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ABSTRACT
In this paper, we apply a new approach to a special class of discrete
time evolution models and establish a solid mathematical founda-
tion to analyse them. We propose new single and multi-species evo-
lutionary competition models using the evolutionary game theory
that require a more advanced mathematical theory to handle effec-
tively. A key feature of this new approach is to consider the discrete
models as non-autonomous difference equations. Using the power-
ful tools and results developed in our recent work [E. D’Aniello and S.
Elaydi, The structure of ω-limit sets of asymptotically non-autonomous
discrete dynamical systems, Discr. Contin. Dyn. Series B. 2019 (to
appear).], we embed the non-autonomous difference equations in
an autonomous discrete dynamical systems in a higher dimension
space, which is the product space of the phase space and the space
of the functions defining the non-autonomous system. Our current
approach applies to two scenarios. In the first scenario, we assume
that the trait equations are decoupled from the equations of thepop-
ulations. This requires specialized biological and ecological assump-
tions which we clearly state. In the second scenario, we do not
assume decoupling, but rather we assume that the dynamics of the
trait is known, such as approaching a positive stable equilibrium
point which may apply to a much broader evolutionary dynamics.
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1. Introduction

Population dynamics can be traced back to Malthus’ 1798 essay [1], where he communi-
cates that an unrestrained population will grow exponentially unless the amounts of food
that is available becomes limited. The classical theories of population dynamics have a long
history of being very useful in studying biological systems and ecological interactions and
their outcomes. Determining the dynamics of a single ormulti-species interactions is, how-
ever, not a straightforward undertaking when the evolution plays a crucial role in shaping
the behaviour of these interactions.

The fundamental principle of evolution was first pioneered by the naturalist Charles
Darwin in his 1859 book On the origin of species [13] where he communicated his rea-
sonings verbally. Darwinian evolution theory is founded on three axioms known as the
axioms of natural selectionwhich include variation, inheritance, and competition.Variation

CONTACT Saber Elaydi selaydi@trinity.edu
© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is anOpenAccess article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17513758.2020.1772997&domain=pdf&date_stamp=2020-06-25
mailto:selaydi@trinity.edu
http://creativecommons.org/licenses/by/4.0/


JOURNAL OF BIOLOGICAL DYNAMICS 455

is where individuals within a population have different traits or phenotype, whereas inher-
itance is where offspring inherits a mixture of both parents’ traits. Competition is where
more offsprings are produced than can survive, so offspring with traits better matched to
the environment will survive and reproduce more effectively than others [13,30]. Based
on these three axioms, evolution theory asserts that a population will accumulate the
traits that allow for more successful competition, survivability, and better reproduction.
In other words, the theory of evolution underlines the key role of selection of life traits
or behavioural strategies against certain criteria [20,27,31]. Since its inception, numerous
efforts have been made to quantitatively formalize Darwin’s theory of evolution by natural
selection as a mathematical game using concepts from the well established field of game
theory.

Game theory is a mathematical tool that was first developed by von Neumann &Morg-
ernstern (1944) and mainly concerned with the rational choice between decision-makers.
It was later made prominent by [25] through his concept of Nash Equilibrium [25], where
the optimal outcome of a game is one where no player has an incentive to deviate from
their chosen strategy after considering an opponent’s choice. Game theory has a long tra-
dition in the economic and social sciences and recently has been successfully applied to
the study of evolutionary dynamics in nature [26]. In classical game theory, a game has
players, strategies, payoffs and sets of rules. In biological systems, however, strategies are
not the outcome of rational choices but rather are due to the behaviour shaped through
evolution by natural selection. Evolution by natural selection can be considered an evolu-
tionary game in the way that it has players, strategies, strategy sets, and payoffs. The players
are the individual organisms. Strategies are their heritable phenotypic traits and evolve by
means of natural selection. Payoffs are their individual fitness, and the rules are provided
by the environment [31]. The mean strategy of a population changes over time, moving in
the direction that will increase its fitness.

Evolutionary game theory (EGT) originated as an application of game theory to biolog-
ical problems that are mainly concerned with the strategies (i.e. heritable phenotypes) of
individual species. EGT provides a mathematical framework for understanding and mod-
eling Darwinian evolution by natural selection. It was first introduced by Maynard Smith
and Price [22,23] through the solution concept of an evolutionarily stable strategy (ESS)
by bringing together the evolution and ecological processes. An ESS is a strategy (or set of
strategies) such that, if all the members of a population adopt it, then no mutant strategy
could invade the population under the influence of natural selection. In other words, at
an ESS, the strategies are ecologically stable in the sense that they can co-exist together at
positive population sizes, and they are evolutionarily stable when they cannot be invaded
by rare alternative strategies. This has been fundamental to the development of EGTwhich
has contributed to the understanding of ecological dynamics. EGT has advanced greatly
since then as it is well evidenced through a myriad of publications on both the theoretical
and application aspects (see for examples [7,24] and reference therein).

In this paper, we consider discrete population dynamical models which are governed
by maps or difference equations. These equations describe typically autonomous, discrete
time dynamics with population vital rates (coefficients) as the only temporal change. These
coefficients can change in time through density effects or because of evolutionary processes
according to Darwinian principles resulting in non-autonomous difference Equation [10].
The theory of non-autonomous discrete dynamical systems has been developed by many
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authors (see for example [12] and references within). The work in [12], which is the foun-
dation of the new approach presented in this paper, focuses on the topological and the
dynamical properties of the omega limit sets in non-autonomous discrete dynamical sys-
tems that are asymptotic to autonomous systems. The theoretical results were then applied
to non-autonomous triangular maps and to some classical population models such as
Ricker’s model.

This paper is organized as follows. In Section 2, we give a brief review of EGTmethodol-
ogy and set up single- and multi-species discrete evolutionary population models building
upon priorworks in [9–11,17,20,31]. In Section 3, we give a brief exposition of the theory of
non-autonomous difference equations and the construction of the associated autonomous
skew product discrete dynamical systems based on our recently published work [12]. We
then use it to develop the mathematical foundation of the results in this paper as described
in the new Theorem 3.2. In Section 4, we apply these results to establish the global stability
of the equilibriumpoints of populations of single andmulti-species. Here, we only consider
a special type of evolutionary dynamics inwhich themean trait equation is decoupled from
the equation(s) of the species. The theoretical results are applied to Beverton–Holt, Ricker,
and Leslie–Gower evolutionary models. In Section 5, we consider evolutionary hierarchi-
cal competitionmodels of populations of multi-species. In hierarchical models, species are
classified based on their dependence or independence from the other competing species,
[5,6,16]. In the dynamical systems literature, hierarchical systems are represented by maps
and are called triangular maps. These maps have a lower triangular Jacobian matrix [4].
Analogous results are obtained for evolutionary predator-prey models [3] as presented in
Section 6 that would improve the results therein. In Section 7, we present general evolu-
tionary models and discuss their dynamics using the new approach. Finally, in Section 8,
we investigate the cases when the equilibrium points of the trait equation are unstable and
either a saddle-node bifurcation or a period-doubling bifurcation occur. In the case of the
saddle-node bifurcation and exchange of stability occurs and a new asymptotically stable
equilibrium point is born. On the other hand, in the case of periodic-doubling bifurca-
tion, the fixed point loses its stability and a stable new periodic cycle of period 2 is born.
This period doubling bifurcation will lead to chaos [15].We summarize and conclude with
Section 9.

2. EGTmodels

2.1. Modeling evolution as a game

To set the stage for themathematical modeling framework and discussion presented in this
paper, we begin with a brief review of the main concepts of the EGT methodology used in
this paper. We follow Vincent and Brown’s EGT methodology [31] and Cushing’s math-
ematical framework for deriving discrete time evolutionary population models [10]. The
development of the evolutionary and ecological dynamics is informed by Darwin’s axioms.
The central tenet in EGT modeling process lie in defining evolution as change in strategy
(heritable phenotypes) frequency and ecological processes as the per capita growth rates
of these strategies. We start by defining an evolutionary discrete model for the population
dynamics of the species of interest. Let x = (x1, x2, . . . , xn) ∈ R

n+ denote the vector of pop-
ulation numbers or densities and u = (u1, u2, . . . , un) denote the vector of mean strategies
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ui (heritable phenotypic) in U used by the species xi, where U is a one-dimensional set of
biologically feasible strategies (phenotypic traits). The difference equation describing the
population dynamics for species i from one time period to the next is written as a function
of the strategies and the population density, xi(t + 1) = xi(t)[1 + Hi(x,u)], whereHi(x,u)

is the individual fitness function (as defined by per-capita growth rate).
Model parameters in a difference equation population model may depend on a pheno-

typic trait v subject to the axioms of Darwinian evolution. The modeling methodology in
[31] assumes the trait v is normally distributed throughout the population at all timeswith a
constant variance and, consequently, the trait distribution is determined by the population
mean trait u. Vincent and Brown [31] developed the concept of the fitness generating func-
tion or G-function (for short) as a single mathematical expression to describe the fitness
function for individuals using strategy ui when it is substituted for the focal individual’s
strategy v in U . In other words, G(x, v,u) gives the expected per capita growth rate of a
focal individual using strategy v in U when the population is in state (x,u). As a result,
when v is replaced by a mean strategy value ui, the G-function generates the fitness Hi
for population i, that is,G(x, v,u)|v=ui= Hi(x,u).G-function can also be interpreted as an
adaptive landscape which is a plot of the fitness of a species with mean strategy v, given the
population vector x and strategy vector u. For a discrete time model, fitness is given as the
logarithm of the per capita population growth rate, i.e. lnG(x, v,u) and the fitness gradient
is with respect to the trait v, i.e. ∂ lnG(x,v,u)

∂v |v=ui . The dynamical equation for the change
in trait equation is described by u(t + 1) = u(t) + σ 2 ∂ lnG(x,v,u)

∂v |v=ui , where the constant
of proportionality σ 2 is the variance of the distribution of strategies (phenotypic traits)
in species xi about the mean phenotypic trait ui. σ 2 also known as the evolutionary speed.
The phenotypic trait equation states that the change in themean trait is proportional to the
fitness gradient (with respect to an individuals trait). This means that larger variation in
strategies produces more rapid evolution. The fitness gradient moves the strategy uphill,
in the direction of the positive gradient on the adaptive landscape, which in accordance
with Fisher’s fundamental theorem of natural selection [18]. Evolutionary or Darwinian
dynamics is then modeled by coupling the ecological population dynamics in terms of a
G-function and the evolutionary dynamics equation together to give the following general
system of difference equations

xi(t + 1) = xi(t)[1 + G(x, v,u)

∣∣∣∣
v=ui

]
, (1a)

ui(t + 1) = ui(t) + σ 2 ∂ lnG(x, v, x)
∂v

∣∣∣∣
v=ui

(1b)

The phenotypic trait Equation (1b) is often called the canonical equation of evolution,
Lande’s Equation [20], Fisher’s equation for additive genetic variance [18] or the Breeder’s
Equation [10,31].

2.2. Single-species evolutionarymodels

We first start by considering the general difference equation of a single-species population
given by

x(t + 1) = x(t)r(x(t)) (2)
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where x(t + 1) and x(t) are the populations size or densities in successive generations
and r(x(t)) is the density-dependent per capita population growth rate of the population
from one time period to the next. Difference equation models of population dynamics are
generally represented by x(t + 1) = f (x(t)), where f is called amap. They have been exten-
sively investigated analytically and their global dynamics are studied using the following
fundamental Theorem.

Theorem 2.1 (Allwright-Singer): Let f : [a, b] → [a, b], b may be ∞, such that f is a C3-
map with a equilibrium point x∗ ∈ (a, b) such that f (x) > x if x < x∗ and f (x) < x for x >

x∗. Assume that the Schwarzian derivative sf (x) = f ′′′(x)
f ′(x) − 3

2 (
f ′′(x)
f ′(x) )

2 < 0 for all x ∈ [a, b].
If |f ′(x∗)| ≤ 1, then x∗ is globally asymptotically stable.

To give the model (in 2) an evolutionary dimension, we follow the EGT mathematical
framework described in [10] and let the growth rate r be a function of the phenotypic trait
of an individual, v, and the mean trait of the population, u, subject to the axioms of Dar-
winian evolution. The single-species model is then given by the coupled population and
trait equations. This modeling methodology assumes the trait v to be normally distributed
throughout the population at all times with a constant variance and, consequently, the trait
distribution is determined by the population mean trait u. Letting r = r(x, v, u), we get

x(t + 1) = x(t)r(x(t), v, u(t))|v=u(t) (3a)

u(t + 1) = u(t) + σ 2 ∂ ln r(x(t), v, u(t))
∂v

∣∣∣∣
v=u(t)

(3b)

Throughout this paper, we will assume that the fitness gradient is independent of the
population density x, in other words:

∂

∂x
∂ ln r(x, v, u)

∂v

∣∣∣∣
v=u

= 0, (4)

for all x, v, u in their domains.
This condition leads to the decoupling of the trait equation from the population

equation. Hence Equation (3) become

x(t + 1) = x(t)r(x(t), u(t)) (5a)

u(t + 1) = u(t) + h(u(t)) (5b)

where h(u) = σ 2 ∂ ln r(x,v,u)
∂v |v=u.

Next, we illustrate this modeling approach using Beverton–Holt and the Ricker evolu-
tionary models.

Example 2.2: The Beverton–Holt evolutionarymodel was first studied byCushing [9] and
is given by:

x(t + 1) = x(t)
b(v)

1 + c(v, u(t))x(t)

∣∣∣∣
v=u(t)
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u(t + 1) = u(t) + σ 2 ∂ ln r(x(t), v, u(t))
∂v

∣∣∣∣
v=u(t)

,

where r(x, v, u) = b(v)
1 + c(v, u)x

where coefficients b (inherent growth rate) and c (intraspecific competition) are
assumed to be functions of a phenotypic trait that are subject to Darwinian dynamics.
Using the same set of assumptions from [9] which we state again here: b depends only on
the individual’s trait v (and not on the traits of others in the population), and c is a function
of the difference between traits v and u which is maximized (or minimized) when v = u.
In other words, c = c(v − u) = c(z), c′(0) = 0. Using assumption (4), the Beverton–Holt
evolutionary model can now be decoupled as follows:

x(t + 1) = b(u(t))
1 + c0x(t)

x(t) (6a)

u(t + 1) = u(t) + σ 2 b
′(u(t))
b(u(t))

(6b)

where b′(u(t)) = ∂b(v)
∂v |v=u(t) and c0 = c(0).

Example 2.3: The second example is the Ricker Evolutionary model [14,15] given by:

x(t + 1) = x(t)eα(v)−c(v,u(t))x(t)∣∣
v=u(t)

u(t + 1) = u(t) + σ 2 ∂ ln r(x(t), v, u(t))
∂v

∣∣∣∣
v=u(t)

,

where r(x, v, u) = eα(v)−c(v,u)x.

where coefficients α (inherent growth rate) and c (intraspecific competition) are assumed
to be functions of a phenotypic trait that are subject to Darwinian dynamics. Under the
same assumptions as in Beverton–Holt example, the Ricker evolutionary model can now
be decoupled as follows:

x(t + 1) = x(t)eα(u(t))−c0 x(t) (7a)

u(t + 1) = u(t) + σ 2α′(u(t)) (7b)

where α′(u(t)) = ∂α(v)
∂v |v=u(t) and c0 = c(0).

2.3. Multi-species evolutionarymodels

The above model can be generalized to multiple species. Let x1, x2, . . . , xn be n interacting
species. Then an evolutionary competition model may be given by

xi(t + 1) = xi(t)ri(x(t), vi,u(t))
∣∣
vi=ui(t)

(8a)

ui(t + 1) = ui(t) + σ 2
i
∂ ln ri(x(t), vi,u(t))

∂vi

∣∣∣∣
vi=ui(t)

, (8b)
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where i = 1, 2, . . . , n, x = (x1, x2, . . . , xn) ∈ R
n+. As in Section 2.2, we will assume

throughout this paper that the fitness gradient of each species is independent of xi. In other
words, we will assume that

∂

∂xi
∂ ln ri(x, vi,u)

∂vi

∣∣∣∣
vi=ui

= 0,

for all xi, vi, ui in their domains. This main assumption leads to the decoupling of the trait
equations from the population equations. Hencewe have the following system of difference
equations

xi(t + 1) = xi(t)ri(x(t),u(t)) (9a)

ui(t + 1) = ui(t) + hi(u(t)) (9b)

where i = 1, 2, . . . , n, ui is the mean trait of species xi, and hi(u) = σ 2
i

∂ ln ri(x,vi,u)
∂vi |vi=ui .

Next, we give two examples to illustrate this modeling procedure: the Leslie–Gower and
Ricker evolutionary competition model of two species.

Example 2.4: Consider the Leslie-Gower competition model of two-species,

x(t + 1) = ax(t)
1 + c11x(t) + c12y(t)

y(t + 1) = by(t)
1 + c21x(t) + c22y(t)

.

where a and b are the intrinsic population growth rates and cij intraspecific (for i = j)
or interspecific (i �= j) competition coefficients. Using the EGT methodology of Vincent
and Brown [31], and assuming that a, b and cij to be functions of a phenotypic trait that
are subject to Darwinian dynamics, we define the Leslie–Gower evolutionary competition
model by

x(t + 1) = r1(x(t), y(t), v1, u1(t))
∣∣∣∣
v1=u1(t)

x(t)

y(t + 1) = r2(x(t), y(t), v2, u2(t))
∣∣∣∣
v2=u2(t)

y(t)

u1(t + 1) = u1(t) + σ 2
1
∂ ln r1(x(t), y(t), v1, u1(t))

∂v1

∣∣∣∣
v1=u1(t)

u2(t + 1) = u2(t) + σ 2
2
∂ ln r2(x(t), y(t), v2, u2(t))

∂v2

∣∣∣∣
v2=u2(t)

with

r1(x, y, v1, u1)∗ = a(v1)
1 + c11(v1, u1)x + c12y

r2(x, y, v2, u2)∗ = b(v2)
1 + c21x + c22(v2, u2)y

We will assume that a and b are functions of the corresponding individual traits v1 and
v2, respectively, the intraspecific competition parameters c11 and c22 are functions of the
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difference in traits vi − ui, i = 1, 2, respectively, and the interspecific competition param-
eters c12 and c21 are constants. We further assume that cij(0, 0) �= 0, i, j = 1, 2. Applying
assumption (9), the Leslie–Gower evolutionary competition model can be uncoupled as
follows:

x(t + 1) = a(u1(t))x(t)
1 + c11(0)x(t) + c12y(t)

(10a)

y(t + 1) = b(u2(t))y(t)
1 + c21x(t) + c22(0)y(t)

(10b)

u1(t + 1) = u1(t) + σ 2
1
a′(u1(t))
a(u1(t))

(10c)

u2(t + 1) = u2(t) + σ 2
2
b′(u2(t))
b(u2(t))

(10d)

where a′(u(t)) = ∂a(v)
∂v |v=u(t) and b′(u(t)) = ∂b(v)

∂v |v=u(t).

Example 2.5: Consider the Ricker competition model of two species [15],

x(t + 1) = x(t)eα−c11x(t)−c12y(t)

y(t + 1) = y(t)eβ−c21x(t)−c22y(t)

where α and β are the intrinsic growth rate for species x and y, respectively, and cij
intraspecific (for i = j) or interspecific (i �= j) competition coefficients. Using the EGT
methodology of Vincent and Brown [31], and assuming that α, β and cij to be functions
of a phenotypic trait that are subject to Darwinian dynamics, we define the evolutionary
Ricker competition model by

x(t + 1) = x(t)eα(v1)−c11(v1−u1(t))x(t)−c12y(t)
∣∣∣∣
v1=u1(t)

y(t + 1) = y(t)eβ(v2)−c21x(t)−c22(v2−u2(t))y(t)
∣∣∣∣
v2=u2(t)

u1(t + 1) = u1(t) + σ 2
1
∂ ln r1(x(t), y(t), v1, u1(t))

∂v1

∣∣∣∣
v1=u1(t)

u2(t + 1) = u2(t) + σ 2
2
∂ ln r2(x(t), y(t), v2, u2(t))

∂v2

∣∣∣∣
v2=u2(t)

Making the same assumptions as in the Leslie–Gower competition model and applying
assumption (9), we get the uncoupled system for the Ricker evolutionary competition
model

x(t + 1) = x(t)eα(u1(t))−c11(0)x(t)−c12y(t) (11a)

y(t + 1) = y(t)eβ(u2(t))−c21x(t)−c22(0)y(t) (11b)

u1(t + 1) = u1(t) + σ 2
1 α′(u1(t)) (11c)

u2(t + 1) = u2(t) + σ 2
2 β ′(u2(t)) (11d)
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3. Nonautonomous difference equations

In this section, we develop the mathematical foundation of the results in this paper and
give a brief exposition of the theory of non-autonomous difference equations and the con-
struction of the associated autonomous skew product discrete dynamical systems based on
our recently published work [12].

Let {ft : t ∈ Z
+} be a sequence of functions ft : Rn+ → R

n+. Then this sequence of
functions would generate the nonautonomous difference equation

x(t + 1) = ft(x(t)), x = (x1, x2, . . . , xn) ∈ R
n
+. (12)

We will assume that the map {ft}∞t=0 are continuous and converges uniformly to a contin-
uous function f : Rn+ → R

n+. The map f generates the autonomous difference equation:

x(t + 1) = f (x(t)), x = (x1, x2, . . . , xn) ∈ R
n
+. (13)

Equation (14) models populations x1, x2, . . . , xn, with fluctuating habitats, where habi-
tats are changing from one time period to another. LetF = {ft : t = 0, 1, 2, . . .} be a subset
of the space of continuous functions equipped with the compact open topology.

Then we may define a skew-product semi-dynamical system as follows. Let �t,i =
fi+t−1 ◦ fi+t−2 ◦ · · · ◦ fi be the compositionmap and letπ : Rn+ × F × Z

+ → R
n+ × F be

defined as π((x, fi), t) = (�t,i(x, fi+t) (see Figures 1 and 2). Then it may be shown [12] that
the system (Rn+ × F ,Z+,π) ≡ (Rn+ × F ,π) is a discrete semidynamical system. More-
over, one may extend this dynamical system to the closure of F , F = F ⋃{f } by letting
π((x, f ), t) = (f t(x), f ).

In the sequel, we will restrict our study on nonautonomous population models in order
to avoid certain pathological examples in which all orbits of the nonautonomous system
converge to an unstable fixed point of the limiting equation. The following example from
Cushing [8] illustrates this situation.

Figure 1. A non-autonomous system that is asymptotically autonomous. The graph depicts a sequence
of mapsF = {ft : t = 0, 1, 2, . . .} converging uniformly to a map f, i.e. limt→∞ ft = f .
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Figure 2. The construction of a skew-product semi-dynamical system, where p is the projection, id is
the identity map and σ is the shift map defined as σ(fi , t) = fi+t .

Example 3.1: Let g(x) be a map with g′(0) > 1 and 0 is a fixed point of g. Let {fi} be a
sequence of maps such that f0(x) = 0 for all x, and fi(x) = g(x) for all i>0. Then all the
orbits of the nonautonomous system {fi} converge to the unstable fixed point 0 of the lim-
iting map g. Notice that one of the maps f0 maps all the points to the unstable equilibrium
point 0 of the limiting map g This example may be generalized to higher dimension sys-
tems. Let g be a map on R

2+ such that (0, 0) is an unstable equilibrium point of the map
g. Let {fi} be a sequence of maps such that, for somei, fi(x, y) = (0, 0) for all (x, y) in R

2+,
and fj(x, y) = g(x, y) for all j �= i. Then all the orbits of the nonautonomous system {fi}
converge to the unstable fixed point (0, 0) of the limiting map g.

To avoid the above scenarios, we put conditions on the nonautonomous system as well
as on the limiting autonomous system.

LetRn+ denote the cone of nonnegative vectors inR
n and let int(R

n+) and ∂(Rn+) denote
the interior and the boundary of R

n+, respectively. Assume
A1: f and ft : Rn+ −→ R

n+ are continuos for all t ∈ Z+, ft converges uniformly to f as
t → ∞. Then x(0) ∈ R

n+ implies solutions of the nonautonomous difference equation

x(t + 1) = ft(x(t)), x = (x1, x2, . . . , xn) ∈ R
n
+ (14)

satisfies x(t) ∈ R
n+, for all t ∈ Z+. (That is to say R

n+ is forward invariant). The same is
true for solutions of the limiting equation

x(t + 1) = f (x(t)), (15)

A key assumption is

A2 : ft : int(Rn
+) −→ int(Rn

+).

Then it is always true that x(0) ∈ int(Rn+) implies solutions of the nonautonomous
difference Equation (14) satisfies x(t) ∈ int(Rn+), for all t ∈ Z+.

The main result that we need here is the following theorem ([12], Theorem 4.1.)

Theorem 3.2 ([12]): Assume A1 and A2 and the limiting equation has a fixed point x∗ ∈
R
n+. Then

(i) if x∗ ∈ int(Rn+), and if it is globally asymptotically stable on int(Rn+) as a fixed point of
limiting Equation (15), then all solutions of the nonautonomous difference Equation (14)
with x(0) ∈ int(Rn+) tend to x∗.

(ii) if x∗ ∈ ∂(Rn+), and if it is globally asymptotically stable on int(Rn+), then all solutions of
the nonautonomous difference Equation (14) with x(0) ∈ int(Rn+) tend to x∗.
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4. Applications

In this section, we apply Theorem 3.2 to one and two-species competition models. Let us
start with the single-species evolutionary models.

4.1. Single-species evolutionarymodels

Example 4.1: Beverton–Holt evolutionary model [9]

x(t + 1) = b(u(t))
1 + c0x(t)

x(t) = ft(u(t), x(t)) (16)

u(t + 1) = u(t) + σ 2 b
′(u(t))
b(u(t))

= g(u(t)), (17)

where b(u) > 0 is twice differentiable on its domain.

The survival (positive) equilibrium is given by (x∗, u∗) = (
b(u∗)−1

c0 , u∗), with b(u∗) > 1,
where u∗ is any critical trait that satisfies b′(u∗) = 0. Now if |g′(u∗)| < 1 or, equiva-
lently, −2 < σ 2 b′′(u∗)

b(u∗) < 0. Hence there exists an open neighborhood W of u∗ such that
limt→∞ u(t) = u∗ if u(0) ∈ W. Hence the maps {ft : t ∈ Z

+} converges uniformly to the
map f (x) = b(u∗)x

1+c0 x , which has the equilibrium point (x∗, u∗). It is a well known fact for
the autonomous Beverton–Holt model represented by the map, the equilibrium point x∗
is globally asymptotically stable. Hence by Theorem 3.2, the equilibrium point (x∗, u∗) is
globally asymptotically stable in R

+ × W. On the other hand, if b(u∗) ≤ 1, then (0, u∗)
is the only equilibrium point of Equations (16), and (17), which is globally asymptotically
stable in R

+ × W.

Example 4.2: Ricker evolutionary model

x(t + 1) = x(t)eα(u(t))−c0x(t)

u(t + 1) = u(t) + σ 2α′(u(t)).

where α(u) > 0 is twice differentiable on its domain.
The model has two equilibria, the extinction equilibrium (0, u∗) and the survival

equilibrium (x∗, u∗), where x∗ = α(u∗)
c0 . Note that u∗ is any value such that α′(u∗) = 0.

The following statements hold true.

(i) If α(u∗) < 0 and |1 + σ 2α′′(u∗)| < 1, then there exists an open neighborhoodW of
u∗ such that the extinction equilibrium (0, u∗) is globally asymptotically stable on the
interior of R+ × W.

(ii) If 0 < α(u∗) < 2 and |1 + σ 2α′′(u∗)| < 1, then the survival equilibrium (x∗, u∗) is
globally asymptotically stable on the interior of R+ × W.

To prove these two statements, consider the autonomous Ricker model x(t + 1) =
x(t)eα(u∗)−c0 x(t) = f (x(t)) where 0 < α(u∗) < 2 (i.e: x∗ ∈ [0, 2

c0 ]).
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It is well known [14,15], that f (x) > x when x < x∗ and f (x) < x when x > x∗. The
Schwarzian derivate of f can be written as follows

Sf (x) = c20
2(1 − c0x)2

P(x)

where P(x) = −c20x
2 + 4 c0x − 6 a second degree polynomial, with discriminant 	 < 0.

Thus sign(Sf (x)) = sign(−c20), and thus Sf (x) < 0 for all x ∈ R
+. Hence by Theorem 2.1,

the equilibrium point x∗ of the autonomous Ricker model is globally asymptotically stable.
Now, the maps {ft : t ∈ Z

+} converges uniformly to the map f (x) = eα(u∗)−c0 x x, which
has the equilibrium point (x∗, u∗), and by Theorem 3.2, the equilibrium point (x∗, u∗) is
globally asymptotically stable on the interior of R

+ × W.

Example 4.3: The Leslie–Gower evolutionary model.

x(t + 1) = a(u1(t))x(t)
1 + c11x(t) + c12y(t)

(18)

y(t + 1 = b(u2(t))y(t)
1 + c21x(t) + c22y(t)

u1(t + 1) = u1(t) + σ 2
1
a′(u1(t))
a(u1(t))

= H1(u1(t))

u2(t + 1) = u2(t) + σ 2
2
b′(u2(t))
b(u2(t))

= H2(u2(t)) (19)

where a(u1) > 1 and b(u2) > 1 are twice differentiable on their domains. The equilibrium
points of u1 and u2 are u∗

1 and u∗
2, where u

∗
1 is any value that satisfies a

′(u∗
1) = 0 and u∗

2 is
any value that satisfies b′(u∗

2) = 0. Now if |H′
1(u

∗
1)| < 1 and |H′

2(u
∗
2)| < 1, then there exists

open neighborhoods U1 and U2 such that limt→∞ u1(t) = u∗
1 and limt→∞ u2(t) = u∗

2 for
all initial values (u1(0), u2(0)) ∈ U1 × U2.

Hence the nonautonomous system (18) and (19) is asymptotic to the limiting system

x(t + 1) = a(u∗
1)x(t)

1 + c11x(t) + c12y(t)
(20)

y(t + 1) = b(u∗
2)y(t)

1 + c21x(t) + c22y(t)
(21)

The following Theorem may be found in [2,11,29]. There are four equilibrium points of
(20) and (21),

E∗
1 = (0, 0), E∗

2 =
(
a(u∗

1) − 1
c11

, 0
)
, E∗

3 =
(
0,
b(u∗

2) − 1)
c22

)
,

and

E∗
4 =

(
(a(u∗

1) − 1)c22 − (b(u∗
2) − 1)c12

c11c22 − c21c12
,
(b(u∗

2) − 1)c11 − (a(u∗
1) − 1)c21

c11c22 − c21c22

)
.
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Figure 3. Some competitive outcomes plane related to Leslie–Gower competition model.

Theorem 4.4: The following statements hold true:

Scenario (i) If c12 − c22 < 0 and c21 − c11 > 0, then limt→∞(x(t), y(t)) = E∗
2 , for all

points (x(0), y(0)) in the interior of R2+.
Scenario (ii) If c12 − c22 < 0 and c21 − c11 < 0, then limt→∞(x(t), y(t)) = E∗

4 , for all
points (x(0), y(0)) in the interior of R2+.

Scenario (iii) If c12 − c22 > 0 and c21 − c11 < 0, then limt→∞(x(t), y(t)) = E∗
3 , for all

points (x(0), y(0)) in the interior of R2+.

This may be illustrated by the phase space diagrams (Figure 3), and using Theorem 3.2,
we obtain the following result.

Theorem 4.5:

(i) Under scenario (ii), the orbits of the nonautonomous system (18) and (19) converge to
(E∗

2, u
∗
1, u

∗
2) ∈ R

2+ × U1 × U2, for all points (x(0), y(0)) in the interior of R2+.
(ii) Under scenario (iii), the orbits of the nonautonomous system (18) and (19) converge to

(E∗
4, u

∗
1, u

∗
2) ∈ R

2+ × U1 × U2, for all points (x(0), y(0)) in the interior of R2+.
(iii) Under scenario (iv), the orbits of the nonautonomous system (18) and (19) converge to

(E∗
3, u

∗
1, u

∗
2) ∈ R

2+ × U1 × U2, for all points (x(0), y(0)) in the interior of R2+.

Example 4.6: A variation of the Leslie–Gower evolutionary model ([2]).
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A variation of the above model was given in [2]. Here, the authors assumed that a and b
are constants and are not dependent on the individual or themean trait. However, the inter-
specific parameters are dependent on the traits of both species. The authors considered
only the case where only one of the species evolutionary adapts while the other species
does not adapt. Hence we have u1(t) = u∗

1 for all t, and σ 2
1 = 0.

The Leslie–Gower evolutionary model now becomes.

x(t + 1) = x(t)r1(u∗
1, u

∗
1, u2(t), x(t), y(t)) (22)

y(t + 1) = y(t)r2(v2, u∗
1, u2(t), x(t), y(t))

∣∣
v2=u2(t)

u2(t + 1) = u2(t) + σ 2
2
∂ ln r2(u∗

1, v2, u2(t), x(t), y(t))
∂v2

∣∣
v2=u2(t)

(23)

We assume further that species y selected a bad adaptation that led to its extinction. That
is, limt→∞ y(t) = 0 This yields

x(t + 1) = x(t)
a

1 + c11(u∗
1, u

∗
1)x(t)

u2(t + 1) = u2(t) − σ 2
2

∂v2 c21(v2, u∗
1)x(t)

1 + c21(v2, u∗
1)x(t)

∣∣
v2=u2(t)

(24)

We assume a>1. One may easily show that limt→∞ x(t) = x∗, where x∗ = a−1
c11(u∗

1 ,u
∗
1)
.

Equation (24) converges to the limiting equation

u2(t + 1) = u2(t) − σ 2
2

c′21(u2(t), u
∗
1)x

∗

1 + c21(u2(t), u∗
1)x∗ = f (u2(t))

where

c′21(u2(t), u
∗
1) = ∂v2c21(v2, u

∗
1)

∣∣∣∣
v2=u2(t)

If |f ′(u∗
2)| < 1, the equilibriumpoint u∗

2 of the trait equation is asymptotically stable. Hence
there is an open neighborhood U of u∗

2 such that limt→∞ u2(t) = u∗
2. By Theorem 8.1,

limt→∞(x(t), y(t), u1(t), u2(t)) = (x∗, 0, u∗
1, u

∗
2) if (x(0), y(0), u1(0), u2(0)) ∈ int(R2+) ×

R × U.

Example 4.7: Consider now the Ricker competition evolutionary model of two-species.

x(t + 1) = x(t)eα(u1(t))−c11(0)x(t)−c12y(t) (25)

y(t + 1) = y(t)eβ(u2(t))−c21x(t)−c22(0)y(t)

u1(t + 1) = u1(t) + σ 2
1 α′(u1(t))

u2(t + 1) = u2(t) + σ 2
2 β ′(u2(t)). (26)

Now if |1 + α′(u∗
1)| < 1 and |1 + β ′(u∗

2)| < 1, then there exists neighborhoods G1 of u∗
1

and G2 of u∗
2 such that limt→∞ u1(t) = u∗

1 and limt→∞ u2(t) = u∗
2 if u1(0) ∈ G1 and
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u2(0) ∈ G2. Thus the nonautonomous system (25) and (26) is asymptotic to the limiting
system

x(t + 1) = x(t)eα(u∗
1)−c11(0)x(t)−c12y(t) (27)

y(t + 1) = y(t)eβ(u∗
2)−c21x(t)−c22(0)y(t). (28)

There are four equilibrium points

E∗
1 = (0, 0), E∗

2 =
(

α(u∗
1)

c11(0)
, 0

)
, E∗

3 =
(
0,

β(u∗
2)

c22(0)

)
,

and

E∗
4 =

(
α(u∗

1)c22(0) − β(u∗
2)c12

c11(0)c22(0) − c21c12
,

β(u∗
2)c11(0) − α(u∗

1)c21
c11(0)c22(0) − c21c22(0)

)
.

The following result on the global stability of E∗
4 may be found in [5] which was improved

by [28]. But before stating this result, we need to introduce a few definitions.

Definition 4.8: The set of singular points S is defined as the set of all points (x, y) ∈ R
2+,

for which the determinant of the Jacobian matrix is equal to zero.
In the case of system (25) and (26), we have

S =
⎧⎨
⎩(x, y) : y = (1 − x)

1 −
(
1 − c12c21

c22c11

)
x
, x �= 1

1 − c12c21
c22c11

⎫⎬
⎭ .

The set S consists of two curves, which we will call Lc1−1, Lc
2
−1 (see Figure 4).

Now Equations (27) and (28) are generated by a map F : R2+ → R
2+ (Figure 5).

Let us denote F(Lci−1) as Lc
i
0 and F

n(Lci−1) as Lc
i
n−1. Then we have the following result.

Theorem 4.9 ([5]): Consider the system (27) and (28). We make the following assump-
tions:

(i) 1 < α, β < 2, c12c22 < 1 and c21
c11 < 1.

(ii) The equilibrium E∗
4 is locally asymptotically stable (see [21] for details).

(iii) Lc1−1 < Lc11 < Lc10 and Lc
1
0
⋂

Lc2−1 = ∅ (see Figure 5).
(iv)

c11c12 + c11c22 − 2c12c11
√

c21
c11

c11c22 − c12c21
< α <

c11c12 + c11c22 + 2c12c11
√

c21
c11

c11c22 − c12c21

c21c22 + c11c22 − 2c21c22
√

c12
c22

c11c22 − c12c21
< β <

c21c22 + c11c22 + 2c21c22
√

c12
c22

c11c22 − c12c21

Then the equilibrium point E∗
4 is globally asymptotically stable with respect to the interior

of the first quadrant.

Corollary 4.10: Under the conditions of Theorem 4.9 every orbit of the nonautonomous
system (25) and (26) converges to the equilibrium point (E∗

4, u
∗
1, u

∗
2).



JOURNAL OF BIOLOGICAL DYNAMICS 469

Figure 4. The set of singular points consists of two critical curves, a lower one Lc1−1 and an upper one
Lc2−1.

Figure 5. The figure shows the requirement Lc10
⋂

Lc2−1 = ∅ and Lc1−1 < Lc11 < Lc10.



470 K. MOKNI ET AL.

5. Hierarchical competitionmodels

By hierarchical models of n species x1, x2, . . . , xn, we mean that species x1 is ‘a silverback’
species that gets first choice of resources and whose growth is limited by its own intraspe-
cific competition, while the last species xn is an “inferior” species that gets what resources
are left after all the other species, and the growth of species xi depends on all the species
xi−1, xi−2, . . . , x1. Thesemodels have been investigated by [6,16,19], tomention only a few.
Such models may be represented by the difference system

x(t + 1) = F(x(t)) (29)

whereF : Rn+ → R
n+,F = (f1, f2, . . . , fn), x = (x1, x2, . . . , xn) ∈ R

n+, andF(x1, x2, . . . , xn)=
(f1(x1), f2(x1, x2), . . . , fn(x1, x2, . . . , xn)). In dynamical systems, these maps are called tri-
angular maps [5] since their Jacobian matrix JF(X) is a lower triangular given by

JF(x) =

⎛
⎜⎜⎜⎜⎝

∂f1
∂x1 0 0 · · · 0
∂f2
∂x1

∂f2
∂x2 0 · · · 0

...
...

∂fn
∂x1

∂fn
∂x2 · · · · · · ∂fn

∂xn

⎞
⎟⎟⎟⎟⎠

The main result on hierarchical models is the following result that describes their global
dynamics. But before stating the theorem, we need to make the following assumptions:

(A1) All orbits are bounded.
(A2) There are only finitely many equilibrium points.
(A3) There are no periodic orbits of prime (minimal) period 2.

Theorem 5.1 ([16]): Let F : Rn+ → R
n+ be a continuous triangular map of Kolmogorov

type such that Assumptions (A1), (A2), (A3) hold true. Then every orbit must converge to
a equilibrium point in R

n+.

Corollary 5.2: Under the above assumptions, if the map F has a locally asymptotically stable
equilibrium point, then it is globally asymptotically stable.

Recall that by a Kolmogorov map, we mean a map of the form F(x1, x2, . . . , xn) =
(x1g(x1), x2, g(x1, x2), . . . , xng(x1, x2, . . . , xn)). This is to ensure that the origin is an equi-
librium point and, more importantly, these are types of models that are considered here.
Let us illustrate these results by the following example.

Example 5.3: Consider the 3-species Ricker competition model

x(t + 1) = x(t)eα−c11x(t)

y(t + 1) = y(t)eβ−c21x(t)−c22y(t)

z(t + 1) = z(t)eγ−c31x(t)−c32y(t)−c33z(t)

⎫⎪⎪⎬
⎪⎪⎭

(30)

This system has seven equilibrium points, the origin, three equilibria on the three axes,
three planar equilibria, and one coexistence (positive) equilibrium point. We will assume
here that the coexistence equilibrium x∗ = (x∗, y∗, z∗) is locally asymptotically stable.
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Theorem 5.4 ([16]): If x∗ is locally asymptotically stable, where x∗ is the coexistence
equilibrium point of (30), then it is globally asymptotically stable in the interior of R3+.

The corresponding evolutionary hierarchical model is given by

x(t + 1) = x(t)eα(u1(t))−c11(0)x(t)

y(t + 1) = y(t)eβ(u2(t))−c21x(t)−c22(0)y(t)

z(t + 1) = z(t)eγ (u3(t))−c31x(t)−c32y(t)−c33(0)z(t)

⎫⎪⎪⎬
⎪⎪⎭

(31)

u1(t + 1) = u1(t) + σ 2
1 α′(u1(t))

u2(t + 1) = u2(t) + σ 2
2 β ′(u2(t))

u3(t + 1) = u3(t) + σ 2
3 γ ′(u3(t))

⎫⎪⎪⎬
⎪⎪⎭

(32)

Let u∗
1 , u

∗
2 , u

∗
3 be the equilibrium points of the equations in (32), respectively, when α′(u∗

1) =
β ′(u∗

2) = γ ′(u∗
3) = 0. If

|1 + γ 2
1 α′′(u∗

1)| < 1, |1 + σ 2
2 β ′′(u∗

2)| < 1, |1 + σ 3
3 γ ′′(u∗

3)| < 1. (33)

Then there exist open neighborhoods U1 of u∗
1 , U2 of u∗

2 , and U3 of u∗
3 such that

limt→∞ ui(t) = u∗
i , i = 1, 2, 3, whenever ui(0) ∈ Ui, i = 1, 2, 3. Now under Assump-

tion (33), and using Theorem 5.4, we conclude that limt→∞(x(t), x(t), z(t), u1(t), u2(t),
u3(t)) = (x∗, y∗, z∗, u∗

1, u
∗
2, u

∗
3) if (u1(0), u2(0), u3(0)) ∈ U1 × U2 × U3 and (x(0), y(0),

z(0)) ∈ Interior(R3+).

6. A predator-preymodel

The following example is motivated by the interaction of sperm whales and their food
resources (e.g. squids), Ackleh et al. [3] posed the following question: In a predator-prey
systems, does evolution in the prey to resist toxicants have the potential to positively affect
the predator dynamics and density levels? To address this question, we will recall the
dynamics of a non-evolutionary Predator-Prey Model:

n(t + 1) = n(t)φ(n(t))(1 − f (p(t))p(t)) (34)

p(t + 1) = sp(t) + b(n(t))n(t)f (p(t))p(t) (35)

where φ(n) is the growth rate of prey at density level n, f (p)p is the fraction of prey con-
sumed in the presence of p predators, b(n)n is the conversion factor when n preys are
present, and s is the inherent predator survival probability when no prey is present. The
following theorem summarizes the dynamics of this equation.

Theorem 6.1: The following statements hold true:

(i) The extinction equilibrium (0, 0) is globally asymptotically stable if φ(0) < 1
(ii) The exclusion equilibrium (n, 0) exists if φ(0) > 1 and is globally asymptotically stable

if s + b(n)nf (0) < 1

Next, we consider the evolutionary model associated with (34), (35). We will make the
following assumptions:
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• Only prey is assumed to evolve and the prey life span is significantly shorter than the
predator

• The predator is impacted by prey evolution, indirectly, through changes in prey density
and directly through assumed tradeoff between toxicant resistance and the prey’s ability
to escape predation.

• There exists a phenotypic trait umeasuring the mean level of toxicant resistance in the
prey. The higher the trait u, the better the prey resistance to toxicants.

The model below (36)–(38) is an example that fulfils these assumptions.

n(t + 1) = n(t)g(n(t), p(t), u(t)) (36)

p(t + 1) = sp(t) + b(n(t))h(p(t), u(t))p(t) (37)

u(t + 1) = u(t) + σ 2∂v ln (g(n(t), p(t), u(t)) (38)

where

g(n, p, v, u) = r(u)(1 − ε(u))φ(n)(1 − h(p, u)p)

r(u) = r0
1 + ηu2

, ε(u) = ε0

1 + τu2
, c,α, η, τ , r0, ε0 ∈ (0,+∞)

c(u) = c
(
1 + α

u2

1 + κu2

)
, h(p, u) = c(u)

1 + c(u)p
,

where c(u) is the searching capacity of the predator.

h(0, 0) = c and φ(0) = 1.

The trait equation can be simplified to

u(t + 1) = u(t) + σ 2
(
r′(u)
r(u)

− ε′(u)
1 − ε(u)

)
(39)

The trait equation has solutions u = 0 and u = u∗ The following theorem addresses the
stability of the positive equilibrium point (x∗, u∗) of the evolutionary model.

Theorem 6.2: Assume that the positive equilibrium of the trait equation is locally asymptot-
ically stable, that is, there exists an open neighborhoodW of u∗ such that limt→∞ u(t) = u∗,
for all u(0) ∈ W.Then the dynamics of the evolutionary equation is the same as its asymptotic
limiting equation, as described in Theorem (34).

n(t + 1) = n(t)g(n(t), p(t), u∗) (40)

p(t + 1) = sp(t) + b(n(t))h(p(t), u∗)p(t) (41)
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7. General evolutionarymodels

Let x1, x2, . . . , xn be n species. Then a general evolutionary model may be given by

xi(t + 1) = ri(x(t), vi,u(t))
∣∣
vi=ui(t)

xi(t) (42)

ui(t + 1) = ui(t) + σ 2
i
∂ ln ri(x(t), vi,u(t))

∂vi

∣∣∣∣
vi=ui(t)

, (43)

where i = 1, 2, . . . , n, x = (x1, x2, . . . , xn) ∈ R
n+.

Here, it is assumed that each species xi is influenced by mean traits of its own and of
all other species. Moreover, the mean trait of each species is affected by the mean traits
of all the species. As in Section 2.2, we will assume throughout this paper that the fitness
gradient of each species is independent of xi. In other words, we will assume that

∂

∂xi
∂ ln ri(x, vi,u)

∂vi

∣∣∣∣
vi=ui

= 0, (44)

for all xi, vi, ui in their domains. This main assumption leads to the decoupling of the trait
equations from the population equations.

This yields the following system of difference equations

xi(t + 1) = ri(x(t), vi,u(t))
∣∣∣∣
vi=ui(t)

xi(t) (45)

ui(t + 1) = ui(t) + hi(u(t)) (46)

where i = 1, 2, . . . , n, u = (u1, u2, . . . , un) is the vector mean trait of species x1, x2, . . . , xn,
and

hi(u) = σ 2
i
∂ ln ri(x, vi,u)

∂vi

∣∣∣∣
vi=ui

.

The main result that we need here is the following theorem ([12], Theorem 4.1.)

Theorem 7.1 ([12]): Assume (44) and x∗ ∈ R
n+ is an equilibrium point of the limiting

equation

xi(t + 1) = ri(x(t),u∗) xi(t) (47)

Then

(i) if x∗ ∈ int(Rn+), and if it is globally asymptotically stable on int(Rn+) as a fixed point of
limiting Equation (47), then all solutions of the nonautonomous difference system (47)
with x(0) ∈ int(Rn+) tend to x∗.

(ii) if x∗ ∈ ∂(Rn+), and if it is globally asymptotically stable on int(Rn+), then all solutions of
the nonautonomous difference Equation (47) with x(0) ∈ int(Rn+) tend to x∗.

Let us revisit the evolutionary predator-prey model [3]. We modify the assumptions
made in [3] as follows:
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• Both prey and predator are assumed to evolve and the prey life span is significantly
shorter than the predator.

• The prey and the predator are impacted by the evolution of the other, indirectly, through
changes in density and directly through assumed tradeoff between toxicant resistance
and the prey’s ability to escape predation.

• There exists phenotypic traits u1 and u2 measuring themean levels of toxicant resistance
in the prey and the predator, respectively. The higher the traits, the better resistance to
toxicants.

Hence we have the following system

n(t + 1) = n(t)g(n(t), p(t), u1(t), u2(t)), (48)

p(t + 1) = sp(t) + b(n(t))h(p(t), u1(t), u2(t))p(t), (49)

u1(t + 1) = u1(t) + σ 2
1 ∂v1 ln (g(n(t), p(t), v1, u1(t), u2(t))

∣∣∣∣
v1=u1(t)

(50)

u2(t + 1) = u2(t) + σ 2
2 ∂v2 ln (h(n(t), p(t), v2, u1(t), u2(t))

∣∣∣∣
v2=u2(t)

(51)

The dynamics of this model is determined by applying Theorem (52).

8. Asymptotically periodic non-autonomous difference equations

To this end, we have investigated the case when the trait equation has stable equilibrium
points. In this section, we will investigate the cases when the equilibrium points of the trait
equation are unstable and either a saddle-node bifurcation or a period-doubling bifurca-
tion occur. In the case of the saddle-node bifurcation and exchange of stability occurs and
a new asymptotically stable equilibrium point is born. On the other hand, in the case of
periodic-doubling bifurcation, the fixed point loses its stability and a stable new periodic
cycle of period 2 is born. This period doubling bifurcation will lead to chaos [15].

8.1. Theoretical development

Let us assume that {ft : t ∈ Z
+} be a sequence of functions ft : Rn+ → R

n+, that con-
verges uniformly to the p-periodic system G = {gt : t = 0, 1, 2, . . . , p − 1}, where gt :
R
n+ → R

n+. Then we have two equations, a non-autonomous difference equations and a
non-autonomous periodic difference equation:

x(t + 1) = ft(x(t)), x = (x1, x2, . . . , xn) ∈ R
n
+. (52)

and

y(t + 1) = gt(y(t)), t = 0, 1, 2, . . . , (p − 1)) (53)

We extend the skew-product semi-dynamical system (Rn+ × F ,Z+,π) ≡ (Rn+ ×
F ,π) to the closure of F , F = F ⋃{G} by letting π((x, gi), t) = (�t,i(x), g(i+t) mod p)

(x), f ). (see Figure 1, 6).
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Figure 6. The figure shows a periodic orbit in a non-autonomous periodic system.

In this setting, we are going to make two assumptions similar to those we had in
Section 4. We assume A1: gi and ft : Rn+ −→ R

n+ are continuos for all t ∈ Z+, ft converges
uniformly to G as t → ∞. Then x(0) ∈ R

n+ implies solutions of the nonautonomous
difference equation

x(t + 1) = ft(x(t)), x = (x1, x2, . . . , xn) ∈ R
n
+. (54)

satisfies x(t) ∈ R
n+, for all t ∈ Z+. That is to say R

n+ is forward invariant. The same is true
for solutions of the limiting system

y(t + 1) = gt(y(t)), t = 0, 1, 2, . . . , (p − 1)) (55)

and

A2 ft : int(Rn
+) −→ int(Rn

+)

Then it is always true that x(0) ∈ int(Rn+) implies solutions of the nonautonomous
difference Equation (54) satisfies x(t) ∈ int(Rn+), for all t ∈ Z+.

The main result that here is the following theorem ([12], Theorem 4.1.)

Theorem 8.1 ([12]): Assume A1 and A2 and that the periodic system G has a globally
asymptotically stable cycle cp of period p or a divisor of p. Then

(i) if cp ∈ int(Rn+), and if it is globally asymptotically stable on int(Rn+) as a periodic
cycle of the limiting Equation (15), then all solutions of the nonautonomous difference
Equation (14) with x(0) ∈ int(Rn+) tend to cp.

(ii) if cp ∈ ∂(Rn+), and if it is globally asymptotically stable on int(Rn+), then all solutions of
the nonautonomous difference Equation (14) with x(0) ∈ int(Rn+) tend to cp.
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Proof: Let � = gp−1 ◦ gp−2 ◦ · · · ◦ g1 ◦ g0. Then an equilibrium point of the composition
map � is a periodic point of period p or of a divisor of p. The dynamics of the periodic
systemG = {gt : t = 0, 1, 2, . . . , p − 1} is determined by the singlemap� . Hence, applying
Theorem 8.1, the conclusion of the theorem follows. �

Let us illustrate the effectiveness of this theorem by the following example of a two-
peaked adaptive landscape model.

Example 8.2:

x(t + 1) = x(t)eα(u(t))−c0x(t) (56)

u(t + 1) = u(t) + σ 2α′u(t). (57)

We let α(v) = − 1
2v

4 + 1
3v

3 + 1
2v

2 + v0. Then the trait equation becomes

u(t + 1) = u(t) + σ 2u(t)(2u(t) + 1)(1 − u(t)) (58)

There are three equilibrium points u∗
1 = −0.5, u∗

2 = 0, u∗
3 = 1 with the following stability

properties:

• The equilibrium u∗
1 is asymptotically stable if σ 2 < 4

3 . A period-doubling bifurcation
occurs if σ 2 > 4

3 . This forces the non-autonomous system to have a period-doubling
bifurcation as well.

• The equilibrium u∗
2 is unstable.

• The equilibrium u∗
3 is asymptotically stable if σ 2 < 2

3 . A period-doubling bifurcation
occurs if σ 2 > 2

3 . This forces the non-autonomous system to have a period-doubling
bifurcation as well.

9. Conclusion

In this paper, we applied a new approach to a special class of discrete time evolution single-
and multi-species models. The main tool of our mathematical analysis was the embedding
the non-autonomous evolutionarymodels into autonomous difference systems via the con-
struction of a skew-product discrete dynamical systems as developed in Elaydi et al. [12].
This enabled us to utilize the well-developed theory of autonomous dynamical systems.
While the theory may be extended to continuous evolutionary systems, we restricted our
study to discrete-time evolutionary models only.

Our analysis, however, applies to special cases of evolutionary dynamics and does not
apply to a more general setting. It is still an open question of how to extend our tech-
niques and methodology to the cases when the trait equation and the species equations
are not decoupled. This clearly requires the development of new tools to establish global
stability of equilibrium points, including using the method of Liapunov functions which
was effectively used in [9], but only for the simple Beverton–Holt single-species evolu-
tionary model. Finding the right Liapunov function has, however, eluded researchers in
discrete-time modeling of populations. Future work will broaden the study presented in
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this paper and will try to implement the ideas alluded to in the last sentence. Another
direction, not explored here, is to apply our methodology to investigate models of infec-
tious disease that are of paramount importance for all the living species. Such study may
prove to be a breakthrough in this important field.
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