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Obesity represents a public health epidemic affecting an increasing number of children as well as 

adults (Hales, Carroll, Fryar, & Ogden, 2017). Obesity is associated with a multitude of negative 

health implications, and excessive adiposity can also weaken mental health through increasing 

risk of depression, anxiety, and low self-esteem (Fruh, 2017). Obese children and adolescents are 

more likely to become severely obese adults, making prevention and early intervention 

extremely important for minimizing the negative effects of obesity over time (The, Suchindran, 

North, Popkin, & Gordon-Larsen, 2010). Thus, identification of obesity-related modifiable 

behaviors can help target future obesity prevention research efforts and in turn, has the potential 

to improve the quality of life for many children and adolescents. Emerging adulthood, a 

developmental period during 18 to 25y (Nelson, Story, Larson, Neumark-Sztainer, & Lytle, 

2008), is becoming increasingly important as a time when not only initial changes in markers of 

chronic disease risk can be seen, but as a unique opportunity for behavior change interventions 

(Gilmore, 2019).   

Currently there is little research describing how longitudinal BMI and adolescent dietary patterns 

relate to obesity-related biomarkers in emerging adulthood. Furthermore, despite the evidence 

that children’s self-regulation skills may play a role in obesity development, there is inadequate 

longitudinal research on how self-regulatory behaviors in childhood may affect longitudinal BMI 

growth. Thus, the specific aims of the proposed research included to i) characterize unique 

trajectories of BMI from childhood through adolescence (4 to 18 year) and describe the 

association between BMI trajectory membership and body composition and biomarkers in 

emerging adulthood; ii) determine the prospective association between pre-school self-regulation 

and BMI trajectory membership; and iii) describe unique patterns of adolescent dietary 

consumption and determine the corresponding association between adolescent dietary pattern 

membership and later anthropometrics and biomarkers including BMI, percent body fat, fasting 

glucose, fasting insulin, and HOMA-IR collected in emerging adulthood. 

Data from the RIGHT Track Parent and RIGHT Track Health longitudinal studies were used to 

address the study aims. The combination of data from the two studies provided the necessary 
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data to address the study aims and included baseline sociodemographic information, childhood 

behavioral data, longitudinal anthropometrics throughout childhood and adolescence, adolescent 

dietary intake, and biomarker and body composition data collected in emerging adulthood. 

Participants in the RIGHT Track studies could be characterized into two unique longitudinal 

BMI trajectories: i) stable normal weight and ii) normal weight to overweight transition. 

Compared to the stable normal weight group, membership in the normal weight to overweight 

transition group was positively associated with fasting glucose, fasting insulin, HOMA-IR, waist 

circumference, and percent body fat, even after controlling for sex, race, and socioeconomic 

status. Results were attenuated when each model additionally controlled for adult waist 

circumference or adult percent body fat. Importantly, higher childhood self-regulatory behavior, 

as measured by a gift-delay task, decreased the likelihood of a child being in the “higher-risk”, 

that is “normal weight to overweight transition” group. Higher childhood self-regulation as 

measured by a food-related task was not associated with BMI trajectory membership. However, 

moderate food-related self-regulation was suggestive of decreased risk of membership in the 

BMI transition group compared to those who were considered unregulated (p=0.09). Even 

though this relation was not statistically significant, this finding supports exploration of 

“consuming any foods in moderation” as a useful technique when educating children on 

nutrition. Finally, two unique patterns of adolescent dietary intake were found in our sample: i) 

balanced (higher consumption of unsweetened beverages, fruits, and non-starchy vegetables) and 

ii) unbalanced (greater consumption of sugar-sweetened beverages, fried potatoes, and full 

fat/fried meats). While there were differences in types of foods consumed by those in each of 

these patterns, adolescents in both patterns had an overall poor diet quality. No significant 

associations were found between adolescent dietary patterns and any of the adult health measures 

(i.e., fasting glucose, fasting insulin, HOMA-IR, percent body fat or BMI), which could possibly 

partially be explained by our limited number of individuals who had both dietary and biomarker 

data.  

This study provides insight into longitudinal growth patterns for children and adolescents and 

corresponding childhood behavioral predictors that could serve as targets for public health 

interventions to decrease obesity-related health risks. Additional research is needed to examine 

self-regulatory behaviors at different time points during childhood to determine the best age at 



 

 

which implementation of behavioral interventions would be most effective in minimizing future 

adiposity-related health risks. 
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CHAPTER I: INTRODUCTION 

Obesity is a serious public health issue that has been increasing in prevalence over the past few 

decades across most age groups (Hales et al., 2017). Research shows that during 2015 to 2016, 

almost 40% of adults (>20 y) and 20.6% of adolescents (12-19 y) in the United States suffered 

from obesity (Hales et al., 2017). Additionally, prevalence of obesity in children has been shown 

to increase with age with estimates of 13.9%, 18.4%, and 20.6% for children aged 2 to 5, 6 to 11, 

and 12 to 19 years, respectively (Hales et al., 2017). Obesity has many negative physical health 

implications, especially for children and adolescents, including increased LDL cholesterol and 

triglyceride levels, risk factors for chronic disease, as well as increased risk of type 2 diabetes 

(Fruh, 2017). In addition to the physical health implications, obesity is associated with increased 

risk of mental health issues such as depression, anxiety, and low self-esteem (Fruh, 2017). 

Obesity is difficult to treat, and research shows that obese children and adolescents are more 

likely to become obese and severely obese adults (Lanigan, Tee, & Brandreth, 2019; The et al., 

2010). Further, the earlier individuals develop obesity-related risk factors, the more likely they 

are to experience morbidity and mortality from obesity-related disease (Kelsey, Zaepfel, 

Bjornstad, & Nadeau, 2014). As such, obesity prevention has been identified as the best 

approach for reducing the prevalence of obesity throughout the lifetime (Lanigan et al., 2019). 

Thus, it is important to identify modifiable risk factors during childhood (developmental period 

spanning from age 6 to 10 y) (Huang, Lanza, Wright-Volel, & Anglin, 2013) and adolescence 

(developmental period spanning from 12/13 y to 18/19 y ) (Huang et al., 2013; Wickrama, Noh, 

& Elder, 2009) and emerging adulthood (period spanning from approximately 18/19 y to 25 y) 

(Augustus-Horvath & Tylka, 2011; Wickrama et al., 2009) that could serve to minimize the 

likelihood of individuals transitioning to obesity in the future.  

 

Body Mass Index (BMI) Trajectories 

BMI is regularly used in obesity research and is generally accepted as a proxy measure for body 

fatness in both adults and children (Bouchard, 2007; Dietz & Bellizzi, 1999). As such, 

categorization of BMI values in adults (CDC), and BMI-for-age percentile in children under the 
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age of 20 (CDC), provides a measure of obesity status. BMI classifications for adults are: 

underweight (<18.5 kg/m2); normal weight (18.5-<25 kg/m2); overweight (25-<30 kg/m2); and 

obese (>30 kg/m2), respectively (CDC). In youth, individuals with BMI values below 5% of their 

age-sex specific BMI-for-age percentile cut point are considered underweight, 5% to less than 

85% are normal weight, 85% to less than 95% are overweight, and 95% or higher are classified 

as obese (CDC).  

In longitudinal studies, BMI trajectories have been used to describe unique patterns of BMI 

change in a particular population (Clarke, O'Malley, Schulenberg, & Johnston, 2010; Moreno-

Black, Boles, Johnson-Shelton, & Evers, 2016; Ostbye, Malhotra, & Landerman, 2011; Viner, 

Costa, & Johnson, 2019), with these patterns having associations with health outcomes in adults 

including diabetes, hypertension, and cancer (Clarke et al., 2010; Ostbye et al., 2011). However, 

adult populations are assumed to have reached constant height, so weight is the only parameter 

changing over time (Clarke et al., 2010; Jun et al., 2012; Ostbye et al., 2011). Additional 

considerations must be assessed in a population of children making their transition into 

adolescence given that their height is changing in addition to their weight, with this resulting in a 

corresponding increase in BMI as a normal part of growth. Thus, BMI in non-adult populations 

is interpreted on an age-sex specific basis, utilizing data and analysis tools provided by the 

Centers for Disease Control (CDC). (CDC; CDC) Previous research has shown that childhood 

BMI trajectories are associated with adult health-related outcomes such as waist circumference 

(Peneau et al., 2017) and hyperglycemia (T. Zhang et al., 2019).  

The literature describing growth trajectories in children and adolescents varies in choice of 

outcome measure with researchers choosing between BMI (Kubzansky, Gilthorpe, & Goodman, 

2012; Nonnemaker, Morgan-Lopez, Pais, & Finkelstein, 2009), BMI percentile (Huang et al., 

2013; Kwon, Janz, Letuchy, Burns, & Levy, 2017), and BMI standard deviation score/BMI z-

score (Geserick et al., 2018; Prinz et al., 2018). Cole et al. suggest that BMI or BMI percentile 

are more appropriate measures to assess longitudinal adiposity in children, with BMI z-score 

being recommended as a measure of fatness at a single time point (Cole, Faith, Pietrobelli, & 

Heo, 2005). However, findings from the Fels Longitudinal Study, which assessed a wider age 

range of children than Cole et al., concluded that changes in BMI percentile does not necessarily 

represent corresponding adiposity changes in children, with the relation between BMI percentile 
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and adiposity being affected by both BMI and sex (Demerath et al., 2006). Additionally, when 

assessing longitudinal change, due to the skewed nature of BMI, changes in BMI percentile 

translate to larger BMI changes for those at or above the 95th percentile as compared to those at 

the 50th percentile (Cole et al., 2005). Thus, choice of BMI outcome measure can influence the 

interpretation of study results, especially in the context of BMI change (Cole et al., 2005; 

Demerath et al., 2006). Therefore, the present study will utilize trajectories of BMI. 

CHOICE OF MODELLING FRAMEWORK 

Researchers have utilized both growth mixture modelling (GMM) (Clarke et al., 2010; Jun et al., 

2012; Kubzansky et al., 2012) and latent class growth analysis (LCGA) (Huang et al., 2013; 

Ostbye et al., 2011; Slining, Herring, Popkin, Mayer-Davis, & Adair, 2013) frameworks to 

develop trajectories of BMI. The main difference between these frameworks is that LCGA, a 

specialized subset of GMM, requires subjects within the same trajectory to be homogeneous, 

whereas GMM allows for within trajectory heterogeneity (Jung & Wickrama, 2008; B. Muthén, 

2006). Given that each framework comes with its own benefits, our research will fit models 

using both GMM and LCGA and utilize corresponding fit statistics to identify the best-fitting 

model (B. Muthén, 2006). 

DECISION CRITERIA FOR CHOOSING BEST FITTING MODEL 

Bayesian Information Criteria (BIC) is the primary criteria used to determine adequate model fit 

in GMM and LCGA modelling, with smaller values representing better fitting models (Masyn, 

2013). However, sometimes differences between BIC values for multiple models can be quite 

small, indicating a “minimal gain” in model fit with the addition of more classes (Masyn, 2013). 

According to Raftery et al., a difference in BIC greater than 10 provides “very strong evidence” 

to support that the model with the smaller BIC is the better fitting model with odds of 150:1 

(Raftery, 1995). In addition to BIC, entropy can further inform the choice of the best fitting 

model. Values of entropy approaching 1.0 indicate better class delineation, with a value of 1.0 

indicating perfect model delineation, and a value greater than 0.8 supporting that classes have 

been clearly defined (Celeux & Soromenho, 1996; Tein, Coxe, & Cham, 2013). Although 

entropy can be used in combination with BIC during the model selection process, since entropy 

was not developed to identify the appropriate number of latent classes in the GMM/LCGA 
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frameworks, BIC will be the primary criteria to assess model fit (Masyn, 2013). Finally, the Lo-

Mendell-Rubin likelihood ratio test (LMR LRT) compares the fit of two models, a model with k 

classes versus a model with k-1 classes, with a significant p-value indicating that the k-class 

model more accurately fits the data (B. Muthen, 2004).  

TIME CENTERING 

Centering of the time variable in growth modelling, which is age in the proposed analysis, will 

affect interpretation of model estimates and should be based on the research question being 

addressed (Biesanz, Deeb-Sossa, Papadakis, Bollen, & Curran, 2004; Hamaker & Grasman, 

2014; Raudenbush & Bryk, 2002). While model fit will not be affected by time centering, model 

estimates and their corresponding interpretation will depend on the method of time coding (L. K. 

Muthén & Muthén, 2010). Primary coding options include no centering, centering at the grand 

mean, centering at the cluster mean, or centering at a theoretical point of interest such as study 

initiation, study midpoint, or puberty (Hamaker & Grasman, 2014). The primary goal of 

centering is to allow for interpretability of the model intercept because without centering, the 

intercept of the model, an age of zero in this instance, has no meaningful interpretation (Biesanz 

et al., 2004).  

A potential time point for centering in the current study would be the theoretical onset of 

puberty, as this marks a series of important physical changes that have been shown to be 

associated with future health outcomes (Abreu & Kaiser, 2016). However, age at puberty onset 

has very large individual variation and is dependent on race and sex, with puberty onset 

averaging between 8 to 12 years for females and 9 to 14 years for males (Abreu & Kaiser, 2016). 

Furthermore, both early and delayed puberty are not uncommon (Abreu & Kaiser, 2016). 

Additionally, the derived BMI trajectories will be utilized by all RIGHT Track researchers and 

as such there is no single theoretical time point that would be applicable to all future study-

related research questions. Thus, a study-specific centering point would be more appropriate than 

puberty onset. 

One study-specific centering point would be age at baseline measure, which would allow 

interpretation of our linear term as initial baseline growth rate (Raudenbush & Bryk, 2002). 

However, a potential issue that arises with baseline centering is the increase in collinearity of the 
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linear and quadratic terms in our growth model and is a concern for this study given the 

increased number of available data points (Raudenbush & Bryk, 2002). A solution for this 

collinearity is to center time to the midpoint age of the study. For our quadratic growth model, 

midpoint centering not only results in the meaningful interpretation of our linear coefficient as 

the average growth rate during the study, but also reduces the correlation between our linear and 

quadratic age terms (Raudenbush & Bryk, 2002). For this study, the midpoint age of data 

collection for anthropometric measurements is approximately 11 years. This further allows for 

general application of derived BMI trajectories for research questions posed by all RIGHT Track 

investigators. 

COVARIATE ADJUSTMENT 

Inclusion of covariates in latent class derivation is an important consideration. When a covariate 

is added to the model, odds ratios can be obtained that indicate if membership in a particular 

latent class as compared to the referent class is more or less likely at varying levels of the 

covariate (Lanza & Rhoades, 2013). Additionally, Hu et al. reported that for analyses with small 

sample sizes of approximately 400 individuals, inclusion of covariates in GMM provided better 

model performance (J. Hu, Leite, & Gao, 2017). Covariates of interest that have association with 

BMI trajectories included sex (Paynter, Koehler, Howard, Herring, & Gordon-Larsen, 2015), 

race (Isong, Richmond, Avendano, & Kawachi, 2018), and socioeconomic status (SES) (Jansen, 

Mensah, Nicholson, & Wake, 2013). Given these considerations and our limited sample size of 

less than 400 participants, multinomial logistic regression will be utilized to determine if the 

aforementioned covariates are predictors of the BMI trajectory classes obtained from 

unconditional GMM analyses (Magee, Caputi, & Iverson, 2013). Significant predictors will be 

added to the best-fitting unconditional model to obtain the final conditional trajectory results 

(Jung & Wickrama, 2008; Magee et al., 2013). 

Biomarkers, Waist Circumference, and Body Composition 

Biomarkers are biological measurements that can be used in research and clinical settings to not 

only diagnose particular disease states, but can additionally provide insight into future disease 

risk (Choong & Tsafnat, 2012). Insulin resistance has been identified as an important 

cardiovascular risk factor (Adeva-Andany, Martinez-Rodriguez, Gonzalez-Lucan, Fernandez-

Fernandez, & Castro-Quintela, 2019) and fasting glucose, fasting insulin, and Homeostatic 
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Model Assessment of Insulin Resistance (HOMA-IR) are the primary biomarkers used to 

identify individuals with insulin resistance (Singh & Saxena, 2010). Fasting glucose levels at or 

above 126 mg/dl on at least two separate occasions, or a glucose value of at least 200 mg/dl at 

any single measurement, are the current standard for diagnosis of diabetes (Gedela, Appa Rao, & 

Medicherla, 2007), however, measuring insulin levels has the important ability to identify insulin 

resistance prior to the appearance of clinical signs of metabolic disease (Singh & Saxena, 2010). 

Thus, collecting data on insulin values in addition to glucose can be used to compute 

corresponding HOMA-IR levels to provide estimates on beta-cell function and insulin resistance 

(Singh & Saxena, 2010). 

In addition to biomarkers, measures of body shape and body composition have been shown to be 

associated with metabolic functioning (Lee, Bacha, Gungor, & Arslanian, 2006). Waist 

circumference, as a proxy for abdominal fatness, has been shown to relate to insulin sensitivity in 

children, with larger waist circumferences being associated with decreased insulin sensitivity 

(Lee et al., 2006). Further, body composition, as assessed by percentage of body fat, has 

association with HOMA-IR in adolescent populations (Wedin, Diaz-Gimenez, & Convit, 2012).  

BMI Trajectories, Biomarkers, and Body Composition 

Research utilizing latent class analysis for derivation of childhood BMI trajectories have 

consistently detected three to four distinct BMI growth patterns, with most studies identifying a 

stable overweight or obese group and a rapid BMI increase group amongst these patterns 

(Mattsson et al., 2019). A recent systematic review of latent-class derived BMI trajectories 

identified nine studies conducted in non-infant populations like that of RIGHT Track. Of these 

nine studies, three measured adult outcomes with these including anthropometrics (height, 

weight, waist circumference), body composition (fat mass, subscapular skinfolds), biomarkers 

(fasting glucose, lipids, blood pressure), and mortality (all-cause and cancer-specific) (Mattsson 

et al., 2019). However, only a single study utilized BMI to derive trajectories and also assessed 

associations between trajectory membership and adult non-mortality health markers (Mattsson et 

al., 2019; Peneau et al., 2017). Péneau et al. found that trajectories characterized by a stable 75 th 

BMI-for-age percentile or BMI increases were associated with increased adult BMI and waist 

circumference, however no significant association was found between trajectory membership 

and adult fasting glucose (Mattsson et al., 2019; Peneau et al., 2017). An additional study 
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described the association between childhood BMI z-score trajectories and adult BMI and fat 

mass finding that trajectories marked by early rapid increase in BMI z-score, whether persistent 

or non-persistent, were associated with higher BMI and fat mass in adulthood (Mattsson et al., 

2019; Rzehak et al., 2017). 

A review of studies not included in the systematic review by Mattsson et al. showed that while 

long-term growth trajectories utilizing BMI standard deviation scores from 4y to 18y were not 

associated with adult biomarkers including HDL, diastolic BP, or inflammatory markers 

(Oluwagbemigun et al., 2019), research conducted via derivation of childhood BMI trajectories 

showed that membership in early onset adiposity trajectories was associated with higher 

adolescent BP (Munthali, Kagura, Lombard, & Norris, 2016). A GMM analysis conducted in a 

sample of females aged 5y to 15y showed significantly higher insulin resistance and fasting 

insulin levels in a BMI trajectory group marked by rapid increase of BMI percentiles, but found 

no significant differences in fasting glucose amongst the four distinct BMI trajectory groups 

(Ventura, Loken, & Birch, 2009). However, this study did not include adult biomarker data and 

excluded males (Ventura et al., 2009). Further, childhood BMI trajectories developed in a 

Finnish sample were associated with type 2 diabetes status in adulthood (Eriksson, Kajantie, 

Lampl, & Osmond, 2015). To add to the existing literature, the derived BMI trajectories in this 

study will be utilized to determine associations with future obesity-related risk factors including 

fasting glucose, levels of insulin resistance, and percent body fat collected in emerging 

adulthood.  

 

Self-regulation and BMI  

Self-regulation is an expression used to describe a wide variety of behaviors including emotional 

regulation, delay of gratification, and effortful control (Anzman-Frasca, Francis, & Birch, 2015). 

Emotional regulation encompasses a set of strategies that children often employ when dealing 

with various stressful or difficult situations requiring them to control certain impulses (Power et 

al., 2016), while delay of gratification describes a child’s ability to forego an immediate reward 

in order to obtain a more desirable future reward (Schlam, Wilson, Shoda, Mischel, & Ayduk, 

2013). The term effortful control is a child’s ability to voluntarily alter their attention and 

behaviors in situations even when this alteration is not desired by the child (Eisenberg, 2012). 

Effortful control encompasses attention regulation and behavioral regulation, with behavioral 
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regulation including activational control and inhibitory control (Eisenberg, 2012). Inhibitory 

control, a measure of self-regulatory ability, is defined as one’s capacity to abstain from a 

particular behavior in response to instruction or command (Goldsmith). According to a 

systematic review, low levels of self-regulation have been shown to have association with higher 

BMI in infants and pre-school aged children (Bergmeier, Skouteris, Horwood, Hooley, & 

Richardson, 2014). Additionally, inability to self-regulate, as measured by lab-assessed tasks, 

was associated with larger increases in BMI (Bergmeier et al., 2014). Most interestingly, poor 

emotional regulation measured at 2y was a stronger predictor of future risk of overweight at 5.5 

y (Bergmeier et al., 2014).  

Similar findings have been discovered for measures specifically assessing the inhibitory control 

aspect of self-regulation. Research conducted in a sample of German children and adolescents 

aged 8 to 15 showed that low levels of inhibitory control, as measured by a go/no go laboratory 

task, were associated with higher BMI measures (Pauli-Pott, Albayrak, Hebebrand, & Pott, 

2010). Another study conducted in German primary school children demonstrated obese children 

were more likely to exhibit lack of inhibitory control as compared to normal weight subjects 

(Wirt et al., 2014). Similarly, a study of US adolescent lean and obese females used fMRI to 

assess brain regions associated with inhibitory control during a go/no-go task (Batterink, Yokum, 

& Stice, 2010). Researchers found that subjects with higher BMI values exhibited lower 

inhibitory control in response to visual stimuli depicting desserts (Batterink et al., 2010). 

While Balantekin et. al. explored the relation of childhood inhibitory control and adolescent BMI 

related to female adolescent weight control behavior patterns (Balantekin, Birch, & Savage, 

2015), to our knowledge, there are no current studies that look at the relation between childhood 

inhibitory control, as measured by food and non-food tasks, and BMI trajectory membership. 

Thus, the proposed research will describe the association between pre-school inhibitory control 

and membership in a particular BMI trajectory, with these results potentially serving to inform 

future studies seeking to intervene at this critical point in development to positively influence 

BMI change over time and reduce future health risks.  
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Diet 

Dietary intake is a modifiable behavior that is associated with obesity (Iannotti & Wang, 2013b). 

Many analyses of diet in children and adolescents rely on assessment of specific food groups or 

pre-specified dietary indices, such as the Healthy Eating Index (HEI) or Dietary Approaches to 

Stop Hypertension (DASH) scores, which use the sum of scores for intake of individual food 

components to determine an overall score (Berz, Singer, Guo, Daniels, & Moore, 2011; Costacou 

et al., 2018). While high diet quality as measured by these indices is associated with decreased 

risk of cardiovascular disease and type 2 diabetes (Schwingshackl, Bogensberger, & Hoffmann, 

2018), overall diet quality of young adults does not meet current nutrition recommendations 

(Lipsky et al., 2017). Similarly, in populations with similar diet quality, these diet-quality indices 

can produce homogeneous scores which may not be useful for identification of groups with 

unique dietary patterns. For example, individuals with similar diet-quality scores may consume 

different types of food, even though their HEI scores are classified as low quality (NCI).  

However, dietary patterns allow researchers to better understand how overall dietary intake may 

vary in populations with similar diet quality. Additionally, dietary patterns can describe how 

overall diet is associated with health outcomes rather than being limited to studying single food 

or nutrient relation (Rocha, Milagres, Longo, Ribeiro, & Novaes, 2017). In this regard, studying 

dietary patterns not only provides a more comprehensive view of dietary intake, but also 

contributes information on potential synergistic effects of foods (Rocha et al., 2017). 

DIET ASSESSMENT MEASURES 

Two primary diet data collection tools are utilized in studies assessing dietary patterns including 

24-hour dietary recalls and food frequency questionnaires (FFQ) (Cunha et al., 2018). The FFQ 

provides a list of food items to an individual who then estimates the typical amount of servings 

they consume of each item within a particular time frame (i.e., month, year) (Looman, 

Boshuizen, Feskens, & Geelen, 2019). These assessments provide a measure of an individual’s 

usual dietary intake and are typically used in large research studies since they do not require 

additional study staff to administer and can be completed relatively quickly (Looman et al., 

2019). Dietary assessment via 24-h recalls on the other hand requires increased time and 

resources as trained study staff are needed to obtain more detailed information related to dietary 

intake via a multiple-pass method (Looman et al., 2019). While 24-h recalls are expensive to 
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administer, they provide more detailed nutrient information for the date of assessment (Looman 

et al., 2019). However, to obtain an estimate of a person’s habitual intake using 24-h recalls, 

multiple interviews on various days are necessary (Looman et al., 2019). The current study will 

use dietary data from 24-h recalls obtained from a multiple-pass telephone procedure; FFQ data 

are not available in this sample (Wideman et al., 2016).  

COMPARISON OF METHODOLOGY FOR DERIVATION OF DIETARY PATTERNS  

Primary methods used to derive dietary patterns include confirmatory (Togo, Heitmann, 

Sorensen, & Osler, 2003) and exploratory (LeCroy et al., 2019) factor analysis (CFA and EFA), 

principal component analysis (PCA) (Bertin et al., 2016; Maia et al., 2018; J. Zhang et al., 2015), 

and latent class analysis (LCA) (Iannotti & Wang, 2013a; Sotres-Alvarez, Herring, & Siega-Riz, 

2010). The main difference between these various methods of dietary pattern derivation is that 

CFA, EFA, and PCA serve to identify foods commonly eaten in combination (i.e., correlated 

food items), whereas LCA classifies individuals into mutually exclusive groups with similar food 

consumption (Sotres-Alvarez et al., 2010). An advantage of LCA over other methods is that risk 

of a particular outcome can be estimated and compared for each identified group (Sotres-Alvarez 

et al., 2010). Thus, LCA will be utilized in the proposed analysis to derive groups of individuals 

with unique dietary intake to compare how BMI trajectory membership differs by dietary pattern. 

 

Dietary Patterns and Biomarkers  

Previous studies have established links between certain dietary patterns and metabolic risk 

factors, including Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) levels, and 

fasting glucose, however most of these studies were cross-sectional in nature (Rocha et al., 

2017). A systematic review by O’Neil et al. found that studies consistently identified a relation 

between ‘less healthy’ dietary patterns (i.e., patterns marked by increased sweet and savory 

snack consumption) and poor mental health status in children and adolescents (O'Neil et al., 

2014). Further, a meta-analysis conducted by Cunha et al. indicated that consumption of 

‘unhealthy’ dietary patterns was associated with increased BMI and WC (Cunha et al., 2018). 

While the studies summarized by Cunha et al. identified dietary patterns in various way, these 

‘unhealthy’ dietary patterns tended to follow a Western diet including foods such as pizza, 

processed and high fat meats, and sugar-sweetened beverages and desserts (Cunha et al., 2018). 
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Research in a sample of Mexican adolescents identified three dietary patterns corresponding to 

westernized, prudent, and high protein/high fat diets (Gutierrez-Pliego, Camarillo-Romero Edel, 

Montenegro-Morales, & Garduno-Garcia Jde, 2016). Data showed that the westernized and high 

protein/fat patterns were correlated with higher BMI values (Gutierrez-Pliego et al., 2016). 

Additionally, a study of Chinese children and adolescents found that dietary patterns 

characterized by increased intake of fast food and simple carbohydrates were associated with 

increased risk of obesity (J. Zhang et al., 2015). However, these studies were cross-sectional that 

identified dietary patterns via PCA rather than LCA. 

Although Wright et al. described the relation between adult BMI and longitudinal patterns of 

protein intake from childhood to adulthood (Wright, Sotres-Alvarez, Mendez, & Adair, 2017), 

dietary patterns of children and adolescents, particularly as they relate to adult biomarkers, have 

not been well described in US populations. The proposed research hopes to fill this gap by 

describing the relation between adolescent dietary patterns and health markers in emerging 

adulthood.  

 

Study Design and Analysis Population 

OVERVIEW 

Data from the Research Investigating Growth and Health Trajectories (RIGHT) Track and 

RIGHT Track Health longitudinal studies. The RIGHT Track and RIGHT Track Health 

longitudinal studies examine developmental changes in social, emotional, and physical health 

from childhood to early adulthood (Wideman et al., 2016). The baseline study population 

included three cohorts of children from central North Carolina, with approximately 37% of the 

sample being considered at risk for future behavioral issues (Wideman et al., 2016).  

Participants were recruited via program services such as day care centers, County Health 

Departments, and Women, Infants, and Children (WIC) services and were representative of the 

surrounding community in terms of race and SES (Wideman et al., 2016). Potential participants 

for cohorts 1 and 2 were recruited at 2-years of age (cohort 1: 1994-1996 and cohort 2: 2000-

2001) and screened using the Child Behavior Checklist (CBCL) (Achenbach, 1992), completed 

by the mother, in order to over-sample for externalizing behavior problems. Children were 
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identified as being at risk for future externalizing behaviors if they received an externalizing T-

score of 60 or above. Efforts were made to obtain approximately equal numbers of males and 

females. This recruitment effort resulted in a total of 307 children. Cohort 3 was initially 

recruited when infants were 6 months of age (in 1998) for their level of frustration, based on 

laboratory observation and parent report, and were followed through the toddler period (S.D. 

Calkins, Dedmon, Gill, Lomax, & Johnson, 2002). Children from Cohort 3 whose mothers 

completed the CBCL at two-years of age (N = 140) were then included in the larger study.  

Of the entire RIGHT Track sample (N = 447), 37% of children were identified as being at risk 

for future externalizing problems. There were no significant demographic differences between 

cohorts regarding gender, χ2(2, N = 447) = 0.63, p = 0.73, race, χ2(2, N = 447) = 1.13, p = 0.57, 

or two-year SES, F (2, 444) = 0.53, p = 0.59. Additional details of the RIGHT Track study 

design and sample description are provided in Wideman et al.(Wideman et al., 2016) These 

longitudinal data not only provide insight into a unique sample of children but also capture 

crucial periods of their development.  

STUDY VARIABLES 

Data describing psychological factors were obtained from participants beginning at age 2, with 

subsequent data collection points at 4, 5, 7 and 10 years of age (Wideman et al., 2016). 

Collection of corresponding health and biomarker data was initiated at approximately 16 years of 

age. Participant anthropometric measures of height and weight were measured by trained staff at 

11 visits corresponding to an age range of 3 to 25y. Dietary assessment was conducted in a 

subset of participants using three 24-hour dietary recalls, two week-day and one weekend day, 

via one-on-one phone-based interviews at approximate ages 16(T1), 19(YA1), and 23(YA2) 

(Wideman et al., 2016). Preliminary analyses characterized longitudinal patterns of BMI and 

adolescent dietary patterns in the RIGHT Track study population via two derived categorical 

variables. These derived variables will be used to determine the association between longitudinal 

BMI patterns and a variety of psychological, behavioral, and physiological factors, including 

self-regulation of behavior, patterns of dietary intake, fasting glucose levels, and percent body 

fat. Detailed descriptions of analysis variables are provided below and summarized in Table 1. 
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Demographic Information 

Sex, race, and Hollingshead index of SES (Hollingshead, 1975) at age 2 will be used as possible 

covariates and/or to describe membership characteristics of subjects in each BMI trajectory and 

dietary pattern. Of note, given minimal sample size in non-white race categories, race will be 

analyzed as a dichotomous variable with levels ‘Caucasian’ and ‘non-Caucasian’ (African 

American, biracial, and other). In the RIGHT Track sample, SES at age 2 ranges from 40 to 54 

reflecting minor professional and technical occupations considered to be representative of middle 

class (Hollingshead, 1975). 

Behavioral Data 

This research utilizes data from two different laboratory tests performed at age 4 as measures of 

inhibitory control. Tests were modelled after those described in the Laboratory Temperament 

Assessment Battery (Lab-TAB) (Gagne, Van Hulle, Aksan, Essex, & Goldsmith, 2011; 

Goldsmith, Reilly, Lemery, Longley, & Prescott, 1995). The first task, snack delay, involved a 

researcher presenting a child with an M&M candy but making the child wait two minutes before 

allowing them to eat the candy (Blandon, Calkins, Keane, & O'Brien, 2010). During this task, the 

researcher remained in the room standing beside the child for the full experiment time. The 

proportion of time not touching the item will be used as another measure of inhibitory control, 

with higher numbers indicating better control. The second task was a gift delay experiment 

during which participants were given a wrapped gift and instructed to not open it for two minutes 

(Graziano, Calkins, & Keane, 2010). Once presented with the gift box, researchers left the room 

and observed the child’s behavior to determine the total time the child touched the gift. This 

analysis will use the proportion of time not touching the gift to denote levels of inhibitory 

control, with higher numbers resulting in better control (Graziano et al., 2010). 

Anthropometrics and Biomarkers 

Lab measured height was measured to the nearest 0.1cm (collected via measuring tape (RIGHT 

Track) and stadiometer (RIGHT Track Health)) and weight was measured to the nearest 0.1 kg 

(collected via analog scale (RIGHT Track) and balance beam scale (RIGHT Track Health)) 

(Graziano, Kelleher, Calkins, Keane, & Brien, 2013; Wideman et al., 2016). Height and weight 
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data will be used to compute BMI (kg/m2) values at all visits ranging from age 4 to less than 20 

years of age. Percent body fat, measured via bod pod, fasting serum glucose, and HOMA-IR 

were obtained at three time points corresponding to emerging adulthood. The most recent time 

point for which non-missing adult (> 18 years) biomarker data are available will be included in 

these analyses (Wideman et al., 2016).  

Dietary Data  

Data from the 24-hour dietary recalls collected via NDSR software at the T1, YA1, and YA2 

time points will be used to derive dietary patterns. Diet recalls were collected for a subset of 

participants. Participants were contacted at two of three time points corresponding to 

approximate ages 16, 20, and 23 years. For each time point, the protocol was to obtain three diet 

recalls: two weekday recalls and one weekend day recall. A total of 266 individuals had at least 3 

diet recalls summing across all available time points.  

Table 1. Description of Analysis Variables 

 Type Interpretation Time points‡ 
Demographics:    
Sex Categorical 1=Male 

2=Female 
2 

Race Categorical 1=Caucasian 
2=African American, 
Biracial, and Other 

2 

SES Continuous Hollingshead Index of 
Socioeconomic Status 

2 

Child’s age* Continuous Age in years 4, 5, 7, 10, Pilot, 
Temp15, Temp17, 
T1, T2, YA1, YA2 

Anthropometrics/Biomarkers     
Height (cm) Continuous Height in centimeters 4, 5, 7, 10, Pilot, 

Temp15, Temp17, 
T1, T2, YA1, YA2 

Weight (kg) Continuous Weight in kilograms 4, 5, 7, 10, Pilot, 
Temp15, Temp17, 
T1, T2, YA1, YA2 

BMI (kg/m2) Continuous Body Mass Index 4, 5, 7, 10, Pilot, 
Temp15, Temp17, 
T1, T2, YA1, YA2 

Body fat (%) Continuous Percent Fat Mass T2, YA1, YA2 
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 Type Interpretation Time points‡ 
Fasting glucose (mg/dL) Continuous Serum Fasting Glucose T2, YA1, YA2 
HOMA-IR Continuous Homeostatic Model 

Assessment of Insulin 
Resistance 

T2, YA1, YA2 

Self-regulation    
Inhibitory control (non-food) Continuous Effortful Control Gift 

Delay (Proportion of 
NOT touching gift) 

4 

Inhibitory control (food) Continuous Effortful Control Snack 
Delay (Proportion of 
NOT touching food) 

4 

Derived Variables**    
BMI trajectories Categorical 1=Stable normal weight 

2=Normal weight to 
overweight transition  

4, 5, 7, 10, Pilot, 
Temp15, Temp17, 
T1, T2 

Adolescent dietary patterns Categorical 1=Balanced 
2=Unbalanced 

T1, YA1 

‡ Time points described based on RIGHT Track study naming conventions. Time points 2, 4, 5, 7, 10 correspond to desired age 
of data collection; Pilot corresponds to pilot study for RIGHT Track Health (average age of 16); Temp15 and Temp17 
correspond to laboratory visits to assess temperament measures at desired ages of 15 and 17; T1 and T2 correspond to pre-adult 
biomarker visits (average age of 16 and 17, respectively); YA1 and YA2 correspond to laboratory visits for collection of young 
adult biomarker data (average age of 19 and 23, respectively). 
* Restructured age variable computed from denoted time points 
** Data from corresponding time points were utilized in variable derivation 
*** Baseline time point for anthropometric measures varies for each individual (ranges from 3.5 to 5.5 years) 
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CHAPTER II: ASSOCIATION BETWEEN BODY MASS INDEX TRAJECTORIES FROM 

CHILDHOOD TO ADOLESCENCE WITH ADIPOSITY AND BIOMARKERS IN EARLY 

ADULTHOOD 

This chapter is an article draft prepared for submission to Obesity (Silver Spring). 

Abstract 

Objective: Childhood obesity has been cross-sectionally linked to health issues such as 

hypertension, dyslipidemia, and type 2 diabetes, however, the relation between longitudinal BMI 

growth patterns in children and future health markers remains less explored. The focus of this 

study was to derive unique patterns of longitudinal BMI growth in children aged 4 to 17 years 

and determine the relation between trajectory membership and early adulthood metabolic and 

anthropometric measures.  

Methods: Growth mixture models (GMM) were used to derive trajectories of BMI growth from 

age 4 to 17 years in 357 children participating in the Research Investigating Growth and Health 

Trajectories (RIGHT) Track and RIGHT Track Health longitudinal studies. Linear regression 

models were used to assess the relation of childhood BMI trajectory and selected health markers 

collected in early adulthood (18 to 21 years), including metabolic biomarkers (fasting glucose, 

insulin, and HOMA-IR) and anthropometrics (percent body fat and waist circumference). 

Results: We identified two distinct BMI trajectories corresponding to “stable normal weight” and 

“normal weight to overweight transition” groups. Compared to the stable normal weight group, 

membership in the normal weight to overweight transition group was positively associated with 

all outcome measures after controlling for sex, race, and socioeconomic status. Results were 

attenuated when additionally controlling for adulthood waist circumference (WC) or percent 

body fat; however, in models adjusting for adulthood percent body fat in addition to baseline 

characteristics, the association between BMI trajectory membership and insulin, HOMA-IR, and 

WC remained significant.   
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Conclusions: We identified trajectories of BMI from childhood into adolescence and showed 

these trajectories were associated with metabolic and anthropometric measures in adulthood. 

This study shows the relation between longitudinal childhood BMI patterns and adult 

cardiometabolic health markers, with this relation being apparent in individuals as young as 

eighteen years of age. It is important to identify at-risk groups who could most benefit from 

intervention strategies implemented in early life.  

Introduction 

Obesity, or having body fat in excess of what is optimal, is a serious public health issue that is 

associated with increased risk of chronic diseases such as type 2 diabetes, cardiovascular disease, 

and even some cancers (Dietz & Bellizzi, 1999; Fruh, 2017). In addition to the physical health 

implications, obesity is associated with increased risk of mental health issues such as depression, 

anxiety, and low self-esteem (Fruh, 2017). Obesity prevalence has been increasing over the past 

few decades, with this trend also observed in children and adolescent populations (Hales et al., 

2017).  Individuals with obesity during childhood and adolescence are five times as likely to be 

obese in adulthood as compared to non-obese children (Simmonds, Llewellyn, Owen, & 

Woolacott, 2016). Further, the earlier individuals develop obesity-related risk factors, the more 

likely they are to experience morbidity and mortality from obesity-related disease (Kelsey et al., 

2014). As such, it is important to determine how age of obesity onset and corresponding duration 

and longitudinal changes in obesity status influence health.  

BMI is regularly used in research as a generally accepted proxy measure for body fatness, or 

obesity, in both adults and children (Bouchard, 2007; Dietz & Bellizzi, 1999). Categorization of 

BMI values in adults (CDC), and age-sex specific BMI percentile in children under the age of 20 

(CDC), is often employed as a measure of obesity status. However, adult populations are 

assumed to have reached constant height, so weight is the only parameter changing over time 

(Clarke et al., 2010; Jun et al., 2012; Ostbye et al., 2011). Additional considerations exist in a 

population of children making their transition into adolescence given that their height is 

changing in addition to their weight, with this resulting in a corresponding increase in BMI as a 

normal part of growth and maturation.  
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Latent class growth models (LCGM) and growth mixture models (GMM) are often used to group 

together individuals with similar longitudinal trajectories, or patterns of growth (Ram & Grimm, 

2009). Longitudinal studies in adults have utilized group-based BMI trajectories to describe 

unique patterns of BMI change in a particular population, with these BMI patterns being 

associated with future health problems including diabetes, hypertension, and cancer (Clarke et 

al., 2010; Ostbye et al., 2011). BMI trajectories have been explored in children, with many 

research studies focusing on maternal and childhood predictors of future BMI trajectory 

membership (Lane, Bluestone, & Burke, 2013; Li, Goran, Kaur, Nollen, & Ahluwalia, 2007; 

Magee et al., 2013; Nedelec, Miettunen, Mannikko, Jarvelin, & Sebert, 2020; Pryor et al., 2011). 

Maternal factors such as higher maternal pre-pregnancy BMI and maternal smoking (Li et al., 

2007; Magee et al., 2013; Pryor et al., 2011), child-level indicators such as increased birth weight 

(Nedelec et al., 2020), and lower socioeconomic status (Lane et al., 2013) have been shown to 

increase the risk of transitioning to overweight or obese status during childhood.  

The literature describing growth trajectories in children and adolescents varies in choice of 

outcome measure with researchers using BMI (Kubzansky et al., 2012; Nonnemaker et al., 

2009), BMI percentile (Huang et al., 2013; Kwon et al., 2017), and BMI standard deviation 

score/BMI z-score to derive trajectories (Geserick et al., 2018; Prinz et al., 2018). Cole et al. 

suggest that BMI or BMI percentile are more appropriate measures to assess longitudinal obesity 

in children, with BMI z-score being recommended as a measure of fatness at a single time point 

(Cole et al., 2005). However, findings from the Fels Longitudinal Study, which assessed a wider 

age range of children than Cole et al., concluded that changes in BMI percentile do not 

necessarily represent corresponding adiposity changes in children, with the relationship between 

BMI percentile and adiposity being affected by both BMI and sex (Demerath et al., 2006). 

Additionally, when assessing longitudinal change, due to the skewed nature of BMI, changes in 

BMI percentile translate to larger BMI changes for those at or above the 95th percentile as 

compared to those at the 50th percentile (Cole et al., 2005). Thus, choice of BMI outcome 

measure can influence the interpretation of study results, especially in the context of BMI 

change, and for longitudinal research seeking to understand obesity changes in children and 

adolescents, BMI is recommended (Cole et al., 2005; Demerath et al., 2006).  
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While relations between childhood obesity, as defined by increased BMI values, and future 

health issues such as hypertension, dyslipidemia, type 2 diabetes, and some cancers have been 

shown cross-sectionally (Weihrauch-Bluher, Schwarz, & Klusmann, 2019) the relation between 

longitudinal BMI growth patterns in children and future health markers remains less explored 

(Oluwagbemigun et al., 2019). Previous research has shown childhood BMI trajectories are 

associated with adult health-related outcomes such as blood pressure and hypertension (Yuan et 

al., 2020), waist circumference (Peneau et al., 2017), hyperglycemia (T. Zhang et al., 2019), and 

type 2 diabetes (Yuan et al., 2020). While Oluwagbemigun et al. showed the association between 

BMI trajectory membership and hypertension and inflammatory markers in late adolescence 

(Oluwagbemigun et al., 2019), there is limited information related to the relation between 

childhood BMI trajectories and metabolic markers and insulin resistance in later life. Emerging 

adulthood (18-25y) is a time in the lifespan that is increasingly of interest to researchers since the 

appearance of chronic disease risk factors can occur during this time (Hoare, Dash, Jennings, & 

Kingwell, 2018). In addition, emerging adulthood serves as a unique period where individuals 

become more independent (Arnett, 2000),  representing an important time to encourage behavior 

changes to promote health and decrease future health risk. 

The aim of the present study was to derive unique longitudinal patterns of BMI in children 

during 4 to 17 years of age and determine the association of these patterns with selected 

measures of cardiometabolic health collected in emerging adulthood (18-25y). To our 

knowledge, this is the first study to determine the association between childhood BMI 

trajectories and adult insulin status and insulin resistance. 

Methods 

STUDY DESIGN AND PARTICIPANTS 

This study included 357 children from the Research Investigating Growth and Health 

Trajectories (RIGHT) Track (1996 - 2015) (S. D. Calkins & Keane, 2009) and RIGHT Track 

Health longitudinal studies (2014-2021) (Wideman et al., 2016). Together, these two studies 

examined developmental changes in social, emotional, and physical health from childhood to 

early adulthood in a total of 447 children (Wideman et al., 2016). Three cohorts of participants 

were recruited via program services in central North Carolina such as day care centers, County 
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Health Departments, and Women, Infants, and Children (WIC) services, with participants being 

representative of the surrounding community in terms of race and socioeconomic status (SES) 

(Wideman et al., 2016).  

Participants for cohorts 1 and 2 were recruited at 2-years of age (cohort 1: 1994-1996 and cohort 

2: 2000-2001; n=307) and screened using the Child Behavior Checklist (CBCL) (Achenbach, 

1992), completed by the mother, in order to over-sample children considered at risk for future 

behavioral issues. Participants in cohort 3 were recruited at 6 months of age (in 1998) for their 

level of frustration, based on laboratory observation and parent report, and were followed 

through the toddler period (S.D. Calkins et al., 2002). Children from cohort 3 whose mothers 

completed the CBCL at two-years of age (n=140) were then included in the RIGHT Track 

studies. A total of ten laboratory visits took place during the combined studies corresponding to 

ages 2, 4, 5, 7, 10, 15, 16, 17, 18, and 23. Demographic and anthropometric data were collected 

at each time point, however, anthropometrics were not collected at age 2. Demographic 

information was obtained via parent survey. More detailed information related to study design 

and recruitment has been published previously (S.D. Calkins et al., 2002; Graziano et al., 2010; 

Wideman et al., 2016). 

Participants were eligible for inclusion in the current study if they had at least two BMI measures 

during 4 to 17 years of age (n=357). As our primary objective was to develop BMI trajectories 

from childhood through adolescence, only longitudinal anthropometrics prior to age 18 were 

utilized. Due to missingness of baseline covariates, the final analytic sample totaled 342 

individuals.  

DEMOGRAPHICS 

Sex, race, and socioeconomic status (SES) were utilized as covariates in all analyses. SES was 

computed via Hollingshead four factors score, which utilizes an individual’s education level 

(ranging from 1=less than 7th grade to 7=graduate degree) and occupation (ranging from 1= 

unskilled laborers to 9=executives/major professionals) to compute a composite score 

(Hollingshead, 1975). An aggregate measure of SES is then computed by multiplying education 

level by a factor of 3 and occupation by a factor of 5 and then summing these two values; total 

SES scores range from 8 to 66. If both parents in a family unit were employed, their individual 
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scores were averaged to form the final SES score. Scores were interpreted as follows: unskilled 

laborers (8-19), semi-skilled workers (20-29), sales workers/skilled craftsmen (30-39), minor 

professional (40-54), and major business (55-66) (Hollingshead, 1975). Race was reported as 

‘Caucasian,’ ‘African American,’ ‘Biracial,’ and ‘Other,’ however, minimal sample sizes in non-

White race categories led to the dichotomization of race as ‘Caucasian’ and ‘non-Caucasian’. 

LONGITUDINAL ANTHROPOMETRICS  

Height and weight were measured by trained staff at laboratory visits at ages 4, 5, 7, 10, 15, 16, 

17, 18 and 25 years (Graziano et al., 2013; Wideman et al., 2016). During the visits prior to 15 

years of age, height was measured to the nearest 0.1 cm with a measuring tape and weight was 

measured to the nearest 0.10 kg with an analog weight scale (Graziano et al., 2013). More 

precise measurement instruments were available during the RIGHT Track Health study, and so 

height was collected via stadiometer to the nearest 0.1 cm (SECA, Chino CA) and a balance-

beam scale was used to measure weight to the nearest 0.1 kg (Detecto-medic, Brooklyn NY) 

(Wideman et al., 2016). BMI (kg/m2) and age-sex specific BMI percentile were computed at 

each time point using the SAS macro produced by the Centers for Disease Control and 

Prevention (CDC).  

ADULT ANTHROPOMETRICS AND BIOMARKERS 

Additional anthropometric measures and biomarker data were collected during the RIGHT Track 

Health study. Waist circumference was taken at the smallest part of the abdominal area and 

measured using a Gulick tension-tape measure to the nearest 0.1 cm. Percent body fat was 

measured via a daily calibrated BOD POD following standard measurement protocol (Cosmed, 

Concord, CA, USA). Fasting serum glucose (mg/dl) and fasting insulin (pg/mL) were obtained 

via colorimetric assay (Caymen Chemical, Ann Arbor, MI) for participants at approximately 18 

and 23 years of age. Insulin was converted from pg/mL to g/mL by a factor of 10-3 and g/mL to 

µIU/mL via a factor of 28.8 (Knopp, Holder-Pearson, & Chase, 2019). Insulin values will be 

reported in both µIU/mL and pmol/L for ease of comparison to other studies. As such, µIU/mL 

was converted to pmol/L via a factor of 6.00 as recommended in Knopp et al (Knopp et al., 

2019). HOMA-IR, a measure of insulin resistance, was computed via fasting insulin (µIU/mL) x 

fasting glucose (mg/dl)]/405 (Rivas-Crespo, 2015). The earliest time point for which the 
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participant’s non-missing adult biomarker data were available (i.e., > 18 years) was used in 

analyses. Additional details related to anthropometric and biomarker data collection procedures 

and protocols are described further in Wideman et al (Wideman et al., 2016). 

STATISTICAL METHODS 

Growth mixture modeling (GMM) (B. Muthen) was conducted to derive groups with unique 

longitudinal BMI trajectories using Mplus analysis software (version 8; 2017). GMM is used to 

identify unobservable, or latent, groups within a population of interest using observed 

longitudinal data (Ram & Grimm, 2009). GMM methods provide information on how these 

latent groups change over time and allow for comparison of these latent groups to explore 

differences in these longitudinal changes (Ram & Grimm, 2009). GMM analyses require a data 

structure with minimal variability of participant age at each time point (B. O. Muthen & Khoo, 

1998). In the current study, participant age differed by up to two years at various laboratory 

visits, requiring data restructuring to ensure equal spacing of time for BMI measures. The 

restructured data consisted of 10 time points corresponding to ages 4, 5, 6, 7, 8, 10, 11, 15, 16, 

and 17 and ensured that all time points in derived trajectories preceded adult outcome measures.  

A quadratic GMM was fit to these data to account for the BMI growth pattern expected in 

children spanning the ages in the current study (B. Muthen & Asparouhov, 2015). While the 

general recommendation is for quadratic growth models to only include individuals with at least 

three repeated outcome measures, if the majority of subjects have three or more observations, the 

analysis sample can include participants with only one or two observations (Curran, Obeidat, & 

Losardo, 2010). Thus, our inclusion criteria ensured that an individual’s data at minimum 

contributed information towards the prediction of the model’s intercept and linear slope. 

Subsequent model selection for GMM analyses was performed in four major steps.  

Step one was to determine the appropriate constraints for variance and covariance parameters in 

a two-class model. In a standard latent class growth model (LCGA) all variance and covariance 

parameters are set to zero, which in turn forces individuals within the same latent class to be 

homogenous. GMM, however, allows all variance and covariance parameters to differ, thus 

allowing for heterogeneity within a particular latent class (Jung & Wickrama, 2008). In the 

current study, four sets of constraints were tested: 1) a fully constrained LCGA (i.e., variance of 
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intercept, linear, and quadratic terms forced to zero), 2) a GMM which allowed all variance and 

covariance parameters to vary freely (i.e., variance of intercept, linear, and quadratic terms 

allowed to vary and covary), 3) a GMM with quadratic growth constrained to zero for all classes 

(i.e., variance of intercept and linear term allowed to vary and covary with the quadratic term 

forced to zero for all classes), and 4) a GMM with quadratic growth constrained to zero for only 

a single class (i.e., variance of intercept, linear, and quadratic term allowed to vary and covary 

for one class and variance of intercept and linear term allowed to vary and covary with the 

quadratic term forced to zero for the second class only). 

Step two applied constraints from the best-fitting two-class model identified in step one to 

models with increasing number of latent classes. In step three, multinomial logistic regression 

was used to model class membership, as identified by the best-fitting model from step two, as a 

function of pre-identified covariates to identify significant predictors of class membership. 

Addition of significant covariates in a GMM allow for more accurate estimation of the intercept, 

linear slope, and quadratic parameters for each latent class (Jung & Wickrama, 2008). As such, 

in the fourth and final step, significant predictors of latent class membership were added to the 

best-fitting model in step two as covariates to produce the final estimates (Magee et al., 2013).  

Model fit was evaluated after steps one, two, and four and was assessed by multiple criteria 

including (1) the Bayesian Information Criteria (BIC), with smaller values representing better 

fitting models (Masyn, 2013), (2) entropy, with values greater than 0.8 supporting that classes 

have been clearly defined and a value of 1.0 indicating perfect model delineation (Celeux & 

Soromenho, 1996; Tein et al., 2013), and (3) the Lo-Mendel-Rubin likelihood ratio test (LMR 

LRT), which compares the fit of a model with k classes versus a model with k-1 classes (B. 

Muthen, 2004). Individuals were then classified into a trajectory based on their highest posterior 

class membership probability. There are no formal rules to define a minimum required 

percentage for class membership, but recommendations suggest a minimum of 5% (Andruff, 

Carraro, Thompson, & Gaudreau, 2009). 

BMI TRAJECTORIES AND ADULT HEALTH MARKERS 

Multiple linear regression models were used to separately assess the relation between BMI 

trajectory membership and percent body fat, waist circumference, fasting glucose, fasting 
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insulin, and HOMA-IR in emerging adulthood. All non-normally distributed adult health 

markers (fasting glucose, fasting insulin, and HOMA-IR) were log-transformed via natural 

logarithm. A series of four linear regression models were used to examine the relation between 

the BMI trajectory membership and each outcome variable: 1) unadjusted model with BMI 

trajectory membership alone, 2) demographic adjusted model controlling for race, sex, 

socioeconomic status, 3) demographic adjusted model additionally controlling for waist 

circumference in adulthood, and 4) demographic adjusted model additionally controlling for 

body fat percentage in adulthood. Due to issues related to the collinearity of waist circumference 

and percent body fat (r = 0.60), these variables were not included in the same model and as such 

two separate models, (3) and (4), were fit.  

Chi-square and Student’s t-tests were used to determine if baseline characteristics differed by 

BMI trajectory membership and significance was assessed at alpha = 0.05. Regression analyses 

and tests of baseline characteristics were conducted in SAS version 9.4. 

Results 

Our analytic sample of 342 participants was comprised of 153 males and 189 females, was 

primarily Caucasian, and middle class (Table 2). Overall, on average, participants maintained 

BMI values corresponding to normal weight throughout the study with age-sex specific BMI 

percentiles between the 50th and 75th percentiles at all data points (CDC).  

BMI TRAJECTORY DERIVATION 

All GMMs had better fit as compared to LCGA models with the GMM allowing for 

heterogeneity of variance for all terms for class one while constraining the variance for the 

quadratic term for class two had the best fit overall (see Appendix A1). The 3-class model 

produced the lowest BIC, had a significant LMR LRT p-value, and the decrease in BIC from the 

2-class to the 3-class model was approximately 17, providing ‘very strong’ evidence in support 

of the 3-class model (see Appendix A2) (Raftery, 1995). 

Table 2. Baseline Demographics and Adult Health Markers of RIGHT Track Sample Overall and 
by BMI Trajectory Membership 

  Overall 
Stable Normal 

Weight 
Overweight 
Transition  

p-value1 

n (%) 349 272 (77.9) 77 (22.1)  
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Sex, n (%)    0.103 
Male 153 (45.8) 131 (48.2) 29 (37.7)  
Female 189 (54.2) 141 (51.8) 48 (62.3)  

Race, n (%)    <0.001 
Caucasian 229 (65.6) 194 (71.3) 35 (45.5)  
African-American & Other 120 (34.4) 78 (28.7) 41 (54.6)  

SES, mean (std) 39.7 (10.9) 40.8 (10.5) 35.9 (11.6) <0.001 
     
Adulthood outcomes [mean, (std)] 
BMI (kg/m2) 26.3 (6.63) 23.8 (3.73) 33.4 (7.93) <0.001 
Body fat percentage 26.7 (12.43) 23.0 (10.34) 37.5 (11.22) <0.001 
Fasting glucose (mg/dL) 77.8 (16.16) 76.6 (11.48) 82.6 (26.30) <0.001 
Fasting insulin (µIU/mL) 38.9 (32.29) 33.9 (26.01) 55.8 (43.92) <0.001 
Fasting insulin (pmol/L)  233.8 (193.8) 203.5 (156.07) 335.1 (263.5) <0.001 
HOMA-IR  7.7 (7.56) 6.5 (5.22) 12.1 (12.10) <0.001 
Waist circumference (cm) 82.8 (16.59) 77.2 (10.85) 98.2 (19.96) <0.001 

1p-values from chi-square tests for frequencies and t-tests for means 

However, with inclusion of covariates race and SES, which were identified as significant 

predictors of class membership in a multinomial logistic regression model (see Appendix A3), 

the LMR LRT p-value for the 3-class model became non-significant, indicating that the 2-class 

model with covariates was a better fit. A logistic model for the 2-class model confirmed the same 

significant predictors of class membership as for the 3-class model (see Appendix A4). A 

significant LMR LRT, in combination with the limited sample size in class 3 (n = 23, 7%) and 

the larger entropy value in the 2-class model, led to the decision to utilize the trajectories 

identified by the 2-class model with covariates for regression analyses.  

The primary difference between the 2-class and 3-class models was the identification of a ‘stable 

obese’ class (n = 23). Of note, all participants classified as ‘stable obese’ in the 3-class model 

were classified as ‘normal to overweight transition’ in the 2-class model. Due to the clinical 

relevance of a stable obese BMI trajectory as ‘high risk’ (Buscot et al., 2018), visual 

representation of the 3-class model is provided in the Appendix as reference (Appendix A5); 

regression results for the 2-class model, excluding the 23 individuals assigned to the ‘stable 

obese’ class as identified by the 3-class model are provided as a sensitivity analysis.  
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COMPARING BMI TRAJECTORY CLASS CHARACTERISTICS  

The two mean BMI trajectories are presented in Figure 1. Class 1 (n = 272, 77.9%) was stable 

normal weight as defined by average BMI percentiles below 85% throughout the growth period 

(Table 2, Figure 2) (CDC). Contrastingly, on average, Class 2 (n = 77, 22.1%) transitioned from 

normal weight to overweight during the study, with BMI percentiles increasing from below 85% 

to above 85%, with this change occurring between ages 5 and 7 (Figure 2). Thus, we use the 

following descriptors for classes 1 and 2 respectively: 1) stable normal weight and 2) normal 

weight to overweight transition.  

 

Figure 1. Longitudinal BMI Trajectories for Stable Normal Weight and Normal to Overweight 
Transition Groups 

 Stable Normal Weight (n=272; 77.9%) 
- - - - Normal to Overweight Transition (n=22; 22.1%) 
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Figure 2. Average BMI percentile by BMI Trajectory Class Membership over Time 

The stable normal weight group consisted of a higher proportion of Caucasian participants as 

compared to the overweight transition group. Even though both classes could be described as 

lower middle-class with average SES values nearing 40, members of the overweight transition 

group had lower SES as compared to those in the stable normal weight group (Hollingshead, 

1975). As expected, there were no significant sex differences when comparing classes; 

computation of BMI for children and adolescents is age and sex specific and sex was not a 

significant predictor of class membership as described in the GMM analysis process. 

When comparing unadjusted mean values of adult metabolic markers and anthropometrics, the 

overweight transition group had significantly higher values as compared to the stable normal 

weight group (Table 2). On average, fasting glucose, fasting insulin, and HOMA-IR were 6 

mg/dL, 22uIU/mL, and 5.6 units higher in the overweight transition group as compared to the 

stable normal weight group, respectively. Similarly, average BMI (d=9.6 kg/m2), body fat 

percentage (d=14.5 %), and waist circumference (d=21 cm) were higher in the overweight 

transition group as compared to the stable normal weight group. 

ASSOCIATION BETWEEN BMI TRAJECTORY AND BIOMARKERS 

A significant association was found between BMI trajectory class and young adulthood 

biomarkers for all outcomes in unadjusted regression models, with this relation holding true after 

adjustment for race, sex, and SES (Table 3). Demographic-adjusted models showed membership 
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in the overweight transition group was associated with increased percent body fat (11.3%) and 

waist circumference (16.2cm) and 6.5%, 40.8% and 47.0% percent increase in fasting glucose, 

fasting insulin, and HOMA-IR, respectively as compared to the stable normal weight group. 

When further adjusting models for adulthood percent body fat, the association of BMI trajectory 

with fasting insulin and HOMA-IR levels remained significant, with membership in the 

overweight transition group being associated with a 40.5% and 44.0% higher fasting insulin and 

HOMA-IR respectively as compared to the stable normal weight group. The association between 

BMI trajectory and adult fasting glucose was no longer significant after adjustment for adulthood 

percent body fat.
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Table 3. Linear Regression Coefficients1 (95% Confidence Intervals) for Association between Adult Metabolic Markers and 
Anthropometrics and Membership in a Normal to Overweight Trajectory 

 Model 1 Model 22 Model 33 Model 44 

Outcome b (95%CI)  
[n] 

p-
value 

b (95%CI)  
[n] 

p-
value 

b (95%CI) 
[n] 

p-
value 

b (95%CI)  
[n] 

p-value 

% BF 11.99 (8.23, 15.74)  
[200] 

<0.001 11.32 (8.06, 14.57) 
[198] 

<0.001 1.92 (-0.572, 4.42)  
[196] 

0.130 N/A N/A 

         
Fasting 
Glucose 
(mg/dL) 

6.04 (0.477, 11.61) 
[218] 

0.034 6.46 (0.650, 12.28) 
[214] 

0.030 1.89 (-4.28, 8.07) 
[214] 

0.546 2.02 (-4.85, 
8.90) [187] 

0.562 

  
      

  
Fasting 
Insulin 
(µIU/mL) 

40.1 (12.17, 67.94) 
[201] 

0.005 40.8 (11.96, 69.69) 
[198] 

0.006 22.3 (-8.98, 53.61) 
[198] 

0.161 40.5 (5.94, 
75.08) [172] 

0.022 

  
      

  
HOMA-
IR 

46.2 (17.19, 75.12) 
[199] 

0.002 47.0 (17.01, 77.01) 
[196] 

0.002 23.8 (-8.43, 56.02) 
[196] 

0.147 44.0 (8.30, 
79.68) [171] 

0.016 

  
      

  
WC (cm) 16.84 (12.30, 

21.39)  
[230] 

<0.001 16.24 (11.63, 
20.84)  
[226] 

<0.001 N/A N/A 6.58 (2.83, 
10.34) [196] 

<0.001 

1 Stable Normal Weight group is the referent class. Regression coefficient for %BF and WC outcomes is the mean difference 
between the two classes. The reported regression coefficients for fasting glucose, fasting insulin, and HOMA-IR were 
multiplied by 100 and are interpreted as the percentage of change in the outcome for being in the Normal to Overweight 
Transition group compared to the referent Stable Normal Weight group since fasting glucose, fasting insulin, and HOMA-IR 
were natural log transformed.  
2 Adjusted for race, sex, socioeconomic status. 
3 Adjusted for race, sex, socioeconomic status, and waist circumference at young adulthood (WC).  
4 Adjusted for race, sex, socioeconomic status, and body fat percentage at young adulthood (% BF). 
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Models that adjusted for waist circumference in addition to demographic characteristics resulted 

in attenuated and non-significant findings for all outcomes, indicating adult waist circumference 

is more significantly associated with adult biomarkers than childhood BMI trajectory. Sensitivity 

analyses that excluded the 23 individuals identified as ‘stable obese’ by the 3-class model 

produced similar results (see Appendix A6).  

Discussion 

The main purpose of the current study was to characterize longitudinal trajectories of BMI 

growth throughout childhood and adolescence and determine the relation between these 

trajectories and adult anthropometrics and metabolic health markers in the RIGHT Track 

Research Project. We found two unique BMI trajectories from childhood to adolescence: one 

corresponding to stable normal weight and the other being characterized by a transition from 

normal weight to overweight, with this transition occurring between ages 5 and 7 (Figure 2).  

Trajectory membership was significantly associated with fasting insulin, HOMA-IR, and waist 

circumference in adulthood, with these values being significantly higher among the overweight 

transition group compared to the stable normal weight group, even after adjusting for 

demographics and adulthood percent body fat. However, in models adjusted for adult waist 

circumference, these associations were attenuated. While we did see that unadjusted average 

fasting glucose values were higher for the overweight transition group as compared to the stable 

normal weight group (Table 2), both groups were, on average, below the 100 mg/dL cut point 

used to identify a prediabetic threshold, and as such both groups would be classified as having 

normal fasting glucose levels (Johnson, Duick, Chui, & Aldasouqi, 2010).  

An unexpected finding was that over half of our sample (59.6%) had fasting insulin levels above 

25 µIU/mL (or 150 pmol/L using a conversion factor of 6) (Knopp, Holder-Pearson, & Chase, 

2019), indicating high risk of metabolic dysfunction and prediabetes (Johnson et al., 2010). Of 

note, only 7% of those with elevated insulin levels additionally had elevated fasting glucose 

levels (i.e., > 100 mg/dL) (Lopez-Jaramillo, Velandia-Carrillo, Gomez-Arbelaez, & Aldana-

Campos, 2014). This is concerning as most readily available testing methods focus on measuring 

fasting glucose, and based on this information alone, over 90% of those at high risk for 

prediabetes in our sample would have failed to be identified.  Further, we were unable to identify 
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fasting insulin reference ranges for non-adult populations. As such, derivation of age-specific 

references ranges for fasting insulin as an important area for future research. This would allow 

for earlier identification of high-risk individuals and provide additional time for necessary 

intervention strategies to be applied.  

BMI TRAJECTORY DERIVATION AND CLASS CHARACTERISTICS 

Other studies utilizing latent class growth analysis or growth mixture modeling for derivation of 

childhood BMI trajectories have consistently detected three to four distinct BMI growth patterns 

(Garden, Marks, Simpson, & Webb, 2012; Liu et al., 2017; Mattsson et al., 2019; Peneau et al., 

2017). While our initial results did identify three trajectories, sample size limitations in 

combination with non-significant difference in model fit of the 2-class versus 3-class GMM with 

covariates, resulted in our final determination of two unique BMI trajectories.  Further, most 

studies of childhood BMI trajectories have identified a stable overweight or obese group and a 

rapid BMI increase group amongst the trajectory groups, with this increase typically resulting in 

a crossing of BMI percentiles (Garden et al., 2012; Liu et al., 2017; Mattsson et al., 2019; Peneau 

et al., 2017). Our results are in line with past studies in that our normal weight to overweight 

transition group, on average, crossed multiple BMI percentiles as participants aged. Additionally, 

the transition from normal weight to overweight in our sample occurred between ages 5 and 7, 

which highlights the importance of beginning obesity prevention and intervention efforts as early 

as elementary school. Family-based (Berge & Everts, 2011) and school-based (Kropski, 

Keckley, & Jensen, 2008) obesity interventions have seen some success in reducing BMI in 

children, however, a majority of these interventions were not initiated until after age 7 and 

studies indicate that intervention strategies may need to be tailored differently based on sex 

(Berge & Everts, 2011; Kropski et al., 2008). 

ASSOCIATIONS OF BMI TRAJECTORY MEMBERSHIP AND METABOLIC MARKERS 

To our knowledge, this is one of the first studies to report associations of childhood BMI 

trajectories and adult insulin levels. A recent systematic review of group-based BMI trajectories 

in children and adolescents identified only a single study conducted in a non-infant population 

that assessed associations between trajectory membership and adult metabolic markers, and this 

study did not collect fasting insulin (Mattsson et al., 2019; Peneau et al., 2017). Our results are 
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similar to those that have been reported in middle-aged and elderly adults such that 12-year BMI 

trajectories characterized by an overweight to obese transition or stable obesity had increased 

fasting insulin and HOMA-IR, even though these groups had similar fasting glucose values as 

compared to a stable normal weight BMI trajectory (Walsh, Shaw, & Cherbuin, 2018). Similarly, 

a GMM analysis conducted in a sample of females aged 5 to 15 years showed significantly 

higher insulin resistance and fasting insulin levels in adolescence for a BMI trajectory group 

marked by rapid increase of BMI percentiles, but found no significant differences in fasting 

glucose amongst four distinct BMI trajectory groups (Ventura et al., 2009). It is important to note 

that multiple units of fasting insulin are reported in the literature, and even though multiple 

conversion factors are currently accepted as accurate, different conversion factors can 

underestimate insulin values by up to 15% (Knopp et al., 2019).  

STRENGTHS AND LIMITATIONS 

A limitation of this study is that outcome measures were only available for a subset of 

participants, with this decreasing the sample size available for conducting regression analyses. 

Additionally, due to the timing of these two longitudinal studies, height and weight 

measurements were collected using two different sets of tools based on the gold standard tool 

available at the time of data collection. It is possible that measurements collected using different 

tools may have different levels of accuracy. 

Nevertheless, the current study has several strengths that should be noted. Our study applied both 

GMM and LCGA frameworks to identify the best-fitting model for identifying latent BMI 

trajectories (B. Muthén, 2006). The main difference between these two frameworks is that 

LCGA, a special case of GMM, assumes subjects within the same trajectory to be homogeneous, 

whereas GMM allows for within trajectory heterogeneity (Jung & Wickrama, 2008; B. Muthén, 

2006). We used both GMM and LCGA and utilized corresponding fit statistics to identify the 

model which best measured latent BMI growth patterns in our data. Additionally, the current 

study utilized longitudinal data spanning over 20 years, with these data providing ten age points 

at which BMI data were collected. Further, in addition to anthropometrics that are typically used 

to approximate body fatness (i.e., BMI and waist circumference), our study included objectively 

measured percent body fat via BOD POD. Our study contributes to the limited literature 

describing BMI trajectories in child and adolescent populations and corresponding associations 
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to adult health measures, in particular fasting insulin. Finally, this study reported insulin in 

multiple units, as well as conversion information, for ease of comparison for future researchers; 

the insulin conversion factor based on recommendations outlined in Knopp et al. was used 

(Knopp et al., 2019). 

Conclusion 

Earlier development of obesity-related risk factors increases the likelihood of obesity-related 

morbidity and mortality. Our study showed that a transition from normal weight to overweight 

can occur in early childhood prior to age 7. Further, this pattern of BMI increase throughout 

childhood and adolescence has significant health implications in emerging adulthood, such as 

higher insulin levels and greater likelihood of insulin resistance. Current research reports fasting 

insulin values in various units, and there are at least two widely used and accepted insulin 

conversion factors. However, choice of insulin conversion factor can underestimate true values 

and can have significant public health implications. The conversion factor for insulin should be 

standardized for the benefit of medical and public health research, and a transparent reporting of 

conversion factors should be encouraged. Findings of the current study demonstrate the 

importance of measuring multiple markers when determining metabolic health status, in addition 

to reporting the conversion factors used when transforming variable units. If metabolic health of 

this population were evaluated utilizing only fasting glucose levels, over 90% of participants in 

this study would be considered to have normal function, however, over half of our sample had 

elevated fasting insulin levels. Since insulin dysregulation occurs prior to observable glucose 

elevation, future research could greatly benefit from working to make methods to measure 

fasting insulin more accessible to the general population to identify this dysregulation before it 

leads to severe health issues, such as type 2 diabetes.  
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CHAPTER III: EARLY CHILDHOOD BEHAVIORAL REGULATION IS ASSOCIATED 

WITH BMI TRAJECTORIES THROUGHOUT CHILDHOOD AND ADOLESCENCE: 

FINDINGS FROM THE RIGHT TRACK AND RIGHT TRACK HEALTH STUDIES 

This chapter is an article draft prepared for submission to the International Journal of Obesity. 

Abstract 

Objective: To determine the association between self-regulatory behavior at age 4 and body mass 

index (BMI) trajectories from childhood through adolescence.  

Subjects/methods: Data from the RIGHT Track Research Project (1996-2021) were used to 

identify BMI trajectories from age 4 to 17 years using growth mixture models in a sample of 

n=334 children. Associations between BMI trajectories and childhood self-regulatory behavior at 

age 4, as assessed by food (snack) and non-food (gift) delay of gratification tasks, were evaluated 

using logistic regression.  

Results: Two BMI trajectories from childhood through adolescence were identified: stable 

normal weight (n=272, 77.9%) and normal weight to overweight transition (n=77, 22.1%). 

Higher socioeconomic status was associated with membership in the stable normal weight 

trajectory (p<0.01) and non-Caucasian race was more likely than Caucasians to be in the normal 

weight to overweight transition trajectory (p<0.05). Higher levels of non-food self-regulation 

was predictive of membership in the stable normal weight trajectory (p<0.01). Food-related self-

regulation was not significantly associated with trajectory membership. However, “moderate” 

levels of food-related self-regulation was suggestive of decreased risk of membership in the BMI 

transition group compared to those who were considered “unregulated” on the food task 

(p=0.09).  

Conclusions: Childhood self-regulation skills warrant additional exploration as intervention 

targets to decrease future obesity risk. In our sample, higher levels of non-food related childhood 

self-regulatory behavior were associated with membership in a lower risk BMI trajectory. Even 
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though the relation between food-related self-regulation and longitudinal BMI growth was not 

statistically significant, educating children about moderation as it applies to dietary intake 

warrants further exploration. 

Introduction 

Obesity represents a public health epidemic and has many associated negative physical health 

implications including elevated LDL cholesterol and triglyceride levels and increased risk of 

type 2 diabetes (Fruh, 2017). Obese children and adolescents are more likely to become severely 

obese adults, with earlier development of obesity-related risk factors increasing the likelihood of 

obesity-related morbidity and mortality (Kelsey et al., 2014; The et al., 2010). Thus, obesity 

prevention has been identified as the best approach for reducing the prevalence of obesity 

throughout the life course (Lanigan et al., 2019). While many complex factors influence 

development of obesity, self-regulatory behavior has been shown to have association with body 

mass index (BMI) and modification of children’s specific self-regulation skills may have the 

potential to improve current and future health outcomes (Bergmeier et al., 2014). 

Self-regulation encompasses a wide variety of overlapping constructs including emotional 

regulation, delay of gratification, effortful control, and inhibitory control (Anzman-Frasca et al., 

2015). Emotional regulation involves strategies that children use when dealing with stressful or 

difficult situations that require them to control certain impulses (Power et al., 2016). Delay of 

gratification describes a child’s ability to relinquish an immediate reward in order to obtain a 

more desirable future reward (Schlam et al., 2013), and effortful control is a child’s ability to 

voluntarily alter their attention and behaviors in situations even when this alteration is not 

desired by the child (Eisenberg, 2012). Effortful control encompasses both attention regulation 

and behavioral regulation, with behavioral regulation including activational control and 

inhibitory control (Eisenberg, 2012). Activational control describes the ability to perform a 

behavior whereas inhibitory control, is the capacity to abstain from a particular behavior in 

response to instruction or command, especially when the requested behavior is not desired by the 

child (Eisenberg, 2012). 

Self-regulation skills begin to emerge in late infancy and different dimensions continue to 

develop throughout childhood and into adulthood, with some not peaking until adult years 
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(Anzman-Frasca et al., 2015). Children use self-regulatory behaviors to cope with stressful 

stimuli and given the relations between stress and various biological hunger and fullness cues, 

research exploring the relations between self-regulation, obesity status and eating behaviors have 

increased tremendously in recent years (Graziano et al., 2013). Additionally, due to the 

modifiable nature of self-regulatory behaviors (Anzman-Frasca et al., 2015), it is an important 

construct to understand as a potential target for obesity prevention.  

According to a systematic review by Bergmeier et al. (2014), low levels of childhood self-

regulation have been shown to have association with higher BMI in infants and pre-school aged 

children (Bergmeier et al., 2014). Research conducted in a sample of German children and 

adolescents aged 8 to 15 showed that lower levels of inhibitory control were associated with 

higher BMI (Pauli-Pott et al., 2010). Another study conducted in German primary school 

children demonstrated that obese children were more likely to exhibit lack of inhibitory control 

as compared to normal weight children (Wirt et al., 2014). Similarly, a study of US adolescent 

lean and obese females found that individuals with higher BMI values exhibited lower inhibitory 

control in response to visual stimuli depicting desserts (Batterink et al., 2010). 

Previous research with children and adolescent females has shown that childhood inhibitory 

control is associated with BMI and/or weight control behavior patterns (Balantekin et al., 2015; 

Graziano et al., 2010; Graziano et al., 2013). To our knowledge, however, there are no current 

studies that assess the relation between childhood inhibitory control, as measured by both food 

and non-food tasks, and future patterns of BMI growth. The objective of this study was to 

identify the relation between modifiable childhood self-regulatory behaviors, specifically 

inhibitory control measured via both food- and non-food tasks, and longitudinal BMI patterns 

from childhood through adolescence. 

Subjects and Methods 

The sample of this study included children participating in the Research Investigating Growth 

and Health Trajectories (RIGHT) Track and RIGHT Track Health longitudinal studies, which 

were designed to examine developmental changes in social, emotional, and physical health from 

childhood to early adulthood (Wideman et al., 2016). The baseline study population consisted of 

three cohorts of children recruited via day care centers, health departments, and WIC services 
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from central North Carolina, using a mother-completed Child Behavior Checklist (CBCL) to 

over-sample for externalizing behavior problems (Achenbach, 1992; Wideman et al., 2016). Of 

the entire RIGHT Track sample (n = 447), 37% of children were identified as being at risk for 

future externalizing problems. There were no significant demographic differences between 

cohorts with regard to gender, race, or two-year socioeconomic status. RIGHT Track participants 

were followed from childhood through adulthood at 12 waves, with this study utilizing data from 

the first 10 waves corresponding to childhood and adolescence (i.e., ages prior to 18 years). 

Additional details related to the RIGHT Track study design and sample description are provided 

elsewhere (Wideman et al., 2016).  

Baseline sociodemographic data were obtained at age 2 and information corresponding to 

behavioral factors was collected at 2, 4, 5, 7 and 10 years of age (Wideman et al., 2016). 

Participant anthropometric measures of height and weight were measured by trained staff at 11 

visits starting at age 4.  

CHILD DEMOGRAPHIC CHARACTERISTICS 

The original 4-category race variable which included Caucasian, African American, biracial, and 

other, was dichotomized as Caucasian and non-Caucasian. Due to small sample sizes, subjects 

identifying as ‘biracial’ (n=16) or ‘other’ (n=9) were included in the non-Caucasian category.   

HOUSEHOLD SOCIOECONOMIC STATUS (SES) 

SES was computed via Hollingshead four factors score, which utilizes an individual’s education 

level and occupation to compute a composite score. Education level is multiplied by a factor of 

3, occupation is multiplied by a factor of 5, and these two scores are summed to produce an 

aggregate, with total scores ranging from 8 to 66. For the current study, baseline SES ranged 

from 14 to 66 with an average of 40, such that on average, our sample is representative of lower 

middle class (Hollingshead, 1975). 
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ANTHROPOMETRICS AND BMI TRAJECTORIES 

Lab measured height was collected to the nearest 0.1 cm using a measuring tape prior to 2015 

(Graziano et al., 2013) and via stadiometer (SECA, Chino CA) with the initiation of RIGHT 

Track Health (Wideman et al., 2016). Similarly, weight was measured to the nearest 0.1 kg with 

an analog weight scale prior to 2015 (Graziano et al., 2013) and a balance-beam scale (Detecto-

medic, Brooklyn NY) for the RIGHT Track Health study (Wideman et al., 2016). Height and 

weight data were used to compute BMI (kg/m2) and baseline BMI percentile (%) was derived 

using a SAS macro produced by the Centers for Disease Control and Prevention (CDC).  

Longitudinal BMI measures and baseline demographics were used to derive a categorical 

variable to classify individuals into BMI trajectories.  

BEHAVIORAL DATA 

This research utilizes data from two different laboratory tests as measures of self-regulation 

performed at age 4. Tests were modelled after those described in the Laboratory Temperament 

Assessment Battery (Lab-TAB) (Gagne et al., 2011; Goldsmith et al., 1995). The first task, a 

food-related task with snack delay, consisted of four separate trials which involved a researcher 

presenting a child with an M&M candy under a transparent glass jar, but making the child keep 

their hands on a place mat and wait an increasing amount of time (10, 20, 30, and 45 seconds) 

before allowing the child to eat the candy (Blandon et al., 2010; Kochanska, Murray, Jacques, 

Koenig, & Vandegeest, 1996). During this task, the researcher remained in the room standing 

beside the child for the full experiment time. For each trial, points were awarded based on the 

child’s behavior. Children who waited until the bell was rung to touch or eat the treat received a 

minimum of 7 points, with possibility of two additional points for leaving their hands on the mat 

for the duration of the trial. Children who touched the glass, but not the candy, received at least 5 

points, and those that touched or ate the snack during the trial received between 1 and 4 points. A 

total score of 36, corresponding to a maximum of 9 possible points for each trial, represents a 

perfect inhibitory control score (Spinrad, Eisenberg, & Gaertner, 2007). For ease of 

interpretation, a trichotomous variable was created corresponding to, regulated (>28) (i.e., child 

waited for the bell to be rung at a majority of trials before eating the candy, or at least 7 points at 

all 4 trials), moderately regulated (> 20 but < 28) (i.e., child touched the glass, but did not 
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touch/eat the candy at a majority of trials, or at least 5 points at all 4 trials), and not regulated 

(<20) (i.e., child touched or ate the candy at a majority of trials). 

The second task was a non-food tasks with gift delay. During this experiment, children were 

given a wrapped gift and instructed to not touch or open it until the researcher returned with a 

bow for the present (Graziano et al., 2010; Kochanska et al., 1996). Once presented with the gift 

box, researchers left the room and observed the child’s behavior to determine the total time the 

child touched the gift, with total experiment time equaling three minutes. The proportion of time 

not touching the gift denotes levels of inhibitory control, with higher numbers resulting in better 

control. Due to limited variability in the non-food self-regulation variable, and for ease of 

interpretation, non-food self-regulation was dichotomized as regulated (not touching gift for 

>75% of the experiment) and non-regulated (not touching gift for <75% of the experiment) in a 

data-driven manner.    

Statistical Analyses 

A quadratic growth mixture model (GMM) was fit in Mplus version 8 to derive unique 

trajectories of BMI for individuals with at least two non-missing BMI measures (B. Muthen & 

Asparouhov, 2015; Nonnemaker et al., 2009). Bayesian Information Criteria (BIC) and the Lo-

Mendell-Rubin likelihood ratio test (LMR LRT) were used to determine adequacy of model fit, 

with smaller BIC values and a significant LMR LRT p-value indicating better fit (B. Muthen, 

2004; Nylund, Asparouhov, & Muthen, 2007). Entropy was also reported, where values greater 

than 0.8 support clear class delineation (Celeux & Soromenho, 1996; Tein et al., 2013). Time 

was centered at 11 years, the midpoint age of study participants, to reduce potential correlation 

between our linear and quadratic age terms (Raudenbush & Bryk, 2002).  

A series of models were fit by constraining or freeing residual variance parameters for intercept 

(i), linear slope (s), and quadratic growth (q) and the best-fitting model was identified via 

previously mentioned criteria. Predictors of class membership, including race and socioeconomic 

status (SES), were identified by multinomial logistic regression and included into the best-fitting 

model to improve model performance and produce the final estimates for class membership 

(Isong et al., 2018). Additional details related to trajectory deviation have been discussed 
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previously (unpublished research, Chapter II). Children were classified into the class with the 

largest posterior probability from the best-fitting model (Magee et al., 2013).  

Upon identification of the best-fitting model, SAS version 9.4 was used to produce descriptive 

statistics for each class and overall. A logistic regression model was used to assess the 

association between BMI trajectory membership and self-regulation behaviors (food and non-

food tasks), controlling for sex, race, and baseline SES. Significance level used was alpha = 0.05.  

Results 

Two unique BMI trajectories were evident in our sample (Figure 3). Individuals in Class 1 

(n=272), which includes most of our sample, were stable normal weight with BMI percentiles 

consistently between 5% and 85% (Figure 4). Although Class 2 (n=77) transitions from normal 

weight to obese to overweight status, on average, this transition was from normal weight to 

overweight (via BMI percentile above 85%). We used the following descriptors for classes 1 and 

2 respectively: 1) stable normal weight and 2) normal weight to overweight transition.  

 

Figure 3. Longitudinal BMI Trajectories for Stable Normal Weight and Normal to Overweight 
Transition Groups 

 

 Stable Normal Weight (n=272; 77.9%) 
- - - - Normal to Overweight Transition (n=22; 22.1%) 
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Figure 4. Average BMI percentile by BMI Trajectory Class Membership over Time 

The stable normal weight class (Class 1) represented 78% of our sample and primarily consisted 

of Caucasian participants (71%). While both classes could be described as lower middle-class, 

with average SES values nearing 40 similar to the overall analytic sample, members of the 

transition class had lower SES as compared to the stable normal weight class (Hollingshead, 

1975). As expected, average baseline BMI percentile was higher in the normal to overweight 

transition class as compared to the stable normal weight class.  

The descriptive results related to self-regulation assessment in the food and non-food self-

regulation tasks within each BMI trajectory membership are shown in Table 4. When 

considering levels of inhibitory control, the gift delay task showed that over 95% of our sample 

were regulated and were able to follow instructions and refrain from touching the gift provided 

to them. Similarly, the food-related snack delay task showed most of the sample was regulated. 

However, only approximately 86% of children were highly regulated based on the M&M task, 

with almost an additional 10% being identified as moderately regulated. 
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Table 4. Baseline Characteristics (4y) of Analysis Sample Overall and by BMI Trajectory 
Membership in the RIGHT Track Research Project (n=349) 

  Overall 
Stable Normal 

Weight 
Overweight 
Transition  

p-value1 

n (%) 349 272 (77.9) 77 (22.1)  
     
Sex, n (%)    0.103 

Male 160 (45.9) 131 (48.2) 29 (37.7)  
Female 189 (54.1) 141 (51.8) 48 (62.3)  
     

Race, n (%)    <0.001 
Caucasian 229 (65.6) 194 (71.3) 35 (45.5)  
Non-Caucasian 120 (34.4) 78 (28.7) 42 (54.6)  

     
Food SR, n (%)    0.788 

Not regulated 16 (5.1) 12 (4.7) 5 (5.5)  
Moderately regulated 31 (9.5) 26 (10.2) 5 (6.9)  
Regulated 281 (85.7) 217 (85.1) 64 (87.7)  
     

Non-Food SR, n (%)    <0.001 
Not regulated 15 (4.6) 6 (2.4) 9 (12.3)  
Regulated 310 (95.4) 246 (97.6) 64 (87.7)  
     

Baseline BMI percentile, 
mean(std) 

60.0(31.2) 54.2 (30.3) 80.0(25.5) <0.001 

     
SES, mean(std) 39.7(10.9) 40.8 (10.5) 35.9(11.6) <0.001 

1p-values from chi-square tests for frequencies and t-tests for means 
BMI: body mass index; SES: socioeconomic status; SR: Self-regulation 
Food SR Trial Score criteria: not regulated (<20); moderately regulated (20 to 27); regulated 
(>28) (Spinrad et al., 2007) 
Non-Food SR: not regulated (not touching gift for <75% of 3-minute experiment); Regulated 
(not touching gift for >75% of 3-minute experiment) 

Table 5 provides results from the logistic regression analyses assessing associations of childhood 

self-regulation, baseline BMI percentile, and demographic variables with BMI trajectory 

membership. Regression analyses were conducted such that the lowest risk trajectory, stable 

normal weight, was the referent group. Non-Caucasian participants were significantly more 

likely than Caucasians to be in a higher risk BMI trajectory. Additionally, higher SES was 

associated with membership in a lower risk trajectory (i.e., Class 1). Further, higher levels of 
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self-regulation as measured by a non-food, gift delay task, was predictive of membership in the 

lower risk BMI trajectory. In contrast, self-regulation measured by a snack delay task was not 

associated with trajectory membership. Trajectory membership was not associated with sex.  

Table 5. Association (Odds ratio† [95% Confidence Interval]) between Childhood Self-
regulatory Behavior and Membership in a Normal to Overweight Transition Trajectory in the 

RIGHT Track Research Project (n=320)†† 
Variable OR[95% CI] p-value 
Socioeconomic Status 0.97[0.95, 1.00] 0.048 
Sex (Female) 1.59[0.88, 2.86] 0.124 
Race (Non-Caucasian)  2.93[1.65, 5.20] 0.0002 
Gift Delay (Regulated) 0.20[0.06, 0.63] 0.006 
Snack Delay (3-cat)   

Moderately regulated vs not regulated 0.24[0.05, 1.27] 0.096 
Regulated vs not regulated 0.56[0.15, 2.07] 0.383 

OR, Odds Ratio; CI, Confidence Interval 
† Odds ratio of membership in normal to overweight transition group versus stable normal 
weight group 
†† Sample size of logistic regression model reduced due to missing covariates 
 

Discussion 

The purpose of this study was to determine if childhood self-regulation predicted BMI 

trajectories during childhood and adolescence. Our assessment of the relation between self-

regulation at age 4 and BMI trajectories revealed that higher levels of inhibitory control 

measured by a non-food task were associated with lower odds of membership in the higher risk 

normal to overweight transition group. However, when measuring inhibitory control with a food-

related task, the relation was not statistically significant. Previous investigations with food-

related tasks have shown associations between better child self-regulation skills and lower BMI 

and/or adiposity among children (da Costa et al., 2019). Research conducted by da Costa et al 

assessed inhibitory control using both food and non-food related go no/go tasks, however, 

contrastingly to the present study, researchers found that food-assessed inhibitory control was 

significantly associated with weight status and non-food assessed inhibitory control had no 

significant association. However, da Costa et al assessed the relation between inhibitory control 

and weight status in a cross-sectional manner and used body fat instead of BMI patterns as their 

outcome (da Costa et al., 2019). Our non-significant findings for the food-related task could 

possibly be explained by the subtle variations in the methodologies that were utilized for the 
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food and non-food delay task measures in the Right TRACK study. For example, during the 

food-related task, a researcher stood beside the child for the full experiment time whereas the 

researcher left the room during the non-food task. Additionally, the child’s parent/guardian was 

in the room during the non-food task. The presence of a non-parental authority figure could 

potentially have influenced child behavior in a different manner. Further, there are additional 

considerations with respect to the food-related task. Interest in food is individual; some 

participants may not have been tempted by the single M&M that was offered, or perhaps the 

child was not hungry. Moreover, the manner of assessment of the food-related task allowed for 

categorization of multiple levels of self-regulation by describing a regulated child as either 

having high regulation or moderate regulation.   

Identifying modifiable childhood predictors of future health risk, such as BMI patterns, is 

becoming increasingly important. Research in laboratory settings have shown that food-specific 

interventions aimed at training a child’s inhibitory control can decrease BMI (Allom & Mullan, 

2015). We found that lower levels of childhood inhibitory control were associated with increased 

likelihood of transitioning from a normal to overweight BMI value. Our findings support existing 

research which has shown that lower levels of inhibitory control are associated with higher BMI 

values in children and adolescents. Cross-sectional research conducted in a sample of German 

children and adolescents aged 8 to 15 showed that low levels of inhibitory control, as measured 

by a go/no go laboratory task requiring participants to respond to a particular stimuli and to 

refrain from response in response to other stimuli, were associated with higher BMI measures 

(Pauli-Pott et al., 2010). Another study conducted in German primary school children 

demonstrated obese children were more likely to exhibit lack of inhibitory control, as compared 

to normal weight counterparts (Wirt et al., 2014). Similarly, a study of US adolescent lean and 

obese females used fMRI to assess brain regions associated with inhibitory control during a 

food-related go/no-go task (Batterink et al., 2010). Researchers found that subjects with higher 

BMI values exhibited lower inhibitory control in response to visual stimuli depicting desserts 

(Batterink et al., 2010). Further, research in a sample of Brazilian children aged 9 to 11 found 

that higher fat mass was associated with impaired food-related inhibitory control (da Costa et al., 

2019). 
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While longitudinal analyses assessing future effects of childhood self-regulation are very limited 

in current literature, available studies have produced similar results to the current study showing 

that childhood self-regulation is linked to future weight status. Previous research in the RIGHT 

Track sample showed that poor self-regulation at age 2 was identified as a predictor of future risk 

of overweight at 5.5 y and 8 years later (Graziano et al., 2010; Graziano et al., 2013). Balantekin 

et al. explored the relation of childhood inhibitory control and adolescent BMI as related to 

female adolescent weight control behavior patterns (Balantekin et al., 2015). Females with the 

lowest levels of inhibitory control at age 7 had higher BMI values and were more likely to be 

extreme dieters in adolescence, whereas those with higher levels of childhood inhibitory control 

had lower BMI values and were more likely to have a healthier relation with food. Another 

longitudinal study in females showed that higher inhibitory control at age 7 was associated with 

smaller waist circumference and lower body fat percentage at both age 9 and age 15 (Anzman-

Frasca et al., 2015).  

This study was strengthened by its use of multiple methods to assess childhood inhibitory 

control, which allowed for the effects of food and non-food related inhibitory control to be 

parsed out. Many studies assessing inhibitory control use a variety of assessment methods 

including computer-based tasks (Batterink et al., 2010; Pauli-Pott et al., 2010), food-related go 

no/go tasks (Batterink et al., 2010; da Costa et al., 2019), LAB-TAB tasks involving toys or 

puzzles (Graziano et al., 2010), and parent-completed behavior surveys (Anzman-Frasca et al., 

2015; Balantekin et al., 2015), however, to our knowledge, there are no existing studies that have 

examined the relation between early childhood inhibitory control measured by both food and 

non-food laboratory tasks, and BMI trajectories. This study was further strengthened by its 

longitudinal nature which provided information on long-term BMI trends rather than a single 

time point.  

Despite the strengths of the study, there were several limitations that must be noted. The primary 

limitation of the current research is the limited sample size, however, the relation between 

childhood inhibitory control and future BMI trajectories was still evident in this sample. Another 

limitation was the minimal variability in the self-regulatory behavior variables at age 4 leading to 

the categorization of continuous self-regulation measures. While categorization provided the 

benefit of more easily interpretable results, it also has the potential for making it more 



 

 45

challenging to compare our results to studies that used continuous measures for food- and non-

food inhibitory control. Future studies might explore self-regulation markers measured at later 

ages once self-regulatory behaviors have further developed and when corresponding assessment 

measures might have increased between subject variability. Additionally, exploration of food-

related self-regulation measures at later ages could also provide more insight into the potential 

relations between moderation as it relates to food intake and BMI. 

Conclusions 

Obesity has many negative health implications and early identification of modifiable behaviors 

that are associated with future obesity can serve to greatly improve public health. The current 

study identified non-food related pre-school inhibitory control as a possible target for future 

interventions that may influence long-term BMI and potentially reduce future obesity-related 

health risks. 
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CHAPTER IV: DIETARY PATTERNS AND DIET QUALITY IN ADOLESCENCE AND 

THEIR ASSOCIATIONS WITH BIOMARKERS IN EARLY ADULTHOOD IN THE RIGHT 

TRACK HEALTH STUDY 

This chapter is an article draft prepared for submission to the Journal of Nutrition. 

Abstract 

Background: Dietary patterns characterized by high consumption of processed and fried foods 

have been associated with increased metabolic risk as early as adolescence. Risk factors in early 

life have the potential to influence health during adulthood, and so early identification of 

modifiable behaviors that can reduce metabolic risk has the potential to greatly impact long term 

health.  

Objective: To derive dietary patterns in adolescence and assess their association with 

anthropometrics and cardiometabolic biomarkers collected in emerging adulthood.  

Methods: Latent class analysis (LCA) on 21 food groups was used to derive dietary patterns 

using 24-hr dietary recalls from a sample of adolescents (n=148) in the RIGHT Track Health 

Studies (1996-2021). Multiple linear regression was used to assess the relations between 

adolescent dietary patterns with early adulthood anthropometrics and biomarkers (fasting 

glucose, fasting insulin, HOMA-IR) adjusting for sex, race, and socioeconomic status. 

Results: LCA identified two distinct dietary patterns: balanced (characterized by higher 

consumption of unsweetened beverages, fruits, and non-starchy vegetables) and unbalanced 

(characterized by greater consumption of sugar-sweetened beverages, fried potatoes, and full 

fat/fried meats). Both patterns had similar consumption of refined grains and sweet snacks, with 

over half of each class being “high” consumers. No significant associations were found between 

adolescent dietary patterns and any early adulthood biomarker or anthropometric measure. While 

average diet quality, as assessed by HEI scores, was significantly higher for the balanced pattern 
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as compared to the unbalanced pattern, HEI scores were considered poor for both dietary 

patterns (HEI < 59) indicating poor adherence to the current Dietary Guidelines for Americans. 

Conclusion: Diet quality of adolescents in our sample was poor regardless of dietary pattern. 

Balanced and unbalanced patterns were both characterized by high intake of refined grains and 

sweets, suggesting that interventions promoting reduced intake of these foods in favor of 

increased intake of more nutrient dense foods may help improve diet quality for a larger number 

of adolescents. 

Introduction 

Adolescence is an important developmental period during which many hormonal changes occur, 

and lifestyle habits associated with physical and mental health are established (Agirbasli, 

Tanrikulu, & Berenson, 2016). Many of these lifestyle habits, such as dietary intake, are 

associated with increased disease risk (Cunha et al., 2018; Iannotti & Wang, 2013b; Shrestha & 

Copenhaver, 2015). Risk factors in early life have the potential to influence health during 

adulthood (Shrestha & Copenhaver, 2015), and so early identification of modifiable behaviors 

that can reduce metabolic risk has the potential to greatly impact long term health.  

Biomarkers are biological measurements that can be used in research and clinical settings to not 

only diagnose particular disease states, but can additionally provide insight into future disease 

risk (Choong & Tsafnat, 2012). Insulin resistance has been identified as an important 

cardiovascular risk factor (Adeva-Andany et al., 2019) and fasting glucose, fasting insulin, and 

Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) are the primary biomarkers 

used to identify individuals with insulin resistance (Singh & Saxena, 2010), which can be a first 

step in the development of cardiovascular disease (Ginsberg, 2000). Fasting glucose levels at or 

above 126 mg/dl on at least two separate occasions, or a glucose value of at least 200 mg/dl at 

any single measurement, are the current standard for diagnosis of diabetes (Gedela et al., 2007), 

however, measuring insulin levels can identify insulin resistance prior to clinical signs of 

metabolic disease (Singh & Saxena, 2010). Thus, collecting data on insulin values, in addition to 

glucose and HOMA-IR levels, serve to provide estimates on beta-cell function and insulin 

resistance (Singh & Saxena, 2010). In addition to biomarkers, measures of body shape and body 

composition have been shown to be associated with metabolic functioning (Lee et al., 2006). 
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Waist circumference, as a proxy for abdominal fatness, has been shown to relate to insulin 

sensitivity in children, with larger waist circumferences being associated with decreased insulin 

sensitivity (Lee et al., 2006). Further, body composition, as assessed by percentage of body fat, 

has association with HOMA-IR in adolescent populations (Wedin et al., 2012).  

Dietary intake is a modifiable behavior that has been associated with obesity and increased risk 

of cardiovascular disease (Cunha et al., 2018; Iannotti & Wang, 2013b). Previous studies in 

adults have established links between certain dietary patterns and metabolic risk factors, 

including higher BMI, adiposity, HOMA-IR and fasting glucose (Rocha et al., 2017). Results in 

adolescents have shown that diets higher in sugar-sweetened beverages and fast food are 

associated with increased risk of obesity (Moreno et al., 2010). Adolescence is a critical 

developmental period during which individuals are becoming increasingly influenced by external 

influences (Moreno et al., 2010). Adolescents are beginning to have more independence and are 

able to make more decisions on what they eat (Moreno et al., 2010). This independence often 

leads to an increased number of meals eaten with peers outside of the home, with these meals 

typically including fast food meals and sugar-sweetened beverages (Moreno et al., 2010; Ruiz, 

Zuelch, Dimitratos, & Scherr, 2019). Dietary intake of processed and fried foods has been 

associated with obesity as early as adolescence. Of note, prevalence of cardiovascular disease 

risk factors such as hypertension and elevated glucose levels are higher in overweight and obese 

individuals (Saydah et al., 2014). Further, obese adolescents have higher risk of insulin 

resistance and hyperglycemia (Ruiz et al., 2019). 

Many existing analyses of diet in children and adolescents rely on assessment of specific food 

groups or nutrients (i.e., sugar sweetened beverages; saturated fat intake) or pre-specified dietary 

indices, such as the Healthy Eating Index (HEI) or Dietary Approaches to Stop 

Hypertension (DASH) scores, which use the sum of scores for intake of individual food 

components to determine an overall score (Berz et al., 2011; Costacou et al., 2018). High diet 

quality measured by these indices has been associated with decreased risk of cardiovascular 

disease and type 2 diabetes in adults (Schwingshackl et al., 2018), however, research in 

adolescents has shown that there is limited variation in diet quality in this population, with most 

having low diet quality (Winpenny, Greenslade, Corder, & van Sluijs, 2018). In populations with 

similar diet quality, diet-quality indices often produce homogeneous scores. Thus, these scores 
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are not useful for identification of groups with unique dietary patterns since individuals with 

similar diet-quality scores may consume different types of food (NCI). Dietary patterns describe 

overall diet in terms of the quantity and combinations of foods individuals most habitually 

consume, rather than a single nutrient (Cespedes & Hu, 2015; F. B. Hu, 2002). Dietary patterns 

allow researchers to better understand how overall dietary intake may vary in populations with 

similar diet quality and can better describe how overall diet may be associated with health 

outcomes, rather than being limited to studying single food or nutrient relations (Rocha et al., 

2017). Further, the 2020-2025 Dietary Guidelines for Americans now focus on the importance of 

dietary patterns, as it is the synergistic effects of foods that influence health (U.S. Department of 

Agriculture and U.S. Department of Health and Human Services). 

Dietary patterns characterized by high consumption of processed and fried foods have been 

associated with increased metabolic risk in adolescents cross-sectionally (Ambrosini et al., 

2010). However, the relation between adolescent dietary intake and adult health markers has 

been less explored. Glucose dysregulation, as a marker of cardiovascular risk, is becoming 

prevalent earlier in life (Giannini et al., 2012) with substantial decline in pancreatic beta cell 

function being seen up to 15 years prior to a diabetes diagnosis (Levy, Atkinson, Bell, McCance, 

& Hadden, 1998). As such, emerging adulthood, a developmental period during 18 to 25 years 

(Nelson et al., 2008), is becoming of greater interest since changes in health outcomes can be 

seen and this developmental period provides an additional opportunity for behavior change 

interventions (Gilmore, 2019). Thus, the main purpose of the current longitudinal study was to 

describe the relation between dietary patterns in adolescents and selected markers during 

emerging adulthood that are known to be related to cardiometabolic health.  

Methods 

Data for the current study were collected as part of the Research Investigating Growth and 

Health Trajectories (RIGHT) Track and RIGHT Track Health longitudinal studies (Wideman et 

al., 2016). The RIGHT Track study was designed to examine developmental changes in social, 

emotional, and physical health from childhood to adolescence and the RIGHT Track Health 

study has built upon the original study by examining self-regulation in relation to 

cardiometabolic risk through early adulthood. Participants (n=447) were followed from 2 years 

of age through emerging adulthood, with final data collected during laboratory visits between 18 
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and 25 years of age. Subjects were recruited during 1994-1996 via program services such as day 

care centers, County Health Departments, and Women, Infants, and Children (WIC) services in 

central North Carolina and were representative of the surrounding community in terms of race 

and socioeconomic status (SES). The baseline study population included three cohorts of 

children, with approximately 37% of the sample being considered at risk for future behavioral 

issues (Wideman et al., 2016). There were no significant demographic differences between 

cohorts with respect to gender, race, or baseline SES. Additional details of the RIGHT Track 

Health study design and sample are provided in Wideman et al. (Wideman et al., 2016).  

STUDY MEASURES AND VARIABLES 

Height was collected by stadiometer to the nearest 0.1cm (SECA, Chino CA), weight was 

measured via balance-beam scale to the nearest 0.1 kg (Detecto-medic, Brooklyn NY), and 

corresponding BMI (kg/m2) was computed (Wideman et al., 2016). Waist circumference (WC) 

was measured at the natural waist to the nearest 0.1 cm using a Gulick tension-tape 

measure(Wideman et al., 2016). Percent body fat measured via BODPOD following a daily 

calibration protocol (Cosmed, Concord, CA, USA).  

Fasting serum glucose (mg/dl) and fasting serum insulin (pg/ml) were obtained using 

colorimetric assay (Caymen Chemical, Ann Arbor, MI) at two time points during emerging 

adulthood (18y – 23y) (VanKim, Larson, & Laska, 2012; Wideman et al., 2016). Insulin was 

converted from pg/mL to g/mL by a factor of 10-3 and g/mL to µIU/mL via a factor of 28.8. 

Insulin values were reported in both µIU/mL and pmol/L for ease of comparison to other studies. 

As such, µIU/mL was converted to pmol/L via a factor of 6.00 as recommended in previous 

research (Knopp et al., 2019). Homeostatic Model Assessment for Insulin Resistance (HOMA-

IR), a measure of insulin resistance, was computed via fasting insulin (µIU/mL) x fasting 

glucose (mg/dl)]/405 (Rivas-Crespo, 2015). To minimize missing data, the earliest of the two 

time points for which the participant’s non-missing adult biomarker data were available (i.e., > 

18 years) was used in analyses, with HOMA-IR only being computed if FPG and FPI were 

available at the same visit. 

Dietary intake data were collected for a subset of RIGHT Track Health participants during 

adolescents by the Nutrition Obesity Research Center (NORC) at the University of North 
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Carolina Chapel Hill via 24-hr dietary recalls using Nutrition Data System for Research (NDSR) 

software developed by the Nutrition Coordinating Center (NCC), University of Minnesota, 

Minneapolis, MN. To reflect the marketplace throughout the study, nutrient composition was 

computed using the most updated NDSR version available during each dietary data collection 

year (i.e., 2013, 2014, 2015, 2016, and 2017). The NDSR time-related database updates analytic 

data, while maintaining nutrient profiles true to the version used for data collection.  

Three dietary recalls (2 weekdays and 1 weekend day) were collected for each participant 

between ages 16 and 18 (n=148). Dietary intake reports generated by the NDSR included 168 

food items, corresponding to nine major food groups (Appendix B1). Food items not consumed 

by any participant at any time point were excluded (n=26). The remaining food items (n=142) 

were collapsed into 21 food categories using the USDA's Food Patterns Equivalents Database 

2015-2016 (FPED) as a reference (Bowman, Clemens, Shimizu, Friday, & Moshfegh, 2018). In 

the interest of distinguishing between snack foods low in nutrient density and more nutrient 

dense grain-based foods, the primary grain categories provided by the FPED, whole grains and 

refined grains, were expanded to include snacks. Additionally, a dessert category was added 

since the FPED summarizes this under a more generic ‘added sugars’ category. A full list of food 

items, food groups, and food categories are provided in Appendix B1; excluded food items are 

also provided. 

Since distributions of food servings were left skewed due to high non-consumption of certain 

food categories, ordinal intake variables were derived. Standardized median servings (median 

servings per 1000 kilocalories) were computed for consumers of each of the 21 collapsed food 

categories. Standardized medians were then rounded to the nearest 0.25 serving to create cut 

points that allow for easier comparison to standard serving sizes. Highly consumed food 

categories (<10% non-consumers) were dichotomized at their respective cut point (i.e., highly 

consumed vs. low or non-consumed). Food categories with low consumption (>70% non-

consumers) were dichotomized as consumed or non-consumed. Remaining food categories were 

categorized as non-consumed, consumed below cut point (i.e., low consumed), and consumed 

above cut point (i.e., highly consumed) (Martin et al., 2016). Standardized medians, cut points, 

and categorical consumption percentages for each food category are summarized in Table 6.  
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Sex, race, and Hollingshead index of SES (Hollingshead, 1975) at age 2 were used as covariates 

in analyses. Due to the small sample size in non-White race categories, race was dichotomized as 

‘Caucasian’ and ‘non-Caucasian’ (African American, biracial, and other). In the RIGHT Track 

sample, SES at age 2 ranged from 40 to 54, reflecting minor professional and technical 

occupations considered to be representative of middle class (Hollingshead, 1975).  

Statistical Analyses 

Multiple computing software programs were used to complete statistical analyses. Latent class 

models were fit using Mplus version 8.0 and multiple linear regression analyses were performed 

using SAS version 9.4. Latent class analysis (LCA) was used to derive unique dietary patterns 

using standardized categorical consumption variables in models with 1 to 4 classes. LCA models 

grouped participants into mutually exclusive classes based on their highest posterior probability 

(Masyn, 2013). The Bayesian Information Criterion (BIC) and parametric bootstrapped 

likelihood ratio test (B-LRT) were used for model selection due to our small sample size 

(Nylund et al., 2007), and entropy and Lo-Mendell-Rubin (LMR) values were also reported.  

Multiple linear regression models were fit to assess separately the relationship between 

adolescent dietary pattern and adult measures of BMI, percent body fat, FPG, FPI, and HOMA-

IR adjusting by sex, race, and SES. Outcomes were transformed as needed to meet normality and 

homoscedasticity assumptions and outliers were capped at the 1st and 99th percentiles 

Results 

The LCA of dietary patterns showed that the 2-class model had the smallest BIC and had a 

significant p-value for the B-LRT, indicating the 2-class model was a better fit as compared to 

the 1, 3, and 4-class models (Table 2). These two distinct classes were labeled as “balanced” 

(n=62) and “unbalanced’ (n=86) dietary patterns.  

The balanced pattern was characterized by high consumption of unsweetened beverages, reduced 

fat dairy and dairy substitutes, fruits, whole grains, non-starchy vegetables, and vegetable 

protein, and consumption of these food groups was significantly higher in the balanced as 

compared to the unbalanced pattern. The unbalanced pattern was characterized by high 

consumption of fried vegetables, full fat/fried/cured meats, sugar-sweetened beverages, and 
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refined grains even though this did not differ from individuals following the balanced pattern. 

Figures 5 to 7 display the probabilities of consumption of food groups by dietary pattern.  

There were no differences in age, baseline SES, or adult waist circumference when comparing 

the balanced and unbalanced dietary patterns. However, a larger percentage of females and 

Caucasians followed the balanced pattern as compared to the unbalanced pattern (Table 8). In 

terms of dietary quality, those following the unbalanced pattern had a lower HEI score (d=-8.3) 

and consumed significantly higher daily calories as compared to those in the balanced pattern 

(d=372.6 kcal/day), with this relationship holding after adjustment for sex and race. On average, 

individuals in the balanced pattern had HEI scores near 53 while those in the unbalanced pattern 

had a lower average score of 46. No difference was seen in the percent of total kilocalories from 

carbohydrates between the two patterns, and while differences in percent calories from protein 

and fat were attenuated after adjustment for sex and race, they remained significant. Of note, 

percent of calories from macronutrients were within recommended ranges for both balanced and 

unbalanced patterns (i.e., % calories from protein (10-30%), fat (25-35%), and carbohydrates 

(45-65%) for male and female adolescents) (U.S. Department of Agriculture and U.S. 

Department of Health and Human Services). Furthermore, dietary pattern membership and diet 

quality in adolescence had no association with early adulthood BMI, percent body fat, fasting 

glucose, fasting insulin, or HOMA-IR (Tables 9 and 10).  

Discussion 

The main purpose of the study was to identify dietary patterns consumed in adolescence and 

determine associations of adolescent dietary intake and diet quality with markers of 

cardiometabolic risk during emerging adulthood. We identified two unique patterns of adolescent 

dietary intake in the RIGHT Track Studies: balanced and unbalanced. While both patterns had 

similar consumption of sweet snacks, starchy vegetables, fats, and full fat dairy, adolescents with 

the balanced pattern had higher intakes of non-starchy vegetables, fruits, whole grains, 

unsweetened beverages, and reduced-fat dairy products as compared to the adolescents with the 

unbalanced pattern. Further, while not statistically significant, participants in the balanced 

pattern consumed more lean protein sources as compared to the unbalanced pattern. 

Contrastingly, the unbalanced pattern was characterized by increased intake of sugar-sweetened 

beverages, fried vegetables, and fatty and cured meats, although none were statistically different 
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from the balanced pattern likely due to the large variability in consumption of these food 

categories.  

Previous research suggests that diets higher in fast food, sugar-sweetened beverages, and candies 

are associated with increased cardiometabolic risk including larger average waist circumference, 

and higher BMI and blood glucose levels (Cunha et al., 2018). In the current study, adolescent 

dietary pattern was not associated with adult BMI, adiposity (% of body fat) or any of the 

metabolic markers measured in early adulthood after adjustment for race, sex, and 

socioeconomic status. Despite the differences in patterns of dietary consumption, the average 

diet quality as measured by HEI was significantly higher for the balanced pattern as compared to 

the unbalanced pattern. However, average HEI scores for both patterns fell below 59, indicating 

poor diet quality for both dietary patterns. Adjusted models assessing the relation between 

adolescent diet quality and adult BMI and metabolic markers were nonsignificant. 

Our findings are in line with the existing, yet limited, literature in that a majority of research in 

child and adolescent populations has identified two patterns of dietary intake (Cunha et al., 

2018). Of the 19 studies outlined in a meta-analysis by Cunha et al, all but one study reported 

two distinct dietary patterns in children and adolescents under the age of 19. While the studies 

summarized by Cunha et al. defined dietary patterns in various ways, most studies reported at 

least one ‘unhealthy’ dietary pattern and one ‘healthy’ pattern (Cunha et al., 2018). ‘Unhealthy’ 

patterns included foods such as pizza, processed and high fat meats, and sugar-sweetened 

beverages and desserts (Cunha et al., 2018), and were most often referred to as a ‘Western diet’ 

(Ambrosini et al., 2010; Bahreynian, Paknahad, & Maracy, 2013; Gutierrez-Pliego et al., 2016). 

‘Healthy’ patterns varied in the types of foods represented, but most often included foods such as 

whole grains, legumes, fruits, and vegetables (Cunha et al., 2018). These ‘healthy’ patterns were 

characterized in many different ways (Cunha et al., 2018) and included descriptive terms such as 

“healthy,” (Ambrosini et al., 2010; Bahreini Esfahani et al., 2016) “prudent,” (Gutierrez-Pliego 

et al., 2016; Hojhabrimanesh et al., 2017) and “traditional” (Song, Joung, Engelhardt, Yoo, & 

Paik, 2005; Weng et al., 2012).  

While one of the main goals of this research was to refrain from categorizing a particular pattern 

as ‘healthy’ or ‘unhealthy,’ the balanced pattern identified in the current study can be most 
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closely compared to the ‘healthy’ patterns, and the unbalanced pattern most closely compared to 

the ‘unhealthy’ patterns described above in terms of highly consumed food categories. However, 

it is important to note that both balanced and unbalanced patterns were marked by high 

consumption of foods such as refined grain and sweet snacks, with previous studies having 

classified these foods into ‘unhealthy’ patterns (Ambrosini et al., 2010; Gutierrez-Pliego et al., 

2016). Further, both of the dietary patterns identified in this study had average HEI scores below 

59, which is the cut point associated with very poor adherence to the dietary recommendations 

outlined in the Dietary Guidelines for Americans (Krebs-Smith et al., 2018).  

The studies described in Cunha et al. utilized factor, cluster, or principal component analysis 

(PCA) for derivation of dietary patterns (Cunha et al., 2018) rather than the LCA methodology 

utilized in the current study. While factor, cluster or PCA methods are extremely useful at 

identifying foods most likely to be eaten in combination (i.e., correlated food items) (Bertin et 

al., 2016; LeCroy et al., 2019; Maia et al., 2018; Togo et al., 2003; J. Zhang et al., 2015), LCA 

classifies individuals into mutually exclusive groups with similar food consumption (Iannotti & 

Wang, 2013a; Sotres-Alvarez et al., 2010). This difference in methodology can possibly explain 

why the two dietary patterns identified in this research both have high consumption of foods that 

previous research only attributed to diets with overall lower quality. An advantage of the LCA 

methods utilized in this study over the formerly identified methods is that LCA identifies groups 

of individuals with unique dietary intake (Sotres-Alvarez et al., 2010). As such, the risk of a 

particular outcome can then be estimated and compared for each identified group (Sotres-

Alvarez et al., 2010), which was the primary aim of the existing study.  

Contrary to the current study, previous studies have established links between dietary patterns 

high in processed food and fat and metabolic risk factors, including higher adiposity, higher 

levels of insulin resistance, as measured by HOMA-IR, and fasting glucose in childhood and 

adolescence (Rocha et al., 2017). A study in Chinese children and adolescents conducted by 

Zhang et al. found that dietary patterns characterized by increased intake of fast food and simple 

carbohydrates were associated with increased risk of obesity (J. Zhang et al., 2015). In the meta-

analysis by Cunha et al., consumption of ‘unhealthy’ dietary patterns was associated with 

increased BMI and waist circumference (Cunha et al., 2018).  Research in a sample of Mexican 

adolescents identified three dietary patterns corresponding to westernized, prudent, and high 
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protein/high fat diets, with the westernized and high protein/fat patterns being correlated with 

higher BMI values (Gutierrez-Pliego et al., 2016). However, these assessed studies were cross-

sectional and as such, they did not evaluate the relations between dietary intake in childhood and 

adolescence and future health markers as in the current study (Cunha et al., 2018; Gutierrez-

Pliego et al., 2016; Rocha et al., 2017; J. Zhang et al., 2015). Although Wright et al. described 

the relation between adult BMI and longitudinal patterns of protein intake from childhood to 

adulthood (Wright et al., 2017), the current study provides one of the few contributions 

describing the relation between dietary patterns in adolescence and adult biomarkers.  

The main assumption for this study is that dietary patterns are stable over time such that future 

health effects would be related to a consistent dietary pattern over an increased duration. While 

stability of dietary patterns has been shown in young adult women (Borland, Robinson, Crozier, 

Inskip, & Group, 2008), it is likely that adolescent diet is not stable over time. In our sample, 

dietary changes were evident for individuals that had dietary intake data during both adolescence 

and adulthood. The transition from adolescence to emerging adulthood comes with many 

changes, in particular the change from being dependent on parents for food and shelter to 

becoming more financially and socially independent (Arnett, 2000; Gilmore, 2019), and these 

changes can influence dietary intake. While consumption of fruits, vegetables, and sweets were 

relatively stable over time, in our sample the transition to adulthood resulted in increased intake 

of alcohol, reduced fat dairy, and unsweetened beverages and a corresponding decrease in 

reduced fat dairy and sugar-sweetened beverages, as well as decreased consumption of refined 

grains. However, these data were only available for a subset of individuals (n=111) and may not 

accurately reflect longitudinal changes in dietary patterns for the full sample. Another limitation 

was our small sample size. Dietary data were only collected for a subset of participants, and adult 

biomarker data were only available for about one-third of those with complete dietary data.  

A major strength of this study was its longitudinal nature, which allowed the study to contribute 

to the existing literature by exploring how adolescent diet may impact future health markers. 

Further dietary intake was assessed via 24-h recalls by trained staff using a multiple pass 

approach (Wideman et al., 2016). Additionally, three dietary recalls, on both weekdays and 

weekend days, were collected for each participant. Dietary data collected by 24-h recalls is 

considered the gold standard for estimating energy intake (Ma et al., 2009) and collection of 
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multiple interviews on various days is necessary to obtain a reliable estimate of a person’s 

habitual dietary intake (Looman et al., 2019). This study also utilized latent class methodology 

for identification of dietary patterns rather than factor and principal component analyses, which 

allowed for comparison of health outcomes for individuals with unique dietary intake.  

Conclusion 

While our study found no association between adolescent dietary intake and adult measures of 

cardiometabolic health, this study showed that diet quality in our sample was poor regardless of 

dietary pattern (HEI < 59) (Krebs-Smith et al., 2018). Even though the diet quality of the 

balanced pattern was higher than the unbalanced pattern, both patterns were characterized by 

increased intake of refined grains and sweets. Given the similar intake of these foods, behavioral 

modification interventions that target these food categories may have the potential to improve the 

diet quality of a larger number of adolescents.
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Table 6. Median Food Group Consumption (Unstandardized and Standardized), Final Cut Points, and Consumption 
Distribution (n=148)1, 2 

Food Group 
Median  
servings/

day 

Standardized  
Median servings 
(per 1000 kcal) 

Cut point 
Non-

consumers 
(%) 

Consumers 
below cut 
point (%) 

Consumers 
at/above cut 

point (%) 
Sugar-Sweetened Beverages 1.67 0.88 1.00 19.6 43.9 36.5 
Reduced and Noncaloric Beverages3 3.36 1.98 2.00 4.0 48.7 47.3 
Alcoholic Beverages4 0.04 0.03 0.00 96.6 N/A 3.4 
Full Fat Dairy3 0.42 0.25 0.25 7.4 46.0 46.6 
Reduced/Fat Free Dairy3 0.90 0.48 0.50 9.5 47.3 43.2 
Non-Dairy Substitutes5 0.33 0.21 0.25 83.1 9.5 7.4 
Full Fats3 1.73 0.99 1.00 0.7 50.0 49.3 
Reduced Fats 0.55 0.28 0.25 58.8 18.9 22.3 
Fruits 0.67 0.35 0.25 42.6 20.3 37.1 
Fruit Juice 0.67 0.40 0.50 60.8 21.6 17.6 
Whole Grains and Starches 1.27 0.66 0.75 27.0 44.6 28.4 
Refined Grains3 4.30 2.52 2.50 0.0 49.3 50.7 
Snacks 0.85 0.48 0.50 34.5 33.8 31.7 
Desserts3 1.14 0.65 0.75 6.0 56.8 37.2 
Starchy Vegetables5,6 0.23 0.15 0.25 40.5 36.5 23.0 
Non-Starchy Vegetables3 0.93 0.57 0.50 1.4 43.9 54.7 
Fried Vegetables7 0.74 0.38 0.50 44.6 33.8 21.6 
Vegetable Protein 0.67 0.43 0.50 48.6 29.7 21.6 
Lean Meats3 2.00 1.19 1.25 4.1 52.0 43.9 
Full Fat, Fried, and Cured Meats3 2.47 1.36 1.25 8.8 41.9 49.3 
Condiments/Other3 0.81 0.48 0.50 13.5 43.9 42.6 

1 For those with at least 3 dietary recalls during adolescence 
2 Table with all 142 food items and corresponding NDSR variable codes is available in Appendix B1 
3 Non-consumers and consumers below cut point merged to form dichotomous consumption variable for latent class analysis 
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4 Consumers below cut point and consumers above cut point merged to form dichotomous consumption variable for latent 
class analysis 
5 Consumers below cut point and consumers at/above cut point merged to form dichotomous consumption variable latent class 
analysis 
6 Excludes fried potatoes 
7 Includes fried potatoes 
 

Table 7. Model-fit Results of Latent Class Analysis for Derivation of Dietary Patterns for Participants with Three Dietary 
Recalls in Adolescence (n=148) 

# Classes BIC Entropy LMR p-value B-LRT p-value 
1 5223.3 N/A N/A N/A 
2 5217.5 0.797 0.033 0.000 
3 5304.4 0.870 0.946 0.150 
4  5391.2 0.918 0.782 0.150 

BIC: Bayesian Information Criterion; LMR: Lo-Mendell-Rubin Likelihood Ratio Test; B-LRT: Bootstrapped likelihood ratio 
test 
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Table 8. Sociodemographic Characteristics, Adolescent Macronutrient Intake and Diet Quality, and Early Adulthood Waist 
Circumference by Dietary Pattern1 

Characteristic 
Balanced Pattern 

n=62 
Unbalanced Pattern 

n=86 p-value2 
Age3 at Dietary Recall (y), mean + SD 16.8 + 0.5 16.8 + 0.4 0.427 
Race, % Caucasian  80.7 50.0 <0.001 
Sex, % male 27.4 48.8 0.01 
SES4, mean + SD 40.8 + 10.6 39.2 + 10.9 0.398 
Energy Consumption (kcal/d), median (IQR)    

median (IQR) 1475.1 (605.2) 1847.7 (838.3) <0.001 
adjusted median5 + SD 1532.0 + 73.8 1999.5 + 69.6 <0.001 

Protein (% kcal), median (IQR)    
median (IQR) 17.0 (5.7) 15.0 (4.8) 0.001 
adjusted median5 + SD 17.7 + 0.6 15.2 + 0.4 0.001 

Fat (% kcal), mean + SD    
mean + SD 32.2 + 5.2 34.5 + 5.3 0.009 
adjusted mean6 + SD 32.6 + 0.7 34.5 + 0.6 0.034 

Carbohydrates (% kcal), mean + SD    
mean + SD 50.2 + 6.5 50.2 + 7.4 0.950 
adjusted mean5 + SD 49.7 + 0.9 50.2 + 0.8 0.679 

HEI 2015 Total Score, mean + SD    
mean + SD 53.5 + 11.1 45.2 + 9.2 <0.001 
adjusted mean5 + SD 53.1 + 1.4 45.0 + 1.0 <0.001 

Waist Circumference (cm), mean + SD    
mean + SD 80.5 + 17.3 82.3 + 15.0 0.501 
adjusted mean5 + SD 82.1 + 2.9 82.8 + 1.9 0.828 

HEI: Healthy Eating Index 
1 Results are means + SD for normally distributed continuous variables, medians (interquartile range) for skewed continuous 
variables, and percent for categorical variables. 
2 t-test for continuous means, Wilcoxon rank sum test for continuous medians, Wald test for adjusted medians, ANOVA for adjusted 
means, and Fisher’s Exact test for proportions. 
3 Average age across all three dietary recalls.  
4 Hollingshead score for socioeconomic status at age 2. 
5 Adjusted by age at dietary recall, sex, and race. 
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Table 9. Association (regression coefficient and 95% CI) between Adolescence Dietary Pattern and Early Adulthood Adiposity 
and Biomarkers1 

Parameter 

BMI 
(n=116) 

% BF 
(n=102) 

Fasting Glucose2 
(n=107) 

Fasting Insulin2  
(n=102) 

HOMA-IR2  
(n=101) 

b(95%CI) p-value b(95%CI) p-value b(95%CI) p-value b(95%CI) p-value b(95%CI) p-value 
Unbalanced 

Dietary 
Pattern 

(ref=Balanced) 

-0.97 (-3.47,1.53) 0.444 0.61(-3.62,4.84) 0.775 5.11(-1.51, 11.74) 0.129 
-2.08 (-36.25, 

32.09) 
0.904 

4.78 (-30.02, 
39.59) 

0.786 

           

BMI: Body Mass Index (kg/m2); %BF: Body fat percentage; HOMA-IR: Homeostatic Model Assessment for Insulin 
Resistance  
1 All models adjusted for race, sex, socioeconomic status. 
2 Since Fasting Glucose, Fasting Insulin, and HOMA-IR were natural log transformed, corresponding regression coefficients 
were multiplied by 100 and interpreted as the percentage of change in the outcome for being in the Unbalanced class compared 
to the referent Balanced class 
 

Table 10. Association (regression coefficient) between Adolescence Dietary Quality and Early Adulthood Adiposity and 
Biomarkers1 

Parameter 

BMI 
(n=116) 

% BF 
(n=102) 

Fasting Glucose2 
(n=107) 

Fasting Insulin2  
(n=102) 

HOMA-IR2  
(n=101) 

b(95%CI) p-value b(95%CI) p-value b(95%CI) p-value b(95%CI) p-value b(95%CI) p-value 
           

HEI 2015  -0.08 (-0.18, 0.03) 0.170 -0.11 (-0.29, 0.06) 0.211 
0.99 (0.996, 

1.002) 
0.632 1.001 (1.01, 1.02) 0.861 1.002 (0.99, 1.02) 0.806 

           

BMI: Body Mass Index (kg/m2); %BF: Body fat percentage; HOMA-IR: Homeostatic Model Assessment for Insulin 
Resistance  
1 All models adjusted for race, sex, socioeconomic status. 
2 Since fasting Glucose, Fasting Insulin, and HOMA-IR were natural log transformed, corresponding regression coefficients 
were exponentiated and interpreted as the change in a one-unit increase of the non-transformed outcome.
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Figure 5. Probabilities of Consumption of 3-Level Ordinal Food Groups by Dietary Pattern 
 

a Significant odds ratio for Unbalanced vs. Balanced comparing high + low consumption to non-
consumption (p<0.05); b Significant odds ratio for Unbalanced vs. Balanced comparing high consumption 
to non+low consumption (p<0.05) 
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Figure 6. Probabilities of Consumption of High versus Low Dichotomous Food Categories by 
Dietary Pattern 

a Significant odds ratio for Unbalanced vs. Balanced comparing high consumption to non+low 
consumption (p<0.05) 
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Figure 7. Probabilities of Consumption of Consumed versus Non-consumed Food Categories by 
Dietary Pattern 

a Significant odds ratio for Unbalanced vs. Balanced comparing consumers to non-consumers 
(p<0.05) 
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CHAPTER V: EPILOGUE 

Summary of Findings and Implications 

Data from the RIGHT Track Parent and RIGHT Track Health longitudinal studies were used to 

address the following study aims: i) characterize unique trajectories of BMI from childhood 

through adolescence (4 to 18 year) and describe the association between BMI trajectory 

membership and body composition and biomarkers in emerging adulthood including percent 

body fat, fasting glucose, fasting insulin, and HOMA-IR; ii) determine the prospective 

association between pre-school self-regulation and BMI trajectory membership; and iii) describe 

unique patterns of adolescent dietary consumption and determine the corresponding association 

between adolescent dietary pattern membership and future anthropometrics and biomarkers 

including BMI, percent body fat, fasting glucose, fasting insulin, and HOMA-IR collected in 

emerging adulthood. Participants in the RIGHT Track studies were characterized by two unique 

longitudinal BMI trajectories: i) stable normal weight and ii) normal weight to overweight 

transition. Compared to the stable normal weight group, membership in the normal weight to 

overweight transition group was positively associated with fasting glucose, fasting insulin, 

HOMA-IR, waist circumference, and percent body fat, even after controlling for sex, race, and 

socioeconomic status. Results were attenuated when each model additionally controlled for adult 

waist circumference or adult percent body fat. Importantly, higher childhood self-regulatory 

behavior, as measured by a gift-delay task, decreased the likelihood of a child being in the 

“normal weight to overweight transition” group, which was shown to be associated with higher 

levels of biomarkers that could lead to future metabolic dysfunction. Higher childhood self-

regulation as measured by a food-related task was not associated with BMI trajectory 

membership. However, moderate food-related self-regulation was suggestive of decreased risk of 

membership in the BMI transition group compared to those who were considered unregulated 

(p=0.09). Even though this relation was not statistically significant, this finding supports 

exploration of moderation as a useful technique when educating children on dietary intake. 
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In the current study, two unique patterns of adolescent dietary intake were found in our sample: 

i) balanced (higher consumption of unsweetened beverages, fruits, and non-starchy vegetables) 

and ii) unbalanced (greater consumption of sugar-sweetened beverages, fried potatoes, and full 

fat/fried meats). While there were differences in types of foods consumed by those in each of 

these patterns, diet quality was poor in both patterns as shown by low Healthy Eating Index 

scores. No significant associations were found between adolescent dietary patterns and any of the 

adult health measures (i.e., fasting glucose, fasting insulin, HOMA-IR, percent body fat or BMI).  

This study provides insight into longitudinal BMI patterns for children and adolescents and 

corresponding childhood behavioral predictors that could serve as targets for public health 

interventions to decrease obesity-related health risks. Additional research is needed to examine 

self-regulatory behaviors at different time points during childhood to determine the best age at 

which implementation of behavioral interventions would be most effective in minimizing future 

adiposity-related health risks. More specifically, the two measures of self-regulation used in this 

study had little variability at age 4. Researching these measures throughout childhood may allow 

for capturing data at times when self-regulatory behaviors are more diverse and thereby provide 

additional insight into the relation between self-regulation and BMI patterns.  

Research that further explores dietary patterns in the RIGHT Track sample would be of interest, 

particularly how dietary patterns in adolescence compare to patterns in emerging adulthood. We 

did see that, on average, those individuals who had dietary data during both adolescence and 

emerging adulthood did experience changes in the amounts of some foods they consumed (i.e., 

high consumer during adolescence versus low consumer during adulthood, etc.). Further analyses 

could explore if similar dietary patterns exist during emerging adulthood and determine if there 

are any differences in health markers based on longitudinal dietary patterns. For example, do 

biomarker values differ when comparing individuals who maintain their adolescent dietary 

pattern to those who transition into a different pattern as they mature? Additionally, while it is 

not in my wheelhouse to pursue, creation of insulin cut points for non-adult populations would 

be an important step in early identification of metabolic dysfunction. Similarly, development of 

insulin monitoring tools, like those available for glucose, has the potential to prevent the 

transition to diabetes for so many individuals.  
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Experiences and Challenges  

My time at UNC-G has been incredible. I am so thankful to have had the opportunity to work 

with so many amazing researchers, who are perhaps even more importantly also incredible 

humans! In addition to having encouraging faculty and classmates, I am extremely grateful to 

RIGHT Track researchers for being so open to letting me move forward on my dissertation 

research. It is a heart-warming feeling to be welcomed onto a project that took a multitude of 

researchers multiple decades to plan, implement, and collect data! I am so glad to have been able 

to expand my knowledge of statistical methods related to longitudinal anthropometrics and 

dietary intake; and additionally, to have benefitted from the multidisciplinary aspect of the 

RIGHT Track research which allowed me to learn about self-regulation, a topic with 

corresponding assessment techniques that were totally unfamiliar to me.  

The biggest lesson I learned during this experience was: PANDEMICS ARE HARD. They are 

hard in oh so many ways. I have always known that I do my best work as part of a team where I 

am able to contribute my strengths and benefit from collaboration with colleagues that helps me 

improve on my weaknesses. While I am incredibly grateful to have been ‘virtually’ surrounded 

by incredibly supportive faculty, friends, and family, a year of almost complete isolation 

certainly took its toll on both my mental and physical health. My feelings can most efficiently be 

expressed by the following memes:
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APPENDIX A: SUPPLEMENTAL TABLES AND FIGURES FOR CHAPTER II 

Table A1. Model constraints and Fit Indices for Latent Class Growth and Growth Mixture BMI Trajectory Models without Covariates 

# of  
Classes Model Type* Model Constraints** AIC BIC Entropy 

LMR  
p-value 

C1 
n(%) 

C2 
n(%) 

2 LCGA Var(i)=Var(s)=Var(q)=0 8463.62 8529.54 0.926 0.039 296(83) 61(17) 
2 GMM None 7498.98 7599.80 0.849 0.000 312(87) 45(13) 
2 GMM Var(q)=0 in both classes 7546.42 7631.73 0.813 0.035 304(85) 53(15) 
2 GMM C1: Var(q)=0; C2: None 7471.33 7568.27 0.720 0.000 272(76) 85 (24) 

* LCGA (Latent class growth analysis): variance of intercept, linear, and quadratic terms forced to zero; GMM (Growth mixture 
model): variance of intercept, linear, and quadratic terms allowed to vary and covary, unless constrained 
** Var(i)=0: variance of intercept constrained to 0; Var(s)=0: variance of linear term constrained to 0; Var(q)=0: variance of quadratic 
term constrained to 0 
 

Table A2. Fit Indices for GMM Model Deriving BMI Trajectories at Increasing Number of Latent Classes and with Significant 
Covariates 

# of 
Classes Model Constraints* AIC BIC Entropy 

LMR 
p-value 

C1 
n(%) 

C2 
n(%) 

C3 
n(%) 

C4 
n(%) 

2 C1: Var(q)=0; C2: None 7471.33 7568.27 0.720 0.000 272(76) 85 (24) N/A N/A 
3 C1: Var(q)=0; C2, C3: None 7426.91 7550.99 0.711 0.041 234(65) 102(29) 21(6) N/A 
4 C1: Var(q)=0; C2, C3, C4: None 7499.33 7650.56 0.860 0.540 272(76) 85(24) 0(0) 0(0) 
3 C1: Var(q)=0; C2, C3: None+cov** 7235.98 7397.89 0.703 0.104 225(64) 101(29) 23(7) N/A 
2 C1: Var(q)=0; C2: None+cov** 7274.83 7402.05 0.741 0.000 272(78) 77(22) N/A N/A 

* Var(q)=0: variance of quadratic term constrained to 0 
** cov = covariates significantly associated with class membership (race and socioeconomic status)
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Table A3. Multinomial Logistic Regression Results for Predictors of Class Membership for 3-
class Unconditional GMM 

Effect Estimate 
Standard 
Error DF Wald Chi-Square Pr > ChiSq 

Race -0.880 0.2376 1 13.7169 0.0002* 
Sex -0.189 0.2313 1 0.6701 0.4130 
SES 0.020 0.0108 1 3.3251 0.0682* 

* Significance threshold set at p<0.10 
 
 

Table A4. Logistic Regression Results for Predictors of Class Membership for 2-class 
Unconditional GMM 

Effect Estimate 
Standard 
Error DF Wald Chi-Square Pr > ChiSq 

Race -0.977 0.2679 1 13.3189 0.0003* 
Sex -0.262 0.2673 1 0.9617 0.3267 
SES 0.025 0.0124 1 4.0302 0.0447* 

* Significance threshold set at p<0.10 
 
 

 

Figure A1. Longitudinal BMI Trajectories for 3-class Conditional GMM

 Class 1 (n=226; 64.8%) 
- . - . Class 2 (n=22; 22.1%) 
- - - -  Class 3 (n=23; 6.6%) 
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Table A5. Regression coefficients1 (95% Confidence Intervals) for Normal to Overweight Transition Group, Excluding 
Participants Classified in the Stable Obese Group by the 3-class GMM 

Parameter Model 1 Model 22 Model 33 Model 44 
 

b(95%CI) [n] p-value b(95%CI) [n] p-value b(95%CI) [n] p-value b(95%CI) [n] p-value 
% BF 8.39 (4.24, 12.54) 

[188] 
<0.001 9.04(5.63, 12.46) 

[186] 
<0.001 2.12(-0.518, 4.76) 

[184] 
0.115 N/A N/A 

         
Fasting 
Glucose 
(mg/dL)5 

2.58(-3.22, 8.38) 
[205] 

0.381 3.11(-2.82, 9.04) 
[201] 

0.302 1.219(-5.02, 7.43) 
[201] 

0.703 -0.03(-6.65, 6.59) 
[177] 

0.992 

  
      

  
Fasting 
Insulin 
(µIU/mL)5  

40.3(8.75, 71.77) 
[189] 

0.013 41.1(8.94, 73.25) 
[0.186] 

0.013 26.5(-7.56, 60.50) 
[186] 

0.127 44.5(7.94, 81.12) 
[163] 

0.017 

  
      

  
HOMA-
IR5  

43.1(10.65, 75.47) 
[187] 

0.012 44.2(11.21, 77.22) 
[184] 

0.009 27.6(-7.26, 62.41) 
[184] 

0.120 45.9(8.48, 83.27) 
[162] 

0.017 

  
      

  
WC (cm) 11.62 (7.13, 16.11) 

[215] 
<0.001 11.56(7.10, 16.03) 

[211] 
<0.001 N/A N/A 4.99(1.31, 8.66) 

[184] 
0.008 

1 Stable Normal Weight group is the referent class. Regression coefficient for %BF and WC outcomes is the mean difference 
between the two classes. The reported regression coefficients for fasting glucose, fasting insulin, and HOMA-IR were 
multiplied by 100 and are interpreted as the percentage of change in the outcome for being in the Normal to Overweight 
Transition group compared to the referent Stable Normal Weight group since fasting glucose, fasting insulin, and HOMA-IR 
were natural log transformed.  
2 Adjusted for race, sex, socioeconomic status. 
3 Adjusted for race, sex, socioeconomic status, and waist circumference at young adulthood (WC).  
4 Adjusted for race, sex, socioeconomic status, and body fat percentage at young adulthood (% BF).
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APPENDIX B: SUPPLEMENTAL TABLES AND FIGURES FOR CHAPTER IV 

Table B1. Collapsed Food Categories, Excluded Food Items, and Corresponding NDSR Food 
Items and Groups 

Collapsed 
Category 

Food Item Description NDSR 
Variable  

Original NDSR  
Food Group 

Sugar-Sweetened 
Beverages  

Coffee, Sweetened BVS0100 

Beverages 

Tea, Sweetened BVS0500 
Water - Sweetened BVS0600 
Fruit Drink BVS0300 
Soft Drink BVS0400 
Sports Drinks/Meal Replacement BVS0700 

 Milk Beverage, Sweetened without Dry Milk SWT0600 Sweets 
Reduced 
calorie/Noncaloric 
Beverages   

Coffee, Unsweetened BVU0100 

Beverages 

Tea, Unsweetened BVU0400 
Tea, Artificially Sweetened BVA0500 
Water BVU0500 
Water, Artificially Sweetened BVA0600 
Fruit Drinks, Artificially Sweetened BVA0300 
Soft Drinks, Unsweetened BVU0300 
Soft Drinks - Artificially Sweetened BVA0400 
Nondairy Supplement, Unsweetened BVU0600 

 Nondairy Supplement, Artificially 
Sweetened 

BVA0700 

Alcoholic 
Beverages 

Beer/Ale BVE0100 

Beverages 
Wine BVE0200 

 Distilled Liquor  BVE0300 
 Cordial/Liqueur BVE0400 
Full Fat Dairy Cheese, Full Fat DCF0100 

Dairy/Nondairy 
Alternatives 

Milk, Whole DMF0100 
 Flavored Milk, Whole DMF0200 
 Yogurt, Sweetened Whole Milk DYF0100 
 Yogurt, Unsweetened Whole Milk DYF0200 
Reduced/Fat Free 
Dairy 

Cheese, Reduced Fat DCR0100 

Dairy/Nondairy 
Alternatives 

Cheese, Fat Free DCL0100 
Milk, 2% DMR0100 
Milk, Low Fat/Fat Free DML0100 
Flavored Milk, Reduced Fat DMR0200 
Flavored Milk, Low Fat/Fat Free DML0200 
Flavored Dry Milk, Fat Free DML0300 
Yogurt, Sweetened Low Fat DYR0100 
Yogurt, Sweetened Fat Free DYL0100 
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Collapsed 
Category 

Food Item Description NDSR 
Variable  

Original NDSR  
Food Group 

Yogurt, Artificially Sweetened Low Fat DYR0200 
Yogurt, Unsweetened Fat Free DYL0200 
Dairy-based Meal Replacement DOT0500 

 Dairy-based Meal Replacement, Artificially 
Sweetened 

DOT0600 

Nondairy 
Substitutes 

Cheese - Nondairy DCN0100 Dairy/Nondairy 
Alternatives Milk - Nondairy DMN0100 

Cream - Nondairy FCN0100 Fat 
Full Fats Butter FAF0100 

Fat  

Cream FCF0100 
Oil FOF0100 
Margarine  FMF0100 
Shortening FSF0100 
Salad Dressing, Regular FDF0100 
Avocado/Guacamole FRU0500 Fruit  

Reduced Fats Butter, Reduced Fat FAR0100 

Fat 
Cream, Reduced Fat FCR0100 
Cream, Low Fat/Fat Free FCL0100 
Margarine, Low Fat FMR0100 
Salad Dressing, Low Fat FDR0100 

Fruit Juice Juice, Citrus  FRU0100 
Fruit 

Juice, Non-citrus  FRU0200 
Fruits Whole Fruit, Citrus  FRU0300 

Fruit 
Whole Fruit, Non-citrus  FRU0400 

 Fried Fruit, Not Breaded FRU0600 
 Fruit-based Savory Snack FRU0700 
Whole Grains and 
Starches 

Non-Grain Flour MSC0700 Miscellaneous 
Whole Grain Mixes GRW0100 

Grains 

Pasta, Whole Grain GRW0500 
Crackers, Whole Grain GRW0400 
Crackers, Some Whole Grain GRS0400 
Cereal, Unsweetened Whole Grain GRW0600 
Cereal, Sweetened Whole Grain GRW0700 
Cereal, Sweetened Some Whole Grain GRS0700 
Bread, Whole Grain Loaf GRW0200 
Bread, Some Whole Grain GRS0200 
Other Bread/Tortillas, Whole Grain GRW0300 

 Other Bread/Tortillas, Some Whole Grain GRS0300 
Refined Grains  Refined Grain Mixes GRR0100 

Grains 

Pasta, Refined Grain GRR0500 
Crackers, Refined Grain GRR0400 
Cereal, Unsweetened Refined Grain GRR0600 
Cereal, Presweetened Refined Grain GRR0700 
Bread, Refined Grain Loaf GRR0200 
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Collapsed 
Category 

Food Item Description NDSR 
Variable  

Original NDSR  
Food Group 

Other Bread/Tortillas, Refined Grain GRR0300 
Snacks Potato Chips FMC0100 Fat 

Chips, Whole Grain GRW0900 

Grain 

Chips, Refined Grain GRR0900 
Chips, Some Whole Grain GRS0900 
Snack Bar, Whole Grain GRW1000 
Snack Bar, Some Whole Grain GRS1000 
Snack Bar, Refined Grain GRR1000 
Popcorn GRW1100 
Flavored Popcorn GRW1200 

Desserts Cookies/Cakes, Whole Grain GRW0800 
Grains Cookies/Cakes, Some Whole Grain GRS0800 

Cookies/Cakes, Refined Grain GRR0800 
Frozen Dessert, Dairy DOT0100 

Dairy/Nondairy 
Alternatives 

Frozen Dessert, Nondairy DOT0200 
Pudding/Other Dairy Dessert DOT0300 
Miscellaneous Dessert MSC0600 Miscellaneous 
Candy, Chocolate SWT0100 

Sweets 

Candy, Non-chocolate SWT0200 
Sugar SWT0400 
Syrup SWT0500 
Frosting/Glaze SWT0300 
Sweet Sauce, Regular SWT0700 
Sweet Sauce, Reduced Fat/Fat Free SWT0800 

Starchy 
Vegetables 

White Potatoes2 VEG0400 
Vegetables 

Other Starchy Vegetables VEG0450 
Non-Starchy 
Vegetables  

Green Vegetables VEG0100 

Vegetables 
Yellow Vegetables VEG0200 
Tomatoes VEG0300 
Vegetable Juice VEG0500 
Other Vegetables VEG0600 

Fried Vegetables  Fried Potatoes VEG0800 Vegetables 
 Fried Vegetables, Breaded1 VEG0900  
Vegetable Protein  Beans/Legumes VEG0700 Vegetables 

Nuts and Seeds MOF0500 
Meat/Protein Nut and Seed Butters MOF0600 

Meat Alternatives MOF0700 
Lean Meats  Poultry, Lean MPL0100 

Meat/Protein 

Beef, Lean MRL0100 
Fresh Pork, Lean MRL0400 
Lamb, Lean MRL0300 
Fish, Lean MFL0100 
Shellfish MSL0100 
Cold Cuts, Lean MCL0100 
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Collapsed 
Category 

Food Item Description NDSR 
Variable  

Original NDSR  
Food Group 

Eggs MOF0300 
Full Fat, Fried, 
and Cured Meats  

Poultry MPF0100 

Meat/Protein 

Fried Chicken MPF0200 
Beef MRF0100 
Fresh Pork MRF0400 
Lamb MRF0300 
Game MRF0500 
Fish, Fresh and Smoked  MFF0100 

 Fish, Fried/Fast Food MFF0200 
 Shellfish – Fried/Fast Food MSF0100 
 Cold cuts – Full Fat MCF0100 
 Cured Pork MCF0200 
 Cured Pork, Lean MCL0200  
Condiments/Other Gravy, Regular MSC0100 

Miscellaneous 

Gravy, Reduced Fat/Fat Free MSC0200 
Sauces, Full Fat MSC0300 
Sauces, Reduced Fat MSC0400 
Pickled Foods MSC0500 
Soup Broth MSC0800 
Sugar Substitute MSC1200 

Excluded Food 
Items 

Coffee Substitute, Sweetened BVS0200 

Beverages 
 

Coffee Substitute, Unsweetened BVU0200 
Coffee, Artificially Sweetened BVA0100 
Coffee Substitutes, Artificially Sweetened BVA0200 
Beer, Non-alcoholic  BVO0100 
Light Beer, Non-alcoholic  BVO0200 
Yogurt, Nondairy DYN0100 

Dairy/Nondairy 
Alternatives 
 

Pudding, Artificially Sweetened DOT0400 
Flavored Milk Powder, Fat Free DML0400 
Infant Formula DOT0700 
Infant Formula, Nondairy DOT0800 
Meat-based Savory Snack FMC0200 Fats 
Baby Food, Whole Grain GRW1300 

Grains 

Baby Food, Some Whole Grain GRS1300 
Baby Food, Refined Grain GRR1300 
Grains, Flour, Mixes, Whole Grain GRS0100 
Pasta, Some Whole Grain GRS0500 
Cereal, Some Whole Grain GRS0600 
Veal  MRF0200 

Meat/Protein 
Veal, Lean MRL0200 
Organ Meats MOF0100 
Baby Food, Meat Mixture MOF0200 
Egg Substitute MOF0400 
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Collapsed 
Category 

Food Item Description NDSR 
Variable  

Original NDSR  
Food Group 

Baby Food, Dessert MSC0900 

Miscellaneous 
Baby Food, Miscellaneous  MSC1000 
Flavored Milk Powder, Artificially 
Sweetened 

MSC1100 

1 Excludes fried potatoes 

Table B2. Odds Ratiosa for Balanced versus Unbalanced Pattern 

Food Category Odds Ratio (SE) p-value 
Sugar-Sweetened Beverages    

Consumers vs. Non-Consumers 0 (0)b 1.000 
High Consumers versus Low and Non-Consumers 0.18 (2.998) 0.131 

Reduced Calorie/Noncaloric Beverages   
High Consumers versus Low and Non-Consumers 16.66 (0.045) 0.000 

Alcoholic Beverages   
Consumers versus Non-Consumers 0 (0)b 1.000 

Full Fat Dairy   
High Consumers versus Low and Non-Consumers 1.04 (0.455) 0.930 

Reduced/Fat Free Dairy   
High Consumers versus Low and Non-Consumers 2.08 (0.232) 0.025 

Nondairy Substitutes   
Consumers versus Non-Consumers 11.11 (0.073) 0.000 

Full Fats   
High Consumers versus Low and Non-Consumers 0.88 (0.596) 0.825 

Reduced Fats   
Consumers versus Non-Consumers 1.59 (0.241) 0.130 
High Consumers versus Low and Non-Consumers 3.13 (0.181) 0.000 

Fruits   
Consumers versus Non-Consumers 4.17 (0.108) 0.000 
High Consumers versus Low and Non-Consumers 5.00 (0.091) 0.000 

Fruit Juice   
Consumers versus Non-Consumers 0.37 (1.247) 0.178 
High Consumers versus Low and Non-Consumers 0.23 (2.708) 0.225 

Whole Grains and Starches   
Consumers versus Non-Consumers 1.69 (0.318) 0.200 
High Consumers versus Low and Non-Consumers 6.25 (0.113) 0.000 

Refined Grains   
High Consumers versus Low and Non-Consumers 0.870 (0.601) 0.807 

Snacks   
Consumers versus Non-Consumers 0.68 (0.661) 0.490 
High Consumers versus Low and Non-Consumers 2.00 (0.266) 0.060 

Desserts   
High Consumers versus Low and Non-Consumers 0.85 (0.645) 0.783 
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Starchy Vegetables   
Consumers versus Non-Consumers 0.966 (0.432)  0.935 
High Consumers versus Low and Non-Consumers 1.25 (0.363) 0.588 

Non-Starchy Vegetables   
High Consumers versus Low and Non-Consumers 5.56 (0.079) 0.000 

Fried Vegetables   
Consumers versus Non-Consumers 0.10 (5.730) 0.111 
High Consumers versus Low and Non-Consumers 0.08 (10.100) 0.229 

Vegetable Protein   
Consumers versus Non-Consumers 1.23 (0.352) 0.584 
High Consumers versus Low and Non-Consumers 2.56 (0.190) 0.001 

Lean Meats   
High Consumers versus Low and Non-Consumers 1.92 (0.248) 0.055 

Full Fat, Fried, and Cured Meats   
High Consumers versus Low and Non-Consumers 0.28 (1.656) 0.124 

Condiments/Other   
Consumers versus Non-Consumers 0.54 (1.097) 0.432 
High Consumers versus Low and Non-Consumers 1.12 (0.393) 0.788 

a Logits for corresponding odds ratios computed via proportional odds 
b Estimate forced to zero due to insufficient sample size per group 
 
 

 


