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LETTER Communicated by Terrence Sejnowski

Analysis of EEG Data Using Complex
Geometric Structurization

E. A. Kwessi
ekwessi@trinity.edu
Department of Mathematics, Trinity University,
San Antonio, TX 78212, U.S.A.

L. J. Edwards
ljedward@uab.edu
Department of Biostatistics, University of Alabama at Birmingham,
Birmingham, AL 35294, U.S.A.

Electroencephalogram (EEG) is a common tool used to understand brain
activities. The data are typically obtained by placing electrodes at the
surface of the scalp and recording the oscillations of currents passing
through the electrodes. These oscillations can sometimes lead to vari-
ous interpretations, depending on, for example, the subject’s health con-
dition, the experiment carried out, the sensitivity of the tools used, or
human manipulations. The data obtained over time can be considered
a time series. There is evidence in the literature that epilepsy EEG data
may be chaotic. Either way, the Embedding Theory in dynamical systems
suggests that time series from a complex system could be used to recon-
struct its phase space under proper conditions. In this letter, we propose
an analysis of epilepsy EEG time series data based on a novel approach
dubbed complex geometric structurization. Complex geometric structur-
ization stems from the construction of strange attractors using Embed-
ding Theory from dynamical systems. The complex geometric structures
are themselves obtained using a geometry tool, the α-shapes from shape
analysis. Initial analyses show a proof of concept in that these complex
structures capture the expected changes brain in lobes under considera-
tion. Further, a deeper analysis suggests that these complex structures can
be used as biomarkers for seizure changes.

1 Introduction

A common way to understand brain functions and brain-related diseases
is to place electrodes on a subject’s head and record the electrical activ-
ities that result. These activities, when represented, are often oscillations
that change in shape, frequency, and range. They can be analyzed to see if
meaningful information can be extracted that gives a clue about the brain
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Analysis of EEG Data Using Complex Geometric Structurization 1943

state of the subject at a certain time or in a certain region of the brain. The
accuracy of the recording highly depends on the instrument used, the re-
gion of interest (ROI), the experimenter’s experience, the time of the day,
the subject’s discipline during the recording and many other factors. This
is to say that uncertainty in the accuracy of the information recorded is al-
ways present. Even when the information is being recorded on the same
subject, on the same day, on the same ROI but at different intervals, changes
are bound to occur. Electroencephalograms (EEG), a term coined by Berger
(1929), are electrical activities recorded on humans or animals that display
prominent oscillatory behavior subject to important changes during various
behavioral states. These changes show a high degree of nonlinearity in the
signals that may be important. Indeed, in the field of biomedical signal pro-
cessing (analysis of heart rate variability, electrocardiogram, hand tremor,
EEG), the presence or absence of nonlinearity often conveys information
about the health condition of a subject. In particular, EEG signals are often
examined using nonlinearity analysis techniques or by comparing signals
that are recorded during different physiological brain states (e.g., epilep-
tic seizure). The differences observed during these analyses can be due to
either genuine differences in dynamical properties of the brain or differ-
ences in recording parameters. The EEG is often analyzed as times series,
and there are many methods for analysis of times series in the literature.
The methods can be grouped into two categories: univariate measures and
multivariate measures. (For a good review on the topic, see Carney, Myers,
& Geyer, 2011.)

Among the methods that have been touted as more efficient at providing
insight into the real dynamics of EEG is the famous Embedding Theorem
(Takens, 1981). This theorem has been instrumental in understanding how
to reconstruct the true dynamics of systems based on the times series mea-
sured on these systems. Essentially, this reconstruction theory, in lay terms,
suggests that a times series measured over a sufficiently long period of time
contains enough information to reconstruct the phase space in which the as-
sociated system normally evolves. This shows that there are other intricate
subunits that influence the changes observed in the measured variables that
are represented in the time series. This theorem was used, for example, by
Grassberger and Procaccia (1983) to propose a measure called correlation
dimension, which was in turn instrumental to Lehnertz and Elger (1998) in
predicting epilepsy seizures. Despite all the methods proposed predicting,
there is no agreement on which method constitutes the best tool at extract-
ing the most meaningful information that could be useful for the physician
for the prediction of seizure-like diseases. Moreover, with the increasing
use of the concepts of chaos and complexity in health sciences, it is becom-
ing more difficult to distinguish their adequate application. For example,
there has been evidence of chaos in EEG data (Destexhe & Babloyantz, 1986;
Destexhe, 1992; Destexhe, Sepulchre, & Babloyantz, 1998), and since chaotic
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1944 E. Kwessi and L. Edwards

systems are inherently complicated, they may look complex. Complex sys-
tems may also look chaotic. Distinguishing these two notions is important
in applications, especially in health sciences. Henceforth, we adopt a termi-
nology along the lines of Rickles, Hawe, and Shiell (2007) for understanding
complexity and chaos.

In this letter, we propose a new method for analyzing EEG times series
data, which we call complex geometric structurization (CGS). The complex
nature of the method stems from the fact that we have multiple subunits in-
teracting together, resulting in a rich collective behavior feeding back into
the behavior of individual parts. The method is inspired by the Embed-
ding Theorem (Takens, 1981) for the construction of a geometric structure
whose volume can be evaluated from shape analysis technique. The volume
of this geometric structure behaves as a key statistic akin to a biomarker
for the phenomenon or ROI of interest. Using data-driven approaches to
study brain pathologies is now an active field of study due to improve-
ment in life expectancy across the world with its cohorts of problems such
as brain disorders (Zheng, Fushing, & Ge, 2019; David, Machado, Ińacio, &
Valentin, 2020). Moreover, the push to use data- and methodological-driven
approaches to brain pathologies is also evidenced by the numerous grants
offered by the National Institutes of Health and private foundations such
as the Michael J. Fox Foundation for Parkinson Disease and the Bill and
Melinda Gates Foundation, just to name some.

The remainder of the letter is organized as follows. In section 2, we briefly
review how to use the Embedding Theorem to construct strange attractors;
in section 3, we review important notions of statistical morphometry; in
section 4, we introduce the complex geometric structurization method; in
section 5, we discuss some applications of the CGS method on real data;
and in section 6, we discuss the pros and cons of the proposed method in
different contexts.

2 Understanding Embedding Theory

As its name suggests, a dynamical system is one whose variables evolve
over time. Its phase space is a geometric representation of the trajectory
of its variables over time. The values taken by the system’s variables at
an instant describe the system’s states. To understand how to reconstruct
the phase space of a dynamical system based on observations (times series)
of one of its variables, we need to revisit the Embedding Theory (Takens,
1981), which is essentially a high-dimension transformation of the time se-
ries. Consider the n-dimensional space R

n. We recall that a manifold M in
the space R

n is a topological space that locally looks like a Euclidean space
near each point. “Topology” here means that bending is ignored. For exam-
ple, the surface of the globe is a topological manifold in the space R

3. Now
consider a dynamical system with a system’s state x(t) lying on a manifold
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Analysis of EEG Data Using Complex Geometric Structurization 1945

Figure 1: An illustration of the embedding mechanism.

M of Rn. Let ρ be a sampling interval, and let the time series s(t) = g(x(t)) be
given as a one-dimensional observation of the system dynamics through an
observation function g. The Embedding Theory states that for almost every
smooth function g, the delay coordinate map defined as F : Rn → R

m with
F(x(t)) = [s(t), s(t − ρ), . . . , s(t − (m − 1)ρ)]T is an embedding, that is, it is
a one-to-one immersion of the state-space attractor with dimension d when
m > 2d. In other words, the result states that F(x(t)) is a representative of
x(t), even if the true state-space M has not been observed (see Figure 1).
The quantity m is referred to in the literature as the embedding dimension
and ρ as the time delay (or lag). The Embedding Theory is predicated on the
observation that a time series observed over a long period of time may show
an internal structure. In fact, considering a time series s(t) = g(x(t)), we ob-
serve only an incomplete picture of x(t) since s(t) is a scalar. However, if we
observe it for a long time, a more precise description will emerge, which
will help in understanding its dynamics. In practice, most of the focus is
given into how to find appropriate values for the time delay ρ and the em-
bedding dimension m (see section A.2 in the appendix). We observe that
this type of reconstruction technique has been applied successfully in the
case of epilepsy EEG data (Destexhe & Babloyantz, 1986; Destexhe, 1992;
Destexhe et al., 1998).
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1946 E. Kwessi and L. Edwards

Figure 2: Lorenz attractor (red) with its reconstructed counterparts (blue) and
plotted in the same system of coordinates. We can observe the topological equiv-
alence between the original phase space and its reconstructed counterpart.

2.1 Examples.

2.1.1 Dynamical Systems. The Embedding Theory can be used to recon-
struct the Lorenz, a famous attractor often mentioned in dynamical systems.
Lorenz’s (1963) system of differential equations is given as

⎧⎪⎨
⎪⎩

ẋ = s(y − x)

ẏ = rx − y − xz

ż = xy − bz

.

It is known, for example, that the Lorenz system is chaotic for s = 10, r = 28,
and b = 8/3. Figure 2 is a depiction of this attractor for these parameter val-
ues plotted in the space x = x(t), y = x(t − ρ), and z = x(t − 2ρ). The time
step used is �t = 0.005 for an interval time of [0, 75] for the Lorenz system.
We also note that the time lag or delay is ρ = 31�t and was found using
either the autocorrelation (ACF) or average mutual information (AMI; see
section A.2).
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Analysis of EEG Data Using Complex Geometric Structurization 1947

2.1.2 Real Data. There have been many applications of Takens’s Embed-
ding Theory with real data. For example, in Fisher, Talathi, Cadotte, and
Carney (2009) and Carney et al. (2011), an attractor is constructed from a
publicly available (http://www.meb.unibonn.de/epileptologie/science/
physik/eegdata.html) epilepsy data set, which we call EDATA for simplic-
ity. The data consist of five sets A, B, C, D, and E. Each contains 100 single-
channel EEG segments of 23.6 seconds, each selected after visual inspection
for artifacts (such as acoustic and electrical shielding, separation of earth
ground for laboratory, interconnectivity of devices on the same phase and
ground centrally and locally) and has passed a weak stationarity criterion.
Sets Aand B were obtained from surface EEG recordings of five healthy sub-
jects with eyes open and closed, respectively. Data were obtained in seizure-
free intervals from five patients in the epileptogenic zone for set D and from
the hippocampal formation of the opposite hemisphere of the brain for set
C. Set E contains seizure activity, selected from all recording sites exhibiting
ictal activity. Sets A and B have been recorded extracranially, whereas sets
C, D, and E have been recorded intracranially.

All EEG signals were recorded with the same 128-channel amplifier sys-
tem, using an average common reference (omitting electrodes containing
pathological activity (C,D, and E) or strong eye movement artifacts (A and
B)). After 12-bit analog-to-digital conversion, the data were written contin-
uously onto the disk of a data acquisition computer system at a sampling
rate of 173.61 Hz. Bandpass filter settings were 0.53 Hz to 40 Hz (12 dB/oct.;
see Andrzejak et al., 2001. Figure 3 is an illustration of the data set EDATA.
Each row represents one time series from sets A, B, C, D, and E, respectively.
Clearly, the time series in the seizure set E has a pronounced amplitude
synonymous with more brain activities. In Figure 4, we represent the re-
constructed phase spaces based on the time-selected times series from sets
A to E. We note that the axes are x = x(t), y = x(t − ρ), z = x(t − 2ρ) where
ρ = 1�t, with �t = 1

f s = 5.76 ms.

3 Statistical Morphometry

Given a set of points in a two- or three-dimensional space, statistical mor-
phology (or morphometrics) amounts to finding an appropriate geometric
characterization of the variability of the shape and size of the set of points.
This characterization includes volumes and surface area, surface roughness,
deviation from convexity, porosity, and permeability. We note that in gen-
eral, the set of points may not be convex in the strictest sense, so there is
a need for a method that relaxes the convexity restriction. The notions of
α-convexity and α-shape represent alternatives that relax the strict convex-
ity assumption. These new α-shaped objects are even more flexible than
α-convex objects in that α now controls the spatial scale of the estimator.
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1948 E. Kwessi and L. Edwards

Figure 3: This figure represents one time series selected at random from each
set A to E. The amplitude is much more pronounced in set E, which represents
seizure-prone patients.

Note that α is a unitless quantity. In fact, as α decreases, the α-shape shrinks
and more space appears among the sample points, whereas as α increases,
the α-shape object converges to the convex hull of the sample. In other

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1942/1925394/neco_a_01398.pdf by TR
IN

ITY U
N

IVER
SITY user on 17 August 2021



Analysis of EEG Data Using Complex Geometric Structurization 1949

Figure 4: Reconstructed phase-space diagram, restricted to the space xyz.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1942/1925394/neco_a_01398.pdf by TR
IN

ITY U
N

IVER
SITY user on 17 August 2021



1950 E. Kwessi and L. Edwards

Figure 5: α-shape object (red) of S (z = x2 + y2) for α = 0 (a), α = 0.5 (b),
α = 0.8 (c), and α = 2 (d).

words, in α-shaped objects, α controls the amount of porosity between
the sample points. These objects have been used in various fields for the
characterization of biological systems (Lafarge, Pateiro-Lopez, Possolo, &
Dunkers, 2014; Gardiner, Behnsen, & Brassey, 2018). We mention the piv-
otal work of Edelsbrunner and Mücke (1994) where the main algorithm for
the construction of α-shaped objects can be found.

3.1 Example. In this example, we illustrate the α-shape construction in
two and three dimensions, based on a random sample of data taken from
the original object S.

We consider 2500 points in 3D, obtained from object S, which is the object
delimited by the curve, and z = x2 + y2, where x and y are random points
selected in the interval [−1, 1]. In Figure 5, we construct the α-shape object
(red) for α = 0 (a), α = 0.5 (b), α = 0.8 (c), and α = 2 (d).

4 Complex Geometric Structurization

In view of the apparent shape that can be observed from the reconstructed
phase space, the question of how to compare these complex structures
arises. In other words, this question is related to the question of how to
compare strange attractors. Among the methods proposed, we can men-
tion the work of Grassberger and Procaccia (1983) and its many variants.
The method we propose stems from the observation that there seems to
be a complex geometric structure whose shape changes from healthy pa-
tients to seizure-prone ones, so we will rely on the notion of α-shape to con-
struct the complex structure related to each situation. We use an algorithm
to construct our complex geometric structure (CGS). The motivation comes
from the fact that given a time series, if it has been observed long enough,
it carries the signature of the original phase-space diagram in which the
true system it originated from evolves. If we have many such time series
from the same system, we should be able to capture enough information
about the true phase-space diagram. The large number of these time series
should be enough to eventually eliminate noise or undesired artifacts from
the reconstruction. We then expect each reconstructed phase diagram to be
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Analysis of EEG Data Using Complex Geometric Structurization 1951

topologically equivalent to any other, therefore forming a structure compact
enough to be the revolving center of all other reconstructed phase-space di-
agrams. In general, the dimension of the space in which the true system
evolves is greater than three, making it impossible to visualize with the
naked eye. Our empirical approach is to consider only a cross-section of
the reconstructed phase space in dimension 3 in this case. The reason for
this choice is two-fold: we can actually visualize a part of the true phase-
space diagram, and we can use the existing method to evaluate the volume
of the structure in lower dimensions. This is to say that the volume is pre-
served in reconstruction. In doing this, we are trying to find a measurable
identifier or markup for this group of time series that will vary from group
to group and from individual to individual.

4.1 Explanation of the Method. Given N time series, we use
the Takens reconstruction technique to obtain the embedding dimen-
sion mn (using ACF) and time delay (or sampling interval) ρn for
n = 1, 2 . . . , N (using the method of false nearest neighbors). Let m =
min{m1, . . . , mN} and ρ = min {ρn, n = 1, 2, . . . , N}. If m ≥ 3, then for each
time series, we obtain the complex structure CGSα(n). Let α = min{α(n) :
Vol3D(CGSα(n) ) is maximized}. We use the α-shape technique to obtain the
volume of the CGSα in 3D. This step is crucial since we choose to rep-
resent the complex structure using only the first three delay coordinates
x1 = x(t), x2 = x(t − ρ), and x3 = x(t − 2ρ) even if the actual space has di-
mension m > 3. The motivation for this selection is that the volume of the
CGS based on any combination of three coordinates would not be signif-
icantly different from any other volume obtained from any other combi-
nation of three coordinates. The reasoning behind the choice of α is that
the volume of the complex structure is bounded by the volume of its con-
vex hull as α increases, so we select the smallest alpha that maximizes the
volume (see section 4.3.3 for an illustration). This leads to the following
algorithm:

1. Use all the times series collected on patients in different groups.
2. For each time series, reconstruct a 3D “strange attractor” from the

first three delay coordinates.
3. Use the α-shape technique to construct a CGS related to all strange

attractors.
4. Define a measure related to each CGS that that can be statistically

analyzed. This could be the volume, the surface area, or the center,
for example.

5. Repeat this procedure for all replicates (if there are any) and thus
obtain new data.

6. (a) For comparison: Use a statistical test to see if there is a significant
difference between measures of different groups. This could be
a parametric or a nonparametric test.
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1952 E. Kwessi and L. Edwards

(b) For Prediction: Use the data obtained for training in machine
learning (see Kwessi & Edwards, 2020, preferred to standard
generalized linear model models because of the absence of a spe-
cific model) and test them on potential new data.

4.2 Comments.

1. The CGS terminology stems from the fact the structures obtained
after reconstruction do not have classical geometric shapes. Rather,
their shapes are complex in nature.

2. We propose to use all time series available for a particular region
of the brain, at a specific instant—for example, before seizure, dur-
ing seizure, or after seizure. It is common to use one time series (see
Fisher et al., 2009). We note that repeated measures on the same sub-
ject do not yield the same values, and thus in the reconstruction, there
could be individual times series whose excursions in the phase space
are wider than others, yielding a bigger geometric structure in size
and volume. In this case, individual times series could be used, and
the subsequent large volumes could be trimmed if necessary. This is
particularly important if one is interested, for example, in obtaining
a richer data set to analyze.

3. The embedding dimension m often obtained is greater than 3, so in
the absence of a visualization mechanism for data in spaces of di-
mensions higher than 3, we propose to focus on only the first three
delay coordinates.

4. Using the R-package Alphashape3d, measures such as volumes
or surface areas can be obtained for the α-shape object under
consideration.

5. As we saw in the example above, the choice of α is critical in the
α-shape construction. We propose to select the minimum value of α

for which the volume is maximized.
6. Finally, we note that in practice, the experimenter can used data from

chaotic or complex systems. One can check for chaos in data by cal-
culating Lyapunov exponents. If the data are sensitive to initial con-
ditions and chaotic, the attractor would be referred to as a “strange
attractor” (see Celso, Ott, & Yorke, 1987). Even if the data are sensi-
tive to initial conditions but nonchaotic, we would still keep the same
“strange attractor” denomination because in this case (the Lyapunov
exponents are nonpositive), the attractor obtained is still strange (see
Celso, Ott, Pelikan, & Yorke, 1984; Paladin & Vulpiani, 1987). It also
noteworthy to observe that nonchaotic systems that are sensitive
to initial conditions are sometimes referred to in the literature as
complex systems (see the comparative review between chaotic and
complex systems by Rickles et al., 2007).
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Analysis of EEG Data Using Complex Geometric Structurization 1953

Figure 6: Evolution of the volume CGS as function of α.

4.3 Technical Considerations. In this section, we examine some techni-
cal considerations to keep in mind when implementing this method.

4.3.1 Choice of α. The choice of α is critical in this process. In what fol-
lows, we show that the optimal value of α is smallest that maximizes the
volume of the CGS. Moreover, if one is interested in comparing CGS among
groups, it would be adequate to select a common value of α, for example, as
the largest α value, among the values that maximize the CGS for each group.
For instance, using the EDATA set, we obtained m = 10 and ρ = 1�t, with
�t = 1

f s = 5.76 ms. In Figure 6, we observe that for a value of α ≈ 200, the
volume is maximized for subset A, whereas the maximum is reached for
subset E at α ≈ 580, so we choose αoptim = 580 as the optimal value of α if
we want to compare the two CGSs.

4.3.2 Choice of the Embedding Dimension. We note that the embedding di-
mension is closely related to the time lag. We are not going to discuss which
should be estimated first. However, we note that there are two methods for
estimating the time lag and they do not always yield the same embedding
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1954 E. Kwessi and L. Edwards

Figure 7: Evolution of the volume the CGS for the 120 different combinations
of three delay-coordinates for subsets A and E.

dimension. We propose to select the embedding dimension as the smallest
value of the two embedding dimensions when they are different.

4.3.3 Choice of the Delay-Coordinates. In section 4.3.2, we mentioned that
we will select the first three delay coordinates to construct the complex
structure. However, it is worthwhile to consider the question of whether
the volume would change if a different combination of delay coordinates
is used. Our choice is based on the conjecture that it does not matter which
combination of delay coordinates is selected. To emphasize that point, we
discuss the case of subsets A and E. In these subsets, the embedding dimen-
sion found is m = 10, so there are

(10
3

) = 120 possible different combinations
of three delay coordinates, selected among 10. For each combination, we
construct the corresponding CGS and assess whether the volume changes
significantly across all the different CGS’s. Figure 7 shows the volume of the
CGS by combination of three delay coordinates for subsets A and E. The box
plots suggest that the distribution of volumes for each set is reasonably con-
centrated around its median (thick red and blue lines) with a small range
and no outliers. This is to say that taking the first three delay coordinates
seems reasonable despite minor variations otherwise.

The variation of the volume as a function of the combination of delay
coordinates appears not to be significant. Even for seizure data like subset
E, the variation in volume appears to be mild, which is our impetus for
conjecturing that a similar observation could be made for other data sets.
Obviously we cannot predict what will happen for all data sets; ultimately
that endeavor would require a mathematical proof that may go beyond the
scope of this letter.
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Analysis of EEG Data Using Complex Geometric Structurization 1955

Figure 8: Complex geometric structure for set A in EDATA.

Figure 9: Complex geometric structure for set B in EDATA.

5 Applications

5.1 Analysis of EDATA. In Figure 4, we showed a representation of
the reconstructed phase-space diagram for one time series in the space x =
x(t), y = x(t − ρ), z = x(t − 2ρ) and for each set A to E. In Figures 8 to 12,
we construct the phase-space diagram and the complex structures for the
EDATA set for all 100 time series in each subset. We observe that for each
set, we obtain a compact structure whose volume we can now evaluate (see
panels A1 to E1). We selected α = 580 for each case, because of all sets A
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1956 E. Kwessi and L. Edwards

Figure 10: Complex geometric structure for sets C in EDATA.

Figure 11: Complex geometric structure for set D in EDATA.

to E, 580 is the value of alpha that maximizes the volume of the complex
structure of E, the largest of all of them (see the selection criterion given
above; see Figure 6). The CGS structure for each set is then obtained (see
panels A2 to E2). We observe that the CGS for set E appears to be bigger than
all other CGSs, a sign of larger excursions in the phase space and therefore
synonymous with intense brain activity during seizure.

Pooling the data may seem to inflate the volume of the CGS. Instead
we could construct the complex structure related to individual channel and
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Analysis of EEG Data Using Complex Geometric Structurization 1957

Figure 12: Complex geometric structure for set E in EDATA.

evaluate their volumes. This will give richer data to analyze, where outliers
can be removed. Figure 13 shows the box plot of the volume of the complex
structure for each channel. The volume for subset E is very large compared
to A to D and obscures the distribution for subsets A to D. As a result, in
the right panel in Figure 13, we remove subset E so that the distributions of
subsets A to D can be more clearly seen.

Figure 13 is further evidence of what already observable in the raw data
in Figures 3 and 4. Sets A to D have comparable amplitude at the time-series
level confirmed by the fact that the volumes of CGS are in similar range. The
amplitude at the time series level of set E is much higher than that of sets
A to D, which is also confirmed by a larger volume at CGS level. This is
further evidence that during seizure, these volumes increase substantially
when compared to seizure-free intervals. More important, we can extract
meaningful statistics from these data as suggested in Table 1.

5.2 Analysis of Auditory and Visual Cortex of the Brain under Audi-
tory and Visual Tasks, and Rest. In this example, we discuss data collected
for the Brain Core Initiative at the University of Alabama-Birmingham.
These data were collected on 20 individuals in two regions of their brain,
the auditory and visual cortex (see Figure 14). The patients were subject
to three “tasks”: auditory, visual, and rest. Measurements of brain activity
was obtained as EEG times series after removing unnecessary artifacts. For
this data set, the optimum value of α is αoptim = 300. We consider the fol-
lowing subsets: auditory cortex-auditory task, auditory cortex-visual task,
auditory cortex-rest, visual cortex-visual task, visual cortex-visual task, vi-
sual cortex-rest.
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1958 E. Kwessi and L. Edwards

Figure 13: Box plots for the CGS for subsets A to E in EDATA, obtained from
individual times series.

Table 1: Table of Volumes of CGS for Each Set A–E.

Min Q1 Median Q3 Max Mean SD

A 12.30 63.63 115.87 154.17 317.88 109.84 66.08
B 37.89 63.63 173.50 291.31 479.06 364.25 266.63
C 7.73 68.38 161.30 262.70 351.60 262.10 333.70
D 9.45 62.78 174.10 4569.00 17,800.00 692.30 206.54
E 516.3 3,277.30 9,279.40 36,270.50 1,34,300.00 26,422.50 33,682.48

Note: The values are of order 10−5.

5.2.1 Macrolevel Analysis. Here, all the time series are used. Figure 15
represents the CGS for each of the subsets above.

In a comparison of the first and second rows, the volumes seem to differ
by cortex. Comparing the first, second, and third columns, the differences
in volumes of tasks are, respectively, 0.449, 0.5538, and 3.296. These num-
bers show similarity between the auditory and visual tasks, but they both
differ from rest. The increase of volume during rest may not be counterintu-
itive. In fact, a vast literature links resting brain activities to underlying high
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Analysis of EEG Data Using Complex Geometric Structurization 1959

Figure 14: Functional diagram of the brain lobes. Image credit (Chen, 2011).

Figure 15: Complex geometric structures for the above subsets.

cognitive processes such as moral reasoning, self-consciousness, remember-
ing past experiences, or planning for the future (Bruckner, Andrews-Hanna,
& Schacter, 2008).
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Figure 16: Density plots for the volume of CGS obtained from individual times
series.

5.2.2 Microlevel Analysis. If we use individual time series, since they rep-
resent individual patients, we can obtain their CGS by cortex and by task.
This would enable having a richer data set and a more in-depth compari-
son. In Figures 16 and 17, we plot the density and box plot of the volumes of
the CGS by cortex and/or by task. The plots in panel A represent the plots
of CGS by cortex, those in panel B the plots of cortexes by task, those in
panel C the plots by task, and those in panel D the plots tasks by cortex. At
first glance, it seems as if a beta or log-normal distribution would provide
a good fit to these densities.

We note there are 20 patients and three tasks per cortex for a total of
120 observations. When grouping by cortex, we labeled the observations
1 through 60 per cortex. When grouping by task, we labeled the observa-
tions 1 through 40, and 1 through 20 when grouping by task within cortex.
The numbers shown in the box plots in Figure 17 represent the labels for
the corresponding outlying observations. Plots A not suggest a difference
between the auditory and visual cortexes, since the notches overlap for the
most part. It shows that there are two common outliers (37 and 57) in both
cortexes. This means that there are two patients whose brain activities are
more pronounced than others in both cortexes, causing wide excursions in
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Analysis of EEG Data Using Complex Geometric Structurization 1961

Figure 17: Box plots for the volume of CGS obtained from individual times
series.

the phase space and therefore large volumes of their CGS. Plots B and C sug-
gest a similarity between the tasks since all the notches do overlap. Plots D
suggest that the difference observed in box plot A is due to the difference
between the auditory tasks in both cortexes. Plots B basically confirm the
observations in plots A that all the tasks are similar. A more in-depth anal-
ysis is needed to make more meaningful conclusions.

In Tables 2 and 3, we report the intrinsic discrepancy, that is, the min-
imum between dKL(F, G) and dKL(G, F), where dKL(F, G) is defined as the
Kullback-Leibler (KL) directed divergences between the probability distri-
butions F and G (see section 8.4). So the smaller the intrinsic discrepancy,
the bigger the difference between F and G.

To make a meaningful use of Tables 2 and 3, a reference point is needed.
However, the densities above allow us to hypothesize that the volumes are
not normally distributed. A nonparametric test such as a Wilcoxon-Mann-
Whitney would be necessary to compare, for example, the volumes of the
two cortexes, controlling for the tasks performed. Such a test yields a p-
value of 0.021 small enough to suggest a statistically significant difference
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1962 E. Kwessi and L. Edwards

Table 2: Statistical Analysis of the Intrinsic Discrepancy between the Cortexes.

Auditory Cortex Visual Cortex p-Value

Auditory cortex 0 0.160 0.021

Table 3: Statistical Analysis of the Intrinsic Discrepancy between the Tasks.

Auditory Task Visual Task Rest p-Value

Auditory task 0.000 0.104 0.029 0.451
— (0.98) (0.98)

Visual task 0.104 0.000 0.080
(0.98) — (0.98)

between the CGS volumes for auditory and visual cortexes. It also suggests
that the intrinsic discrepancy 0.160 obtained above is a sign of a statistical
significant difference between the two cortexes. Likewise, the nonparamet-
ric Kruskall-Wallis test is used to compare the tasks, and it yields a p-value
of 0.451, which is large, suggesting that the volumes of the CGS are not
significantly different. The p-values for the pairwise Wilcoxon rank sum
test (in parentheses) with Bonferroni correction are also large. This could
be further interpreted as the brain activities of individuals during the audi-
tory task are not significantly different from their brain activities during the
visual task. Now, whether these differences or lack thereof are corroborated
at the biological level remains to be proved.

5.2.3 Comparison with a Cross-Correlation Function. In this section, we
compare our method with the cross-correlation function (CCF); see section
A.5. In the heat maps below, represented are distances ρ(X,Y), where X
and Y are the EEG data (times series) collected on the 20 patients in differ-
ent regions of the brain when subjected to the three tasks. The heat gradient
represents the values of ρ(X,Y). Figure 18A represents the comparison be-
tween auditory and visual cortexes. Its symmetric nature is indicative of
the similarity between the two cortexes. This is in agreement with Figure
17A. From Figure 18B, we observe that the heat maps are very similar. In
particular, there are four areas that are redder than the majority and indica-
tive of the strongest correlation. A classification by a k-means algorithm
confirms the existence of these two clusters (see Figure 19B). This is simi-
lar to saying that there is no significant difference between the tasks. The
same conclusion can be made with box plots in Figure 17C, where the out-
liers in the volume of CGS match precisely the regions with high correla-
tion. There is not a huge difference between the first three heat maps in
Figures 18C and 18D, confirming that there is no significant difference
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Analysis of EEG Data Using Complex Geometric Structurization 1963

Figure 18: Plot of ρ(X,Y) between the auditory and visual cortexes.

between the tasks within the auditory cortex, an observation also made
from Figure 17B. The same observation can be made about the last three
maps in the visual cortex.

6 Discussion

We offer some items for discussion as a result of our findings:

1. The method we are proposing has the potential to discriminate brain
activities in different parts of the brain. Further, changes in volume
could be an indication of changes of activity level in the part of the
brain under study. This predictive potential could be used to predict
or monitor potential brain disorder.
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1964 E. Kwessi and L. Edwards

Figure 19: Plot of ρ(X,Y) between the auditory and visual cortexes by cluster.
The heat gradient represents the values of ρ(X,Y).

2. This method has the potential to be extended to experiments in which
EEG data are suitable, such as epilepsy, Alzheimer’s, attention deficit
disorder, learning disabilities, anxiety disorders, fetal alcohol syn-
drome, autism, chronic pain, insomnia, and dyslexia, for example
(Kumar & Bhuvaneswari, 2012).

3. Preliminary analysis of local field potential (LFP) data suggests that
this method can be extended beyond EEG. In fact LFP differs from
EEG in that the electrodes are inserted in the brain tissue rather than
at the surface of the scalp. However, we did not obtain the authoriza-
tion to release the results on the LFP data at this time.

4. There have been studies suggesting that group averaging of neu-
roimaging data is not clinically relevant. One possible explanation for

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1942/1925394/neco_a_01398.pdf by TR
IN

ITY U
N

IVER
SITY user on 17 August 2021



Analysis of EEG Data Using Complex Geometric Structurization 1965

this issue is the lack of focus on individuals. The method we propose
can remedy that by providing a measure that is individual focused.

5. We have not addressed the weak stationarity of the EEG data used
here and how much stationarity, or lack thereof, plays a role in the
method we are proposing. The data set EDATAwas checked for weak
stationarity, but the data collected for the Brain Core Initiative were
too few for stationarity. This overall is an issue in multiple studies
where samples tend to be small.

6. One of the drawbacks of the “distance” above is that its defini-
tion may change, and therefore this could affect the interpretation
of results. In fact, given two times series X and Y, the distance
could also be defined as ρ(X,Y) = 1 − max1≤τ≤ml {|CCF(X,Y, τ )|}
or by ρ(X,Y) = mean{CCF(X,Y, τ )} with CCF(X,Y, τ ) =

E[(Xt+τ −X )·(Yt−Y)]√
E[(Xt−X )2]E[(Yt−Y)2]

, where Xt+τ is the time-shifted version of Xt ,

τ is the time lag separating the two times series X and Y, and
X,Y are the respective means of the times series X and Y. (See
Arbabshirani, Havlicek, Kiehl, Pearlson, & Calhoun, 2012, for more
information.)

7 Conclusion

In this letter, we have proposed a method called complex geometric struc-
turization to help analyze EEG signals. The method is based on the Embed-
ding Theory of dynamical systems and shape analysis. The method works
well on epilepsy data. The method has the ability to discriminate individ-
ual EEG and also discriminates groups of EEG signals. More important, the
method performs better when compared to cross-correlation function. It is
important to note that the results and the method, though empirical, offer
an important proof of concept relating time series and the volume of their
reconstructed complex in three dimensions that need to be explored further
by validating them with more solid mathematical concepts. If successful,
this method could be an important addition to the literature of EEG signal
analysis and can be used to explore other brain pathologies such as sleep
disorder, schizophrenia, or Alzheimer’s. Its discrimination potential also
can be used to improve our understanding of functional brain connectivity
in general.

Appendix

A.1 α-convex and α-shape.

Definition 1. A set A ⊆ R
m is said to be α-convex, for α > 0 if

A = Cα (A) = ∪
B

Bα (x), (A.1)
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1966 E. Kwessi and L. Edwards

where B = {
Bα (x) : A ∩ Bα (x) 
= 0

}
, Bα (x) = {y : ‖y − x‖ ≥ α}, and ‖ · ‖ is a

norm in R
m.

The quantity Cα (A) in equation A.1 is called the α-convex hull of A. Now
suppose we have a sample Sn = {X1, . . . , Xn} obtained from an object S in
R

m; then an estimator of S is Cα (Sn) if S is assumed α-convex. Estimators of
α-convex objects are constructed from a 2D arc of circles in and 3D spherical
caps in.

Definition 2. Let A ⊆ R
m be α-convex. An α-shaped estimator of A is an esti-

mator of its α-convex hull Cα (A) obtained by approximating an arc of circles with
polygonal curves in 2D and spherical caps with polyhedral surfaces in 3D.

A.2 Estimating the Time Delay and Embedding Dimension.

A.2.1 Estimating the Time Delay. There are two popular methods for es-
timating the time delay ρ: the autocorrelation function (ACF) and the aver-
age mutual information (AMI). Indeed, consider N measurements of a time
series s(t). Then the sample ACF is defined as

ρ(t) =
∑n

n=1 (s(n + t) − s) (s(n) − s)∑n
n=1(s(n) − s)2

, with s = N−1
N∑

n=1

s(n). (A.2)

The time delay is chosen as the ρ = mint>0 {ρ(t) < 0}.
Now define the AMI as

I(t) = 1
N

N∑
n=1

Pr (s(n), s(n + t)) log2

(
Pr (s(n), s(n + t))

Pr (s(n))Pr (s(n + t))

)
, (A.3)

where Pr (s(n)) and Pr (s(n), s(n + t)) are, respectively, the probability of ob-
serving s(n) and the probability of observing s(n) and s(n + t). The time
delay is estimated as the first local minima of I(t).

A.3 Estimating the Embedding Dimension. The most popular method
for estimating the embedding dimension m is the so-called false nearest
neighbors technique (Kennel, Brown, & Abarbanel, 1992).

A.4 Kullback-Leibler Divergence Function. Given two distributions F and
G of a continuous random variable, with respective density functions f and
g, the Kullback-Leibler divergence function is defined as

dKL(F, G) =
∫ ∞

−∞
f (x) log

(
f (x)
g(x)

)
dx. (A.4)
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Analysis of EEG Data Using Complex Geometric Structurization 1967

This quantity measures the degree to which F diverges from G. We will
use it to assess the difference between the densities of the different cor-
tex per task and thus the difference between their brain activities (see
section 5.2).

A.5 Cross-Correlation Function. Given a time lag τ and two time-series
X = {Xt} and Y = {Yt}, the CCF is defined as

CCF(X,Y, τ ) = E[(Xt−τ − X )(Yt − Y)]√
E[(Xt−τ − X )2]E[(Yt−τ − Y)2]

,

where X and Y are the respective mean of the time series X and Y. The
CCF is then calculated over range of temporal lags and a “distance” ρ(·, ·)
is defined as the maximum absolute CCF over the interval [1, ml] (for a max-
imum lag value of ml to be selected):

ρ(X,Y) = max
1≤τ≤ml

{|CCF(X,Y, τ )|}.

Note that difference defines the similarity between the two time series.
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