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Abstract 

 

Matrix protein mutant strains of VSV, such as rM51R-M virus, are currently being 

investigated as oncolytic agents due to their ability to target and kill cancer cells while also 

stimulating innate immunity. We seek to examine the ability of rM51R-M virus to modulate 

tumor promoting M2 macrophages as a means to inhibit the progression of cancer. In the 

tumor microenvironment, M2 macrophage activity has a suppressive effect on the immune 

system, which can lead to tolerance of tumor cells. M1 macrophages, in contrast, stimulate an 

immune response and reduce tumor cell viability. Our lab has previously shown that  

rM51R-M virus re-educates M2 macrophages to an M1-like phenotype, but the mechanism 

by which it does so remains unknown. In THP-1 polarized M2 macrophages, we have 

observed increased levels of IFNα, total STAT1, and p-STAT1 upon infection with  

rM5IR-M virus. We hypothesize that the ability of rM51R-M virus to stimulate the type I 

IFN antiviral pathway in M2 macrophages may coerce them to an M1-like phenotype. To test 

this hypothesis, we seek to examine the effects of the p-STAT1 inhibitor fludarabine on 

macrophage polarization by rM51R-M virus. M2 macrophages were pretreated with different 

concentrations of fludarabine (50, 100, or 150 µM), infected with rM51R-M virus (MOI 1 or 

10 pfu/cell) for 24 hours, and subjected to immunoblot analysis for total and phosphorylated 

STAT1. Results indicated that when cells were infected with rM51R-M virus at an MOI of 1, 

STAT1 phosphorylation was reduced to between 23% (50 µM fludarabine) and 16 % (100 

and 150 µM fludarabine) of control levels. Similar results were obtained when cells were 

infected at an MOI of 10. These results confirm that fludarabine is capable of inhibiting the 

accumulation of p-STAT1. Therefore, this reagent can be used to reduce type I IFN signaling 



in order to determine the extent to which this pathway modulates macrophage identity during 

rM51R-M infection. Such mechanistic insights will be important in understanding the 

multipotent effects of VSV as an oncolytic agent.  
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List of Abbreviations 
 
 
 

BCA: bicinchoninic acid 

BHK: baby hamster kidney 

BSA: bovine serum albumin 

CAR-T cells: chimeric antigen receptor T-cells 

CCL: chemokine (C-C motif) ligand 

CD: cluster of differentiation (often used as an identity marker) 

CSF1: colony stimulating factor 1 

DMSO: dimethyl sulfoxide 

EGF: epidermal growth factor 

HLA-DR: human leukocyte antigen-DR isotype 

IFNI: interferon type I (includes interferon alpha, beta, and others) 

IFNAR: human type I interferon receptor 

IL: interleukin 

iNOS: inducible isoform of nitric oxide synthase 

IRF: interferon regulatory factor 

JAK1: Janus kinase 1 

M1: inflammatory macrophage 

M2: immunosuppressive macrophage 

MDA-MB-231: human triple-negative breast cancer cell line 

MMP: matrix metalloproteinase 

MOI: multiplicity of (viral) infection 
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MyD88: adaptor protein in the TLR signaling pathway leading to NFκB activation 

NCI: National Cancer Institute  

NFκB: nuclear factor kappa-light-chain-enhancer of activated B cells 

Nos2: nitric oxide synthase 2 

PBS: phosphate buffered saline 

PD-L1: programmed death-ligand 1 

pfu: plaque forming units 

PMA: phorbol 12-myristate 13-acetate 

p-STAT1: phosphorylated signal transducer and activator of transcription 1 

RIPA buffer: radioimmunoprecipitation assay buffer 

rM51R-M virus: matrix protein mutant of vesicular stomatitis virus (change of methionine to 

arginine at position 51) 

SDS: sodium dodecyl sulfate 

TAM: tumor associated macrophage 

TBS-T: Tris-buffered saline containing Tween 20 

TGF-β: transforming growth factor beta 

THP-1: human monocytic leukemia cell line 

TLR: toll-like receptor 

TNF-α: tumor necrosis factor alpha 

Tris: tris(hydroxymethyl)aminomethane 

VEGF: vascular endothelial growth factor 

VSV: vesicular stomatitis virus 
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Introduction 

 

According to the National Cancer Institute (NCI), approximately 1 in 3 men and 

women will receive a cancer diagnosis in their lifetimes (Siegel et. al. 2019). Accordingly, 

the NCI has an annual budget exceeding $5 billion dollars. That money, along with resources 

from pharmaceutical companies and non-profits, supports a staggering infrastructure 

designed to alleviate the significant health and financial burdens caused by this disease. Yet 

despite this long-term effort that symbolically began with the National Cancer Act of 1971, 

standard-of-care treatments still rely on techniques developed decades ago, including 

surgery, radiation, and chemotherapy. These treatments often come with devastating side 

effects and are less effective at later stages of the disease when cancer cells have 

metastasized to distant regions of the body. Current research efforts seek to alleviate these 

issues with next generation cancer therapies. One proposed category of treatment is the 

recruitment of the patient’s own immune system to fight against the tumor. In this vein, our 

project seeks to modulate the functionality of an immune cell, the macrophage, through the 

use of an oncolytic virus. 

Macrophages are a component of the innate and adaptive immune systems. As blood 

monocytes with origins in the bone marrow, they specialize as they move into tissue in 

response to signaling molecules. Some macrophages are tissue-specific, such as the alveolar 

macrophages of the lungs or the microglia of the central nervous system. However, in most 

of the body’s tissues, macrophages polarize based on the needs of the immune system at the 

time of monocyte maturity.  



4 
 

Macrophages were previously classified using a binary system that separated them 

into M1 or M2 phenotypes (Locati et. al. 2020). However, additional research has shown that 

macrophages are more heterogeneous than formerly believed, with phenotypes that parallel 

the diverse signals that activate them (Xue et. al. 2014, Roussel et. al. 2017). For example, 

IL-4 and IL-10 polarize macrophages to the M2 phenotype. However, macrophages 

stimulated with only IL-4 or only IL-10 exhibited significant phenotypic differences from 

each other, suggesting that it may be beneficial to categorize them separately (Roussel et. al. 

2017). Still, the M1 and M2 distinction can be useful for defining macrophages based on 

their more general functions. M1 macrophages, for example, are pro-inflammatory and 

promote T-cell activity. These macrophages also assist in the clearance of pathogenic 

bacteria and have antitumoral properties. Human M1 macrophages express HLA-DR, iNOS, 

CD86, and p-STAT1 in higher proportion than their M2 counterparts. They also secrete 

inflammatory cytokines like IL-6, IL-12, IL-23, and TNF-α, as well as reactive oxygen and 

nitrogen species (Jayasingam et. al. 2020, Locati et. al. 2020). M2 macrophages, in contrast, 

express higher levels of CD206, CD204, CCL22, CCL17, and CD163 and secrete cytokines 

that suppress immune activity like IL-10, PD-L1, and TGF-β. They also exert tissue repair 

functions by secreting adrenomedullin and VEGF, both of which support the growth of blood 

vessels (Jayasingam et. al. 2020, Locati et. al. 2020). The immunosuppressive nature of M2 

macrophages helps diminish over-stimulation of the immune system and promotes normal 

tissue growth (Petty and Yang 2017). Ultimately it is the balance between M1 and M2 

macrophage phenotypes that allows the body to protect itself from harmful pathogens while 

also preventing and repairing damage to its own tissues. 
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Macrophage populations within the tumor microenvironment have long been 

implicated in the development of aggressive cancers. A 2017 meta-analysis of breast cancer 

patient data revealed that a high density of tumor-associated macrophages (TAMs) resulted 

in increased markers of aggressive cancer and correlated with lower overall survival (Zhao 

et. al. 2017). This is largely attributable to a high density of M2 macrophages in the tumor 

microenvironment. M2 macrophages make up such a large proportion of TAMs that the 

terms are sometimes used interchangeably. The prevalence of this subtype among TAMs is 

due to cytokines secreted by tumor cells that promote M2 polarization, such as CSF1 and 

TGF-β (Petty and Yang 2017). In the context of cancer, the M2 subtype is detrimental to the 

patient, causing the immune system to tolerate the presence of the tumor. M2 macrophages 

also directly promote cancer cell growth, angiogenesis, and metastasis. These pro-tumor 

functions occur as a result of cytokine and surface signaling on M2 macrophages, including 

but not limited to VEGF, which promotes angiogenesis, EGF, which is a pro-tumoral growth 

factor, and MMPs, a class of proteases that aid in tissue remodeling during cancer cell 

invasion and metastasis (Anfray et. al. 2019, Zhao et. al. 2017, Petty and Yang 2017). 

 Not all TAMs are pro-tumoral. The M1 subtype among TAM populations can be 

beneficial to the patient. They promote the activation of cytotoxic T-cells and generate 

reactive nitrogen and oxygen species that contribute to cancer cell death. M1 TAMs have 

shown promise for the clearance of melanoma in mouse models of the disease (Petty and 

Yang 2017). The pro-inflammatory, anti-tumor properties of M1 macrophages make them 

desirable in a patient’s tumor microenvironment. 

Modulation of macrophage identity is a promising avenue for anti-cancer therapies. 

Some common therapeutic strategies of macrophage modulation include inhibition of 
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macrophage movement to the tumor site and the conversion of M2 TAMs into M1 TAMs. 

Suppression or depletion of all TAMs (or just M2 TAMs) are also popular strategies (Tariq 

et. al. 2017). Each strategy shows promise and can employ multiple therapeutic techniques. 

For example, CAR-T cells are one possible avenue of M2 macrophage depletion. Chimeric 

antigen receptor (CAR)-T cells are modified leukocytes containing a genetically engineered 

CAR protein that identifies a selected target antigen. They are typically used to destroy 

cancer cells expressing disease-specific proteins (Sermer and Brentjens, 2019). CAR-T cells 

have also been used to target and eliminate TAMs expressing M2 markers. An ovarian 

cancer mouse model displayed slower tumor growth and increased survival when such 

macrophage depletion was coupled with tumor-targeting CAR-T cells as opposed to tumor 

targeting alone (Rodriguez-Garcia et. al. 2021). Another research group found that the 

chemotherapeutic agent hydroxychloroquine suppresses non-small cell lung cancer in part 

because it promotes the transition of M2 macrophages into an M1-like phenotype (Li et. al. 

2018). These two examples represent just a fraction of the potential routes for clinically 

relevant macrophage alteration. 

Another potential route for macrophage modulation is the use of oncolytic viruses. 

An oncolytic virus is one that can kill cancer cells with minimal damage to normal host 

tissue. These viruses can be either naturally occurring or genetically modified (Fukuhara et. 

al. 2016). My efforts have focused on vesicular stomatitis virus (VSV). VSV is a pathogen of 

livestock, such as horses and pigs, and is transmitted through an insect vector. Human 

infections are rare and mild, having mostly occurred in lab personnel working with the virus 

or in animal handlers. Multiple tissue culture cell lines are permissible to infection by wild-

type VSV, making it particularly useful in both viral research and clinical applications. VSV 
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is capable of inducing apoptosis in cancer cells through multiple, independent mechanisms 

(Bishnoi et. al. 2018). It has specifically been shown to lyse cells in hypoxic tumor 

microenvironments, and therefore may alleviate the tumor-promoting stress associated with 

increased resistance to radiation and chemotherapy. In this way, the virus may sensitize 

tumor cells to chemotherapy (Bishnoi et. al. 2018). In addition to VSV’s direct effects on 

tumor cells, the virus has shown the ability to indirectly lower tumor viability. As VSV can 

infect the tumor vasculature, the virus may lead to decreased blood flow and increased 

immune cell infiltration of the tumor (Bishnoi et. al. 2018). 

Multiple clinical trials are investigating the use of VSV mutants as cancer therapies, 

many of which are modified to express IFNβ (Table 1). The inclusion of the IFNβ gene has 

been shown to improve the safety of the virus without compromising its anti-cancer 

properties (Kurisetty et. al. 2014). Other engineered VSV strains may also increase the 

cancer-fighting activity of tumor-associated immune cells while maintaining a high level of 

patient safety. One example is rM5IR-M, a matrix protein mutant of VSV. A change from 

methionine to arginine at position 51 in the matrix protein sequence renders the virus 

incapable of inhibiting host immune gene expression (Figure 1). Typically, matrix protein-

mediated repression of host gene expression prohibits anti-viral responses in infected 

organisms. For example, most wild type VSV viruses suppress the type I IFN anti-viral 

response in the host, thus supporting continued viral infection. rM51R-M virus, however, 

upregulates this pathway, and thereby increases the immune modulatory capabilities of the 

virus, thus making rM51R-M an ideal oncolytic virus with which to enact phenotypic shifts 

in macrophage polarization (Ahmed et al. 2006). rM51R-M virus has also shown low 

replicative potential in normal tissue, increasing its safety in patients (Ahmed et al. 2006). 
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Table 1. VSV variants currently in clinical trials.  

VSV Variant Cancer(s) Targeted Trial # Phase 

Voyager V1 

(IFNβ mutant) 

Melanoma 

Hepatocellular Carcinoma 

Non Small Cell Lung Cancer 

Endometrial Cancer 

NCT04291105 2 

Recombinant 

VSV expressing 

IFNβ 

Advanced Malignant Solid Neoplasm 

Hepatocellular Carcinoma 

NCT01628640 1 

VSV-IFNβ-NIS Malignant Solid Tumor NCT02923466 1 

VSV-IFNβ-NIS Solid Tumor 

Head and Neck Squamous Cell Carcinoma 

Non Small Cell Lung Cancer 

NCT03647163 1 

Information was obtained via ClinicalTrials.gov. 
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Figure 1. Genomic and morphological structure of wild type VSV. Panel A shows the 

orientation of genes along the negative-stranded RNA genome of VSV. Panel B shows the 

protein localization within a single viral particle. Images are based on those from the Swiss 

Institute of Bioinformatics and Michael Dumiak. 

 

 

Previous experiments in our lab have shown that rM5IR-M virus may polarize 

macrophages towards a more inflammatory phenotype. This is indicated by the increased 

expression of the M1 markers p-STAT1, CD80, and TNF-α following infection of a M2 

THP-1 macrophage population (Polzin 2020). Additionally, in a co-culture of M2 THP-1 

macrophages and MDA-MB-231 breast cancer cells, infection with rM51R-M virus resulted 

in a significant reduction of the M2 marker IL-10 (McCanless 2019). Therefore, 

macrophages appear to be moving away from the immunosuppressive M2 subtype as a result 

of rM51R-M viral infection. 

Like many viruses, rM51R-M virus stimulates the type I interferon (IFN) pathway. 

This pathway participates in anti-viral responses as well as M1 macrophage polarization 
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(Figure 2). Viral infection stimulates the production of type I IFNs (IFNα or IFN β) in most 

cell types (Samuel 2001). When IFNα or IFN β binds to the IFNα/β receptor (IFNAR), it 

stimulates the autophosphorylation of JAK1. This triggers the phosphorylation of STAT1, 

which forms a dimer with phosphorylated STAT2. The dimer then associates with IRF9 and 

moves into the nucleus where it induces an antiviral response (Figure 2A) (Ivashkiv and 

Donlin 2014). This response includes the production of proteins that damage or prevent 

translation of viral RNA, as well as proteins targeting viral nucleocapsids. IFN signaling can 

also lead to the production of major histocompatibility antigens, which recruit cytotoxic T 

cells, and nitric oxide synthase, which can produce reactive chemical species that kill viruses 

(Samuel 2001). Transcriptional regulation by this pathway also leads to the production of 

additional IFNα/β. 

The type I IFN pathway can also take part in M1 macrophage polarization. The 

STAT1/2 dimer produced by the type I IFN pathway (typically as a result of IFNβ signaling) 

can synergize with NFκB downstream of toll-like receptor (TLR) activation. This synergy 

leads to transcriptional regulation of, for example, Nos2, a gene producing some of the 

reactive nitrogen species characteristic of M1 macrophages (Figure 2B) (Müller et. al. 2018). 

The type I IFNs that trigger M1 polarization may come from virus-infected cells. They may 

also come from previously activated macrophages or dendritic cells (another immune cell 

population). Other M1 markers are upregulated by this signaling pathway as well. 
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Figure 2. Comparison of type I IFN pathways during an antiviral response and 

during M1 macrophage polarization. Panel A shows the type I IFN pathway that 

leads to an anti-viral response. Following the binding of a type I IFN to IFNAR, 

JAK1 phosphorylates STAT1, which forms a dimer with phosphorylated STAT2. The 

dimer then associates with IRF9 and moves into the nucleus to modulate 

transcription, leading to upregulation of anti-viral proteins. Panel B shows the 

polarization of an M1 macrophage by IFNβ. The pathway is very similar to the anti-

viral response, with a phosphorylated STAT1-STAT2 dimer associating with IRF9 

before moving into the nucleus. However, in M1 macrophages, this complex 

synergizes with NFκB to alter transcription, leading to the release of reactive 

nitrogen species. NFκB comes from a signaling pathway activated by a TLR binding 

to its ligand. Multiple ligand-TLR pairs can activate this pathway. MyD88 acts as an 

adapter protein, passing the signal from the receptors to NFκB. Images are based on 

those found in Owen (2020) and Müller et. al. (2018). 
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The rM51R-M strain of VSV has been shown to upregulate components of the type I 

IFN pathway in M2 THP-1 macrophages. The increase in total and phosphorylated STAT1 

over samples infected with wild-type VSV was previously mentioned (Polzin 2020). There is 

also an increase in IFNα signal propagation in rM51R-M virus-infected macrophages (Owen 

2020). It has been further established that VSV is extremely sensitive to the type I IFN 

family of molecules (Bishnoi et. al. 2018). Therefore, we hypothesize that rM51R-M virus 

modulates macrophages to a more inflammatory phenotype via the type I IFN pathway. 

In order to determine the role of the type I IFN pathway in macrophage 

repolarization, we have attempted to chemically inhibit STAT1 phosphorylation/activation 

with fludarabine. Fludarabine is a chemical analog of the antiviral agent vidarabine and a 

known inhibitor of STAT1 phosphorylation (Figure 3). The mechanism of action by which 

fludarabine inhibits the accumulation of p-STAT1 is not well characterized. STAT1 has two 

phosphorylation sites, Y710 and S727. A 2014 study of fludarabine activity in melanoma 

samples indicated downregulation of phosphorylation at both sites (Hanafi et. al. 2014). 

However, as the S727 site becomes phosphorylated downstream of the Y710 site, it is 

unclear if fludarabine directly targets the S727 site or if less phosphorylation occurs due to 

upstream downregulation of Y710. Fludarabine is also a chemotherapeutic agent marketed 

under the name Fludara®. It exhibits a cytotoxic effect on B-cell malignancies such as B-cell 

chronic lymphocytic leukemia and mantle cell lymphoma (Baran-Marszak et. al. 2004). In 

addition, 18F-fludarabine, a radioactive conjugate of fludarabine, has been used in lymphoma 

imaging, as it is specifically taken up by cells with high glucose metabolism (Barré et. al. 

2019). Therefore, it is an important substance to study in the context of cancer treatment 

because it can be taken up so readily and has several clinical applications. 
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Figure 3. 2D and 3D models of fludarabine. Images retrieved from PubChem. 

 

 

Our research uses THP-1 cells as a model of human macrophages. THP-1 is an 

immortalized human monocytic leukemia cell line that can be matured and polarized into a 

variety of macrophage phenotypes. PMA can be used to differentiate THP-1 monocytes into 

adherent macrophages (Chanput et. al. 2014). Subsequent treatment with the cytokines IL-4 

and IL-13 polarizes these THP-1 macrophages to an M2 phenotype (Locati et. al. 2020). In 

the experiments presented here, THP-1 monocytes were pre-polarized to an M2 phenotype 

before treating the cells with fludarabine and infecting with rM51R-M virus (Figure 4). 

While the virus can repolarize these M2 macrophages to a more M1-like profile, it was 

expected that the fludarabine-treated M2 macrophages would retain their phenotype 

following viral infection. However, prior to an exhaustive characterization of macrophage 

marker expression, the concentration of fludarabine capable of inhibiting the phosphorylation 

of STAT1 under these assay conditions had to be determined. Therefore, a titration 

experiment was performed to determine the minimum concentration of fludarabine at which 

p-STAT1 accumulation would be inhibited to levels comparable to uninfected and untreated 
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M2 THP-1 macrophage populations. This minimum concentration would then be selected for 

future experimentation. 

 

 

 

Figure 4. Experimental workflow. THP-1 monocytes were matured and polarized to 

M2 macrophages using PMA, IL-4, and IL-13, exposed to fludarabine, and then 

infected with rM51R-M virus. Cell lysates were then collected and proteins detected 

and quantified by immunoblotting. 
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Methods and Materials 

 

Cells and Virus 

 

THP-1 monocytic leukemia cells were propagated in RPMI media (Corning, 10-040-CV) 

supplemented with 10% fetal bovine serum (R&D Systems, S11150) and 0.05 mM 2-

mercaptoethanol (MP Biomedicals, 190242) between 2 x 105 and 1 x 106 cells/ml. The 

rM51R-M strain of VSV was a gift from Dr. Douglas Lyles of the Wake Forest University 

School of Medicine (Winston-Salem, NC) and has been previously described (Whitlow et al. 

2006). Viral stocks were grown in BHK fibroblasts for 24 hours, spun down, and collected 

into cryovials, then stored at -80°C (Kopecky et al., 2001). Virus was thawed on ice, then 

added to M2-polarized THP-1 macrophages at a MOI of 1 or 10 pfu/cell for a 24-hour 

infection period.  

 

M2 Macrophage Polarization 

 

THP-1 cells were transferred to a 6-well plate at a concentration of 1.4 x 106 cells/well. Here 

they were subsequently polarized to an adherent, M2 macrophage phenotype through a step-

wise 24-hour incubation in THP-1 media containing 25nM PMA followed by a 48-hour 

incubation in THP-1 media containing 25nM PMA, 20ng/mL IL-4, and 20ng/mL IL-13. 

Stocks of PMA (Sigma-Aldrich, P1585) were made as 25μM solutions in DMSO. Stocks of 

IL-4 (Bio-Legend, 574002) and IL-13 (Bio-Legend, 571102) were made as 20μg/mL 
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solutions in 0.05% BSA/PBS. All stock solutions were kept at -80˚C in small volume 

aliquots that at most were thawed and refrozen 1-3 times. 

 

Fludarabine Treatment 

 

Pre-polarized M2 macrophages were treated with fludarabine (Selleckchem, S1491) at 50, 

100, or 150 μM for 1 hour prior to infection with rM51R-M virus for 24 hours as described 

above. Fludarabine was diluted directly in THP-1 media. 

 

Cell Lysis 

 

Following experimental manipulations, the cells were washed twice with ice-cold PBS before 

being scraped into 100 µl of ice-cold RIPA buffer. The RIPA buffer consisted of 50 mM 

Tris-HCl (pH 8.0), 150mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, and  

1 μg/mL aprotinin (Fisher Scientific, ICN19455910). The samples were centrifuged at 

16,000xg for 20 min, the pellets discarded, and the supernatants analyzed for protein content 

using a PierceTM BCA Protein Assay Kit (Thermo Scientific, 23225) according to 

manufacturer’s instructions against a series of BSA standards. Cell lysates were incubated at 

95°C with an equal volume of 2X Laemmli sample buffer for 5 minutes before storing at       

-80°C.  
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Immunoblotting 

 

For immunoblot analysis, 20μg of lysate protein was loaded onto a 10% polyacrylamide gel, 

separated by SDS-PAGE, and then transferred to a 0.45μm nitrocellulose membrane (Bio-

Rad, 1620115) at 100V for 1 hour. After blocking in 5% milk/TBS-T for 1 hour, membranes 

were washed 3 times at 5 minutes each in TBS-T. Membranes were then incubated overnight 

at 4°C with primary antibody to p-STAT1 (Y701) (Cell Signaling, 9167S) at 1:1000 in 5% 

BSA/TBS-T. Membranes were washed as previously described before incubation with a 

peroxidase-conjugated secondary antibody (GE Healthcare, NA9340V) at 1:2000 in 5% dry 

milk/TBS-T for 1 hour at room temperature. Proteins were visualized using SuperSignalTM 

West Dura Extended Duration Substrate (ThermoFisher Scientific, 34075) or SuperSignalTM 

West Pico PLUS Chemiluminescent Substrate (ThermoFisher Scientific, 34080) and Image 

Lab software (Bio-Rad). Image Lab was used to perform the densitometry analysis. This was 

done from the pixels in a 19 mm2 area centered over the darkest region for each band. 
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Results 

 

The rM51M-R strain of VSV upregulates the M1 macrophage markers p-STAT1, 

CD80, and TNF-α in a pre-polarized M2 macrophage population (Polzin 2020). The virus 

also reduces secretion of IL-10, a cytokine associated with M2 macrophages (McCanless 

2019). It is suspected that this virus is shifting the macrophages towards a tumor-fighting M1 

phenotype, but the mechanism is not fully appreciated. There are similarities between the 

antiviral type I IFN pathway and the signaling pathways involved in M1 polarization (Figure 

2). Both increase the phosphorylation-dependent activation of the transcription factor 

STAT1. Fludarabine is a small molecule inhibitor of STAT1 phosphorylation/activation. 

Here it was hypothesized that fludarabine would block the repolarization of M2 macrophages 

if the type I IFN pathway was responsible for this phenomenon. This experiment sought to 

determine a fludarabine concentration capable of inhibiting STAT1 phosphorylation under 

the assay conditions being employed. 

 M2 polarized THP-1 macrophages were pre-treated with fludarabine, then infected 

with rM51R-M virus at an MOI of 1 or 10 pfu/cell for 24 hours, after which lysates were 

analyzed for the expression of p-STAT1 (see Figure 4). Mock-infected M2 macrophages 

were also examined as a negative control. Mock-infected M2 THP-1 macrophages exhibited 

low levels of p-STAT1 (Figure 5A). While the band was not visible to the naked eye, 

densitometry analysis returned some p-STAT1 signal, which is likely caused by background 

noise (Figure 5B). This was in contrast to those macrophages subjected to infection with the 

rM51R-M virus, which displayed increases in p-STAT1 levels (Figure 5). These data 
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therefore reaffirm former studies that have shown an increase in STAT1 phosphorylation 

following infection with the mutant virus (Polzin 2020).  

The effect of fludarabine on p-STAT1 levels was as hypothesized with reductions in 

STAT1 phosphorylation (Figure 5A). At an MOI of 1 pfu/cell, STAT1 phosphorylation was 

reduced to between 23% (50 µM fludarabine) and 16 % (100 and 150 µM fludarabine) of the 

levels present without the drug (Figure 5B). This was comparable to the results at an MOI of 

10 pfu/cell, which reduced the levels of p-STAT1 to 32% (50 µM fludarabine) or 16% (100 

µM fludarabine) of the levels present without the drug (Figure 5B). Fludarabine at a 

concentration of 150µM reduced STAT1 phosphorylation to a level comparable to 

background signaling (Figure 5).  

As well as effectively inhibiting p-STAT1, none of the concentrations tested had a 

noticeable effect on the viability of THP-1 cells. Cells were visualized prior to lysate 

collection, and there were no notable signs of cell death, such as floating cells and lower 

plate density. In addition, a protein assay performed on a similar experiment yielded no large 

differences in total protein concentration between rM51R-M-infected THP-1 cells treated 

with fludarabine and those not treated with fludarabine. In this experiment, lysates from 

fludarabine-treated samples had total protein concentrations between 606.4 μg/mL and 665.1 

μg/mL. Lysates from samples with no fludarabine had total protein concentrations between 

624.7 μg/mL and 719.7 μg/mL. Although the total protein concentration is lower in the 

fludarabine-treated samples, there was not enough of a difference to discourage use of 

fludarabine at this concentration. Collectively, these data indicate that 100µM fludarabine 

may be sufficient for future studies where STAT1 inhibition will be tested for its ability to 

block the repolarization of M2 macrophages. 
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A  

B  

 

Figure 5. Fludarabine inhibits p-STAT1 accumulation in M2 THP-1 macrophages 

following infection with rM51R-M virus. Panel A: THP-1 monocytes were pre-

differentiated into macrophages and polarized to an M2 phenotype. Cells were then 

treated with fludarabine at 0, 50, 100, or 150 µM for one hour prior to a 24-hour 

infection with rM51R-M virus (MOI of 1 or 10 pfu/cell) (see Figure 4). Mock 

indicates no drug treatment and no virus infection. Total cell lysates were subjected 

to immunoblot analysis by probing with a p-STAT1 antibody. Panel B: The 

immunoblot data in Figure 5A was subjected to densitometry analysis in order to 

quantitate proteins levels of phosphorylated STAT1. 
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Discussion 

 

Previous experiments in our lab have shown that a mutant strain of the oncolytic 

vesicular stomatitis virus, rM51R-M, can reduce M2 markers and activate M1-polarizing 

STAT1 signaling in a THP-1 macrophage population (Polzin 2020). The overarching goal of 

this project was to determine the effects of p-STAT1 inhibition on this re-education of M2 

macrophages. To that end, fludarabine at a concentration ranging from 50 to 150 μM was 

tested for inhibition of STAT1 phosphorylation. Effectiveness of inhibition was determined 

by comparison to M2-polarized macrophages that were not subjected to inhibition with 

fludarabine or infection with rM51R-M.  Fludarabine exhibited inhibition of STAT1 

phosphorylation at all concentrations tested, indicating that this inhibitor is active under the 

conditions of our assay.  

 This experiment used MOIs of 1 and 10 to represent both asynchronous and 

synchronous infections with rM51R-M virus. An MOI of 1 pfu/cell resembles a natural 

infection where the virus will infect and replicate in some cells before spreading to others. 

This will evoke a systematic antiviral response meant to arrest the progression of a natural 

infection. An MOI of 10 pfu/cell models a synchronous infection, in which nearly every cell 

in a system is infected during the introduction of the virus. This allows for the study of the 

antiviral response of individual cells, as viral spread between cells will be limited (Owen 

2020). The extent of the infection, natural (MOI of 1) or synchronous (MOI of 10), elicited 

increasing effects on STAT1 phosphorylation, which was over 2-fold higher under the higher 

viral load (Figure 5). Similarly, the extent of inhibition by fludarabine also depended on the 

multiplicity of infection—the more virus used in the assay, the more fludarabine was needed 
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for full inhibition. In a compromise between maximum effectiveness of the drug with 

presumed limited cytotoxicity, 100 μM is currently considered the ideal fludarabine 

concentration for further experimentation. Although 150 μM fludarabine exhibited slightly 

more inhibition of STAT1 phosphorylation, 100 μM was sufficient to bring levels of p-

STAT1 down to a level comparable to uninfected M2 macrophages at both MOIs. Using this 

lower, but still effective, concentration of fludarabine will also allow for more efficient use of 

this resource.  

STAT1 is not the only marker that can be used to validate the role of type I interferon 

signaling in the repolarization of M2 macrophages in response to VSV infection. Others 

include cell surface markers like HLA-DR, CD11c, and CD86 for M1 macrophages, and 

CD163, CD204, and CD206 for M2 macrophages. The presence of these markers can be 

determined by flow cytometry. This single-cell analytical method will more clearly indicate 

whether individual macrophages are fully or partially displaying macrophage identity 

markers, which cannot be seen in a measure of aggregate protein by immunoblot analysis.  

The molecules secreted by macrophages are also potential targets for macrophage 

identification. M1 macrophages secrete the pro-inflammatory cytokines IL-6, IL-12, and IL-

23, while M2 macrophages secrete IL-10, PD-L1, and TGF-β (Jayasingam et. al. 2020). 

These molecules can be quantified using an ELISA assay. The markers of macrophage 

identity previously used in our lab include p-STAT1, CD204, IL-6, TNF-α, and IL-10. 

Therefore, these are the markers that will receive most of our attention to facilitate 

comparisons to previous work. Marker expression will be compared to that of untreated M1 

or M2 macrophages to give an indication of the identity of macrophage populations exposed 
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to the virus and fludarabine. This step of the project is already in progress, as the initial 

experimental steps are completed up to the collection of cell lysates. 

In addition to western blotting, ELISAs, and/or flow cytometry, functional assays will 

be used to characterize macrophages. A phagocytosis assay for THP-1 macrophages is 

currently in development in our lab. Preliminary data suggests that M2 THP-1 macrophages 

exhibit a ~10-fold higher phagocytic index than M1 THP-1 macrophages based on the uptake 

of fluorescently-labeled E.coli particles. Moreover, the rM51R-M mutant of VSV reduced 

phagocytosis in M2 macrophages by 50% (Simmons, Seals, and Ahmed, personal 

communications). Experiments to test fludarabine’s impact on these results are being 

planned. As phagocytosis is a trademark behavior of macrophages, this assay will allow 

further differentiation of macrophage identity based on functional activity (Locati et. al. 

2020).  

The importance of such an extensive examination of macrophage markers/activity is 

due to the lack of full phenotype characterization of macrophages modulated by rM51R-M 

virus.  Infection with rM51R-M virus has been shown to increase expression of the M1 

markers p-STAT1, CD80, and TNF-α and reduce expression of the M2 marker IL-10 in M2 

THP-1 macrophages (Polzin 2020, McCanless 2019). However, no change was observed in 

the M2 macrophage marker CD204 upon infection with rM5IR-M virus (Polzin 2020). 

Macrophages appear to be moving away from the immunosuppressive M2 subtype as a result 

of rM51R-M viral infection, but they do not completely shed canonical markers of this 

subtype. It is possible that infected macrophages assume an intermediate phenotype between 

M1 and M2. By performing a full characterization of macrophage markers in our samples, 
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we will be able to more accurately describe the population of macrophages emerging post-

infection.  

As there are multiple components in the type I IFN pathway, there are multiple ways 

to validate its role in the repolarization of M2 macrophages by rM51R-M virus. One such 

experiment might consist of IFNα and IFNβ inhibition. This will be done using a human type 

I interferon neutralizing antibody mixture (Fisher Scientific 50-153-8053 [PBL Assay 

Science]). The mixture includes antibodies directed against the human type I interferon 

receptor as well as several of its ligands, including IFNα and IFNβ themselves. We expect 

that this reagent will have similar downstream effects as fludarabine. Importantly, inhibiting 

another molecule in the IFNα/β pathway will either reaffirm the findings from the 

fludarabine experiment or indicate an alternative mode of macrophage repolarization if the 

results are not comparable.  

If type I interferon signaling antagonists fail to block universal changes in 

macrophage phenotype or lead to intermediate phenotypes, then it could indicate that this 

pathway is not solely responsible for macrophage re-education as a result of  

rM51R-M viral infection. The reason for this would need additional research to determine. It 

could be that the type I IFN pathway does not play a role at all in macrophage identity shift. 

It is also possible that the type I IFN pathway plays a role, but that other pathways 

compensate for its loss when inhibition occurs. To this end, additional experiments will be 

performed with the purpose of determining the extent of activation in other pathways under 

our experimental conditions, such as activation of TLR and NFκB.  

The TLR pathway is of interest for future experimentation. Wild-type VSV has been 

shown to stimulate a subset of dendritic cells through TLR7 and MyD88 (Ahmed et. al. 
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2009). However, stimulation of other dendritic cell subsets by rM51R-M virus occurred in a 

way that was largely independent of TLR7 and MyD88. Yet, rM51R-M virus upregulated 

NFκ-B in dendritic cells over mock-infected samples (Ahmed et. al. 2009). Although 

dendritic cells are an immune population distinct from macrophages, it is possible that 

rM51R-M virus has similar effects on the pathways these populations share. As such, it is 

possible that r-M51R-M virus creates synergy between STAT1/2 and NFκ-B signaling in 

macrophages through a pathway different than the one outlined in Figure 2. While beyond 

the scope of this study, the question of whether r-M51R-M virus activates the TLR/MyD88 

pathway in macrophages is a possible avenue for further experimentation. 

Our study is hardly the first one to examine the effects of oncolytic viruses on 

macrophage identity. Passaro found that the oncolytic adenovirus dl922-947 prevents the 

infiltration of M2 macrophages into anaplastic thyroid carcinoma tumors (Passaro et. al. 

2016). It does this by reducing the production of CCL2 by cancer cells. In vitro, this 

reduction lowered monocyte chemotaxis. The virus also shifted macrophages towards an M1 

phenotype in vivo, as seen by increased Nos2 expression (Passaro et. al. 2016). Another study 

showed that an oncolytic virus increased inflammatory macrophage activity (Tan et. al. 

2016). Attenuated paramyxoviruses (the class of virus that measles and mumps belong to) 

were found to be more effective at breast cancer tumor clearance when virally-infected 

macrophages were present. This could be attributable to the increase in M1 macrophage 

markers seen in virus-infected samples. M1-associated tumoricidal mediators were also 

found to be responsible for reduced tumor viability in vitro (Tan et. al. 2016). When 

combined with the studies published by Polzin (2020) and extended as part of this thesis, it 
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seems clear that macrophage repolarization can be a novel therapeutic benefit of oncolytic 

virotherapies. 

This research also has implications for the use of fludarabine in the clinic. As stated 

prior, fludarabine is administered as a chemotherapy under the name Fludara®, and is also 

utilized in cancer imaging. If fludarabine is found to inhibit the shift of macrophages to a 

phenotype more beneficial for the patient, it would raise questions about the use of 

fludarabine when patients are receiving an oncolytic virotherapy. 

Here we have validated the use of fludarabine as an inhibitor of STAT1 signaling 

induced by infection of M2 THP-1 macrophages with a mutant strain of VSV called  

rM51R-M. Further research will substantiate the extent to which such signaling yields 

repolarization of macrophages to an anti-tumor M1 population, but if so, oncolytic viruses 

capable of re-training the immune system to clear cancerous cells could become another tool 

in oncology's therapeutic arsenal.  
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