Trinity University
Digital Commons @ Trinity

Engineering Senior Design Reports Engineering Science Department

4-16-2010

Final Design Report of the Automated Beverage Dispenser

Ryan Sollars
Trinity University

luri Gagnidze
Trinity University

Dylan Nealous
Trinity University

Chad Oian
Trinity University

Follow this and additional works at: https://digitalcommons.trinity.edu/engine_designreports

Repository Citation

Sollars, Ryan; Gagnidze, luri; Nealous, Dylan; and Oian, Chad, "Final Design Report of the Automated
Beverage Dispenser" (2010). Engineering Senior Design Reports. 22.
https://digitalcommons.trinity.edu/engine_designreports/22

This Restricted Campus Only is brought to you for free and open access by the Engineering Science Department at
Digital Commons @ Trinity. It has been accepted for inclusion in Engineering Senior Design Reports by an
authorized administrator of Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.

https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/engine_designreports
https://digitalcommons.trinity.edu/engine
https://digitalcommons.trinity.edu/engine_designreports?utm_source=digitalcommons.trinity.edu%2Fengine_designreports%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/engine_designreports/22?utm_source=digitalcommons.trinity.edu%2Fengine_designreports%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

TRINITY UNIVERSITY

Final Design Report of the Automated Beverage Dispenser
ENGR-4381

4/16/2010

Ryan Sollars, luri Gagnidze, Dylan Nealous, Chad Oian

Dr. Peter Kelly-Zion

At public events and festivals, a beer vendor's primary problem is that they are unable to serve
customers quickly enough to meet the excess of demand. With so many people requesting service
and so few serving, waiting in long lines has become commonplace at festivals and events. These
long lines slow down business, which deters additional customer sales, resulting in a loss of profit
for the vendor. This report discusses a solution to this problem. It is an automated beverage
dispenser. It takes orders from a user and then pours out the specified drinks without human
assistance. The removal of a person from the actual task of pouring a beer allows the vendor to
take money and check identification of the customer while the machine pours their order. Having
these actions performed in parallel optimizes the overall process of serving customers quickly. The
machine is intended to increase the total output of a single vendor, resulting in increased profits

and happier customers. e %J)ﬁ

"*’39".\19‘5"

Table of Contents

Introduction
1.1.Design Goals
Design Description
2.1. Cup Dispenser
2.2.Turntable
2.3.Pouring System
2.4.Electronics . §
2.4.1. Microcontroller
2.4.2. Power Circuit
2.4.3. Keypad
Performance Testing
3.1. Cup Dispenser Proof of Concept
3.2. Turntable Proof of Concept
3.3. Pouring System Proof of Concept
3.4.Pouring System Accuracy Testing
3.5.Full System Testing.
3.5.1. Hardware Testing. .
3.5.2. Software Testing.
Results .
4.1.Cup Dispenser Proof of Concept
4.2. Turntable Proof of Concept
4.3.Pouring System Proof of Concept
4.4. Accuracy Testing
4.5.Full System Testing
4.5.1. Hardware Testing .
4.5.2. Software Testing
Conclusions & Recommendations
Appendix A
Appendix B
Appendix C
. Appendix D

0 Appendix E

Table

Figure 1.
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

Table

Equation

of Figures

Cup Dispenser Components .

Cup Dispenser Motor with Cup Screw

Cup Screws engaged with Lip of Cup.

Turntable Subsystem Parts

Turntable DC Motor Gearing .

Solenoid Valves and Internal Fluid Lines

Pouring Tower

Tube Plate

Pouring Tower Assembly

Pouring System Connections

PIC32mx Microcontroller and Expansion Board
Solenoid Power Circuit

Solid State Relay Circuits

4x4 Matrix Keypad

Cup Dispenser Equipment Setup

Turntable Experimental Setup

Volume Poured Versus Time of Pour Experiment One
Volume Poured Versus Time of Pour Experiment Two

of Equations

1: Resistor Value in Solid State Relay Power Circuit

0 00 N

11
12
13
13
14
15
17
17
18
19
21
22
28
28

18

)

1. Introduction

Long lines are a source of frustration for customers at festivals and public events. In
order to purchase a beer the customer must go to a special vending booth to make his
purchase at which point the vendor must perform a series of tasks. He must: a) take the
customer’s order, b) verify his age, c) pour the beverage and d) hand it to the customer,
whereupon, the vendor repeats the process for all the customers in line. Alternatively, the
servers could dedicate a single person to each task in order to increase speed, but this also
increases the wages the vendor must pay to employees and could reduce the overall speed of
the process due to limited working space. Currently all vendors' serving methods generate long
lines because service speed cannot match demand, and when vendors cannot meet customer
demands people become frustrated. This can lead to lost profit, as many people do not want to
wait in long lines. An increase in the serving speed of each vendor would alleviate frustration
for the attendees, making them happier and more likely to purchase beer.

The use of the Automated Beverage Dispenser would increase the vendors output while
only utilizing minimal staff. Each vending station at a typical event or festival is assigned a lot
with an approximate area of forty square feet [1]. The vendor must fit all equipment and
resources into this area, with enough space left for all operations. ThE_dEs:igﬂis small and space
efficient. It needs approximately six square feet of table top space. This is advantageous to
vendors because fits the operation of pouring a beer into a smaller space than if the vendor
dispensed the drink himself.

This project specifically addresses the problem of serving speed for public events and
festivals. It must also maintain standards for accuracy and quality as well as space efficiency.

1.1. Design Goals

The primary concern of this project is to produce an Automated Beverage Dispensing
Machine, capable of serving beer. In our design we have taken into consideration certain
requirements.-In-eur-design we have taken into consideration—certain-reqtirements. Unlike
other types of beverage dispensers, beer serving machines require industry rated tubing to

transport beer due to certain health concerns. Also, the design must incorporate a nozzle that

1. San Antonio Conservation Society

reduces foaming during pouring. The design should also meet these general criteria to be
considered a feasible solution to the design problem.

o Serving accuracy - The serving accuracy of the design consists of pouring a beer within
plus or minus half a fluid ounce of a desired volume.

o Speed of service - The speed constraint gives a time limit of one minute to the serving
process. The serving time begins when an order is received and ends when the final
beer is full.

e Political and Legal - The design should meet all federal regulations for alcohol and beer

| sales. The task of handling payment and verification of customer identification is
handled by the user. This removes liability from the machine and ensures that the

operator is liable for selling beer lawfully.

e Economic - The project is limited to a budget of $1200. However, it is important to make .‘
decisions from an economic standpoint in order to reduce cost to the end user of the
machine. r

o Health and Safety - The health and safety of the customers and vendors are paramount
to the engineering code of ethics. The machine makes use of electricity and pressurized
fluid lines. In order to ensure operator safety the machine must not allow these two to /
mix. Customer safety is addressed by the use of sanitary tubing for fluid lines the \ .'/%/ //1’(’
machine uses, in an effort to prevent particulates in the beer.

e Size - The machine is required to fit on a long table [2]. It will rest comfortably on a
tabletop surface.

o Durability - This automated machine is capable of functioning outside during weather
conditions typically seen at festivals. Potential conditions can vary from a Hot sunny
days to a humid day with mild rain

e Mobility - Set up and transportation of the equipment requires little effort. The design is
mobile enough to be moved by two people.

o Convenience and ease of maintenance - The interface the operator uses is designed to

be convenient and ergonomic. Maintenance for the machine as a whole can be

2. Long Tables are 2’ x &'

iy

V.

fer

j;fa&)t

completely by a single person without risk of damage to the design. When a part fails it
can be easily replaced.

» Repeatability - Finally, the repeatability constraint consists of the design's ability to pour
multiple successful cups in succession. This simulates the working environment at a
festival, and the machine needs to perform perfectly to be considered a good solution
to the design problem.

/Pﬂ[;uring the designing process the project objectives changed to reflect a revision in the
project's scope or direction. The project aim changed from a standalone machine to a vendor
operated automated dispenser. The three revisions of the original project objectives include:
removing the constraint to restock or refill the machine in less than 5 minutes, removing of a
method of age verification to prevent the sale of alcohol to minors, and changing the
measurement of pouring accuracy from one percent of total volume to half of a fluid ounce.
Originally, a self contained and fully automated system was thought to be an appropriate
solution for the design problem. This idea was deemed infeasible because it was out of the
scope of the budget. It required a worker to physically replace the keg the system utilized.
However for typical festival activity this is too strenuous for a single individual. It was decided
that the objective should changed. Age verification was removed because it was out of the
scope of the project. Texas state law does not allow for the sale of alcohol by a stand-alone
‘machine. A human must be present in order to serve alcohol. For this reason, the age
verification system was dropped. This eliminated the need for some programming and
debugging in order to meet this objective. The accuracy constraint was changed from a
percentage to a fixed volume because the user requires a fixed volume poured regardless of
cup size. The percentage constraint, allows for greater error in larger volumes, and requires the
machine to pour much closer to a set point for smaller volumes. For these reasons, the fixed
volume error is the working constraint for the project. This reduction in scope makes the design

process less complex.

2. Design Description
The final product consists of three subsystems controlled by a single microcontroller and

various electronics. These subsystems include the Cup Dispenser, the Turntable and the Pouring

6

System. In addition to controlling these subsystems, the microcontroller is also handles the user

interface.
Zils Cup Dispenser

The Cup Dispenser must solve the problem of dropping a single cup into a hole in the cup
plate. The Cup Dispenser has multiple components which can be seen in Figure 1: Cup

Dispenser Components, and on the Materials list of Appendix B in more detail. Parts of the

subsystem include:
e 1—cupcylinder (3 ft tall)
o 2 —cup-screws (custom built seen in Figure 2)

e 2 —dc motors
e 1-U-shaped fitting brace (Seen in Figure 1)

1 — metal stand (made by welding flat stock, square stock and a right angle brace, also in

Figure 1)

e 4 —bolts and nuts for fitting brace to dc motor connection
e 1-bolt and wing nut for metal stand

e 2 —bolts and nuts for metal stand

| €5 Tube Stack

1 Cup Stand

DC Mators 7

Figure 1: Cup Dispenser Components

The first action for filling an order begins with the Cup Dispenser subsystem. In order for a
cup to be dropped into the Turntable, the microcontroller must first verify that there is no cup
placed in the slot positioned under the Cup Dispenser. This is done with an infrared sensor and
will be described in more detail in the electronics section. At this point two DC motors,
controlled by the microcontroller, are activated simultaneously. These motors are connected to

two custom built cup screws as seen in Figure 2: Cup Dispenser Motor with Cup Screw.

Figure 2: Cup Dispenser Motor with Cup Screw

The cup screws rotate in a motion that separates a cup from the stack. This separation
process is done by feeding the lip of the cup into the grooves of the cup screw shown in Figure

3: Cup Screws engaged with Lip of Cup. The grooves in the picture are highlighted by black lines.

P e

e e

e

Figure 3: Cup Screws engaged with Lip of Cup

The cup screws rotate until a single cup is dropped. This process is repeated for every cup

dropped. After a cup is dropped it is transported to the pouring system by the Turntable.

2.2, Turntable

The Turntable Subsystem consists of a base piece, a Lazy Susan gear, and a cup plate. The
base piece has four legs, made from flat stock steel flanged at one end with a 1/8” hole in the
flange. At the bottom of each flange an inch long piece of square stock is welded to elevate the
whole Turntable. The other end of the leg is welded to a hexagonal piece of metal with a one
inch diameter hole in its center. The legs and hexagonal piece make up the base piece of the
Turntable. The Lazy Susan gear is a piece with two plates three inches by three inches
connected together by a circular groove with ball bearings inside. This groove allows the gear to
rotate. The cup plate is an aluminum disc that has six, three inch diameter holes spaced evenly
around the center of the circular plate. All of these pieces can be seen in Figure 4: Turntable
Subsystem Parts. The motor that provides the torque necessary to turn the cup plate can be

seen in Figure 16, and the gearing on the motor can be seen in Figure 5.

& ':! Lazy Susan Gear

<, I_,I Base Piece

Figure 4: Turntable Subsystem Parts

The Turntable subsystem must solve the problem of transferring cups from the cup drop

point, through the pouring system, and finally to the vendor and the customer. In order to

satisfy the final design goals, the Turntable must:

Transport cups to appropriate positions.

Facilitate an average serving time of less than 1 minute per beer.

Be able to handle a quantity of cups that is typical of an order at a festival.
Not spill the beer during operation.

Firmly hold the cups in place throughout operation for the pouring system.
Allow the vendor easy access to cups while serving.

Not increase the size of the design beyond the width of a table top.

10

Figure 5: Turntable DC Motor Gearing

Our design was selected and refined with these criteria in mind. The final iteration of
the turntable was selected primarily for its compact and robust design. This design used a thin
metal disk which rotates about its center to transport the cups. The disk is attached to the Lazy-
Susan in order to achieve rotational motion. After the cup is dispensed it sits in one of the
circular holes of the thin circular disk, which are spaced evenly, sixty degrees apart. These cup-
holes are placed the same distance from the center of rotation of the metal disk. A maximum
number of six cups can be dispensed for one order until the cup-plate needs to be emptied.
This quantity was selected as the maximum number of cups per order since this is well above
the expected order size (1-3 beers) and fits into the space restriction without slowing down the
average serving time. The Turntable design is compact and confines the movement of the cups
to a circular path. This circular path takes less table space than a solution that would transport
the cups in a linear fashion. One benefit of holding the cups suspended in the turntable is that
this eliminates tipping once the cups have been dropped. Sloshing is the only factor that affects
the maximum speed at which the turntable can safely rotate. This limit can be discovered b\;

adjusting the voltage sent to the DC motor (See Figure 16) used to drive the cup-plate from

underneath. -

o
The Bill of Materials lists items used for the turntable design can be seen in Appendix B.

11

g
!
i
V)

2.3. Pouring System

The purpose of the Pouring System is to efficiently transfer beer from the keg to the cup.
After the cup is dropped and positioned below the Pouring Tower, the solenoid valve then

opens and fills the cup. Operational goals of the Pouring System consist of:

Transport beer in fluid lines without leaks.
o Easily attachable to kegs with CO; systems.
e Angled in such a way to minimize excess foam during pour.

Releasing liquid when a cup is underneath the spout and at no other time.

The mechanical aspects of the Pouring System design include the fluid line, solenoid valve

and pouring tower. These parts are assembled in Figure 4, Figure 6, and Figure 7.

Figure 6: Solenoid Valves and Internal Fluid Lines

12

A

e N e T e — . e,

S e,

Figure 8: Tube Plate

To supply the device with beer, a user plugs a beer line into an input fluid nipple. It is
expected that the line be pressurized within the standard range of twenty to twenty-five psi.
These nipples connect the keg lines to another set of fluid lines that are located inside the
acrylic box. These nipples, seen in Figure 8, allow for easy connection during setup. Inside the
acrylic box, fluid lines are attached to the inside end of the nipples and connect to the solenoid
valves. At the output of the solenoid valves, another set of fluid lines run up the Pouring Tower
and come out of the tower at an angle to pour the beer down the side of the cup. This can be
seen in Figure 6. The purpose of angling the tubes is to minimize any undesired excess foam. In
order to transport beer through fluid lines without leaks all connector pieces are held down

with metal clamps to ensure fluid lines stay intact. Testing of the Pouring System with the

13

microcontroller is done to determine an optimal time the solenoid valve should remain open.
Implementing this optimization should prevent spills.

For reconstruction and price purposes refer to the Bill of Material found in Appendix B-1.
Note that this system is capable of connecting to three separate taps. The system consists of
the following items:

e 6 long bolts (for valves)

e 3 solenoid valves

e Micromatic tubing (.25 inch inside diameter)
e 3 double nipple connectors (held in place by 3 rubber grommets)
e 6 valve nipple connectors

e 9circular metal clamps

e Metal stand (Figure 9)

« 11inches of 2 diameter PVC

e 2—90degree bends of 2” diameter PVC

e 1-PVCcap?2”

e 1 bolt and nut (for the PVC to metal stand)

e 2 bolts and nuts for the metal stand

e 1 Tube Plate(Figure 8)

S

Elbow Joints J

|] Metal Stand

Cup Tube

(I

Figure 9: Pouring Tower Assembly

14

These items’ connections are shown in Figure 6, Figure 7 and Figure 10. The height of the
valves should be close to the height of the Tube Plate which holds the input fluid lines. If these
lines are not kept level the tubing will pinch or excess tubing will be necessary to prevent the
impedance of flow. All electrical aspects of the Pouring System are covered in the next section

about the Electronics of the design.

Figure 10: Pouring System Connections

2.4. Electronics

The electronics compose the “nervous system” of the design. They are responsible for
environmental data detection and control of the automated process of pouring beer. They
consist of two major components the Microcontroller and the Power Circuits. The
Microcontroller handles the operation software Awhile the Power Circuits makes sure the

correct voltages are delivered to corresponding subsystems.

15

2.4.1. Microcontroller

A PIC32mx microcontroller is used to provide controlling logic for the device. The
microcontroller accepts input from the operator and from peripheral devices that the design
consists of, and based on them determines the course of action. The PIC32mx microcontroller
has a sufficient amount of ports in the interest of accomplishing the design goals. Among these
are the analog, digital and power-width-modulated input-output ports. The microcontroller also
has an input-capture, output-compare and change-notice mode for some digital ports that are
necessary for the design. This microcontroller was chosen for its d’i_vgriil_f and speed, which
allows for future upgrades without sacrificing some of its functionality. Such upgrades could be,
but are not limited to, an LCD display, wired and wireless network, a file system and sound
support. Since several units of this design can be used during festivals and events, the
possibility of networking and some other upgrades was accounted for during hardware
selection. Another reason for choosing this microcontroller is that it comes with a development
environment that has a full C language support and set of macro functions that make
programming less tedious.

The microcontroller requires an expansion board that will map all of its ports. The PIC32mx
I/O Expansion Board is used to fan out the microcontroller ports in an accessible and
convenient manner. The Expansion board also supports 9 to 15 DC voltage input in order to
power up the microcontroller when the USB power is not present. It also has hardware that
allows miniSD storage card access as well as RJ45 LAN wire socket. Devices such as a 4x4 matrix
keypad and an optical encoder, found on the Turntable motor, do not require extra hardware
and therefore are connected to the microcontroller directly. On the other hand, the cup
detector, solenoid valves and motors used in the design need extra circuitry in order for the
microcontroller to be able to control them. The microcontroller regulates these electromcs

through a power regulator circuit that was specially built for this Mect (See Figure 11).) .

e =SS

16

[(e X NUR T
HRID B3 Raje
Ry 18 013w

nmwé octhPv‘sg [BRIGE 1m0]
u|'4u nanm'g

By ™ el e 1]H Bl1. v u:b Lif
4 ATHRTS ‘ ‘
- Boar- f,;g o

Figure 11: PIC32mx Microcontroller and Expansion Board

2.4.2. Power Circuits

A custom made power amplification circuit provided the energy necessary for some of
the electronic devices. For example, the solenoid valves are controlled using the circuit shown
in Figure 12. Microcontroller ports RDO, RD1 and RD2 are each connected to similar circuit
shown below, which is itself connected to solenoid valves 1 to 3 respectively. The purpose of

this circuit is to open and close the solenoid valve.

12v
PORTD RD[0..2]
—MWWA—1 T e
4300 L
P
||||——2 3 5
5
3 ‘2‘ 4
valve[1 3]

Figure 12: Solenoid Power Circuit

17

Five solid state relays (model #: TLP3542, see Appendix F) are used in the project (See. A
relay is an electronics device that acts like an electronic switch. According to the manufacturer’s
specs, the solid state relay requires a voltage of 1.33VDC and 3 to 30mA of current in order to
pass through up to 60 volts and 2.5amps. Equatio@%"’rﬁed to calculate the resistor value
needed to limit the supply voltage to the chip to 1.33V and a current of 5mA if 3.33V is used for

controlling.

Figure 13: Solid State Relay Circuits

According to Equation 1, a 400Q resistor will give the correct control voltage and current
for this particular relay. However, this is a theoretical value. The actual resistor used was a 430
ohm resistor because of its availability. It was also selected because it met the required voltage
and current parameters. The same circuit shown in Figure 12 is used in order to control the
Turntable motor and Cup Dispenser motors. The Cup Dispenser and Turntable subsystems use
identical power circuits to control the motors. Schematics corresponding to these

configurations are available in Appendix F.

_(333-133)V

= 4000
1 5mA

Equation 1: Resistor Value in Solid State Relay Power Circuit

18

2.4.3. Keypad

A 4x4 matrix keypad is used in order to allow the vendor to control the device. The
keypad can be seen in Figure 14. The keypad has a 4x4 matrix of wires underneath the buttons.
When a buttons is pressed a connection is made in this matrix. The row pins are connected to
output ports RBO, RB1, RB2 and RB3, while column pins are connected to the input ports RB4,
RB5, RB13 and RB9 respectively. By applying a voltage to the output ports and measuring the
voltages of the four input ports the microcontroller can determine what key is pressed and for
how long. The keypad allows the vendor to enter, execute or cancel an order. The vendor can

also calibrate the device pouring times using the keypad.

Figure 14: 4x4 Matrix Keypad

All software that controls the electronics is written in MPLAB IDE v8.40, compiled and
burned to the microcontroller. The software is written using the C language. Appendix D has
the complete code that was compiled and used for the final design. The software accepts user
input from the keypad and acts accordingly. It has two modes or ‘menus’: Main and
Configuration. In the Main Menu, a user inputs the order. The keys 1 through 3 correspond to
the three valves which control fluid flow through the lines. This allows the user to select the
type of beer they want by preparing a specific beer line for pouring. The number of beers the

user wants can be input after a type of beer is selected. The 4 key corresponds to 1 beer and

19

the 9 key corresponds to 6 beers. For example; pressing key “1” and then pressing key “5” will
enter 2 beers for Valve 1. The user can continue entering orders until it reaches the maximum
capacity of six cups. The software will automatically check and will not allow the user to enter
more than six cups of beer per order. Once an order is entered, vendor can press the A key to
confirm and execute the order or the B key to cancel the order. Any wrong combinations of
keys will be ighored by the microcontroller. Once an order is accepted, the microcontroller will
search for an empty spot in the Turntable and dispense a cup there. Afterwards, it will rotate
the cup under pouring unit and pour beer into it using the pre-configured time.

The vendor can also press the “D” key to enter Configuration Menu and “C” to return to
the Main Menu. In the Configuration Menu, the vendor can press keys “*”, “0” or “#” to pour
beer from Valves one, two or three. These keys allow the user to change and reset the timer
used on each beer line effectively controlling the amount of beer poured per cup on that line.
Once the key is released, the microcontroller will stop pouring and the time the key was

depressed will be saved in memory for that valve.

3. Performance Testing

The proof of concept experiments addressed the machine's performance with respect to
the design constraints. These experiments demonstrated the solution to the design problem of
each individual subsystem and the system as a whole. The full system test was performed in
order to assess the device’s feasibility as a solution to the design problem.

3.1. Cup Dispenser Proof of Concept

In order for the cup dispenser to succeed in its task, it must store cups for use and
dispense a single cup at a time into a cup holder. The experimental setup consisted of three
main components: 1) a tall metal cylinder used to hold a stack of cups, 2) a stationary vertical
steel support which holds the metal cylinder in place and 3) an aluminum disk with 6 identical
holes each approximately three inches in diameter which will receive dropped cups. These

components can be seen in Figure 15.

20

p— e, e

e B . T e T - T s

Figure 15: Cup Dispenser Equipment Setup

The metal cylinder is adjustable in diameter and is designed to hold cups stacked one
inside the other. At the bottom edge of the cylinder, two vertical threaded "screws", attached
to DC motors, are fastened on opposite sides of the cylinder (See Figure 2). The distance
between the inside diameters of the screws is equal to the width of a cup. This is so the fall of
the cup is controlled by the turning of the screws. The DC motors were controlled manually for
this experiment because the microcontroller was not programmed at that time. The experiment
was designed to test if the complete setup could drop a single cup in a hole on the turntable
using manually controlled voltages for the screws. For the cup dispenser apparatus to be a
feasible solution, a single cup must fall when the DC motors are provided with a voltage.

3.2. Turntable Proof of Concept

The third system, the Turntable subsystem, consists of a cup plate, a disc of aluminum
with holes punched in it to act as cup holders, rotating freely on a lazy Susan gear, supported by
four steel legs attached to a‘ddgg_j\surface beneath the apparatus. The whole setup can be

seen in Figure 16.

21

Figure 16: Turntable Experimental Setup

A DC motor is held to a gear attached to the turntable from underneath. The motor has
an optical encoder that outputs a digital high signal five hundred times per revolution. These
pulses can be used as position and velocity control by a microcontroller. Two simple tests were
performed: one to prove the DC motor's optical encoder is functioning properly, and one to
prove that a DC motor can rotate the table while in operation. The sloshing factor was deemed

not an issue because the t’\ﬂaﬂgjalts—suppﬁed—by—theﬂmmgntroller to the Turntable DC

motor did not create enough angular acceleration to upset any liquid from the cups. For the

«

first test, power needs to be supplied to both the DC motor and its optical encoder. An
oscilloscope was used to monitor the data lines coming out of the optical encoder. The pulse
signal that would allow for angular position and velocity control was found on the green wire,
thus proving the signal is usable. For the second test, the DC motor was fastened to one of the
legs underneath the turntable, so that the gears of the motor and Turntable are engaged with
each other. The experiment's goal is to determine if the motor provides enough torque to
rotate the cup plate on the Lazy Susan gear.
3.3. Pouring System Proof of Concept

Control of the volume of fluid poured to within 0.5 fluid ounces, is the goal for the

pouring system's proof of concept experiment. The set up for the pouring system consists of a

tank, a solenoid valve that is controlled by a microcontroller, and a graduated cylinder. Water

22

i |

was used as the working fluid for this experiment. The tank was pressurized with a hand pump
to 22 psi because this was within the industry standard operating range. The high pressure in
the tank provided a force on the liquid in the tank. This forces the fluid up through the tube
exiting the tank at some rate. The tube runs out of the tank to a solenoid valve that controls the
fluid flow. This valve is connected to a microcontroller, which opens and closes the valve. Once
12 volts are applied, the liquid flows through the valve, up and out the end of the tubing into a
graduated cylinder for measurement. The experiment is meant to prove it is possible to predict
and pour a set amount of liquid using only a timer. The microcontroller is programmed to
supply a current to the valve for a set time period. The microcontroller has a built in clock which
functions as a stop watch counting in 25 nanosecond intervals. The theory behind the setup is
simple. The system pours a volume of fluid during the time that the solenoid is energized. The
longer the pour time, the more fluid is dispensed. It was thought that using an accurate timer to
control the length of a pour would produce the desired result. The purpose of this proof of

concept test is to verify this hypothesis. It is important to note the pressure for the initial

f pouring test was not constant, thus linearity between time and volume cannot be assumed.

\

\

Another experiment, with the same setup was used to obtain more data in order to prove

8 \\ linearity between volume and time for a non-constant pressure system. If the data stays

\relatively linear, with respect to volume poured and time, linearity may be assumed for further
1}e\sting.
‘3.4, Pouring System Accuracy Testing

This experiment was setup and tested in order to confirm the system is accurate and
that foaming is not be an issue. The only functional difference between this experiment and the
proof of concept is the addition of a pressure controlled chamber. A constant pressure would
allow for the assumption of a linear relationship between volume poured and time, in turn
allowing us to take data to calibrate the timing with respect to volume poured. Twelve runs
total, two runs for each time interval, are conducted in the experiment. With this information,
it is possible to understand the relationship between the volume of liquid poured and time. This

information can be analyzed to predict the pour times for different volumes of liquid.

23

/

3.5. Full System Testing

In order to confirm that the design satisfies the criteria set out at the beginning of the
year, a whole system test was performed. All three of the subsystems were hooked up to a
microcontroller. Once programmed the microcontroller would act as the brains of the
machine's operations. The cup dispenser is positioned over a single hole on the turntable. The
pouring system was positioned over another hole of the turntable. There are three tubes that
can dispense beer. All three lines are positioned over a single cup hole so that all three pour
into the same cup. Three solenoid valves control the flow of beer through these fluid lines,
which means the user can choose hetween three different types of beer. The cup dispensing
and pouring subsystems are attached to towers offset sixty degrees clockwise respectively
around the edge of the turntable. The two towers are protruding from an encasement of acrylic
that houses the solenoid valves, electronics and tubing. This case protects the delicate
equipment inside from spillage. The full system test will use the completely assembled
automated machine.

The system will drop a cup into a turntable and rotate the cup under the pouring
system, where the cup will be filled with beer. When the cup is full it will rotate around for
delivery to the customer. Goals of this test are: that this system is capable of delivering a beer
within a minute of the order being entered, the system can accurately pour a beer, drop a cup
and maintain correct position with the turntable, and that the quality of the beer is maintained
from the keg. Good quality beer means it is lacking in any unwanted particulates is not flat and

contains a healthy amount of foam (approximately 10% of the total volume). If the design can

—__meet this constraint then it is a feasible solution to the design problem.

Unfortunately, prior to the full system test, a live wire fell onto the microcontroller and
burnt the chip. Due to these events, the full system test was broken into two parts. These were
separate tests for the system software and hardware to verify the functionality of each. The
two experiments assume the full system will function when the hardware and software are
integrated. The final fully integrated system experiment was not performed because a new

microcontroller could not be acquired in time.

24

3.5.1.Hardware Testing

Having tested Cup Dispenser, Turntable and Pouring subsystems individually, the final
hardware experiment consisted of all three operated in the proper order to serve a cup of beer.
The hardware experiment was a completely hand controlled process. Since the microcontroller
was burnt, a person manually ran the motors. The order for the experiment is as follows: Cup
motors are initiated first in order to drop a cup, followed by the Turntable motor to change the
cups position, then the solenoid valve to fill the cup and finally the Turntable motor rotates
again to bring the cup around for delivery. For this system test (E:OZta k pressurized the fluid
lines. The fluid lines were pressurized at twenty-two psi by a CdVZ%t'énk. Some foaming was
observed in the beer lines not present in the previous pouring system experiments. The tubing [{’ =

v

used in this experimental apparatus had an inner diameter significantly less than a quarter inch. W)
All previous Pouring experiments used a quarter inch inner diameter tube as that is the industry /
standard for large events where beer is sold. As the inner tube diameter decreases, while
maintaining constant pressure, the Reynolds’s number for pipe flow increases, which can
produce turbulent flow and decrease the quality of the beer. This causes excessive foam, so the
pressure for the experiment was reduced to 5 psi. An increased pour time is expected because

of this low pressure in the beer lines.

3.5.2.Software Testing

The software experiment was implemented in several parts. Each part of the software
that controls a particular subsystem is regarded as a module and is tested separately prior to
integrating it into the final software. These components include the code for the keypad and
the three mechanical subsystems: Cup Drop, Turntable, and Pouring System. The keypad
module was tested by hooking all of its pins into a microcontroller which could detect what
buttons were pressed and for how long. A small code was added to the module that would
print out the pressed key information detected by microcontroller to the debugging screen.
This information includes the binary code passed by the keypad driver, as well as key
interpretation by microcontroller and the time the key was depressed. Once it is verified that
the microcontroller can detect key presses correctly, the timing ability of the module is tested.

A key was pressed four different times, varying from 10 second up to 3 minutes. The length of

25

time a key was pressed for was timed by digital stopwatch and compared to the value printed
out by the microcontroller. Since the stopwatch was operated by a human, the timing precision
for the test was set to be 1 second in order to account for human error.

In order to test the Cup Dispenser module, the microcontroller was connected to the
Cup dispenser motors. Some code was added to the module so that the Cup Dispenser module
was activated using one of the keys on the keypad. Cup presence was detected using Infrared
Detector. When the cup successfully drops, it reflects the beam of the IR detector and the
microcontroller registers this as a digital high on the RGO input port. Once this signal is received
the microcontroller knows to stop the Cup Dispenser motors, completing the action of dropping
a cup. The functionality of the IR circuit was tested before experimentation using a voltmeter
and a NIOSA cup: this was done to avoid possible error during testing.

The Turntable module was tested using a signal generator, one of the microcontroller’s
onboard LEDs and the information output to a debug screen. A square wave of different
frequencies was generated using the signal generator and applied to RG8 and RG9 ports. RG8 is
used to track the position of the Turntable while RG9 is used to detect a full revolution of the
turntable. Signals for both ports are provided by an optical encoder in the final design.

In the module test for simulating the Pouring system, the microcontroller was
configured to open the solenoid valve for a specific amount of time. During the initial testing,
an LED was used instead of valves. The pour time was varied between 4 and 60 seconds. The
timing accuracy was verified using a stopwatch and again 1 second precision was used for

accuracy.

4. Results

A detailed analysis of the results for each component and the final design testing will
determine if the design is validated. The results are validated by showing that this design will
increase a vendor's serving speed and efficiency at events and festivals. It will also explain how

these results demonstrate this validation.

26

4.1. Cup Dispenser Proof of Concept Results

From the results of the experiments and the data gathered, it is possible to evaluate the
capabilities of the prototype and design in general. For each system, data was taken in order to
assess the design's capabilities. The cup drop experiment simply tested the subsystem's ability
to drop a cup into a hole repeatedly. With this respect, the design performed well. The
apparatus performed exactly as predicted. When the DC motors were supplied with a voltage,
they rotated, turning the two cup screws on either side of the metal tube they are mounted on,
and a cup fell into a hole in the cup plate. The test was repeated multiple times, all ending in a
successful drop. This proves the cup dispensers can drop a single cup repeatedly into a hole. For
the whole system to be automated, the Pouring System and Turntable experiments should
show similar results of reliability. The speed of the DC motors is controlled by varying applied
voltage between five and twelve volts. A significant increase in motor speed was noticed which
led to faster drop time} At higher voltages, the motor emits a small amount of audible noise.
Extensive testing was not performed because during the initial tests it was determined that five
volts would be sufficient for the purpose of dropping a cup quickly. The higher applied voltages

were avoided because they produced too much noise.

4.2, Turntable Proof of Concept Results

The experiment to test the cup transportation subsystem consisted of controlling the
turntable via microcontroller. After programming the microcontroller to utilize the pulse signal
coming from the motor's optical encoder, it was possible to measure the angular position and
speed of the turntable. Given this basic information, the microcontroller calculated the voltages
necessary to drive the motor. There was some concern the voltage provided to the motor
would provide a large angular acceleration, causing liquid to slosh out of a cup and fall onto the
motor. In order to counteract this, a control scheme for the motor should not allow it to
accelerate to a point where spilling occurs. The microcontroller has a very simple control
scheme for the motor; it was set up to supply either twelve or zero volts to the motor. These

twelve volts did not provide enough power to upset any liquid, because of the motor’s gear

27

ratio. This proves the Turntable’s ability to transport cups through the process of pouring a beer

without spills.
4.2. Pouring System Proof of Concept Results

The pouring system was tested twice. The first experimental setup used a pressure
chamber that provided a non-constant pressure curve with respect to time while pouring. The

“~
results of the experiment can be seen in Figure 8.\ />f)

Volume vs. Time @ 22 psi

450 -

400 —m
/
350 — =

y=42.839x + 14.403

Volume (mL)

R2=0.996
300
@ Volume vs Time
250 /
200 ‘ — r — T \

Time (s?aconds)

Figure 17: Volume Poured Versus Time of Pour Experiment One

Volume vs. Time (Water System)
550 — —

500
450 -
400 -+
350 +
300
250
200 +——— i — T T 1

4 5 6 7 8 9 10 11

Volume (mL)

& Water Level Time (seconds) y=51.643x - 10.738
R?=0.9987

Figure 18: Volume Poured Versus Time of Pour Experiment Two

28

In this experiment, the apparatus performed remarkably well. All of the runs taken fell
within 1mL of the predicted volume. The experiment proved a linear relationship between
volume poured and time of pour. Based on this, it was possible to pour a volume of fluid
accurately.

It is important to note that because the pressure chamber used in the first experiment
did not provide a constant pressure it is necessary to perform a second test in order to confirm
the results of the first test. It was found that the system was capable of producing consistently

accurate volumes based on an interval of time using a non-constant pressure chamber. The

results of the second test aréin e

4.4. Accuracy Test Results

The purpose of the second experiment for the pouring system was the same as the first:
to control a poured volume of fluid using only a timer. Beer was used as the working fluid for
this experiment, because of this foaming was monitored. A head of ten percent of total volume
is considered a healthy amount, so this was the standard used to judge the individual pours.
The second experiment used a pressurized chamber that provided a linear pressure vs. time
relationship. Results from this test showed linearity within the range of 20 and 25 psi. As the
system stretched far outside these boundaries, the volume versus time became far less linear
and tended to look exponential. It was confirmed that the volume of beer did change linearly
with respect to time in the constant pressure setup. Considerably less foam was produced in all
of the test runs of this second experiment, as compared to the first. This is a result of the
system pouring into a NIOSA cup not a graduated cylinder. A constant pressure provides
laminar flow as opposed to turbulent flow seen in the non-constant pressure test. The foam in
the previous experiment was a result of the length of the graduated cylinder and its
imperfections. The accuracy tests show the design can use only a timer to pour a specified
volume of good quality beer. This proves that the system will distribute a desirable beer that is
not lacking in carbonation. However it is important to maintain laminar flow in order to

maintain the quality of the beer.

29

4.5. Final System Testing Results
4.5.1.Hardware

The hardware testing consisted of the testing of the three major subsystems in the
proper order. Upon applying voltage to the DC motors attached to the cup dispenser a cup was
successfully dropped into the Turntable. This was done with five and twelve volts, their
approximate times were five seconds and one second respectively. The Turntable motor was
fed power and it successfully rotated the cup plate sixty degrees, lining up the cup with the
pouring tower nozzle. The solenoid valve on the active beer line was then fed twelve volts and
the liquid was allowed to pass. The pour lasted for approximately thirty-three seconds. The
turntable was fed power again and the cup plate rotated, moving the cup out to be picked up.
The total process took forty-nine seconds. This proves that the design can successfully dispense

a cup of beer in less than one minute.

4.5.2.Software

During Keypad module test different keys were pressed in different sequences and the
microcontroller detected all key presses correctly and printed the corresponding key
information on the debugging screen. It was found that the microcontroller timed key presses
successfully for both extremes (10 seconds to 3 minutes) within 1 second of precision. This test
verified that microcontroller can successfully detect keys pressed on keypad as well as time
how long it was pressed.

During Cup Dispenser module test it was found that the microcontroller stopped the
motors every time a digital high was applied to port RGO from the IR detector. This proves that
Cup Dispensing module can successfully detect cup drop and stop the motors.

During the Turntable software module testing, the microcontroller successfully counted
digital highs generated by the signal generator for different square wave frequencies and

applied to table position tracking port RG9. This proves it is possible to control the motor using

30

only the output signal from the motor’s optical encoder. The corresponding count was
outputted to a debugging screen so that the devices operation could be verified visually. Also
every time digital high was applied to port RG9, the count was set to 0. This verifies that
microcontroller can detect full revolution of the turntable and set the position count back to 0.
During the Pouring module test, it was found that the microcontroller was able to keep
the LED On for given amount of time within a 1 second precision. This module was later used in
the Pouring Proof of Concept test with actual valves and liquid. The module performed
perfectly during those test and was able to control power to the valves correctly. Once again,

this proves that the module can control valves and keep them open for set amount of time.

5. Conclusions and Recommendations

The design performed very well with regards to the design goals. It is able to serve a
beer in less than one minute with no excessive foam, and was able to pour an accurate amount
of beer. The final product cost less than one thousand dollars which is an economical solution
for the target audience: vendors at public events and festivals. The machine delivers cold
refreshing beer, without particulates. The design conforms to all Texas State laws, and is easily
movable. The keypad provides a user friendly control scheme that allows for user control of
serving size for each cup.

There are some aspects of the design that can be improved by a future design group
that works on the Automated Beverage Dispenser. The microcontroller can only perform tasks
sequentially. This means it can only perform one task at a time. As a result the design can fill a
cup, but cannot dispense another cup until it is finished pouring. This sequential process
lengthens the time required for the machine to finish pouring an order. A future group could
program the microcontroller to carry out multiple processes in parallel, in order to reduce the
pour time. It is recommended that any future groups that work with a microcontroller on this
type of project take the time to investigate this alternative. Another consideration for future
work is the motor attachment. The DC motor that rotates the turntable is fastened onto a leg of
the table itself. It is oriented at a ninety degree angle to the horizontal. As a result, it is difficult

to reach the motor in order to make alterations to its orientation. A horizontal orientation was

31

not used because it required the turntable gear to have a longer gear shaft. A component of
these proportions could not be found because of the specific nature of the problem. A custom
piece was too expensive a solution, and the vertical orientation solution was stable enough for
the purposes of the design. A permanent stand or holder for a motor attached to a ridged
surface would prove to be an easier solution, at the cost of expense. At the beginning of the fall
semester of this project, one of the proposed solutions for a user interface was a small color
LCD display. However, the screen was very difficult to program and was not necessary for the
completion of the design goals.

Overall, the final product satisfied all of the design goals except repeatability. This
experiment could not be performed due to an accident during setup in which the
microcontroller being used was burnt. If a replacement microcontroller could be obtained, a

test of the final product's repeatability is all that is left to do.

32

Appendix A

WBS

1. Project Work
1.1. Initiating the Project
1.1.1. Problem Statement
1.1.1.1. Library Research
1.1.1.2. Brainstorming
1.1.1.3. Writing/Editing
1.1.2. Charter
1.1.2.1. Review Doc Spec
1.1.2.2. Define Scope
1.1.2.3. Define Requirements
1.1.2.4. Writing/Editing of Charter
1.1.2.5. Meeting with Sponsor
1.1.3 Problem Description Presentation
1.2. Initial Design
1.2.1. Literature Review / Investigation
1.2.2. Brainstorming Approaches
1.2.3. Analyzing/Testing Potential Approaches
1.2.4. Documentation
1.2.4.1. Design Matrix
1.2.4.2. Design Review Presentation
1.2.4.3. Design Report
1.3. Prototype/Proof of Concept
1.3.1. Specifying Functionality
1.3.1.1. Cup Dispenser
1.3.1.2. Pouring System
1.3.1.3. Turn Table
1.3.1.4. Microcontroller
1.3.2. Ordering Parts
1.3.3. Construction
1.3.3.1. Cup Dispenser
1.3.3.2. Pouring System
1.3.3.3. Turn Table
1.3.3.4. Microcontroller
1.3.4. Testing/Evaluation
1.3.4.1. Cup Dispenser
1.3.4.2. Pouring System
1.3.4.3. Turn Table
1.3.4.4. Microcontroller/Debugging
1.3.5. Documentation
1.3.5.1. PPOC Demonstration
1.3.5.2. PPOC Presentation
1.3.6. Microcontroller Reading
1.4. Final Design
1.4.1. Specifying Functionality
1.4.2. Ordering Parts
1.4.3. Construction

1.4.3.1. Cup Dispenser
1.4.3.2. Pouring System
1.4.3.3. Turn Table
1.4.3.4. Microcontroller
1.4.4. Testing/Evaluation
1.4.4 1. Efficiency
1.4.4.2. Serving Time
1.4.4.3. Reload Time
1.4.4 .4, Accuracy
1.4.4.5. Quality
1.4.4.6. Final (Full System)
1.4.5. Documentation
1.4.5.1. Bill of Materials
1.4.5.2. CAD Drawings / Assemblies
1.4.5.3. Final Report
1.4.5.4. Final Presentation
1.5. Closeout
1.5.1. Cleanup of area/project
1.5.2. Clearance Form
2. Administrative
2.1. Planning
2.1.1. Work Breakdown Structure
2.1.2. Schedule
2.1.3. Budget
2.1.4. Project Plan Writing/Editing
2.2. Project Management ,
2.2.1. Monthly Management Reviews
2.2.2. One-on-Ones w/Dr Nickels
2.3. Self-Peer Evaluations
2.4. Group Meetings
2.5. Executive Summary
3. Course Content (Non-Project)
3.1. Reading
3.2. Studying
3.3. Homework/Quizzes
3.4. In-Class time

A-2

Appendix A: Gantt Chart

_@ |Task Name Durstion Stat | Finish |Predecessors Resource Narm |10 Jan10,0 _ |Jan17,°10 _|Jan2e, Jan 31,10
| 17 SIM[TW[TIF[S WITIFIS|S[M[TIW[TIFIS SIM[TW[TIF'S
(=4 _ Revise Project Plan | 14 days?| Thu 1/14/10 .ﬂc‘mm.ﬁ..:s — ——— e ———————
| Programming: High Level Design) amwmm_ Thu 1114410 Wed 1/20/10
e Proof of Concept: Cup Dispenser 17days? Mon 118100 Tue 2810
4 Proof of naznmnn voqmam w«wﬂma T nm‘wm»‘ on 141810 Tue 20810 i
= Proof of Concept: Turn Table iTeays? Mon 11810 Tue 2810
m Programming: Coding (Proof of Concepty 11 amv.mu Thu /2140 Thu G.&._a,‘m i
= Testing: Efficiency | Z2days? Wed 2100 Thu 311410 ‘
== Testing: Serving Time 11 days? Wed 21010, Wed 2/24/10
I Testing: Reload Time 11days? Wed 211010 Wed 2IZ4/10
Fq Testing: Accuracy © 12days? Wed 22410 Thu 31110 .
] Testing: Qualty | 12days? Wed 22410 Thu 31140
x| Programming: Testing & Debugging _”_u.mim_ Friz/si0 Tue w_.wn..;E., B
= Final Assembly . | 14days?| Mona@2M0 Thu a1 a T
I=] Testing: Final | 15days? Mon32210 Fris@i0 S
Fd FinalRepori Dratt " 10days? Fri4/ZM0 Thu4MSM0
Feb 7,10 Feb21,"10 Feb 28,10 [Mar7,"10 Mar 14,10 | Mar 21,710 | Nar 28,10 Apr 4,10 | Apr11, 10
SIMTIWI[T[F[S T[N[TIFIS|SIM[TW]T]FI[S

WITIF[S SIM[TIW[T[F]S[SIM[TIWIT[FIS[SIM[TIW[TIFIS[E[M[TW[T|F[S|SIN]TWIT[F[S[SM[TW]T]F[S

(A D T

| (T TR T Ll liad

e e e e e e S — e e

Appendix B: List of Vendors and Bill of Materials

Turntable

Part (PN) (Company) Metal Price
Gear Shaft Steel S1
Pulleys (6253m084sf0910 & 6z53m032df0906) (SDP/SI) NA $20
Lazy Susan bearing (#02z21) (Woodcraft) NA S3
Cup plate Aluminum $1.40
Legs Steel sS4
Base Plate Steel S2
DC Motor (ROB-09238) (Sparkfun) NA 15
Miscellaneous NA S5
DC Motor Driver (ROB-09402) (Sparkfun) NA §15
Total $66.40

Microcontroller/Electronics

Part [PN] (Company) Price

Power Supply [Altech #PS-56012] (Power Supply Dirtect) | $57

Solenoid Valves [72RODGV-12VDC] (PeterPaul) S$80x3=5240
Servos [900-00005-ND] (DigiKey) $13x2=526
PIC32mx [DM320001] (Microchip) $50

PIC32 I/O Expansion Board [DM320002] (Microchip) $72

Graphics PICtail Plus Daughter Board [AC164127] $135
(Microchip)

Voltage Regulator [LM340T-5.0-ND] (DigiKey) $1.74x4=56.96
Total $587+shipping

Cup Dispenser

Part (PN) (Company) Price
Cup Screw S5
Cup Holder (Suite Supply) $15.26

B-1

DC Motor & Driver (Pololu Electronics)

$15

Total $35.26
Pouring System
Part (PN) (Company) Price

Valves

Price listed in Electronics section

Tubing (548C)

$0.90/ft * (~10ft)

Insulation (sku#420504)(Home Depot)

$5.77 (6 ft)

Total

$25

B-2

Appendix C: Budget

Notes

turntable
turntable legs
turntable top
towers

mis hardware
turntable motor

Chris Kledges purchased and did not get
reimbursement
Chris Kledges purchased and did not get
reimbursement

Date Submitted a/14/2010
Submitted By: Turi G.
Graup Name: Moody Loody
Advisar Name: Dr. Kelly-Zion
Income
Budgeted Actual
Sponsor Description Status Amount Amount Notes
9/2/2009|Engr Dept Senior Deslgn Project Allotment | | | %1,200 | 51,200
| | ! I |
Total Income $1,200 §1,200
Expenses Status (Check one)
Status
(Planned/ Dept
Pending/ Budgeted Actual Purchase Reimbur-
Date Vendor Item Description PO # Cleared, Amount _ Amount Internal Order PCARD sement
|
11/7/2005 Home Depot ! (Proof of Concept) cleared | §5.25 $5.25 X
| 12/10/2009] Gear Shaft cleared 51.00 - x
| 6253m 084510910 & .
Hu_.uc..ubon_ N _ Pulleys 6253m032d(0906 cancled $20,00 = X
12/10/2009|Woodcraft _|Lazy Susan bearlngs 02:21 Cleared $3.00 _$8.49
12/10/2009 Cup Plate Cleared $1.40 - x
| 12/10/2009 Legs (turntable) = Cleared $4.00 - x
12/10/2009| Base Plate Cleared 52.00 - o]
12/10/2009|Sparkfun DC Mator ROB-09238 Cleared 515.00 - §
| 12/10/2009|Home Depat = [Turntable Miscellaneaus (screws, etc.) Cleared 55.00 = .
12/10/2009|Sparkfun DC Mator Driver ROB-03402 Cleared | s15.00 - | |
12/10/2008 |Altech . Power Supply = PS-56012 | Cleared §57.00 $67.45 x|
12/10/2009 |PeterPaul Solenoid Valves 72RSDGV-12VDC Cleared 5260.0 5258.90 ~ x
12/10/2009 |DigiKey Servos + Kepad 900-00005-ND Cleared | $39.64 545.13 x
| 12/10/2009 Microchip PIC32myx - DM3200001 Cleared | $50.00 547.36 x =
12/10/2009 Microchip PIC32 IO Companion Board + LCD _ Cleared $200.00 $197.50 x
12/10/2009 DigiKey Sv IC Requlator LM340-5.0-ND Clgared | $5.22 $10.71 x |
|__12/10/2009 Cup Screw cleared _ $5.00 50.00 x -
12/10/2009 Suite Supply Cup Holder cleared 515.26 50.00
12/10/2009 Pololu Electronics DC Motor & Driver = cleared $15.00 L
| 12/10/2009|Micromatic Tubing 548C cleared | $9.00 x
croname Line detector | Cleared £14.95 X
12/10/2005 Home Depot nsulation sku#420504 Cleared §5.77 =N
1/20/2010|Stock Drive Products Gears cleared - N
1/21/2010|Mouser Electronics R Detectar and Emltter = Cleared 510.11 1 %
1/28/2010|Proaf of Concept: Pouring System Cleared 540,00 | 527.87 x
_1/29/2010]Intertex PCB mounts Cleared | 510.81 $10.81 . x
- 5143.22 |Acrylic casing vllc pleces Cleared $70.00 $68.73 x
3/25/2010|Digi-Key 5 55 Relays $30.06 $30.06 x
|____3/30/2010|Home Depot Pouring System Miscellaneous $4.64 $4.49 X
3/31/2010 | Westbrook Metals |metal plate S70.00 §70.00 x
4/5/2010 |Plastic Center Acrylic molding 550.00 545.00 X
4/6/2010 Home Depot Final Design Hardware $50.00 545.76 %
| 4f7/2010 Microchip PIC32mx Starter Kit DM3200001 549.99 544,27 x
4/9/2010 Intertex Box, 2x25pin ports, 25pin 6ft cable $15.80 15.80 E x
4/13/2010 Home Depot Varlous Parts cleared $3.22 $3.22 %
4/13/2010 Home Depot Varlous Parts - , £26.89
Total Expenses S1,153 $1,140

Budget Remalning

Notes:

= Always use Trinity Tax Exempt Form for purchases

= Please submit reimbursement recelpts within one week of purchase
*This is to be update as purchases happen

Final Project Cost =

$979.11 #VALUE|
Structural = percentage:
5286.38 HVALUE|
Electronles Hardware =
5237.43 #VALUE!
Turntable =
#VALUE!
Pouring =
5291.11 #VALUE!
Cup Drop =
$35.26 #VALUE!
#VALUE!

Budgeted Actual

N:\Plan_Budget.xlsx
C-1

>ﬁtmﬁsmx Un mo*ﬂsmﬂm nOQm C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

w ~J oy (s W

B s s S s s S s D W W WWWWWWWWRNRNRNNRDNNODNOMRNNNNRE PR REEEREBERPEPo
WD TR EWRNR,OWWB-JIOUEWNFOW®-TAUERWNERE OWO®-IoU®WwNE o

***********»..}**«.u.xx.x&.nM.R.hxx.x*.x***.k..t..,4.*.x.w*********i&*ﬂx#****************x**iﬂiﬂ#*ﬂﬂxﬁ*

BeerBot - Main Scurce Code

KA A I A KT A A AR A AT A A A AT A A AT A AR A A A A AR ARATATRA AT A AR A R A A AR AT AT AR AR oo b o bkdbdkhhdkdhdknk

*
*

*

=

*

FileName: main.c

Dependencies: None

Developer IDE: MPLAB IDE §.20 or higher.

Compiler: MPLAE C Compiler for PIC32 v1.04 or higher.
Company: Mocdy-Loody .

Copyvright (c) 2010 Moocdy-Loody.
Scftware License Agreement

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES,
WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
TC, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

A AR R RS SRS SRS SRR SRS A SRR S SRR A SRR ERR AR EEEEEERERELES LS EEESE SR EEESESESERESESEEESEE S

*

*

*

*

L A)

*

* % % o ok o % % * A * * * A

#

Description:
This program controlls BeerBect using PIC32MX uContrcller.

Platforms:
PIC32MX Starter Kit DM320001
PIC32MX USB Starter Kit DM320003

-

Tools:
. MPLAR IDE 8.20 or higher
. MPLAB C Compiler for PIC3Z v1.04 or higher

General Purpose Starter Kit DM320001 or USB Starter board DM320003
. USB Cable

[VYR SV

Starter Board Resources:

-Debugger:
JTAG.TMS = PORTA.RAQ
JTAG.TCK = PORTA.RAl
JTAG.TDO = PORTA.RADS
JTAG.TDI = PORTA.RA4
PGC2 = PORTB.RB&
PGD2 = PORTB.RB7

-LCD S1602DTR:

RS = PCRTB.RB15
R/W = PORTD.RDS
E = PORTD.RD4
DBO = PORTE.REQ
DB1 = PORTE.REL
CBZ = PORTE.REZ

e

-

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
62
70
71
72
73
74
75
76
W
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

* %

% % R S N T T SEEE S S

*

*

-Keypad:

DBE3
DE4
DBES
DB&
DB7

ROW 1
ROW_2
ROW_3
ROW_4
COL_1
COL_2
coL_3
COL_4

-Turntable:

MOTOR_TRACKING
MOTOR_RESET
MOTOR_SIGNAL

-Pouring:

VALVE 1
VALVE 2
VALVE_3

-Cup Dispenser:

IR EMITTER
IR DETECTOR

CUP_SIGNAL

Starter Board Notes:

2

Do not disable the PIC32MX JTAG.
debugger (PICL8F4550)

Change History:

D
MAIN 001
MAIN_ 002
MAIN 003
MAIN 004
MAIN 005
MAIN 006
MAIN 007
MAIN 008

TABLE_001

Date

02/10/2010
02/18/2010
03/01/2010
03/12/2010
03/17/2010
04/02/2010
04/16/2010
04/19/2010

04/01/2010

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

= PORTE.RE3
= PORTE.RE4
= PORTE.RES5
= PORTE.RE6
= PORTE.RE7

= PORTB.RBO
= PORTE.RB1
= PORTE.RBZ
= PORTB.RB3
= PORTE.RB4
= PORTB.RB5
= PORTB.RB13
= PORTB.RB?

= PORTG.RGS
= PORTG.RGS
= PORTD.RD3

= PORTD.RDO
= PORTD.RD1
= PORTD.RD2

= N/A
= PORTG.RG7
= PORTG.RDO

Changes

(output)
(output)
{output)
(cutput)
(input)
(input)
(input)
(input)

(CN)
(CN)
(output)

(cutput)
(output)
(output)

(from PCB)
(CN)
(output)

Project created.
Added Pouring driver.
Pouring driver now uses interrupts.
Pouring driver functions optimized.
Kepad driver added.
TurnTable driver added.
Some debugging and minor corrections.
Ports changed for Cup Disp.

Turntable driver create

This will prevent the PIC32MX Starter Kit
from communicating with the PIC32ZMX device.
Do not configure the SYSTEM CLOCK to operate faster than 80MHz.

..p..}ur***.«p.XX*1«m«L,...**..#v.n*uk.&.x**..r.,.w.&.k%***«****.Tarur.\4..*.ku¢*..#*.*1«.>\.*.».*.>.*,w.»**}*uf***********4***1«*******

and TTable.

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
13%
138
139
140
141
142
143
144
145
146
147

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

* TABLE 002 04/04/2010 Ports changed. Using CNx instad of ICx.

* TABLE 003 04/08/2010 Added definitions for position and implemented counting.
* TABLE 005 04/13/2010 Turn Table ISR now contreols serving too. Damn!

= TABLE 006 04/14/2010 2 lot of bug fixes. Accounted for gear ration 1:2.

* KEY 001 03/17/2010 Keypad driver created.

* KEY 002 03423/2010 Added Debounce support.

* KE¥Y 003 03/30/2010 Added key timing suppcort.

* KEY 004 04/12/2010 Added valve controll for config menu

* KEY 005 04/15/2010 Better time resolution. accounted for several ms loss

*

.\44411..t**1.un.z.N..nun*%u’-.&***ﬁ*****%*******%*ﬂ*uﬁﬁ*******.k.**Jpv*******«.«4‘«41*****************t.*u«\

/* Adds support for PIC32 Peripheral library functions and macros */
#include <plib.h
#include <p32xxxx.h

//Configuration Bits

#pragma config FNOSC PRIPLL //Oscillator Selection

#pragma config FPLLIDIV DIV 2 //PLL Input Diwvider (PIC32 Starter Kit: use divide by 2 only)
#pragma config FPLLMUL = MUL 20 //PLL Multiplier

#pragma config FPLLODIV = DIV_1 //PLL Output Divider

#pragma config FPBDIV DIV_1 //Peripheral Clock divisor

¥pragma config FWDTEN = OFF //Watchdog Timer

#pragma config WDTPS = PS1 //Watchdog Timer Postscale

#pragma config FCKSM = CSDCMD //Clock Switching & Fail Safe Clock Monitor

#pragma config OSCIOFNC = QFF //CLKQ Enable

#pragma config POSCMOD = XT //Primary Oscillator

fpragma config IESO OFF //nternal/External Switch-over

#pragma config FSOSCEN = OFF //BSecondary Oscillator Enable

#pragms config CP = OFF //Code Protect

#pragmz config BWP - OFF //Boot Flash Write Protect

¥pragma config PWP - OFF //Program Flash Write Protect

fpragma config ICESEL = ICS_PGx2 //ICE/ICD Comm Channel Select

//4#pragma config DEBUG = QOFF //Debugger Disabled for Starter Kit - ENABLE for RELEASE

//Application Defines

#define SYS_FREQ (80000000} //Operation Freguency

#define TOGGLES_PER_SEC 40000 //Square Wave freguency for IR LED -Not needed anymore.
#define IR _TICK RATE {SYS FREQ/2/TOGGLES_PER _SEC)

#define CORE_TICK_RATE (SYS_FREQ/Z/1000) //Tick per millisecond for core timer
#define PRESCALE 256 //Prescale for timer

#define TIMER TICK_RATE (SYS_FREQ/Z PRESCALE) //Tick per second for timers

#define KEY CLEAR mPORTBSetBits (BIT 0 | BIT 1 | BIT 2 | BIT_3)

tdefine KEY ROW 1 mPORTBClearBits (BIT_0) ;mPORTBSetBits (BIT 1 | BIT_2 | BIT_3)
#define KEY ROW 2 MPORTBClearBits (BIT 1) ;mPORTBSetBits(BIT 0 | BIT 2 | BIT 3
#define KEY ROW_3 mPORTBClearBits (BIT_ 2, ;mPORTBSetBits (BIT 0 BIT 1 | BIT_ 3
#define KEY ROW 4 mPORTBClearBits (BIT_3) ;mPORTBSetBits(BIT 0 | BIT_1 BIT 2
#define KEY COL_1 PCRTBbits.RB4

#define KEY COL 2 PORTBbits.RB5

C:\Users\Iurl Gagnidze\Documents\BeerBot\main.c

148 #define KEY COL 3 PORTBbits.RB13

143 #define KEY COL_4 PORTBbits.RBS

150 #define IF _KEY 1 b[0]=={0x0001 //If Keypad Key 1

151 4#define IF _KEY 2 b[01==(0x0002 //1f Keypad Key 2

152 #define IF KEY 3 s b[0]==(0x0004 //1f Keypad Key 3

153 4#define IF_KEY A b[0]==({0x0008 //If Keypad Key A

154 #define IF _KEY 4 b[0]==(0x0010 //1f Keypad Key 4

155 #define IF_KEY 5 b[0]==(0x0020 //If Keypad Key 5

156 4define IF KEY 6 b(0]==(0x0040 //1f Keypad Key 6

157 #define IF KEY B bl0]==(0x0080 //1f Keypad Key B

158 4define IF KEY 7 b(0]==10x0100) //If Keypad Key 7

159 4define IF _KEY 8 b[0]==(0x0200 //1f Keypad Key &

160 4#define IF_KEY 9 b(01==1(0x0400) //If Keypad Key 9

161 #define IF_KEY C bi0]l==10x0800) //1f Keypad Key C

162 4#define IF_KEY STAR b(0]==10x1000} //1f Keypad Key *

163 d#define IF KEY 0 B[(0]==(0x2000 //1f Keypad Key 0

164 4#define HWINWKH@OGZU (b[0]==10x4000)1 | (b[0]==(0x4400)) | (b[0]==(0x4404)) | (b[0]==(0x4444,)) //I1f Keypad Key #
165 #define IF KEY D ((b[0]==1(0xB8000)) | (b[0]==1(0xC000))) //If Keypad Key D

le6 #define KEY 1 (0x0001) //Keypad Key 1

167 d#define KEY 2 (0x0002) //Keypad Key 2

168 #define KEY 3 (0x0004) //Keypad Key 3

169 #define KEY A (0x0008) //Keypad Key A

170 #define KEY 4 (0x0010) //Keypad Key 4

171 #define KEY 5 (0x0020) //Keypad Key 5

172 4define KEY 6 (0x0040) //Keypad Key 6

173 #define KEY B {0x0080) //Keypad Key B

174 #define KEY 7 (0x0100) //Keypad Key 7

175 f#define KEY 8 (0x0200) //Keypad Key §

176 #define KEY 9 (0x0400) //Keypad Ksy 9

177 #define KEY C (0x0800) //Keypad Key C

178 #define KEY STAR (0x1000) //Keypad Key *

179 t#define KEY O (0x2000) . //Keypad Key 0

180 #define XKEY POUND (1(0x4000))| {(0x4400)) | ((0x4404)) | ((0x4444))) //Keypad Key #
181 #define KEY D (((0xB8000)) | ((0xCO00)) //Keypad Key D

182 4#define CN_CONFIG (CN_ON CN_IDLE_CON| //Enable change notice on idle
183 +#define CN_PIN MOTOR (CN11l ENABLE) //RGY for motor tracking
184 4define CN _PIN_ RESET {CN10_ENABLE] //RG8 for motor reset
185 #define CN|CUP (CNS_ENABLE) //RG7 for cup

186 #define CN PULLUP_MOTOR (CN11l_PULLUP_ENABLE) //330K pullup resistor
187 #define CN PULLUP_RESET {CN10_ PULLUP_ENABLE) //330K pullup resistor
188 #define CN_PULLUP_CUP (CNS_PULLUP_ENABLE) //330K pullup resistor
189 4define CN_INTERRUPT (CHANGE_INT ON | CHANGE INT PRI 4) //Reset Priority 4
190 #define DEST 1 96 //Post for Cup 1

121 4#define DEST 2 263 [/BEsE for Cup 2

192 4define DEST 3 428 //Post for Cup 3

193 #define DEST 4 594 //Post for Cup 4

194 #define DEST 5 761 //Post for Cup 5

195 #define DEST 6 928 //Post for Cup 6

196 4#define IF MAIN {state==0) //State = main menu

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

197 4define IF CONFI state—1 //8tate = configuration menu
138 #define IF_EXECUTING (state==2 //State = executing order
199 #define IF ST A (state==3 //State = Valve A

200 #define IF ST B (state==4) //8tate = Valve B

201 #define IF_ST C (state--5) //State = Valve C

w N = O

202 4#define MAIN
203 #define CONFI
204 #define EXECUTING
205 #define ST A
206 #define ST B

//Main state code
//Configuration state
//Executicn state code
//Valve A state code
//Valve B state code

code

=

207 #define ST C 5 //Valve C state codes
208 #define VALVE_A ON mPORTDSetBits (BIT_0) //Enable Vavle A

209 #define VALVE B ON mPORTDSetBits (BIT_1 //Enable Vavle B

210 #define VALVE_C_ON mPORTDSetBits (BIT 2) //Enable Vavle C

211 #define VALVES OFF mPORTDClearBits (BIT_Q|BIT 1|BIT 2} //Disable All Vavle
212 4define TABLE CN mPORTDSetBits (BIT_3) //Rotate Table

213 #define TABLE_OFF mPORTDClearBits (BIT_3) //Stop Table

214 4define IF CUP_SIGNAL { | PORTGbits.RGT. //IR Detector Signal
215 +#define CUP_STOP mPORTFClearBits (BIT_0) //Stop cup dispensing
216 #define CUP_START mPORTFSetBits (BIT 0 //8tart cup dispensing
217

218 //Prototypes

219 wvoid DelayMs unsigned int) ;
220 wvoid InitIREmitter (void);
221 wvoid InitCupTable (void);
222 wvoid InitKeys void);

223 wvoid InitPouring(veid);

224 int readKEY (void);

225 wvoid getK(volatile int “c):

226

227 //Global Vars

228 wvolatile short int pos-0; //pecsition of turn table

229 wvolatile short int dest=DEST_1; //Init cup destination to first spot

230 wvolatile short int cup=0; //cup pesitioned

231 wvolatile short int state=0; //menu state: O-main, l-config, 2-executing order, 3-&, 4-B,
232 wvolatile short int calib=0: //table calibiration

233 wvolatile unsigned short int valve times[3]-{6000,6000,6000!; //valves' timing settings

234 wvolatile short int order 3.=-0,0,01; //beer order goes here

235

236 // BeerBot main code
237 int main (void) -

238 volatile int b 2 ;

239

240 //Configure the device for maximum performance, but do not change the PBDIV clock divisor.

241 //Given the options, this function will change the program Flash wait states,

242 //RAM wait state and enable prefetch cache, but will not change the PBDIV.

243 //The PBDIV wvalue is already set via the pragma FPBDIV cption above.

244 SYSTEMConfig (SYS_FREQ, SYS CFG_WAIT STATES | SYS CFG_PCACHE) :

245 DBINIT () ; //GET RID OF THIS AFTER TESTING IS DONE

= e e e o —

246
247
248
249
250
251
252
253
254
258
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

C:\Users\Turi Gagnidze\Documents\BeerBot\main.c
DBPRINTF ("BeerBot: can't wait to make you drunk.\n"!; //GET RID OF THIS AFTER TESTING I2 DONE

//Initialize Sys
//InitIREmitter (
InitKeys
InitPouring i ;
InitCupTable ; //Call this function last!

tem Environment
Vi

//Enable Systemwide Mutivecotr Interrupts
INTEnableSystemMultiVectoredInt @ :
mPORTDSetPinsDigitalOut (BIT 0
mPORTDSetPinsDigitallIn (BIT 1. :

while (1) //Never exit this loop!
DBPRINTF("State = %u\n", state);
if (IF MAIN: //Main Menu
getKib) -

if (IF KEY 1) {state=ST 2:] //select Valve A
if (IF_KEY 2/ |state=ST B;| //select Valve B
if (IF KEY 3) {state=ST C:| //select Valve C
if (IF_KEY B} | //reset crder
DBPRINTF ("RESET ORDER \n");
state=MAIN;
order (01=0;
order([1 =0;
order 21 =0;
if (IF _KEY A} //execute order
if (order 0 -order|l]torder|[Z|>0) | //check that order is entered
state-EXECUTING; //8tate = Executing Order
switch (dest) | //Go to next cup spot
case DEST 1 : dest=DEST 2;
break;
case DEST_Z2 : dest-DEST 3:
break;
case DEST_3 : dest-DEST 4;
break;
case DEST 4 : dest=DEST 5;
break:
case DEST_5 : dest-DEST 6:
break:;
case DEST_6 : dest-DEST 1:
break:
TABLE ON; //Rotate Table
if (IF KEY D) {state=CONFI;DBPRINTF ("CONFIG\n"); | //select configuration menu

D-¢

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
31
311
31%2
3.3
314
315
316
317
318
318
320
321
322
323
324
325
326
327
328
329
330
331
332
338
334
385
336
337
338
339
340
341
342
343

el
o i o

//MAIN
se
(IF_ST A) |
getK b
if IF_KEY B!
state-MAIN;
order 0;
order
order

(&

=0 ;

Lt

if (IF KEY 4
if (order 0
state-MAIN;
order 0 =1;
else state-MAIN;
if (IF_KEY 5!
if (orderiO
state-MAIN;

order (0 =2;

else state-MAIN;
if (IF_KEY 6)
if (order |0
state-MAIN:
order’ 0 =3;

else state-MAIN;
if (IF_KEY 7]
if (order O
state=MAIN;
crder 0 =4;

else state-MAIN;
if (IF_KEY 8)
if (order [0
state-MAIN:
order[0]=5;

else state=MAIN:
if (IF_REY 9)
if (order O
state=MAIN;
crder[0]=6;

else state=MAIN;
//ST A

else:

if

(IF_ST_B) !

C:\Users\Iuri

//Valve A

~order 1] torder|2

order[l]|torder|2

~order|1l]torder|2

~order|l|torder |2

crder|l]| ltorder |2

N

w

(93]

<.

-order|[l]+order[21<1) ¢

//Valve B

//reset order

//Return to main
//Return to main
//Return to main
//Return to main
//Return to main
//Return to main
//Return to main
//Return to main
//Return to main
//Return to main
//Return to main
//Return to main

Gagnidze\Documents\BeerBot\main.c

menu

menu

menu

menu

menu

menu

menu

menu

menu

menu

menu

menu

LE

iE

if

I

if

cant

cant

cant

cant

cant

cant

order

ocrder

order

order

order

order

any

any

any

any

any

more

more

more

more

more

344
345
346
347
348
348
350
351
352
383
354
385
356
357
358
388
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
S AT
378
379
380
381
382
383
384
285
386
387
388
289
390
391
392

getKib) ;

if (IF_KEY B)"
state-MAIN;
order 0 =0

order

order

b il
1]
)

if (IF_KEY 4,
if (order 0.
state=MAIN;
crder 1 =1;

else state-MAIN:

if (IF_EKEY 5
if (order O
state=MAIN;

crder ' 1|=2;

else state=MAIN:

if (IF_KEY 6
if (order (O
state-MAIN;
order|1=3;
else state=MAIN;
if (IF KEY 7)
if (order |0
state=MAIN;

order 1 =4;

else state-MAIN;
if (IF _KEY 8)
if i(order O
state-MAIN;
order 1 =5;

else state-MAIN;
if! (IF KEY 9)

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

[j%]

-order |1 ‘order

-order|[1l]| torder|

[

~order|1l|+torder|2]

~order|[l]torder 2]«

-order|l]|torder[2]<

if' (order 0 -order|l]|+order |2

state=MAIN;
order 1 -6;

else state-MAIN:

else!

//ST_B
if (IF_ST C): //Valve C
getK (b ;
if (IF _KEY B)
state=MAIN;,

49

(O8]

[§S)

//reset

//Return

//Return

//Return

//Return

//Return

//Return

//Return

//Return

//Return

//Return

//Return

//Return

order

to main
to main
tc main
to main
to main
te main
toc main
tec main
te main
to main
To main
to main

//reset order

menu

menu

menu

menu

menu

menu

menu

menu

menu

menu

i

if

EE

cant

cant

cant

cant

order

order

order

order

alny

any

any

any

more

more

more

more

393
394
395
396
397
398
590
400
401
402
403
404
405
406
407
408
408
410
411
412
413
414
415
416
417
418
418
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

£

order
order
order

(o T el o

(IF_KEY 4)

0

)

\

T=0;
O .

v

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

if (order|0|-order|l|torder|Z]|<6)
state MAIN: //Return
order 2 =1;
else state-MAIN; / /Return
if (IF KEY 5]
if (order |0 -order|l|torder|[2]<5)
state MAIN: //Return
order(21=2;
else state-MAIN: //Return
if (IF_KEY 6)
if (order 0 -order|l|torder(2]1<4
state-MAIN; //Return
order(z]=3;
else state MAIN: //Return
if (IF_KEY 7
if (order 0 -order|l]-order(2]<3)|
state-MAIN; //Return
order 2 =4;
else state=MAIN; //Return
if (IF_KEY §)
if (order 0 -order |l ~order[2]<2) |
state=MAIN; //Return
order ' 2 =5;
else state=MAIN; //Return
if (IF_KEY 9
if (order(0]-order|[l]+torder|[2]<1){
state-MAIN; //Return
order 2. =6;
else state=MAIN; //Return
//5T_C
else:
if (IF_CONFI) //Configuration Menu
DBPRINTF ("Config Loc\n");
getK(b);
if (IF_KEY STAR) valve times[0]=CORE TICK RATE' (b[1]-50)
if (IF_KEY 0) valve times[1]=CORE_TICK RATE" (b[1]-50);
if (IF KEY POUND) valve times[2]|-CORE_TICK RATE® (b[1]|-50);
if (IF_KEY C) state MAIN:

S

~—

//return to main menu

e

to

to

to

o

to

to

to

to

to

main

main

main

main

main

main

main

main

main

main

main

//get new
//get new
//get new

menu

menu

menu

menu

menu

menu

menu

menu

menu

menu

menu

menu

if

if

Q
jol]
a
ot

cant

cant

cant

cant

cant

time for wval
time for wal
time for wval

order

order

order

order

order

order

ve A
ve B
ve C

any

any

any

any

any

any

more

more

more

more

more

more

442
443
444
445
446
447
448
449
450
451
452
453
454
455
4586
457
458
4589
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

i //CONFI
//5T_C else
//ST_B else
//ST_A else
+ //Main eslse
/! getKi(b);

if (IF_KEY 0) DBPRINTF("Key = 0 "

if (IF _KEY 1) DBPRINTF ("Key = 1 "

if (IF _KEY 2) DBPRINTF ("Key = 2 ")

if (IF KEY 3) DBPRINTF ("Key = 3 "

if (IF_KEY 4) DBPRINTF ("Key = 4 ");
if (IF_KEY 5) DBPRINTF ("Key = 5 ");
if (IF_KEY 6) DBPRINTF ("Key = 6 ");
if (IF_KEY 7) DBPRINTF("Key = 7 ");
if (IF KEY 8) DBPRINTF ("Key = 8 "J;
if (IF_KEY 9) DBPRINTF("Key = 9 ");
if (IF_KEY A} DBPRINTF ("Key = A ");
if (IF_KEY B) DBPRINTF ("Key = B "|;
if (IF _KEY C) DBPRINTF ("Key = C "J;
if (IF_KEY D) DBPRINTF ("Key = D ") ;

if (IF_KEY STAR) DBPRINTF ("Key = * "j;
if (IF_KEY POUND) DBPRINTF ("Key = # "):
DBPRINTF ("Code = %X | Time = %ums \n", b[(0],b[1])

//Main

\HJE*****#*ﬁ*4**********%*}#**}*%*********4************&Xii*****#**f*&*****%**?

N DelayMs (mSec)
*

*

This functions provides a software millisecond delay
#iﬁ*******%**%ﬂ%%%**&*********************44%*i&»***W*%JHXN*%****}***&*#*&%*%*\
void DelayMs (unsigned int msec) |

unsigned int tWait, tStart;

tWait-(8YS_FREQ '2000) "msec;

tStart=ReadCoreTimer) ;

while ((ReadCoreTimer () -tStart) <tWait) : //wait for the time to pass
! //DelayMs

*NNi**********lx*********4*%*********WW?XKA*#NXN*iﬂN**X*&****************#*#**

E InitIREmitter () - Not Used anymore

%

* This functions enables OCl with 50% duty cycle and IR TICK RATE period

%K%*#****f**Xiﬂx****?*W*****Xﬁx*ﬁiK**»**#***1&&**}***********%*****%*%%*\

void InitIREmitter (void) -
//Enable Timer2 | ON on idle | Int Priority = 5 | Sub Priority = 0 | Prescaler 1:1 , Count

OpenTimer2 (T2 ON T2 _IDLE_CON T2_INT PRICR 5 | T2 INT SUB PRIOR 0 | T2 PS 1 1, IR TICK RATE):
//Enable OCL | 16 bit Mode | Timer2 is selected | Continuocus O/P | OC Pin High , S Compare value,

D-10

Compare

value

491
492
483
494
485
496
497
498
499
500
501
502
503
504
595
506
507

508
509
510
511
512
913
514
515
516
517
518
518
520
Bzl
522
528
524
525
526
527
528
529
530
531
532
533
534
535
536
B3
538

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

OpenOC4 (OC_ON | OC_TIMER_MODEL6 | OC_TIMER2 SRC | OC CONTINUE PULSE | CC LOW HIGE , 0, 0 :
| //InitIREmitter

Aas et it LS EEEEE SR AR SRR SRS ARSI e e R S I R e I R S R A R I S A S ey

* InitCupTable ()

¥ This functions initializes Turntable I/0 pins and interrupts.

4*%***#*%*%%2*KKK*Ki***%*********1%111111*}***1*******%***X**X*&**************\

void InitCupTable(void) -

unsigned int temp; //temp variable

PORTSetPinsDigitalln (IOPORT_G, BIT 7 | BIT 8 BIT 9 //RG7, RG8 and RGY are Digital inputs
PORTSetPinsDigitalOut IOPORT D, BIT 3); //RD3 is Digital output - TTable
PORTSetPinsDigitalOut (IOPORT_F, BIT 0} //RF0 is Digital output - Cup Dispenser
mPORTDClearBits (BIT 3): //Stop table

mPORTFClearBits (BIT_O) ; //Stop cup dispenser

mCNOpen (CN_CONFIG, CN_CUP CN_PIN_RESET | CN_PIN MOTOR, CN_PULLUP_CUP | CN_PULLUP_RESET | CN_PULLUP MOTOR] ;

//Setup CN for Motor and Cup signals.

temp = mPORTGReadBits (BIT 7 BIT 8 BIT 9} ; //read port(s) to clear mismatch on CN pins
ConfigIntCN (CN_INTERRUPT) ; //Motor reset now has interrupt
calib=1; //Turn Table driver will calibirate table now

i //InitTable

\1!2****%*******4***************************}***Xﬂﬂi*#*****************4*1*****

* InitKeys ()

*

% This functions initializes I/0 pins for Keypad
4*****4+***+#**ﬂ41*ﬂ111111ﬂﬂ#****ﬁ*ﬁ*ﬁi*************i*i!*#*+**************\

void InitKeys (void) !

mPORTBSetPinsDigitalOut (BIT_0 | BIT 1 BIT 2 | BIT 3): //configure REO-RB3 as output
mPORTBSetPinsDigitalIn(BIT_4 | BIT_5 | BIT 13 | BIT 9I; //configure RB4,RB5,RB8,RBY as input
mPORTBSetBits (BIT 0 | BIT 1 BIT 2 | BIT 3i; //initialize these pins HI

//InitKeys

\Hi********ﬁ***i*%*********&*******k***+***4*******x*HX***&********************

3 InitPouring()
*

* This functions initializes I/0 pins for Pouring

%%**%****&*i*XKi**%*X***********Xi*dX!******************x**w*u****#*%*******\
void InitPouring(veid)
mPORTDSetPinsDigitalOut(BIT_0 | BIT 1 | BIT 2): //configure PORTD
mPORTDClearBits(BIT 0 | BIT_1 | BIT 2); //initialize these pins LOW
//InitPouring

\x4$********k***k******ﬂ‘***********%*1*****4******XX#%*ﬂfﬁ****************x***

o readKEY ()
*

% This functions returns integer that has encoded infc for keys pressed

%******%X4ﬁ%}#****+¥*****************i****x*%*****%********l‘i1!*****&%*******\

D—11

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
518
579
580
581
582
583
584
585
586
587

int readKEY (void) -

int c e
int temp = 0:

XKEY ROW_1;

//returns 0..F if keys pressed, 0 =
//clear input
//temp var for port

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c
none

read.

temp = mPORTBRead ' ://DelayMs (1) ;

if (!KEY _COL 1) // KEY 1

¢ - 0b0000000000000001;
if (!KEY COL 2} // KEY 2

c 0b0000000000000010;

if (!KEY _COL 3) // KEY 3
¢ = 0p0000000000000100;
if (!KEY COL 4] // KEY A

c ~ 0b0000O0O00CO00O0OOL0O0O0;

KEY ROW 2;
temp mPORTBRead (| ; //DelayMs (1) ;
if (!KEY COL 1) // KEY 4
¢ = 0b0000000000010000;
if (.KEY COL_2) // KEY 5
c = 0b000000D0O00O0100000;
if (!KEY COL 3) // KEY 6

@ 0b0000000001000000;
if (!KEY COL_4) // KEY B
¢ = 0pb0000000010000000;

KEY ROW 3;

temp - mPORTBRead!);//DelayMs(1);

if (!KEY COL_1) // KEY 7
c = 0b0000000100000000;
if (!KEY COL 2) // KEY 8

c - 0b0000001000000000;
if (!KEY COL 3) // KEY 9

c = 0b0000010000000000;
if (!KEY COL 4) // KEY C

¢ = 0b0000100000000000;

KEY ROW_4:
temp = mPORTBRead!);//DelayMs(2);
if (!KEY COL_1) // KEY *
c = 0b0001000000000000;
if (!KEY COL 2) // KEY 0
c = 0b00100000O0O00C0O00O0O0;
if (!KEY COL 3) // KEY %

c = 0k0100000000000000;

if (.KEY COL_4) // KEY D
c = 0b100000000000O0000;
return c;
// readK

D—12

588
589
590
591
582
593
594
585
596
597
598
588
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

R e e L R R L]

& getK({int c([2])

*

*

This functions provides debounce support for keypad.

*******#*}1#11.H.z.d.}Mﬂ.****#*****i‘*****&‘XJ%X*****#*********%**Hﬂﬂ.ﬂ*%**&*******.}*\

void getK(volatile int -¢){ //wait for a key pressed and debounce

int i=0, r=0, j§=0;

.lsec

//1if more than cne button

(eXiko ST //take the new code

// 1. wait for z key pressed for at least
do-
DelayMs 10
if ((c[0 = readKEY!()
if (g(0] l=x)
E
=5
else i-0;
while (i<5)

// 2. wailt for key released for at least
i =07
if (IF_CONFI) |
switch (r) |

case KEY STAR : mPORTDSetBits

.1 sec

(BIT_0);

//turn valve ON if we are

DBPRINTF ("Valve A on\n"):

(BIT_1);

DBEPRINTF ("Valve B on\n"):

break:
case KEY 0 : mPORTDSetBits
break;
case KEY POUND: mPORTDSetBits
break;
do
DelayMs (10} ;
if ((c0 = readKEY())) |
if (e[0] =)
r =c¢l[0]:
i=0;
j++: // keep counting
else i

while (i<5);
if (IF_CONFI) ‘mPORTDClearBits (BIT 0
DBPRINTF ("VALVES OFF\n") ;|
// 3. return lenght of key being pressed
cl11=(3~10-100);

(BIT 2);

pressed

//1f more then one button pressed
//take the new code

BIT 1 | BIT 2);

in ms
//it takes

10ms for j to increment and 100ms

D-13

in configuration

—

to exit both loops

637
638
632
640
641
642
643
644
645
€46
647
648
649
€50
651
€52
653

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

// 4. return key code
elBf = m;

/7 getK

x,11.11‘.R*u—.‘uT..*t..*.#..1..,J.u1*..x\.h..%.*ue,..\q1‘..&**%*44****.&*4**********%,*.».q«u«.ﬁ‘N.ﬂ&*f%****#****k***#«r*#***

* ISR - Priority 4

* ISR for Motor Tracking and Reset signals.

1WL«&.+4*.}*LA*X.N.,4%4#u....#.x....«.k.ku.«..r*..&.k.>*..r.u.«..&,,...4*.>\ukuf\.;..>*,»\.k*.k.*}***#***#ﬂN%XW*W**%****}***}**&*\

void _ ISR _CHANGE_NOTICE _VECTOR, ipl4) ChangeNotice Reset (void

unsigned int temp;

temp - mPORTGReadBits (BIT 7 BIT_8 | BIT_9);

mCNClearIntFlag();
if (IF_CUP_SIGNAL) CUP_STOP;
Detector
else: //Check for calibiration
if (calib)!{ //Calibirate Table

if (mPORTGReadBits (BIT 8| //RESET Signal

pos=0;
calib=0;
mPCORTGClearBits (BIT 0 :

else! //Normal operation

if (mPORTGReadBits (BIT_9). //TRACKING Signal

Pose=7
if (pos=-dest)
TABLE OFF;

if (!IF_CUP_SIGNAL) CUP_START:

if (order|(0]) |
order|0|--:
VALVE A ON;

UpdateCoreTimer (valve times|[0]):

mCTClearIntFlag (] ;

else: if (order 1])
order|[l]--;
VALVE B ON;

UpdateCoreTimer (valve_times|1]);
mCTClearIntFlag') ;

else: if (order|(Z])
order[2]--;
VALVE C ON;:

UpdateCoreTimer (valve times|[Z]);
mCTClearIntFlag

//read port(s) to clear mismatch on CN pins
//clear the interrupt flag
//stop cup dispensing if ISR started by IR

//Woot. We know we are at P0S=0
//Yay. Table is calibirated.
//Hey. Stop the table.

//Increment position

//Check if we reached the destination
//Stop table

//Drop cup if spot is empty

//Check if beer A is reguested
//Decrement by 1
//Start pouring beer A
//Set alarm. Zzz.
//Enable alarm.

//Check if beer A is requested
//Decrement by 1

//Start pouring beer A

//Set alarm. Zzz.

//Enable alarm.

//Check if beer A is requested
//Decrement by 1

//Start pouring beer A

//Set alarm. Zzz.

//Enable alarm.

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

707
708
709

N N S S S e N’ N’ — S S’ N . e " S’ o’ e’ S e’

C:\Users\Iuri Gagnidze\Documents\BeerBot\main.c

else state-MAIN; //No QOrders - go to main

//pos==dest
//Tracking signal
if 'mPORTGReadBits me_H_lm_ ! //RESET Signal
if (pos>9200) pos=0; //Position is 0. Simple!

//ISR for TurnTakle

****,r**,xww#*ii*.}******4************#1**i***#*****%****}x&x.»!x.n************%*%*

* _ISR — Prigzity S
*

= ISR for Pouring subsystem

XX%*******#**%#*******«.«#1**}*.k*.w*.?.»..».k.\q.k.\ﬂ..1*..**.>|.>..*s..>|1..kxa«.a..ax********.}***%******%*4\

void _ ISR(_CORE_TIMER VECTOR, ipl5) CoreTimerHandler (void)
i

VALVES_OFF; //Stop Pouring on all valves

if (order 0 -order|l +order|2]==0) state=MAIN; //Pouring done - returning to main menu

/
//ISR for pouring system

D-15

T

~—r

Appendix E: Electrical Equipment

Y

L “BRMES dusew e swr
PIC32' Cd;mpa‘nia;\iﬁoarv‘g 63%7 oud ekt

kAl & @onn
«* PIC32 Starter Kit-Breakout h:mrd

>

RGAQ QRAIR RALQ Qans
B D QRS RALID @une
BFAQ ORIIT RFIQ OEgA 1

RIIEQ @RI RFIEG @1

e [

=
I
68000

E

eoo0e00000
eoc@o

eec000000

ver 1.5 s [N ‘
f s, o (] ightuorks. net (&) 2009
|

0000

cocoo000®

°
sleceocoo®

seccedo
|
cooeeo0

Ejﬁ

esocoecE0bo

elo o 00009 o
elecoeo0p@o

cneneRs

Tl
0000900
Gp gD oE

eecooo000D
....0&000

@ GE RO PR
K@ @M e e
RES @ @F16cL K87

w03 @ .ani[

£1i 2 K RS @ @orh
I.e 1?{'_“—:%: i
)

ne

eeoe00000
p 800000000

.
eoe
B ot

@RES W@ BRC)

LI L L PR
@NCIERGIAE @RAT
@G i @ @E

Figure F-1: Eflightworks.net PIC32 1/0 Expansion Board v1.5

Figure F-2: 5 VDC Voltage Regulator LM340T-5.0-ND

P - e

. L

— —_— A —_— — —

Figure F-3: Solenoid valve 72R9DGV-12VDC

'l;* =

-

Qo0a0?

| PR I §e
pives asa AT

CE

(8]=]

|

[
l:--‘ e
% :%i"
il Mech Corp
' papf- 6024
el | : @i

‘“ ‘!! paidd 'Mﬁ-u:':

o4y N L

g vV

Figure F-4: Power Supply Altech #PS-S6012

E-2

Figure F-5: DC Motor with Gears [1].

127" QEE123
-]

2100

Figure F-6: IR Emitter Circuit.

! Model number is unknown due to team member dropping out without supplying this information.

E-3

TW QSE159
—

PORTG.RGTY

Figure F-7: IR Detector Circuit

12V
PORTDW 1 T . I
4300 L
=
IIH}—— 2 3 5
5]
s 3 4
2

TTABLE_MOTORS

Figure F-8: Turntable Motor Control Circuit

E-4

oV

PORTG.RGO
—W\N—1 T
4300 L
P
fll’)72 3 5
5
3 4,
2

CUP_MOTORS

Figure F-9: Turntable Motor Control Circuit

| LM340
2V QOutput
- @

—

Figure F-10: 5VDC Regulator Circuit

E-5

! RBB (
£ =
3|§h53?. RE3! (o
RBS !
180A 4y

A GHD

(ko2)| RGT
ey

i) -

W3 .
S F Hﬂsns 4o (

|!|PIC32 Pwr P'D_r,-,;u
STARTER KIT

Imini

Figure F-12: Keypad Unit with DB25 Connector

Figure F-13: Custom Circuit for Controlling Valves, Turntable, Cup Dispenser.

E-7

	Final Design Report of the Automated Beverage Dispenser
	Repository Citation

	tmp.1626985598.pdf.r6AVL

