participants are shown
by diagnosis in Table 1. Comparing FSGS, MCD, and
CO-NS, respectively, median age varied by cohort (13,
11, and 4 years, P < 0.001), as did median baseline
eGFR (90, 105, and 139 ml/min per 1.73 m2, P < 0.001)
and median uEGF/Cr (24.9, 39.9, and 71.4 ng/mg, P <
0.001). At baseline uEGF/Cr collection, 37% of partic-
ipants had nephrotic range proteinuria (UP:C $3.0
g/g), 27% sub-nephrotic, but active, proteinuria
(UP:C <3.0 g/g and UP:C $0.3 g/g), and 35% were in a
complete remission of proteinuria (UP:C <0.3 g/g).
However, there was no correlation between baseline
uEGF/Cr and UP:C (r ¼ �0.07, P ¼ 0.34). There was
also no association between uEGF receptor/Cr and ste-
roid response pattern, both initially and after 1 year
(Supplementary Figure S1).

Urinary EGF/Cr was strongly correlated with renal
EGF mRNA expression (both log2 transformed) in the
16 participants with matching samples within 1 week
of biopsy (Figure 2, r ¼ 0.74, P < 0.001). In addition,
uEGF/Cr was moderately correlated with baseline eGFR
(Supplementary Figure S2, r ¼ 0.49, P < 0.001).

Regression Analyses

The adjusted relationship between uEGF/Cr and eGFR
over time was assessed using multivariable linear
mixed effects models developed with backward selec-
tion (Table 2, model 1). Baseline values of age, eGFR,
UP:C, and uEGF/Cr, as well as race, diagnosis, and
APOL1 genotype were all significant predictors of
eGFR and included in the final model. Significant in-
teractions with time indicate that different levels of a
variable are associated with different values of the
slope of eGFR over time. For example, doubling of
uEGF/Cr was associated with a 2.0 ml/min per 1.73
m2/year increase in eGFR slope (95% CI: 1.1–2.9; P <
0.001). Conversely, halving of EGF/Cr was associated
with a 2.0 ml/min per 1.73 m2 decrease in eGFR slope.
In addition, a 1-loge increase in UP:C was associated
417



Table 1. Comparison of baseline characteristics of pediatric Nephrotic Syndrome Study Network participants with a baseline uEGF/Cr
measurement by diagnosis (n ¼ 191)
Characteristic All children (n [ 191) CO-NS (n [ 73) MCD (n [ 68) FSGS (n [ 50) P value

Age at baseline (yr) 7 (4, 13) 4 (3, 7) 11 (6, 14) 13 (6, 15) <0.001

Sex (female) 84 (44) 36 (49) 26 (38) 22 (44) 0.42

Race 0.07

White 80 (42) 36 (49) 29 (43) 15 (30)

Black 62 (32) 17 (23) 20 (29) 25 (50)

Asian 24 (13) 9 (12) 12 (18) 3 (6)

Native American 7 (4) 2 (3) 3 (4) 2 (4)

Not reported 18 (9) 9 (12) 4 (6) 5 (10)

Hispanic or Latino 38 (20) 12 (16) 13 (19) 13 (26) 0.75

Kidney disease duration (mo) 1 (0, 7) 0 (0, 1) 8 (1, 30) 2 (1, 20) <0.001

Received treatment before enrollment 65 (34) 0 (0) 38 (56) 27 (54) <0.001

eGFR at baseline (ml/min per 1.73 m2) 108 (89, 135) 139 (100, 193) 105 (90, 125) 90 (74, 114) <0.001

Hyperfiltrationa at baseline 71 (37) 42 (58) 21 (31) 8 (16) <0.001

UP:C at baseline (g/g) 5.9 (1.4, 10.6) 7.3 (0.3, 12.6) 5.6 (1.5, 10.3) 3.6 (1.7, 8.2) 0.56

Interstitial fibrosis (%) 1 (0, 4) – 0 (0, 2) 3 (0, 10) 0.002

APOL1 (2 risk alleles) 19 (10) 1 (1) 3 (4) 15 (30) <0.001

uEGF/Cr (ng/mg) 42.0 (27.2, 71.6) 71.4 (40.0, 91.3) 39.9 (27.3, 55.6) 24.9 (11.4, 41.2) <0.001

Log2- EGF RNA expression 7.3 (6.6, 7.6) – 7.5 (7.3, 7.8) 6.9 (6.4, 7.3) 0.005

Months of follow-up 30 (17, 52) 19 (10, 29) 44 (25, 54) 50 (27, 56) <0.001

eGFR slope (ml/min per 1.73 m2/yr)b �2.9 [�4.4 to �1.4] 1.0 [�2.3 to 4.2] �2.3 [�4.5 to �0.1] �5.4 [�7.7 to �3.0] 0.007

CO-NS, childhood-onset nephrotic syndrome, not biopsied; EGF, epidermal growth factor; eGFR, estimated glomerular filtration rate; FSGS, focal segmental glomerulosclerosis; IQR,
interquartile range; MCD, minimal change disease; uEGF/Cr, urinary EGF:creatinine ratio; UP:C, urine protein:creatinine ratio
aeGFR>120 ml/min per 1.73m2.
bDerived from linear mixed effects model.
eGFR slope estimates were derived from a linear mixed-effects model and values reported are mean and 95% confidence intervals. Other continuous variables are reported as median
(interquartile range) and use a Kruskal-Wallis test for comparison; categorical variables are reported as n (%) and use a c2 test for comparison
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with a steeper decline in eGFR by �1.1 ml/min per
1.73 m2/year (95% CI: �1.6 to �0.5; P < 0.001). Native
American participants also had more rapid eGFR
decline compared with white participants (�5.6 ml/min
per 1.73 m2/year; 95% CI: �9.6 to �1.7; P ¼ 0.01), as
Figure 2. Epidermal growth factor (EGF) mRNA expression correlates
Nephrotic Syndrome Study Network participants. Urine collection for uE
participants with EGF mRNA RNA expression data available (n ¼ 16).

418
did FSGS compared with CO-NS participants (�4.4
ml/min per 1.73 m2/year; 95% CI: �7.6 to �1.2; P ¼
0.01). Significant main effects, in the absence of a sig-
nificant interaction with time, indicate that a variable
was associated with higher or lower eGFR, but that it
with urinary EGF (uEGF)/creatinine (Cr) among biopsied pediatric
GF/Cr occurred within 7 days of biopsy. Data were plotted only for

Kidney International Reports (2020) 5, 414–425



Table 2. Adjusted longitudinal linear mixed-effects models of eGFR over time

Outcome [ eGFR (ml/min per 1.73 m2)

Model 1 (with uEGF/Cr) Model 2 (without uEGF/Cr)

Estimate [95% CI] P value Estimate [95% CI] P value

Main effects

Intercept 52.1 – 51.4 –

Follow-up time (per yr) �13.0 [�19.4 to �6.7] <0.001 �0.3 [�2.7 to 2.0] 0.80

Age (per yr older) �0.1 [�0.5 to 0.3] 0.56 �0.2 [�0.6 to 0.2] 0.35

Race

Asian vs. White 0.5 [�3.7 to 4.7] 0.80 1.6 [�2.7 to 5.8] 0.48

Black vs. White 0.6 [�3.3 to 4.5] 0.76 0.7 [�3.1 to 4.4] 0.73

Native American vs. White 3.7 [�5.1 to 12.4] 0.41 4.4 [�4.5 to 13.2] 0.34

Diagnosis

MCD vs. CO-NS 4.7 [0.6–8.7] 0.02 4.3 [0.2–8.5] 0.04

FSGS vs. CO-NS �3.4 [�8.2 to 1.5] 0.17 �4.2 [�9.0 to 0.7] 0.09

Winsorized eGFR at baseline 0.4 [0.3–0.4] <0.001 0.5 [0.4–0.5] <0.001

log UP:C at baseline �0.4 [�1.4 to 0.6] 0.46 �0.5 [�1.5 to 0.6] 0.36

APOL1 (2 risk alleles vs. 0/1) �15.2 [�19.1 to �11.3] <0.001 �14.0 [�18.0 to �10.1] <0.001

log2 uEGF/Cr at baseline 1.2 [�0.6 to 3.0] 0.19 – –

Interaction with time (eGFR slope per year) (ml/min per 1.73 m2/yr)

Age (per yr older) 0.3 [0.0–0.5] 0.02 �0.0 [�0.2 to 0.2] 0.99

Race

Asian vs. White �3.4 [�5.5 to �1.2] 0.002 �3.9 [�6.1 to �1.7] <0.001

Black vs. White 0.5 [�1.5 to 2.5] 0.64 �2.0 [�3.8 to �0.2] 0.03

Native American vs. White �5.6 [�9.6 to �1.7] 0.01 �5.0 [�9.1 to �1.0] 0.01

Diagnosis

MCD vs. CO-NS �2.9 [�5.9 to 0.1] 0.06 �2.7 [�5.8 to 0.3] 0.08

FSGS vs. CO-NS �4.4 [�7.6 to �1.2] 0.01 �4.8 [�8.1 to �1.6] 0.003

log UP:C at baseline �1.1 [�1.6 to �0.5] <0.001 �1.0 [�1.5 to �0.4] <0.001

log2 uEGF/Cr at baseline 2.0 [1.1–2.9] <0.001 – –

CI, confidence interval; CO-NS, childhood-onset nephrotic syndrome, not biopsied; EGF, epidermal growth factor; eGFR, estimated glomerular filtration rate (ml/min per 1.73 m2); FSGS,
focal segmental glomerulosclerosis; MCD, minimal change disease; uEGF/Cr, urinary EGF:creatinine ratio (ng/mg); UP:C, urine protein:creatinine ratio (g/g).
Results from all pediatric Nephrotic Syndrome Study Network participants with baseline uEGF/Cr data available (n ¼ 191 participants, 1553 observations). Likelihood ratio test comparing
model 1 with model 2: P < 0.001. Variables tested for inclusion in the model are sex, ethnicity, kidney disease duration at baseline, and prior therapy at baseline.
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was not associated with change in slope of eGFR over
time. For example, high-risk APOL1 genotype was
associated with lower eGFR (main effect: �15.2 ml/min
Figure 3. The association between baseline urinary epidermal growth facto
over time. Results from adjusted linear mixed effects models among all ped
uEGF/Cr data available (n ¼ 191 participants, 1553 observations). eGFR va
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per 1.73 m2; 95% CI: �19.1 to �11.3), but not a sig-
nificant interaction between genotype and eGFR slope.
Model 1 was refit after removing uEGF/Cr (Table 2,
r/creatinine (uEGF/Cr) and estimated glomerular filtration rate (eGFR)
iatric Nephrotic Syndrome Study Network participants with baseline
lues Winsorized (capped) to 120. CI, confidence interval.
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Figure 4. The association between baseline urinary epidermal growth factor/creatinine (uEGF/Cr) and estimated glomerular filtration rate (eGFR)
over time. Results from adjusted linear mixed effects models among all pediatric Nephrotic Syndrome Study Network participants with baseline
uEGF/Cr data available (n ¼ 191 participants, 1553 observations). eGFR values Winsorized (capped) at 120 ml/min per 1.73 m2. Values shown are
regression estimates and 95% confidence intervals.
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model 2). A likelihood ratio test demonstrated an
improvement in fit after including uEGF/Cr (Table 2:
model 1 vs. model 2, P < 0.001).
Table 3. Adjusted longitudinal linear mixed-effects models of eGFR over

Outcome [ eGFR (ml/min per 1.73 m2)

Mode

Estimate [95

Main effects

Intercept 33.3

Follow-up time (per yr) �15.0 [�22.7

Age (per yr older) �0.1 [�0.7 t

Race

Asian vs. White �2.3 [�9.4 t

Black vs. White 2.6 [�3.5 t

Native American vs. White 8.9 [�4.1 t

Diagnosis

MCD vs. FSGS 7.7 [4.3–11

Winsorized eGFR at baseline 0.6 [0.5–0.

log UP:C at baseline 1.0 [�0.8 t

APOL1 (2 risk alleles vs. 0/1) �9.5 [�14.6

log Interstitial fibrosis (%) �1.2 [�2.1 t

Log global sclerosis (%) 0.4 [�0.8 t

log2 uEGF/Cr at baseline 0.9 [�1.3 t

Interaction with time (eGFR slope per year) (ml/min per 1.73 m2/yr)

Age 0.4 [0.1–0.

Race

Asian vs. White �2.5 [�5.4 t

Black vs. White 0.1 [�2.6 t

Native American vs. White �10.0 [�14.9

log UP:C at baseline �1.4 [�2.2 t

Log global sclerosis (%) �0.9 [�1.3 t

log2 uEGF/Cr at baseline 1.7 [0.6–2.

CI, confidence interval; eGFR, estimated glomerular filtration rate (ml/min per 1.73 m2); EGF, epi
disease; uEGF/Cr, urinary EGF:creatinine ratio (ng/mg); UP:C, urine protein: creatinine ratio (g/g
Results restricted to pediatric participants with kidney biopsy (n ¼ 118 participants, 1164 observ
for inclusion in the model are sex, ethnicity, kidney disease duration at baseline, prior therapy

420
Figure 3 shows the eGFR slope for different values
of uEGF/Cr based on model 1 in Table 2, which in-
cludes both biopsied and nonbiopsied participants.
time
l 1 (with uEGF/Cr) Model 2 (without uEGF/Cr)

% CI] P value Estimate [95% CI] P value

– 31.6 –

to �7.3] <0.001 �3.9 [�7.1 to �0.6] 0.02

o 0.5] 0.79 �0.1 [�0.7 to 0.5] 0.74

o 4.8] 0.52 �0.3 [�7.4 to 6.9] 0.94

o 8.7] 0.40 2.7 [�3.2 to 8.5] 0.37

o 21.8] 0.18 9.9 [�3.3 to 23.1] 0.14

.0] <0.001 8.7 [5.2–12.1] <0.001

7] <0.001 0.7 [0.6–0.7] <0.001

o 2.9] 0.28 0.9 [�1.0 to 2.8] 0.33

to �4.3] <0.001 �6.7 [�11.8 to �1.5] 0.01

o �0.2] 0.02 �1.5 [�2.4 to �0.5] 0.003

o 1.6] 0.52 0.5 [�0.7 to 1.8] 0.40

o 3.2] 0.41 – –

7] 0.003 0.2 [�0.1 to 0.4] 0.15

o 0.4] 0.08 �3.4 [�6.3 to �0.4] 0.03

o 2.7] 0.97 �2.2 [�4.6 to 0.1] 0.07

to �5.2] <0.001 �10.1 [�15.1 to �5.1] <0.001

o �0.7] <0.001 �1.3 [�2.1 to �0.5] 0.001

o �0.4] <0.001 �0.8 [�1.3 to �0.4] 0.001

8] 0.002 – –

dermal growth factor; FSGS, focal segmental glomerulosclerosis; MCD, minimal change
).
ations). Likelihood ratio test comparing model 1 with model 2: P < 0.001. Variables tested
at baseline, and EGF RNA expression.
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Participants with a lower uEGF/Cr had a more rapid
decline in eGFR. For example, holding constant other
variables in the model, a participant with a baseline
uEGF/Cr of 32 ng/mg had an estimated slope of �1.8
ml/min per 1.73 m2/year (95% CI: �3.0 vs. �0.6),
whereas a participant with a baseline uEGF/Cr of 16
ng/mg had an estimated slope of �3.8 ml/min per
1.73 m2/year (95% CI: �5.5 to �2.1). Model derived
estimates of eGFR over time with 95% CIs are also
shown in Figure 4.

Table 3 shows an analogous multivariable model of
eGFR restricted to biopsied participants only. uEGF/Cr
was a significant predictor of change in eGFR over time
among these participants with coefficients of similar
magnitude reported in model 1 of Table 2 versus
Table 3. Among biopsied participants, a doubling of
uEGF/Cr was associated with a 1.7 ml/min per 1.73 m2/
year improvement in eGFR slope (95% CI: 0.6–2.8; P <
0.001). This model was also adjusted for biopsy char-
acteristics (diagnosis, interstitial fibrosis, and global
sclerosis), which were also independently associated
with eGFR. As seen previously in Table 2, adding
uEGF/Cr to the model improved model fit (Table 3:
model 1 vs. model 2, P < 0.001).

Sensitivity analyses were conducted using age-
normalized uEGF/Cr instead of log2(uEGF/Cr). These
analyses refit final models both from all participants
(Supplementary Table S1) and from biopsied partici-
pants only (Supplementary Table S2) and confirm the
preceding findings: lower uEGF/Cr per age was asso-
ciated with more rapid eGFR decline after adjusting for
age, race, biopsy characteristics, and baseline eGFR and
UP:C and APOL1 genotype.
DISCUSSION

This study was conducted to assess the potential value
of uEGF measurement as a prognostic marker for kid-
ney function loss in children with nephrotic syndrome.
The study population included children at initial pre-
sentation of nephrotic syndrome and children under-
going an initial kidney biopsy for clinical indications.
This study found that the addition of uEGF to the
traditional predictive demographic and clinical labo-
ratory findings improved the precision of eGFR slope
estimates in children with nephrotic syndrome.

EGF is a member of the epidermal growth factor
family and acts through the EGF receptor. Binding of
EGF to EGF receptors induces release of calcium from
intracellular stores, activation of signaling pathways,
cell differentiation, and cell repair. Exogenous EGF has
been shown to enhance renal tubular cell regeneration
and accelerate the recovery of the kidney function in a
rodent model of acute kidney injury.15 Our recent
Kidney International Reports (2020) 5, 414–425
work using integrated machine learning and kidney
biopsy transcriptome-driven approach identified and
validated uEGF as a kidney tubular cell–specific
biomarker representing functional tubular mass and
regeneration potential.17 uEGF is positively correlated
with eGFR in patients with CKD and inversely corre-
lated with tubular atrophy and interstitial fibrosis.15,17

As plasma EGF is minimal and the kidney is the organ
expressing the most abundant EGF mRNA among a
panel of 79 human tissue/cells,17,31 the accepted origin
of uEGF is kidney tubular cells. uEGF is correlated with
intrarenal EGF mRNA level in adult patients with
CKD.17,18 Because of kidney-specificity for production,
uEGF level is less confounded compared with other
clinical markers that may have non-kidney origins
(e.g., serum creatinine from muscle mass or proteinuria
from systemic light chain proteins in circulation).

Our multivariable modeling among biopsied patients
showed that uEGF was superior to EGF mRNA
expression in predicting eGFR loss. One explanation
could be that due to the focal nature of kidney injury,
measured EGF intrarenal mRNA expression is affected
by variability in biopsy specimen sampling, whereas
uEGF is excreted by tubular cells from the entire kid-
ney and therefore more accurately reflects global kid-
ney function.

Two recent publications reported that a lower
baseline uEGF level is associated with kidney disease
progression in children with Alport Syndrome18 and
children with CKD (primarily congenital anomalies of
kidney and urinary tract).19 Here we demonstrated that
lower uEGF level is significantly associated with a more
rapid eGFR decline in children with nephrotic syn-
drome, independent of proteinuria control or steroid
response pattern. Our finding is consistent with these 2
studies despite different etiologies of CKD, and pro-
vides additional evidence supporting the prognostic
value of uEGF in children with kidney disease. A
noninvasive urinary biomarker is particularly valuable
for assessing prognosis in children. If these results are
confirmed, the addition of uEGF measurement to the
diagnostic evaluation of a child presenting with
nephrotic syndrome may improve the precision with
which prognosis is assessed. For example, a low uEGF
value suggests that the child has reduced intact kidney
parenchyma and reduced repair capacity and may
therefore be at an increased risk for eGFR decline. This
information may prompt earlier performance of a kid-
ney biopsy to assess the integrity of the kidney and
help the family and clinician develop a management
plan that aligns with progression risk. These ap-
proaches could include early use of renin-angiotensin
system blockade, intensive blood pressure control to
the 50th percentile target,32 and anticipatory guidance
421
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of the need for second-line therapies should the child
be resistant to this treatment.

The current study and previous findings implicate
low uEGF as a predictive marker of kidney disease
progression.17 Rat models demonstrate that exogenous
EGF can enhance renal tubular cell regeneration and
repair.15 Therefore, we hypothesize that stabilization of
EGF and EGF receptor activation in a cell-selective
context in the kidney tubules may ameliorate kidney
disease progression. However, given the long-
established oncogenic role that EGF receptor activa-
tion plays in human cancers, and dramatic responses in
patients with cancer to therapies that inhibit oncogenic
EGF receptor activation,33 using therapies around
activation or reactivation of ubiquitous EGF expression
for treatment of kidney disease has the potential for off-
target effects. Properly controlled increased expression
of EGF specifically in tubular epithelial cells may offer a
feasible alternative.

Study Limitations

The findings in this report are based on a single
determination of uEGF excretion. This study requires
replication with a similar cohort of children with
nephrotic syndrome and long-term observation of both
uEGF excretion and kidney disease outcomes. In
addition, our study imputed APOL1 for white, Asian,
and Native American participants as low-risk APOL1
genotype. Finally, eGFR was based on serum Cr, as
cystatin C was not available from all study visits.

A limitation to clinical implementation of these
results is the absence of a rigorously derived refer-
ence range for uEGF/Cr by age and sex. EGF is
known be inversely correlated with age. Although
these results showed a significant impact of EGF on
disease trajectory after accounting for age, accurate
clinical interpretation of EGF at the patient level will
require standardization by age. Future research
should derive reference ranges for EGF by age and
sex.

In conclusion, uEGF/Cr may be a useful noninvasive
biomarker that can assist in predicting long-term kid-
ney function in children with incident nephrotic syn-
drome. The published evidence from children and
adults with other types of kidney diseases is bolstered
by the demonstrated value of this biomarker, with or
without a kidney biopsy, in children with nephrotic
syndrome.
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Figure S1. No relationship between uEGF/Cr and (A) initial

steroid response pattern or (B) response pattern after 1 year.

Figure S2. Baseline eGFR correlates with uEGF/Cr among

pediatric NEPTUNE participants (n ¼ 191).

Table S1. Sensitivity analysis of age-normalized uEGF/Cr.

Adjusted longitudinal linear mixed-effects models of eGFR

over time. Results from all pediatric NEPTUNE participants

with baseline uEGF/Cr data available (n ¼ 191 participants,

1553 observations). Likelihood ratio test comparing model

1 with model 2: P < 0.001.

Table S2. Sensitivity analysis of age-normalized uEGF/Cr.

Adjusted longitudinal linear mixed-effects models of eGFR

over time. Results restricted to pediatric participants with

kidney biopsy. (n ¼ 118 participants, 1164 observations).

Likelihood ratio test comparing model 1 with model 2:

P < 0.001.
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