
Trinity University Trinity University 

Digital Commons @ Trinity Digital Commons @ Trinity 

Engineering Senior Design Reports Engineering Science Department 

4-28-2009 

Mechatronic Camera Operator: Final Design Report Mechatronic Camera Operator: Final Design Report 

A. Hernandez 
Trinity University 

T. Nunamaker 
Trinity University 

J. Simpkins 
Trinity University 

W. Straw 
Trinity University 

A. Vaselaar 
Trinity University 

Follow this and additional works at: https://digitalcommons.trinity.edu/engine_designreports 

Repository Citation Repository Citation 
Hernandez, A.; Nunamaker, T.; Simpkins, J.; Straw, W.; and Vaselaar, A., "Mechatronic Camera Operator: 
Final Design Report" (2009). Engineering Senior Design Reports. 26. 
https://digitalcommons.trinity.edu/engine_designreports/26 

This Restricted Campus Only is brought to you for free and open access by the Engineering Science Department at 
Digital Commons @ Trinity. It has been accepted for inclusion in Engineering Senior Design Reports by an 
authorized administrator of Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu. 

https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/engine_designreports
https://digitalcommons.trinity.edu/engine
https://digitalcommons.trinity.edu/engine_designreports?utm_source=digitalcommons.trinity.edu%2Fengine_designreports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/engine_designreports/26?utm_source=digitalcommons.trinity.edu%2Fengine_designreports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu


 

TRINITY UNIVERSITY 

Final Design Report 

ENGR-4381 
4/28/2009 

Mechatronic Camera Operator 
A. Hernandez, T. Nunamaker, J. Simpkins, W. Straw, A. Vaselaar 

Dr. Aminian, Advisor 
 

 

Abstract: 
     A mechatronic system is designed, constructed, and tested to aid filmmakers in the movement and 

control of a video camera. The system design allows for 6-DOF camera movement (movement in all three 

spatial directions, pan, tilt, and roll). The system is controlled by a human operator, using an 

implementation of a gamepad controller, and the system is battery-powered; the theoretical range of the 

system is therefore limited only by the onboard battery power, and the operator’s ability to keep within 

cord-length of the system as it moves.                                                                                                                                          

     A misallocation of time resources resulted in an incomplete physical design, but preliminary testing 

indicates that the design is sound, and that mechanical specifications are sufficiently robust for a working 

final system. Further time and resources would be used to complete physical construction and electronic 

implementation, and to implement a feedback system to allow for closed-loop actuator control and the 

function of repeatable motion. 

 

  



Page ii 

 

Executive Summary 

The system should be able to move a camera through the same paths of motion that a 
human camera-man can move it through. Project constraints include a $2700 budget, a vertical 
camera elevation range of 2-6 ft and compatability with the filming environment.  Design criteria 
include ease of set up, performance in a flat, closed room, silent system operation, ease of model 
development and physical construction,  ease of setup and usage, mobility precision, mobility 
flexibility, and speed. The final implementation of the design is battery-powered and includes 
human-input through a gamepad controller to control each moving part, but does not employ any 
robotic features that allow for autonomous operation. The system fails in this respect by lacking 
the feature of repeatability and the ability to remember specific paths. 

Mechanically, the base of the system consists of a plywood-laden steel frame built for 
structural robustness and is intended to make the system bottom-heavy to prevent tipping. 
Attached to the frame are two high-powered DC motors, each with an 8-inch diameter wheel, 
and a number of castor wheels for support.  
The frame is two-tiered.  On the lower tier electronics are safely housed; on the upper tier a 
turntable is attached to the base plywood.  On the turntable a vertically-oriented threaded rod is 
mounted with two support rods all of which are connected with flat plates on top and bottom for 
structural support.  A platform nut with a fixed horizontal orientation on the threaded rod 
changes elevation when the rod is rotated. Attached to the platform nut is a camera-head; this 
assembly is drived by a motor and results in changes of elevation for the camera.   
 Electrically and electronically, the motors are controlled by PIC microcontrollers. The 
PICs employ pulse-width-modulation and serial communication to control the different motors, 
and must communicate with each other to properly distribute commands from the PS2 controller. 
Implementing communication between the PICs is not completed and thus the final system is 
incomplete. Independently, each of the electronic subsystems works properly, with the exception 
of the portion that actuates the motor that turns the turntable. 
 Because the system is incomplete, limited testing has been performed. Mechanically, 
each system component works properly and exhibits structural soundness. Electronically, no 
failures are observed, but some components are incomplete. The threaded-rod motor makes use 
of the same microcontroller code as the wheel motors, so theoretically only a small barrier 
remains to make it functional.  Additionally, finalizing PIC functionality to enable 
communication between chips should only require enabling built-in functionality and proper 
configuration, so this is also only a small barrier. 
 If further time and resources were allocated, they would be used to complete physical 
construction and electronic implementation, and to implement a feedback system to allow for 
closed-loop actuator control and the function of repeatable motion. There is every indication at 
this point that the design as it stands would be effective if completed. 
  



Page iii 

 

Table of Contents 

1 Introduction ................................................................................................................................................. 1 

1.1 Problem Description ........................................................................................................................................ 2 

1.2 Constraints ...................................................................................................................................................... 2 

1.3 Design Criteria ................................................................................................................................................. 3 

2 Design Overview ........................................................................................................................................... 6 

2.1 Base ................................................................................................................................................................. 7 

2.2 Tower ............................................................................................................................................................... 9 

2.3 Camera Head ................................................................................................................................................. 12 

2.4 Control System............................................................................................................................................... 13 

3 Testing Methods ......................................................................................................................................... 17 

3.1 Mechanical System ........................................................................................................................................ 17 

3.2 Control System............................................................................................................................................... 18 

4 Testing Results ............................................................................................................................................ 21 

4.1 Wheel Motor Testing ..................................................................................................................................... 21 

4.2 Durability Testing .......................................................................................................................................... 21 

4.3 Other Motor Testing ...................................................................................................................................... 21 

4.4 Control System Testing .................................................................................................................................. 21 

4.5 Game Pad Testing ......................................................................................................................................... 22 

5 Conclusions................................................................................................................................................. 23 

5.1 Performance against constraints and criteria ............................................................................................... 23 

5.2 Budget and Schedule ..................................................................................................................................... 24 

5.3 Recommendations ......................................................................................................................................... 24 

6 Bibliography ............................................................................................................................................... 26 

A – Control System Schematics ........................................................................................................................ 1 

B – Code .......................................................................................................................................................... 1 

C – Schedule .................................................................................................................................................... 1 

D Budget .......................................................................................................................................................... 1 

E – Bill of materials & List of Vendors .............................................................................................................. 1 

 



Page iv 

 

Table of Figures 

FIGURE 1: BASIC DESIGN ............................................................................................................................................... 6 

FIGURE 2: THE RECTANGULAR BASE (A) REQUIRES A LARGER SURROUNDING FREE AREA FOR ROTATION THAN AN 

OCTAGONAL BASE (B) WITH EQUIVALENT LENGTH AND WIDTH............................................................................. 7 

FIGURE 3: THE BASIC CONSTRUCTION OF THE BASE AS WELL AS LOCATION OF WHEEL MOTORS. ................................... 8 

FIGURE 4: TOWER DESIGN .............................................................................................................................................. 9 

FIGURE 5: TURN TABLE ASSEMBLY ............................................................................................................................. 10 

FIGURE 6: MOTOR MOUNT FOR THREADED ROD .......................................................................................................... 11 

FIGURE 7: LAYOUT OF THREADED ROD AND SUPPORT RODS ....................................................................................... 11 

FIGURE 8: CARRIAGE CONSTRUCTION .......................................................................................................................... 12 

FIGURE 9: THE OVERALL ARCHITECTURE OF THE CONTROL SYSTEM. ........................................................................... 14 

 



Page 1 

1 Introduction 

The greatest art does not feel like art, but simply a natural extension of the human 

experience. A film is most powerful when it feels most vivid, and special effects and effective 

use of camera control are tools that have been used towards this end since the advent of film-

making. The Robotic Camera Operator group is working in this subset of the film industry: 

precise camera control, and by application of that control, special effects. 

Creative expression drives film-making however too often the creative expression of 

filmmakers is stifled by the limited feasibility of the camera shots that they can use. There are 

often time, cost, physical, and human limitations that make certain shots out of reach for a 

particular film. The ultimate goal of this project is to improve the tools available to the 

filmmaker in order to allow for improved expression of ideas, much like expanding the palate of 

a painter. Additionally, our final system should allow such shots to be made with a smaller 

investment of time, money and effort: the painter's palette is no more useful if it is larger but 

prohibitively expensive or inaccessible. 

There are two main solutions available at this time, the first being the motion control 

camera. This system consists of a very large remotely operated vehicle that rides on a set of 

tracks, similar to those of a train. This system allows repeatability, making compositing effects 

possible, yet it is still extremely difficult to employ. The computer interface for the system is not 

intuitive, and requires a specialized operator. Additionally, the necessary setup of equipment is 

time consuming, and the sheer cost the equipment makes such a system impractical for many 

filmmakers.  

Another system available is the Steadicam which is an apparatus that a camera operator 

wears. Using this system removes the unintentional nuances of handheld camera motion; 

essentially, it is a low-pass filter for motion, removing the shake of the operator's hand but 

leaving the intentional camera movement. This allows for camera movement limited only by the 

operator's agility, with no time wasted setting up track. Unfortunately, the system is still 

susceptible to human error, and the camera movements are not precisely repeatable (thereby 

removing the option of doing two-dimensional compositing). 



Page 2 

1.1 Problem Description 

The objective of the robotic camera operator is to facilitate creative freedom in 

filmmaking. This is done by providing a robotic system to move the video camera through a 

scene precisely, both in timing and position. The motion must be able to be repeated as many 

times as is necessary without error. This is currently not possible without using complicated 

setups that are not feasible at certain locations or with limited budgets. By allowing directors to 

sculpt the camera movement precisely, the system will allow them the ability to execute 

elaborate shots quickly and easily. 

For this particular year of the project, a design is proposed to construct a system that will 

allow these functions with a lightweight (approximately three pound) consumer camcorder. For 

subsequent work the system is designed to be easily scalable so that a second-generation 

prototype could perform the same function with a much heavier digital or film camera. 

1.2 Constraints 

The design is bound to several constraints; it is important to identify and design within 

these constraints in order to design a satisfactory solution for the problem. The constraints also 

serve to filter out problematic solutions, and allow for the desired use of the system to be 

demonstrated. There are several factors to be considered in setting the constraints, such as the 

allotted budget and factors specific to the film industry. 

1.2.1 Budget 

One of the greatest and most influential constraints on the design is the budget that has 

been made available for the project.   

A relatively small amount of money has been allotted for the project so low design costs 

are an important constraint. Moreover, low design costs will ensure low production costs, which 

is desirable if the system is ever to be sold or rented to low budget film makers. The total budget 

of $2,700 includes $1,200 from the Engineering Department and $1,500 in grant money from 

IEEE Computer Society.  



Page 3 

1.2.2 Performance 

The camera should be able to film from altitudes ranging from 2 to 6 feet above the 

ground, as this approximates the range of the handheld camera operator that the design would 

ideally replace. In the event that the robotic camera operator is able to reach altitudes higher or 

lower, the constraint has been met and exceeded. This would simply serve to increase the value 

of the design as a creative tool. In the same vein it is also important that it can move a small 

camera similar to one a human operator would be able to control. 

1.2.3 Environment 

In the film industry, much of the filming is done in enclosed sound stages, which is the 

most probable location that the design will be used in. Therefore, it is imperative that the system 

be able to function in a small sound stage with a flat and level floor. For the purposes of this 

design, the sound stage size is minimized to 25 ft by 25 ft as the group has access to such a space 

which will prove helpful during testing.  

1.2.4 Setup 

It is important for the system to be simple to set up and use. This will allow the design to 

be feasible to the greatest amount of film-makers particularly those with tight time and budgetary 

constraints, such as small independent film makers. Moreover a system that is simple to set up 

and easy to use will lower production cost of the film, as less time is spent setting up each shot. 

1.2.5 Sound 

Finally, the proposed system must be relatively silent, as to not disturb filming. In 

essence the system should be inaudible to a microphone recording actors’ dialogue; ideally the 

system would be completely silent. 

1.3 Design Criteria 

In order to select the most appropriate solution to the problem it is necessary to set 

working criteria. Although not as rigid as the constraints, the working criteria serve as a great 

mechanism in choosing a final solution. A more in-depth discussion of each criterion can be 

found below.  



Page 4 

1.3.1 Development Requirements 

It must be recognized that this project is not taking place in the professional field. The 

scope of project is large and the design team is relatively small with a limited amount of 

resources.  For the greatest outcome, it is desirable to design regarding the abilites of the design 

team. 

1.3.1.1 Model Development 

This constraint deals with how simple the mathematical model of the movement of the 

system is to develop, which translates to a certain resource cost. A more simple mathematical 

model is more simple to develop, debug and implement.  It will also limit the potential for 

human error in the design. 

1.3.1.2 Construction 

Construction is simply the complexity of the design and the skill it will take to build it. 

The simpler a system is to physically build, the more likely the prototype will be successful. This 

will also aid in keeping costs down if ever marketed, and the cost of employee resources needed. 

1.3.2 Overall Ease of Use 

To allow for film makers to easily adopt this new tool, it should not discourage an 

operator who may not be technically inclined. Moreover, the system should be able to withstand 

the environment in which it will be used.   

1.3.2.1 Setup 

This is based on how quickly a shot can be set up, as well as how quickly the system can 

be installed at a particular location. A design is considered sufficient if it has a setup time less 

than the comparable setup time for a track-and-dolly motion control camera; however, faster 

setup times are even more desirable because they result in less cost to the production. This leaves 

us with a target set up time of less than 1 hour[1]. 

1.3.2.2 Usage 

The system should be as easy to use as possibly so as to minimize the time it takes to 

train a new operator, and to encourage non-technically inclined filmmakers to use the system. 



Page 5 

This is measured on the perceived complexity it will take to program a shot with the system as 

well as to operate the camera while filming. 

1.3.2.3 Durability 

  If the system is to be used in film making, it will undoubtedly be subjected to an 

assortment of adverse conditions. Even if these conditions are avoided, it is assumed that the 

system is to be used for long periods of time.  It is important that the system be able to withstand 

the stresses of continual use, otherwise, the system may break and require repair, costing both 

time and money. 

1.3.3 Creative Freedom 

The primary purpose of the design is to free a film maker to easily replicate camera movements 

or otherwise move a camera in a space. The fewer limitations imposed upon the abilities of the 

camera, the more versatile and thus desirable the design. 

1.3.3.1 Precision 

Precision is based on how accurately the system can follow a preprogrammed path 

repetitively. The more precise a design, the better it is for compositing work and other special 

effects processes. 

1.3.3.2 Mobility 

Mobility is based upon the overall need to be able to move the camera from one point to 

another as easily as possible. The camera should be able to move to between any two points 

within a 25 ft by 25 ft area, and between 2 to 6 ft in elevation. The greater the range of seemingly 

effortless motion and positioning, the better the mobility. 

1.3.3.3 Speed 

The faster the system can move a camera, the more options a film maker will have. Speed is 

the measure of how quickly the proposed design is able to move the camera from one point to 

another. The camera should be able to at least move as fast as the average cameraman could 

move a camera while maintaining a steady shot. 



Page 6 

2 Design Overview 

The design consists of four primary subsystems: the base, the tower, the camera head, and 

the control system. The base and tower are physically connected across a single interface, as are 

the tower and the camera head, and all three are utilized by a human operator through the control 

system.  

Figure 1: Basic Design 



Page 7 

2.1 Base 

The function of the base is to support the weight of the entire design, and to provide a 

physical foundation for all subsystems. Additionally, the base provides spatial motion of the 

camera in two dimensions (the dimensions constrained by the ground plane) by moving the 

entire system across the ground. 

The base is a two-tiered design; the first tier supports the batteries, both drive motors, and 

the control electronics, and the second tier supports the tower subsystem.  

The base is framed in 1”, 11-gauge square steel tubing welded together into one solid 

frame. Right-angles are utilized as much as possible to ease construction, except on the outside 

perimeter of the first tier; the perimeter of the first tier also uses 45° cuts, to implement an 

irregular octagonal shape. This shape is used to reduce the diagonal distance between opposing 

outside corners, which would otherwise require a larger surrounding free area for rotation of the 

base. 

 

Figure 2: The rectangular base (a) requires a larger surrounding free area for rotation 

than an octagonal base (b) with equivalent length and width. 

 

 Each tier is also decked with a flat surface made of ¾” plywood. The plywood is bolted 

to the steel frame to ensure rigidity, and the addition of the plywood surfaces allows for easy 

installation of components with screws as well as providing lateral support to the steel frame. 

The deck of the first tier is made of two separate pieces that are bolted in separately; one solid 

piece would not be able to be removed because of the frame of the second tier, but because the 

division of the deck (lengthwise) is perpendicular to the supporting steel segments in the frame 



Page 8 

(which are mounted across the width), no structural strength is sacrificed in the two-piece 

implementation. The top deck is a single piece of plywood, with a central hole cut to mimic the 

hole of the turntable (elaborated further in the next section). 

   

The drive motors are bolted to two steel plates, each of which is welded directly to the 

steel frame. The placement of the plates and of the bolt holes are such that when secured, the 

respective axes of the two motors are aligned with the center of the base. This allows the base to 

rotate in place by driving the motors in opposing directions at an equivalent speed, and because 

of symmetry, it results in no theoretical difference in system control between driving forwards or 

backwards. The motors themselves (as opposed to the location of each drive axle on the attached 

gearbox) are consolidated to one end of the base, so that the remaining space under the second 

tier can more effectively be used to house the control electronics. 

 Figure 3: The basic construction of the base as well as location of wheel motors. 

 

Finally, the base is mounted with a castor at either end, which is bolted to the underside of 

the first tier’s plywood deck. The castors prevent the system from rotating about the axis created 

by the drive motors, and maintain both tiers parallel to the ground plane. By using a passive 

mechanical system of castors to accomplish this, there is no burden placed on the control system 

to balance the system, as there is with a Segway (which uses a similar drive system, but without 

the castor-balancing implementation). 



Page 9 

2.2 Tower 

The primary function of the tower is to facilitate camera movement perpendicular to the 

ground plane (changes in elevation), and to control camera orientation with three degrees of 

freedom. 

 The tower is bounded by two parallel discs, which are connected by an arrangement of 

three parallel rods (one threaded rod which turns, and two stationary support rods). The tower is 

connected to the second tier of the base through a turntable, which allows the entire tower to 

rotate independently from the base. 

 Figure 4: Tower Design 

The turntable is the bottom of three layers which make up the lower tower disc. Above 

the turntable, a loop of chain is bounded by a perimeter of plywood to form the middle layer of 

the disc. The loop of chain is welded to a circular steel plate, which forms the top and final layer 



Page 10 

of the lower disc, and prevents the loop of chain from rotating within the plywood perimeter of 

the second layer. This construction is bounded together with bolts, and allows the turntable to be 

actuated by a motor-sprocket assembly; effectively, the bottom disc is a donut-shaped gear, with 

the gear teeth around the perimeter of the central hole. The chain is secured so that the inner 

diameter of the chain loop is approximately ¼” smaller than the inner diameter of the rest of the 

assembly, so that the connecting sprocket can more easily connect with the chain.    

 Figure 5: Turn Table Assembly  

The actuating motor for the turntable assembly is a drill motor which is attached to the 

first tier deck of the base. The motor, with a corresponding sprocket on its 7/8 inch keyed shaft, 

is mounted vertically within the inner perimeter of the turntable assembly and is used to actuate 

rotation of the turntable. The rotation of the turntable effectively is the “pan” control of the 

camera. 

 The lower disc also is the mounting location for the 450-watt elevation-control motor. A 

motor mount is constructed out of welded 11-gauge steel tubing, which raises the motor off the 

turntable high enough to allow the motor sprocket to spin freely. This sprocket is chained to a 

corresponding sprocket on the threaded rod on the other side of the turntable, connecting the 

motor with the desired target of actuation.  



Page 11 

Figure 6: Motor Mount for Threaded Rod 

The threaded rod is free to rotate along its axis, due to support from mounted bore bearings at 

either end of the rod, attached to the lower and upper disc assemblies. The threaded rod acts like 

a 5-foot-long worm gear, controlling the elevation of the attached platform nut (elaborated on 

further in the next section). 

 Additionally, two stationary support rods run in-between the lower and upper disc 

assemblies, and are connected at either end with threaded flanges. These support rods are 

intended to prevent torque on the top disc assembly, and to help distribute the weight supported 

by the top disc. The support rods also prevent the camera carriage from rotating about the 

threaded rod (which is explained in more depth in the next section).  

   Figure 7: Layout of Threaded Rod and Support Rods 



Page 12 

The top disc assembly of the tower is simply a circular steel plate and a circular deck of 

plywood, to which is attached the bearing and both flanges corresponding to the threaded rod and 

both stationary rods, respectively. 

2.3 Camera Head 

The camera head assembly is attached to a carriage which rides a platform nut up and 

down the threaded rod as it turns. The carriage is a simple rectangular design made from welded 

segments of angle-iron; it is therefore very cheap, and very sturdy despite its low weight of only 

two pounds.  

Figure 8: Carriage Construction 

The carriage is bolted to the platform nut in four places, and has two 1” holes that allow the 

stationary rods to pass through the carriage; this prevents the carriage from rotating with the 

threaded rod (by the induced normal force against the carriage from both stationary rods), and 

insures that the rotation of the threaded rod results only in a change in camera elevation. The 

interior region of the camera carriage also serves as a supporting box in which to house the 

control electronics for the camera head. 

The camera head is bolted in four places to the steel plate on the front of the camera 

carriage. The head has two servo actuators, which allow for control of the tilt and roll of the 

camera. The first servo (“roll”) rotates a yoke which holds the second servo, and that servo 

(“tilt”) rotates an embedded yoke that supports the camera. The entire camera head assembly, 



Page 13 

except for the housing of the roll servo, is made of pre-cut plastic and held together with screws. 

The housing of the roll servo is constructed of prefabricated aluminum. 

2.4 Control System 

The function of the control system on the robotic camera operator is to process commands 

given by the user and translate them into movements of the various actuators.   Commands are 

given to the system via the use of a gamepad borrowed from a consumer gaming system.   The 

commands from the gamepad are interpreted and commands are passed along to the appropriate 

microcontrollers.  These microcontrollers process the commands into the various methods of 

controls used by the actuators.  It is a simple, open loop control system designed to provide basic 

functionality for the robot. 

2.4.1  Construction 

During the development phase of the control system, it is constructed on a breadboard 

that allows easy relocation and changing of components.  However, once the design is finalized, 

a breadboard is not robust enough to construct reliable circuitry.  Circuits on breadboards have a 

tendency to be unreliable when subjected to the vibrations associated with being on a robot.  

Therefore, all components are soldered to a prototyping board.  This allows flexibility as 

components changes can still be made, while also eliminating problems with loose components 

caused by vibration.   

2.4.2 Architecture 

The architecture of the control system of the robot is a system of microcontrollers 

arranged in a tree structure.  At the top is the master microcontroller that communicates with a 

gamepad using a variation of SPI (Serial Peripheral Interface).   The microcontroller sends a 

polling command to the gamepad and the gamepad responds with a digital signal that indicates 

the status of all inputs.  The inputs are then interpreted by the master microcontroller, and passed 

on to the two lower level microcontrollers via the same SPI interface used for the game pad.  

Each of these microcontrollers processes the commands from the master microcontroller and 

generates commands for their respective actuators.  A schematic for the overall architecture can 

be seen in Figure 2.   

 



Page 14 

 

Figure 9: The overall architecture of the control system. 

2.4.3 Human Interface 

There are two major components to the human interface of the robot.  The first and most 

important is the dead man's switch.  This switch is a commercial switch produced for the same 

purpose in the marine industry.  It has a tether that attaches to the operator at one end, and a 

switch at the other.  If the tether becomes detached from the switch at any point in time, the 

switch changes state.  It is connected in such a way as to cut off power to the moving parts of the 

robot when the switch changes state.  The need for this switch was decided upon when the 

destructive potential of the robot due to its weight and power was realized. 

The second human interface device is the gamepad.  This device is used to control the 

motions of the robot.  It was chosen for three reasons.  First of all, it has lots of buttons and two 

joysticks, allowing for many options in control of the robot, and for future expansion.  

Additionally, the protocol for this device is well documented [2] so it is not difficult to connect to 

the selected microcontrollers.  Finally, it is a very intuitive interface to many people, which saves 

a considerable amount of time and money in designing an interface specific to this project. 

2.4.4 Actuator Control 

There are three main ways that actuators are controlled on the robot.  The wheel motors 

and the motor for the threaded rod of the tower are controlled using commercially available 

motor drivers.   The actuators on the camera head are standard hobby servos, and are controlled 



Page 15 

using the variation of PWM (Pulse Width Modulation) characteristic of that type of actuator.  

Finally, the motor that actuates the rotation of the turntable is controlled using an H-bridge and 

the PWM function of the microcontroller. 

2.4.4.1 Wheel and Threaded Rod Driver 

These drivers are designed to provide the large amount of power required for these 

actuators.  This driver accepts input via a 7-bit, even parity serial (RS232) signal. The difficulty 

in setting up communications between the microcontrollers and the motor drivers drivers is that 

the microcontroller serial port is setup for 8 or 9 bits without parity by default, and no option for 

7-bit communication. In order to achieve 7-bit serial communication with a microcontroller that 

defaults to 8-bit communication, some knowledge of serial communications and binary numbers 

is required.  The most significant bit of the 8-bit serial signal is always zero when sending data 

between 0 and 127, or 0x00 and 0x7F in hexadecimal.  Therefore, 7-bit serial communication 

can be used for data in this range.  The addition of the parity bit to the 7-bit signal makes the sum 

of the number of bits for each piece of data sent 8-bits.  The parity bit takes the place of the most 

significant bit in what would ordinarily be the 8-bit signal.  This is done by counting the number 

of 1's in the transmission, and setting the parity bit (formerly the most significant bit of the 8 bit 

signal) to high if they are odd, or low if they are even.  This effectively makes every transmission 

have an even number of bits.  This is the only real change needed to send a 7-bit signal.   

The commands sent to the motor drivers are sent as follows.  First, a ‘!’ character is sent, 

alerting the controller that a new command is coming.  The next character is either an ‘A’ or a 

‘B’.  This informs the controller which channel the command is for.  If the character is 

lowercase, that channel is to be reversed.  Next, two characters that are the hexadecimal 

representation of an unsigned 8-bit number that indicate the value the channel should be run at 

are sent.  Finally, an ASCII carriage return character is sent, signaling the end of the command.   

The motor drivers have several different modes of operation.  In the case of the driver for 

the threaded rod motor, it only has a single channel and has none of the more advanced modes.  

The driver for the wheels, on the other hand, has two modes of operation that are relevant to this 

system.  The first mode is that each channel (and therefore each wheel) is controlled 

independently.  This is useful on a system that does not steer using a difference of speed between 

the wheels.  The second mode is mixed mode, where the controller controls the two channels 



Page 16 

together.  In this mode, channel A specifies the speed of both wheels, and channel B specifies the 

difference in speed between them.  This makes it easy to implement steering on a system such as 

this one, and is the mode used in this design.   

2.4.4.2 Servo PWM 

The servos that actuate the camera head are controlled using a standard RC servo signal.  

This signal is a form of PWM, although it operates at a much slower frequency than the PWM 

used for an ordinary motor.  This PWM generates a signal with a 20 millisecond period, and 

varies the high time of the signal between about 1 millisecond and 2 milliseconds.  The high time 

of the signal is what tells the servo what position it should go to.   

In order to produce a PWM signal appropriate for a hobby servo, the period of the signal 

is divided up into ticks.  The length of each tick is determined by the clock frequency of the 

microcontroller.  Next, the necessary pulse width is determined by correlating the length of the 

pulse to a number between 0 and 255 that corresponds to the desired position of the servo.  Upon 

completion of that calculation, the output to the servo is set high and a timer is set to count off 

the number of ticks for the high portion of the signal.  Once this counter reaches its highest 

possible value, it sets an interrupt.  The handler for this interrupt calculates the number of ticks 

for the low portion of the signal, and sets the output low and then sets the timer again.  

2.4.4.3 Turntable PWM 

The motor for the turntable is controlled using the PWM system built into the 

microcontroller.  This system generates a PWM signal of desired frequency and duty cycle, 

which is then fed into an h-bridge, which provides the power necessary to drive the motor.  The 

speed of the motor is controlled by varying the duty cycle of the PWM signal outputted the 

microcontroller.  The larger the duty cycle, the more power the motor gets and the faster it spins. 

2.4.5 Software 

All software used on the microcontrollers is written in C.  The compiler used for 

compilation of the C code is the Lite version of Hi Tech C.  



Page 17 

3 Testing Methods 

In order to determine how successful the design is, it needs to be subjected to a series of test 

that can determine its limits of operation, and prove that the system itself works. 

3.1 Mechanical System 

The testing of the mechanical system will ensure that everything moves as it should, when 

it should, and that the physical aspects of the system will not fail  during operation. 

3.1.1 Wheel and Threaded Rod Motors and Driver 

The motor driver is supplied with power; the software package supplied with the driver is 

used to configure it. This software has ready-made testing features and even monitors and plots 

the magnitudes of the outputs to the two channels. To test the driver, it is connected to the serial 

port of the computer and observations are made to ensure that each channel achieves 90% of the 

maximum speed. 

Before the motors themselves are mounted to the frame, it is important to check that they 

can be driven properly by voltages within their rated range, and more importantly, that the two 

motors produce the same results. A brief test is performed on each motor to ensure that between 

zero and the 90% of the maximum rated speed it does not exhibit unusual behavior such as 

overheating. This test is performed with a wheel attached to make the rotational behavior more 

visible. This test's success is dependent on the judgment of the tester and is essentially a check 

for defective behavior.  The same tests are performed for the threaded-rod motor, as the driver is 

the same but one-channel. 

3.1.2 Strength of the Base 

When the motors and wheels are attached to the base, but before the tower is mounted, a 

test is performed to ensure that the base can support the weight of the tower. Weights in the 

amount of 200% of the tower weight are placed on the base and each motor is driven with a 

voltage that increases from zero until the entire system is moving at a swift walking pace, 

between 4 mph. This test is considered a success if no excessive stresses are apparent on the 



Page 18 

frame itself, or on the connections between the motor and frame, and if the motors can move the 

system at the desired speed. 

3.1.3 Driver for Turntable motor 

The driver is supplied with power and a test command signal is given to it. The pulse 

width modulated (PWM) output of the driver is viewed on an oscilloscope and compared with 

the expected values. The signals checked are full reverse, half reverse, stopped, half forward, and 

full forward, to verify that the PWM output operates linearly with duty cycles of within 5% of 

their expected values, and to verify that the polarity is reversed between forwards and 
backwards. 

3.1.4 Turntable System 

The motor and driver are connected to the turntable through a sprocket. The turntable has 

the tower attached to the top and the camera carriage is positioned at its maximum height. On the 

carriage, extra weight is placed to verify that the rotation does not cause the robot to tip. The 

motor’s speed is slowly increased to verify that the turntable does indeed rotate, and to find the 

maximum operating speed to ensure a stable rotation without tipping. The tester, from a 

standstill, and using the maximum operating speed, moves the tower one full rotation. If this 

happens in less than 4 seconds, the system is a success. 

3.2 Control System 

The control system is tested from the bottom up, one subsystem at a time.  As subsystems 

are verified to be working, they are combined and then tested as a complete unit.  This method 

allows easier debugging by isolating problems to as few candidates as possible. 

3.2.1 Servos 

In order to test the function of the servos, the microcontroller is programmed to output 

signals that move the servos through a specific and easy to watch series of motions.  The servos 

are then connected to the microcontroller and the result is observed.  If the observed movements 

are the desired movements, then servo control is working correctly.   



Page 19 

3.2.2 Wheels and Threaded Rod 

The wheels and the threaded rod are using controllers from the same family by the same 

manufacturer; the controllers have the same operation and can be tested using the same methods.  

The testing of the wheel related software is primarily a test of the communications between the 

microcontroller and motor drivers.  First, the microcontroller is programmed to output a valid set 

of commands to its serial port.  The microcontroller is then connected to a computer running the 

RoboRun software, which is designed to communicate directly with the motor drivers.  It uses 

the same protocol as the motor driver, so it is a good place to check whether or not the 

commands being sent by the microcontroller are valid or not.  The RoboRun software includes a 

serial console that prints out all commands that are received.  If the microcontroller is sending 

the correct commands using the correct communication method, they are printed in the console.  

If the wrong commands are being sent (i.e., 7-bit serial is not working properly), the commands 

show as garbage in the serial console.  Once the commands have been verified as correct, the 

microcontroller can then be connected to the motor drivers.  The microcontroller is programmed 

to output a series of commands that command the motors to move in a specific manner that is 

easy to watch.  If the movements of the wheel motors match those being commanded, the test is 

successful.   

3.2.3 Turntable 

The function of the PWM software is tested by connecting the PWM output of the 

microcontroller to an oscilloscope and measuring the frequency and duty cycle of the outputted 

signal.  If this signal is the one that is desired, and the duty cycle varies correctly when 

commands are sent to the microcontroller, the turntable subsystem is in working condition. 

3.2.4 Gamepad 

The testing of the Gamepad is accomplished using a microcontroller, a personal 

computer, and a program called PuTTY.  For this system, the microcontroller is programmed to 

read data from the gamepad, and then output the state of each button over RS232 serial to the 

computer.  This generates output in the PuTTY program that can be easily read by the person 

doing the test. When all buttons are reading correctly and the readings of the joysticks respond in 

a reasonable manner, the gamepad is working correctly. 



Page 20 

3.2.5 Microcontroller Communication 

The communication between the various microcontrollers is tested in a fairly simple way.  

First, the master microcontroller is programmed to take input from two switches and then send 

commands to the two slave microcontrollers.  Each of these microcontrollers is setup with an 

LED light on an output and change its state depending on commands sent from the master 

controller.  When communications are working correctly, operating the two switches connected 

to the master microcontroller will change the states of the LED’s connected to the slaves.  When 

this is behaving as specified, microcontroller communication is said to be working. 



Page 21 

4 Testing Results 

An analysis of the testing results will determine how successful the design is. The constraint 

concerning the schedule resulting in a lack of applicable testing results.  The system was unable 

to be completed in accordance to the design specifications thus complete testing was unable to be 

performed. 

4.1 Wheel Motor Testing 

The wheel motor driver achieves the desired speeds for each channel, which is verified 

qualitatively by observation and also quantitatively using the driver software package. The wheel 

motors themselves are observed to function properly and are not defective. The servos on the 

camera-head function properly out-of-box, and are controllable as desired through their PIC. 

4.2 Durability Testing 

Being made from 11-gauge square steel tubing, the frame of the robot is much stronger 

than required and an excessive weight in the amount of 300 lbs is placed on the frame, causing 

no visible deformities, and without affecting movement. 

4.3 Other Motor Testing 

Due to the turntable motor assembly being incomplete, neither the motor nor the driver 

are tested. This is also the case for the threaded-rod motor. 

4.4 Control System Testing 

The control system is not completely constructed due to time constraints, and cannot be 

completely tested. Of the components that are complete, the servos move exactly as they should 

when commanded to, and they do not move when they are not commanded to.  The operation of 

the servo control is successful. The wheel system works correctly.  It operates in mixed mode, 

and the speeds of the motors vary correctly with the commands sent to them. The motor and 

driver for the threaded rod are not tested, and the turntable system is not tested. 



Page 22 

4.5 Game Pad Testing 

The outputs of the game pad are correct, when a button is pressed on the pad, the correct 

button is shown as being pressed on the output to the computer.  The joysticks also report values, 

but they do not work as expected.  First, when the user releases the joysticks and they physically 

return to their center positions, it is not reflected in the output.  Instead, the values of their last 

position are reported.  The second issue is that the position of each joystick reported by the 

gamepad is not linear, which makes them undesirable for the intended use. The SPI 

communication of the microcontrollers is not complete, and so it is not tested. 



Page 23 

5 Conclusions 

Though the prototype was never fully completed, it was possible to arrive at some 

conclusions about the design and how it stacked up against what we planned to create at the 

beginning of the year, as well as how the project itself was managed. 

5.1 Performance against constraints and criteria 

Without the completion of the control system, it is difficult to acuratly gauge how well the 

design stands up to our criteria, however some aspects of the design can still be at least partially 

evaluated 

5.1.1 Performance 

Mechanically the system should meet the constraint of altitude range; the lower height of 

the tower is 2 feet above the ground and the highest point is at approximately 6 feet above the 

ground.  The pan, tilt, roll, and rotation mechanisms of the system serve to simulate the 

movement a human operating a hand-held camera. 

5.1.2 Sound 

 Though the whole system was never operated together, the individual motors had all been 

run independent of the system. Each of these motors made a significant amount of noise when 

they were being actuated. As there was no plan to put any form of sound dampening in place, it 

can be assumed that it would be equally as loud in the finished product. However, given the 

correct sound recording set up, it still should be quiet enough to film with under most conditions. 

5.1.3 Set up 

 Assuming the battery is charged, the only setup required for a shot is to mount the 

camera, turn the system on and wait for the software to load. This is significantly shorter than 

most other systems and defiantly would be expected to be shorter than the one hour stated in the 

design criteria. 



Page 24 

5.1.4 Mobility 

 As far as the mechanical design goes, there are no limiting factors that could hamper the 

system’s ability to successfully and easily navigate a 25 by 25 foot sound stage, with the camera 

between 2 and 6 feet. However as this was never actually attempted due to an incomplete control 

system, this cannot be verified. 

5.1.5 Durability 

 The entire system had been disassembled and reassembled completely on numerous 

occasions with no adverse effects. The only component to fail was the turntable motor, however 

this was due to a deviation from the original design that was forced by scheduling issues, and 

would not be expected to have occurred if it was assembled properly. 

5.1.6 Usage, Precision, and Speed 

 These remaining criteria cannot be adequately compared to the system without 

completion of the control system.  Upon completion of the control system the testing of these 

remaining criteria can be performed and the final system performance assessed more accurately. 

  

5.2 Budget and Schedule 

The total purchases fell within the allotted budget. Out of the $2700.00 allotted to the 

project, purchases for the Robotic Camera Operator totaled $2660.50.  The design's most 

expensive purchases were the motors, the threaded rod and platform nut, and the motor 

controllers. 

Time was perhaps the greatest setback for the group.  Each task required a lot more time 

than was allotted in the original schedule.  The time necessary for programming of the PICs was 

greatly underestimated; becoming familiar with the PICs and the PIC programming language 

proved more difficult than expected for the simple reason that no one had previous experience 

with them.  Mis-orders and lost packages added further to the difficulties with scheduling.  

5.3 Recommendations 

If this project was to be continued, it would be desirable to complete the control system so 

that an operator could, using open loop control, easily navigate the robot around. Once this is 



Page 25 

completed, the encoders could be added to the system as well as some memory so that a teach 

and repeat system could be easily implemented.  

 

   



Page 26 

6 Bibliography 

[1] Motion Control Rigs, Cameras, Heads, Platforms, Pan Tilt Heads, Cranes, and the Home of Milo.   
26 Apr. 2009 <http://www.mrmoco.com/>. 

 
 [2] "Playstation controller interfacing -." Hack a Day

 

. 26 Apr. 2009 
<http://hackaday.com/2008/03/07/playstation-controller-interfacing/>. 

 



Page A-1 

 

A Control System Schematics 

This section contains schematics for the control system.  It should be noted that the items 

depicted in Figure C-1 are also included with all of the other microcontrollers, but are not shown 

on those schematics. 

 

Figure A-1: Schematic for items attached to all microcontrollers. 



Page A-2 

 

 

Figure A-2: This schematic depicts the electrical setup of the Camera Head 

microcontroller. 



Page A-3 

 

 

Figure A-3: This schematic depicts the electrical setup of the Master microcontroller. 



Page A-4 

 

 

Figure A-4: This schematic depicts the electrical setup of the Tower Control 

microcontroller. 



Page A-5 

 

 

Figure A-5: This schematic depicts the electrical setup of the Wheel microcontroller. 

 



Page B-1 

 

B  Code 

This Appendix contains all of the C code for the system.  It is to be compiled with HiTech C.  

Additional include files have been excluded. 

Code For the Master microcontroller  

(also includes wheel control algorithms) 
/*Robot Camera Operator 
 * Master PIC 
  
 PIC Pin Connections: 
  
 SPI: 
 Pin 23 - SDI Gamepad Brown, SDO pin 24 on Slave PICS 
 Pin 24 - SDO - Gamepad Orange, SDI Pin 23 on Slave PICS 
 Pin 18 - SPI Clock - Blue Gamepad, Pin 18 on slave PICS  
  
 Serial: 
 Pin 25 - USART TX 
 Pin 26 - USART RX 
  
 Slave Select Lines 
 Pin 33/RB0 - Gamepad - Yellow - Attention 
 Pin 34/RB1 - TowerPIC Pin 7 
 Pin 35/RB2 - WheelPIC Pin 7 
 Pin 36/RB3 - HeadPIC Pin 7 
     
 Other Connections: 
 Gamepad - Grey - vibration motor power (7.2 - 9V?) 
 Gamepad - black - ground  
 Gamepad - red - power - 3.3 V, should work at 5V as well.   
 Gamepad - Green - acknowledge -  unused (tells the playstation that the 
controller is there) 
  
 Serial Settings: 
 9600 Baud, N,8,1, no flow control 
 */ 
 
//------------ INCLUDES ------------------------------- // 
#include <htc.h> 
#include "main.h"  
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include "usart.h" 
//#include <delay.c> 
 
//------------ DEFINES ------------------------------- // 
 
// this is a macro shortcut (this code will replace bitrev(c) at compile 



Page B-2 

 

time) 
// for reversing the bit order  
#define bitrev(c) c = (c & 0x0F) << 4 | (c & 0xF0) >> 4; \ 
     c = (c & 0x33) << 2 | (c & 0xCC) >> 2; \ 
     c = (c & 0x55) << 1 | (c & 0xAA) >> 1; 
 
//------------ CONFIG ------------------------------- // 
//Disable Watchdog Timer 
//Setup High Speed Crystal Oscillator 
//Disable Brownout REset 
//Unprotect memory?  
__CONFIG(WDTDIS & HS & BORDIS & UNPROTECT); 
 
//Define Crystal Frequency 
 
#ifndef _XTAL_FREQ 
 // Unless already defined assume 4MHz system frequency 
 // This definition is required to calibrate __delay_us() and __delay_ms() 
 #define _XTAL_FREQ 20000000 
#endif 
 
 
 
/***** Ports *****/ 
#define pin_GP    RB0 // slave select for the gamepad 
#define pin_T   RB1 // slave select for Tower PIC 
#define pin_W   RB2 // slave select for the Wheel PIC 
#define pin_H   RB3 // slave select for Head PIC  
        
 
 
//------------ Prototypes ------------------------------- // 
void Init(void); 
void poll_controller(void); 
// send and receive a byte from the controller via SPI 
void ps2_txrx(unsigned char data_out,unsigned char *reg_in); 
void putsUART( char *data); 
void output_buttons(); 
void process_commands(); 
void transmit_instructions(unsigned char data_out, unsigned char *reg_in, 
unsigned char uc); 
 
//Move to Wheel PIC 
void sevenbitsend(unsigned char byte); 
void send_command(char dir, char val1, char val2); 
void wheel_control(); 
int robo_abs(int number); 
unsigned int bitCount(unsigned char n); 
void wheel_control2(); 
 
//------------ Global Variables ------------------------------- // 
 
int read_buf_index =0; 
unsigned char print_buf[80]; 
unsigned char print_buf_index = 0; 
 



Page B-3 

 

uint8 PS2_ID, MSG; 
uint8 PS2_byte1, PS2_byte2, PS2_byte3, PS2_byte4, PS2_byte5, PS2_byte6; 
uint8 PS2_prev_byte1, PS2_prev_byte2, PS2_prev_byte3, PS2_prev_byte4, 
PS2_prev_byte5, PS2_prev_byte6; 
unsigned char PS2_pressure[12]; 
 
int RJX,RJY,LJX,LJY; 
int count=0; 
int LJYloc = 0 , RJXloc = 0, LJXloc = 0 , RJYloc = 0; 
 
// ---------------  utility functions ---------------- // 
 
void ps2_txrx(unsigned char data_out,unsigned char *reg_in){ 
 bitrev(data_out);  //bit reverse the data 
 SSPBUF = (data_out); //write the data to the outgoing buffer 
 while(!BF); //wait for incoming data to fill the incoming buffer 
 *reg_in = SSPBUF; //write incoming data to *reg_in 
 //bitrev(*reg_in); //reverse the bits of reg_in 
} 
 
 
void print_ascii_r(unsigned char t, unsigned char t2)  
{ 
 // there's not enough time to send out serial RS-232 back to the 
computer 
 // in between every byte, so output is stored in a buffer until the end  
 // of a packet. 
 print_buf[2*print_buf_index] = t; 
 print_buf[2*print_buf_index+1] = t2; 
 if (print_buf_index < 38) 
  print_buf_index++;  
} 
 
void putsUART( char *data) 
{ 
  do 
  {    // Transmit a byte 
    putch(*data); 
  } while( *data++ ); 
} 
 
 
void 
main(void) 
{ 
 Init();  //initialize communications, gamepad, etc. 
   
 while(1) 
 { 
  poll_controller(); //Get states of controls from controller 
  //process_commands(); //decide where to send which, and do it 
  wheel_control(); //test wheel control function, will be moved to 
wheel pic 
 } 
} 
 



Page B-4 

 

void 
Init(void) 
{ 
 unsigned char response;  
  
 //Setup Slave Select Line TRIS 
 TRISB0=0; //Gamepad 
 TRISB1=0; //Tower 
 TRISB2=0; //Wheel 
 TRISB3=0; //Head 
  
 //Setup USART 
 INTCON=1; //disable all interrupts 
 init_comms(); //Initialize the USART 
   
 //Setup SPI 
 TRISC5 = 0; //Clear TRISC5 bit to enable SDO for SPI (p75) 
 TRISC3 = 0; //SCK Master Mode 
 TRISC4 = 1; //Slave Select enabled 
 SSPSTAT = 0b00000000; 
 SSPCON = 0b00110010; 
 // Fosc = 20 MHz, so the SPI data rate is 312.5kHz.  
 // CKP =1 (idle clock state is high, active low) 
 // CKE=0 data is read when the clock transitions 
 //from active to idle.  This causes the clock 
 //to start out going low, and then high mid-cycle. 
  
 sevenbitsend('!');  //send out in seven bit serial glory. 
 sevenbitsend('A'); 
 sevenbitsend('0'); 
 sevenbitsend('0'); 
 sevenbitsend(0x0D); 
 //sevenbitsend(' '); 
 /*sevenbitsend('!'); 
 sevenbitsend('B'); 
 sevenbitsend('0'); 
 sevenbitsend('0'); 
 sevenbitsend(0x0D);*/ 
 char hexnum[2]; 
 itoa(hexnum, 3, 16); 
 send_command('B', hexnum[0], hexnum[1]); 
} 
void poll_controller()  
{ 
 unsigned char response;  
 char buf[20];  
 char t; 
  
 RJX = 0; 
 RJY = 0; 
 LJY = 0; 
 LJX = 0; 
 for(int i=0; i <=100; i++) 
 { 
 pin_GP = 0;     // pull ATT low to signal gamepad 
 ps2_txrx(0x01, &response);     // send:  Start 



Page B-5 

 

(0x01 LSBF (order flipped in ps2_tx)     
 ps2_txrx(0x42, &PS2_ID.byte); // send:  Request Data (0x42 LSBF) 
      
 ps2_txrx(0x00, &MSG.byte);// receive gamepad ID: should be '0x5A' 
for 'ready to send'    
  
 ps2_txrx(0x00, &PS2_byte1.byte);   // receive: 1st byte of 
button states and set big (left) motor to Left arrow pressure 
 ps2_txrx(0x00, &PS2_byte2.byte);   // receive: 2nd byte of 
button states and turn on small (right) motor if Right arrow pressure = 0xFF 
 ps2_txrx(0x00,&PS2_byte3.byte);   // receive: 3rd byte of 
button states  
 ps2_txrx(0x00,&PS2_byte4.byte);   // receive: 4th byte of 
button states 
 ps2_txrx(0x00,&PS2_byte5.byte);   // receive: 5th byte of 
button states 
 ps2_txrx(0x00,&PS2_byte6.byte);   // receive: 6th byte of 
button states  
 
 ps2_txrx(0x00, &PS2_pressure[0]); 
 ps2_txrx(0x00, &PS2_pressure[1]); 
 ps2_txrx(0x00, &PS2_pressure[2]); 
 ps2_txrx(0x00, &PS2_pressure[3]); 
 ps2_txrx(0x00, &PS2_pressure[4]); 
 ps2_txrx(0x00, &PS2_pressure[5]); 
 ps2_txrx(0x00, &PS2_pressure[6]); 
 ps2_txrx(0x00, &PS2_pressure[7]); 
 ps2_txrx(0x00, &PS2_pressure[8]); 
 ps2_txrx(0x00, &PS2_pressure[9]); 
 ps2_txrx(0x00, &PS2_pressure[10]); 
 ps2_txrx(0x00, &PS2_pressure[11]);    
 pin_GP = 1; 
   
 RJX = PS2_byte3.byte-127 + RJX; 
 RJY = PS2_byte4.byte-127 + RJY; 
 LJX = PS2_byte5.byte-127 + LJX; 
 LJY = PS2_byte6.byte-127 + LJY; 
  
 } 
  
 RJX = RJX/100; 
 RJY = RJY/100; 
 LJX = LJX/100; 
 LJY = LJY/100; 
} 
 
void 
output_buttons() { 
 //Outputs the states of the gamepad buttons to the USART, meant to be 
used 
 //with PuTTY 
 putch('\f'); 
 putch(MSG.byte); 
 printf("\r RJX [%d]\n",RJX); 
 printf("\r RJY [%d] \n",RJY); 
  



Page B-6 

 

 printf("\r LJX [%d]\n",LJX); 
  
 printf("\r LJY [%d]\n",LJY); 
  
 printf("\r Select: [%d] \n",PS2_Select); 
 printf("\r L3: [%d] \n",PS2_L3); 
 printf("\r R3: [%d] \n",PS2_R3); 
 printf("\r Start: [%d] \n",PS2_Start); 
 printf("\r Up: [%d] \n",PS2_Up); 
  
 printf("\r Right: [%d] \n",PS2_Right); 
  
 printf("\r Down: [%d] \n",PS2_Down); 
  
 printf("\r Left: [%d] \n",PS2_Left); 
  
 printf("\r L2: [%d] \n",PS2_L2); 
 printf("\r R2: [%d] \n",PS2_R2); 
  
 printf("\r L1: [%d] \n",PS2_L1); 
  
 printf("\r R1: [%d] \n",PS2_R1); 
  
 printf("\r Triangle: [%d] \n",PS2_Triangle); 
 
 printf("\r Circle: [%d] \n",PS2_Circle); 
 
 printf("\r X: [%d] \n",PS2_X); 
 
 printf("\r Square: [%d] \n",PS2_Square); 
  
 } 
 
void 
process_commands() 
{ 
/* The function of this function is to take the commands from the gamepad, 
 * and turn them into a standardized number that can be sent to each of the 
individual  
 * slaves 
 */ 
unsigned char reg_in;  //will contain whatever the PICS send back, which is 
probably nothing 
  
//send data to the Wheel PIC 
 transmit_instructions(LJX, &reg_in, 'W'); 
 transmit_instructions(LJY, &reg_in, 'W'); 
} 
 
void wheel_control() 
{ 
 /*Uses Mixed Mode on the driver*/ 
 unsigned char chan1dir, chan2dir; 
 char numberValA[2]; 
 char numberValB[2]; 
 int turn_mag = 0; 



Page B-7 

 

 int drive_mag = 0; 
 int turn = LJX; 
 int drive = LJY; 
  
 if(drive > 0) //Determine direction 
  chan1dir = 'a'; //Backward 
 else 
  chan1dir = 'A'; //Forward 
  
 if(turn > 0)   //Changes the direction 
  chan2dir = 'B'; //Right 
 else 
  chan2dir = 'b'; //Left 
  
 drive_mag = robo_abs(drive); 
 turn_mag = robo_abs(turn); 
  
 turn_mag = turn_mag / 10; 
 //drive_mag = drive_mag / 20; 
  
 if(drive_mag > 127) 
  drive_mag = 127; 
 if(turn_mag > 127) 
  turn_mag = 127; 
  
 if(PS2_Circle == 0) 
  turn_mag = 0; 
 if(PS2_X == 0) 
  drive_mag = 0; 
  
 itoa(numberValA, drive_mag, 16); //convert to ASCII characters 
 if(drive_mag < 16){ 
  numberValA[1] = numberValA[0]; 
  numberValA[0] = '0'; 
 } 
   
 itoa(numberValB, turn_mag, 16); 
 if(turn_mag < 16){ 
  numberValB[1] = numberValB[0]; 
  numberValB[0] = '0'; 
 } 
  
 for(int x=0; x<=1; x++) //can't have a null character, need it to be a 
0 
 { 
  if(numberValA[x]==0) 
   numberValA[x]='0'; 
  if(numberValB[x]==0) 
   numberValB[x]='0'; 
 } 
  
 send_command(chan1dir, numberValA[0], numberValA[1]); 
 sevenbitsend('\t'); 
 send_command(chan2dir, numberValB[0], numberValB[1]); 
 sevenbitsend('\n'); 
} 



Page B-8 

 

 
int robo_abs(int number) { 
 if(number>=0) 
  return number; 
 else return -1*number; 
  
} 
 
void wheel_control2() 
{ 
 /*Uses Mixed Mode on the driver*/ 
 unsigned char chan1dir, chan2dir; 
 char numberValA[2]; 
 char numberValB[2]; 
 unsigned int RJXloc_mag = 0; 
 unsigned int LJYloc_mag = 0; 
  
 //if(count%1000 == 0) 
 //{ 
  if(PS2_L1 == 0 && LJYloc < 127) //Decrease Speed 
   LJYloc = LJYloc + 1;  //Do what we would do with a 
joystick pointed down 
  if(PS2_R1 == 0 && LJYloc > -127)//Increase Speed 
   LJYloc = LJYloc - 1;  //Do what we would do with a 
joystick pointed up 
  
  if(PS2_L2 == 0 && RJXloc > -127)//Increase Turning 
   RJXloc = RJXloc - 1;    //Do what we would do with a 
joystick pointed left 
  if(PS2_R2 == 0 && RJXloc < 127)//Decrease Turning 
   RJXloc = RJXloc + 1;  //Do what we would do with a 
joystick pointed right 
 // count = 0; 
 //} 
 //count = count + 1; 
  
 if( LJYloc > 0  ) //Determine 
  chan1dir = 'a'; //Backward 
 else 
  chan1dir = 'A'; //Forward 
  
 if(RJXloc > 0 )   //Changes the direction 
  chan2dir = 'B'; //Right 
 else 
  chan2dir = 'b'; //Left 
  
 LJYloc_mag = abs(LJYloc); 
 RJXloc_mag = abs(RJXloc); 
  
 //RJXloc = RJXloc / 20; 
 //LJYloc = LJYloc / 20; 
  
 /*if(LJYloc_mag > 127) 
  LJYloc_mag = 127; 
 if(RJXloc_mag > 127) 
  RJXloc_mag = 127;*/ 



Page B-9 

 

  
 if(PS2_Circle == 0) 
  RJXloc = 0; 
  
 itoa(numberValA, LJYloc_mag, 16); //convert to ASCII characters 
 if(LJYloc_mag < 16){ 
  numberValA[1] = numberValA[0]; 
  numberValA[0] = '0'; 
 } 
   
 itoa(numberValB, RJXloc_mag, 16); 
 if(RJXloc_mag < 16){ 
  numberValB[1] = numberValB[0]; 
  numberValB[0] = '0'; 
 } 
  
 for(unsigned int x=0; x<=sizeof(numberValA); x++) //can't have a null 
character, need it to be a 0 
 { 
  if(numberValA[x]==0) 
   numberValA[x]='0'; 
  if(numberValB[x]==0) 
   numberValB[x]='0'; 
 } 
  
 send_command(chan1dir, numberValA[0], numberValA[1]); 
 sevenbitsend('\t'); 
 send_command(chan2dir, numberValB[0], numberValB[1]); 
 sevenbitsend('\n'); 
} 
 
void send_command(char dir, char val1, char val2) { 
 sevenbitsend('!'); 
 sevenbitsend(dir); 
 sevenbitsend(val1); 
 sevenbitsend(val2); 
 //Return and commit command 
 sevenbitsend(0x0D); 
} 
 
void sevenbitsend(unsigned char byte) 
{ 
 //Input: unsigned character 
 //Output: Converts to 7 bit serial, even parity, sends out USART 
 //Depends: bitCount(); 
 unsigned int check; 
  
 check = bitCount(byte);  //count the number of 1's 
 //check = 2; 
 if(check % 2 == 0)   
 { 
 // It's even 
  putch(byte & 0x7F);//set first bit to 0 
 } 
 else 
 { 



Page B-10 

 

 // It's odd 
  putch(byte | 0x80); //set last bit to 1 
 }  
} 
 
void  
transmit_instructions(unsigned char data_out, unsigned char *reg_in, unsigned 
char uc) 
{ 
/*This function takes the standardized numbers from process_commands and 
transmits them 
 * via SPI to each of the slave PICs. 
 */ 
 switch(uc){ //Set the slave select line for the PIC we're talking to 
 case 'T': //tower 
  pin_T=0; 
  break; 
 case 'W': //wheel 
  pin_W=0; 
  break; 
 case 'H': //camera head 
  pin_H=0; 
  break; 
 default: 
  break; 
 } 
  
 SSPBUF = (data_out); //write the data to the outgoing buffer 
 while(!BF);   //wait for incoming data to fill the incoming 
buffer 
 *reg_in = SSPBUF;  //write incoming data to *reg_in 
 
 switch(uc){ //set the slave select line back high again 
 case 'T': 
  pin_T=1; 
  break; 
 case 'W': 
  pin_W=1; 
  break; 
 case 'H': 
  pin_H=1; 
  break; 
 default: 
  break; 
 } 
} 
 
unsigned int  
bitCount(unsigned char n) 
{ 
  // This is for 32 bit numbers.  Need to adjust for 64 bits 
  register unsigned char tmp; 
 
  tmp = n - ((n >> 1) & 033333333333) - ((n >> 2) & 011111111111); 
 
  return ((tmp + (tmp >> 3)) & 030707070707) % 63;  



Page B-11 

 

Additional Code for the Master Microcontroller 

#ifndef _MAIN_H_ 
#define _MAIN_H_ 
 
#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); } 
   
/***** Buttons *****/ 
// these macros can be used as meaningful shortcuts into 
// the response bytes in a PS2's return packet. 
#define PS2_Select  PS2_byte1.bit0 
#define PS2_L3   PS2_byte1.bit1 
#define PS2_R3   PS2_byte1.bit2 
#define PS2_Start  PS2_byte1.bit3 
#define PS2_Up   PS2_byte1.bit4 
#define PS2_Right  PS2_byte1.bit5 
#define PS2_Down  PS2_byte1.bit6 
#define PS2_Left  PS2_byte1.bit7 
 
#define PS2_L2   PS2_byte2.bit0 
#define PS2_R2   PS2_byte2.bit1 
#define PS2_L1   PS2_byte2.bit2 
#define PS2_R1   PS2_byte2.bit3 
#define PS2_Triangle PS2_byte2.bit4 
#define PS2_Circle  PS2_byte2.bit5 
#define PS2_X   PS2_byte2.bit6 
#define PS2_Square  PS2_byte2.bit7 
 
#define PS2_RJX   PS2_byte3.byte 
#define PS2_RJY   PS2_byte4.byte 
#define PS2_LJX   PS2_byte5.byte 
#define PS2_LJY   PS2_byte6.byte 
  
/***** Types *****/ 
// the union lets us access the bytes coming back from a PS2 
// either bit by bit or by a whole byte.  same memory location, 
// just two different names. 
typedef union { 
  struct { 
    unsigned bit7:1; 
    unsigned bit6:1; 
    unsigned bit5:1; 
    unsigned bit4:1; 
    unsigned bit3:1; 
    unsigned bit2:1; 
    unsigned bit1:1; 
    unsigned bit0:1; 
  }; 
  struct { 
    unsigned char byte; 
  }; 
} uint8;  
 
      
#endif 



Page B-12 

 

Code for Servo microcontroller 

#include <htc.h> 
#include "delay.h" /* For XTAL_FREQ macros */ 
#include <stdlib.h> 
 
//A is configured for the tilt servo, B is configured for the roll servo 
 
/* The default servo position after power up (128=centered, 0-255) */ 
#define SERVO_DEFAULT_POS 128 
 
/* Min and max servo pulse widths in microseconds */ 
#define SERVO_PERIOD_MIN_US_A 1000L 
#define SERVO_PERIOD_MIN_US_B 1085L 
#define SERVO_PERIOD_MAX_US_A 1800L 
#define SERVO_PERIOD_MAX_US_B 1430L 
 
/* All servos updated once within the following period in microseconds */ 
#define SERVO_FRAME_US 20000L 
 
//Timer prescaler 
#define SERVO_TIMER_DIV 8 
 
//Tick period in us - This is extremely important. This has to be correct or 
//everything goes to hell. Unfortunately it gets set to 1, but needs to be 
1.6. 
//In order to correct for this, we will just aavoid using this variable and 
divide 
//by 1.6 when needed. 
//#define SERVO_TIMER_TICK_US ((4MHZ*SERVO_TIMER_DIV)/(XTAL_FREQ)) 
#define SERVO_TIMER_TICK_US 1 
double servo_tick_period = (double) SERVO_TIMER_TICK_US; 
 
//Min and max servo pulse widths in timer ticks 
//#define SERVO_PERIOD_MIN_TICKS (SERVO_PERIOD_MIN_US/SERVO_TIMER_TICK_US) 
#define SERVO_PERIOD_MIN_TICKS_A (int)(SERVO_PERIOD_MIN_US_A/1.6) 
#define SERVO_PERIOD_MIN_TICKS_B (int)(SERVO_PERIOD_MIN_US_B/1.6) 
//#define SERVO_PERIOD_MAX_TICKS (SERVO_PERIOD_MAX_US/SERVO_TIMER_TICK_US) 
#define SERVO_PERIOD_MAX_TICKS_A (int)(SERVO_PERIOD_MAX_US_A/1.6) 
#define SERVO_PERIOD_MAX_TICKS_B (int)(SERVO_PERIOD_MAX_US_B/1.6) 
 
//Number of timer ticks in the whole servo frame, how many tick lengths fit 
into total frame 
#define SERVO_FRAME_TICKS (int)(SERVO_FRAME_US/1.6) 
double period_total_ticks = (double) SERVO_FRAME_TICKS; 
 
/* The servo output pin */ 
#define SERVO_PIN_A RB1 
#define SERVO_PIN_B RB2 
 
__CONFIG(WDTDIS & HS & UNPROTECT); 
 
//The servo period in ticks, and the pulsewidth in ticks 
unsigned int PERIOD= SERVO_FRAME_TICKS; 
unsigned int PULSEWIDTH_A; 



Page B-13 

 

unsigned int PULSEWIDTH_B; 
 
//This is treated as a boolean to switch between emitting a pulse and not 
emitting a pulse 
unsigned int pulsing_A = 1; 
unsigned int pulsing_B = 0; 
unsigned int position_A; 
unsigned int position_B; 
 
void InitServo(void); 
void SetServoPos(unsigned char pos, char servo_ID); 
void IncrDecrServoPos(unsigned int dir, char servo_ID); 
 
//unsigned int passvar; 
/** 
 * Basic main function just for simulation. 
 * Set up port pins, initialise the servo PWM timer and enable interrupts. 
 */ 
void main(void) { 
 
 //Set up PORTc as an input 
 TRISC = 0xFF; 
 
 //Set up PORTB as an output, then set it low 
 TRISB = 0x00; 
 PORTB = 0x00; 
 while (RC4 != 1) 
  ; 
 InitServo(); 
 
 //INTCON register, not sure what it does 
 PEIE = 1; //Peripheral interrupt enable 
 GIE = 1; //Global interrupt enable 
 unsigned int count = 0; 
 for (;;) { 
  if (RC4 == 1 && count%15 == 0) { 
   if (count == 15) 
    count = 0; 
   if (RC2 == 1) 
    IncrDecrServoPos(1, 'A'); 
   if (RC1 == 1) 
    IncrDecrServoPos(0, 'A'); 
  } 
  if (RC4 == 0 && count%15 == 0) { 
   if (count == 15) 
    count = 0; 
   if (RC2 == 1) 
    IncrDecrServoPos(1, 'B'); 
   if (RC1 == 1) 
    IncrDecrServoPos(0, 'B'); 
  } 
  count = count+1; 
  //NOP(); 
 } 
} 
 



Page B-14 

 

/** 
 * Initialise the servo PWM timer and set initial servo positions. 
 */ 
void InitServo(void) { 
 unsigned char i; 
 
 /* Set up servo timer */ 
#if SERVO_TIMER_DIV == 1 
 T1CON = 0x00; 
#elif SERVO_TIMER_DIV == 2 
 T1CON = 0x10; 
#elif SERVO_TIMER_DIV == 4 
 T1CON = 0x20; 
#elif SERVO_TIMER_DIV == 8 
 T1CON = 0x30; 
#else 
#error Invalid prescaler value for Timer1 
#endif 
 
 SetServoPos(SERVO_DEFAULT_POS, 'A'); 
 SetServoPos(SERVO_DEFAULT_POS, 'B'); 
 //Clearing any pending interrupts 
 //Enable interrupts 
 //Switch the timer on 
 TMR1IF = 0; 
 TMR1IE = 1; 
 TMR1ON = 1; 
} 
 
/** 
 * Timer interrupt to run low speed servo PWM. 
 */ 
void interrupt isr( void ) { 
 static unsigned int total_ticks=0; 
 unsigned int low_ticks; 
 //TMR1IE - Interrupt Enable (turns interrupt on and off) 
 //TMR1IF - Interrupt Flag (goes high when interrupt occurs) 
 if(TMR1IE && TMR1IF) { 
  TMR1IF = 0; 
  TMR1ON = 0; 
 
  if(pulsing_A) { 
   //Set the timer to wait until the pulse is done before 
interrupting 
   TMR1H = (unsigned char)((65535-PULSEWIDTH_A) >> 8); 
   TMR1L = (unsigned char)((65535-PULSEWIDTH_A) & 0xFF); 
   TMR1ON = 1; 
 
   //Start servo pulse and set the pulsing flag to 0 for the 
next interrupt 
   //Stop servo B pulse, Start servo A pulse 
   SERVO_PIN_B = 0; 
   SERVO_PIN_A = 1; 
   pulsing_A = 0; 
   pulsing_B = 1; 
  } else if(pulsing_B) { 



Page B-15 

 

   /* Finish servo pulse, use up the rest of the frame period 
*/ 
   TMR1H = (unsigned char)((65535-PULSEWIDTH_B) >> 8); 
   TMR1L = (unsigned char)((65535-PULSEWIDTH_B) & 0xFF); 
   TMR1ON = 1; 
 
   //Stop servo A pulse, Start servo B pulse 
   SERVO_PIN_A = 0; 
   SERVO_PIN_B = 1; 
   pulsing_B = 0; 
  } else { 
 
   //Set the timer to wait for the rest of the frame before 
interrupting again 
   low_ticks = SERVO_FRAME_TICKS - PULSEWIDTH_A - 
PULSEWIDTH_B; 
   TMR1H = (unsigned char)((65535-low_ticks) >> 8); 
   TMR1L = (unsigned char)((65535-low_ticks) & 0xFF); 
   TMR1ON = 1; 
 
   SERVO_PIN_B = 0; 
   //Reset for the next frame 
   total_ticks = 0; 
   pulsing_A = 1; 
  } 
 } 
} 
 
/** 
 * Set a servo position. 
 * 0 = fully anti-clockwise, 128 = middle, 255 = fully clockwise 
 */ 
void SetServoPos(unsigned char pos, char servo_ID) { 
 unsigned int ticks; 
 unsigned int min_ticks; 
 unsigned int max_ticks; 
 if (servo_ID == 'A') { 
  position_A = pos; 
  min_ticks = SERVO_PERIOD_MIN_TICKS_A; 
  max_ticks = SERVO_PERIOD_MAX_TICKS_A; 
 } else if (servo_ID == 'B') { 
  position_B = pos; 
  min_ticks = SERVO_PERIOD_MIN_TICKS_B; 
  max_ticks = SERVO_PERIOD_MAX_TICKS_B; 
 } else 
  return; 
 
 /* Convert the 8 bit position into the pulse width in timer ticks */ 
 //ticks = (2*pos*(SERVO_PERIOD_MAX_TICKS - 
SERVO_PERIOD_MIN_TICKS))/(255*1.6); 
 ticks = (int)((max_ticks - min_ticks)*((float)pos/255)); 
 
 /* Set the pulse width with interrupts disabled (ISR uses this array) 
*/ 
 di(); 
 if (servo_ID == 'A') 



Page B-16 

 

  PULSEWIDTH_A = ticks+SERVO_PERIOD_MIN_TICKS_A; 
 else if (servo_ID == 'B') 
  PULSEWIDTH_B = ticks+SERVO_PERIOD_MIN_TICKS_B; 
 ei(); 
 
} 
 
void IncrDecrServoPos(unsigned int dir, char servo_ID) { 
 if (servo_ID=='A') { 
  if (dir == 1 && position_A < 255) 
   position_A = position_A + 1; 
  else if (dir == 0 && position_A > 0) 
   position_A = position_A - 1; 
  else 
   return; 
  SetServoPos(position_A, servo_ID); 
 } else if (servo_ID=='B') { 
  if (dir == 1 && position_B < 255) 
   position_B = position_B + 1; 
  else if (dir == 0 && position_B > 0) 
   position_B = position_B - 1; 
  else 
   return; 
  SetServoPos(position_B, servo_ID); 
 } 
 return; 
} 
 



Page C-1 

 

C Schedule 

The work breakdown schedule (WBS) and gantt chart were developed in Microsoft Project.  The 

schedule for both the Fall and Spring semesters are included.   

 
 



Page C-2 

 

 

 

 



Page C-3 

 



Page C-4 

 



Page C-5 

 



Page C-6 

 

 



Page D-1 

 

D Budget 

The budget alotted includes the money provided by the department, $1200.00, and the IEEE 

grant money, $1500.00.  When purchases included many small parts, such as electronics and nuts 

and bolts, the total purchase amount is a combination of all the items.  

Income 
        

Date Sponsor Description Budgeted Amount 
Actual 
Amount 

    
9/1/2004 Engr Dept Seed Money $1,200.00 $1,200.00 

    
11/9/2004 IEEE Grant Money $1,500.00 $1,500.00 

    
          

    Total 
Income 

   
$2,700.00 

    

         
Expenses 

     
Status (Check one) 

Date Vendor PO # Item Description 

Status 
(Planned/ 
Pending/ 
Cleared) Amount 

Dept
PO PCARD 

Reimbu
rse ment 

12/3/2008 Servo City DDT560H Direct Drive Cradle Tilt Cleared $49.99   X   

12/3/2008 Servo City GDP785A-BM Gear Drive Pan System Cleared $60.00   X   

12/3/2008 Servo City 33785S 
HS-785HB Servo (Universal 
Connector) Cleared $39.99   X   

12/3/2008 Servo City 32985S 
HS-985MG Servo (Universal 
Connector) Cleared $72.99   X   

12/3/2008 Servo City 5445 180 Rotation Modfication Cleared $10.00   X   

12/3/2008 Servo City 902MSD Dual Manual Servo Controller Cleared $49.99   X   

12/3/2008 Servo City 418-TR1506-12 
6VDC, 1.5amp Linear Power 
Supply (2.5mm plug) Cleared $24.99   X   

12/3/2008 Servo City 180SS 180 Servo Stretcher Cleared $19.99   X   

12/15/2008 RobotEQ AX1500 
Cost Optimized, 2 x 30A Brushed 
DC Motor Cleared $288.00   X   

12/15/2008 SparkFun Electronics COM-00226 
PIC 40 Pin 20MHz 8K 8A/D-
16F877A+shipping Cleared $66.05   X   

12/15/2008 SparkFun Electronics DEV-07830 Ethernet Web PIC+shipping Cleared $55.35   X   

12/15/2008 Monsterscooterparts MOI-385 
36V 1000W Direct Drive Electric 
Motor & Rear Wheel Cleared $384.32   X   

12/15/2008 Servo City 6031K19 12" Ball Bearing Turntable Cleared $25.90   X   

1/15/2009 Robotmarketplace SP-40FB19x.875 
1/2 pitch Type B Sprocket-19 
teeth, 7/8' bore+shipping Cleared $23.93   X   

1/15/2009 Robotmarketplace CHA-40-HALF 
#40 Roller Chain-10ft 
length+shipping Cleared $13.40   X   

1/15/2009 Robotmarketplace CHA-40-10 
4, #40 Roller Chain offset 
link+shipping Cleared $36.50   X   

1/15/2009 Bearing Agencies BP5100850-20 DeWalt Motor/Gearbox+shipping Cleared $56.99   X   

1/15/2009 Mouser Electonics AEAT-6010-A06 4 10 bit ABS Magnetic Encoder Cleared $111.72   X   

1/22/2009 Triple S Steel -- 1'x1' 11 GA. X 24' Square Tubing Cleared $26.40     X 

1/22/2009 The Home Depot 99167212838 18MMBirch Cleared $26.56     X 

2/25/2009 Intertex Electronics -- Micellaneous Electronics Cleared $8.06     X 

2/26/2009 McMaster Carr 1710K4 3/4"-5 Platform Nut+shipping Cleared $129.25   X   



Page D-2 

 

2/26/2009 McMaster Carr 98940A361 3/4"-5 Acme 6' Rod+shipping Cleared $113.90   X   

2/26/2009 Digi-Key -- Micellaneous Electronics Cleared $26.71     X 

3/24/2009 Autozone 298374 
24MD-DL Duralast Marine Deep 
Cycle Battery Cleared $62.99     X 

3/24/2009 Autozone 298374 Core Charge Cleared $12.00     X 

3/24/2009 Autozone 570475 
2 Duralast 4GA 19" Switch Starter 
Battery Cables Cleared $8.98     X 

3/24/2009 Walmart 3399100211 FSD Dist. Block Cleared $9.82     X 

3/24/2009 Purvis Industries 203PP030867 Fafnir Cleared $22.70     X 

3/25/2009 Grainger 4PU79 2 Bearing, 3/4 In Bore Cleared $117.28     X 

3/25/2009 The Home Depot -- Tower Construction Misc. Parts Cleared $20.00     X 

3/25/2009 Lowe's -- Tower Construction Misc. Parts Cleared $56.50     X 

3/29/2009 Robotmarketplace SH-X-1400-RL 
18 7/8" diameter keyed 
shaft+shipping Cleared $46.59     X 

3/29/2009 Robotmarketplace KEY-407-0300 
3/16" key stock 12" long (shipping 
included above) Cleared $2.87     X 

3/29/2009 Lowe's -- Tower Construction Misc. Parts Cleared $46.41     X 

3/29/2009 Home Depot -- Tower Construction Misc. Parts Cleared $28.18     X 

4/1/2009 Intertex Electronics IHD12-6.8 
1x12V 6.8A Linear Power Supply 
IHD12-6.8 Cleared $98.03 X   X 

4/1/2009 Robotmarketplace -- Gearing  Cleared $65.21 X   X 

4/1/2009 The Home Depot -- Tower Construction Misc. Parts Cleared $17.89     X 

4/1/2009 Sail & Ski Center 27501 
CGJ General Safety Switch 
w/lanyard Cleared $20.93     X 

4/1/2009 Intertex Electronics -- Micellaneous Electronics Cleared $53.92 X   X 

4/1/2009 Monsterscooterparts -- 24V 450W Electric Motor Cleared $83.66 X   X 

4/1/2009 RoboteQ AX500 SC AX500 SC Cleared $158.00 X   X 

4/1/2009 Digi-Key TLE 5205-2IN-ND 
IC H-Bridge 5A DC Motor 
TO220-7 Cleared $7.57     X 

4/1/2009 Donated by Andy -- Misc Used Electronic Parts Cleared $1.00       

4/1/2009 Borrowed from Andy -- Playstation Controller Cleared $14.99       

4/1/2009 Donated by TU -- Scrap Metal Cleared $0.00       

4/1/2009 TU Engineering Dept -- 330 ohm resistor Cleared $0.20       

4/1/2009 TU Engineering Dept -- 1.5k ohm resistor Cleared $0.10       

4/1/2009 TU Engineering Dept -- 1 uF capacitor Cleared $0.40       

4/1/2009 TU Engineering Dept -- 16 pin socket Cleared $0.35       

4/1/2009 TU Engineering Dept -- 22 ga Wire (ft) Cleared $2.00       

4/1/2009 TU Engineering Dept -- DB9 male connector Cleared $0.70       

4/27/2009 Ginny's -- Final Report  Pending $ 26.28       
Total  
Expenses 

    
$2,680.24 

   
Donations 

    
$15.99 

   Budget 
Remaining $35.75 

       



Page E-1 

E  Bill of materials & list of vendors 

The bill of materials (BOM) serves as an itemized list of all the materials required to fabricate 

the design.  The vendor from which the item was purchased is in the left most column; the 

contact information for all vendors is found following the BOM. 

 
Vendor PO # Item Description Qty. Cost   Subtotal 

Autozone 298374 24MD-DL Duralast Marine Deep Cycle Battery 1 $74.99 per piece $74.99 

Autozone 570475 Duralast 4GA 19" Switch Starter Battery Cables 2 $4.49 per piece $8.98 

Bearing Agencies BP5100850-20 DeWalt Motor/Gearbox+shipping 1 $56.99 per piece $56.99 

Donated by Andy -- 8 pin connector 1 $0.05 per piece $0.05 

Donated by Andy -- 4 pin connector 1 $0.05 per piece $0.05 

Donated by Andy -- 3 pin connector 2 $0.05 per piece $0.10 

Donated by Andy -- 8 gauge wire (ft) 5 $0.45 per piece $2.25 

Donated by Andy -- Playstation Controller 1 $14.99 per piece $14.99 

Grainger 4PU79 Bearing, 3/4 In Bore 2 $58.64 per piece $117.28 

Intertex Electronics ST-40 40 pin IC socket 3 $0.75 per piece $2.25 

Intertex Electronics CY20 20 MHz crystal 3 $2.95 per piece $8.85 

Intertex Electronics 7805T 5V Voltage Regulator 2 $1.75 per piece $3.50 

Intertex Electronics -- 100 uF capacitor 2 $0.25 per piece $0.50 

Intertex Electronics -- 10uF capacitor 2 $0.20 per piece $0.40 

Intertex Electronics MAX232N RS232/TTL Level Shifter 1 $1.35 per piece $1.35 

Intertex Electronics -- 22 pF capacitor 6 $0.25 per piece $1.50 

Intertex Electronics 1N4007 1N4007 diode 2 $0.45 per piece $0.90 

Intertex Electronics -- 9 conductor ribbon cable (ft) 15 $0.15 per piece $2.25 

Lowes -- 1/2"x72" Black Steel Pipe 2 $12.17 per piece $24.34 

Lowes -- 1/2" Floor Flange 4 $3.27 per piece $13.08 

McMaster Carr 1710K4 3/4"-5 Platform Nut+shipping 1 $129.25 per piece $129.25 

McMaster Carr 98940A361 3/4"-5 Acme 6' Rod+shipping 1 $113.90 per piece $113.90 

Monsterscooterparts MOI-385 36V 1000W Direct Drive Electric Motor & Rear Wheel 2 $192.16 per piece $384.32 

Monsterscooterparts -- 24V 450W Electric Motor 1 $83.66 per piece $83.66 

RoboteQ AX500 SC AX500 SC Controller 1 $158.00 per piece $158.00 

RobotEQ AX1500 Cost Optimized, 2 x 30A Brushed DC Motor 1 $288.00 per piece $288.00 

Robotmarketplace SP-40FB19x.875 1/2 pitch Type B Sprocket-19 teeth, 7/8' bore+shipping 1 $23.93 per piece $23.93 

Robotmarketplace SH-X-1400-RL 18 7/8" diameter keyed shaft+shipping 1 $46.59 per piece $0.00 

Robotmarketplace KEY-407-0300 3/16" key stock 12" long (shipping included above) 1 $2.87 per piece $0.00 

Robotmarketplace CHA-40-HALF #40 Roller Chain-10ft length+shipping 1 $13.40 per 10ft length $13.40 

Robotmarketplace CHA-40-10 #40 Roller Chain offset link+shipping 1 $9.13 per piece $9.13 

Robotmarketplace CHA-25-10 #25 Roller Chain-10ft length+shipping 1 $24.75 per 10ft length $24.75 

Robotmarketplace CHA-25-CONN Roller Chain connecting link 2 $1.00 per piece $2.00 



Page E-2 

Vendor PO # Item Description Qty. Cost   Subtotal 

Robotmarketplace SP-25FB 20x.75 1/4 pitch Type B Sprocket-20 teeth, 3/4 inch bore 1 $24.38 per piece $24.38 

Sail & Ski Center 27501 CGJ General Safety Switch w/lanyard 1 $20.93 per piece $20.93 

Servo City 6031K19 12" Ball Bearing Turntable 1 $25.90 per piece $25.90 

Servo City DDT560H Direct Drive Cradle Tilt 1 $49.99 per piece $49.99 

Servo City GDP785A-BM Gear Drive Pan System 1 $60.00 per piece $60.00 

Servo City 33785S HS-785HB Servo (Universal Connector) 1 $39.99 per piece $39.99 

Servo City 32985S HS-985MG Servo (Universal Connector) 1 $72.99 per piece $72.99 

Servo City 5445 180 Rotation Modfication 1 $10.00 per piece $10.00 

Servo City 902MSD Dual Manual Servo Controller 1 $49.99 per piece $49.99 

Servo City 418-TR1506-12 6VDC, 1.5amp Linear Power Supply (2.5mm plug) 1 $24.99 per piece $24.99 

Servo City 180SS 180 Servo Stretcher 1 $19.99 per piece $19.99 

Sparkfun Electronics PIC 16F877A Microcontroller 3 $8.95 per piece $26.85 

The Home Depot -- 1/4"-20x1" Flat Head Slotted Acero Inoxidable  8 $0.98 pkg 2 $7.84 

The Home Depot -- #6-32x1/2" Round Head Slotted 8 $0.36 per piece $2.88 

The Home Depot -- 4x8 18MMBirch 2 $13.28 per piece $26.56 

The Home Depot -- 1/4"- 20x2" Hex bolts 2 $4.28 pkg 25 $8.56 

The Home Depot -- 1/4" Hex Nut/Coarse Thread 1 $5.77 pkg 100 $5.77 

The Home Depot -- 6-32x1-1/4" Combo Round w/Nut 1 $1.18 pkg 10 $1.18 

The Home Depot -- Angle Gauge-3' 1 $8.97 per piece $8.97 

Triple S Steel -- 1'x1' 11 GA. X 24' Square Tubing 1 $26.40 per 20ft length $26.40 

TU Engineering Dept -- 330 ohm resistor 2 $0.10 per piece $0.20 

TU Engineering Dept -- 1.5k ohm resistor 1 $0.10 per piece $0.10 

TU Engineering Dept -- 1 uF capacitor 5 $0.08 per piece $0.40 

TU Engineering Dept -- 16 pin socket 1 $0.35 per piece $0.35 

TU Engineering Dept -- 22 ga Wire (ft) 20 $0.10 per piece $2.00 

TU Engineering Dept -- DB9 male connector 2 $0.35 per piece $0.70 

TU Engineering Dept -- 1/8"x 2 1/2"x 8"Steel Plate-Scrap Metal 2 $0.00 per piece $0.00 

Walmart 3399100211 FSD Dist. Block 1 $9.82 per piece $9.82 

 
  



Page E-3 

 

Autozone 

2223 Blanco Rd 

San Antonio TX 78212 

(210) 737-1255 

http://www.autozone.com 

 

Intertex Electronics 

1200 W.Hildebrand 

San Antonio,TX 78201 

(800) 820-3908 

Fax: (210) 820-3344 

http://www.intertexelectronics.com 

 

Bearing Agencies Inc. 

277 7th St  
San Francisco, CA 94103 
(415) 621-8363 
Fax: (415) 621-7239 
 

Lowe’s 

1470 Austin Highway 

San Antonio, TX 78209 

(210) 828-6011 

Fax: (210) 828-3866 

http://www.lowes.com 

 

Digi-Key Corporation 

701 Brooks Avenue South 

Thief River Falls, MN 56701 USA 

 (800) 344-4539  

Fax: (218) 681-3380 

http://www.digikey.com 

 

McMaster Carr 

200 New Canton Way 

Robbinsville, NJ 08691-2343 

(609) 689-3000 

Fax: (609) 259-3575 

http://www.mcmaster.com 

Grainger 

5011 Rittman Rd. 

San Antonio, TX 78218-4638 

(210) 654-4020 

http://www.grainger.com 

Monsterscooterparts 

 

26262 Three North Road Unit 6 

Mechanicsville, MD 20659 

(800) 798-0325 

http://www.monsterscooterparts.com 

 

 

 

http://www.autozone.com/�
http://www.intertexelectronics.com/�
http://www.lowes.com/�
http://www.digikey.com/�
http://www.mcmaster.com/�
http://www.grainger.com/�
http://www.monsterscooterparts.com/�


Page E-4 

The Home Depot 

435 Sunset Rd West 

San Antonio, TX 78209 

(210) 824-9677 

http://www.homedepot.com 

 

Mouser Electronics 

1000 North Main Street 

Mansfield, TX 76063 

(800) 346-6873 

Fax: (817) 804-3899 

http://www.mouser.com 

 

Purvis Industries 

611 N. WW White Road 

(210) 299-1010 

FAX (210) 226-1790 

http://purvisindustries.com 

 

Servo City 

620 Industrial Park 

Winfield, KS 67156 

(620) 221-0123 

Fax : (620) 221-0858 

www.servocity.com 

RobotEQ 

8426 E. Shea Blvd. 

Scottsdale, AZ 85260 

(602) 617-3931 

http://www.roboteq.com/ 

Triple S Steel 

2042 Thompson Pl 

San Antonio, TX 78226 

(210) 431-0088 

Fax: (210)431-0701 

http://www.sss-steel.com 

Robot Market Place 

5129A 53rd Avenue East 

Bradenton, FL 34203 

1-877-ROBOT 99 

Fax#(941) 753-5113 

http://www.robotmarketplace.com 

Trinity University  

1 Trinity Place 

San Antonio, TX 78212 

(210) 999-7511 

Fax#:(210) 999-8037 

www.trinity.edu 

 

 

 

 

 

 

http://www.homedepot.com/�
http://www.mouser.com/�
http://purvisindustries.com/�
http://www.servocity.com/�
http://www.roboteq.com/�
http://www.sss-steel.com/�
http://www.robotmarketplace.com/�
http://www.trinity.edu/�


Page E-5 

Sail & Ski Center 

141 Balcones North  

San Antonio, TX 78201 USA 

(210) 734-8199 

Fax: (210) 734-8130 

http://www.sailandski.com 

 

Walmart 

1430 Austin Highway 

San Antonio (E), TX 78209 

(210) 637-1700 

http://www.walmart.com 

SparkFun Electronics 

6175 Longbow Dr. Suite 200 

Boulder, CO 80301 

(303) 284-0979 

Fax: (303) 443-0048 

http://www.sparkfun.com 

 

 

 

http://www.sailandski.com/�
http://www.walmart.com/�
http://www.sparkfun.com/�


Page E-6 

 


	Mechatronic Camera Operator: Final Design Report
	Repository Citation

	Executive Summary
	Table of Contents
	Table of Figures
	Introduction
	Problem Description
	Constraints
	Budget
	Performance
	Environment
	Setup
	Sound

	Design Criteria
	Development Requirements
	Model Development
	Construction

	Overall Ease of Use
	Setup
	Usage
	Durability
	If the system is to be used in film making, it will undoubtedly be subjected to an assortment of adverse conditions. Even if these conditions are avoided, it is assumed that the system is to be used for long periods of time.  It is important that th...

	Creative Freedom
	Precision
	Mobility
	Speed



	Design Overview
	Base
	Tower
	Camera Head
	Control System
	Construction
	Architecture
	Human Interface
	Actuator Control
	Wheel and Threaded Rod Driver
	Servo PWM
	Turntable PWM

	Software


	Testing Methods
	Mechanical System
	Wheel and Threaded Rod Motors and Driver
	Strength of the Base
	Driver for Turntable motor
	Turntable System

	Control System
	Servos
	Wheels and Threaded Rod
	Turntable
	Gamepad
	Microcontroller Communication


	Testing Results
	Wheel Motor Testing
	Durability Testing
	Other Motor Testing
	Control System Testing
	Game Pad Testing

	Conclusions
	Performance against constraints and criteria
	Performance
	Sound
	Set up
	Mobility
	Durability
	Usage, Precision, and Speed

	Budget and Schedule
	Recommendations

	Bibliography
	Control System Schematics
	/
	/
	/
	/
	Code
	Code For the Master microcontroller
	Additional Code for the Master Microcontroller
	Code for Servo microcontroller
	Schedule
	/
	/
	///////
	Budget
	Bill of materials & list of vendors

