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Abstract

Adapting to the 24-hour periodic environment on the Earth, plants have evolved sets of chemical reactions
that regulate their circadian rhythms. A number of research groups studying these circadian reactions in
the common laboratory plant Arabidopsis thaliana have developed eleven, increasingly elaborate, chemical
kinetic models based on genetic feedback loops. Each model consists of a system of coupled nonlinear
ordinary di↵erential equations. We find these models are all situated near a Hopf bifurcation in parameter
space. This suggests that there may be some biological significance corresponding to this mathematical
property.

To study the properties of these systems related to the Hopf bifurcation, we first numerically compute
the solutions to the kinetic models for Arabidopsis thaliana. At the whole plant scale, we perform a
weakly nonlinear analysis, the Reductive Perturbation Method, on each model near bifurcation to predict
the amplitude and frequency of the oscillating concentration of chemical species from the Stuart-Landau
amplitude equation. By scaling the numerical frequencies and amplitudes by our theoretical predictions,
we show that the solutions to all these models collapse into a universal parameter-free form. Then, we
implement Gillespie’s Stochastic Simulation Algorithm to simulate the system at the single-cell level and
account for random fluctuations in molecule numbers. We relate the two approaches and discuss some
implications of our results for improving future modeling e↵orts to ensure that the models are consistent
with each other and with the dynamics of the Arabidopsis thaliana circadian rhythms. Finally, we comment
on the possible biological significance of the models’ mathematical features.

Thesis Supervisor: Prof. O. Shindell
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Chapter 1

Circadian Rhythms Networks of

Arabidopsis thaliana

1.1 Introduction

Adapting to the 24-hour light-dark cycle caused by the rotation of the Earth, plants have evolved genetically

regulated chemical reactions to control many of their biological functions [1] called the circadian rhythms

network. In the past 16 years, groups of researchers have developed over 11 dynamic models of the circadian

rhythms gene network of the plant Arabidopsis thaliana [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Each of these

models are described with a system of first-order, nonlinear, ordinary di↵erential equations (ODEs).

In this thesis, we analyze the dynamics of these models at both the microscopic and macroscopic level.

We conduct simulations under perpetual illumination or perpetual darkness to analyze the autonomous

version of the models. The autonomous models eliminate the e↵ects of environment changes (light), and

show the properties of the circadian rhythms system due to its internal mechanism. The macroscopic ap-

proach we take is to use the Reductive Perturbation Method by Y. Kuramoto [13]. Ten of the eleven models

we study are situated near a Hopf bifurcation, which is the criteria required to apply the Reductive Per-

turbation Method analysis. Using this method, we are able to reduce all ten models into a two-dimensional

universal form.

The nonlinear dynamics analysis works well as long as the systems are large, so that the concentration

of chemical species can be treated as continuous variables. However, the chemical reactions take place in

single plant cells, in which the particle numbers of chemical species can be as small as a few hundred. This

is a much smaller system, and any changes in particle numbers can lead to significant change of the state

of the system. To account for the fluctuations of molecular population levels at the cellular level, we use

the Stochastic Simulation Algorithm by D. Gillespie [14]. We show that as the system size increases, the

result obtained from Stochastic Simulation Algorithm agrees with the numerical solution obtained from

the ODEs.
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1.2 The Gene Network

In 2005, Locke et al. published the first mathematical model of the circadian rhythms network of Ara-

bidopsis thaliana in “Modelling genetic networks with noisy and varied experimental data: the circadian

clock in Arabidopsis thaliana ” [2]. This model is a system of seven nonlinear, coupled, first-order, ordinary

di↵erential equations that correspond to seven chemical species in the gene network. Molecular experimen-

tal data was used to identify the components of the network and to guide the choice of parameter values.

The two central genes, the LATE ELONGATED HYPOCOTY/CIRCADIAN CLOCK ASSOCIATED 1

(LHY/CCA1) and the TIMING OF CAB EXPRESSION 1 (TOC1), form a negative feedback loop as

shown in Figure 1-1. The LHY/CCA1 gene represses the expression of TOC1 which in turn activates the

expression of LHY/CCA1. There are one mRNA and two proteins, in the cytoplasm and nucleus, associ-

ated with each of the two genes, denoted with subscriptions m, c, n respectively. Besides these six chemical

species, there is also a light-sensitive protein in the model. Let [L], [T ], [P ] denote the concentrations of

LHY/CCA1, TOC1, and the light-dependent protein; the system of equations is

d[Lm]

dt
= q1[Pn]⇥light +

n1[Tn]a

ga1 + [Tn]a
� m1[Lm]

k1 + [Lm]
(1.1)

d[Lc]

dt
= p1[Lm]� r1[Lc] + r2[Ln]�

m2[Lc]

k2 + [Lc]
(1.2)

d[Ln]

dt
= r1[Lc]� r2[Ln]�

m3[Ln]

k3 + [Ln]
(1.3)

d[Tm]

dt
=

n2gb2
gb2 + [Ln]b

� m4[Tm]

k4 + [Tm]
(1.4)

d[Tc]

dt
= p2[Tm]� r3[Tc] + r4[Tn]�

m5[Tc]

k5 + [Tc]
(1.5)

d[Ln]

dt
= r3[Tc]� r4[Tn]�

m6[Tn]

k6 + [Tn]
(1.6)

d[Pn]

dt
= (1�⇥light)p3 �

m7[Pn]

k7 + [Pn]
� q2[Pn]⇥light (1.7)

where

⇥light =

8
><

>:

1, light

0, dark
(1.8)

is the light-dependent term. The rate constants are associated with transcription (n, g), degradation (m, k),

translation (p), and protein transport between nucleus and cytoplasm (r).

The later models use the L2005a model as the core and add more details and new gene loops to it,

causing the size of the newly developed models to increase. The L2005a model consists of 29 parameters. In

2006, Zeilinger et al. discovered the morning and evening “arms” of the circadian rhythms of Arabidopsis

thaliana [5], and this new model consists of 19 ODEs and 91 parameters. From 2010 to 2013, Pokhilko et

al. included the EARLY FLOWERING 4/3 (ELF4/3) gene group into the network [6, 7, 8], which brought

the size of the model to 32 ODEs and 134 parameters. As scientists added more details to the circadian

models, the size of the system grew rapidly. However, there is little experimental data available to identify

7



Figure 1-1: Schematic picture of the Locke 2005a circadian rhythms model (L2005a): a two-gene negative
feedback loop. [2]

parameter values with precision. The current modeling method uses a search-and-check process to find the

optimal parameter values: pick one combination of values from the large set of potential parameter values,

then compare the numerical solution of the system with the chosen values to the experimental data, until

a cost function that determines the discrepancy between simulation and experimental data is minimized.

Such an approach could be time consuming, and potentially unreliable due to the large degrees of freedom.

As we describe in later chapters, our analysis using Reductive Perturbation Method showed this process

of model creation and parameter fitting has yielded models that are dynamically inconsistent with each

other.

1.3 Chemical Kinetics

Chemical reactions can be translated into mathematical equations through the Law of Mass Action that

governs how the rate of reactions depends on chemical concentrations. In open chemical systems, the

interaction between the system and its environment plays an important role in the dynamics of the system.

One example is the degradation of chemical species. The degradation rates control how fast chemicals

leave the system, thus they influence the amount of available chemicals for reactions in the system. Many

of the circadian rhythms models, including the L2005a model, use Michaelis–Menten kinetics for enzyme-

mediated degradation and Hill functions for the transcription of the mRNAs. In this section, we introduce

the Brusselator, a toy model illustrating the essential features of oscillatory chemically reacting systems,

and we use it to discuss basic ideas of reaction kinetics and Law of Mass Action. Then we show how to

derive Michaelis–Menten kinetics from the quasi-steady state hypothesis, and we discuss the meaning of the

Hill function kinetics.

8



Figure 1-2: The schematic picture of reactions of the Brusselator system. The large circle is the Brusselator
system, and X and Y are chemical species that we study. The system is assumed to have infinite source, A
and B; and infinite sink, D and E. In the analysis and simulations in this paper, we treat the concentrations
of these four source/sink species as constants.

The Brusselator

The Brusselator is one of the simplest nonlinear models invented in 1968 and studied by dynamicists at

the Brussels school. It is the first known chemical system that shows oscillations while only contains two

dependent variables. This two-dimensional hypothetical system has four chemical reactions [15]:

A
k1�! X (1.9)

2X + Y
k2�! 3X (1.10)

B +X
k3�! Y +D (1.11)

X
k4�! E (1.12)

where capitalized letters represent chemical species, and ki are reaction constants. The arrow indicates the

direction of reactions. The concentrations of X,Y are the dependent variables, and the concentrations of

A,B,D,E are considered as constants. A schematic picture of the Brusselator is shown in Figure 1-2.

Law of Mass Action

The Law of Mass Action states that the rate of a reaction is proportional to the product of the concentra-

tions of the reactants. The proportionality constant is called the reaction rate constant. Chemical reactions

with more than one reactant require the collision of the reactant molecules which lead to chemical reactions,

and the product of concentrations captures the probability of collisions between the reactant molecules.

The larger a chemical concentration is, the more molecules there are in unit volume, and the more probable

collisions between molecules will occur. We may use the Law of Mass Action to translate between chemical

reaction equations like Equations 1.9-1.12, and the mathematical description of the model using ODEs.

Take the second reaction in the Brusselator (Equation 1.10) as an example,

2X + Y
k2�! 3X

9



This reaction requires a collision between two X molecules and a Y molecule, so the probability of collision

is [X]2[Y ], and the reaction rate is k2[X]2[Y ]. Here, we assume that the amounts of X and Y are large

enough that their concentrations can be treated as continuous variables. Upon completion of the reaction,

the system loses one unit of Y and gains one unit of X. Now the corresponding terms in the di↵erential

equations of X and Y are

d[X]

dt
=

d[X]

d reaction
· d reaction

dt
= (+1)(k2[X]2[Y ]) (1.13)

d[Y ]

dt
=

d[Y ]

d reaction
· d reaction

dt
= (�1)(k2[X]2[Y ]) (1.14)

where the brackets denote “the concentration of”. Applying the same method to all four reactions, the

complete set of di↵erential equations of the Brusselator is obtained:

d[X]

dt
= k1[A] + k2[X]2[Y ]� k3[B][X]� k4[X] (1.15)

d[Y ]

dt
= �k2[X]2[Y ] + k3[B][X] (1.16)

Michaelis–Menten Kinetics

Many of the circadian rhythms models we study have degradation terms in the form of Michaelis-Menten

kinetics. Named after the German Biochemist Leonor Michaelis and Canadian physician Maud Menten,

Michaelis-Menten kinetics is one of the most well-known models for chemical systems with an enzyme

involved. In this section, we present the enzyme related reactions mathematically, and derive the desired

form of the degradation terms using Michaelis-Menten kinetics. The derivations in this section and the

next section are adapted from J.D. Murray’s Mathematical Biology [16].

Consider an enzymatic reaction involving a substrate S reacting with an enzyme E to form a complex

SE which then converted into the product P and the enzyme

S + E
k1��*)��
k�1

SE
k2�! P + E (1.17)

Notice that the enzyme only facilitates the reaction, and its amount is conserved before and after the

reaction. By Law of Mass Action, the system of di↵erential equations that governs this reaction is

d[S]

dt
= �k1[S][E] + k�1[SE] (1.18)

d[E]

dt
= �k1[S][E] + k�1[SE] + k2[SE] (1.19)

d[SE]

dt
= k1[S][E]� k�1[SE]� k2[SE] (1.20)

d[P ]

dt
= k2[SE] (1.21)

Assume that at t = 0, the initial conditions of the system are

[S](0) = S0, [E](0) = E0, [SE](0) = 0, [P ](0) = 0. (1.22)

10



At any time t � 0, the enzyme can take two forms: the free form E, and the bounded form in complex

SE. Since the total amount of the enzyme is constant, we have

[E] + [SE] = E0 (1.23)

The solution of Equation 1.21 is

[P ](t) =

Z t

0
k2[SE]dt (1.24)

If [SE](t) is known, we could solve [P ](t) using the above integral.

Rewriting Equations 1.18–1.21 using Equations 1.23 and 1.24, the system may be reduced to a two-

dimensional system

d[S]

dt
= �k1[S]

�
E0 � [SE]

�
+ k�1[SE] = �k1E0[S] + (k1[S] + k�1)[SE]

d[SE]

dt
= k1[S]

�
E0 � [SE]

�
� (k�1 + k2)[SE] = k1E0[S]� (k1[S] + k�1 + k2)[SE]

(1.25)

with initial conditions [S](0) = S0, [SE](0) = 0.

It is convenient to nondimensionalize the system by introducing the following dimensionless quantities

⌧ = k1E0t, s(⌧) =
[S](t)

S0
, e(⌧) =

[SE](t)

E0
, � =

k2
k1S0

, K =
k�1 + k2
k1S0

, ✏ =
E0

S0

) d⌧ = k1E0dt ) d

dt
= k1E0

d

d⌧

(1.26)

Substituting these quantities into Equations 1.25 gives

k1E0S0
ds

d⌧
= �k1E0S0s+ (k1S0s+ k�1)E0e

) ds

d⌧
= �s+

✓
s+

k�1

k1S0

◆
e

= �s+

✓
s+

k�1 + k2 � k2
k1S0

◆
e

) ds

d⌧
= �s+ (s+K � �) e

k1E
2
0
de

d⌧
= k1E0S0s� (k1S0s+ k�1 + k2)E0e

) E0

S0

de

d⌧
= s�

✓
s+

k�1 + k2
k1S0

◆
e

) ✏
de

d⌧
= s� (s+K) e

(1.27)

with initial conditions s(0) = 1, e(0) = 0. In most biological systems, the concentration of the substrate is

much larger than that of the enzyme, thus, we have ✏ ⌧ 1, which gives

s� (s+K) e ⇡ 0 (1.28)

from the last equation in 1.27. This approximation is known as the quasi-steady state hypothesis, which

11



states that the substrate-enzyme reaction happens so much faster that for times of order ⌧ , the reaction is

essentially at equilibrium. This quasi-steady state approximation gives

e =
s

K + s
(1.29)

which leads to
ds

d⌧
= �s+ (s+K � �)

✓
s

K + s

◆
= � �s

K + s
(1.30)

Rewriting in dimensional form, we have

d[S]

k1E0S0dt
= �

⇣
k2

k1S0

⌘⇣
[S]
S0

⌘

Km
S0

+ [S]
S0

, Km = KS0

) d[S]

dt
= �(k2E0)[S]

Km + [S]

) d[S]

dt
= � M [S]

Km + [S]
, M = k2E0

(1.31)

which is precisely the form of the degradation terms in the L2005a model.

Hill Functions

In Equations 1.1 and 1.4, the transcription of the mRNAs is described using terms similar to those in

Michaelis-Mention kinetics. When an unknown chain of enzymatic reactions is involved, Hill functions are

often used, and the Hill coe�cients are determined by making a Hill plot of experimental data. The Hill

function assumes that the rate of reaction is of the form

d[X]

dt
=

Q[X]n

K + [X]n

Consider the transcription term of LHY mRNA

d[Lm]

dt
=

n1[Tn]a

ga1 + [Tn]a
,

To determine the value of a, the reaction speed |d[Tm]/dt|t=0 is measured experimentally with various

initial values of [Tm]. Let the initial conditions be

d[Lm]

dt
= R0, [Lm] = L0, [Tn] = T0

12



The transcription term at t = 0 may thus be rewritten as

R0 =
n1T a

0

ga1 + T a
0

) T a
0 =

ga1R0

n1 �R0

) a ln(T0) = a ln(g1) + ln

✓
R0

n1 �R0

◆

) ln

✓
R0

n1 �R0

◆
= a ln(T0)� a ln(g1)

A Hill plot is the graph of ln [R0/(n1 �R0)] vs. ln (T0). Given the value of n1, the value of a can be

obtained from the slope and the intercept of Hill plot.
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Chapter 2

Nonlinear Oscillations and Hopf

Bifurcation

2.1 Introduction

Sustained oscillations are ubiquitous in living systems. Examples include the cell cycle [17], the respiratory

oscillator [18], and the circadian rhythms we study here. Bifurcation is the onset of sustained oscillations

as an external parameter is varied. One common type of bifurcation that occurs in oscillating biological

systems is the Hopf bifurcation. The amplitude of oscillation of a Hopf bifurcation is proportional to

the square root of the bifurcation parameter, and the frequency of oscillation is a linear function of the

parameter. Mathematically, Hopf bifurcation is closely related to the eigenvalues of the Jacobian of the

system. In this chapter, we introduce the Hopf bifurcation and the properties of the solutions for systems

that possess Hopf bifurcations.

2.2 Hopf Bifurcation

The following theory is adapted from Theory and Applications of Hopf Bifurcation by B.D. Hassard et al.

[19]. Consider an autonomous system of nonlinear ordinary di↵erential equations

ẋ = f(x;µ), x 2 Rn, f : Rn ! Rn, (2.1)

where µ is a real valued parameter. The Jacobian matrix of the system, L, written in its index notation, is

Lij(x, µ) =
@fi
@xj

(x, µ) i, j = 1, 2, . . . , n (2.2)

If the system has a fixed point x = x0, and the Jacobian evaluated at x0 has a pair of complex

eigenvalues

�+(µ) = �̄�(µ) = �(µ) + i!(µ) (2.3)

such that for some µ = µc,

�(µc) = 0, !(µc) > 0, !0(µc) 6= 0 (2.4)
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while other eigenvalues of L(µc) all have strictly negative real parts, then a Hopf bifurcation occurs, and

µc is the critical value. There are two kinds of equilibrium existing in Hopf bifurcation: the fixed points,

which correspond to constant x values in time; and the limit cycles, which are sustained oscillations in

time. When the system is above bifurcation, the equilibrium contains an unstable fixed point and a stable

limit cycle; when the system is below bifurcation, the only equilibrium is a stable fixed point.

The Normal Form and Properties of System Solutions

To study the properties of the system solutions near a Hopf bifurcation, we consider the simplest system

that possesses a Hopf bifurcation: a two-dimensional system that possesses a Hopf bifurcation at bifurcation

parameter µ = 0. In this section, we derive the normal form of Hopf bifurcation from this system, from

which generic scaling properties of the limit cycle oscillations could be found. Details to this derivation

may be found in Chapter 8 of paper “Bifurcation Analysis of Non-linear Di↵erential Equations” by C.

McCann [20]. The two-dimensional system

dx1
dt

= f(x1, x2, µ)

dx2
dt

= g(x1, x2, µ)
(2.5)

is assumed to have equilibrium x0 = (0, 0), and the eigenvalues of the linearized system are �± = ↵(µ) ±
i�(µ). The real parts of the eigenvalues are zero at µ = 0. Now we have

f(0, 0, µ) = g(0, 0, µ) = 0, ↵(0) = 0 (2.6)

The Maclaurin series expansion of the system around criticality is

dx1
dt

= f(0, 0, µ) + x1
@f

@x1
(0, 0) + x2

@f

@x2
(0, 0) +

x21
2

@2f

@x21
(0, 0) + x1x2

@2f

@x1@x2
(0, 0) +

x22
2

@2f

@x22
(0, 0) + · · ·

= x1
@f

@x1
(0, 0) + x2

@f

@x2
(0, 0) + f2(x1, x2, µ), f2 = second and higher order terms

dx2
dt

= g(0, 0, µ) + x1
@g

@x1
(0, 0) + x2

@g

@x2
(0, 0) +

x21
2

@2g

@x21
(0, 0) + x1x2

@2g

@x1@x2
(0, 0) +

x22
2

@2g

@x22
(0, 0) + · · ·

= x1
@g

@x1
(0, 0) + x2

@g

@x2
(0, 0) + g2(x1, x2, µ), g2 = second and higher order terms

(2.7)

It may be shown that a 2⇥2 real-valued matrix A with complex eigenvalues �± = ↵±i� and corresponding

eigenvectors v± = v±,r+iv±,i has canonical decomposition A = TNT�1, where T =

0

@ v+,r v+,i

v�,r v�,i

1

A, and

N =

0

@ ↵ ��

� ↵

1

A. Applying this result to Equation 2.7, the system can be transformed into its Jordan
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normal form

du

dt
= ↵(µ)u� �(µ)v + F2(u, v, µ)

dv

dt
= �(µ)u+ ↵(µ)v +G2(u, v, µ)

(2.8)

We define a complex number z = u+ iv and its complex conjugate, now u = (z+ z)/2 and v = (z� z)/2i.

Substituting the expression in terms of z and z for u and v gives

1

2

d(z + z)

dt
= ↵(µ)

(z + z)

2
� �(µ)

(z � z)

2i
+ F2(z, z, µ)

1

2i

d(z � z)

dt
= �(µ)

(z + z)

2
+ ↵(µ)

(z � z)

2i
+G2(z, z, µ)

(2.9)

Multiplying the second equation by i, then adding the resulting equation to the first equation in 2.9, the

linear combination gives

dz

dt
= ↵z + i�z + F2 + iG2

) ż = �+z + F (z, z, µ), F = F2 + iG2

(2.10)

It may be shown that the higher order terms of z only and z only contained in F can be eliminated with

appropriate form of z. Equation 2.10 can be reduced to the form

ẇ = �+w + �w2w (2.11)

where w and � are complex numbers. Let w = ⇢ei�, � = c+ id, and recall that �+ = ↵+ i�, we can obtain

two di↵erential equations by equating the real and imaginary parts of Equation 2.11 separately:

⇢̇ei� + ⇢ei�(i�̇) = (c+ id)⇢3ei� + (↵+ i�)⇢ei�

⇢̇+ i⇢�̇ = c⇢3 + id⇢3 + ↵⇢+ i�⇢
(2.12)

) ⇢̇ = ↵⇢+ c⇢3

�̇ = � + d⇢2
(2.13)

The first equation in 2.13 tells us about the amplitude of the oscillation, while the second tells about its

frequency. To find fixed points and the radius of the limit cycle, we set ⇢̇ = 0, which gives ⇢⇤ = 0,±p
�

where � =
��↵
c

��. Meanwhile, the frequency of the limit cycle is �̇⇤ = � + d�. Notice that the radius of the

limit cycle, or the amplitude of sustained oscillation, is proportional to the square root of the deviation

of bifurcation parameter from criticality, while the frequency of the limit cycle scales linearly with the

deviation of the bifurcation parameter from criticality.
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2.3 Example: the Brusselator

In this section, we use the Brusselator as an example to demonstrate how to calculate the critical value of

the bifurcation parameter analytically and various features of Hopf bifurcation described in the previous

sections. The Brusselator is described by chemical reactions in Equations 1.9 - 1.12 and in Figure 1-2.

Recall that the di↵erential equations governing the Brusselator are given as

d[X]

dt
= k1[A] + k2[X]2[Y ]� k3[B][X]� k4[X]

d[Y ]

dt
= �k2[X]2[Y ] + k3[B][X]

(2.14)

where [X] and [Y ] are the concentrations of species X and Y respectively, and [A] and [B] are constants

that represent chemical concentrations of species A and B as the source of the system. Let values of ki be

1, and x = ([X], [Y ])T . The bifurcation parameter we use here is the concentration of B. The Jacobian of

the system is

L(x, [B]) =

0

@ 2[X][Y ]� [B]� 1 [X]2

[B]� 2[X][Y ] �[X]2

1

A (2.15)

The fixed point x0 = (X0, Y0) satisfies,

0 = [A] +X2
0Y0 � [B]X0 �X0

0 = �X2
0Y0 + [B]X0

(2.16)

Solving the system of equations above gives

x0 =

0

@ [A]

[B]/[A]

1

A (2.17)

At the fixed point, x, the Jacobian is

L(x0, [B]) =

0

@ [B]� 1 [A]2

� [B] �[A]2

1

A (2.18)

with characteristic equation

�
�
[B]� 1� �

� ⇣
[A]2 + �

⌘
+ [A]2[B] = 0

) �2 +
⇣
1� [B] + [A]2

⌘
�+ [A]2 = 0

(2.19)

The eigenvalues of the Jacobian can be obtained by solving the characteristic equation:

2�± =
⇣
[B]� [A]2 � 1

⌘
± i
q
4[A]2 �

�
[B]� [A]2 � 1

�2
(2.20)
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Figure 2-1: Time series plots of the Brusselator with (a) [B] = 4.96 and (b) [B] = 5.05, which represents
subcritical and supercritical oscillations, respectively. [A] = 2.

The linearized system exhibits oscillations when imaginary part of the eigenvalues is non-zero in Equation

2.20, that is, the value under the radical is positive:

4[A]2 � ([B]�[A]2 � 1)2 > 0

2[A] > [B]� [A]2 � 1 and � 2[A] < [B]� [A]2 � 1

[B] < [A]2 + 2[A] + 1 =
⇣
[A]2 + 1

⌘2
and [B] > [A]2 � 2[A] + 1 =

⇣
[A]2 � 1

⌘2
(2.21)

)
⇣
[A]2 � 1

⌘2
< [B] <

⇣
[A]2 + 1

⌘2
(2.22)

The system exhibits growing oscillations when the real part of the eigenvalue is positive, namely,

⇣
[A]2 + 1

⌘
< [B] <

⇣
[A]2 + 1

⌘2
(2.23)

and decaying oscillations otherwise. This is because the real part of the eigenvalue defines the envelope of

the oscillation for small amplitudes. Let [A] = 2, a Hopf bifurcation occurs at [B] = [A]2+1 = 5. Figure 2-1

shows the time series for the Brusselator for both subcritical and supercritical cases with the concentration

of A equal to 2. The Brusselator exhibits decaying oscillation and fixed point for [B] < 5 (subcritical),

and initially growing oscillation that reaches a sustained oscillation for [B] > 5 (supercritical). Figure 2-2

shows bifurcation diagrams of the concentration of X and the frequency of oscillation near bifurcation,

which confirm that the calculated critical value, [B]⇤ = 5, is correct. The bifurcation diagrams verify that

the amplitude of oscillation is proportional to the square root of the distance from bifurcation, and the

frequency has a linear relationship with the distance from bifurcation.

2.4 Hopf Bifurcation in the Circadian Rhythms Model

To study the intrinsic mechanisms of the circadian rhythms in Arabidopsis thaliana, we set ⇥light in the

L2005a model to be unity, so the plant is an autonomous system under perpetual illumination. In this

section, we use the LHY transcription rate (n1) as the bifurcation parameter. Transcription is the process

in the cell’s nucleus of copying information from DNA molecule into messenger RNA. Therefore, the
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Figure 2-2: Bifurcation diagrams of (a) concentration of X and (b) oscillatory frequency in the Brusselator
model poised near a supercritical Hopf bifurcation. The concentration of A is 2, and bifurcation occurs
at [B] = [A]2 + 1 = 5. (a) The central branch is the fixed point, which is stable to the left of criticality
(closed circles) and unstable to the right (open circles). The upper and lower branches are the maximum
and minimum values of X limit cycle oscillations, calculated numerically (closed blue circles). (b) The
limit cycle frequency is calculated numerically (blue cross marks).

transcription rate controls the production of messenger RNA, making it closely relate to the concentration

of LHY mRNA (Lm) in the circadian model of Arabidopsis thaliana.
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Figure 2-3: (a) Time series and (b) phase space plot are calculated numerically (ODE) for the L2005a
model poised near a supercritical Hopf bifurcation under perpetual illumination.

Figure 2-3 shows the time series of LHY mRNA and a phase diagram of Locke et al. 2005a model.

The signals are numerical solutions to the L2005a ODEs at typical reaction rates, numerically integrated

with the MATLAB ODE15s solver [21]. The model displays sustained oscillations at this set of parameter

values. In Figure 2-4, we show the bifurcation diagrams of the chemical concentration of LHY mRNA and

the oscillatory frequency of the L2005a model. The parameter is scaled such that normalized transcription

rate of unity corresponds to the biological value. We found the critical value of the normalized transcription

rate to be 0.9785 by tracing the eigenvalues of the Jacobian as we vary the normalized transcription rate,

and finding the bifurcation parameter value that gives eigenvalues in the form described in Equation 2.4.

The bifurcation diagram of concentration shows that the system possesses a Hopf bifurcation, as the system

shows a transition from a stable fixed point on the left side of 0.9785, to an unstable fixed point and a

stable limit cycle on the right side of 0.9785.
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Figure 2-4: Bifurcation diagrams of (a) chemical concentration of LHY mRNA and (b) oscillatory fre-
quency of circadian rhythms model (L2005a) under perpetual illumination. The transcription rate of LHY
is normalized such that the estimated biological value is unity; the bifurcation occurs at 0.9785. (a) The
central branch is the fixed point, which is stable to the left of criticality (closed circles) and unstable to
the right (open circles). The upper and lower branches are the maximum and minimum values of LHY
mRNA limit cycle oscillations, calculated numerically (closed blue circles). (b) The limit cycle frequency
is calculated numerically (blue cross marks).
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Chapter 3

Reductive Perturbation Method

After applying the bifurcation analysis from the previous chapter to all eleven models, we found that

ten of the eleven circadian rhythms models for Arabidopsis thaliana are situated near a Hopf bifurcation

point, with the exception of the Locke et al. 2006 model [4]. The Locke 2006 model shows two pairs of

complex eigenvalues with positive real parts, as oppose to one pair for Hopf bifurcation. Small-amplitude

oscillations near a Hopf bifurcation can be approximated using the Stuart-Landau equation, which reduces

the dynamics of the high dimensional models to a two-dimensional subspace. In this chapter, we show the

steps leading to the Stuart-Landau equation directly from the circadian rhythms models, and we show that

the Reductive Perturbation Method successfully captures dynamical properties of the circadian rhythms

models. The following derivation is adapted from Chemical Oscillations, Waves, and Turbulence by Y.

Kuramoto [13].

3.1 Stuart-Landau Equation

Consider the system described in Equation 2.1,

dx

dt
= f(x;µ), x 2 Rn, f : Rn ! Rn, f(x0(µ);µ) = 0 (3.1)

Without loss of generality, suppose the system possesses a Hopf bifurcation at µ = 0, and µ > 0 means

the system is supercritical where it exhibits sustained oscillations. It is more convenient to express the

system in terms of u ⌘ x � x0, the deviation from the fixed point. The Taylor expansion of the system

about u = 0 is then
du

dt
= Lu+Muu+Nuuu+ · · · (3.2)
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where L is the Jacobian matrix, M is an array with three indices of mixed partials, and N with four

(Lu)i =
X

j

@fi
@xj

�����
x0

uj

(Muu)i =
X

j,k

1

2!

@2fi
@xj@xk

�����
x0

ujuk

(Nuuu)i =
X

j,k,l

1

3!

@3fi
@xj@xk@xl

�����
x0

ujukul

(3.3)

According to the definitions, Muu and Nuuu are symmetric arrays with respect to the i, j, k indices such

that their order can be changed, that is, the u’s in Equation 3.3 are commutative.

System Expansions

The solution to Equation 3.2 can be written as a power series

u = µ1/2u1 + µu2 + µ3/2u3 + · · · (3.4)

where we note again that to lowest order u ⇠ p
µ. The expansion coe�cients L,M,N depend on µ as x0

has µ dependency. So we expand them into Taylor series about µ = 0 in terms of "2 ⌘ µ for algebraic

simplicity

u = "u1 + "2u2 + "3u3 + · · ·

L = L0 + µL1 + µ2L2 + · · · = L0 + "2L1 + · · ·

M = M0 + µM1 + µ2M2 + · · · = M0 + "2M1 + · · ·

N = N0 + µN1 + µ2N2 + · · · = N0 + "2N1 + · · ·

(3.5)

The L0,M0, N0 are L,M,N evaluated at criticality (µ = µ⇤ = 0). The eigenvalues, � and �, of the Jacobian

satisfy

Lv = �v, Lv̄ = �v v⇤L = �v⇤, v⇤L = �v⇤ (3.6)

where v and v⇤ are the right and left eigenvectors, respectively. Note that for � 6= 0, if v and v⇤ are

normalized such that v⇤v = 1, we have

v⇤Lv = v⇤(Lv) = v⇤�v = �v⇤v ) v⇤Lv = � (3.7)

This relationship holds true for the complex conjugates as well. With a Taylor series expansion of � about

µ = 0, Equation 3.7 becomes

⇣
v⇤
0 + "2v⇤

1 + · · ·
⌘⇣

L0 + "2L1 + · · ·
⌘⇣

v0 + "2v1 + · · ·
⌘
=
⇣
�0 + "2�1 + · · ·

⌘
(3.8)
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Equating terms with same order of " gives

O(1) : v⇤
0L0v0 = �0 ⌘ i!0

O("2) : v⇤
0L1v0 + v⇤

1L0v0 + v⇤
0L0v1 = �1

(3.9)

In the order of "2 equation

v⇤
1L0v0 = v⇤

1�0v0 = �0v
⇤
1v0 (3.10)

v⇤
0L0v1 = �⇤

0v
⇤
0v1 =

�
�0v

⇤
1v0
�⇤

(3.11)

thus

v⇤
1L0v0 + v⇤

0L0v1 = 0

) v⇤
0L1v0 = �1 ⌘ �1 + i!1

(3.12)

So, �1 may be found from the first-order approximation of the Jacobian matrix evaluated with the nor-

malized eigenvectors of the Jacobian at criticality.

Two-timing and Solution to the System

Notice that � has real part of order "2, which is small, so we introduce a scaled time ⌧ = µt = "2t. Assume

the solution to system 3.2, u, depends on both t and ⌧ . Treating t and ⌧ as independent variables, the

total time derivative becomes
d

dt
=

@

@t
+

@⌧

@t

@

@⌧
=

@

@t
+ "2

@

@⌧
(3.13)

For the sake of simpler notations, we use @/@t = @t and @/@⌧ = @⌧ . Now substituting Equations 3.5 and

the new time derivative into 3.2 gives

(@t + "2@⌧)u = (L0 + "2L1 + · · · )u+ (M0 + "2M1 + · · · )uu+ (N0 + "2N1 + · · · )uuu (3.14)

Plugging in u = "u1 + "2u2 + · · · and equating the left-hand side (LHS ) and the right-hand side (RHS )

for orders of "

O(") : @tu1 = L0u1

O("2) : @tu2 = L0u2 +M0u1u1

O("3) : @tu3 + @⌧u1 = L0u3 + L1u1 + 2M0u1u2 +N0u1u1u1

(3.15)

O(") : (@t � L0)u1 = 0

) O("2) : (@t � L0)u2 = M0u1u1

O("3) : (@t � L0)u3 = (L1 � @⌧ )u1 + 2M0u1u2 +N0u1u1u1

(3.16)

From these equations, we conclude that every ui is in terms of lower order ui’s. Therefore, if u1 is known,

so are the higher order ui. From the O(") equation, u1 has trivial solution as a linear combination of

exponential terms

u1 = c1v1e
�1t + c2v1e

�2t + · · · (3.17)
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where v are eigenvectors of L0 with corresponding eigenvalues �. As time progresses, the behavior of the

solution is dominated by the eigenvalues with the largest real part, that is, the pair of eigenvalues that

have zero real parts at µ = 0. Label them as �± = ±i!0, u1 can be estimated as

u1 ⇡ cv0e
i!0t + c̄v0e

�i!0t (3.18)

The solution u1 has both t and ⌧ dependency, so the coe�cients c and c may have ⌧ dependency. Let

c ⌘ W (⌧), and the solution becomes

u1 = W (⌧)v0e
i!0t +W (⌧)v0e

�i!0t (3.19)

Inserting u1 into the O("2) equation in 3.16 gives

(@t � L0)u2 = M0

h
W (⌧)v0e

i!0t +W (⌧)v0e
�i!0t

i2

= M0

h
W 2v0v0e

2i!0t + 2WWv0v0 +W
2
v0v0e

�2i!0t
i (3.20)

Notice that the RHS of the above equation consists of only the zeroth and second harmonics. We consider

the form of u2 to be

u2 = W 2A+e
2i!0t + |W |2A0 +W

2
A�e

�2i!0t (3.21)

Plugging u2 into Equation 3.20 and equating the coe�cients of the exponential terms in the LHS and

RHS, we get

A+ = (2i!0I � L0)
�1M0v0v0

A� = (�2i!0I � L0)
�1M0v0v0

A0 = �2L�1
0 M0v0v0

(3.22)

where I is the identity matrix with appropriate size. For our purposes, the iterative solution to u3 is not

useful, however the derivative @⌧W , the target of our method, is present in the right-hand side of the O("3)

term in Equation 3.16. This we address in the next section.

Solvability Condition

The right-hand side of O("3) in Equation 3.16 is

(L1 � @⌧ )(Wvei!0t + c.c.)

+ 2M0(Wvei!0t + c.c.)
h
W 2A+e

2i!0t + |W |2A0 +W
2
A�e

�2i!0t + a0(Wvei!0t + c.c.)
i

+N0(Wvei!0t + c.c.)3

=
h
W 3(2M0vA+ +N0vvv)e

3i!0t + c.c.
i
+
h
2W 2a0M0vve

2i!t + c.c.
i

+

⇢h
WL1v + |W |2W [2M0(vA0 + vA+) + 3N0vvv]� @⌧Wv

i
ei!0t + c.c.

�

+ 4|W |2a0M0vv

(3.23)
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In Equation 3.23, only the e±i!0t terms contain information about the ⌧ dependency of W . Therefore, we

consider only the first harmonic terms for the u3 equation in Equation 3.16

(@t � L0)u
±1
3 = K±e

±i!0t (3.24)

where K± are the coe�cients for the ±1 harmonic terms in Equation 3.23. The @⌧u
±1
3 term gives ±i!0,

since u±1
3 only contain the first harmonic terms. Now we have

(i!0 � L0)u
±1
3 = K±e

±i!0t (3.25)

From this equation, we cannot solve for the coe�cients K± by taking the inverse matrix of (i!0 � L0),

since i!0 is the eigenvalue of L0. Let u±1
3 = b±1

⌫ e±i!0t, so we could see the explicit dependency on t. We

left multiplying by the left eigenvectors v⇤,v⇤ and get

v⇤(@t � L0)u
1
3 = v⇤(@t � L0)b

1
⌫e

i!0t = v⇤(i!0 � i!0)b
1
⌫e

i!0t = 0

v⇤(@t � L0)u
�1
3 = v⇤(@t � L0)b

�1
⌫ e�i!0t = v⇤(�i!0 � (�i!0))b

�1
⌫ e�i!0t = 0

(3.26)

This is called the solvability condition, which requires the projection of the first harmonics onto the left

eigenvectors to vanish identically. Applying the solvability condition to the corresponding term in Equation

3.23 gives

0 = v⇤
n
WL1v + |W |2W [2M0(vA0 + vA+) + 3N0vvv]� @⌧Wv

o
)

@⌧Wv⇤v = Wv⇤L1v + |W |2W [2v⇤M0(vA0 + vA+) + 3v⇤N0vvv]
(3.27)

Using the normalization v⇤v = 1 and the identity v⇤L1v = �1, the above equation yields

@⌧W = �1W � g|W |2W,

g = g0 + g00 = �2v⇤M0(vA0 + vA+)� 3v⇤N0vvv, g0 > 0
(3.28)

Notice that W only has ⌧ dependency. So "2@⌧ = d/dt

) dW

dt
= "2(�1W � g|W |2W )

�1 = �1 + i!1 (Eq.3.12)
(3.29)

Equation 3.29 is the famous Stuart-Landau equation [22]. The complex amplitude W contains the infor-

mation of the non-linearity of the system we are analyzing. W has the form of W = Rei⇥, where R is the

real-value amplitude, and ⇥ is the phase. Now Equation 3.29 yields

dR

dt
= "2(�1R� g0R3)

d⇥

dt
= "2(!1 � g00R2)

(3.30)
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Figure 3-1: Bifurcation diagrams of (a) concentration of X and (b) frequency of oscillations in the Brus-
selator model poised near a supercritical Hopf bifurcation. The concentration of A is 2, and bifurcation
occurs at [B] = [A]2 + 1 = 5. (a) The central branch is the fixed point, which is stable to the left of
criticality (closed circles) and unstable to the right (open circles). The upper and lower branches are the
maximum and minimum values of X limit cycle oscillations, calculated numerically (closed blue circles)
and using RPM parameters (orange line). (b) The limit cycle frequency is calculated numerically (blue
cross marks) and using RPM parameters (orange line).

In long time limit, the complex amplitude W can be portrayed as oscillation with amplitude and frequency

Rs =
p

�1/g0

!s = !1 � g00R2
s

(3.31)

The approximation of x using the asymptotic solution of Stuart-Landau equation is

x = x0 + "Rs

n
vei(!0+"2!s)t + ve�i(!0+"2!s)t

o
(3.32)

Based on Equation 3.32, for µ ⇡ 0+, the amplitude of oscillation is proportional to " =
p
µ, and the

frequency of oscillation is proportional to "2 = µ, which agrees with the characteristics of a Hopf bifurcation.

3.2 Example: the Brusselator

We apply the Reductive Perturbation Method on the Brusselator model, letting the concentration of A be

2, and the k values be 1. The bifurcation parameter used here is [B], to be consistent with our previous

analysis on the Brusselator in this paper. We obtain the bifurcation diagrams for the concentration of X

and the frequency of limit cycle oscillation with various [B] values around criticality ([B] = [A]2 + 1 = 5),

shown in Figure 3-1. From the two bifurcation diagrams, we see that the RPM approximation of the limit

cycle oscillation is accurate, especially when the value of [B] is close to the critical value. The Stuart-

Landau parameter values for the Brusselator are shown in Table 3.1. Notice that the !0 value, which is

the imaginary part of the eigenvalue with zero real part at criticality, indeed agrees with the calculation

in Equation 2.20.
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Value of k1 � k4 1
Value of [A] 2

Critical value of [B] 5
�1 0.5000+2.2328⇥10�11i
!0 2.0000
g 0.7500+0.8333i
Rs 1.8257
!s -2.7778

Right Eigenvector (colume)

 
1.0000 + 0.0000i

�1.0000 + 0.5000i

!

Left Eigenvector (row)

 
0.5000� 1.0000i

0.0000� 1.0000i

!

Table 3.1: List of Stuart-Landau parameters and eigenvectors of the Brusselator calculated using MATLAB.
The bifurcation parameter is the concentration of B.

3.3 RPM Analysis on L2005a Model

The calculation for Stuart-Landau parameters for the circadian rhythms models are implemented in MAT-

LAB. The description of the L2005a system is in Equations 1.1-1.7, and we use the LHY transcription

rate as bifurcation parameter in this section. Same as in Chapter 2, the transcription rate is normalized

by its biological value such that n1 = 7.5038 nM/h corresponds to µ = 1 in the figures and table in this

section [23].

For this specific system and bifurcation parameter choice, the behavior of the system is the same under

perpetual illumination and perpetual darkness. This is mainly because the light-sensitive protein Pn is

uncoupled from other chemical species in the system, as shown in Equations 1.1-1.7. Thus, in this section,
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Figure 3-2: Bifurcation diagrams of (a) concentration of LHY mRNA and (b) frequency of circadian
oscillations in L2005a model poised near a supercritical Hopf bifurcation under perpetual darkness. The
transcription rate of LHY is normalized such that the estimated biological value is 1; the bifurcation occurs
at 0.9785. (a) The central branch is the fixed point, which is stable to the left of criticality (closed circles)
and unstable to the right (open circles). The upper and lower branches are the maximum and minimum
values of LHY mRNA limit cycle oscillations, calculated numerically (closed blue circles) and using RPM
parameters (orange line). (b) The limit cycle frequency is calculated numerically (blue cross marks) and
using RPM parameters (orange line).
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we show the figures and Stuart-Landau parameters for the light-o↵ case only.

In Figure 3-2a, we compare the bifurcation diagrams for the chemical concentration of LHY mRNA

calculated using RPM to the numerical solution of the di↵erential equations solved by MATLAB ODE15s

solver [21]. In Figure 3-2b, we compare the frequency obtained by RPM and ODE solver. At the biological

value of the LHY transcription rate (normalized transcription rate = 1 in the figures), the amplitude and

the frequency obtained by the two methods agree with each other within 0.86% and 0.45%, respectively.

The Stuart-Landau parameters are shown in Table 3.2.
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Figure 3-3: (a) Time series and (b) phase space plot are calculated numerically (ODE) and perturbatively
(RPM) for the Locke 2005a model situated near a supercritical Hopf bifurcation under perpetual darkness.

3.4 Discussion

As shown in the comparison figures of the RPM analysis with the numerical solutions, the RPM captures

the dynamical behavior of the supercritical system well, as long as the system is su�ciently close to crit-

icality. Usefully, the Reductive Perturbation Method collapses the many-dimensional parameter space (29

parameters for L2005a) into the four numbers needed to specify (�1,!1, g0 and g00). This parameter reduc-

tion significantly reduces the degrees of freedom when estimating the biological values for the parameters in

the circadian rhythms, which may help to overcome the parameter explosion problem described in Section

1.2.
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⇥ 0 (light-o↵)

Critical µ 0.9785

Critical biological value 7.3426

�1 0.0092+0.0232i

!0 0.2532

g 0.1053+0.0389i

Rs 0.7996

!s 0.1458

Right Eigenvector (colume)

0

BBBBBBBBBBBBBBB@

1.0000 + 0.0000i

3.2616� 5.7656i

0.4583� 1.4372i

0.0395 + 0.3512i

11.7250 + 2.2319i

0.6762 + 0.1055i

0.0000 + 0.0000i

1

CCCCCCCCCCCCCCCA

Left Eigenvector (row)

0

BBBBBBBBBBBBBBB@

0.0460 + 0.0453i

0.0287 + 0.0387i

�0.0006 + 0.0718i

0.2823� 0.3927i

0.0274� 0.0160i

0.0408� 0.0024i

0.1164 + 0.0887i

1

CCCCCCCCCCCCCCCA

Table 3.2: List of Stuart-Landau parameters and eigenvectors of Locke 2005a model under perpetual
darkness calculated using MATLAB. The bifurcation parameter is the LHY transcription rate normalized
by its biological value (µ = 1 corresponds to the estimated biological value, n1 = 7.5038 nM/h). The
second row of the table gives corresponding critical biological values for reference.
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Chapter 4

Universality in Kinetic Models

Ten of the eleven models we study possess Hopf bifurcations. However, we found the parameter values that

lead to bifurcations are di↵erent in di↵erent models. Therefore, to compare the behaviors of the ten models,

we use the asymptotic variables derived from the Reductive Perturbation Method to define dimensionless

amplitude and frequency. Then we use the new definition of amplitude and frequency to collapse the ten

models onto two universal curves.

4.1 The Degradation Rates

For open systems like the Brusselator and the circadian rhythms models, the dynamics of the system is

closely related to the chemical exchange between the system and its environment. One factor that controls

such exchange is the degradation of chemicals: holding all the other reaction rates constant, the larger

the degradation rates are, the faster the chemicals leave the system, leaving less chemicals in the system

to accommodate the reactions. Literature suggests that the circadian rhythms of Arabidopsis thaliana are

sensitive to the change in degradation rates [24]. Among the Arabidopsis thaliana circadian rhythms models

we analyze, many employ Michaelis-Menten kinetics for the degradation rates of mRNA and proteins like

in L2005a; a few models use linear degradation terms with constant degradation rates. Experimentally, we

suppose the degradation rates can be used as a critical control parameter for circadian rhythms networks.

Thus, we confined ourselves to search for bifurcation parameters within the chemical degradation rates.

We define the normalized, dimensionless degradation rate

µ =
mc �m

mc
(4.1)

as the bifurcation parameter (mc is the critical value of m), so that criticality is at µ = 0. Positive µ values

put the system supercritical, where the system undergoes sustained oscillation.

4.2 Data Collapse

To compare the ten models with di↵erent rate constants and variables, we want to define new variables

that are dimensionless and of universal forms. In the previous chapter, we showed that the limit cycle
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oscillation of the circadian rhythms models can be approximated into a universal form with the Stuart-

Landau parameters.

At criticality (µ = 0), the system exhibits zero amplitude oscillations about the fixed point. From

Equation 3.32,

x = x0 +
p
µRs

n
vei(!0+µ!s)t + ve�i(!0+µ!s)t

o

we can see that the amplitude of oscillation for µ ⇡ 0+ is proportional to
p
µ, and the frequency of

oscillation is proportional to µ. The eigenvectors v and v may be scaled by any constants and remain

eigenvectors. If they are scaled by the entry corresponding to the concentration of one of the chemical

species, then the amplitude of that chemical species limit cycle oscillation will be 2
p
µRs. The chemical

species that we use for scaling is arbitrary, so we normalize the eigenvector with respect to its largest entry,

which sets the upper bound of the oscillatory amplitude to be R = 2
p
µRs, and frequency of oscillation

to be ! = !0 + µ!s. With these definitions of the amplitude and frequency, we rearrange the terms and

obtain the following two parameter-free variables: the “amplitude”
p
µ and the “frequency” µ.

R

2Rs
=

p
µ,

! � !0

!s
= µ (4.2)

4.3 Universal Curves

In Figure 4-1, we show the universal curves,
p
µ and µ, and the amplitude and frequency of the oscillations

for the ten circadian rhythms models of Arabidopsis thaliana. For each model, we calculate the values

of Rs and !s using the kinetic parameters of the system, and measure the amplitudes and frequencies

separately using MATLAB ODE solvers. The measured amplitudes and frequencies are scaled by Rs and

!s according to Equation 4.2. The scaled amplitudes and frequencies are plotted in log scale, so that

the near bifurcation region (for small µ) is amplified. The data points are within 10% from the universal

curves. For many models, there are more than one degradation rates that lead to a Hopf bifurcation. For

illustrative purposes, we show the results generated using the bifurcation parameter with the largest µ

value when the data of either scaled amplitude or frequency diverges from the universal curves by more

than 10%. In Appendix B, we show the separate asymptotic amplitude and frequency plots for each model;

bifurcation diagrams, time series and phase diagrams similar to Figures 3-2 and 3-3 for each model; and

tables of Stuart-Landau parameters and eigenvector entries similar to Table 3.2 for all ten models.

From these universal curves, we see that although the ten models were developed with very di↵erent

genetic architectures and have completely di↵erent sets of parameters, they all exhibit the same dynamical

features in the limit cycle oscillations near a Hopf bifurcation. This suggests potential ways to improve

the modeling e↵ort, as well as methods for experimentally determining the dynamical properties of the

circadian rhythms network. We shall discuss these methods in more detail in the Discussion and Conclusion

Chapter (Chapter 6).
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Figure 4-1: Amplitude (upper) and frequency (lower) of limit cycle oscillations under (a) perpetual illumi-
nation, and (b) perpetual darkness for ten models of Arabidopsis thaliana circadian rhythms are collapsed
onto universal functions of the bifurcation parameter µ. The limit cycle amplitude and frequency are cal-
culated numerically with ODE solvers and scaled according to the Stuart-Landau equation (Equation 4.2).
Data for each model is shown up to the value of µ that the data value diverges from one of the universal
curves by 10%.
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Chapter 5

Stochastic Simulation Algorithm

In the previous chapters, we discussed the behavior of the circadian rhythms of Arabidopsis thaliana from

the macroscopic scale, by studying the changes in chemical concentrations. Such a purely deterministic

approach works well as long as the system is su�ciently large that the chemical concentrations can be

treated as continua. However, the chemical reactions occur in a much smaller system: a single plant

cell, where some of the key chemicals can be present with molecule numbers as small as a few hundred.

Therefore, in the present chapter, we show a stochastic approach that takes the fluctuations in molecular

population levels due to each reaction into account.

5.1 Computational Method

The following derivation is adapted from the paper “Exact Stochastic Simulation of Coupled Chemical

Reactions” by D.T. Gillespie [14]. We consider a small system where the changes in molecule numbers

due to chemical reactions are su�cient to appreciably change the state of the system, and assume that the

system is continuously well-mixed and that there is only one reaction launched at any given time. The

Gillespie’s method uses two values to capture the microscopic behavior of the system: ⌧ , the time step

between the end of the previous reaction and the completion of the following reaction; and ⇠, the index of

the reaction that occurs. We randomly draw two numbers r1 and r2 uniformly between 0 and 1 to generate

the two values described above using appropriate probability density functions.

Probability of a Reaction Occurring

Consider a chemical reactions system with N species whose molecule numbers are labeled as xi (i =

1, 2, · · · , N) and M chemical reactions labeled as Rj (j = 1, 2, · · · ,M). For a chemical reaction R⇠ with

reactants a and b, its reaction rate c⇠dt is defined as the average probability that a particular a-b molecule

pair will react according to R⇠ in the next infinitesimal time interval dt. This definition of c⇠ is called the

fundamental hypothesis of the stochastic formulation of chemical kinetics, which holds true for a well-mixed

system. The rate c⇠, a volume-dependent parameter, is related to but not to be confused with the reaction

rate k in the continuous case. The probability of reaction R⇠ occurring at time t is related to the number

of distinct possible a-b pairs, h⇠. Using elementary combinatorics, if the reactants are of di↵erent species,

then h⇠ = xaxb; if a = b, then h⇠ = xa(xa�1)/2. Now, for each reaction R⇠, we may define a⇠dt ⌘ h⇠c⇠dt =
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Probability of R⇠ occurring in time interval (t, t + dt) given the state of the system at time t. Moreover,

let a0 be the sum of all a⇠.

Calculating ⌧ and ⇠ from the Reaction Probability Density Function

The goal of the Gillespie method is to determine a joint probability density function P (⌧, ⇠) such that

P (⌧, ⇠)d⌧ is the probability that, given the state of the system at time t, the next reaction in the system

will occur between time (t+ ⌧) and time (t+ ⌧ + d⌧) and it will be the reaction R⇠. To determine P (⌧, ⇠),

we first express it as

P (⌧, ⇠) = P0(⌧) · a⇠d⌧ (5.1)

where P0(⌧) is the probability that given the state of the system at time t, no reaction will occur between

time t and time t+ ⌧ , and a⇠d⌧ is the probability that the reaction R⇠ will occur in the next time interval

(t+ ⌧) to (t+ ⌧ + d⌧). First, we determine P0(⌧) by noting that a0d⌧ is the probability that some reaction

will occur in the time interval d⌧ and thus [1 � a0d⌧ ] is the probability that no reaction will occur in

time interval d⌧ . Meanwhile, the probability P0(⌧ + d⌧) that no reaction occurs between time t and time

t+ ⌧ + d⌧ is the product of the probability that no reaction occurs between time t and time t+ ⌧ and the

probability that no reaction occurs between time t+ ⌧ and time t+ ⌧ + d⌧ ,

P0(⌧ + d⌧) = P0(⌧) [1� a0d⌧ ]

) P0(⌧ + d⌧)� P0(⌧)

d⌧
=

dP0(⌧)

d⌧
= �a0P0(⌧)

) P0(⌧) = e�a0⌧

(5.2)

The probability density function in Equation 5.1 may now be written as

P (⌧, ⇠) = P0(⌧) · a⇠d⌧ = a⇠e
�a0⌧ (5.3)

which may be broken into two normalized distributions:

P1(⌧) = a0e
�a0⌧ , P2(⇠) =

a⇠
a0

) P1(⌧) · P2(⇠) = P (⌧, ⇠) (5.4)

Now, the time of the next reaction ⌧ , and the next reaction to occur R⇠, may be determined by drawing

random numbers from the distributions P1(⌧) and P2(⇠). This is achieved computationally by drawing two

random numbers r1 and r2 from the uniform distribution on the unit interval (0, 1) and computing

⌧ =
1

a0
ln

✓
1

r1

◆ ⇠�1X

⌫=1

a⌫ < r2a0 
⇠X

⌫=1

a⌫ (5.5)

Figure 5-1 illustrates the meaning of ⌧ and ⇠ in pictorial form. As Figure 5-1b shows, the larger a⇠ is, the

more probable the reaction will occur.
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(a) (b)

Figure 5-1: Schematic picture of the meaning of the two parameters, ⌧ and ⇠, in the Stochastic Simulation
Algorithm. (a) ⌧ shows the time between the completion of two consecutive chemical reactions. (b)
ajdt (j = 1, 2, · · · ,M) shows relative probability that the reaction happening at time t+ ⌧ is Rj , and a0 is
the sum of all aj . The larger aj is, the more probable a reaction will occur. ⇠ is the index of the reaction
that occurs, determined by the random value r2.

The Algorithm

The Stochastic Simulation Algorithm captures the changes in molecule numbers at each time step ⌧ accord-

ing to the reaction R⇠. If the species appears on the reactant side of the chemical reaction, the molecule

number decreases by its coe�cient; if the species is on the product side, the number of molecule increases

by its coe�cient.

The algorithm takes the following steps:

1. Initialization: input the M reactions with the reaction constants cj , and the N chemical species

involved with the initial values of molecule numbers xi. Set the total reaction (simulation) time T .

Set time t and reaction counter n to zero.

2. Calculation: generate and store the values of aj for the M reactions, and calculate the value of

a0 =
P

aj .

3. SSA parameters: generate the two random numbers r1 and r2, and calculate the corresponding ⌧

and ⇠ according to Equation 5.5.

4. System update: Increase t by ⌧ , and update the molecule numbers according to reaction R⇠. The

reaction counter n increases by 1. Then repeat steps 2-4 until t � T .

5.2 Example: the Brusselator

From the reaction equations introduced in Section 1.3, the SSA parameters for the Brusselator model

with volume V are shown in Table 5.1. The changes in molecular numbers according to each reaction are

described in the array Channels

Channels =

2

4 1 1 -1 -1

0 -1 1 0

3

5 (5.6)

Each column of “Channels” corresponds to a reaction. The first row is the molecule number changes of X,

and the second row is of Y .
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j Reaction (Rj) cj hj aj = cj · hj
1 A

k1�! X sk1 A sk1A

2 2X + Y
k2�! 3X sk2

1
2X · (X � 1) · Y sk2

2 X · (X � 1) · Y
3 B +X

k3�! Y +D sk3 B ·X sk3B ·X
4 X

k4�! E sk4 X sk4X

Table 5.1: Parameters used in the stochastic simulation for each reaction in the Brusselator. The c values
are closely related the the reaction constants k, with a volume scaling factor s. h is the number of distinct
molecule groups that could react according to Rj .
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Figure 5-2: Stochastic simulation time series of the Brusselator with (a) [B] = 1 (subcritical in deterministic
limit), (b) [B] = 5 (criticality in deterministic limit), and (c) [B] = 7 (supercritical in deterministic limit).
The concentration of A is 2, and the volume of the system is 1 unit.

Figure 5-2 shows the stochastic simulation time series for the Brusselator for both supercritical and

subcritical. Though the signals are noisy due to the nature of the stochastic algorithm, we can still see the

overall trend of a stable equilibrium for the subcritical case, and sustained oscillations for the supercritical

case. Moreover, in Figure 5-3, we take the subcritical case as an example, and show that while keeping

all other parameters unchanged, the relative fluctuation diminishes as the volume of the system increases,

and the behavior of the signal approaches the deterministic solution as shown in Figure 2-1a.

5.3 SSA Analysis on L2005a Model

To apply the SSA method on the L2005a model, we first need to identify the pseudo reactions in the

system. The procedure follows closely with the Law of Mass Action introduced in Section 1.3. Using the

di↵erential equation for the LHY mRNA under perpetual darkness as an example

d[Lm]

dt
=

n1[Tn]

g1 + [Tn]
� m1[Lm]

k1 + [Lm]

The first term of the right-hand side of the ODE can be considered as n1[Tn]
g1+[Tn]

= n1
g1+[Tn]

· [Tn]. We put Tn

on the reactant side, since the Law of Mass Action states that the probability of a reaction occurring is

proportional to the concentration of reactants. The rest of the fraction ( n1
g1+[Tn]

) is considered as the pseudo

reaction rate. Since this term is positive, the amount of Lm increases when the reaction occurs. In the
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Figure 5-3: Stochastic simulation time series of the Brusselator with [B] = 1 (subcritical), [A] = 2. The
volume of the system is (a) 1 unit, (b) 10 units, and (c) 100 units. The signal becomes less noisy as the
volume increases and approaches the signal for deterministic system.

molecular level, we say the molecule number of Lm will increase by 1, which means Lm is on the product

side. What is more, there is not a corresponding term in the Tn di↵erential equation, meaning that the

molecule number of Tn does not change through this reaction. So, Tn also shows up on the product side.

Therefore, the pseudo reaction translated from the first term in the ODE is Tn ! Lm + Tn with reaction

rate c = sn1
g1+[Tn]

where s is the volumn scaling factor. Similarly, the second term in the ODE gives the

pseudo reaction for Lm degradation: Lm ! X1 with c = sm1
k1+[Lm] . In this reaction, X1 is a species in the

sink of the system.

There are 16 reactions identified from the system of di↵erential equations for L2005a, and each reaction

takes one of the following four forms:

B $ C A ! � A ! A+B � ! D (5.7)

The capitalized English letters represent chemical species in the system; the term � refers to chemicals

outside of the system, and we assume that the system has infinite source and sink. Notice that all of the

four forms of reactions has only one chemical species as reactant, so there is no collision between reactant

molecules required. Starting from the left, the four types of reactions refer to: 1. transport of proteins

across the nucleus membrane; 2. degradation of chemical species; 3. translation from mRNA to protein in

the cytoplasm, or activation on the LHY mRNA by the TOC1 protein in the nucleus; and 4. the reactions

through which the light sensitive protein Pn is produced. Figure 5-4 is the schematic picture of the 16

reactions. The complete set of pseudo chemical reactions is included in Appendix C.1.

To define the size of the system for the stochastic simulation, we approximate a plant cell to be a

sphere with 100 microns in diameter. The typical concentration of protein molecules in cells is about 1

nM/m3. Using the estimated volume of plant cell, the molecule concentration, and the Avogadro’s number

(NA = 6.02⇥1023/M), we estimate that there are about 315 molecules of each of the seven chemical species

in the circadian rhythms system. This molecular population value is used as the initial condition for the

stochastic simulation. The system size in our simulations uses single plant cell as unit.

In Figure 5-5a, we show the time series result of the Stochastic Simulation Algorithm for a single plant

cell. Although the signal is very noisy, due to the nature of the stochastic simulation, we can still see
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Figure 5-4: The schematic picture of pseudo chemical reactions in L2005a model. The large circle is the
plant cell where all the reactions take place in, and the darker small circles labeled with the species names
are the seven chemical species that we study. The system is assumed to have infinite source and sink, �
(the outside of the large circle, that is, the amounts of species labeled with Xi and Yi are held constant.
Notice that there is no collision required for this set of reactions.

periodic oscillations with period of approximately 24-25 hours. In Figures 5-5b and 5-5c, we show the time

series of the stochastic simulation for systems of larger sizes. As the system size increases, the relative size

of noise becomes smaller. Comparing the results of the larger systems with the behavior of the deterministic

solution as shown in Figure 5-5d, we conclude that the results of Stochastic Simulation Algorithm approach

the behavior of the deterministic system when the size of the system increases, as expected.
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Figure 5-5: Stochastic simulation time series of the Locke 2005a circadian rhythms model with (a) V = 1,
(b) V = 10, and (c) V = 100. We also include (d) time series of the system obtained by the MATLAB
ODE15s solver. The rate constants besides m1 take the optimal values determined in the Locke et al.
2005a paper. The m1 value for all four figures is 8.8978 nM/h, which is on the supercritical side of the
Hopf bifurcation. The volume of the system uses approximate size of single plant cell as unit.
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Chapter 6

Discussion and Conclusion

In this thesis, we analyzed the dynamics of circadian rhythms of Arabidopsis thaliana using published

models. At the macroscopic scale of the whole plant, we demonstrated that the published models possess

supercritical Hopf bifurcations. We used that fact to perform a weakly nonlinear analysis method Reductive

Perturbation Method valid near the bifurcation point. We further simulated the stochastic dynamics of

circadian rhythms at the microscopic single-cell level by interpreting the di↵erential equations as their

elementary reactions and employing the Stochastic Simulation Algorithm.

In Chapters 3 and 4, we employed the Reductive Perturbation Method of Y. Kuramoto to derive a two-

dimensional approximation of the chemical oscillations of the models near their bifurcations. We scaled

the amplitude and frequency of oscillations with the asymptotic solution of the Stuart-Landau equation to

collapse all models onto two universal curves, and showed that they exhibit the same dynamical behavior

near the Hopf bifurcation.

Though we found all the models exhibit the same dynamical behavior near bifurcation, we also discov-

ered that important dynamical features are inconsistent among the models. According to the numerical

solutions of the ODE systems using the optimal values of rate constants provided in the original papers,

some models are situated on the supercritical side of Hopf bifurcation, while the others are on the subcrit-

ical side. When we searched among the degradation rates for potential bifurcation parameters, we found

rate constants that lead to a Hopf bifurcation in some models do not lead to a Hopf bifurcation in other

models. Another significant di↵erence across the models is the distances from bifurcation, as well as how

nonlinear the models are. In the bifurcation diagrams for each model, we measured the percentage di↵er-

ences of the RPM approximations to the numerical solutions. In the Locke et al. 2005a model, the RPM

approximation of amplitude presented in Section 3.3 matches the numerically solved limit cycle amplitude

with less than 0.8% error, while the RPM calculation of limit cycle amplitude of Pokhilko et al. 2010

model presented in Appendix B varies from the numerically solved amplitude by 45.02%. These important

dynamical features should agree across models, as all ten mathematical models describe the same biological

system. A potential reason for these discrepancies is the search-and-check modeling method with large

degrees of freedom. It is worth noting that none of these reaction rates are accessible experimentally.

Having shown the search-and-check scheme does not produce dynamically reliable results, we suggest our

lower dimensional approach is more appropriate.

The Reductive Perturbation Method suggests improvements of modeling work that address the di�cul-
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ties mentioned above. Experimentally, we suggest a possible method to test out whether the biological

system is supercritical or subcritical using the resonance frequency of the system. In this experiment, a

resonance curve would be measured with sinusoidal light sources of a range of frequencies near the natural

frequency of the circadian rhythms system. The side of Hopf bifurcation that the system is located can be

found through the dependence of the amplitude of oscillation on the driving frequency [25]. Computation-

ally, the Reductive Perturbation Method simplifies the higher-dimensional models into the two-dimensional

eigenspace, and describes the models using only the four Stuart-Landau parameters (�1,!1, g0, g00) instead

of the large number of rate constants.

While circadian rhythms can be successfully modeled with di↵erential equations, physically the chemical

reactions of the circadian rhythms are occurring at the single-cell level where there are too few molecules to

satisfy a continuum description. Thus in Chapter 5, we used the Stochastic Simulation Algorithm to show

that at the cellular level, the system still exhibits circadian oscillations in molecule numbers. We showed

further that in the limit that the system size goes to infinity, the stochastic simulation result matches the

deterministic solution. More simulation work can be done using Stochastic Simulation Algorithm to produce

similar plots as the bifurcation diagrams for the deterministic systems, although the definition of measured

amplitude and frequency need to be redefined because the stochastic nature of the signals exhibit random

fluctuations comparable to the oscillation amplitude. These plots would show if the stochastic system obeys

similar relationships between the amplitude and frequency of oscillation and the bifurcation parameter.

Lastly, recent experiments have shown that circadian oscillations in the cyanobacterium Synechoccus

elongatus, one of Earth’s most ancient and simplest form of life, exhibit a supercritical Hopf bifurcation

when the temperature is varied [26]. Physicists studying the biological systems have aimed to find phys-

ical organizing principles in living systems. Hopf bifurcations appear to occur in a number of biological

oscillators such as the hair cells of the cochlea in the ears of humans [25, 27] and frogs [28], and the

glycolytic oscillations in yeast Saccharomyces cerevisiae [29]. This suggests that Hopf bifurcation may be

a property favored during the evolutionary development of biological systems. By studying Hopf bifurca-

tions in circadian rhythms, we contribute to the goal of uncovering physical organizing principles in living

organisms.
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[27] AJ Hudspeth, Frank Jülicher, and Pascal Martin. “A critique of the critical cochlea: Hopf—a bifur-

cation—is better than none”. In: Journal of neurophysiology 104.3 (2010), pp. 1219–1229.

[28] Mark Ospeck, Vıctor M Eguıluz, and Marcelo O Magnasco. “Evidence of a Hopf bifurcation in frog

hair cells”. In: Biophysical journal 80.6 (2001), pp. 2597–2607.

[29] Sune Danø, Preben Graae Sørensen, and Finn Hynne. “Sustained oscillations in living cells”. In:

Nature 402.6759 (1999), pp. 320–322.

43



Appendix A

Using the MATLAB Code

A.1 Reductive Perturbation Method and Universality of Kinetic Mod-

els

The RPM Code folder contains the Grand MostDataPoints.m file, and ten folders, one for each model.

Grand MostDataPoints.m runs the simulation for all models and uses the bifurcation parameter that

gives the most data points on bifurcation diagrams with the set percentage error criteria. Each model

folder contains the following files:

1. Main [ModelName].m which includes all major steps for choosing bifurcation parameter and cal-

culating Stuart-Landau parameters.

2. Simulate Circadian [ModelName].m which includes the steps for simulation using MATLAB

ODE solver.

3. Circadian [ModelName].mlx which is the live script function file including all ODEs. The typeset

equations and set(s) of parameter values are also included in this file.

4. Circadian syms [ModelName].m which is the function file including all ODEs. This file is iden-

tical to item 3, but all the parameters and variables are symbolic variables using MATLAB Symbolic

Toolbox.

5. Filter.m which finds all degradation rates that lead to bifurcation. The searching range of bifurcation

is between 0 to the optimal value for subcritical models, and between optimal value to 3 times of

optimal value for supercritical models. The critical values are also generated through this process.

6. Solve cp.m which solves for critical values of the bifurcation parameters with given range. The

function uses binary search.

7. Generate values.m which, for each degradation rate that leads to a bifurcation, calculates Stuart-

Landau parameters !0 and g, as well as the eigenvalues and eigenvectors of the Jacobian evaluated

at criticality.
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8. Calc sigma omega.m which, for each degradation rate that leads to a bifurcation, calculates the

values of �1 and !1.

9. Calc lambdas.m which returns the two eigenvalues with largest real parts. These two eigenvalues

should be complex conjugates of each other.

10. Jacobian.m which generates the symbolic Jacobian of the system of equations, L.

11. third tensor.m which generates the symbolic third degree tensor of the system of equations, M .

12. fourth tensor.m which generates the symbolic fourth degree tensor of the system of equations, N .

13. FixedPt.m which finds the fixed point of the system of equations with given parameter values. The

function uses MATLAB fsolve.

14. Evaluation.m which substitutes in values for parameter values in a symbolic expressions, e.g. L,

M and N .

15. Evaluation fp.m which substitutes in values for variables at fixed point in a symbolic expressions,

e.g. L, M and N .

16. Mult.m which multiplies a tensor and a vectot together. This function compresses the tensor along

the last dimension.

17. eigen.m which returns sorted eigenvalues and eigenvectors. The eigenvalues and eigenvectors are

sorted with respect to real parts of eigenvalues from small to large.

For the models that are supercritical with biological parameter values in either perpetual illumination or

perpetual darkness, the following files are also included:

18. BifurcationDiagram TimeSeries [ModelName].m

which generates 4 plots: time series of LHY mRNA; time series of TOC1 mRNA; bifurcation diagram

of concentration of LHY mRNA to show fixed point and limit cycle; bifurcation diagram of oscillatory

frequency which is only plotted for the supercritical side of bifurcation. The bifurcation diagrams

convert µ = 1 to be the biological value given in the original paper of bifurcation parameter.

19. PhaseDiagram [ModelName].m which generates 3 plots: phase diagram of LHY protein vs.

LHY mRNA; phase diagram of TOC1 protein vs. TOC1 mRNA; phase diagram of TOC1 mRNA

vs. LHY mRNA. The phase diagrams reflect phase relationship at µ = 1, the biological value given

in the original paper of bifurcation parameter.

20. atan 0to2pi.m which calculates arctangent value of the input, and shifts the range to 0 to 2⇡.

These can only be run after obtaining information of bifurcation for the model from above steps. All plots

include data points or curves from both RPM method and ODE solutions for comparison.
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A.2 Stochastic Simulation Algorithm

The The SSA Code folder contains the Simulate Circadian.m file, which is the main file for the Stochastic

Simulation Algorithm on the Locke et al. 2005a circadian rhythms model. The following files are included

in the folder:

1. Circadian.m which includes di↵erential equations of the circadian rhythms model.

2. Solve Circadian.m which solves the system deterministically using the ODE15s solver, and finds

initial conditions for the simulation.

3. Scale.m which scales all constants / initial conditions in terms of molecule numbers with respect to

the volume of the system.

4. Calculat a.m which calculates the values of ai’s.

5. Randomize.m which generates random values to determine the time step (⌧) and the index of

reaction taking place (⇠).

6. rpdPlot.m which trims o↵ empty entries at the end of arrays and plots every nth data point.

7. rms vs mu which plots rmsd vs. m1 around bifurcation point (m1 = 8.9978;m4 = 1.6859). This

function is not used in the main file.
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Appendix B

Supplementary Figures and Tables of

Chapter 4

In figures B-2-B-12, for all the models we studied whose reported optimal parameters give a supercritical

system, we show: 1) bifurcation diagrams for limit cycle amplitude and frequency of LHY mRNA, 2) time

series for LHY mRNA and TOC1 mRNA limit cycle oscillations, and 3) phase space plots for LHY and

TOC1 protein oscillations and LHY and TOC1 mRNA oscillations. Each figure compares the numerical

results of the full system of di↵erential equations to the result of the Reductive Perturbation Method [13].

In figures B-13 and B-14, we collapse the limit cycle amplitude and frequency of all the models using

their respective natural scales. The data is identical to that plotted in Figure 4-1 of the main text , but

plotted separately for each model.

In tables B.1 and B.2 we show: 1) the kinetic parameter used as the Hopf bifurcation parameter (BP) to

produce the data in figure 3 of the main text and figures B-1-B-14, 2) the chemical species with the largest

modulus used to scale the eigenvectors of the Jacobian matrix at the bifurcation point used to calculate

the natural scales, 3) the optimal value of the BP given in the original paper, 4) the critical value of the

BP where the Hopf bifurcation occurs, 5) the frequency of zero amplitude oscillations at the bifurcation

point, 6) the value of the complex number g in the Stuart-Landau equation, 7) the value of the first order

Taylor expansion term, �1, of the eigenvalue of the Jacobian matrix near the bifurcation point.

In tables B.3-B.8, we show the several elements of the eigenvectors of the Jacobian matrix at the

bifurcation point, normalized by the largest modulus entry, that correspond to LHY and TOC1 protein

and LHY and TOC1 mRNA concentrations.
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B.1 Bifurcation Diagrams, Time Series, and Phase Diagrams for Su-

percritical Models under Perpetual Illumination
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Figure B-1: A supercritical Hopf bifurcation occurs in L2005a model under perpetual illumination. Bifur-
cation diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated
from both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g)
phase diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscil-
lations are shown. The degradation rate in (a) and (b) are normalized so that the biological value given
in the original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the
numerical solution of the system of ODEs with 6.69 percent di↵erence at biological values; and frequency
with 0.006 percent di↵erence. As fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are
0.006 for the pair (LHY mRNA, LHY protein), 0.001 for the pair (TOC1 mRNA, TOC1 protein), and
0.063 for the pair (LHY mRNA, TOC1 mRNA).
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Figure B-2: A supercritical Hopf bifurcation occurs in L2005b model under perpetual illumination. Bifur-
cation diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated
from both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g)
phase diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscil-
lations are shown. The degradation rate in (a) and (b) are normalized so that the biological value given
in the original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the
numerical solution of the system of ODEs with 38.60 percent di↵erence; and frequency with 3.24 percent
di↵erence. As fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.002 for the pair
(LHY mRNA, LHY protein), 0.045 for the pair (TOC1 mRNA, TOC1 protein), and 0.035 for the pair
(LHY mRNA, TOC1 mRNA).
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Figure B-3: A supercritical Hopf bifurcation occurs in Z2006 model under perpetual illumination. Bifurca-
tion diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated
from both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g)
phase diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscil-
lations are shown. The degradation rate in (a) and (b) are normalized so that the biological value given
in the original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the
numerical solution of the system of ODEs with 37.09 percent di↵erence; and frequency with 3.79 percent
di↵erence. As fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.032 for the pair
(LHY mRNA, LHY protein), 0.085 for the pair (TOC1 mRNA, TOC1 protein), and 0.054 for the pair
(LHY mRNA, TOC1 mRNA).
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Figure B-4: A supercritical Hopf bifurcation occurs in P2010 model under perpetual illumination. Bifurca-
tion diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated
from both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g)
phase diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscil-
lations are shown. The degradation rate in (a) and (b) are normalized so that the biological value given
in the original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the
numerical solution of the system of ODEs with 45.02 percent di↵erence; and frequency with 1.53 percent
di↵erence. As fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.011 for the pair
(LHY mRNA, LHY protein), 0.041 for the pair (TOC1 mRNA, TOC1 protein), and 0.082 for the pair
(LHY mRNA, TOC1 mRNA).
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Figure B-5: A supercritical Hopf bifurcation occurs in P2012 model under perpetual illumination. Bifurca-
tion diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated
from both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g)
phase diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscil-
lations are shown. The degradation rate in (a) and (b) are normalized so that the biological value given
in the original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the
numerical solution of the system of ODEs with 21.80 percent di↵erence; and frequency with 7.77 percent
di↵erence. As fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.009 for the pair
(LHY mRNA, LHY protein), 0.016 for the pair (TOC1 mRNA, TOC1 protein), and 0.024 for the pair
(LHY mRNA, TOC1 mRNA).
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Figure B-6: A supercritical Hopf bifurcation occurs in F2014 model under perpetual illumination. Bifurca-
tion diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated
from both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g) phase
diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscillations
are shown. The degradation rate in (a) and (b) are normalized so that the biological value given in the
original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the numerical
solution of the system of ODEs with 1.58 percent di↵erence; and frequency with 9.20 percent di↵erence.
There is a second Hopf bifurcation near a normalized degradation rate of unity, which is excluded due to
our criteria as the subcritical region for this second bifurcation corresponds to lower degradation rate. As
fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.015 for the pair (LHY mRNA,
LHY protein), 0.006 for the pair (TOC1 mRNA, TOC1 protein), and 0.059 for the pair (LHY mRNA,
TOC1 mRNA).
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Figure B-7: A supercritical Hopf bifurcation occurs in F2016 model under perpetual illumination. Bifurca-
tion diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated
from both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g)
phase diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscil-
lations are shown. The degradation rate in (a) and (b) are normalized so that the biological value given
in the original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the
numerical solution of the system of ODEs with 22.17 percent di↵erence; and frequency with 16.71 percent
di↵erence. As fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.024 for the pair
(LHY mRNA, LHY protein), 0.026 for the pair (TOC1 mRNA, TOC1 protein), and 0.039 for the pair
(LHY mRNA, TOC1 mRNA).
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B.2 Bifurcation Diagrams, Time Series, and Phase Diagrams for Su-

percritical Models under Perpetual Darkness
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Figure B-8: A supercritical Hopf bifurcation occurs in L2005a model under perpetual darkness. Bifurcation
diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated from
both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g) phase
diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscillations
are shown. The degradation rate in (a) and (b) are normalized so that the biological value given in the
original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the numerical
solution of the system of ODEs with 14.78 percent di↵erence; and frequency with 0.02 percent di↵erence.
As fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.004 for the pair (LHY mRNA,
LHY protein), 0.011 for the pair (TOC1 mRNA, TOC1 protein), and 0.074 for the pair (LHY mRNA,
TOC1 mRNA).
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Figure B-9: A supercritical Hopf bifurcation occurs in L2005b model under perpetual darkness. Bifurcation
diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated from
both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g) phase
diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscillations
are shown. The degradation rate in (a) and (b) are normalized so that the biological value given in the
original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the numerical
solution of the system of ODEs with 14.78 percent di↵erence; and frequency with 0.26 percent di↵erence.
As fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.0003 for the pair (LHY
mRNA, LHY protein), 0.004 for the pair (TOC1 mRNA, TOC1 protein), and 0.003 for the pair (LHY
mRNA, TOC1 mRNA).
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Figure B-10: A supercritical Hopf bifurcation occurs in Z2006 model under perpetual darkness. Bifurcation
diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated from
both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g) phase
diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscillations
are shown. The degradation rate in (a) and (b) are normalized so that the biological value given in the
original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the numerical
solution of the system of ODEs with 19.04 percent di↵erence; and frequency with 27.03 percent di↵erence.
As fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.046 for the pair (LHY mRNA,
LHY protein), 0.089 for the pair (TOC1 mRNA, TOC1 protein), and 0.058 for the pair (LHY mRNA,
TOC1 mRNA).
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Figure B-11: A supercritical Hopf bifurcation occurs in F2016 model under perpetual darkness. Bifurcation
diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated from
both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g) phase
diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscillations
are shown. The degradation rate in (a) and (b) are normalized so that the biological value given in the
original paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the numerical
solution of the system of ODEs with 23.88 percent di↵erence; and frequency with 17.53 percent di↵erence.
As fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.024 for the pair (LHY mRNA,
LHY protein), 0.026 for the pair (TOC1 mRNA, TOC1 protein), and 0.039 for the pair (LHY mRNA,
TOC1 mRNA).
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Figure B-12: A supercritical Hopf bifurcation occurs in DC2016 model under perpetual darkness. Bifurca-
tion diagrams for (a) concentration of LHY mRNA and (b) frequency of oscillation, time series generated
from both ODE and RPM for concentrations of (c) LHY mRNA and (d) TOC1 mRNA, and (e) - (g) phase
diagrams of pairs of LHY and TOC1 protein in the cytoplasm and LHY and TOC1 mRNA oscillations are
shown. The degradation rate in (a) and (b) are normalized so that the biological value given in the original
paper is unity. The amplitude of limit cycle oscillation calculated with RPM matches the numerical solu-
tion of the system of ODEs with 1267.28 percent di↵erence; and frequency with 51.58 percent di↵erence.
There is a second Hopf bifurcation near a normalized degradation rate of unity, which is excluded due to
our criteria as the subcritical region for this second bifurcation corresponds to lower degradation rate. As
fractions of 2⇡, the absolute values of di↵erences in phase di↵erence are 0.039 for the pair (LHY mRNA,
LHY protein), 0.027 for the pair (TOC1 mRNA, TOC1 protein), and 0.113 for the pair (LHY mRNA,
TOC1 mRNA).
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B.3 Asymptotic Amplitude and Frequency of Oscillation of Each Model

under Perpetual Illumination
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Figure B-13: Amplitude and frequency collapse for each model under perpetual illumination.
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B.4 Asymptotic Amplitude and Frequency of Oscillation of Each Model

under Perpetual Darkness
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Figure B-14: Amplitude and frequency collapse for each model under perpetual darkness.
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B.5 Stuart-Landau Parameter Values under Perpetual Illumination

Model BP
Scaled
By

Optimal
Value

Critical
Value !0 g = g0 + ig00 �1 = �1 + i!1

L2005a m2 TOC1c 16.9058 6.2609 0.3013 0.1686 + 0.1471i 0.0022 + 0.0088i

L2005b m1 TOC1c 1.5283 3.6327 0.3031 0.0003 + 0.0000i 0.0041� 0.0197i

Z2006 m12 Yn 5.9504 9.4460 0.3500 0.0015 + 0.0070i 0.0054� 0.0059i

P2010 m3 Y Protein 0.2 0.4195 0.3101 0.1844 + 0.4475i 0.0929� 0.0807i

P2012 m35 LUX 0.3 1.0493 0.2193 0.0573 + 0.0056i 0.0656 + 0.0857i

P2013 m15 LUX 0.7 0.4099 0.2647 0.0472 + 0.0595i 0.0382� 0.0269i

F2014 m1 PPR7 mRNA 0.6127 2.5971 0.3375 0.1259 + 0.0817i 0.0131� 0.0149i

O2015 m1 TOC1c 9.3383 9.0593 0.2614 0.1076 + 0.0817i 0.0099 + 0.0206i

F2016 �36 PPR7 mRNA 0.37854 2.2289 0.3519 0.7441 + 0.3900i 0.0215� 0.0246i

DC2016 d7 ELF4/LUX Protein 0.38 0.2232 0.2477 0.1318 + 0.1077i 0.0979� 0.2052i

Table B.1: Bifurcation parameters (BP), the chemical species that corresponds to the component in the
eigenvectors with the largest modulus (Scaled By), optimal and critical values of the bifurcation param-
eter for each model, along with important Stuart-Landau parameters. Calculations and simulations are
conducted under perpetual illumination.

B.6 Stuart-Landau Parameter Values under Perpetual Darkness

Model BP
Scaled
By

Optimal
Value

Critical
Value !0 g = g0 + ig00 �1 = �1 + i!1

L2005a m2 TOC1c 16.9058 6.2609 0.3013 0.1686 + 0.1471i 0.0022 + 0.0088i

L2005b m13 TOC1c 0.1347 0.7518 0.2274 0.0030� 0.0010i 0.0232 + 0.0160i

Z2006 m12 Yn 5.9504 13.9347 0.4377 0.0015 + 0.0086i 0.0050� 0.0035i

P2010 m10 Y Protein 0.3 0.2751 0.1952 1.0472 + 0.2216i 0.1800 + 0.1757i

P2012 m19 LUX 0.2 0.0738 0.2225 0.0691 + 0.0539i 0.1013� 0.5555i

P2013 m15 LUX 0.7 0.6589 0.2541 0.0655 + 0.0725i 0.0245 + 0.0171i

F2014 m31 LUX 0.3 0.1017 0.2842 0.0343 + 0.0411i 0.1516 + 0.2601i

O2015 m2 TOC1c 16.9058 6.2609 0.3013 0.1686 + 0.1471i 0.0022 + 0.0088i

F2016 �36 PPR7 mRNA 0.37854 2.2453 0.3523 0.7458 + 0.3953i 0.0213� 0.0242i

DC2016 k2 CCA1/LHY mRNA 0.21 1.9574 0.4457 0.5415 + 0.6186i 0.0466 + 0.0051i

Table B.2: Bifurcation parameters (BP), the chemical species that corresponds to the component in the
eigenvectors with the largest modulus (Scaled By), optimal and critical values of the bifurcation param-
eter for each model, along with important Stuart-Landau parameters. Calculations and simulations are
conducted under perpetual darkness.
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B.7 Eigenvector Entries under Perpetual Illumination

Chemical Species L2005a L2005b Z2006 P2010

LHY mRNA -0.0065 - 0.1770i -0.0060 - 0.0171i -0.0150 + 0.0116i -0.1086 - 0.3031i

LHY protein cytoplasm -0.0406 - 0.2550i -0.0002 - 0.0005i -0.0019 + 0.0180i -0.1496 - 0.1325i

LHY protein nucleus -0.0658 - 0.1958i -0.0013 - 0.0027i -0.0009 + 0.0090i -0.0759 + 0.0213i

TOC1 mRNA 0.1283 + 0.2329i 0.0302 + 0.0749i 0.1978 - 0.0181i 0.1504 - 0.1471i

TOC1 protein cytoplasm 1.0000 + 0.0000i 1.0000 + 0.0000i 0.0060 - 0.0443i 0.0048 - 0.0832i

TOC1 protein nucleus 0.0088 - 0.1492i 0.0998 - 0.0096i 0.0241 - 0.2542i -0.0196 - 0.0198i

Table B.3: Eigenvector entries for the mRNA and proteins of LHY/CCA1 and TOC1 genes under perpet-
ual illumination. For P2010 model, the second and fifth entries are protein (LHY and TOC1 in Pokhilko
et al. 2010), and the third and sixth entries are modified protein (LHYmod and TOC1mod in Pokhilko et
al. 2010).

Chemical Species P2012 P2013 F20014 O2015

LHY mRNA -0.0629 - 0.0056i -0.0999 - 0.1054i -0.0347 + 0.0147i -0.0479 - 0.3371i

LHY protein cytoplasm -0.0601 + 0.0402i -0.1464 - 0.0116i -0.0333 + 0.0422i -0.0392 - 0.2089i

LHY protein nucleus -0.0026 + 0.0173i -0.0275 + 0.0310i -0.0530 - 0.1568i

TOC1 mRNA 0.2803 - 0.0578i 0.1630 + 0.0013i 0.0630 - 0.0229i 0.1083 + 0.2022i

TOC1 protein cytoplasm 0.1770 - 0.0606i 0.0938 - 0.0310i 0.0887 - 0.2355i 1.0000 + 0.0000i

TOC1 protein nucleus 0.0127 - 0.0313i 0.0061 - 0.1723i

Table B.4: Eigenvector entries for the mRNA and proteins of LHY/CCA1 and TOC1 genes under per-
petual illumination continued. Empty entries are due to di↵erent definitions of variables.

Chemical Species F2016 DC2016

LHY mRNA -0.1688 + 0.4729i -0.0813 - 0.3151i

LHY protein 0.0881 + 0.5630i -0.3003 - 0.4373i

TOC1 mRNA 0.0831 - 0.6266i 0.6043 + 0.4132i

TOC1 protein -0.3526 - 0.4070i 0.5482 + 0.1650i

Table B.5: Eigenvector entries for the mRNA and proteins of LHY/CCA1 and TOC1 genes under per-
petual illumination continued. F2016 and DC2016 models use only one variable for proteins of LHY and
TOC1. The TOC1 entries represent PRR5/TOC1 gene group.
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B.8 Eigenvector Entries under Perpetual Darkness

Chemical Species L2005a L2005b Z2006 P2010

LHY mRNA -0.0065 - 0.1770i -0.0054 - 0.0273i -0.0102 + 0.0098i -0.5879 - 0.2651i

LHY protein cytoplasm -0.0406 - 0.2550i -0.0002 - 0.0008i 0.0013 + 0.0118i -0.4563 + 0.0538i

LHY protein nucleus -0.0658 - 0.1958i -0.0013 - 0.0044i 0.0007 + 0.0059i -0.1291 + 0.1596i

TOC1 mRNA 0.1283 + 0.2329i 0.0426 + 0.0550i 0.2296 - 0.0305i 0.2702 - 0.1906i

TOC1 protein cytoplasm 1.0000 + 0.0000i 1.0000 + 0.0000i 0.0067 - 0.0405i 0.0825 - 0.2191i

TOC1 protein nucleus 0.0088 - 0.1492i 0.0815 - 0.0048i 0.0270 - 0.2324i -0.0712 - 0.1066i

Table B.6: Eigenvector entries for the mRNA and proteins of LHY/CCA1 and TOC1 genes under per-
petual darkness. For P2010 model, the second and fifth entries are protein (LHY and TOC1 in Pokhilko
et al. 2010), and the third and sixth entries are modified protein (LHYmod and TOC1mod in Pokhilko et
al. 2010).

Chemical Species P2012 P2013 F20014 O2015

LHY mRNA -0.2115 - 0.1598i -0.0851 - 0.1892i -0.0966 - 0.0447i -0.0472 - 0.3212i

LHY protein cytoplasm -0.1884 - 0.0041i -0.1261 - 0.0620i -0.0678 - 0.0001i -0.0379 - 0.1987i

LHY protein nucleus -0.0466 + 0.0496i -0.0420 + 0.0201i -0.0500 - 0.1490i

TOC1 mRNA 0.1737 + 0.0253i 0.0827 + 0.0256i 0.1067 + 0.0126i 0.1031 + 0.1951i

TOC1 protein cytoplasm 0.0727 - 0.0015i 0.0689 - 0.0083i 0.2552 - 0.1780i 1.0000 + 0.0000i

TOC1 protein nucleus 0.0338 - 0.0228i 0.0035 - 0.1787i

Table B.7: Eigenvector entries for the mRNA and proteins of LHY/CCA1 and TOC1 genes under per-
petual darkness continued. Empty entries are due to di↵erent definitions of variables.

Chemical Species F2016 DC2016

LHY mRNA -0.1706 + 0.4737i 1.0000 + 0.0000i

LHY protein 0.0871 + 0.5645i 0.7818 - 0.5124i

TOC1 mRNA 0.0835 - 0.6265i -0.2667 + 0.7053i

TOC1 protein -0.3524 - 0.4064i 0.2779 + 0.6823i

Table B.8: Eigenvector entries for the mRNA and proteins of LHY/CCA1 and TOC1 genes under perpet-
ual darkness continued. F2016 and DC2016 models use only one variable for proteins of LHY and TOC1.
The TOC1 entries represent PRR5/TOC1 gene group.
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B.9 Model Idiosyncrasies

Model
ODE
Solver Comments

L2005a [2] ode15s The set of parameter values for optimal solution from Fig. 5 in Locke et al. 2005a is

used for obtaining data in figure 3 in the main text and supplementary figures 4-1b,

B-13a and B-14a. The set of parameter values for a typical annealed solution from

Fig. 4 in Locke et al. 2005a is used for obtaining data in supplementary figures B-1

and B-8. Parameters q1 and q2 are used with unit h�1, and p3 with unit nM/h.

L2005b [4] ode15s Model Two (the interlocked feedback look model) is used in our analysis, since it adds

an extra loop to Model One as an improvement.

Z2006 [5] ode15s PRR7�PRR9light� Y 0 model is used in our analysis. In PRR7�PRR9light� Y 0

model, in equation of
dc(m)

Y
dt , term c(n)L

fi
is interpreted as c(n)L

i
as in PRR7�PRR9�Y

model.

P2010 [6] ode15s Model uses dimensionless chemical levels. L is set to 1 for perpetual illumination, and

0 for perpetual darkness in our analysis.

P2012 [7] ode15s Model uses dimensionless chemical levels. L is set to 1 for perpetual illumination, and

0 for perpetual darkness in our analysis. We added cLtot = cL+ cL mod, and interpret

cG in Eqs.(25)(26) as cGc.

P2013 [8] ode15s Use dimensionless chemical levels. L is set to 1 for perpetual illumination, and 0

for perpetual darkness in our analysis. Equations for HY5 and HFR1 proteins are

not included since they are only used for optimization of COP1 parameters and are

decoupled from other equations. We added cLtot = cL + cL mod. We redefined cGn to

be cGn = p28cGc/(p29 + m19 + p17cE3n); and cAR to be cAR = 0.5 · (A0 + cmABAR +

g29 �
p

(A0 + cmABAR + g29) + 4A0cmABAR).

F2014 [9] ode15s Use dimensionless chemical levels. The model is situated very close to another bifur-

cation at a lower degradation rate value under perpetual illumination. We interpret

cTn in Eq. (18) as cTn.

O2015 [10] ode15s All the ⇥ terms are set to 1 for perpetual illumination, and 0 for perpetual darkness

in our analysis.

F2016 [11] ode23 Use dimensionless chemical levels. The kernel model is used in our analysis. The

indexing and notations of parameters used in code given and the ones in main body

of the original paper di↵ers, and we followed the convention in the code provided

(�7 ! �75, �8 ! �76, �9 ! �77, and �n ! �n�3 for n � 10. ✓144 ! �71, ✓145 ! �72).

DC2016 [12] ode15s We did not include the PIF gene, which controls the hypocotyl growth, since this

gene is decoupled from the rest of the network and is not of special interests for

our purposes. The model is situated very close to another bifurcation at a lower

degradation rate value under perpetual darkness. We interpret [P ]p in Eq. (3) as [P ];

and P in Eq. (9) as the concentration [P ].

Table B.9: Details and modifications to each model in our simulations and analysis.
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Appendix C

SSA Information for Locke 2005a Model

C.1 Pseudo Chemical Reactions

The 16 pseudo chemical reactions for L2005a model determined using Law of Mass Action are:

1 : Lm
p1�! Lc + Lm

2 : Lc
r1�! Ln

3 : Ln
r2�! Lc

4 : Tc
r3�! Tn

5 : Tn
r4�! Tc

6 : Tm
p2�! Tc + Tm

7 : Tn
n1/(g1+Tn)�������! Lm + Tn

8 : Lm
m1/(k1+Lm)��������! X1

9 : Lc
m2/(k2+Lc)��������! X2

10 : Ln
m3/(k3+Ln)��������! X3

11 : Tm
m4/(k4+Tm)��������! X4

12 : Tc
m5/(k5+Tc)�������! X5

13 : Tn
m6/(k6+Tn)��������! X6

14 : Pn
m7/(k7+Pn)��������! X7

15 : Y1
p03�! Pn ([Y1] · p03 = p3)

16 : Y2
n0
2g

2
2/(g

2
2+L2

n)���������! Pn ([Y2] · n0
2 = n2)

The subscriptionsm, c, n stand for themRNA and proteins in the cytoplasm and nucleus; L and T stand

for the LHY/CCA1 and TOC1 gene; Pn is the light-sensitive protein. The rate constants are associated

with transcription (n, g), degradation (m, k), translation (p), and protein transport between nucleus and

cytoplasm (r). X and Y are species in the source and sink, whose concentrations and molecule numbers

are assumed to be constants.

Notice that in the last two pseudo reactions (15 and 16), we split the value of rate constants into the

product of the concentration of Yi and a new rate constant. This split is arbitrary, and does not a↵ect the

simulation results. In our simulation, the values of Yi are set to 1, so the new-defined rate constants are

the same as the original rate constants.
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C.2 Particle Number Change due to Reactions

Channels =

2

66666666666664

0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0

1 -1 1 0 0 0 0 0 -1 0 0 0 0 0 0 0

0 1 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1

0 0 0 -1 1 1 0 0 0 0 0 -1 0 0 0 0

0 0 0 1 -1 0 0 0 0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0

3

77777777777775

(C.1)

Each column corresponds to a reaction in Section C.1 in the same order. The first seven columns refer

to reactions between di↵erent chemicals (1-7); the following seven columns capture the degradation of the

seven chemical species (8-14); the last two columns are reactions through which certain species entering the

system (15-16). From top down, each roll corresponds to a chemical species in the system in the following

order: Lm, Lc, Ln, Tm, Tc, Tn, Pn.
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