
Trinity University Trinity University 

Digital Commons @ Trinity Digital Commons @ Trinity 

Neuroscience Honors Theses 

5-2021 

The Effect of Acute Cocaine Exposure on NMDA Receptor The Effect of Acute Cocaine Exposure on NMDA Receptor 

Subunits in Pedunculopontine Nucleus to Substantia Nigra Pars Subunits in Pedunculopontine Nucleus to Substantia Nigra Pars 

Compacta Synapses Compacta Synapses 

Samuel Christian Rueter 
Trinity University, s.c.rueter@gmail.com 

Follow this and additional works at: https://digitalcommons.trinity.edu/neuro_honors 

Recommended Citation Recommended Citation 
Rueter, Samuel Christian, "The Effect of Acute Cocaine Exposure on NMDA Receptor Subunits in 
Pedunculopontine Nucleus to Substantia Nigra Pars Compacta Synapses" (2021). Neuroscience Honors 
Theses. 3. 
https://digitalcommons.trinity.edu/neuro_honors/3 

This Thesis campus only is brought to you for free and open access by Digital Commons @ Trinity. It has been 
accepted for inclusion in Neuroscience Honors Theses by an authorized administrator of Digital Commons @ 
Trinity. For more information, please contact jcostanz@trinity.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trinity University

https://core.ac.uk/display/475607523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/neuro_honors
https://digitalcommons.trinity.edu/neuro_honors?utm_source=digitalcommons.trinity.edu%2Fneuro_honors%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/neuro_honors/3?utm_source=digitalcommons.trinity.edu%2Fneuro_honors%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu


The Effect of Acute Cocaine Exposure on NMDA Receptor Subunits in Pedunculopontine Nucleus

to Substantia Nigra Pars Compacta Synapses

Sam Rueter

A department honors thesis submitted to the
Department of Neuroscience at Trinity University

in partial fulfillment of the requirements for graduation with departmental honors

DATE April 30th, 2021

Dr. Gerard Beaudoin Dr. Kimberley Phillips    _
Thesis Advisor Department Chair

__________________________

Michael Soto, AVPAA



2

Student Agreement

I grant Trinity University (“Institution”), my academic department (“Department”), and the Texas Digital
Library ("TDL") the non-exclusive rights to copy, display, perform, distribute and publish the content I
submit to this repository (hereafter called "Work") and to make the Work available in any format in
perpetuity as part of a TDL, digital preservation program, Institution or Department repository
communication, distribution or preservation effort.

I understand that once the Work is submitted, a bibliographic citation to the Work can remain visible in
perpetuity, even if the Work is updated or removed.

I understand that the Work's copyright owner(s) will continue to own copyright outside these
non-exclusive granted rights.

I warrant that:

1) I am the copyright owner of the Work, or
2) I am one of the copyright owners and have permission from the other owners to submit the Work,

or
3) My Institution or Department is the copyright owner and I have permission to submit the Work, or
4) Another party is the copyright owner and I have permission to submit the Work.

Based on this, I further warrant to my knowledge:

1) The Work does not infringe any copyright, patent, or trade secrets of any third party,
2) The Work does not contain any libelous matter, nor invade the privacy of any person or third party,

and
3) That no right in the Work has been sold, mortgaged, or otherwise disposed of, and is free from all

claims.

I agree to hold TDL, Institution, Department, and their agents harmless for any liability arising from any
breach of the above warranties or any claim of intellectual property infringement arising from the
exercise of these non-exclusive granted rights.

I choose the following option for sharing my thesis (required):

[  ] Open Access (full-text discoverable via search engines)
[X] Restricted to campus viewing only (allow access only on the Trinity University campus via
digitalcommons.trinity.edu)



3

The Effect of Acute Cocaine Exposure on NMDA Receptor Subunits in Pedunculopontine Nucleus

to Substantia Nigra Pars Compacta Synapses

Sam Rueter

Spring 2021

Beaudoin Lab

Trinity University



4

Abstract

The substantia nigra pars compacta (SNc) is implicated in cocaine addiction due to

increased NMDA receptor-mediated current found after acute cocaine exposure. The present

study seeks to determine if this increase is driven by a subunit change that decreases

magnesium blockage of the receptor and thus increases current. To test this, NMDA

receptor-mediated current was isolated and recorded at holding voltages from -80 mV to +40

mV. It was found that at negative holding voltages, NMDA receptors conduct more current,

potentially indicating that a subunit change occurs. However, more data collection will be

needed to affirm these results. Continued support of a subunit change hypothesis would give

researchers more knowledge on the cellular mechanisms of early-stage cocaine addiction, and

provide guidance when investigating potential treatment options.
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Literature Review

Substance abuse disorder, including cocaine addiction, is a debilitating and increasingly

common condition that leads to serious health complications and even death. The National

Institute on Drug Abuse found that the number of deaths by cocaine overdose has been rising

annually for the last decade, with 15,883 deaths in 2019 (National Institute on Drug Abuse,

2021). The opioid crisis has exacerbated existing problems with cocaine addiction, with

overdose due to cocaine mixed with opioids, namely fentanyl, sharply increasing annually since

2014 (National Institute on Drug Abuse, 2021). In addition to overdose, cocaine use increases

risk to a variety of health conditions such as Parkinson’s disease, HIV, hepatitis, and

drug-induced psychosis (National Institute on Drug Abuse, 2021). These health concerns are

particularly alarming, given that there are currently no drug treatments for cocaine addiction or

cocaine overdose (National Institute on Drug Abuse, 2020). However, several behavioral

interventions are currently in practice. Many programs use contingency management (CM),

where prizes that promote healthful lifestyles (ex: a gym membership) are offered as prizes for

cocaine abstinence (National Institute on Drug Abuse, 2016). Other common methods include

cognitive-behavioral therapy (CBT), which helps individuals better understand their relationship

with cocaine improve coping skills (National Institute on Drug Abuse, 2021). Despite these

methods’ success, the continued high overdose and relapse rate demonstrates the need for

novel treatment options.
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The lack of adequate treatment emphasizes the need for further research into the

mechanisms behind cocaine addiction. For several decades, the “dopamine hypothesis” has

been the predominant hypothesis behind the cellular mechanism for cocaine addiction (Kuhar

et al., 1991). It is believed that cocaine binds to dopamine transporters responsible for

dopaminergic reuptake. This increases synaptic levels of dopamine and thus increases

neurotransmission, causing a pleasurable, rewarding feeling (Kuhar et al., 1991). While less

researched, norepinephrine and serotonin have also been shown to undergo similar reuptake

blockage by cocaine (Einhorn et al., 1988) (Figure 2). However, research finding that Dopamine

antagonists reduced cocaine reinstatement led to dopamine being considered the main driver

of addiction (Woolverton & Virus, 1989).

Research has suggested that cocaine’s blockage of dopamine reuptake deregulates

dopamine currents even after reuptake functionality returns. Despite the short-term increase in

dopamine binding, continued cocaine exposure leads to dopamine depletion, marked by

lowered endogenous dopamine levels and reduced dopamine binding affinity to postsynaptic

targets (Martinez et al., 2009). This has led some researchers to subscribe to the “dopamine

depletion hypothesis”, which states that just as increased dopamine transmission gives cocaine

its euphoric effect, subsequent dopamine depletion causes feelings of withdrawal (Dackis &

Gold, 1984). Such a neurotransmitter-driven model supports cocaine to be a physical addiction

more than a psychological one (Dackis & Gold, 1984). This makes a study of cocaine’s cellular

effects particularly important, with understanding of cocaine’s effects potentially leading to

effective treatments for cocaine addiction.
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Cocaine has also been shown to become a learned reward after repeat cocaine use,

providing insight into the mechanisms of cocaine addiction. Learning also often leads to

associated reward cues, which leads to cue-induced relapse further complicating treatment (Ito

et al., 2000). Dopaminergic currents have a baseline level of firing that increases after

administration of cocaine (Morikawa & Paladini, 2011). However, classical conditioning can

attach this increase in dopaminergic firing to a neutral stimulus, with a drop off in firing if the

presumed cocaine reward is not subsequently delivered (Morikawa & Paladini). This alteration

in dopaminergic firing independent of a physiological reaction to cocaine is an example of

long-term changes in plasticity from cocaine, and provides insight towards a model of cocaine

addiction.

A growing list of brain regions have been implicated in the plasticity and reward learning

that occurs after cocaine exposure. The most well-researched regions are those in the

mesolimbic dopamine system, including the ventral tegmental area, substantia nigra, and

amygdala (Thomas et al., 2008). Several of these midbrain structures are implicated in the

“spiral to addiction”, a hypothesis on what leads to the induction of cocaine-seeking behavior

(Lüscher & Bellone, 2008). The “spiral” describes the output of dopaminergic current from the

VTA travelling to the NAc shell, with the NAc shell subsequently projecting GABAergic current

back to the VTA. After carrying current through a GABAergic interneuron, the VTA then projects

more dopaminergic current, this time to the NAc core. The NAc core then recruits the SNc into

the spiral with a GABAergic projection. The spiral ends when the SNc subsequently recruits the

dorsal striatum with dopaminergic current (Lüscher & Bellone, 2008). The recruitment of the

dorsal striatum is believed to mark the onset of cocaine-seeking behavior in mammals, including
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humans (Lüscher & Bellone, 2008).  This hypothesis makes the midbrain regions in question of

extreme interest for cocaine research. Other regions, including the pedunculopontine nucleus

and subthalamic nucleus, also became focuses of cocaine research due to their glutamatergic

currents towards structures associated with these “spiral” regions (Morikawa & Paladini, 2011),

(Beaudoin et al., 2018). With the growing complexity of scientific understanding on how each

region of the brain is affected by cocaine exposure, as well as the relationships between regions,

it is helpful to review each region individually.

Amygdala

The amygdala is a limbic system structure most often associated with emotional

processing (Nestler. 2001). The amygdala has long been hypothesized to have some connection

to addiction, but researchers have only very recently begun uncovering the details of the

relationship. Previous research showed that individuals who use cocaine had significantly lower

amygdala volume when compared to the general population (Makris et al., 2004). While the

exact cause of the volume difference is unclear, researchers hypothesized that it was due to

natural differences in amygdala size that caused predispositions for cocaine addiction (Makris et

al., 2004). However, it is not clear whether amygdala size predicts propensity to try cocaine or

propensity to begin habitual use. The amygdala has also received attention in addiction

research due to its projections to the NAc, a region frequently associated with addiction and

reward (Nestler, 2001).

Over a decade later, the amygdala-NAc pathway would become the focus of promising

addiction research. Researchers found that optogenetically activating amygdala-NAc currents
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could reduce learned and unconditioned alcohol consumption (Millan et al., 2017). This

suggests the amygdala potentially exhibiting a moderating effect on learned rewarding behavior.

While our current understanding restricts this phenomenon to alcohol use, future research

could determine if this effect is also observed with cocaine and other drugs of misuse. If this is

the case, we would also have a better understanding of the relationship between amygdala size

and propensity for cocaine addiction.

Dorsal Striatum

The dorsal striatum is a subsection of the striatum containing the caudate nucleus and

the putamen (Vanderschuren et al., 2005). The dorsal striatum has been heavily implicated in

reward learning, particularly in cases of cocaine addiction. In particular, the dorsal striatum has

been heavily implicated in later stages of addiction, including relapse. Dopamine release occurs

in the dorsal striatum in response to drug-associated cues and subsequent cocaine-seeking

behavior, implicating the region in cue-induced relapse (Ito et al., 2002). Researchers believe

that the recruitment of the dorsal striatum from intertwined cocaine-sensitive midbrain

structures marks the onset of cocaine-seeking behavior in animals (Lüscher & Bellone, 2008).

These regions consist of the VTA, NAc core and shell, and SNc, with ultimate recruitment

occurring from dopaminergic SNc current (Lüscher & Bellone, 2008). Additionally, research

showing that inhibition in the region induced by GABAergic currents leads to reduced drug

relapse of cocaine-seeking behavior (Fuchs et al., 2006). This is potentially through GABAergic

mediation of dopaminergic currents in the dorsal striatum, which is supported by the finding

that direct inhibition of dopamine receptors in the dorsal striatum also leads to reduced
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cocaine-seeking behavior (Vanderschuren et al., 2005). Overall, current understanding of the

dorsal striatum depicts the region as an important factor in the late stages of cocaine addiction,

largely mediated by dopaminergic current. Due to the complicated nature of well-established

cocaine addiction, including high likelihood of relapse, understanding of the midbrain

dopaminergic structural changes that lead to recruitment of the dorsal striatum are particularly

promising topics of future research.

Hippocampus

The hippocampus, like the amygdala, is a limbic system structure associated with

emotional processing and memory (Nestler, 2001). The hippocampus has particularly strong

associations with learning and demonstrates high synaptic plasticity, making its relevance to

addiction intuitive (Kutlu & Gould, 2016). However, unlike the amygdala, hippocampal volume

does not vary significantly between individuals who use cocaine and the general population

(Makris et al., 2004). Interestingly, researchers have noted that use of cocaine and other

stimulants leads to increased memory-formation related activity (Kutlu & Gould, 2016). This

reduces after use stops, which researchers have noted as evidence of a self-medication model

for addiction. It is believed that, after tolerance builds and the initial euphoric effects of cocaine

fade, individuals who use cocaine continue to avoid the negative symptoms when neural activity

reduces due to lack of cocaine (Kutlu & Gould, 2016).

Chronic cocaine exposure, or exposure in high doses, leads to deficits in working

memory caused by hippocampal cell death and decreased neurogenesis (Domínguez-Escribà et

al., 2016), (Sudai et al., 2010). This cell death and reduced neurogenesis is largely specific to the
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dentate gyrus, a subregion of the hippocampus (Domínguez-Escribà et al., 2016), (Sudai et al.,

2010). It has not been explicitly explained how this apparent cell death and decrease in

neurogenesis fits with the apparent lack of change in hippocampal volume after cocaine

exposure.

Nucleus Accumbens

The NAc is an input structure of the basal ganglia, known to receive inputs from a

plethora of regions, including but not limited to the amygdala, Prefrontal Cortex (PFC), VTA,

substantia nigra, and hippocampus (Scofield et al., 2016). The NAc is considered the center to

reward circuitry and addiction, including cocaine addiction (Koob & Bloom, 1988). The region is

divided into the NAc core and NAc shell, both of which are integral to the “spiral to addiction”

do to their reception of dopaminergic inputs from the VTA and transmission of GABAergic

currents to the VTA and SNc (Lüscher & Bellone, 2008). Dopaminergic transmission to the NAc

has long been thought to be the primary cause of cocaine addiction and relapse (Caine & Koob,

1994). However, dopamine is no longer believed to be the only relevant neurotransmitter. As

previously mentioned, GABAergic inputs appear to play a role by connecting key regions

affected by cocaine exposure (Lüscher & Bellone, 2008). Glutamate transmission has also been

shown to mediate cocaine addiction and relapse (Cornish & Kalivas, 2000). Overall, it is arguably

the most important region for addiction, with most other relevant regions contributing to

addiction at least in part through the NAc.

The NAc also seems to undergo synaptic plasticity in response to cocaine exposure.

Chronic exposure to cocaine has been shown to increase the number of dendritic branches in
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NAc neurons (Robinson & Kolb, 1999). These dendritic changes also appear to be persistent,

remaining at least one month after discontinuation of cocaine treatment (Robinson & Kolb,

1999). There is also evidence of acute cocaine exposure altering NAc pathways, particularly

through alterations to NMDA receptors. NMDA receptors generally contain four subunits, two

obligatory NR1 subunits, and then two other subunits, most commonly matching NR2 subunits

(Tong et al., 2008). NR2 subunits can be further divided into subtypes, known as NR2A and

NR2B. In the NAc shell, the outer region of the NAc, the NR2A/NR2B ratio changes due to an

increase in relative NR2B levels, while NR2A levels remain constant (Huang et al., 2009). Total

levels of NR1 also do not change, but excess NR1 travels to the synapse alongside novel NR2B

subunits to create novel NMDA receptors (Huang et al., 2009). Researchers. proposed that this

may potentially be the mechanism resulting in the creation of silent synapses after exposure to

cocaine (Huang et al., 2009). Further research is needed to determine if similar processes take

place in other brain regions.

Pedunculopontine Nucleus

The pedunculopontine nucleus (PPN) is a mesencephalic locomotor region (MLR)

structure in the upper brainstem (Geula et al., 1993). The PPN is oftentimes associated with

addiction due to its glutamatergic projections to the SNc and VTA (Morikawa & Paladini, 2011).

The PPN is also the sole cholinergic input to the midbrain, which has similarly granted it

attention in addiction research (Dautan et al., 2016). However, cholinergic inputs were not

found to be activated during reward learning (Lanca et al., 2006), causing a shift in focus to

GABA-ergic and glutamatergic inputs (Corrigall et al., 2001).
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The PPN is not the sole glutamatergic input to the SNc, with other notable inputs

including the dorsal raphe (DR) and subthalamic nucleus (STN) (Morikawa & Paladini, 2011).

However, only The PPN’s glutamatergic inputs to the SNc have demonstrated synaptic plasticity

after cocaine exposure (Beaudoin et al., 2018). It was found that NMDA receptor-mediated

current increases in PPN-SNc synapses after acute cocaine exposure, along with property

changes to the current (Beaudoin et al., 2018). These property changes included a reduced rise

time and decay time of current (Beaudoin et al., 2018). These property changes are particularly

interesting, as they suggest a change in NMDA receptors that is not limited to quantity of

receptors or availability of binding. Instead, changes in property of current suggests possible

changes to the properties of the receptor. Further research is needed to investigate the nature

of such potential property changes.

Prefrontal Cortex

Like the NAc, the PFC is a forebrain structure that is linked to addiction due to its

reception of major dopaminergic currents from regions associated with addiction (Scofield et

al., 2016). As with the NAc, the PFC undergoes large increases in dopamine levels after cocaine

exposure, and is believed to contribute to the euphoric state that cocaine produces (Scofield et

al., 2016). Furthermore, the layer V pyramidal cells in the medial PFC undergo an increase in the

number of dendritic spines and branches after cocaine exposure (Robinson & Kolb, 1999). This

change is applicable to both apical and basilar dendrites (Robinson & Kolb, 1999).

The PFC also appears to respond to cocaine through changes to the NMDA receptors.

However, unlike the NAc, the exact nature of these changes have appeared to be inconsistent.
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Researchers have independently found both increases and decreases in NMDA receptor subunit

expression and NMDA receptor ligand binding (Ortinski, 2015). The one constant, however, is

that these changes to NMDA receptor activity in the PFC return to baseline shortly after cocaine

withdrawal (Ortinski, 2015). Overall, more research is needed to bring understanding of the

PFC’s contribution to addiction to the level of other regions.

Ventral Tegmental Area

The ventral tegmental area (VTA) is a midbrain structure that is most commonly

implicated in addiction due to its dopaminergic inputs to both the PFC and the NAc (Nestler,

2001). Furthermore, the VTA receives glutamatergic and GABAergic inputs back from the PFC

and NAc, respectively (Morikawa and Paladini, 2011). Other notable projections to the VTA

include glutamatergic inputs from the pedunculopontine tegmental nucleus and laterodorsal

tegmental nucleus, GABAergic inputs from the rostromedial tegmental nucleus and ventral

pallidum, and norepinephrine inputs from the locus coeruleus (for a full review, see Morikawa

and Paladini, 2011 & Uchida et al., 2012). Such an extensive network of connections, as well as

its strong dopaminergic currents to regions associated with reward, have made the VTA a focus

of extensive addiction research (Beaudoin et al., 2018).

The VTA’s dopaminergic currents have also been shown to be influenced by cocaine.

After a single cocaine exposure, the ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) receptor to N-methyl-D-aspartate (NMDA) receptor mediated current from the

VTA’s glutamatergic inputs increased significantly (Ungless et al., 2001). This alteration was

shown to not occur in the hippocampus or with GABAergic neurons in the VTA, suggesting that
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the effect may be unique to dopaminergic neurons in the VTA (Ungless et al., 2001).

Furthermore, inhibiting NMDA receptor-mediated current suppressed the cocaine-induced

potentiation of AMPA receptor-mediated current, suggesting that NMDA receptors, while

apparently unaffected, played an important role in the process (Ungless et al., 2001). Further

research revealed that AMPA/NMDA receptor-mediated current ratio changes were not

constant in all DA VTA neurons, but instead varied by cell terminal location (Lammel et al.,

2011). Cell terminal location also was found to determine AMPA/NMDA receptor-mediated

current ratio sensitivity to cocaine, with the increased AMPA/NMDA receptor-mediated current

ratio reported by Ungless et. al only occurring in cells projecting to the NAc (Lammel et al.,

2011).

Research has also been conducted to determine the cellular mechanisms causing the

altered AMPA/NMDA receptor-mediated current ratio. Researchers identified a subunit change

in NMDA receptors, where a subunit composition of two NR1 subunits, one NR2 subunit, and

one NR3 subunit is found at higher frequencies (Yuan et al., 2013). NMDA receptors are most

commonly composed of two NR1 subunits and two NR2 subunits (Yuan et al., 2013).

Overall, the VTA and its related regions have been shown to play an important role in

addiction. The acute changes that occur to the region's AMPA receptor-mediated current

suggest that the VTA may be particularly important for early stages of addiction. Continued

research has supported the initial findings of an increased AMPA receptor-mediated current,

while adding more nuance by identifying specific pathways where it occurs and providing some

evidence of the cellular mechanisms behind it.
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Substantia Nigra

The substantia nigra (SN) is a midbrain structure composed of two distinct subregions,

the substantia nigra pars reticulata (SNR) and substantia nigra pars compacta (SNc), with

GABAergic inputs communicating between the two subregions (Morikawa & Paladini, 2011).

The SNc carries dopaminergic current to the striatum, meditated by inputs from several regions,

many of which, such as its glutamatergic input from the pedunculopontine nucleus (PPN), are

shared with the VTA. (Morikawa & Paladini, 2011). The SNc is also implicated in addiction

research due to its role in the “spiral to addiction”, receiving GABAergic inputs from the NAc

core (Lüscher & Bellone, 2008). Perhaps more importantly, the SNc is responsible for recruiting

the dorsal striatum, which is believed to mark the onset of habitual cocaine-seeking behavior in

animals (Lüscher & Bellone, 2008).

Historically, the SNc has not received the same focus as the VTA in addiction research

(Wise & Koob, 2013). This is in part because early experiments testing for similarly altered

AMPA/NMDA receptor-mediated current ratio changes after cocaine exposure found negative

results (Ungless et al., 2001 & Lammell et al., 2011). However, the methodology used was a

relatively crude form of electrical stimulation that could not specifically stimulate individual

currents (Beaudoin et al., 2018). Due to optogenetic activation, researchers are now able to

individually activate currents. Using this technology, this lab found that the SNc dopaminergic

cells receiving glutamatergic input from the PPN experienced a decreased AMPA/NMDA

receptor-mediated current ratio after cocaine exposure (Beaudoin et al., 2018). Cells receiving

glutamatergic inputs from the dorsal raphe and subthalamic nucleus were unaffected (Beaudoin

et al., 2018). Notably, the changes in PPN-SNc synapses contrasted changes found in the VTA,
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where an increased AMPA/NMDA receptor-mediated current ratio was observed (Ungless et al.,

2001).

Like with the changes found in VTA, researchers found that the ratio change in the SNc

were caused by changes in NMDA receptors (Beaudoin et al., 2018). However, the cause of the

increased NMDA receptor-mediated current is not clear. There are several potential hypotheses,

including an increase in NMDA receptors, a centralization of NMDA receptors to increase ligand

blocking, an increase in terminals interacting at the synapse, or a change in NMDA receptors’

subunit composition (Figure 1). It is worth noting that, in addition to increased NMDA

receptor-mediated current, there were changes to NMDA receptor-mediated current

properties, namely a decrease in current rise time and decay time (Beaudoin et al., 2018). A

change in receptor properties suggests that cocaine exposure leads to alterations in the

receptor itself, not merely an increase in ligand binding. This lowers interests in hypotheses of

increased or localized NMDA receptors and suggests a heightened possibility of a subunit

change.

It benefits to expand on the hypothesis of a subunit change, as it may not be

immediately apparent why changing a NMDA receptor subunit would increase NMDA

receptor-mediated current. NMDA receptors contain four subunits, two obligatory NR1 subunits

along with two other subunits, most commonly a pair of NR2 subunits (Tong et al., 2008).

However, researchers have recently identified an additional subunit, NR3, which occurs

naturally in low quantities during early development (Wong et al., 2002). Interestingly,

researchers found that NR3 levels significantly increase after cocaine exposure in the VTA (Yuan

et al., 2013). This introduces the possibility that cocaine exposure causes NR3 subunits to
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replace some NR2 subunits in the SNc as well. If this subunit change occurs, it would result in an

alteration of NMDA receptor shape, which could in turn result in reduced magnesium ion

affinity to the NMDA receptor (Figure 3). With reduced magnesium affinity, the NMDA receptor

would be less likely to be inactivated, allowing for current flow when glutamate and glycine bind

and thus increasing NMDA receptor-mediated current.

The possibility of a NR3 subunit replacing an NR2 subunit raises the question of whether

NR3 selectively replaces a specific NR2 subtype. In the NAc, the NR2B/NR2A ratio increases

after cocaine exposure due to a relative increase in NR2B levels (Huang et al., 2009).

Researchers are yet to determine whether a similar change also occurs after cocaine exposure

in the SNc. Because this change could potentially be a side effect of an NR3 subunit change, it is

unclear whether a change in NR2B/NR2A ratios would alter magnesium ion affinity and thus

contribute to changes in NMDA receptor-mediated current levels.

Optogenetics

Optogenetic activation of PPN neurons is necessary to specifically activate the PPN-SNc

glutamatergic current (Beaudoin et al., 2018). This is done using a virus containing coding

instructions for channelrhodopsin-2 (ChR2), a light-activated ion channel (Berndt et al., 2011)

(Boyden et al., 2008). Neurons infected with the virus produce ChR2 and become sensitive to

light, allowing researchers to then specifically depolarize them (Berndt et al., 2011). The virus

also contains coding instructions for yellow fluorescent protein (YFP) (Beaudoin et al., 2018).

When viewing sections of tissue, the infected area glows bright green due to YFP production,
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allowing researchers to easily determine if the target area was infected (Berndt et al., 2011)

(Boyden et al., 2008).

In the present study, optogenetics allowed us to selectively activate glutamatergic PPN

neurons while responses of dopaminergic SNc neurons are measured. This prevents

interference from other regions, and allows us to more accurately investigate the observed

increase in NMDA receptor-mediated current previously identified in the region (Beaudoin et

al., 2018).

Summary

Cocaine addiction is a difficult condition to live with that has high overdose and relapse

rates due to its manipulation of neural reward pathways. A variety of factors contribute to these

high rates, including gaps in current treatment options and cocaine’s strong ability to elicit

cue-induced cravings. Regions implicated in the “spiral to addiction”, namely the VTA, SNc, NAc,

and dorsal striatum are the main sites that undergo plasticity as a result of cocaine exposure

and are thus the most common focus of research (Lüscher & Bellone, 2008). However,

considerable contributions to addiction appear to stem from neighboring regions of the brain

that project non-dopaminergic axons to these regions, especially the VTA and SNc. Overall, the

effects of cocaine in various brain regions are complexly interwoven, with many potential

research questions still left to be explored. Fortunately, optogenetics and other developing lab

techniques allow researchers to probe regions and currents with much greater specificity than

researchers from decades past. These continually evolving techniques may lead to rapid growth

of our understanding of cocaine-induced plasticity in the next few years.
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Introduction

Drug addiction is a highly complex condition marked by initial pleasure upon drug

administration causing continued drug use, even after severe consequences (Camí & Farré,

2003). Even after a period of drug abstinence, underlying addiction remains, making cases of

relapse highly common, further complicating treatment of people struggling with addiction.

Several midbrain regions, such as the substantia nigra pars compacta (SNc), have been found to

be important regions for this so-called “spiral to addiction,” (Lüscher & Bellone, 2008).

Given the seemingly irreversible effects of long-term addiction, early intervention may

be the best strategy for treatment. This makes understanding of the mechanisms of synaptic

plasticity after acute cocaine exposure particularly important to understand. Early research

found that the VTA underwent changes to its α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) receptor to N-methyl-D-aspartic (NMDA) receptor-mediated current ratio in

glutamatergic synapses after cocaine exposure, suggesting importance for early reward learning

in cocaine addiction (Ungless et al., 2001). AMPA and NMDA receptors are glutamatergic

receptors found on postsynaptic sites in neurons. NMDA receptors are distinct from AMPA

receptors due to extracellular Mg2+ blocking current when the cell is hyperpolarized. This has

also implicated the receptors in synaptic plasticity.

Interestingly, the changes in AMPA and NMDA receptor-mediated current in the VTA

appear to be relatively short term in the absence of additional cocaine use, lasting more than

five but less than ten days (Ungless et al., 2001). This was the beginning of understanding

midbrain structures as the primary drive behind the early stages of cocaine addiction. However,
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no such change was immediately found in other regions, implicating that the change may be

specific to the VTA (Ungless et al., 2001).

Other regions, including the SNc, did not immediately produce results suggesting similar

changes, as the crude mechanisms for activation meant that projections from different regions

could not be measured individually. However, the development of optogenetic activation has

allowed the question of individual current’s sensitivity to cocaine to be revisited. This lab has

found that glutamatergic currents to the SNc from Pedunculopontine nucleus (PPN) undergo

increased NMDA receptor-mediated current after acute cocaine exposure (Beaudoin et al.,

2018). Other glutamatergic inputs from the subthalamic nucleus (STN) and dorsal raphe (DR)

demonstrated no such effect, partially explaining the negative findings from previous research

(Beaudoin et al., 2018, Lammel et al., 2011). In addition to increased current, property changes

to the PPN-SNc current occur after cocaine exposure (Beaudoin et al., 2018).

The present study seeks to gain understanding of the mechanism behind this increased

AMPA/NMDA receptor-mediated current ratio in the PPN-SNc synapses. The ratio change is

driven by an increase in NMDA receptor-mediated current (Beaudoin et al., 2018). However,

there are several viable hypotheses behind this increase (Figure 1). It is possible that cocaine

exposure leads to an increase in available NMDA receptors for binding, either through an

increase in neurons interacting at the synapse, an increase in NMDA receptors in existing cells,

and/or a recentralization of NMDA receptors so they are more available for binding. However,

such changes would not account for the property changes found after cocaine exposure, such as

the decrease rise time and decay time of current (Beaudoin et al., 2018). Such changes suggest

not merely an increase in NMDA receptors, but also property changes to the receptors.
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This study investigated whether acute cocaine exposure leads to subunit changes in SNc

cells receiving glutamatergic PPN current. NMDA receptor subunits are divided into three

subtypes, NR1, NR2, and NR3 (Paoletti & Neyton, 2007). From these subtypes exist eight distinct

isomers of NR1, four NR2 subunits (NR2A-D) (Cull-Candy et al., 2001), and two distinct NR3

subunits (NR3A and NR3B), (Traynelis et al., 2010). A NMDA receptor consists of two obligatory

NR1 subunits forming dimers with either NR2 or NR3, with NR2 being considerably more

common in adult mammals (Traynelis et al., 2010). NR3 subunit types are much more recently

discovered and are the least extensively categorized NMDA receptor subunit category (Yao et

al., 2008). These four subunits form a central ion pore through which current can flow -

however, when the cell is hyperpolarized, extracellular magnesium typically blocks current flow

(Burnashev et al., 1992). However, NMDA receptors containing an NR3 subunit demonstrate a

weaker fit for Magnesium pore blockage, resulting in reduced sensitivity to magnesium and

increased NMDA receptor-mediated current (Tong et al., 2008). This study investigated whether

the property changes associated with a NR2 to NR3 subunit change contribute to the increased

NMDA receptor-mediated current observed in PPN to SNc currents after cocaine exposure

(Figure 3).

This study aims to develop understanding of cocaine’s effect on the midbrain at a cellular

level. Understanding the cellular mechanism behind cocaine’s increase of NMDA

receptor-mediated current would be a helpful contribution in understanding the midbrain’s role

in cocaine addiction. Subsequent research could utilize this understanding to improve treatment

options available for people who are affected by cocaine addiction, and hopefully curtail the

continued rise in use, health complications, and fatal overdoses (NIH, 2021).
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Materials and Methods

Subjects

All mice (n = 6, male = 5, female = 1) were of the Balb/C strain and housed at the Trinity

University vivarium in San Antonio, TX. Mice were at least 12 weeks old when undergoing viral

injection. Mice had ad libitum access to food and water, and underwent standard 12:12

dark-light cycles. Mice were housed in 500 cm2 cages containing 0-3 other mice of the same sex.

All were moved to individual cages after viral injection. Mice were provided cardboard tubing

enrichment both before and after surgery. All mice handling and conditions were approved by

the Trinity University Animal Research Committee.

Stereotaxic Surgery

The purpose of stereotaxic surgery was to inject an adeno-associated virus (AAV)

encoding channelrhodopsin (ChR2) and yellow-fluorescent protein (YFP) into the PPN. The AAV

was significant because it allows us to verify accurate injection via YFP expression and

optogenetically activate the PPN during electrophysiology via ChR2 expression. Prior to

placement on the stereotaxic surgery site, mice were anesthetized with 4% isoflurane in 2 L/min

oxygen. and injected with Carprofen (Rimadyl) and Enroflox at a dosage of 10 mg/kg. Ear bars

were used to secure the head during surgery. Lidocaine jelly was applied to the bars to avoid

discomfort. Similarly, altalube was applied to the eyes to avoid drying. Once secured onto the

stereotaxic surgery site, the mice were injected with 10mg/kg of lidocaine above the mouse

skull. Both sides of skull above the PPN were drilled and the PPN was injected using coordinates
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from Paxinos and Franklin’s The Mouse Brain in Stereotaxic Coordinates (M/L = +/- 1.22 mm, A/P

= -4.6 mm, D/V = -3.7 mm). The injection was carried out over a five minute period for each

side.

Neural Slicing

Twenty four hours before they were sacrificed and at least three weeks after they were

injected with AAV, mice were anesthetized by 4% isoflurane in 2 L/min oxygen and subsequently

underwent an IP injection with 10mg/kg of either saline or 10mM cocaine in saline. Twenty four

hours later, the mice were sacrificed and their brain was extracted for electrophysiology.

Once the brain was extracted, it was quickly placed in cutting artificial cerebrospinal

fluid (cACSF), composed of 2.5 mM KCL, 1.25 mM NaH2PO4, 110mM choline chloride, 2.6 mM

NaCO3H, 7 mM MgCl, 0.5 mM CaCl2, 10mM dextrose, 2.4mM sodium pyruvate, 1.3 mM ascorbic

acid dissolved in 18 MOhm water. The brain is continuously held in cASCF while cut into 250 μm

horizontal sections by a Leica VT1000 S vibratome. During cutting, physiological pH was

maintained by bubbling in 95% O2 and 5% CO2. Slices containing SNc were extracted and placed

in recording artificial cerebrospinal fluid (RACSF). RACSF is composed of 125 mM NaCl, 3.5 mM

KCl, 1.25 mM NaH2PO4, 4 mM MgCl2, 2 mM CaCl2, 25 mM NaHCO, 2.4 mM sodium pyruvate, 1.3

mM ascorbic acid, and 0.16 nM L-glutathione. Slices containing PPN were also collected and

imaged to determine YFP expression. This can be used to verify that the PPN was infected with

the AAV during viral injection.

Electrophysiology
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Slices containing SNc were continuously held in RACSF while undergoing electrophysiology.

Suspected dopaminergic SNc cells were patched onto before being tested to ensure the cell is

dopaminergic and in SNc. Additionally, we tested to ensure that the cell is not infected with the

AAV. Spiking data was recorded, and spiking rates under 8 Hz with action potentials lasting

longer than 1.5 ms confirmed cells to be dopaminergic (Beaudoin et al., 2018). Furthermore,

once we entered the cell, we used a voltage clamp to hyperpolarize the cell to -110 mV. If

hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels subsequently

opened, the cell was confirmed as being dopaminergic and in SNc.

To ensure that the cells we were recording from were not directly infected with the AAV,

we tested the synaptic response to blue light. Cells were confirmed to be indirectly activated by

blue light, as the light activated infected PPN cells that subsequently projected to the

dopaminergic SNc cells. If there was not a >2 ms delay between laser firing and the return to

baseline potential, or there was a sustained response to a 100 ms light pulse, we suspected that

the SNc cell was infected.

Imaging

At the conclusion of electrophysiology, slices containing SNc were fixed in

paraformaldehyde for later analysis and imaging. All cells (n total = 7) that were recorded from

were dialyzed with biocytin. We then stained slices in streptavidin, which binds to biocytin.

Because only cells we record from are dialyzed with biocytin, streptavidin staining allowed us to

specifically locate our recording cells. Cells were also stained with anti-tyrosine hydroxylase (TH)

antibodies. The anti-TH antibodies were used to locate cells containing TH, the rate limiting
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enzyme for synthesizing dopamine (Daubner & Wang, 2010). Thus, anti-TH stained cells were

confirmed to be dopaminergic.

For staining, slices were first incubated with 1% Triton X-100 in phosphate buffered

saline (PBS) with 40 rpm shaking overnight at 4°C. Slices were then washed in a 1:800 dilution of

streptavidin Alexa 568 in 1% Triton in PBS overnight before being washed three times with 0.5%

Triton X-100 in PBS for 5 minutes at 40 prm shaking at room temperature (RT). After the third

wash, slices were blocked and permeabilized in 5% normal goat serum (NGS) and 0.5% triton

X-100 at room temperature for 4 hours at 40 rpm shaking. Slices were subsequently stained

overnight with chicken anti-tyrosine hydroxylase antibody (ABCAM ab76442, 1:500) in 1% NGS

and 0.1% Triton in PBS. Excess anti-TH antibody was washed away using three washes in 0.1%

Triton in PBS. Slices were then held overnight with the secondary antibody, 2mg/mL goat

anti-chicken antibody Alexa 405 (ABCAM ab175675, 1:1000). At the conclusion of the final stage

of staining, slices were placed on coverslips for imaging.

Data Analysis

Data were standardized by dividing current at each holding voltage by their current at

+40 mV. Due to the limited data collection, particularly in the cocaine condition (n saline = 5, n

cocaine = 2), statistical analysis has not yet been conducted. However, with additional data, a

pooled-t test can be used to determine whether mean NMDA receptor-mediated current at

each holding voltage is significantly different between saline-exposed and cocaine-exposed

mice.
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Results

Several steps were utilized to confirm that a given cell was dopaminergic, in SNc, not

infected by viral injection, and receiving current from a properly infected PPN region. YFP was

expressed alongside channelrhodopsin so slices could be imaged to confirm that the PPN was

properly infected (Figure 4).

Cells are confirmed to be dopaminergic during electrophysiology by observing their

firing properties. Dopaminergic cells show a firing rate of approximately 3 Hz, an action

potential width of 1.5 ms, and an IH current of -110 mV. Thus, observing similar properties in our

cell is a potential means to confirm that the cell is dopaminergic (Kimm et al., 2015). Cells are

also stained for biocytin when patched, allowing us to later locate cells used for recording.

Anti-tyrosine hydroxylase staining of biocytin-stained cells additionally confirmed cells to be

dopaminergic (Figure 5).

An IV plot was made to conglomerate the NMDA receptor current recorded at holding

voltages from -80 mV to +40 mV, in 20 mV increments (Figure 6). Samples were individually

normalized by their +40 mV current. -80 mV holding levels had standardized currents of M =

-0.217, SEM = 0.0635 in the saline condition (n =5) and standardized currents of M = -0.178,

SEM = 0.0436 in the cocaine condition (n = 2). In -60 mV holding levels, M standardized current

= -0.216, SEM = 0.0436 for saline and M standardized current = -0.382, SEM = 0.0298 for

cocaine. When holding levels were changed to -40 mV, M standardized current = -0.367, SEM =

0.0769 for the saline condition and M standardized current = -0.719, SEM = 0.298 for the

cocaine condition. In our last negative holding voltage, -20 mV, the standardized current was M

= -0.578, SEM = 0.160 for saline and M = -0.578, SEM = 0.160 for cocaine. At 0 mV holding
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voltage, the saline condition had a standardized current of M = -0.162, SEM = 0.0745 while the

cocaine condition had a standardized current of M = -0.204, SEM = 0.0930. Finally, the +20 mV

holding voltage demonstrated saline standardized current of M = 0.326, SEM = 0.041 and a

cocaine standardized current of M = 0.338, SEM = 0.037. Note that, because currents were

measured by their +40 mV holding voltage recording, the standardized current of the +40 mV

holding voltage is 1 for both conditions. Due to the current sample size for conditions (saline n =

5, cocaine n = 2), data analysis has not been conducted, and will not be until more data is

collected.

Discussion

YFP expression was visible in the PPN of all slices used for recording (Figure 4),

demonstrating that slices contained properly AAV-infected PPN. Furthermore, recorded cells,

identified by biocytin staining, were shown to also be stained by anti-TH (Figure 5). Because TH

is the rate-limiting enzyme of dopamine synthesis, these results demonstrate that the cells

recorded from were dopaminergic.

Slices from cocaine-injected mice demonstrated stronger standardized current at

negative holding voltages compared to saline-injected mice (Figure 6). The exception to this is

holding voltage at -80 mV, which demonstrated slightly more current in saline-treated mice

(Figure 6). However, from -60 mV to -20 mV, with the largest difference occurring at a -40 mV

holding voltage (Figure 6). These differences potentially indicate a NR2 to NR3 subunit change in

NMDA receptors. However, more data is needed to further support current trends, as our

cocaine condition in particular has a notably low sample size (n = 2).
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Further data collection may also resolve some discrepancies between our current data

trends and those expected for receptors containing NR3. Namely, previous research comparing

NMDA receptors with and without NR3 subunits demonstrated that NMDA receptors with NR3

have increased current at -80 mV (Tong et al., 2008). However, the -80mV currents of our saline

and cocaine conditions appear similar (Figure 4). This may be in part due to anomalies in some

of our saline condition data, which demonstrates current at -80mV that is uncharacteristic of

native NMDA receptor-mediated current. This leads to suspicion that the current may be from

another source, most likely uninhibited AMPA receptors. However, if this trend continues with

further data collection, it would weaken the hypothesis of a NR3 subunit change.

The primary limitation of the present study is the low n collected for both conditions,

particularly for the cocaine condition (n = 2). A goal for future research should be to continue

data collection to a more reasonable milestone, such as the original n proposal of 10 for each

condition.  Only at that point can conclusions be drawn with any reasonable level of confidence

from our results.

It is always important to note that the mouse model for cocaine addiction, like all animal

models, is not a perfect analogue for human cocaine addiction. Some midbrain effects of

cocaine found in mice may not translate. Similarly, some apparent effects found in humans,

such as dopaminergic cell death, do not apparently occur in mice (Little et al., 2009).

Unfortunately, the research questions of this paper are too invasive to investigate in any

meaningful way with participants, so direct verification of results is not possible. However, it

does provide a mechanism, the subunit change of NMDA receptors, for researchers to attempt

to manipulate in a search for treatment options. If a treatment option were to become ready for
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human testing, we would then be able to better understand the applicability of our model’s

findings to humans.

The immediate future direction for this research project is to continue data collection of

isolated NMDA receptor-mediated current to increase confidence in our current observed

trends. This would allow us to overcome the current projects’ central limitation. Depending on

the results of this continued data collection, other proposed methods of supporting results may

not prove necessary. However, it is helpful to consider future directions for research, should the

data for the current project continue to support the hypothesis of an NR3 subunit change.

There are several promising avenues to help further determine whether or not a subunit

change is occuring in the SNc to PPN current. Previous research has been able to measure

NMDA receptor-mediated current with and without the presence of extracellular magnesium. In

such circumstances, NMDA receptors containing NR3 are similar to standard NMDA receptors in

the absence of magnesium, but undergo less blockage in the presence of magnesium (Tong et

al., 2008). Such an experiment could be replicated in SNc to help further demonstrate that the

observed increase in NMDA receptor-mediated current is due to a subunit change.

Additionally, measuring current both with and without extracellular magnesium could

help indicate whether other potential causes for increased NMDA receptor-mediated current

play a role. Recall that there were several potential mechanisms for increased NMDA

receptor-mediated current, including an increase in cells interacting at the synapse, and

increase in NMDA receptors, and a centralization of NMDA receptors for increased glutamate

binding (Figure 1). Unlike a subunit change, each of these mechanisms is not anticipated to be

sensitive to magnesium blockage. Thus, if cocaine-injected mice continue to demonstrate
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increased NMDA receptor-mediated current compared to saline-injected mice, even in the

absence of magnesium, it would suggest that an additional factor is playing a role.

There are additional known properties of NR3-containing NMDA receptors that

could be measured to test for a subunit change. Namely, NR3-containing NMDA receptors

exhibit reduced Ca2+ permeability compared to wild type NMDA receptors (Tong et al., 2008).

Ca2+ permeability can be measured by recording current at varying concentrations of

extracellular Ca2+ and finding the reversal potential (Jahr & Stevens, 1993). Thus, researchers

can determine whether there is a significant difference in Ca2+ permeability in SNc NMDA

receptors between cocaine-exposed and cocaine naive mice. A significant increase in

permeability after cocaine exposure would be additional evidence of a subunit change.

Observed changes could be further supported by immunostaining of NR3 subunits.

Rabbit anti-NR3 antibodies are available for both NR3A and NR3B (Wee et al., 2008). This could

not only provide further evidence for the heightened presence of NR3 after cocaine exposure,

but also help determine which forms of NR3 are present.

It would also be interesting to investigate the longevity of the observed NMDA receptor

changes. Previous studies of midbrain structures have shown that acute cocaine exposure can

cause rather long-lasting changes to the receptors. For example, an increase in the

AMPA/NMDA receptor current ratio found in the VTA was demonstrated to remain five, but not

ten, days after acute exposure to cocaine (Ungless et al., 2001). Further research on the

increased NMDA receptor-mediated current in SNc would help us understand how its longevity

compares to other AMPA receptor and NMDA receptor changes in related midbrain structures.
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Once the question of a NR3 subunit change is settled, there will still be the question of

what subunit type the NR3 is replacing. The two NR1 subunits would not be replaced, as they

are obligatory for NMDA receptors (Traynelis et al., 2010). However, there are multiple subtypes

of NR2 subunits (Traynelis et al., 2010), one of which may be a selective site for NR3

replacement. A selective replacement would alter relative NR2 subtype levels in SNc by

decreasing levels of the replaced subunit. Figure 7 depicts one hypothetical replacement, in

which NR3 selectively replaces NR2A, leading to a relative increase in other NR2 subtypes, such

as NR2B. This partially mirrors the relative increase in NR2B subunit subtypes that occurs after

cocaine exposure in the NAc (Huang et al., 2009).

Overall, the hypothesis of a subunit change in NMDA receptors after cocaine exposure in

SNc shows promise, but will need further investigation. Researchers can undergo this testing by

continuing data collection on the current project, as well as pursuing more novel methods that

have shown to be reliable in measurements of other midbrain structures. Such methods would

also help confirm whether results noted are due to a subunit change or other potential

hypotheses, such as an increase in postsynaptic NMDA receptors, centralization of NMDA

receptors, or increased postsynaptic cells interacting at the synapse (Figure 1). It is also

important to remember that these hypotheses are not mutually exclusive, and continued

findings supporting a subunit change should not discourage researchers from investigating

alternative hypotheses.
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Tables and Figures

Figure 1. A depiction of potential alternate hypotheses for the observed increase in NMDA

receptor-mediated current in SNc after acute cocaine exposure. A. Hypothesis that an increase

in postsynaptic cells interacting at the synapses leads to an increased NMDA receptor-mediated

current. B. Hypothesis that a centralization of NMDA receptors leads to increased binding

availability for glutamate and thus increase NMDA receptor-mediated current. C. Hypothesis

that an increase in NMDA receptors is the cause of the observed increase in NMDA

receptor-mediated current.
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Figure 2. Depiction of cocaine’s blockage of neurotransmitter reuptake, increasing binding to

postsynaptic sites. Model is known to be applicable to dopamine, norepinephrine, and

serotonin.
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Figure 3. A depiction of cocaine exposure altering NMDA receptor subunit composition by

facilitating NR3 replacement for NR2. This would increase relative NR2 levels and weaken

magnesium ions’ fit into NMDA receptor’s central cavity, resulting in increased NMDA

receptor-mediated current.
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Figure 4. YFP expression is tracked to ensure accurate injections into the PPN. A. A bilateral PPN

injection is shown to accurately infect the PPN through YFP expression. B. A mapping of

injection sites for all brains that contained data used in this study. Notably, all infection sites

include the PPN.

Figure 5. Anti-TH staining and biocytin staining are used to ensure that the recorded cells are

dopaminergic. The Anti-TH staining (A) and biocytin staining (B) can be combined (C) to

demonstrate that the recorded cell was also affected by anti-TH staining and is thus

dopaminergic.
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Figure 6. An IV Plot of standardized NMDA receptor-mediated current of cocaine and

saline-injected mice. Blue represents saline (N = 5) and green represents cocaine (N = 2). Errors

bars are +/- 1 SEM.
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Figure 7. A depiction of selective NR3 replacement of NR2A. This is one of several possible

selective replacements that could occur during NR3 replacements. Such selective replacement

would lead to consistent subunit compositions for NMDA receptors containing NR3 and alter

relative subunit levels of NR2 subtypes.
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