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Evaluation of chromatin accessibility in prefrontal
cortex of individuals with schizophrenia
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Schizophrenia genome-wide association studies have identified >150 regions of the genome

associated with disease risk, yet there is little evidence that coding mutations contribute to

this disorder. To explore the mechanism of non-coding regulatory elements in schizophrenia,

we performed ATAC-seq on adult prefrontal cortex brain samples from 135 individuals with

schizophrenia and 137 controls, and identified 118,152 ATAC-seq peaks. These accessible

chromatin regions in the brain are highly enriched for schizophrenia SNP heritability.

Accessible chromatin regions that overlap evolutionarily conserved regions exhibit an even

higher heritability enrichment, indicating that sequence conservation can further refine

functional risk variants. We identify few differences in chromatin accessibility between cases

and controls, in contrast to thousands of age-related differential accessible chromatin

regions. Altogether, we characterize chromatin accessibility in the human prefrontal cortex,

the effect of schizophrenia and age on chromatin accessibility, and provide evidence that our

dataset will allow for fine mapping of risk variants.
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Schizophrenia genomics is progressing rapidly, and our
mechanistic understanding of this common and often
devastating neuropsychiatric disorder is markedly better

than 5 years ago1. Evidence for a non-specific genetic component
for schizophrenia has been known for decades (e.g., sibling
recurrence risk of 8.6 and phenotype heritability estimates of at
least 60%)2,3. The bulk of the genetic basis of schizophrenia is due
to common variation4. A 2014 paper identified 108 genetic
regions and a subsequent report has added over 40 new regions,
but the implicated regions are broad and usually do not implicate
specific genes4–6. It was hypothesized that schizophrenia risk
would include many exonic variants of strong effect, but sub-
sequent large whole-exome sequencing studies provide minimal
support for this hypothesis4. Identifying actionable genes has
proven complex, with a few exceptions such as rare exon variants
in SETD1A7 and copy number variation in single genes like
NRXN1 and C48,9.

These studies provide strong evidence that genetic risk for
schizophrenia results from the concerted effects of many genes.
Schizophrenia may be a disorder of subtly altered amounts of
protein isoforms rather than changes in individual amino acids.
Non-coding regulatory variation is a major contributor to risk for
schizophrenia4,5, and genomic regions associated with schizo-
phrenia are enriched for gene expression quantitative trait loci
(eQTLs) identified in human brains10,11. Combining functional
genomic data with genome-wide association (GWA) results may
be crucial to deciphering connections to specific genes and disease
mechanisms in schizophrenia11–13. ENCODE14 and the Road-
map Epigenomics Mapping Consortium15 provided considerable
human functional genomic data and insights into genomic
function. However, these studies provided limited insight into
psychiatric disorders as most samples were non-neuronal and
none were from affected individuals. This study is part of the
PsychENCODE consortium which intends to provide functional
genomic data from the brains of individuals with and without
severe neuropsychiatric disorders16.

Epigenetic changes in the brain are widely hypothesized to
partly mediate risk for schizophrenia17. Multiple epigenetic
changes have been assessed in schizophrenia (reviewed in ref. 18),
and methylation differences in peripheral blood19 and brain20

have been associated with schizophrenia. Of the many epigenetic
changes, chromatin accessibility is particularly important and is a
conserved eukaryotic feature characteristic of active regulatory
elements, including promoters, enhancers, silencers, insulators,
transcription factor binding sites, and active histone modifica-
tions21. Chromatin accessibility has not been systematically
evaluated in human brain for schizophrenia, except for a small
study22. Preferentially accessible regions of chromatin can readily
be identified by high-throughput sequencing following the
transposition of sequencing adaptors into the DNA backbone via
the Tn5 transposase using the assay for transposase-accessible
chromatin sequencing (ATAC-seq)23. Unlike other nuclease-
sensitivity assays, this approach is amenable to limited amounts
of postmortem tissue. As chromatin accessibility can differ by
>30% between tissues and cell types24, it is important to study the
brains of schizophrenia cases and controls.

Our overall goal was to comprehensively identify active gene
regulatory elements in a brain region relevant to schizophrenia,
and to quantify how genetic variation alters function such as
single-nucleotide polymorphisms (SNPs) that alter chromatin
accessibility (i.e., chromatin QTL (cQTL)). We use these data to
parse genetic risk for schizophrenia from large GWA. These
analyses provide insight into the molecular mechanisms gov-
erning schizophrenia risk. To our knowledge, this is the largest
study of chromatin accessibility in schizophrenia and among the
largest for any human disease.

Results
Overview. In the Methods section, we provide the rationale for
our choices of ATAC-seq23, brain region, and study design. Key
features of our approach include the use of the same samples
subjected to messenger RNA-sequencing (mRNA-seq) and gen-
otyping analysis by the CommonMind Consortium11, as well as
careful experimentation, including randomization, blinding,
comprehensive quality control, empirical covariate selection, and
verification of subject identity.

We performed ATAC-seq on 314 brain samples (142 schizo-
phrenia, 143 control, 23 mood disorders, and 6 other). After
quality control, the analysis dataset consisted of ATAC-seq on
postmortem Brodmann area 9 (dorsolateral prefrontal cortex
(DLPFC)) tissue from 135 cases with schizophrenia and 137
controls (Fig. 1a). Sixteen individuals with mood disorders were
included for open chromatin peak calling and cQTL analyses, but
otherwise excluded. Table 1 summarizes the demographic and
clinical features of the subjects. Cases and controls were
comparable for sex, ethnicity, age at death, and postmortem
brain pH. Cases had greater postmortem intervals (PMIs) and
lower RNA integrity number (RIN) scores relative to controls.
These differences appeared to have a lesser impact on DNA-based
ATAC-seq assays as cases were comparable to controls for unique
aligned reads and normalized open chromatin peak calls.
However, these differences motivated comprehensive and careful
selection of covariates (see Methods).

ATAC-seq evaluation. ATAC-seq data were aligned and peaks
were called using MACS2 (false discovery ratio (FDR) <0.01,
Fig. 1b and Supplementary Fig. 1a–d). We performed extensive
quality control (see Methods) to ensure that our final peak set
accurately represented the peaks detected in individual samples
(Supplementary Fig. 1c–h), that the samples were enriched in our
final peak set (Supplementary Fig. 2a, b), and that our peak set
was of comparable quality to ATAC-seq from other tissues and
from sorted brain nuclei (Supplementary Fig. 3). We identified
118,152 open chromatin peaks totaling 35.5 Mb. As a crude
comparison, the human exome has around 131 K exons totaling
47Mb. We compared these regions of open chromatin to those
from smaller experiments (Supplementary Table 1). Allowing for
small sample sizes, overlap of our open chromatin results with
that identified in these other studies was greatest for the most
similar studies (DLPFC in adults), somewhat lower in adult
cortical samples of sorted neurons, and lower in fetal cortex.
Overlap with the diverse ENCODE samples was low, but higher
for CNS-relevant samples. These results show congruence of our
larger ATAC-seq data with prior experiments, and underscore the
need to study brain.

About a quarter of open chromatin regions map near a
protein-coding transcription start site (TSS): 23% were ±5 kb, and
53.0% were >25 kb from any TSS (44% of the latter located
downstream of the closest TSS, 24% located within the gene body
and 32% located upstream of the closest gene). This distribution
was similar to previous studies using DNase-seq (13% at TSS ±2
kb, 26% within the gene body and 34% intergenic)24. There was a
stronger enrichment for ATAC-seq reads at the TSS for genes
that are highly expressed compared to genes that were not
expressed (Fig. 1c). We compared the 118,152 peaks to putative
regulatory elements from 101 cell types (excluding brain-related
regions) from reg2map as part of the Epigenome Roadmap
project. We found that 84% of our brain ATAC-seq peaks
overlapped a promoter or enhancer in one or more of these cell
types (Fig. 1d). This indicates that 16% of the ATAC-seq peak
calls are unique to the brain frontal cortex and highlights the need
to identify putative regulatory elements from disease-relevant
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tissues. Most of these DLPFC-unique ATAC-seq peaks did not
map to promoter regions (Fig. 1e). We did not observe a
significant enrichment in the number of ATAC-seq peaks at
schizophrenia loci as approximately 1% of our ATAC-seq peaks
were located at schizophrenia loci, which cover approximately 1%
of the genome.

Our ATAC-seq peaks were enriched in the motifs of a large
number of transcription factors, indicating that these data capture

functionally relevant regulatory elements. Notably, we found the
strongest enrichment for the following motifs: CTCF, MEF2A,
MEF2D, SP1, Zfp410, KLF5, NFIX, JUND, ASCL1, bhlha15, and
ZIC4 (all with MEME e value <10–50).

Altogether, our evaluation indicates that our ATAC-seq peaks
have a relatively similar quality to ATAC-seq data from other
tissues, that their locations relative to the closest TSS are relatively
similar to open chromatin regions from other tissues, that some

Table 1 Sample description

Variable Cases Controls Comparison

Subjects after quality control 135 137 N/A
Male sex, N (%) 92 (68.2%) 73 (53.3%) χ21 = 6.30, P= 0.012
European ethnicity, N (%)a 112 (83.0%) 98 (71.5) χ23 = 7.92, P= 0.048
Age at death, mean (SD) 73.3 (12.6) 73.9 (17.7) F1,271= 0.09, P=0.76
Postmortem brain pH, mean (SD) 6.47 (0.24) 6.50 (0.25) F1,234=0.88, P=0.35
Postmortem brain mass (g), mean (SD) 1207 (173) 1155 (166) F1,269=6.46, P=0.012
Postmortem interval (h), mean (SD) 24.3 (15.7) 10.9 (7.6) F1,270=80.2, P < 0.0001
RNA integrity number, mean (SD) 7.11 (0.79) 7.57 (0.84) F1,270=21.5, P < 0.0001
Unique aligned reads (×106), mean (SD) 89.12 (17.0) 89.80 (16.1) F1,270= 0.12, P= 0.73
Normalized peak calls (FDR 0.01), mean (SD) 117.3 (70.1) 130.4 (61.6) F1,270=2.66, P=0.10

All samples were from Brodmann area 9 of left hemisphere
aAdditional ethnicities in cases were African American (17, 12.6%), Hispanic (5, 3.7%), and Asian (1, 0.74%), and in controls African American (20, 14.6%), Hispanic (16, 11.7%), and Asian (3, 2.2%).
The RNA-based measure is pertinent for the DNA-based ATAC-seq assay as the samples were from the same aliquots
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peaks are uniquely found in the DLPFC and that ATAC-seq
peaks are enriched in the motifs of transcription factor binding
sites, indicating that they capture functional regulatory elements.

ATAC-seq peaks are enriched for schizophrenia heritability.
We evaluated the relevance of these DLFPC open chromatin
regions to schizophrenia using partitioned linkage disequilbrium
(LD) score regression25. This method evaluates whether the SNP
heritability of schizophrenia is enriched in pre-defined genomic
features. This approach accounts for multiple technical issues,
and conducts a head-to-head comparative evaluation of dozens of
genomic features. An earlier analysis found that the SNP herit-
ability of schizophrenia was strongly enriched in evolutionarily
conserved genomic regions, but not in open chromatin regions
from non-brain cell lines or tissues25. We tested heritability
enrichment using the same genomic features including our
DLPFC ATAC-seq peaks (see Methods)25.

We found that regions of open chromatin in adult DLPFC were
strongly enriched for genetic variation relevant for schizophrenia
(Fig. 2a): the 1.2% of SNPs (n= 125,762) located in ATAC-seq

peaks explained 8.55% of the SNP heritability of schizophrenia
(7.1-fold enrichment, P value= 0.015). This level of enrichment
was close to the level of enrichment of conserved regions25. We
replicated this result in an independent ATAC-seq dataset from
the Chicago psychENCODE group (UIC) based on 265 adult
DLPFC samples from an independent cohort processed with the
same bioinformatics pipeline. We obtained strikingly similar
results with 1.6% of the SNPs located in this new set of peaks
explaining 9.6% of the SNP heritability of schizophrenia (5.9-fold
enrichment, P value= 0.026, Supplementary Fig. 4). Thus,
common genetic variation that mediates risk for schizophrenia
is not randomly distributed in the genome, but is concentrated in
definable genomic features, particularly regions of open chroma-
tin in the brain cortex.

To evaluate the specificity of this result, we compared open
chromatin from DLPFC to that in 138 cell types and tissues
generated by the ENCODE Consortium using DNase-seq, or by
us and other groups using ATAC-seq. The DLPFC ATAC-seq
data displayed the greatest association with schizophrenia
compared to any other cell or tissue type tested (Fig. 2b and
Supplementary Fig. 5). These data again indicate the importance
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of studying relevant tissues from cohort samples. DNase-seq from
frontal cortex, cerebellum, a neuroblastoma cell line, and a
medulloblastoma cell line also showed more association relative
to samples not from the brain (Supplementary Fig. 5). We also
generated ATAC-seq from fetal brain samples that showed
slightly lower but still significant enrichment, indicating that
relevant regulatory regions that confer risk are accessible earlier
in development (Fig. 2b).

To test whether SNPs nearer to the peak centers were more
likely to be causal, we determined heritability enrichment of
ATAC-seq peaks of varying widths (100 bp, 300 bp, 1 kb, 2 kb, 5
kb, and 10 kb). Schizophrenia SNP-heritability enrichment
decreased as peak width increased (Fig. 2c), indicating that SNPs
nearer to the peak center explained more SNP heritability than
SNPs further away.

The SNP-heritability enrichment of DLPFC ATAC-seq peaks
was specific to schizophrenia, and was not significantly enriched
for GWA variants for educational attainment, cognitive ability,
height, or total cholesterol (Fig. 2d). This is in contrast to
evolutionarily conserved regions, which are enriched for GWA
variants for schizophrenia, educational attainment, cognitive
ability, height, and total cholesterol (Fig. 2e). To investigate
whether sub-regions of the ATAC-seq peaks were particularly
enriched for schizophrenia SNP heritability, we intersected the
ATAC-seq peaks with evolutionarily conserved regions26, and
found that conserved regions located in DLPFC ATAC-seq peaks
were extremely enriched in SNP heritability (36-fold enrichment,
P value= 8 × 10–7, Fig. 2f). Conserved regions that map within
ATAC-seq peaks cover 6Mb, which is much smaller than the 35
Mb covered by ATAC-seq peaks. The intersection of open
chromatin and conserved regions tended to be near protein-
coding TSS with 41% located ±10 kb from the TSS of the closest
protein-coding gene, whereas only 30.9% of the ATAC-seq peaks
and 25.3% of the conserved regions were located ±10 kb of a TSS.
Our results support that DLPFC ATAC-seq peaks are enriched
for risk variants in schizophrenia, and that restricting these
regions to those that are evolutionarily conserved will allow the
fine mapping of schizophrenia risk loci.

Conserved regions in ATAC-seq peaks were significantly
enriched for CTCF binding sites (background: all ATAC-seq
peaks, Homer P value <1 × 10–100, MEME-chip e value <1 ×
10–100), which are involved in the formation of topologically
associated domains27. In addition, these regions were strongly
enriched for the motif of RFX1, a gene implicated in the
regulation of neuronal glutamate transporter type 328. (Supple-
mentary Table 2). This indicates that common genetic variation
implicated in schizophrenia could impact higher-order DNA
conformation and/or affect neuronal functions.

Identification of differential open chromatin. We then aimed to
characterize the effect of age at death, PMI and schizophrenia on
chromatin accessibility in the prefrontal cortex (see Methods). For
age at death, we detected 2310 peaks showing significant differ-
ences (5% FDR) in chromatin accessibility as a function of age
(Fig. 3a, b and Supplementary Data 1). Genes located in close
proximity to age affected peaks (9396 peaks, 20% FDR) were
significantly enriched in terms related to cell differentiation, oli-
godendrocyte specification, and neuron differentiation (Supple-
mentary Data 2). Peaks that became more open with age (20%
FDR) were enriched for motifs of several transcription factors
(Foxj3, FOXC2, ZNF263, Zfp281, SP1, FOSL1, JUND, JUNB, Tcf12,
ASCL1, Myog, SOX10, Mrf1, Sox11), while peaks that became
more closed with age were enriched for other transcription factors
(SP2, Zfx, Zic1, NFIX, NFIA, NFIB, ZNF263, Sp4, POU6F2, Pou6f1,
Sox21). Interestingly, ASCL1, SOX10, Sox11, SP2, Zic1, NFIX, and

Sox21 are all implicated in neurogenesis29–35; NFIA plays an
important role in oligodendrocyte maturation36, while NFIB plays
an important role in neural progenitor self-renewal37. In addition,
Sp4 and Pou6f1 were shown to regulate dendritic patterning38,39.
Altogether, these results indicate that differentially accessible
chromatin regions with age capture genes and transcription fac-
tors implicated in neuronal development and might also reflect a
change in cell heterogeneity with age (e.g., fewer neurons).

For PMI, we detected 466 peaks showing significant differences
in chromatin accessibility (Fig. 3c, d and Supplementary Data 3).
Genes located in close proximity of peaks affected by PMI (2328
peaks, 20% FDR) were significantly enriched in a large number of
biological functions, including the p53 pathway, the insulin/
insulin-like growth factor pathway, hypoxia response, and tumor
growth factor-β receptor binding (Supplementary Data 4). Peaks
that displayed increased accessibility with PMI (20% FDR) were
enriched for multiple transcription factors (SRF, Tbp, Bbx), while
peaks with decreased accessibility were enriched for other
transcription factor motifs (PLAG1, ZNF263, EWSR1-FLI1,
Zfp281, ZNF384, Mtf1, Foxl1).

For schizophrenia, we detected three regions differentially
accessible between cases and controls (Fig. 3e, f, Supplementary
Fig. 6, and Supplementary Data 5). We replicated the association
of our top hit (chr2:132,130,366–132,130,666, P value= 6.6 ×
10–5, same direction of effect) in the UIC dataset (15 cases/170
controls with enrichment in our peaks >2×, see Methods), while
our second and third hits did not replicate (P value= 0.96 and
P value= 0.72, respectively). The 1000 peaks with highest
evidence of being differentially accessible between cases and
controls were located close to genes significantly enriched in
functions related to vitamin B6 metabolism and L-carnitine
biosynthesis (enrichment= 11×−17× , q value= 0.03–0.08, Sup-
plementary Data 6). In order to test whether these genes were
enriched in genetic association with schizophrenia, we performed
a gene-set enrichment analysis using MAGMA40. We found that
they were not significantly associated with schizophrenia genetics
(MAGMA P value= 0.97), suggesting that, on average, these
genes are not playing a causal role in schizophrenia. This
indicates that the biological enrichments in vitamin B6 and
L-carnitine biosynthesis are unlikely to be causal but more likely
to reflect consequences of the disorder or the effect of
unaccounted confounders (difference in lifestyle, medication,
etc.) between cases and controls.

More accessible peaks in cases (top 1000 peaks) were enriched
for the motifs of multiple transcription factors (ALX4,
POU5F1P1, ZNF263, SP2, E2F6, Nr5a2), while less accessible
peaks were enriched in the motifs of ASCL1, ZEB1, RXRG,
Zfp281, RXRA, PLAG1, and GATA1. Interestingly, Sp2, Nr5a2,
ASCL1, and ZEB1 are all implicated in neurogenesis31,41–43, while
RXRG is implicated in myelin regeneration44.

A recent publications performed RNA-seq on the same
samples and discovered 693 genes differentially expressed (5%
FDR) between cases and controls11. We observed that 4613
ATAC-seq peaks were located nearby these 693 genes (gene
coordinates extended by 30 kb upstream to 10 kb downstream).
We found no evidence that peaks in these differentially expressed
genes were differentially accessible between cases and controls
(top q value= 0.66). In addition, peaks in these genes did not
have significantly lower differential accessibility P values than
expected by chance (P= 0.5). We also performed a differential
chromatin analysis between cases and controls based on the
promoter region of each gene (2 kb upstream to TSS) and did not
observe any significant difference in chromatin accessibility for
any gene (top q value= 0.297). Several possibilities can explain
these results: (1) the biological mechanism leading to differential
expression might not depend on changes in chromatin
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accessibility, (2) there might be lower statistical power to find
differential chromatin accessibility than differential expression,
and (3) cell-type tissue heterogeneity could mask differential
chromatin.

Altogether, our results indicate that differences in chromatin
accessibility between cases and controls in postmortem human
brain prefrontal cortex are relatively minor in comparison with
changes in chromatin accessibility due to age or postmortem
interval.

Identification of cQTLs. Previous studies showed that schizo-
phrenia risk alleles are enriched for brain eQTLs10. To determine
if genetic variants associated with schizophrenia can also impact
chromatin accessibility, we performed a cQTL analysis using our
DLPFC ATAC-seq data (Fig. 4, see Methods). In total, we iden-
tified 6200 SNPs that were significantly associated with differ-
ences in chromatin accessibility (5% FDR, Fig. 4a). There was no
skewing of rare or common allele frequency in this subset of
SNPs (Fig. 4b). Of these cQTLs, 622 (10%) were located
in the chromatin peak with which they were associated, and
the majority of cQTLs (52.0%) were ±2 kb from the center of
the peak with which they were associated, indicating that
most cQTLs act locally (Fig. 4b). The most significant cQTL
was rs1549428 associated with an open chromatin peak
at chr12:9,436,157–9,436,457 (q= 3.9 × 10–82, Figs. 1b, 4c). We
observed that 176 of the 6200 cQTLs (2.8%) were located at a

schizophrenia GWA locus5, the most significant of which was
rs11615998 in CACNA1C (q= 2.7 × 10–44, Fig. 4d). As an inde-
pendent confirmation, we show that individuals who are het-
erozygous for cQTL alleles display allele skewing (Fig. 5a, b) in
the direction that is expected (Fig. 5c). Similar to eQTLs11, we
detected no significant enrichment of cQTLs in schizophrenia
GWA regions.

cQTLs overlap with eQTLs. We compared cQTLs to previously
identified eQTLs in the same dataset11. The estimated proportion
of significant cQTLs that are also eQTLs is 23.3% (see Methods),
which agrees with similar estimates from lymphoblastoid cell
lines (23%)45. For SNPs that were both cQTLs and eQTLs, 63.6%
exhibited concordant effects (P < 1 × 10–4), meaning the allelic
association indicated both more open chromatin and higher gene
expression (Fig. 6a). Despite this correlation of direction of the
effect, there was only a weak correlation in the sizes of the effect
(r= 0.21) (Fig. 6b). Finally, for SNPs in high LD, the direction of
effect for cQTL and eQTL was not always the same (Fig. 6c, d).
Looking at the direction for all QTLs that have pairwise SNPs
with r2 > 0.8, approximately 31% go in the opposite direction.
This is roughly the same percentage going in the opposite
direction as it is among all QTLs, regardless of LD (Fig. 6a). This
may indicate independent mechanisms by which these SNPs
impact gene expression.
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cQTLs colocalize with schizophrenia GWAS regions. Finally,
we performed a Bayesian colocalization analysis to identify
regions with high probability of a shared causal variant asso-
ciating both with schizophrenia and chromatin accessibility.
Using a posterior probability cutoff of 0.9, we identified eight
regions with evidence for a shared genetic effect (Table 2). Two
separate cQTLs in MAD1L1 (PP(H4) > 0.98), one cQTL in
AS3MT (PP(H4)= 0.98), one cQTL in TSNARE1 (PP(H4)=
0.94), and one cQTL in RERE (PP(H4)= 0.92) were found to
colocalize with schizophrenia-associated variants. Two cQTLs
that colocalized with schizophrenia lie in intergenic regions on
chromosomes 16 and 1. Finally, one colocalized peak lies in the
pseudogene GOLGA6L5P. We also performed colocalization
analysis between cQTLs and eQTLs in those eight regions for all
genes with a significant eQTL. We observed that only the cQTL
located in the AS3MT gene colocalized with eQTLs (eQTLs of
both AS3MT and WBP1L), indicating that a single genetic variant
can affect the expression level of multiple genes at schizophrenia
GWAS loci. To further characterize these colocalized regions near
AS3MT, we utilized chromatin interaction data from eHi-C
analysis to examine the extent of chromatin looping in the
colocalized region (Supplementary Fig. 7). Qualitatively, it
appears that there are many chromatin interactions involving
regions of shared genetic effect between schizophrenia, DLPFC
gene expression, and open chromatin. Thus, while these data

provide important functional context for the schizophrenia
GWAS associations, more sophisticated functional analysis will
be needed to dissect the specific mechanisms leading to schizo-
phrenia risk.

Discussion
Groups such as the Psychiatric Genomics Consortium have
generated some of the largest GWA data for schizophrenia to
date1. These studies have largely pointed to non-coding regions of
the genome, suggesting that variants in gene regulatory elements
contribute to schizophrenia risk. This is supported by whole-
exome sequencing efforts that have identified few pathogenic
coding variants7, as well as expression data showing that brain
eQTLs are enriched for schizophrenia association statistics11.
Thus, we believe that the next step in schizophrenia research is to
provide more targeted evidence that schizophrenia risk alleles
indeed fall within putative gene regulatory elements, and to
characterize the mechanism of those non-coding variants and
how they alter gene expression levels. As part of the psy-
chENCODE project16, we have made progress in both areas, and
summarize our results in Table 3.

Our study shows that, of diverse genomic and epigenomic
datasets that span many different cell types and tissues, ATAC-
seq data from DLPFC is the most associated with schizophrenia

Table 2 Summary of colocalization of cQTL variants with schizophrenia GWA and eQTLs

DLPFC ATAC-seq region Closest gene to
DLPFC ATAC-seq
region

SCZ GWA
region
(Ripke
et al., 2014)

No. SNPs
tested for
coloc. with
SCZ GWA

Post. prob. of
shared genetic
variant with
SCZ GWA

DLPFC eQTL
gene (Fromer
et al., 2016)

No. SNPs
tested for
coloc. with
eQTL

Post. prob. of
shared
genetic
variant with
eQTL

Chr15_85,053,431_85,053,731 GOLGA6L5P 29 2 0.9991 — — —
Chr16_58,676,080_58,676,380 — 89 26 0.9951 — — —
Chr7_2,103,480_2,103,780 MAD1L1a 7 35 0.9865 — — —
Chr10_104,629,149_104,629,449 AS3MT 3 21 0.9831 AS3MT 17 0.986
Chr10_104,629,149_104,629,449 AS3MT 3 21 0.9831 WBP1L 17 0.915
Chr7_2,030,144_2,030,444 MAD1L1a 7 20 0.9804 — — —
Chr1_30,427,451_30,427,751 — 61 15 0.9737 — — —
Chr8_143,323,367_143,323,667 TSNARE1 5 23 0.9386 — — —
Chr1_8,468,325_8,468,625 RERE 53 14 0.9184 — — —

aTwo separate DLPFC ATAC-seq peaks were proximal to MAD1L1

Table 3 Summary of results pertaining to schizophrenia genomic findings

Empirical findings Evidence

Brain open chromatin regions are significantly enriched for schizophrenia SNP heritability Fig. 2, Supplementary Fig. 4, Supplementary
Fig. 5This finding replicated in an independent sample

Schizophrenia SNP-heritability enrichment in open chromatin is second to that in regions conserved
across 29 Eutherian mammals

Fig. 2a

Regions that are both conserved and in open chromatin are particularly enriched Fig. 2f
Regions that are both conserved and in open chromatin are enriched for transcription factor binding
sites with neuronal functions

Supplementary Data 2

Many cross-tissue biological features do not show schizophrenia SNP-heritability enrichment (e.g.,
promoters, other epigenetic marks)

Fig. 2a

Schizophrenia SNP-heritability enrichment in the DLPFC is relatively specific and not a feature of GWA
generally

Fig. 2d

Adult DLPFC displays similar heritability enrichment relative to fetal PFC Fig. 2b
Studying adult brain was crucial: higher enrichment compared to 138 tissues/cell types Fig. 2b, Supplementary Fig. 5
Few differences in chromatin accessibility between schizophrenia cases and controls. Fig. 3e, f
Six thousand two hundred cQTLs were identified. Eight of them colocalize with schizophrenia GWA
signal. One also colocalizes with eQTLs of two genes (AS3MT and WBP1L)

Table 3, Supplementary Fig. 7
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common variant GWA results. Furthermore, genomic regions
conserved across 29 Eutherian mammals within adult DLPFC
ATAC-seq peaks display an even higher degree of heritability
enrichment. This strongly suggests that multiple orthologous data
types will be needed to fine-map risk variants that contribute to
schizophrenia. This important discovery likely narrows the search
space for identifying risk alleles. Additionally, we have identified
eight chromatin peaks with a high probability of shared causal
cQTL variant with schizophrenia GWAS variants, one of these
peaks also shares genetic effects with an eQTL affecting the
expression of AS3MT and WBP1L in DLPFC. This discovery
demonstrates biological mechanisms by which common variants
may affect risk for schizophrenia.

We detected three differentially accessible regions between
cases and controls. Interestingly, the differences in chromatin
accessibility between cases and controls were much less numerous
than differences due to age or postmortem interval, indicating
that differences in chromatin accessibility in the adult prefrontal
cortex between schizophrenia cases and controls are relatively
subtle. We also found that genes located in close proximity of the
top 1000 peaks with highest evidence of being differentially
accessible were likely not causal as they were not significantly
enriched for schizophrenia GWA associations. This indicates that
the biological enrichment that we observed (vitamin B6 and L-
carnitine biosynthesis) for these genes is likely reactive to the
disease (e.g., drug treatment) or due to other possible con-
founders (e.g., difference in lifestyle).

While it appears that differential chromatin accessibility is not
pervasive in the adult prefrontal cortex between schizophrenia
cases and controls, differential chromatin accessibility may still be
involved in the etiology of schizophrenia. The sample size of our
study may have been underpowered to identify differences in
chromatin state between cases and controls. We also cannot rule
out that cell heterogeneity may mask rare but important cell-type-
specific signals. In other work, we implicated cortical pyramidal
neurons as an important cell type for schizophrenia46, and as
pyramidal neurons comprise ~40% of the DLPFC, this may be
less likely. Furthermore, in silico mixing experiments demon-
strated that differential chromatin accessibility can accurately be
attributed to specific cell types comprising a heterogeneous
sample (Supplementary Fig. 8). Another possibility is that dif-
ferential chromatin accessibility between cases and controls is
manifested only within specific developmental windows. Indeed,
we have identified chromatin accessibility differences that occur
during development in post-mitotic mouse neurons47. While
careful age-matched comparisons are needed in human to explore
this possibility, identifying differences between cases and controls
will be challenging as psychotic symptoms typically do not appear
until early adulthood.

While these scenarios above are feasible, it is possible that
functional non-coding SNPs (including eQTLs) contribute to
schizophrenia in a mechanism independent of changes in chro-
matin accessibility. These functional non-coding variants may
still impact specific transcription factor binding sites, but overall
chromatin accessibility might be maintained and stabilized by
other transcription factors and complexes that bind at these
regions. Indeed, conserved sequences that are in brain open
chromatin regions are highly enriched in CTCF and other tran-
scription factors involved in neuron differentiation. Altering
CTCF binding might also impact three-dimensional genome
structure to allow distal enhancers to abnormally influence gene
expression48. Strategies to explore these possibilities include
chromatin immunoprecipitation-sequencing for specific tran-
scription factors, and Hi-C on brains representing different
genotypes. Additional independent strategies include functional
detection of variants on regulatory element activity using high-

throughput reporter assays like POP-STARR-seq49 or regulatory
element CRISPR screens50.

Future experiments tackling these issues will be needed if we
are to further understand the mechanism behind schizophrenia
risk as well as disease risk for many other common disorders.
These results can help narrow the search space for those studies.

Methods
Study design. We conducted a case–control comparison of brain samples to
investigate the role of chromatin accessibility in the etiology of schizophrenia. To
our knowledge, this is one of the largest studies to date of open chromatin in the
brain for schizophrenia. The key features were as follows: use of ATAC-seq (a
newer method of identifying regions of open chromatin);23 use of the same brain
tissue samples studied with RNA-seq by the CommonMind Consortium;11 and
careful experimental design (including randomization, blinding, comprehensive
quality control, empirical selection of salient covariates, and verification of subject
identity). We attempted ATAC-seq on 314 brain samples (142 schizophrenia, 143
control, 16 bipolar disorder, 7 affective disorder, and 6 other). After the quality
control procedures described below, the analysis dataset consisted of ATAC-seq on
postmortem brain samples from 135 cases with schizophrenia and 137 controls.
For some analyses (e.g., identification of brain cQTLs, covariate selection, differ-
ential chromatin analysis), we included 16 individuals with mood disorders. The
purpose of including these individuals was to increase power for the cQTLs
detection, to increase power to detect covariates affecting ATAC-seq peaks quan-
tification, and to better estimate parameters that are not dependent on the
case–control status in the differential chromatin analysis.

Rationale: choice of intact brain vs. cell populations. The brain is a complex
mixture of cell types. At present, there is no ideal approach to comprehensively
deal with cell heterogeneity. (1) Nuclei sorting from frozen brain provides
enrichment for specific cell types51. However, sorting is never perfect, relatively few
cell types can be sorted in humans, and cells may change state during the 5+ hour
process of thawing, dissociation, ultra-centrifugation, and sorting. Sorting neuronal
populations from mice with a cell-type-specific fluorescent tag is possible, but there
is only an ~50% overlap in regulatory regions between mice and human52. (2)
Laser capture microdissection on frozen tissue provides spatial resolution, but
yields limited quantity and quality of chromatin, and artifacts from thawing and
excess heat are concerns. (3) Single-cell analysis of open chromatin is being
developed but is technically difficult, resolution is currently limited, and is not yet
available for frozen brain samples53. (4) Ex vivo stem cell cultures can yield a
realistic cell type but all current ex vivo microenvironments do not recapitulate the
normal development of the human brain. A further challenge is that the neural cell
types that contribute to schizophrenia are not well characterized.

We performed in silico mixing experiments and demonstrated that we can
detect cell-type-specific gene regulatory elements at various cell concentrations
(Supplementary Fig. 8a). Our analysis of the pros and cons of using intact tissues
vs. cell sorting is shown in Supplementary Fig. 8b. As the cell types causally related
to schizophrenia are unknown, we believe that generating chromatin maps in intact
brain—that is, the union of all cell types present in a brain region associated with
schizophrenia—provides one strategy of identifying schizophrenia-relevant
regulatory elements. Using intact tissue will allow us to analyze more samples,
providing better power to identify chromatin QTLs.

Rationale: choice of brain region. DLPFC samples corresponding to Brodmann
areas 9 and 46 were studied. These regions were chosen due to their relevance to
schizophrenia based on brain anatomy, imaging, and gene expression54. DLPFC
was also the focus of a recent paper from the CommonMind Consortium11. In fact,
RNA-seq from that study and ATAC-seq data from this study have been generated
on tissue aliquots isolated from the same DLPFC dissections.

Subjects and brain samples. We used ATAC-seq to characterize human DLPFC
cortical samples from the Mt. Sinai NIH Brain and Tissue Repository (http://icahn.
mssm.edu/research/labs/neuropathology-and-brain-banking, Dr. Vahram Har-
outunian). All cases met the Diagnostic and Statistical Manual of Mental Disorders,
4th Edition criteria for schizophrenia via standard diagnostic procedures11. Con-
trols had never met the criteria for schizophrenia or a psychotic disorder. Subjects
were excluded if they had neuropathology related to Alzheimer’s or Parkinson’s
disease, acute perimortem neurological insults, or were on a mechanical ventilator
near the time of death. No case or control had a large pathogenic copy number
variant, and cases had inherited a significantly greater number of schizophrenia
risk alleles11.

All schizophrenia cases and all controls were dissected from the left hemisphere
of fresh-frozen coronal slabs cut at autopsy from the DLPFC corresponding to
Brodmann area 9. All bipolar disorder samples were from Brodmann area 46.
Immediately after dissection, samples were cooled to −190 °C and dry
homogenized to a fine powder using a liquid nitrogen-cooled mortar and pestle.
Aliquots from each sample were prepared and used for multiple purposes,
including ATAC-seq (reported here), RNA-seq11, and SNP genotyping (Illumina
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OmniExpressExome array). Tissue aliquots were shipped as a dry powder on dry
ice to the Crawford lab at Duke University.

Additional adult dorsolateral prefrontal cortex samples (Brodmann area 9, see
Supplementary Table 1) were dissected from postmortem samples from nine adult
schizophrenia cases and nine adult control brains, and were obtained from Dr.
Craig Stockmeier (University of Mississippi Medical Center). Cases and controls
were sex and age matched. All adult samples were of European ancestry. Controls
had no history of psychiatric disorders or substance abuse.

Frontal cortex from nine fetal brains (Supplementary Table 1), gestation age
17–19 weeks, were obtained from the NIH NeuroBiobank (https://neurobiobank.
nih.gov). All fetal samples were of African-American ancestry. Samples were
genotyped on the Illumina Human OmniExpress chip in order to confirm sample
integrity. Samples were dry homogenized to a fine powder using a liquid nitrogen-
cooled mortar and pestle. Aliquots from each sample were prepared and used for
multiple purposes, including ATAC-seq, RNA-seq, and DNA microarray. Sample
processing was conducted blind to case–control status.

Confirmation of sample identity. We confirmed subject identity by comparing
Illumina SNP genotypes from the Illumina OmniExpressExome array to those
recoverable from the ATAC-seq reads (described below). ATAC-seq reads were
aligned to hg19 using bowtie2 and variants were called using the multi-sample
HaplotypeCaller according to best practices in the Genome Analysis Toolkit55. To
achieve a high level of confidence in the variant calls from ATAC-seq, we only kept
variants in peaks with a mean read depth ≥10 and with minor allele frequency
>0.05. This stringent filtering yielded 10,939 SNPs present in both the ATAC-seq
and Illumina data. Identity by descent was then estimated for each pairwise
combination of ATAC-seq and GWA samples using PLINK56. For two subjects,
genotypes from ATAC-seq and Illumina genotyping did not match and were
excluded in all further analyses.

ATAC-seq library preparation and sequencing. Samples were processed in
batches of eight. Samples were randomly assigned to batches that were balanced
with respect to case–control status and sex. Sample processing was conducted blind
to case–control status. Frozen pulverized brain samples were received from the Mt.
Sinai Brain Repository. Approximately 20 mg of pulverized material was used for
ATAC-seq. Frozen samples were thawed in 1 ml of nuclear isolation buffer (20 mM
Tris-HCl, 50 mM EDTA, 5 mM spermidine, 0.15 mM spermine, 0.1% mercap-
toethanol, 40% glycerol, pH 7.5), inverted for 5 min to mix, and samples were
filtered through Miracloth to remove larger pieces of tissue. Samples were cen-
trifuged at 1100 × g for 10 min at 4 °C. The resulting pellet was washed with 50 µl
Reduced Swing buffer, centrifuged again, and supernatant was removed. The final
crude nuclear pellet was re-suspended in transposition reaction mix and libraries
prepared for sequencing as described in Buenrostro et al23. All samples were
barcoded, and combined into pools. Each pool contained eight randomly selected
samples (selection balanced by case–control status and sex). Each pool was
sequenced on two lanes of an Illumina 2500 or 4000 sequencer (San Diego, CA,
USA) at the Duke Sequencing and Genomic Technologies shared resource.

ATAC-seq initial processing. The raw fastq files were processed through cutadapt
(version 1.2.0, http://cutadapt.readthedocs.io)57 to remove adaptors and low-
quality reads. cutadapt-filtered reads were aligned to hg19 using bowtie2 (version
2.1.0, http://bowtie-bio.sourceforge.net/bowtie2)58 using default parameters. In
alignment, all reads were treated as single-read sequences, regardless of whether
ATAC-seq libraries were sequenced as single end or paired end. The aligned bam
files were sorted using samtools (version 0.1.18, https://github.com/samtools)59,
duplicates removed using Picard MarkDuplicates, and then converted to bed for-
mat using BedTools (version: v2.17.0, https://broadinstitute.github.io/picard)60.
ENCODE blacklist regions were removed (i.e., empirically identified genomic
regions that produce artifactual high signal in functional genomic experiments,
https://sites.google.com/site/anshulkundaje/projects/blacklists). Narrow open
chromatin peaks were called from the final bed files using MACS2, with
parameter–nomodel–shift -100–ext 200. For visualization, bigwig files were gen-
erated using wigToBigWig (version 4) and bedgraph files were output by MACS2.
All data have been submitted and made publicly available on Synapse.

Identification of sample outliers. We conducted an empirical analysis to identify
outliers. An initial analysis identified eight samples that had only had single-end
sequencing (unlike the paired end used for all other samples). These samples were
excluded.

Performance of samples. A total of 314 libraries were sequenced across 86 lanes
of either Illumina 2500 or 4000 and generated 53,556,161,474 sequences, which
total 7,839,829,094,924 bp of data. After filtering with cutadapt, 51,639,643,049
(96.4% of total) sequences were aligned by bowtie2 and generated 27,809,813,130
(53.9% of reads entering aligner) uniquely aligned reads, and 21,887,340,983
(42.4% of reads entering aligner) multi-aligned reads. Only 3.76% of reads were not
aligned. Within the aligned reads, 20,09,897,1743 reads (38.9% of total aligned)
were aligned to the mitochondrial genome. On average, MACS2 generated 20,434
± 12,322 peak calls for each replicate at an FDR <0.01, 28,399 ± 16,917 peak calls at

an FDR <0.05 and 35,607 ± 20,750 peak calls at an FDR <0.10. Non-redundant
fraction (NRF) of each replicate is 0.881 ± 0.032, PCR bottleneck coefficient 1 is
0.933 ± 0.030, and PCR bottleneck coefficient 2 is 19.244 ± 8.295.

Quantification of open chromatin peaks. Peaks called at an FDR of 1% in each
sample were merged, quantified, and normalized using the diffBind R package.
Only peaks with overlapping coordinates observed in ≥2 samples were quantified.
All reads were extended to 300 bp prior to the quantification process. For replicate
samples, we retained the replicate with the highest fraction of total reads over-
lapping with peaks (and for ties, highest number of peaks detected). Peaks were
then merged and quantified again as described without the lower quality replicates
and forcing the peak width to be 300 bp using the summit option in the dba.count
function of the diffBind R package. Samples were normalized using the trimmed
mean of M values method (TMM).

Performance of replicates. We prepared nine ATAC-seq replicate samples from
an independent brain sample aliquots. We observed that the normalized read
counts of replicates were significantly more correlated within pairs of replicates
(mean Spearman's correlation= 0.65) than between unrelated samples (mean
Spearmans correlation= 0.42) (P value= 0.0001, Supplementary Fig. 9).

Enrichment of ATAC-seq samples. We randomly shuffled our merged peak set
(118,152 peaks, 300 bp) to random position in the human mapable genome (http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeCrgMapabilityAlign100mer.bigWig, filtered to only retain mapability
score >0.33), excluding ENCODE blacklisted regions (https://sites.google.com/site/
anshulkundaje/projects/blacklists), and regions with a peak detected at 10% FDR in
any of our 288 samples. This allowed us to quantify the ATAC-seq enrichment of
each sample by dividing the number of reads overlapping our merged peak set by
the number of reads overlapping the shuffled peak set. This resulted in a median
enrichment of 2.9× and similar enrichment for cases and controls (Supplementary
Fig. 2b). We also computed an enrichment score for each peak in each sample. To
do so, we set the expected number of reads to be the median number of reads
overlapping shuffled peaks. This allowed to quantify the number of samples were a
single peak was enriched >1× or more than 2× (Supplementary Fig. 2c). This
analysis also allowed us to detect enriched peaks highly enriched in many samples
(Supplementary Fig. 2d).

Ancestry estimation and population stratification. We wished to capture
empirical ancestry using Illumina OmniExpressExome SNP data. These were then
available as potential covariates for analyses of differential chromatin accessibility
and cQTL. We performed principal component analysis (PCA) of LD-pruned SNP
array data using EIGENSOFT61. From the eigenvalue scree plot, we determined
that five PCs were sufficient to control for effects of population stratification in the
GWA data. As such, five PCs were included as covariates in the cQTL analysis.

Evaluation of variables affecting chromatin peaks. For each sample, we recor-
ded a comprehensive set of 206 metadata features that could conceivably capture
some aspect of sample quality. These features were collected from the ATAC-seq
processing pipeline, RNA-seq processing of aliquots from the same brain regions11,
and genome-wide SNP genotyping11. For example, the metadata included trans-
posase batch, date processed, date submitted, PCR cycles, mean GC percentage of
sequenced reads, number of lanes sequenced, mean mapped read length, subject
age at death, sex, diagnosis, PMI, antipsychotic use, history of seizures, and RNA
quality. We included 10 ancestry-informative PCs from the genome-wide SNP
data. We excluded 19 features with high missingness (e.g., time of death, date of
death), 24 features that were invariant in all samples (e.g., ATAC-seq library
technician, ATAC-seq data processor, brain region, hemisphere), and 40 features
with >5% missing values (e.g., hypertension, body mass index, number of weeks
without antipsychotics, tobacco use). To prevent potential over-fitting in down-
stream analysis, we excluded 18 features with >30 levels (e.g., sequencing batch).
We then used the R package mice to impute missing values using the classification
and regression trees methodology. One feature (RNA-seq expression profiling
efficiency) could not be confidently imputed and was excluded. This resulted in a
total of 104 metadata variables (65 numeric, 39 categorical) for each of the samples
(Supplementary Data 7). Five variables were deconvolution results estimating the
proportions of major cell types in the brain from the RNA-seq data (neuron,
astrocyte, oligodendrocyte, microglia, endothelial)11.

Covariate selection. In order to detect covariate for our differential chromatin
analysis, we performed linear regression of all meta data variables against the first
20 PCs of the TMM normalized peak quantification. In an iterative process, we
selected one variable (preferentially a variable directly related to the ATAC-seq
experiment, explaining one of the largest proportion of variance and with few
parameters), regressed its effect on the peak quantifications and performed a new
PCA independent of the selected variable(s). We repeated this procedure until we
could not further remove the effect of Bonferroni significant variables. Two
metadata variables (sequencing lane and whether the sample was excluded from
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the RNA-seq isolation step) remained associated with PC4, PC9, PC13, and PC15
and could not be corrected because of collinearity with the variable “date sub-
mitted.” We believe that not correcting for these two variables is unlikely to result
in false positives as they were among the least different metadata variables between
cases and controls (96th and 89th among 100 meta variables tested). In total, we
selected the following variables for our differential chromatin analysis: GC (%),
date submitted, ChrM aligned (%), NRF, RNA-seq intronic aligned (%), RNA-seq
astrocyte (%), RNA-seq oligodendrocyte (%), PC1 genotype, seizures, age of death,
PMI, sex, and diagnosis. We note that the variables related to the RNA-seq
experiment likely capture unmeasured variables affecting both RNA quality and
DNA quality (sample storage duration for example). For example, the percentage
of exonic reads in the RNA-seq experiment is highly correlated with several PCs of
the ATAC-seq quantification matrix (Supplementary Fig. 10).

Association between diagnosis and metadata variables. As shown in Supple-
mentary Fig. 11, we observed that many numerical variables were partially cor-
related within a large cluster of sequencing-related variables (PCR cycles, number
of trimmed reads, number of uniquely aligned reads, etc.). To reduce the dimen-
sionality of the data, we applied PCA, and observed that the first PC largely
captured the sequencing-related variables. We also observed that PCs 1, 4, and 9
were significantly associated with diagnosis (Supplementary Fig. 12), indicating
that the structure of the metadata was different in several dimensions between cases
and controls. To identify the metadata variables associated with case–control sta-
tus, we evaluated the associations of all metadata variables (104) with case–control
status (135 cases, 137 controls). We performed linear regression for numerical
variables (65) and χ2 tests for categorical variables (38, excluding diagnosis)
using R.

As shown in Supplementary Fig. 13, we observed that five numerical and four
categorical metadata variables were associated at a Bonferroni significance level
with case–control status. These variables were: PMI, clinical dementia rating,
atypical antipsychotic use, sample storage box, RNA-seq quality, perimortem
antipsychotic use, RNA-seq intronic rate, RNA-seq exonic rate, and RNA-seq 28S/
16S). The four RNA-seq-related variables were highly correlated (Supplementary
Fig. 14), but not correlated with PMI. The variable most strongly associated with
case–control status was PMI (Supplementary Figs. 13, 15).

Association of metadata with number of ATAC-seq peaks. In the analyses
above, we did not observe any significant case–control differences in the number of
ATAC-seq peaks detected nor in the estimated cell-type proportions (from RNA-
seq). To identify the variables with an effect on ATAC-seq quality, we performed
linear regression for all 100 imputed metadata variables (excluding the number of
significant ATAC-seq peak calls). We found that 24 variables were associated at a
Bonferroni significance level with the number of peaks detected (Supplementary
Fig. 16). The numerical variables significantly associated with the number of peaks
calls formed highly correlated clusters (Supplementary Fig. 17), indicating that they
captured similar technical variability on the number of peak calls.

Although we did not observe any differences between cases and controls in
terms of estimated cell-type proportions (from RNA-seq data), we observed that
the estimated astrocyte and neuron proportions significantly predicted the number
of peak calls. Interestingly, the estimated proportion of neurons and astrocytes
were highly correlated with RNA quality (RIN) and slightly less with the mean
percentage of GC sequenced. This analysis provided a set of important technical
variables affecting the number of peak calls. Nevertheless, this analysis is not
sufficient for selecting covariate for the differential chromatin analysis as a variable
might not have an effect on the number of peaks detected but an effect on the
quantification of the peaks. Hence, we selected covariates for our differential
chromatin analysis by looking at the effect of imputed variables on the PCs of the
matrix of TMM normalized peak quantification (see above).

cQTL analysis. Association analyses for GWA SNPs and open chromatin peaks
were evaluated using fastQTL62, which utilizes a β approximation of permutations
to determine significance. Imputed genotype probabilities11 were converted to
dosages for input into fastQTL. Peaks were normalized and regressed on SNP
dosage in a 5 kb window, controlling for 10 PCs from PCA of peaks and 5 ancestry
PCs from PCA of SNP array data. Only the most significant SNP for each peak was
retained. To control for testing multiple peaks, we applied FDR correction63 on the
β-approximated permutation P values.

Heterozygous individuals display allele bias. To provide additional character-
ization of cQTLs, we analyzed ATAC-seq reads from individuals heterozygous for
each of the 600 cQTLs that mapped within an ATAC-seq peak. Allele counts from
these individuals show a high degree of allele bias that skews from expected
50:50 split (Fig. 5a). This is significantly different (Pearson’s χ2 test, P value <2.2 ×
10–16) from SNPs that were not identified as cQTLs, which show a higher degree of
50% allele counts (Fig. 5b). We also found that the direction of the bias in ATAC-
seq reads from heterozygous individuals is largely in the same direction as the effect
size of each cQTL (Fig. 5c). In other words, the allele that has more read counts in
heterozygous individuals is also the same allele that displays the most accessible
chromatin in individuals that are homozygous for that allele. This provides further

evidence that cQTL variants are likely contributing directly to chromatin
accessibility.

cQTL interaction with schizophrenia. Two hundred and seventy-two individuals
(135 schizophrenia cases and 137 controls) were utilized for the cQTL interaction
analysis. This analysis was performed similarly to the cQTL analysis described
above, with the addition of a term for the main effect of diagnosis and a term where
the SNP genotype interacted with schizophrenia diagnosis. Ten thousand permu-
tations were performed to estimate significance, and the Storey and Tibshirani
correction was applied to the exact P values63.

Overlap of eQTLs with cQTLs. To determine the true proportion of cQTLs that
were also eQTLs, we performed a separate FDR calculation using only the SNPs
that were present in both analyses, with the q value package in R. Because there
were multiple eQTLs in a gene, we randomly kept one, matched it to the corre-
sponding cQTL, and performed the FDR correction using that subset of cQTL
P values. We also repeated this procedure twice keeping only the most (round 1) or
least (round 2) significant eQTL per gene to obtain a range of estimates for the true
proportion cQTLs that were also eQTLs. Choosing one random eQTL per gene
gave an estimate in between these two extreme estimates, as expected. Conversely,
we attempted to estimate the true proportion of eQTLs that were also cQTLs.
However, all of the nominal eQTL P values corresponding to a significant cQTL
were <0.10. Because the distribution was truncated, we could not accurately esti-
mate the true proportion.

Colocalization analysis. Analyses were performed starting from the 6200 sig-
nificant cQTLs that were identified from fastQTL62. For colocalization of cQTLs
with schizophrenia GWAS, genomic loci significantly associated with schizo-
phrenia were defined as the 108 regions reported in the PGC mega-analysis5. For
colocalization of cQTLs with schizophrenia eQTLs, analyses were restricted to the
regions demonstrating colocalization between cQTLs and GWAS loci. For each of
those regions, DLPFC eQTLs11 that overlapped those cQTL regions of open
chromatin were analyzed for colocalization. Bayesian colocalization analysis was
performed using the R package coloc64 to identify regions with evidence for a
shared causal variant. When testing two traits, there are five possible hypotheses:
no association (H0), association with schizophrenia but not chromatin accessibility
(H1), association with chromatin accessibility but not schizophrenia (H2), two
distinct causal variants, each associated with one trait (H3), or a shared causal
variant that is associated with both schizophrenia and chromatin accessibility (H4).
Summary statistics from both the schizophrenia GWAS and cQTL analyses were
utilized for analysis and regions with posterior probability (H4) >0.90 were deemed
to colocalize.

Hi-C analysis. Easy Hi-C (eHi-C) was performed on six postmortem samples
(N= 3 adult temporal cortex and N= 3 fetal cerebra, generating over 5 billion total
reads (uniquely mapped to hg19, PCR duplicates removed). Following quality
control, over 1.323 billion usable reads remained (intra-chromosomal reads
mapping >15 kb apart). Human Hi-C data obtainable as of 10/2017 were processed
through the same pipeline:65 2 adult brain, 12 adult non-brain tissue, and 7 cell line
datasets from Schmitt et al.65, and paired germinal zone and cortical plate samples
from 3 fetal brains from Won et al.12. After combining replicates, there were 25 Hi-
C datasets: new adult and fetal brain, DLPFC, hippocampus, fetal germinal zone,
fetal cortical plate, 12 adult tissues (e.g., aorta, spleen, psoas muscle), and 7 cell
lines (e.g., IMR90 and GM12878). For the eight regions containing evidence for a
shared causal variant between schizophrenia and chromatin accessibility, high
confidence eHi-C interactions were new adult and fetal brain, fetal cortical plate,
and fetal germinal zone. We visualized looping in the colocalized regions using the
Epigenome Browser. To explore the possibility that patterns of chromatin inter-
actions could be different across tissue type, we also visualized the data for each
tissue type separately.

Differential chromatin analysis. We used DESeq266 to detect differential chro-
matin. The primary analysis was for case–control status, but we also evaluated, age
at death, and PMI. The following variables were included in the model: GC (%),
date submitted, ChrM aligned (%), NRF, RNA-seq Intronic aligned (%), RNA-seq
astrocyte (%), RNA-seq oligodendrocyte (%), PC1 genotype, seizures, age at death,
PMI, sex, and diagnosis. All 288 samples were used for this analysis as this
increases power to correctly estimate the parameters of the model. The
case–control difference was performed between control individuals (N= 135) and
individuals with schizophrenia (N= 137). Although we corrected for sex in all our
analysis, we observed that peaks located on the sex chromosomes were more often
called significant than peaks located on autosomes. We performed sex-stratified
analysis for case/control difference in open chromatin and did not observe that
peaks on sex chromosomes were enriched in low P values compared to other
chromosomes. Therefore, we believe that the initial enrichment in significant hits
for all analysis (case/control, sex, PMI, and age) on the X and Y chromosomes were
likely false positives. In order to prevent potential bias due to the sex chromosomes,
we meta-analyzed our sex-stratified differential chromatin analysis on chrX using
an inverse variance-weighted approach67 and only used P values obtained in male
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for chrY. For the remaining chromosomes, the full model was used. This approach
resulted in the detection of three peaks differentially accessible between cases and
controls (5% FDR) that we report in the main text.

We also assessed other potential strategies for differential chromatin analysis in
order to assess the robustness of our result. First, we selected 60 cases and 60
controls with PMI <18 h and matched for PMI, age at death, sex, and mean GC
content. Since the 60 cases and 60 controls were matched for the most important
variables affecting peak quantifications, we used DESeq2 without correcting for any
covariates. Under this model, we did not observe any significant difference between
cases and controls at an FDR of 5% (top hit had a q value of 0.81). Second, we
selected 41 cases and 41 controls with PMI <24 h, with the total number of peaks
detected greater than the median that were matched for PMI, age of death, GC
content, sex and the number of peaks detected at 1% FDR. Again, we did not find
any significant differences (5% FDR) between cases and controls using this strategy
(top hit had a q value of 0.25). Third, we performed a new peak merging procedure
with stricter criteria. We required that the fraction of reads mapping to peaks
within each sample was at least 1% and that at least 10K peaks were discovered
within each sample. These criteria excluded 38 samples of lower quality. We then
merged peaks of the 250 remaining samples without any width restriction and only
kept peaks overlapping in at least 25 samples. This procedure lead to the
quantification of 41,731 high confidence peaks. We matched cases/controls on the
most important variables (PMI, age of death, sex, GC content, and number of peaks
detected) from 110 schizophrenia cases and 110 matched controls. Again, we did
not observe any differences between cases and control using this stricter threshold
for peak calling (top hit with a q value of 0.46). Finally, we used the resonance
ultrasonic vibration (RUV)68,69 methodology to capture unmeasured confounders.
Briefly, we ran a differential chromatin analysis testing for an effect of case/control
status (DESeq2) using UIC replication samples (see below for description) that had
an average enrichment in our peaks calls >2-fold compared to randomly shuffled
peaks (total samples: 15 schizophrenia cases, 170 controls). We used the following
covariates for the differential chromatin analysis: BrainBank+ PMI+ Sex+Age at
death+ RIN+ enrichment score, and detected no significant results (top q value=
0.47). We then took the 20,000 peaks with least significant P values (testing for an
effect of diagnosis) as our set of external true negatives for RUV. We then learned
10 factors with RUV on the selected peaks (in our dataset) and performed the
differential chromatin analysis correcting for these 10 factors. This lead to the
discovery of six differentially accessible peaks at 5% FDR (all three of the original
differential peaks were included in the six discovered using RUV).

Gene enrichment analysis. We used GREAT70 to test for biological enrichment of
genes located in close proximity to our differentially accessible peaks. We used all
tested peaks as background.

Gene-set enrichment analysis. We used MAGMA40 to test whether the closest
genes to our differentially accessible peaks were enriched in GWAS association
statistics with schizophrenia. MAGMA allows to combine summary statistics of
SNPs into a gene-level P values (in an LD aware manner). In a second step, a linear
regression is performed to test whether the gene set is more significantly associated
with the trait than the rest of the genome (competitive test). In order to compute
gene-level association statistics, we set a window of 10 kb upstream to 1.5 kb
downstream of each gene and used the summary statistics from the PGC2 GWAS
of schizophrenia5.

Heritability enrichment analysis. We used LD score regression to estimate her-
itability enrichment in our ATAC-seq peak calls25. We added SNPs located in our
ATAC-seq peaks to the baseline model which consists of 53 categories representing
different genomic annotations (TSS, promoter, enhancer, CTCF binding sites, etc.).
In addition, we added SNPs located within and around our ATAC-seq peaks (500
bp upstream and 500 downstream) in an extra annotation to prevent upward bias
in the heritability enrichment25. We note that this step is recommended by the
authors of LD score regression and is only used to accurately estimate the herit-
ability of the region of interest (here our 300 bp peaks).

In a second analysis, we added SNPs that were present both in the ATAC-seq
peak calls and in the conserved regions as an extra annotation to the model
described above (baseline model+ATAC-seq peaks+ATAC-seq peak ± 500 bp
extended annotation). This allowed us to estimate the heritability enrichment of
regions that are conserved across mammals and present in brain open chromatin
regions.

In a third analysis, we tested the effect of increasing peak width on the
heritability enrichment of the peaks. We tested 100 bp, 300 bp, 1 kb, 2 kb, 5 kb, and
10 kb peaks. For each peak size, we used the 53 annotations from the baseline
model, the ATAC-seq peaks (of the specific size of interest) and an annotation
surrounding the ATAC-seq peak of interest by 500 bp on both sides.

To compare the association of schizophrenia across different tissues, we added
SNPs falling into the respective open chromatin region to the baseline model
(without the 500 bp windows) and used the coefficient z-score as a measure of
association between the annotation and schizophrenia, as recommended25.

Amount of coverage between DNase-seq/ATAC-seq data. For each DNase-seq
and ATAC-seq dataset from 125 tissues, we calculated the total number of bases
covered (Supplementary Fig. 18) and the average Jaccard index (an indicator of
overall similarity of datasets, Supplementary Fig. 19). Jaccard index indicates that
ATAC-seq data is most similar to ATAC-seq data from sorted neuronal (NeuN+)
and glial (NeuN−) cells (Supplementary Fig. 20).

Motif enrichment. We intersected conserved regions26 with our ATAC-seq peaks.
As MEME-chip requires all input sequences to have the same length, we set the
width of each intersected region to 32 bp (16 bp upstream and downstream of the
center of the intersected region, corresponding to the mean size of the intersected
regions). We obtained hg19 sequence corresponding to these regions using bed-
tools. We then used MEME-chip60 to look for motif enrichment using 32 bp
around the center of all ATAC-seq peaks as background, and used HOMER71

(v4.9) with intersected conserved regions with our ATAC-seq peaks as input and
all ATAC-seq peaks as background.

Comparison with ATAC-seq from sorted nuclei. We compared our peaks with
ATAC-seq peaks from sorted neuronal (NEU+) and non-neuronal (NEU−) nuclei
from the prefrontal cortex (Brodmann area 10)22. We found a larger jaccard index
(intersection/union of bed files) between our ATAC-seq peaks and NEU+ peaks
(0.14) than between our peaks and the NEU− peaks (0.1), suggesting that the
proportion of neuron-derived peaks is higher than glial-derived peaks in our
samples (Supplementary Fig. 20). Using LD score regression, we did not find
significant heritability enrichment for schizophrenia in peaks from sorted nuclei
(NEU+, heritability enrichment= 3.1×, P value= 0.1) (NEU−, heritability
enrichment= 1.7×, P value= 0.54) or the union of NEU+ and NEU− peaks
(heritability enrichment= 1.9×, P value= 0.33). Of our 118,152 merged peaks, we
found that 33,242 overlapped peaks in the NEU− samples, 42,599 overlapped
peaks in the NEU+ fraction and 58,377 peaks overlapped peaks in either the NEU
+ or NEU− ATAC-seq peaks. Finally, we found that 59,775 peaks were unique to
our study and these were highly enriched for schizophrenia heritability (heritability
enrichment= 9.6×, P value= 0.016).

Replication dataset. The Chicago dataset consists of dorsolateral prefrontal cor-
texes from 47 individuals with schizophrenia and 218 controls. We directly
obtained the sequencing files (.fastq) from the University of Chicago. We then
mapped reads and called peaks using the same pipeline as for our samples (merged
peaks detected at a 1% FDR, only kept peaks observed in at least two samples and
set peak width to 300 bp). We detected 157,660 peaks using the Chicago samples.
We found that 86% of our peaks overlapped with the Chicago merged peak set
(65% of the peaks detected using their samples overlapped with ours). These
157,660 peaks were used to replicate the schizophrenia heritability enrichment that
we observed using our peaks. For the replication of our differential chromatin
analysis results, we quantified the ATAC-seq enrichment of the Chicago samples in
our merged peak set (see methods: Enrichment of ATAC-seq samples methods)
and used samples with and enrichment score >2× (15 cases/170 controls). The
differential chromatin analysis was then performed as described above using the
following covariates: BrainBank+ PMI+ Sex+Age at death+ RIN+ enrichment
score.

Genome build. All genome coordinates are GRCh37/hg19.

Code availability. Computer code is available upon request.

Data availability. These ATAC-seq data are available from Sage Bionetworks-
Synapse website via the psychENCODE Knowledge Portal under the accession
number [syn5321694] https://www.synapse.org/#!Synapse:syn5321694. A table of
the processed samples is also available at: https://www.synapse.org/#!Synapse:
syn12214341/tables/.
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