Trinity University
Digital Commons @ Trinity

Engineering Senior Design Reports Engineering Science Department

4-18-2006

Autonomous Robotics at Trinity University (A.R.T.U.) IEEE
Robotics Competition

Adam Crouch
Trinity University

Cary Wong
Trinity University

Brandi House
Trinity University

Michael Hohimer
Trinity University

Follow this and additional works at: https://digitalcommons.trinity.edu/engine_designreports

Repository Citation

Crouch, Adam; Wong, Cary; House, Brandi; and Hohimer, Michael, "Autonomous Robotics at Trinity
University (A.R.T.U.) IEEE Robotics Competition" (2006). Engineering Senior Design Reports. 11.
https://digitalcommons.trinity.edu/engine_designreports/11

This Restricted Campus Only is brought to you for free and open access by the Engineering Science Department at
Digital Commons @ Trinity. It has been accepted for inclusion in Engineering Senior Design Reports by an
authorized administrator of Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.

https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/engine_designreports
https://digitalcommons.trinity.edu/engine
https://digitalcommons.trinity.edu/engine_designreports?utm_source=digitalcommons.trinity.edu%2Fengine_designreports%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/engine_designreports/11?utm_source=digitalcommons.trinity.edu%2Fengine_designreports%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

Senior Design Final Report
Autonomous Robotics at Trinity University (A.R.T.U.)
IEEE Robotics Competition

ENGR 4381
April 18, 2006

Adam Crouch, Cary Wong,
Brandi House, and Michael Hohimer

Advisor: Michael Yockey

Abstract

This senior design project sought to construct an autonomous robot such that it would be capable of
competing in the 2006 IEEE Region 5 robotics competition. This required the robot to locate and
distribute a red, blue, green, and yellow can to its appropriate position based on the color of the can,
all within a 3 minute time limit. The purpose of this report is to describe the design goals and
specifications, outline the procedures taken to design the hardware and software of the robot, and to
relate all results and conclusions for the project. At the competition, the robot successfully
delivered all four cans to the correct locations, avoided hitting any human workers, completed the
course with a time of 2,08 minutes (125 seconds), and received the 4™ position for the competition.
Based on these results, the project was a success as it met all design criteria. For future
improvements, the group recommends using DC motors instead of servos in the drive system to
achieve faster speeds on the course, and an automated calibration procedure would also be very
useful in future projects.

Executive Summary

The design goal for this senior design group was to construct an autonomous robot that would be
capable of competing in the 2006 IEEE Region 5 Robotics Competition. According to the 2006
rules, the robot’s main task is to find four cans in the ‘incoming’ rooms on the course and sort them
to their appropriate ‘outgoing’ room on the other side of the course based on their red, blue, green,
or yellow color. This task must be completed within a three minute time limit, and the fastest
possible time is optimal. In the final round of the competition, *human workers’ in the form of
Barbie dolls are added to the course wearing clothing that matches the color of the cans, and the
robot is discouraged by time penalties from hitting these workers. More specific descriptions of the
course layout and rules can be found in the Region 5 Conference Robotics Competition Rules [].

To accomplish this task, the group first had to select the hardware components. Numerous
options were evaluated before selecting each component. The Gumstix Robostix board was
selected as the main processor of the robot that manages all other hardware. To locate and track the
cans, the group selected the CMUcam2+, which is a camera that can also perform some basic image
processing and send information to the main processor over a serial line. For the drive system, the
group chose to use the combination of servo motors, digital encoders, and photoreflectors. The
servos are modified to turn continuously, and they will be used to mobilize the robot. The encoders
are used to determine distances and speeds, and the photoreflectors are used to follow the lines on
the course and detect critical points such as intersections or black circles. Proximity sensors were
selected as one form of Barbie detection, and these sensors allow the robot to sense when an object
is within a certain distance from the can. Finally 9.6 V 1500 mA Ni-MH batteries are used to power
the robot. Testing of each of these individual components defines their accuracy and abilities, and
once integrated, final testing is performed on a mock up of the course.

The body and gripping mechanism designs are also major considerations for the success of
the robot. The body shape is mostly round with extensions on the front that allow the can to fit
between them. The gripper then fits into the left arm and it features a cam (a skinny solid cylinder)
attached to a servo that rotates the cam on an off-centered axis. This gripper allows the can to be
pressed tightly against the opposite arm and lifted slightly off the ground to avoid bumps in the
course.

The most time-consuming aspect of this project was the software design, implementation,
and testing. The group selected a bottom-up approach to the software design, meaning that drivers
for each individual component are written first, then subprograms that use the drivers are written,
and finally the main logic that combines all of these items to navigate the course. Provided example
code with the processor allowed relatively quick development of the drivers, and testing was
enhanced by the discovery of a serial debugger that can output readings to a terminal on a computer
while the program is running. Testing on the mock-up course allows the team to optimize threshold
values and routines such that the robot quickly and accurately runs the course.

The team competed with the robot on April 8" at the 2006 IEEE Region 5 Competition. The
robot correctly sorted the cans in the initial runs of the competition, and it continued on to the final
round with human workers on the course. The robot’s final time was 125 seconds, and the team
received the 4™ position out of 35 national teams. This project is considered a success as the final
robot met all design specifications. Further improvements to the design may include replacing the
servos with DC motors for faster navigation, implementing an automated calibration procedure, and
improved heat management for the system.

2.1
2:2
2.3
24
24.1
242
243
244

Table of Contents

Introduction

Component Selection, Driver Development, and Testing

Body Design
Gripping Mechanism Design
Processor
Sensors
Line-following System
Digital Encoders
Vision System
Proximity Sensors
Drive System
Power System
Prototype Falcon
High-Level Software Development and Testing
Subprograms
Main Logic
Optimization
Results: The Competition
Regular Round
Challenge Round
Conclusions and Recommendations
References

Appendix A: Users Guide
Appendix B: Budget

Appendix C: Timeline
Appendix D: Division of Labor
Appendix E: Design Concepts

1. Introduction

The objective of the senior design project is to construct a robot that is able to compete in the 2006
IEEE Region V Student Robotics Competition. The design group will consider the project a success
if, by the end of the academic year, the group has constructed a robot capable of completing the
course specified in the 2006 IEEE Region V Student Robotics Competition Rules and Course
Description document as seen in Appendix A. Furthermore, the group would find it exemplary if
the robot completed the second round of the competition, which introduces obstructions.

In this year's competition, competitors must construct an autonomous robot capable of
recognizing and sorting different colored containers on a course, which simulates an automated
warehouse. Four different colored soda cans, each located in one of four "incoming" rooms on
the course, are to be identified and transported to four "outgoing" rooms. Each colored soda can
must be transported to a different outgoing room based on the can's color. Black lines on the floor
of the course may be used to guide the robots from room to room. Each team's robot will have two
runs on the course, and the team will be awarded points based on how fast and how accurately the
robot accomplishes its tasks. During each run, a time limit of three minutes is imposed.

The highest scoring teams in the first two rounds compete in a final round containing a new
challenge. Barbie dolls dressed in variously colored coveralls positioned on the track simulate
human workers in the automated warchouse. The robots ought to be able to distinguish between
these dolls and the soda cans. Penalties are assessed for displaced or toppled dolls. The Rules and
Course Description for the Robotics Competition states that each robot must have the following
components:

-Drive system for motion
~Navigation sensor array to move from one room to another
-Sensing element to differentiate between different colored containers
-Manipulator to handle the containers
-Processor/software to coordinate all of the above components

Over the course of two semesters, the design group will communicate its progress by means of
four formal presentations and five reports. The culmination of the group's effort will be displayed at
the IEEE Region V Robotics Competition, which will be held in San Antonio, Texas on April 8,
2006.

2. Component Selection, Driver Development, and Testing
2.1 Body Design

The first thing to consider when starting the project is the body design. The group must think
of a clever design that will accommodate all of its many components and allow the robot to
flawlessly perform its task of transporting cans. Size constraints must also be taken into account
while brainstorming design ideas. The body of the design is the platform on which every other
component must be housed. It must accommodate a camera, line sensing photo reflectors,
proximity sensors, a can manipulating device, a drive system, a main processor, and a power
supply. Additionally, the ideal robot ought to be small, fast, and strong. The robot must be
maneuverable and able to pick up soda cans. In certain circumstances, there will be obstacles on the
course in the form of Barbie dolls, so the robot must not be bulky or unwieldy. Figures 1,2, and 3
demonstrate a few body designs the group has considered.

£

Ay

Figure 1: The Body of a 4-Can Carrying Robot Figure 2: The Body of a Simple, Circular Design

Figure 3: Single-Can Lifting Robot Figure 4: Can Manipulator Kit [1]

There are two basic ways the robot can move cans around the course. One design is to have
the robot carry all four cans at once, limiting the distance the robot would have to travel in its quest
to take the different colored cans to their designated rooms. The downfall of this design is that the
robot would have to carry a lot of weight around and would have to be designed to hold four cans at
once. A second design consists of a single can carrying robot which would allow the robot to move
quicker but have to take many trips to move all four cans. Some preliminary state analysis proved
to the group that the robot would not have to make a significant number of extra trips if it had to
carry one can at a time. This analysis convinced the group to choose a single can carrying design.

Figure 1 shows a design in which the body rotates and is able to grab and drag four cans at
once. This design would be useful because the robot could make the least number of trips between
rooms. The downfall of this design is its mechanical complexity. The can holding compartment
would have to rotate, making it very complicated mechanically as well as hard to program. Also,
the robot would have to hold and drag four cans around the course, necessitating a much stronger
robot than other designs would require. This is also a very expensive design, requiring stronger
motots and many servos. Finally, as previously stated, a preliminary analysis of the vehicle’s path
along the course shows that a design such as this would not save much time over a design that” loads
and delivers one can at a time.

A design with a simple single-can manipulator can be seen in Figure 2. This design would be
easy to implement and relatively inexpensive. One servo would be used to rotate a gripping
mechanism to hold the can in its assigned place. The tradeoff to this design is that it could only
carry one can at a time and would have to make more trips between rooms. Also, if not designed
properly, the robot would be forced to drag the can, which would impede its motion.

The design in Figure 3 is a modification to the design seen in Figure 2, yet this design allows
the robot to lift the can slightly and carry it from room to room instead of dragging it. This design
makes use of a single servo with an off-centered cylinder attached to it (a cam). When the servo
rotates, the cam would not only squeeze the can and grip it, but it would actually lift it off the
ground. This design eliminates the resistance to motion due to the friction of a dragging can.

One final design considered involves building a robot equipped with a purchased can
manipulating device, which can be seen in Figure 4. One of these kits can be obtained for $25 on
the Internet [1]. This design would be more expensive and would not allow the cans to be lifted off
the ground. However, it would provide a simple alternative to creating a custom can manipulator.

While each of the body design approaches is feasible, the third appears to be the most efficient
design. This design not only allows for the smooth transportation of the four cans but leaves a lot of
space for the components of the robot to be placed. Table 1 summarizes the advantages and
disadvantages of each of these designs.

Table 1: Comparison of Body Designs

Design Advantages Disadvantages
4-Can Carrying Robot -shorter travel path -complex
-hard to program
-expensive
-must drag the cans
Single Can Dragging Robot -simple -must drag the cans
-must drag one can at a time
Single Can Carrying Robot -simple -can only carry one can at a time
-does not drag the can
-inexpensive
Can Manipulator Kit -simple -expensive
-manipulator built to carry cans -must drag one can at a time

Although the body design does not itself have mechanical or electrical components to be
tested, it still must meet design specifications and be optimal for transportation of all hardware and
can manipulation. In the second part of the competition, the robot must be able to complete the
course without disturbing obstructions in the form of Barbie® dolls. For this reason, the group
selected a relatively circular design. A circular design without protruding corners enables the robot
to more easily enter a room, pick up or drop off a can, turn around, and exit a room without
disrupting obstacles. The can manipulator will extrude slightly from the front so that the area of the
robot entering the rooms is minimized, decreasing the possibility that the robot will disrupt a
‘human worker’. This also allows the line sensing photo reflectors to be placed further forward on
the robot, causing the line-following system to be more accurate and have more immediate reaction
times. A CAD drawing of the base for this body design can be seen in Figure 5 below. The group
acknowledges a slight resemblance of their Falcon’s body to that of the Millennium Falcon seen in
Figure 6, so some credit is due to George Lucas for creative inspiration. -~

Figure 5: Pro-E drawing of Falcon body design ~ Figure 6: Falcon not to be confused with the Millennium

Falcon

The wheels are positioned on the center axis of the circular design so that the Falcon can rotate
any angle without subsequent translation of the body. The width of the Falcon will be less than ten
inches, as the competition rules state that obstructions will be no closer than 5 inches from the black
line [2]. This ensures that the Falcon will not hit any Barbie® dolls while it is following the lines on
the course. The battery will be placed on the rear of the Falcon to account for counterbalancing
needs when the Falcon is carrying a can. A second level may be constructed to create room for all
necessary components and to provide height for the camera system without increasing the diameter.

The final design of the Falcon will be made of a lightweight metal such as aluminum. Before
the final body is made, the group will first draw out the design on cardboard and model it in Pro-
Engineer. Once all the dimensions are selected, a prototype will be made with plywood. This
prototype allows the group to determine proper placement of all the components holes for mountin
each piece. This also allows the group to optimize the design before fabrication of the final body.

2.2 Can Manipulator

One servo will be used in the design for the can manipulator. The group decided that the most
effective transportation of a soda can would be to lift it off the ground instead of allowing it to drag.
A unique design was developed in which a high torque servo will rotate a cylindrical gripping pad
mounted on an offset axis. The gripping pad will squeeze and lift the can, pressing it against the
opposite wall, which will be slanted to accommodate the lifting motion of the gripping pad. If
necessary, a plate can be added to the slanted wall to provide more support. A diagram of this can
manipulator design can be seen below in Figure 7.

X

Figure 7: Drawing of Can Manipulator

This design allows enough space for the robot to position the can inside the manipulator while
accounting for alignment errors. The tips of the manipulator will be funneled inward in order to
better accommodate alignment errors. The design will also be dimensioned such that the cam will
squeeze and lift the can up against the opposing wall. If the axis of the cam is not offset enough, it
will not provide enough force to lift the can. Specifically, the servo used must provide enough
torque to the cam to lift a 2.5 ounce soda can with a diameter of 2.5 inches and a height of 4.8
inches [2]. The design will also place the can in a standing position when released from the
mechanism, as required by the competition rules. ;

Once the dimensions are fully specified, a code modul@/aﬁ: written to activate and deactivate
the manipulator at appropriate locations in the course. The servo wilbrotate the proper direction and
magnitude in order to securely grasp the can and hold it while the Falcon moves, and to accomplish

this task, a correlation between the pulse width and the servo rotation Vill be established.

2.3 Processor

A processor is needed to coordinate all the elements of the Falcon. This processor needs to monitor
the robot’s sensors and command the drive system and can manipulator to perform specific actions.
There are many different processor options for our application. Some available processors are built
specifically for robotics applications. These processors have much of the needed external
components—such as 1/0 pins, user input and feedback, and voltage regulation—packaged on a
single board. Examples of these types of processors are the OOPic [3] and the Ridgesoft IntelliBrain
[4]. Alternately, a programmable logic controller (PLC) is capable of controlling the robot. A PLC
is a self-contained system that contains a CPU, power supply, and I/O pins. The outputs of this
device can be set to deliver enough power to run motors; and no external board is needed to convert
logic level voltages. Finally, a general-purpose microcomputer can be used to control the robot. The
microcomputer currently under consideration is the Gumstix Waysmall [5]. A Waysmall computer
is a tiny yet complete Linux system. This computer would need to be connected through parallel
communications to an external I/O board that can provide digital and A/D input header pins and
powered output header pins. Table 2 is a feature comparison for the control systems mentioned
above.

Table 2: Comparison of Processors

System

PLC

OO0Pic

RidgeSoft IntelliBrain

Gumstix Waysmall

and Robostix
Model # D0-06DDx-D OOPic-R -- 200ax
Price $199 $89 $199 $178
22 digital /O, 4 of 7 A/D, 10 digital 25 gen. purpose digital
Inputs 20DC wihich can beA/D (expandable) 1/0 pins, 8 A/D
Outputs 16 DC 16;&‘&2 g::gz::’ 2 2 servo ports 6 PWM servo outputs
no, primary serial port yes, 2 serial ports (1
Serial /O yes is dedicated to Serial yes, up to 115.2K FF-UART, 1 HW-
Control Protocol UART RS-232)
; Waysmall: 3.4-5.2V
9V, cell batteries; 3 : ;
12-28 VDC, 150mA Voltage regulators 4.5V 10,9V (1. A4 (_]_.1?10n, Li-Polymer,
Power Supply ol (separate logic and /O batteries), support for | 3-NiMH, standard 4.5
P gic a AC adaptor or 5.0V inputs);
pavrer supplics) Robostix: 6-12 V
512 Bytes of RAM; | ot léélgigijf“ 64MB SDRAM, 4 MB
Memory 14.8K (words) 256 Bytes of 4Kb yte; (expan dal;le Strataflash,
EEPROM fo 68K bytes) expandable
Contact execution:
Speed 0.6s; Typical scan; 1- 2 kHz 14.7 MHz L ”‘ﬂphxk‘ztglsxscale
2ms

Programming

Ladder-logic

C with downloadable

Java ("rich RobolDE
robotics class library

C, Java, Python

Language objects and casy to use user
interface")
Windows based Linux kemel 2.6;
Programming Windows based ladder . : Windows based userspace includes
. ; OOPic programming
Environment logic program RobolDE dropbear, boa and
software
more
Onboard user Digital Display, 2
Feadback LEDs speaker, 3 LEDs LEDS, buzzer 3 LEDs
. Thumbwheel,
Onboard user input none 3 pushbuttons, 1 reset Start/Stop None
Waysmall:
Dimensions 9"x5"x2.7" 2. 5P%3" 3.2"x2.8" 83x36x15 mm,

Robostix: 80x35 mm

Except for the low priced OOPic, each processor alternative is comparably priced at just
under $200 dollars. This is twice the estimated processor system cost in the group’s budget. Aside
from cost, there are a number of necessary characteristics that the robot’s processor must possess.

2.3.1 General I/O

The number of 1/O pins that the processor must have is dependent on the number of sensors and
servos/motors that the robot will have. The group has estimated that the robot will need a processor
that is capable of handling the following I/O:

3 PWM or analog input signals from proximity sensors
5 Digital input signals from the line sensor array

2 digital input signals from the wheel encoders

2 PWM output signals to the drive system

1 PWM output signal to the can manipulator

It is important to note that one of the image recognition system alternatives, the CMUCam?2, is
capable of outputting signals to drive servos. If this image recognition system is chosen, it will
reduce the number of output signals that the main processor needs to provide. Assuming that the
CMUCam?2 is chosen, each processor alternative appears to meet the general I/O requirement. The
Gumstix appears to have the best I/O capabilities.

2.3.2 Serial 1/0

In addition to the 1/O capabilitics mentioned previously, the system will need one serial bi-
directional connection to communicate with the image recognition system. Because the OOPic
system does not support the serial connection needed to communicate with the image recognition
system, the OOPic is no longer a processor option.

2.3.3 Programming

Writing software for the processor of the robot will account for much of the work that will be done
on the project. Choosing a programming language and environment which is familiar to the
members of the group is ideal in that it will reduce the number of hours spent learning new concepts
and syntax. Every member of the group is familiar with the C programming language. This
language is adequately sophisticated for the robot’s logic; therefore it is the ideal programming
language choice. Currently, the only processor that can be programmed in C is the Gumstix
Waysmall.

Also, the robot’s processor will need to store a reasonable amount of variables in memory;
therefore, a healthy amount of RAM is important. It is currently unknown specifically how much
memory will be needed, but this amount will increase dramatically if the group decides to use raw
capture data from the imagining sensor system (RGB color values for select pixels of each frame of
a video stream). Again, in this area, the Gumstix Waysmall is far ahead of its alternatives.

2.3.4 Processor System Conclusions

From the information in Table 2, the Gumstix Waysmall appears to be the clear winner for the
robot’s processor. It is the smallest of the processors and provides the needed I/O and memory to
meet the group’s requirements. After considering all of the mentioned factors, the Waysmall was
purchased and chosen as the Falcon’s processor.

The one problem which remained with the Waysmall was its lack of onboard I/0, which is
typical for robotics projects. Unlike the other systems, it is not an “all-in-one” solution. The
Waysmall is not intended to be a compact, singular solution for robotic intelligence. To account for
this problem, the group purchased a Robostix expansion board, which would be connected to the
Waysmall through parallel communications. This expansion board would serve as an external I/O
board that can provide digital and A/D input header pins and powered output header pins for the

10

Waysmall. This interaction between the two boards would be a great challenge that the group
would be forced to overcome before proceeding.

Upon receiving both the Waysmall and the Robostix, the group determined that the Robostix
was actually a very powerful processor itself. The group was unaware that the Robostix even had
an onboard processor capable of running complex programs. It also included 6 PWM channels, 8
A/D ports, and 25 general I/0 pins. After further research, the group concluded that the Robostix
itself was sufficient enough to serve as the processor for the Falcon. This eliminated the likely
problems that might arise between interfacing the Waysmall and Robostix. Figure 8 shows the
general layout of the Robostix Expansion Board.

Figure 8: Robostix Expansion Board [5]

2.4 Sensors

The group designed the Falcon to make use of0 four different types of sensors. These sensors
include:
Infrared (IR) sensors for line following,
e Proximity sensors to alert the robot of obstructions,
o Wheel encoders to determine the distance the robot has traveled and the speed at which
it is traveling,
e An image sensor to locate and differentiate colored cans.
Alternatives for each type of sensor are presented in the following sections.

2.4.1 Line Following

Almost ubiquitously, robotic line following is accomplished by responding to input signals from IR
sensors. These sensors are diodes that are sensitive to light in the infra-red (IR) range, and produce a
voltage proportional to the light that they absorb. They come in two varieties, phototransistors and
photoreflectors. A phototransistor is a single photo-sensitive diode which detects IR light from an
external source. In the case of this robot, an external IR diode could serve as this source. A
photoreflector is an emitter/receiver pair; the emitter emits IR light and the receiver absorbs the
reflected light. In a typical configuration, an array of these sensors is aimed toward the ground,
approximately a centimeter away from its surface. Dark colored surfaces—such as black lines—
absorb IR light, thus decreasing the light the IR sensor measures. Lighter surfaces reflect the IR
light, causing the sensors to measure a higher level of light. The type and number of IR sensors are

11

design considerations for the robot. Table 3 is a price and power consumption breakdown for
various IR sensors found on the Internet.

Table 3: Line Following Options

Type part # Manufacturer Price per unit Power Dissipation T
Photoreflector P5587 Hamamatsu $2.25 160 mW
Photoreflector QRB1134 Fairchild $1.50 200 mW
Phototransistor L14G1 Fairchild $1.72 300-600 mW

Each of the IR sensors in Table 3 outputs an analog voltage which could be read by the
processor using an A/D input. Alternatively, the sensor’s signal could be converted to a digital
signal by connecting it through a digital gate such as a NAND gate. For larger sensor arrays, digital
signals are acceptable; however, for a smaller sensor array, digital signals result in jittery line
tracking. A small sensor array (two sensors for example) limits the mobility of the robot: the robot
has to travel slowly around sharp turns so that the sensors don’t lose the line. A longer sensor array,
comprised of up to five sensors, allows the robot to travel faster while still maintaining line
acquisition. The group decided to purchase the Fairchild QRB1134 sensors due to their low price
and relatively small power dissipation.

The line following (IR) sensors were tested using a simple circuit in isolation to ensure that the
sensors perform as expected. By placing black tape on white paper, the functionality of the sensors
was easily confirmed.

The line sensors were then aligned in a row, oriented downward, and attached to the underside
of the Falcon’s lower platform. Each sensor is read into the robot’s processor using an ADC. This
allowed the robot to “see” levels of grey when using the line sensors. This is useful when a line
sensor is over the edge of the line it is following. Using ADCs rather than inputting each sensor
signal to the processor as a single digital signal allows for much smoother line following. Software
was written which inputs the value of each sensor and outputs a single 8-bit number that represents
the location—from left to right—of the line under the line sensors.

The line following sofiware component produces two 16 bit signals, average and delta, to be
input into the motor software component. These output signals are based on five 8 bit input signals,
which are generated by the line sensors mounted below the Falcon’s frame. These line sensors are
read into five of the Robostix” A/D converters. By analyzing the open-source code available to us
online, the group was able to determine exactly how to read in the A/D converters. The delta output
signal is calculated based on a weighted sum of the input signals. Equation 1 is the weighted sum
that is used in the line following component code.

64(s2 + 253+ 354 + 4s5)}_128

Equation 1
sl+ 52+ 83+ s4 + 55 (Eq)

Output = L

In this equation, s1 through s5 refer to the five line sensors under the Falcon. The left most
sensor is s1 and the right most sensor is s5. In theory, when the navigation line is under the right
side of the sensor bank, Equation 1 will generate a large positive number. When the navigation line
is under the left side of the sensor bank, Equation 1 will generate a large negative number. The
range of output values for Equation 1 is -128 through +128.

12

The average signal is computed based on the delta signal. For values of delta close to zero,
average is large. For values of delta far from zero, average is small. This allows the Falcon to slow
down for sharp turns.

Though initial testing resulted in the Falcon behaving erratically, it was determined that this
basic setup could be used to drive the Falcon on the lines. To improve upon this proportional
control system, integral and derivative control were implemented. This served to both smoothen
out the erratic and jerky behavior and keep the Falcon from overcorrecting to find the line. It
improved the overall efficiency of the Falcon and kept it from losing the line or falling greatly out
of position when attempting to center itself on the line.

In addition, the line sensors were used to detect intersections throughout the course.
Because a weighted sum was not necessary, a much simpler configuration was used to determine
when the Falcon had reached the intersection. After extensive trial and error, each possible
intersection was mapped out as the line sensors would see it. For instance, on the far left side of the
track, the middle sensor would read black along with one of the two outer right sensors. In a similar
fashion, each intersection could be identified by the Falcon using the photoreflector sensors. In
each situation, the Falcon was aware that it should be on the lookout for an intersection, allowing
for their detection to go much smoother. At these intersections, control of the robot was to be passed
to the encoder software component, executing actions such as traveling forward, left, or right.

2.4.2 Encoders

Encoders are the primary means by which the robot can determine the exact distance the wheels
have traveled, assuming no slippage. This ability is a critical piece of the robot’s navigation
system. Since encoders far exceed the accuracy of other methods of determining distance (using a
timer and a robot speed approximation), the focus is on encoder model selection and the different
configurations available. These devices are typically used to measure the distance traveled by the
robot, or in some cases, the angle the robot has turned (90 or 180 degrees for example). If this type
of input sensor is necessary, then there are a few options available, as seen in Table 4.

Table 4: Encoder Options

Description Example Cost
A _motor with its own internal shaft encoder can be used. | Acroname 19:1
1 | The motor outputs a signal that states the number of shaft | Gearmotor with $155 each
rotations [6]. encoder
A pair of small photoreflectors and black and white disks
2 | to attach the wheels, which would output a high/low for
each black/white stripe [7].

A shaft encoder can be used to measure the shaft angle, USDigital Optical
3 speed, and direction of the motors shaft. This can be Sh 11t PHCAL | 849 cach

. aft Encoder
optical or through contact [3].

Hammatsu encoder

and disk combo $32 for paiy

The first option is very compact, and it includes the motor as well as the encoder. However,
the cost is high, and with two of these motors, they may be out of the budget. The second option is
very inexpensive and very simple, but it will require some additional hardware or software to count
the rotations. The shaft encoder is very sophisticated, and it can provide more information than the
simple photoreflector combination; however, it is also more expensive than the current encoder
allowance in the budget. After evaluation by the group, option number two has been selected for
use in the robot’s navigation system.

13

The group purchased 2.55" Bolster Wheels and Quadrature Encoder Modules, as seen in
Figure 9. The kit includes two wheels with the encoder stripes on the inner surface, four rubber
traction bands, and two miniature photoreflectors. The wheels provided with this set had to be
slightly modified to fit to the servomotors already selected.

Figure 9: Wheels and Encoders [6]

In the preliminary testing, the encoders worked properly when placed at a distance of approximately
1 cm from the wheel.

The implementation of the encoder software went very smoothly. By generating interrupts
at each black-white transition, the Falcon was able to keep track of the distance each wheel had
traveled. This was very helpful when making turns and skipping specified distances.

Without the encoders, making turns would have been exceptionally difficult. As mentioned
previously, open loop turns are extremely difficult to make when the servomotors are exhibiting
unusually inconsistent behavior. With the use of encoders, the group was able to pinpoint exactly
how far the servos needed to travel to accomplish the turn. For each turn, the outside encoder was
used to track the distance traveled by the Falcon. For instance, left turns utilized the right encoder
to determine how far the robot had turned. Exact values needed to complete the turn were
determined experimentally and were different for each turn.

A similar setup was used for traveling straight. Both encoders were used simultaneously to
drive both straight forward and backwards. This was useful when needing to skip an intersection or
backup after dropping a can. Although the group struggled to ever completely achieve a perfectly
straight line using the encoders, the encoders did provide consistency when driving the Falcon

straight.

2.4.3 Image Recognition System

_—

For the vision system on the robot, some image processi@w necessary. Can colors wﬂ%ﬁﬁ%e
to be distinguished, the location of the can will need to be determined, and the robot will have to
discern between a can and a doll. To meet these criteria, the group developed three possible options
that meet the needs of the project, which can be seen in Table 5.

14

Table 5: Vision System Options

Description Example Cost
A camera attached to a printed circuit board that does
1 limited image processing in the device. Serial CMUcam?2 $200

communications used to communicate with CPU [9].
A Smart Camera that can do advanced image processing

2 | within its body. Small size, but complicated software and HawkEye 1610 $5,500
communications [10].
Cameras available in department (through Dr. Nickels),
that do not have image processing as a feature. . ; Freok eosl qf
3 Marlin F-046C image processing

Additional hardwarfa and soﬁwarq would be necessary for HW and SW
the image processing [10].

As seen in the table above, each system has its advantages and disadvantages. However, the
Smart Camera option is not within the budget of the project and is over-qualified for the limited
image processing needed in the design. The cameras that are available in the department are free
and readily available; however, the complications involved with programming all image processing
from scratch may require more time than is available before the competition. The most favorable
option is currently the CMUcam2 camera, which can be seen below in Figure 10. All the image
processing requirements will be met with this device, and the cost is within the project’s budget.
Due to availability restrictions, the CMUcam2+, which is essentially the same camera, was chosen

by the group.

Figure 10: CMUcam2 Hardware [9]

The CMUcam2+ was selected and purchased early to allow for maximum testing time prior
to the competition. Initial testing involved powering the device and verifying that the correct LEDs
were activated. This particular device has a graphical user interface (GUI) provided by Carnegie
Mellon University (CMU) that allows for rapid development with this device. In addition to the
GUIL, CMU also provides the extensive CMUcam2 Vision Sensor User Guide [11] and the
CMUcam2 Graphical User Interface Overview [12]. The user guide includes testing procedures for
the camera to ensure that it communicates properly with a personal computer out of the box. This
system can first be accessed through a serial terminal, in which the user sends commands to the

15

camera. For example, typing GV and ‘enter’ in the terminal causes the camera to send its version
number to the serial terminal.

Once the device responded properly through the terminal, the camera was ready to be tested
using the GUL. This java program allows the user to send raw images taken by the camera to a PC
then use some of the data in the picture (such as RGB values) to perform basic image processing.
This functionality is essentially a visual simulation in which the user is able to “see’ from the
perspective of the camera as seen in Figure 11. Within the GUI the user can track a certain ‘color
blob’, a solid color region of similar RGB values, and its centroid, check histograms for RGB
levels, change servo settings if pan or tilt has been implemented, or track the motion of an object.
The use of the GUI allowed the group to better understand exactly what information would be
useful to aid the Falcon in locating and identifying cans.

£ uliesnd G
File lmage

stor || mesmn

Consoie; [Frama Fecerad

CamersViw | Config | Coior | dictin | Hestogram | Stats | Sevo |

| Color Picker - Sueci Tolovance 76 || cloar |

HEd Lreon By
20 19 W
'y

[v]| aoumame || sweereme

Figure 11: Screen shot of GUI [11]

From the beginning, the group has required that the vision system be capable of performing two
major functions. The first of these is the color determination of the can. “Track Color’, or TC, is a
simple command used to accomplish this. Using the “Track Color’ command, the camera receives a
minimum and a maximum RGB value to track, and it locates the largest ‘blob’ of color that fits
within the specified range. This region of color is then assigned a rectangular bounding box, and
the centroid is determined. The camera then serially returns the coordinates of the centroid, the
coordinates of the bounding box, the number of pixels present in the RGB range, and a confidence
value back to the processor. These values are streamed, so as each frame refreshes, a new bounding
box and centroid are sent. This information was parsed from the packet sent by the camera, storing
only the necessary information. It was determined that this command is very effective in
determining the color of a can, if the group is able to specify the correct RGB ranges for each can
color. This task was a difficult one to accomplish due to the specifications handed to us by the rules
of the competition and many inconsistencies in the lighting of the cans.

The same command, ‘Track Color’, was also used to accomplish the second task needed
from the camera. The vision system must be capable of locating and tracking the can. The X and Y
centroids, which are returned to the processor once the command is sent to the camera, were used to
accomplish this task. Using the X centroid, delta was determined for the servos as to center the
Falcon on the can. As previously mentioned, new values were streamed once the camera refreshes,

16

serving as feedback and continuously directing the Falcon towards the can. As done in the line
following driver, proportional, integral, and derivative control were used to achieve the most
controlled and efficient tracking of the can. The Y coordinate was used to control the speed of the
Falcon. As the Falcon got closer and closer to the can, the Y centroid of the can gets lower on the
camera screen. As it is closer, the Falcon slows down to avoid a fast collision with the can.

The camera was also used in the Challenge Round of the competition to distinguish between
the Barbie and the cans. A Barbie is a much taller and slimmer object, with a much higher Y
centroid on the camera screen. On the other hand, the can is relatively short, thus yielding a much
lower Y centroid. Using this distinction, the Falcon was able to distinguish whether the object in
view was either a Barbie or a can. The Falcon would then know which ‘blob’ to drive towards and
which to ignore.

A buffer was used to receive the camera response after each command. The device driver
for the camera was then responsible for parsing the data and extracting only the necessary
information, which was the centroid and pixel count. Using these values, the falcon is able to
identify the color of a can and track it until the Falcon is in position to pick it up.

2.4.4 Proximity Sensors

Proximity sensors are used to detect nearby obstructions that the robot might encounter, such as
Barbie dolls that will be placed on the course in the final round of competition. These sensors have
many characteristics that must be considered, such as how the sensor should measure distance, how
far the sensor should be able to detect an obstruction, and what type of signal it should output to
convey its results to the processor. These are the three most relevant considerations when finding
the right proximity sensor for a project.

Sonar pulse and infrared detection are two commonly used methods for detecting the distance
to an object. Distance is measured using sonar by transmitting an ultrasonic pulse from the unit.
The distance-to-target is then determined by measuring the time required for the echo return. IR
detectors work in a slightly different manner, emitting a pulse of IR light. This light travels away
from the emitter, according to the field of view, and either hits an object or just keeps going. If the
light reflects off an object, it returns to the detector and creates a triangle between the point of
reflection, the emitter, and the detector. The angles are then used to determine the distance. Either
type could work successfully, but a few more factors need to be considered first.

Table 6 outlines the important characteristics of a variety of proximity sensors.

Table 6: Proximity Sensor Options
Detector Output Type Range Estimated Cost

Byte value read serially
from device
Analog value (0V -~3V)
GP2DI12 based on distance 10cm - 80cm $23.00
measured
Variable pulse width
R93-SRF04 based on distance from 3cm —3m $25.00
object

GP2D02 10cm - 80cm $46.00

17

After considering the above information, the GP2D12 was chosen for its low price, acceptable
sensitivity range, and analog output. The analog output secems to be the most practical and easiest to
work with.

Basic testing was completed to confirm the correct operation of the proximity sensors once they
arrived. The sensors exhibited a behavior exactly as expected. The output is an analog signal
which varies logarithmically with the object distance. Objects close to 10 cm form the sensor
produce voltages around 3 V, while no object produces a voltage of 3 V.

The use of proximity sensors evolved over time as the F alcon was being developed.
Originally, the proximity sensors were to serve two purposes on the robot: obstruction detection
(simulated human workers) and can placement. The group initially intended for the obstruction
detection sensors to utilize interrupts, allowing the Falcon to sense an object while turning and
rotate in the opposite direction. A separate proximity sensor, which was to be placed directly under
the camera in the center of the robot, was to be dedicated to positioning the Falcon at the correct
distance to lift the can.

After careful consideration by the group, it was decided that it was unnecessary to use
interrupts to detect obstacles for the Falcon. This technique would require much more complex
maneuvers by the Falcon. For instance, the Falcon would need to be capable of detecting an object
while turning and force itself to turn a specified distance in the opposite direction. Knowing exactly
how far to turn would require the use of the encoders and/or other hardware components. As an
alternative solution, the group chose to simply poll the sensors as the Falcon approached the can.
By doing this, the Falcon would be aware of any obstacle to either side and would know which way
to turn to evade the object. While considering the competition rules carefully, the group determined
that this was an adequate technique in detecting any possible obstruction to the Falcon. This
required no additional hardware and required only that the Falcon poll the sensors often enough as
to not miss detecting an object.

As the project progressed, the can placement proximity sensor was deemed unnecessary. As
a substitute, the group opted to use a simple switch to position the can appropriately for pick-up.

2.4.5 Can Placement Switch

The switch chosen for this function provides maximum simplicity. The switch was connected to the
Robostix using a general digital I/O port, as opposed to the analog input and external circuitry
needed for the proximity sensor. As the Falcon is approaching the can, the Falcon is constantly
polling the switch to determine if the can has been found. When the can comes into contact with
the switch, the Falcon is informed to proceed with picking up the can. Testing revealed that this
technique worked flawlessly in hardware, software, and simulation.

2.5 Drive System

When choosing a drive system for the robot, there were many different options. Foremost, the
group had to decide whether to use motors or modified servos. Since both options are feasible,
some design constraints were considered. The robot must be able to go forward and backward at
varying speeds and must be able to stop very quickly. The robot must also be easy to control and be
built within the groups allotted budget. Furthermore, the motors would have to be fast, yet have
enough torque to transport the weight of the robot and its cargo. All of these factors were taken into
account in order to find a design that met these requirements

First, there are many different types of motors which have different specifications. AC and
DC motors are both readily available; however, a portable battery supplies a DC voltage, so DC

18

drive components are preferable. Furthermore, there are many variations of DC motors. For this
project, general purpose low power motors are acceptable. A plastic high power gear box kit can be
purchased for approximately $15 to $30 online [13]. These kits give the user the opportunity to
create specialized gear ratios. Ordinary low power motors range in price from $1 to $30 depending
on their various voltages, power ratings, and gear ratios [13]. These motors arc very simple and
reliable provided the user operates them within their specified limitations.

Another type of DC motor that can be used is the stepper motor. These motors use a set of
activated solenoids to rotate the drive shaft. These motors can be found for about $3 to $50,
depending on the specifications of the motor [13]. While the stepper motors can provide valuable
information about distance traveled, they also draw too much power from a portable battery.

An alternative to using DC motors for the drive system would be using modified servos.
Servos normally just rotate a fixed angle and stop within 360 degrees, but they can easily be
modified to run continually forward or backward similar to a DC motor. This use of a servo is
commonly used in small robots. Servos can be purchased for $10 to $250 depending on their
specifications [14].

The group selected two GWS Micro 2BBMG "Mighty Micro" Ball-bearing Metal Gear Servo
Motors that will be used to drive the robot once they are modified for continuous rotation. A
picture of this servo can be seen below in Figure 12 along with the technical specifications in Table
7 [13]. These motors were first inspected to see if the group had in fact received the correct model
and that they were not damaged in any way. They were also tested to see that they do in fact work

when power and a pulse width were supplied. Initial tests indicated that the servomotors were in
working order.

Table 7 — Manufacturer’s Specifications of fhe Drive Servos [13]

Dimensions: |50 ¥ 12,0 x 26.8 min
Weight: 28 Grams / 0.98 oz.
r Ball Bearings: Yes, 2BB
Metal Gears: Yes
Torque (4.8V): | 75 oz.in.
Transit Time (4.8V): 0.17 sec./60°
Torque (6.0V): 89 oz.in.
Transit Time (6.0V): 0.14 sec./60° |

19

Figure 12: “Mighty Micro” Drive Servo

The next step was writing code to find the zero point of the servo motors. This code simply sent
the motors a signal, which in turn rotated the motor shaft. The pulse width of the signal was
modified to find the exact pulse width that yielded no movement in the motors. This was done
independently for both servos. This no-rotation pulse width was the basis of driving the motors.
Varying the pulse width from this position will cause the servos to rotate in either direction and at
varying speeds.

The motor software component was designed to control the speed and direction of the
Falcon based on two input signals, average and delta, and two pulse-width modulated (PWM)
output signals, one for each servomotor. Average is a 16-bit signed integer, which increases or
decreases the speed of both servomotors simultaneously. Negative values of average cause the
servomotors to spin in reverse. Delta is a 16-bit signed integer that, when given a positive value,
increases the speed of one servomotor while decreasing the speed of the other. Greater values of
delta cause the Falcon to make sharper turns than smaller values. Positive values of delta cause the
Falcon to turn to the right; negative values cause the Falcon to turn lefi.

Because of component variability in the servomotors, each servomotor responds differently
to the same input signal. This means that the Falcon cannot be driven using open-loop control.
Using average and delta input signals, as opposed to independent signals for each servomotor,
allows the direction and speed of the robot to be more easily controlled based on feedback from the
line sensors, encoders or the vision system. The servos rely on feedback from sensors.

Afer extensive trial and error testing, it was determined that the motor software component
was working adequately. To make this assessment, the average and delta signals were assigned to
the values of two A/D converters on the Robostix board. Potentiometers were connected to each
A/D channel and, using these pots, the Falcon was “driven” forward, back, lefi, and right at various
speeds. Favorable results were obtained, allowing the group to move forward in developing code.

Various adjustments were made throughout the testing process to further improve this
system. For instance, the servos needed to be “re-zeroed” after a month or so of testing to keep the
servos from rotating when the pulse signal is directing it to remain still. Also, it was important to
keep in mind that each servo is unique in its response to identical pulses. For example, when
making a 90° right turn, the delta signal must be higher than when trying to make the same left turn.
This is due to the non-uniformity in servomotors. Exact average and delta values were determined
by running the Falcon over and over again on the mock course.

20

2.6 Power System

The selection of a battery was one of the last selections made, for it depended greatly on the
different components chosen for the robot. There are a variety of types of batteries available, each
possessing its own advantages and disadvantages. Four of the most relevant battery types are
Nickel Metal Hydride (NiMh), Lithium Ion (LiOn), Nickel Cadmium (NiCad) and Sealed Lead
Acid (SLA).

Each battery type is slightly different than the others, with major differences occurring in
price, cycle life, and energy density. Table 8 gives a brief outline of the differences between the
different battery types, highlighting their major differences.

Table 8: Comparison of Battery Types [15]

Battery Type Energy Density [W/kg] Cycle Life Cost Environmental Impact

Nickel Metal Hydride (NiMh) 50 to 80 300-500 $60 (7.2V) Relatively low toxicity, recycle
Lithium Ion (LiOn) 100 to 150 300-500 $100 (7.2V) | Low toxicity, relatively harmless
Nickel Cadmium (NiCad) 35 to 57 1500 $50 (7.2V) Highly toxic, harmful

Sealed Lead Acid (SLA) 25to 35 200-300 $25 (6V) Toxic lead and acids, harmful

Overall, any one of the four battery types could potentially be used. Each battery has its own
unique advantages and disadvantages. For this project, many of these factors have little impact on
the group’s decision. For instance, cycle life may be important in an industrial setting; however, the
group had no intention of recharging the battery more than 10-20 times. As a result, the group
chose two 9.6 V, 1600mAh NiMh battery packs, which are commonly used in RC cars. These
batteries are lightweight, rechargeable, relatively inexpensive, and provide more than enough
current to power the robot for extended periods of time.

The selection of the power system came only after each component had been fully tested. It was
determined that the Robostix and components, including all of the sensors and servos, drew a
maximum current of approximately 850 mA. To power these components, a single battery pack
was dedicated to this circuitry, providing more than enough current and power. The servos
themselves, which were expected to draw the most current, drew a maximum of around 400-500
mA. To account for these high current components, a separate battery was also used here. None of
the components required a voltage higher than 9.6 V, making this battery selection the ideal
selection for the Falcon. While one battery could have possibly been sufficient in powering the
Falcon entirely, it was determined that buying extra baiteries was a much safer solution.

The power system seemed to be reliable throughout the testing of the Falcon. Wall power was
used extensively for most of the testing, prior to purchasing the batteries. To extend the group’s
testing capabilities, an extra set of two batteries was purchased. An RC battery tester also allowed
the group to monitor the status of the batteries both after charging and throughout testing.

2.7 Prototype Falcon

The first step the group took in creating a prototype Falcon was to discuss and model what the robot
will look like based on the functions it has to carry out. Here the group discussed design ideas,
chose the best one, and sketched it. A model of the Falcon created in Pro-Engineer can be seen in
Figure 13 below. A more precise sketch was then drawn to scale on a piece of cardboard and
included all the components in their appropriate places.

21

Figure 13 : The prototype Falcon body design

Once the design was sketched, it was then physically constructed. The design originally
called for a metal body, but the group decided that it would be easier and more cost efficient to
build the prototype out of %” plywood. The wood was then cut with its dimensions matching the
cardboard diagram.

The servos were mounted under the Falcon using aluminum brackets as seen in Figure 14
below. Once the servos were securely fastened, the wheels were screwed onto the servos. Next, a
metal bracket was constructed to house the line following photoreflectors. The bracket, which can
be seen in Figure 15, was then attached to the underside of the Falcon. Once mounted, the 5 line
following photoreflectors were bolted into place on the bracket. Bolts were used so that the position
of the photoreflectors could be adjusted. This enables the group to put them closer or farther from
the ground depending on their ability to read the black lines necessary for navigation.

"

|l & |l &

Figure 14: Underside of the Falcon

Filre 15: Line following sensor baci

The next component mounted was the rear caster. The caster was mounted under the rear of
the Falcon as illustrated in Figure 14. After the caster was in place, aluminum brackets were
constructed for the proximity sensors. These proximity sensors, shown in Figure 16, were then
mounted onto the front tips of the Falcon.

22

Figure 16: Proximity sensors on Falcon

A sliver was cut into the Falcon for the encoders to mount vertically to the side of the
Falcon. Since the body of the Falcon is all wood, there is no fear of short circuiting the encoder
printed-circuit-board (PCB). Using this technique, the group was able to mount the encoders close
enough to the wheels for the sensors to work. This also positioned the encoders under the body of
the robot, blocking out a most of the ambient lighting.

; e 1Y : 3 » i
Figure 17: Front view of the camera mount Figure 18: Side view of the camera mount

The camera mount, which can be seen in Figures 17 and 18 above, was built with the option
of having the camera at varying heights and angles, one combination of which will be chosen after
the camera testing is completed.

After finishing the camera mount, additional circuitry was added to the robot. Two small
protoboards were mounted to the top of the Falcon. The group’s processor was also temporarily
fastened between the protoboards. A slit was then drilled into the Falcon so that all the wires from
the photoreflectors and the drive servos under the Falcon could be routed to the protoboards and
processor on top of the Falcon. All of this circuitry can be seen in Figure 19 below.

g

Figure 19: The circuitry of the Falcon

25

The next component added to the Falcon prototype was the can manipulating device. The
group’s design consisted of a cam mounted to a servo. The servo was mounted on the top of the
Falcon in its allocated position using an aluminum bracket. A wooden dowel with a 1” diameter
was used as the cam. The wooden dowel was cut to its designated length and nailed to the servo
mount in an off-centered fashion creating the cam. The servo mount was attached to the servo
creating a can manipulator that was ready to pick up and drop off cans as illustrated in Figures 20
and 21 below.

%

) — 8 —_— F‘l\ — " _ s
Figure 20: Can in position to be picked up Figure 21: Can manipulator gripping soda can

Finally, the power system was added to the Falcon. The two batteries were mounted to the
rear of the Falcon using Velcro. The batteries were then wired to a switch which will be used to
turn the Falcon on and off.

As the construction of the prototype was almost complete, the Falcon needed a place to
begin testing itself, both in hardware and software. For this reason, a mock-up of the competition
course was constructed. The construction of the course required two pieces of 4x8 ft plywood, a
bucket of black paint, a bucket of white paint, and some paint brushes. The two plywood pieces
were painted white. Then the black paint was used in conjunction with black electrical tape to
create an exact duplicate of the course that the Falcon will be competing on in April. This will
allow the group to test the Falcon on an actual course, enabling the group to perfect the Falcon’s
physical design and the programs that will be controlling it.

After great consideration, it was determined that the prototype Falcon possessed every
characteristic needed to be used as the competition robot. All of the hardware components had been
properly placed and needed no further improvements. The Falcon was undamaged and had been
successful throughout the testing process. Furthermore, it was determined that any variation in the
new body might lead to inconsistencies in the performance of the Falcon. As a result, the group
determined that it was not necessary to create a new Falcon to use in competition.

3. High-Level Software Development and Testing

3.1 Subprograms

Once each of the device drivers were implemented and functioning properly, subprograms were
constructed to perform different simple tasks that the Falcon would complete. As an example, GET
CAN is a subprogram which is called once the switch is set, indicating that the can is in place to be
grabbed. In this subprogram, the Falcon activates the can manipulator, picking up the can. It then

24

turns around 180° and travels back to the line until the line sensors are centered on the line. This
subprogram requires the use of the can manipulator, encoders (the 180° turn), servos, and line
following sensors. Once each of the drivers has been successfully coded, a subprogram like this
one requires that the Robostix coordinate the different actions to be completed by each component.
The subprograms were divided in a fashion which allowed for universal use. For example, GET
CAN could be called at any time by the main program when picking up a can. There are no
alternate subprograms, like GET CAN BLUE or GET CAN RED.

Other subprograms were written to perform actions such as dropping off cans, making turns
(90°, 180°), traveling to the cans and so forth. Because the group insisted upon using modular
programming techniques throughout, the construction of these subprograms was simplified greatly,
as it is relatively easy to follow from an outsider’s point of view. To view any and all of the
subprograms, refer to the file Subprograms.c file, which is included on the attached CD.

Because the subprograms were so important in the overall functioning of the Falcon,
extensive testing was completed to ensure that each subprogram was properly functioning. By
testing each device driver prior to constructing the subprograms, the group was able to more
accurately pinpoint the source of various coding problems. Serial communication was used in
conjunction with an interface called Kermit to monitor and debug the code as it ran on the Falcon.
The group was able to print various statements onto the monitor within the code to follow the
program and monitor the status of different variables. This was very helpful in pinpointing
problems and coding errors. Each subprogram was thoroughly tested before moving on to the next
subprogram and the main logic.

3.2 Main Logic

The purpose of the main logic is to map the path of the Falcon around the course based on the
various placements of the cans. The logic should consistently work for each and every possible can
placement scenario. When first designing the main logic, the group considered a few directions to
go. The first solution the group considered was devising a series of case statements to determine
the path of the Falcon. This would involve a series of very involved case statements, which would
limit the future possibilities of expanding the capabilities of the Falcon. Alternatively, the group
decided to be more original and create a logic scheme which would be much more robust and much
less convoluted.

This logic scheme does not define the path that each scenario would call for; conversely, the
path is calculated. In this system, each room is labeled 0—3, with the incoming and outgoing
rooms across from each other having the same value. The red room is 0, the blue room is 1, the
green room is 2, and the yellow room is3. When a blue can is detected and picked up, the Falcon
then knows that the can belongs in room 1. The Falcon is also always aware of the room number it
is currently in. The path is then calculated by subtracting the destination room from the current
room. For instance, if the blue can was found in room 0, then the path becomes -1 (0-1=-1). The
path values -3—3 all have instructions indicating exactly how to travel to the destination room. This
method provides an easy way to determine the path necessary to drop off the can.

Once the can has been dropped off, the main logic then determines which room, with a can,
is the closest. This is done using a similar subtraction method. Different variables indicate to the
Falcon which rooms have already been cleared and which rooms remain full. For a more in depth
look at the main logic, please refer to the file Main.c, which is included on the attached CD.

It is important to note that the main logic is very robust and could be expanded to include an
infinite amount of rooms. By using a mathematical approach to determining the path, the group has
avoided unnecessary case statements, which grow exponentially when more rooms and cans are

235

added to the course. Afier extensive testing, the main logic appeared to direct the Falcon in the
right direction 100% of the time. The only errors reported can be attributed to the inconsistencies in
the can color determination.

3.3 Optimization

Once it appeared that the subprograms and main logic were performing adequately, it was time to
optimize the Falcon to complete the course most efficiently. Many small optimization fixes were
implemented throughout the development of the drivers, subprograms, and main logic.
Additionally, the group made final touches on the subprograms to ensure that the Falcon would
complete the course in many trouble areas.

While the group attempted to increase the speed of the Falcon by increasing the voltage
provide to the servos, the Falcon actually became much more inconsistent and had problems
dissipating the heat provided by this increased voltage.

Other attempts to optimize the Falcon were aimed at improving any problem areas that the
Falcon had exhibited. For instance, on a few of the 90° turns, the Falcon was either over-rotating or
under-rotating, based on the point of detection of the intersection and the angle at which the Falcon
came into the intersection. To fix this, the group decided to abandon using only the encoders to
make the turns. Instead, the encoders were used in conjunction with the line following sensors.
The Falcon was instructed to turn until it found the line again. This fixed the occasional problem
where the Falcon would miss the line.

Another programming technique allowed the group to fine tune the Falcon much more
casily. Every constant, including those which determined the driving speed, turning angles, and
delay periods, were lumped together in the header file. It was very simple to make minor
adjustments to the speed and turns by merely accessing the header file and changing a single
number. Digging through the programs would have increased the complexity of making such a
minor change. While these changes were only minor, they allowed the group to have a great deal of
control over these very important variables.

4. Results: The Competition

On Saturday, April 8, 2006 the A.R.T.U. design group and the Falcon won 4™ place out of 37
registered teams in the IEEE Region V Robotics Competition. The Falcon was one of three robots
to successfully complete the course in both the regular round and challenge round.

26

the chal

lenge r und of the robotics competition

Figure 22: The Falcon loadin

4.1 Regular Round

In each round, the Falcon was allowed two runs of the course. In the regular round, the Falcon
failed to make a wide enough turn at an intersection half way through completing the course. The
design team had never observed this behavior in testing. After analyzing the video recording of the
run, the team decided to modify the line-sensor intersection detection software to allow for more
cases in which an intersection would be identified. During the second run of the first round of the
course, the Falcon successfully delivered all of the cans to their respective room in 125 seconds.
This time put A.R.T.U. info 6™ place in the regular round of the course. Only the top six teams
successfully completed the regular round of the competition, and cach of those teams (including
A.R.T.U.) advanced to the challenge round.

Figure 23: The Falcon failing to detect the red can

27

4.2 Challenge Round

In the Falcon’s first attempt of the challenge round, high intensity light from the skylight above the
challenge course interfered with the CMUCam?2 aboard the Falcon. This caused the Falcon to fail to
detect the red can. Figure 23 shows the Falcon failing to detect the red can during this run. In the
second run of the challenge round, a member of the audience blocked the interfering sunlight and
the Falcon successfully completed the course in 125 seconds. In both challenge round attempts, the
falcon successfully avoided the Barbie® dolls added to the course. The arrangement of cans and
dolls for the challenge round was kept the same for each team and is shown in Figure 24. The
Barbie® dolls, which are represented by diamonds, were placed far enough behind the cans that the
proximity sensors did not trigger and no obstruction avoidance was necessary.

i

4.
R o

Figure 24: Challenge Course Configuration

5. Conclusions and Recommendations

The Falcon competed in the 2006 Region 5 Conference and performed very well against other
teams from around the nation. The design fulfilled all criteria, and the final time of 2.08 minutes
was well under the 3 minute limit. All design criteria was met, and the project was a complete
success. Compared to other robots at the competition, the Falcon was fairly slow but very accurate.
The group noted several future improvements that would enhance the robots performance.

The most obvious improvement to the design would be to replace the servos with DC
motors, as they have much greater potential for faster speeds. Very few other robots used servos in
their drive systems, and the team realized that while servos are less power-consuming than motors,
speed was the most important aspect in the competition. The switch to DC motors would require
modifications to the hardware as well as the software, but it should be constrained to the driver
level, due to the modular design of the software. A valuable lesson learned is the importance of
modular programming, as it allows one problem to be fixed without causing errors in other systems.

Another significant improvement to the design would be to have an automatic calibration of
the robot. If the encoders could be used to steady and zero the drive sensors, and if the camera had
a method of automatically white-balancing itself, the robot could be much more self-sufficient.
Also, the regulators and camera seemed to be negatively affected by poor heat dissipation. The

28

longer the camera and robot ran, the less accurate it would become. Perhaps a fan or better quality
heat sinks could improve the design.

The group also learned many valuable lessons from mistakes that could be avoided in the
future. One suggestion is to double check all competition specifications to ensure that the test
course and robot are properly constructed. Similarly, it is not always a wise decision to rely on
open-source documentation for programs. The group chose an open-source program to program the
Robostix that claimed that it supported the programming cable in use. However, this was incorrect,
and a regulator on the board was destroyed, causing the group to need to reorder the processor.
This leads to the other suggestion of ordering parts early and ordering spare parts if the budget will
allow it. The dead processor caused a large delay in the software development, and a spare would
have been very helpful. The group also learned that hardware sometimes may have odd behaviors
that have to be accounted for, so being aware of the limitations of the hardware allows the software
to be more robust. Error correction is vital for getting the robot back on course if anything
unexpected occurs, although it is sometimes impossible to correct for every circumstance that may
occur.

These lessons were often discovered through numerous hours debugging software and will
be very valuable to each group member as they progress in their careers as engineers. The purpose
of senior design projects is not only to practice technical skills, but also to give students lessons on
the reality of errors and mistakes that will probably be encountered in their futures. This design
project was a great success, not only in the status earned at the competition, but also in the
knowledge gained by each group member that will assist them in all future endeavors.

6. References

[1] Robodyssey Systems, LLC, “Robotic Parts and Mechanical,” http://robodyssey.com/.

[2] Bartlett, Jonathan. 2006 IEEE Region 5 Student Robotics Competition Rules and Course
Description. http://www.2006ieeerSconference.com

[3] Savage Innovations, “OOPic The Hardware Object,” http://www.oopic.cony/.

[4] Ridgesoft, “IntelliBrain,” http://www.ridgesoft.com/ intellibrain/intellibrain.htm.

[5] Gumstix, “Waysmall Computer Systems,” http://www.gumstix.com/ spexwaysmalls. html

[6] Acroname Easier Robotics, http://www.acroname.com/

[7] RoboticsConnection.com, http://www.roboticsconnection.com/

[8] Allied Vision Technologies, “AVT Marlin,” http://www.kamery.sk/avt.html

[9] The Robotics Institute at Carnegie Mellon University, “The CMUCam2,”
http://www.cs.cmu.edu/~cmucam/cmucam2/

[10] RVSI Acuity CiMatrix, “Machine Vision Products,”
http://www.rvsi.net/HawkEye%201610.html

[11] The Robotics Institute at Carnegie Mellon University, “CMUcam?2 Vision Sensor User Guide,”
http://www.cs.cmu.edu/~cmucam/cmucam2/downloads.html

[12] The Robotics Institute at Carnegie Mellon University, “CMUcam2 Graphical User Interface
Overview,” http://www.cs.cmu.edu/~cmucam/cmucam2/downloads.html

[13] Jameco Robot Store, “Motors and Mechanical Hardware,”
http://www.robotstore.com/catalog/list.asp?cid=22

[14] Futaba, “Servos,” http://www.futaba-rc.com/servos/

[15] Rose, Alexander, “Batteries,” http://www.longnow.org/rhino/BatteryPrimer.htm

29

Appendix A: User’s Guide

1. Place the Falcon inside of ‘Red’ Room (shown as Room 1 below in Figure A.1), and center the
line sensors over the line as seen in Figure A.2.

Figure A.1 Course Layout Figure A.2 Centered Robot

2. Place one bright green, blue, red, or yellow can in each of the rooms on the opposite side of the
course, shown above in Figure A.1 as rooms A, B, C, and D. The order of the can placement does
not matter, the robot should be able to sort any arrangement.

3. Hold medium grey calibration sheet in front of the camera at an angle of about 45 degrees, as
seen in Figure A.3, while performing step 4,

Figure A3 Camera Calibration

4. Turn on camera power, board power (blue wires), and motor power (orange wires) in that order.
See Figures A.4 and A.5 for reference.

7 .
Figure A.4 Camera Switch Figure A.5 Board and Servo Switches

5 Wait for the blue LED to turn on and then off before removing the grey sheet. The Falcon will
move on his own, so stand back to remove shadows and watch it sort the cans.

30

Appendix B: Budget

Table B.1 Wages for Team Members

Hours Wage Hours Wage Hours Wage Hours Wage
as a* (" @ (3rd (3rd " (4th
quarter) | quarter) | quarter) | quarter) | quarter) | quarter) [quarter) quarter)
Cary Wong 56 $30/hr | 32 $20/hr | 66.5 $20/hr | 43 $20/br | $4,510
Michael Hohimer | 72 $20/hr | 51 $20/hr | 148 $30/hr 106 $20/hr | $9,020
Adam Crouch 59 $20/hr | 43.5 $30/hr | 76.7 $20/hr | 76.8 $20/hr | $5,555
Brandi House 61 $20/hr | 53.5 $20/hr 114.5 $20/hr 101 $30/hr | $7,610
Total $26,695
Table B.2 Purchases for Robot
Anticipated | Anticipated | Actual Costs
Store Item Quantity Costs Quantity Incurred
Acroname CMUcam2+ 1 $200.00 1 $175.95
TTL to Serial Converter 1 - 1 $23.95
Fairchild QRB1134 IR
Mark IIT T — 7 $20.00 7 $10.50
3-pin JST Cable for Sharp
Sensors (12 inch) 3) > $3.30
Sharp . GP2D120 Distance 3 $35.00 3 $24.75
Measuring Sensor
Mighty Micro Ball-bearing-
Metal Gear Servo Motor 2 $100.00 Z $18:00
Robotics 2.55" Botster Robot Wheels
Connection and Encoder Module Combo L $50.00 & $49.67
Gumstix Waysmall 1 $120.00 1 $129.00
Robostix 1 $80.00 3 $176.28
Home Depot | Mock Up Course Supplies - $60.00 - $62.78
Radio Shack | Batteries and Accessories 1 $60.00 4 $98.38
Michael's Can Manipulator 1 $50.00 il $3.23
Miscellaneous - - - $48.96
Body 1 $125.00 1 $0.00
Total $900.00 $864.75

31

Appendix C: Timeline

[Aug14,'05[Sep 11,05 [Oct 9,05 |Nov 6,05 |Dec4,05 [Ja n 06 | Jan 29,'06 |Feb 26,06 | Mar 26, 06 | Apr 23,'06 | May 21,06 [Jun 16,08 [Jul 16,'06 |
[T[sIwWISTT[M[F[T[S[wW ST M[FIT ISIWISITIMIFIT[SiWISITIM\FHISIWiSIT
-——' Senior Design IEEE Robot Competition

=

m Project Design
PR ecify Parts

Urder Varts

onent Develppment
andi) !

0 lmlty S:nsors (Adaml
HCPU Seﬂlp (Blamll & Michael)

m Lemmng !he Fmgramm[ng Emumnment (Brand' i & M‘chael)
m Build Yed; Couree (F dam & C:Iry)
m Build Rohot Prototype (Adam & l:aly)
‘ Hardware!Snﬂware Informn(lon Exchange antl Planning Meeting
~ Indimdunl suhsystem Testmg and Prototyping
Vision Syﬂ‘f:m lBr:hndi[
Drive Syste{n (Mic)laell
58 Proxrrmly S‘mnanrs (Adam}
7 Construct Rolwt Body Frototype (Cary)
7 tsrlppmg Mécmm#m
ORI lnteimllon of Subsystems
m C‘onmuct ﬁml Roho‘l Body
Sprmg llreulq
Testmg qml ﬂplimlzatmn
¢ Complete cump:e'tluon Roboat
e Design Competition
Y Final Desigljl Report
‘ ..' Final Design Presentation

32

Appendix D: Division of Labor

Cary Wong was responsible for primarily hardware selection and body construction.
Optimizing the weight of the body and spacing of components resulted in a compact design. He
constructed the mock-up course for testing, and he also made component upgrades and adjustments
to maintain the structural integrity of the Falcon. He contributed a total of 197.5 hours to this

project.

Brandi House was mainly responsible for writing and debugging sofiware. Her most
significant contributions were in the developments for the camera and image recognition. She
contributed a total of 330 hours to the project.

Michael Hohimer made significant contributions in sofiware development, understanding
the embedded architecture, and navigating the Linux programming environment. His specialty was
mainly the drive system, where he implemented PID control for line-following and camera tracking.
His time contribution was a mere 377 hours.

Adam Crouch worked in both hardware and software, though much of his time was spent
developing the main logic and proximity sensor Barbie detection code. He worked with all major
software components to make improvements and debug problems. He contributed 256 hours to the

project.

33

Appendix E: Design Concepts
1. Establishment of Design Specifications and Criteria

The design specifications and criteria are set forth in the 2006 IEEE Region V Student
Robotics Competition Rules and Course Description document (revision 3). This document
specifies the scope of the project, as well as the specifications for both the robot and the
competition course.

2. Analysis

Prior to constructing the robot in its entirety, analysis will be completed on the various
subsystems of the robot by repeated testing and simulation. Each component’s advertised
specifications will be tested independently. Software drivers for each system can only be
tested with the involvement of the processor. This analysis will enable the group to have a
firm understanding of the various subsystems prior to integration. Once all the subsystems
perform acceptably on their own, they will be integrated with each other through the central
processor of the robot.

3. Synthesis

The subsystems will be integrated together based on the knowledge gained through
analyzing the individual subsystems and their communication abilities. While synthesis of
the robot’s physical components is important, the individual software that controls each one
of these systems must also be integrated in a non-destructive fashion. For instance, sub-
systems that use the same processor resources can not run simultaneously, and the processor
resources must be freed before another sub-systems can use them.

4. Health and Safety

According to the rules of the competition, the robot will receive time penalties for harming
the “human workers’ on the course. The robot must not damage the course. If a judge
decides it is unsafe to the course and the people around it, the robot will be disqualified. In
an industrial setting, the health and safety of human workers in the proximity ought to be of
the utmost concern. Health and safety must be taken into account in component selection
such as batteries, body material, and can manipulator.

5. Social, Political and Environmental Considerations

The course simulates an automated warehouse, and if this scenario were to become a reality,
many jobs could be replaced. This has been an increasing concern for manual workers, as
robotics continues to become more sophisticated and readily available. The robot must be
able to coexist along with coworkers, human or robot. Component selection, such as battery
choice, must take into account environmental regulations.

34

6. Construction

The construction of the robot will encompass integrating various electrical subsystems
together. This will occur only after each subsystem has been analyzed and undersiood. A
body will be shaped that will house the many components of the robot. This body must also
be optimally designed for the given design specifications. The body construction would
need to be easily repeatable if this robot were to be manufactured for industrial purposes.
Refer to Section 2.1 for a more thorough discussion on the body design.

7. Testing

Much of the testing of the robot will be done on the various subsystems of the robot. Each
subsystem must be evaluated to better understand its functionality and characteristics. In
addition to testing the mentioned subsystems, extensive testing will be necessary in the
actual programming used to control the central processor in the robot. Oscilloscope traces
will also be used to make sure the proper signals are being sent to and received from each
component. Although computer simulation of the robot’s systems would be helpful, the
development tools were infeasible to implement with the given budget and time constraints
of the project.

A mock-up course will be built that exactly matches the design competition specs provided.
The robot will then undergo a series of tests to determine whether or not it will be able to
perform as expected. Each of the subsystems will again be critically monitored to determine
their performance. Other aspects that will be closely watched are the speed and efficiency
of the robots movements as well as the structural integrity of the body itself. This testing
will indicate the strengths and weaknesses of the robot and lead to the modification and
optimization of the design. Final testing will occur at the competition site using the official
cans and course. This permits the group to calibrate the camera to account for any

discrepancies.
8. Evaluation

As mentioned above, each component will be evaluated to determine its function and
capabilities. Each subsystem must be capable of performing its assigned task effectively. In
addition to evaluating the individual systems, the robot will be evaluated in its entirety.
Doing this will allow the group to determine whether or not the robot will be able to perform
well enough to not only meet the criteria of the competition, but subjugate the rest of the
competition with despotic impunity.

9. Communication
Over the course of two semesters, the design group will communicate its progress by means
of four formal presentations and five reports. The culmination of the group's effort will be

displayed at the IEEE Region V Robotics Competition which will be held in San
Antonio, Texas on April 8, 2006.

35

10. Mathematical Modeling

During system integration, calibration may be necessary. To compensate for errors,
mathematical modeling may be useful. Mathematical algorithms may be necessary in path
modeling and route optimization. This will enable the robot to carry out its mission quickly
and efficiently. Dedicated software for each component makes use of mathematical
equations that reduce sensor data into usable inputs to the robot’s main program.

11. Chemical, Electrical and Mechanical Engineering Analogs

The line following system and the image recognition system both take advantage of digital
PID feedback control that can be modeled using a typical spring mass damper analog.

12. Optimization

Optimization will occur both in the programming and final testing stages. Through testing,
the programming code will be optimized to enable the robot to think efficiently and quickly.
Also, once the robot is in its final stages, a great deal of optimization to the robot’s software
will occur based on results from testing on the mock course.

13. Ethics

This design project revolves around a competition. Social responsibility implies that the
group ought to behave ethically and not attempt to sabotage others’ projects or be involved
with any similar deviant behaviors. The internet provides the group with many useful
programming and implementation examples that must be referenced if used. Additionally,
the group needs to investigate copyright and intellectual property limitations on the use of
these resources.

14. Aesthetics

This robot does not have to be aesthetically pleasing; it just has to be functional. However,
time permitting, the group would like to have the robot look its best on the competition day.
In this situation, functionality takes priority to aesthetics. For instance, the robot must be
assembled in an organized fashion in order to allow expedient access to components for
maintenance purposes or optimizations. However, the addition of original stencils enhanced
the personability of the Falcon.

15. Robust Design

The robot must not fall apart during the competition if it hits a small bump, as was an
obvious oversight by several other design teams at the competition. The robot must also be
able to correct itself if it deviates from the course. All the components must also endure the
rigors of frequent testing procedures. The fidelity of the sensor inputs to the processor
requires that these sensors must be aligned properly. Therefore, they must be attached such
that they will not misalign at any point during the competition. The body must be able to
endure any unexpected turbulence during either operation or transportation. It is also
important that all electrical connections are as secure as possible while still modifiable up to

36

	Autonomous Robotics at Trinity University (A.R.T.U.) IEEE Robotics Competition
	Repository Citation

	tmp.1626886339.pdf.srdsv

