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Diploid germline cells must undergo two consecutive meiotic divisions before 

differentiating as haploid sex cells.  During meiosis I, homologs pair and remain 

conjoined until segregation at anaphase.  Drosophila melanogaster spermatocytes are 

unique in that the canonical events of meiosis I including synaptonemal complex (SC) 

formation, double-strand DNA breaks, and chiasmata are absent.  Sex chromosomes pair 

at intergenic spacer sequences within the rDNA.  Autosomes pair at numerous 

euchromatic homologies, but not at heterochromatin, suggesting that pairing may be 

limited to specific sequences.  However, previous work generated from genetic 

segregation assays or observations of late prophase I/prometaphase I chromosome 

associations fail to differentiate pairing from maintenance of pairing (conjunction). 

To begin, the capability of X euchromatin to pair and conjoin with the Y 

chromosome was examined using an rDNA-deficient X and a series of Dp(1;Y) 

chromosomes.  Genetic assays determined that duplicated X euchromatin can substitute 

for endogenous rDNA pairing sites; however, segregation was not proportional to 

homology length.  Using fluorescent in situ hybridization (FISH) to early prophase I 

spermatocytes, pairing was shown to occur with high fidelity at all homologies tested.  

By comparing genetic and cytological data, we determined that centromere proximal 

pairings were best at segregation.  Segregation was dependent on the conjunction protein 

Stromalin in Meiosis while the autosomal-specific Teflon was dispensable. 



 
 

Next, the ability of the X euchromatic homology to pair with and segregate from 

the heterolog chromosome 3 was examined using Dp(1;3) chromosomes containing X 

euchromatin duplications ranging in size from 21 to 177 Kb.  In contrast to duplications 

of X euchromatin on the Y, duplications of X material on chromosome 3 are not as 

effective in directing segregation.  In early prophase I, however, homologies on the X and 

chromosome 3 pair.  Pairing between homologs is normally released at S2b of prophase I.  

Using a control probe to only select cells where chromosome 2 has already unpaired, the 

X and Dp(1;3) was unpaired in a significantly higher number of cells than was the X and 

Dp(1;Y).  This result suggests different mechanisms exist to manage pairings between 

homologs and pairings between heterologs. 

The FISH pairing assay was used to score meiotic I nondisjunction (NDJ) and 

compared to genetic NDJ.  Some NDJ frequencies were significantly different between 

the two methods.  Data suggests genetic NDJ calculations are not always a true measure 

of the meiotic defect.  The FISH pairing assay was also used to investigate an 

uncharacterized male meiotic mutant since the assay provides a rapid identification of the 

defective meiotic stage.  FISH identified a unique defect that caused sister chromatids to 

segregate to opposite poles during meiosis I.  This identification would not have been 

possible by only monitoring the outcome of meiosis through genetic crosses. 

The molecular techniques and approaches described within are suggested to be 

useful in defining the mechanisms regulating the establishment of conjunction and 

segregation between paired sequences. 
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CHAPTER I 

INTRODUCTION 
 
 

Meiosis is comprised of two cellular divisions that follow a single round of DNA 

replication.  The first “reductional” division segregates a replicated chromosome from its 

homolog and is followed by a second “equational” division that segregates the sister 

chromosomes (Page and Hawley 2003).  The formation of four haploid daughter cells 

from a single diploid parent cell is highly conserved among many species, including 

humans (Hassold and Hunt 2001); therefore, an understanding of the mechanisms of 

meiosis gained from the study of model organisms may be applicable to human meiosis. 

Chromosomes must accomplish homologous partner recognition or “pairing” for 

meiosis to occur with high fidelity.  The paired homologs form a structure called a 

bivalent.  In most species, pairing is followed by the assembly of the proteinaceous 

synaptonemal complex that stabilizes the bivalent while promoting homologous 

recombination through a biased double-strand break repair pathway (Allers and Lichten 

2001).  Homologous chromatid arms cross over and establish chiasmata, physical 

connection points that further aid in the stabilization of bivalents (Carpenter 1994).  

Bivalents are maintained throughout prophase I and metaphase I until the onset of 

anaphase I when chiasmata are resolved by the dissolution of sister chromatid arm 

cohesins (Uhlmann, Lottspeich, and Nasmyth 1999).
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In addition to this recombination-dependent pathway, some species have 

developed recombination-independent mechanisms to ensure proper distribution of 

chromosomes to gametes.  In the roundworm Caenorhabditis elegans, specific sites on 

each chromosome called pairing centers (MacQueen and Villeneuve 2001) are bound by 

zinc finger proteins and a KASH/SUN-domain protein complex (the LINC complex) to 

establish connections across the nuclear envelope between chromosomes and the 

cytoskeleton (Sato et al. 2009).  Actin-dependent chromosome movements are thought to 

aid in homolog recognition by bringing together homologous sequences and possibly 

jostling apart inappropriate, less stable associations between non-homologs. 

An alternative strategy to aid in partner recognition is seen in many plant species.  

In these species, telomeres of all chromosomes are embedded in the inner nuclear 

membrane and cluster, creating a “bouquet formation” and confining homology searching 

and pairing to a smaller region of the nucleus (Zickler and Kleckner 1998). 

In still other species, such as the budding yeast Saccharomyces cerevisiae, DNA 

sequence-independent associations between homologous centromeres prior to bouquet 

formation enhance the chances that homologous pairs of kinetochores attach to the 

correct spindle pole (Kemp et al. 2004).  Meiotic telomere clustering and centromere 

association are thought to increase the chance that partners come into contact with one 

another; however, it is poorly understood how homologs actually recognize and pair with 

one another in any system. 

Understanding the mechanisms of meiotic pairing is important to human health, 

where meiotic errors leading to aneuploidy (the presence of an abnormal number of 
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chromosomes) is a particularly common cause of genetic disease.  It is estimated that 10-

30% of human embryos are aneuploid, which can lead to miscarriages, mental 

retardation, and other genetic syndromes arising primarily from gene dosage imbalances 

(Hassold and Hunt 2001).  Insight into meiotic mechanisms is also important to 

understand how environmental hazards impact human aneuploidy.  Several chemicals, 

termed aneugens, are known to cause errors in meiosis.  The industrial chemical 

bisphenol A (BPA), pesticide component trichlorfon, and muscle relaxant diazepam have 

all been shown to cause chromosome alignment abnormalities and spindle formation 

defects during meiosis in both mouse and humans (Hunt et al. 2003; Cukurcam et al. 

2004; Baumgartner et al. 2001).  Because the increase in the human population heightens 

the likelihood of human-aneugen interactions in the environment, it is critical to assess 

the dynamic mechanisms of meiosis to better understand the disruptive roles aneugens 

play. 

Drosophila melanogaster is an amenable model for research as it has a short life 

cycle, is easy and relatively cheap to manage, and has a substantial number of orthologs 

associated with human cancers, genetic diseases, and aging.  Genetic studies of meiotic 

chromosome transmission are simplified by the fact that the fly has only four pairs of 

chromosomes and aneuploidy for the sex chromosomes, and the fourth chromosomes are 

fairly well-tolerated.  Because many aneuploid progeny are still viable, even mutations 

that completely disrupt meiosis and lead to random chromosome segregation can be 

studied genetically.  Drosophila are also an interesting model as males and females have 

each evolved their own mechanisms to accomplish meiosis.  Female flies use the 
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canonical meiotic pathway utilizing the synaptonemal complex to aid in recombination 

and the formation of chiasmata (Carpenter 1994), while male flies lack synaptonemal 

complexes, chiasmata, and meiotic recombination (Morgan 1914).  This unique aspect of 

male meiosis in flies has encouraged investigation over decades leading to the 

development of an array of tools to enhance study.  In particular, from a screen for male 

sterile mutations (Wakimoto, Lindsley, and Herrera 2004), 60 mutations have been 

identified that perturb chromosome transmission in meiosis and can be used as a starting 

point to define genes required for meiosis. 

Studies of meiosis in male Drosophila are aided by the developmental 

organization of the testis which permits easy identification and examination of meiotic 

progression.  Drosophila spermatogenesis begins at the tip of each testis, where a patch 

of somatic hub cells and both germline and somatic stem cells reside (Hardy et al. 1979).  

Germline stem cells divide by mitosis, after which one remains in contact with the hub 

cell to maintain stem cell identity, and the other daughter stem cell, now referred to as a 

gonialblast, transitions out of the tip of the testis surrounded by two somatic cyst cells 

(Yamashita, Jones, and Fuller 2003).  Four synchronous mitotic divisions of the 

gonialblast with incomplete cytokinesis follow to create a 16-cell meiotic cyst in which 

individual cells, now termed spermatocytes, are connected by ring canals.  The entire 

cluster of sixteen interconnected spermatocytes are surrounded by the original two 

somatic cyst cells (Fuller 1993). 

Once the mitotic divisions are complete, pre-meiotic S phase initiates quickly and 

concludes within three hours (Cenci et al. 1994), followed by a G2 phase characterized 
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by a significant 25-fold increase in cellular volume (Lindsley and Tokuyasu 1980).  It is 

at this stage that major differences from recombination-dependent meiosis of other 

species become evident.  The traditional stages of prophase I are not identifiable in 

Drosophila males as the chromosomes remain decondensed from G2 throughout mid-

prophase I, and males lack recombination-associated landmarks of prophase progression.  

Rather, staging of progression from premeiotic S phase to prometaphase of meiosis I 

relies on the spatial arrangement of chromatin/chromosomes and size of the meiotic cells.  

This progression has best been defined by Cenci et al. (1994) who divided G2/prophase I 

into seven stages named S1, S2a, S2b, S3, S4, S5, and S6.  Primary spermatocytes in S1 

have just completed DNA synthesis in S phase, and as they grow and transition into S2a, 

the nucleus is visible at one pole of the cell while the mitochondria are clustered at the 

opposite side of the cell (Cooper 1965).  At stage S2a, the sex chromosomes and three 

pairs of autosomes are indistinguishable and are clustered within the nucleus.  As the cell 

grows and enters S2b phase, chromatin can be seen as a tri-lobular association with the 

nuclear lamina (Cenci et al. 1994) where each “territory” is comprised of a homologous 

pair of chromosomes.  Additionally in S2b phase, the nucleolus is observed adjacent to 

the sex chromosome territory (Lindsley and Tokuyasu 1980), and the two chromosome 

4s can be seen associated with the sex chromosomes or sometimes by themselves in the 

middle of the nucleus (Cenci et al. 1994).  As the cell grows, the chromosomes remain in 

their own territory with the exception of the transcriptionally active Y chromatin often 

visible in the center of the cell in thread-like structures called Y chromosome loops (S3-

S6) (Bonaccorsi et al. 1988; Cenci et al. 1994). 
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From late S6, spermatocytes transition into the meiotic divisions marked by the 

degradation of the nucleolus, and the chromatin condenses while remaining in territories 

(Cenci et al. 1994).  Prometaphase I is marked by nuclear membrane breakdown, spindle 

fiber insertion into the nucleus, and migration of chromosome masses to the center of the 

cell.  At metaphase I, chromatin forms a singular mass in the middle of the cell with 

chromosomes attached to microtubule bundles arising from each spindle pole.  Homologs 

separate at anaphase I, and the nucleus reforms after telophase I (Cenci et al. 1994).  At 

this stage, the meiotic cyst contains 32 secondary spermatocytes, and the onset of meiosis 

II is almost immediate.  A short prophase II occurs where chromosomes re-condense 

followed by the metaphase II transition, anaphase II separation of sister chromatids, and 

telophase II division into 64 interconnected spermatids that will eventually elongate and 

individualize into functional sperm (Cenci et al. 1994). 

The recombination-deficient meiosis in the male fly is an optimal system to study 

homolog interactions from pairing to segregation as the complexity of recombination that 

is required in many systems is absent, potentially permitting easier identification of genes 

specifically involved in pairing.  The majority of mutations that disrupt chromosome 

segregation in females identify genes involved in recombination while in males, 

mutations that alter chromosome segregation are more likely to affect pairing, adhesion, 

or conjunction mechanisms.  For these reasons, the male meiotic system has been highly 

investigated including examination of homolog partner recognition (pairing), association 

through metaphase I (conjunction), and connection of homologs to opposite spindle poles 

metaphase I for correct segregation at anaphase I (orientation). 
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In addition to the evolution of two different systems of meiosis between 

Drosophila sexes, the male has also developed two genetically separable pathways to 

segregate chromosomes, one for the sex chromosomes and one for the autosomes.  Both 

cis- and trans-acting requirements vary between the sex chromosomes (X and Y) and 

autosomes (chromosomes 2, 3, and 4) and are summarized below. 

Cis-acting Requirements for Autosome Pairing and Conjunction 

Several studies have examined the DNA sequences requirements for homolog 

segregation in male meiosis.  Because these studies preceded the technical ability to 

detect homolog interaction at the stage when pairing initially occurs, they often assessed 

homolog conjunction rather than pairing.  In most studies, condensed chromosomes at 

prometaphase I or metaphase I were examined for physical associations.  Genetic assays 

of segregation also fail to distinguish between pairing and conjunction, as both events 

must successfully occur for proper segregation.  Thus, while these studies claim to 

identify sequences important for “pairing,” it is not clear if these sequences identified 

were required for pairing, conjunction, or both. 

For the work proposed here, it is important to make the distinction between the 

two.  I will use the term “pairing” only to refer to the initial interactions required for 

homolog recognition and association.  The term “conjunction” will be used to describe 

the ability of paired homologs to remain connected while undergoing condensation and 

spindle-mediated forces during prometaphase I and metaphase I.  While some sequences 

may be capable of facilitating both pairing and subsequently conjunction, other sequences 

may only function in pairing or only in conjunction. 
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In the most thorough of these early studies, autosomes carrying either 

duplications, translocations, or deletions were examined at prometaphase and metaphase I 

for bivalent formation.  Autosome pairs were shown to require euchromatic homology for 

conjunction at metaphase I while autosomes sharing only heterochromatic homology 

were not associated at metaphase I (Yamamoto 1979).  Additionally, genetic tests in 

males found that autosomes with only heterochromatic homology failed to segregate 

from each other at meiosis I (Yamamoto 1979).  The amount and location of euchromatic 

homology on the chromosome arm was also found to be important for conjunction.  

Identical chromosome 2s that were largely heterochromatic do not associate at metaphase 

I, and deletions of proximal euchromatin have a larger effect on association of 

chromosome 4 homologs than do distal deletions (Yamamoto 1979).  A similar study 

confirmed that pairs of chromosome 2s with only proximal euchromatic homology also 

segregated better than chromosome 2s with only distal euchromatic homology (Hilliker, 

Holm, and Appels 1982). 

Different chromosomes were assessed for their ability to both pair and remain 

conjoined using a collection of transpositions of chromosome 2 material onto the Y 

chromosome.  Conjunction between the transposed segment and its intact chromosome 2 

partner was observed by quadrivalent formation, in which X-Y and 2-2 chromosomes 

were conjoined in a single structure (McKee, Lumsden, and Das 1993).  A quadrivalent is 

formed when the transposed euchromatic region on the Y pairs with chromosome 2, the 

chromosome 2s pair with each other, and the X and Y chromosomes also pair.  At mid-

to-late prophase I, all transposed euchromatic regions tested were capable of forming 
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quadrivalents (McKee, Lumsden, and Das 1993).  A euchromatic region more proximal 

to the centromere were more effective at conjunction and directing proper segregation, 

and a transposition of only heterochromatic sequences was not capable of forming 

quadrivalents (McKee, Lumsden, and Das 1993).  McKee, Lumsden, and Das (1993) also 

showed the frequency of quadrivalent formation and the ability to direct segregation 

increases as length of the transposed homology increases.  Based on these results, they 

suggested that “pairing sites” are widely distributed along the arms of chromosome 2.  

This conclusion is justified, as these sites must have mediated pairing as well as 

conjunction, but the differences observed in the efficacy of “pairing” may instead reflect 

differences in the ability to mediate conjunction.  It remains unknown if the same 

euchromatic sites are required for both pairing and conjunction, or if other homologies 

(i.e. heterochromatic homologies) can pair. 

The first study to truly investigate pairing in early prophase I Drosophila 

spermatocytes utilized the Green Fluorescent Protein (GFP)-Lac repressor/lac operator 

system, first described in yeast (Vazquez, Belmont, and Sedat 2002).  In this system, a 

GFP-Lac I fusion protein is expressed in the male germline and binds to integrated 

tandem arrays of lac operator (Lac O) sequences.  This allows one to visualize 

associations between the lacO arrays in living cells, thus permitting analysis of both 

pairing and sister chromatid associations.  For 14 euchromatic lacO arrays examined, 

meiotic pairing was shown to be initiated as early as interphase of early stage S1 

spermatocytes, immediately after the mitotic divisions.  Surprisingly, association between 

both homologs and sister chromatids was lost by mid-G2 after the chromosome territories 
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were formed (Vazquez, Belmont, and Sedat 2002).  The major caveat of this study is that 

pairing was only examined at repetitive arrays of exogenous sequences.  One study using 

fluorescent in situ hybridization (FISH) observed a similar behavior for repetitive, 

endogenous heterochromatic sequences (Ren et al. 1997), but to date, pairing has never 

been examined at endogenous single copy sequences.  Until recently, FISH to single copy 

sequences was not possible due to the inability to detect probes; however, this technical 

limitation has been solved by the use of in silico generated oligonucleotide probes 

(Beliveau et al. 2012). 

Cis-acting Requirements for Sex Chromosome Pairing and Conjunction 

The X and Y sex chromosomes have minimal homology, and none is 

euchromatic, indicating sex chromosome pairing must occur at heterochromatic 

sequences.  Potential XY pairing sites were originally identified based on the observation 

that certain regions of the X and Y remain associated at prometaphase I and metaphase I 

(Cooper 1959).  These reside in the repetitive heterochromatic region near the centromere 

of the long arm of the X chromosome and near the base of the short arm of the Y 

chromosome.  Both of these regions contain sequence homology of the rDNA genes 

involved in the formation of the nucleolus organizers (NOR) (Ritossa 1976).  Males with 

X chromosomes devoid of this region demonstrate anomalies including high levels of XY 

nondisjunction (NDJ) and meiotic drive, the differential recovery of equal products of 

meiosis.  In this case, sperm containing less chromatin are recovered more frequently 

(Sandler and Braver 1954).  The rDNA arrays located in this region contain 200-250 

tandem copies of the genes for the ribosomal subunits 18S, 28S, and 5.8S responsible for 
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nucleolus formation (Ritossa 1976).  These studies did not examine sequence 

requirements for X and Y pairing in prophase I, but indicate that the rDNA arrays, or 

regions surrounding them, are sufficient for XY conjunction. 

Studies using rDNA transgenes have shown that it is the rDNA itself that plays a 

significant role in XY segregation.  A single rDNA gene inserted into a 

heterochromatically-deficient X chromosome increases XY disjunction and reduces 

meiotic drive.  The increase of XY disjunction is correlated to the copy number of rDNA 

genes inserted on the X (McKee and Karpen 1990).  Conversely, insertion of an rDNA 

gene into an autosome does not restore XY disjunction (McKee and Karpen 1990), 

indicating that this is a cis-acting effect.  Transgene studies showed that the sequences 

important region for XY conjunction mapped to the 240 bp intergenic spacer (IGS) 

located upstream of each 18S and 28S rDNA repeat (McKee, Habera, and Vrana 1992).  

These observations indicate that IGS sequences are capable of promoting conjunction 

between the X and Y, and thus they have been referred to as sex chromosome “pairing 

sites.”  Again, these observations do not rule out that other sequences may pair but fail to 

effect conjunction. 

Using FISH to visualize the heterochromatic IGS regions of the rDNA of 

condensed XY chromosomes in late-prophase I S6 spermatocytes, it has been confirmed 

that these regions are conjoined while surrounding regions of heterochromatin are not 

paired (Thomas et al. 2005).  Pairing in stages prior to S6 could not be assayed by FISH 

probes to the rDNA IGS regions because the X and Y chromatin is too diffuse and probe 

signals are scattered (Thomas et al. 2005).  Taken all together, these studies indicate that 
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rDNA is essential for XY conjunction, but do not rule out the possibility of XY pairing at 

other sequences. 

Proteins Required for Homolog Pairing and Conjunction 

Mod(mdg)-in-meiosis (MNM) and Stromalin-in-meiosis (SNM), and Teflon are 

all necessary for conjunction of the autosomes, while sex chromosome conjunction 

requires only MNM and SNM (Tomkiel, Wakimoto, and Briscoe 2001; Thomas et al. 

2005).  Null alleles of both SNM and MNM lead to increased NDJ of all chromosomes, 

and anaphase I chromosome separation is disorderly (Thomas et al. 2005).  Using the 

GFP-LacI-lacO system described above, pairing ability does not seem altered in male 

flies lacking a functional MNM or SNM protein suggesting the mutant phenotype is 

associated with the downstream loss of homolog conjunction (Thomas et al. 2005).  

Cytology of teflon mutant males revealed a conjunction defect as precocious separation 

of all three pairs of autosomes at late prophase I/prometaphase I was observed while sex 

chromosomes behaved normally (Tomkiel, Wakimoto, and Briscoe 2001). 

Using antibodies and GFP-tagged proteins, MNM and SNM were shown to 

localize to the rDNA on the sex chromosomes (Thomas et al. 2005) specifically at the 

rDNA IGS (Thomas and McKee 2007).  GFP-labeled MNM localizes to multiple 

locations along the autosomes with some signal strengths fluorescing brighter than others, 

and its autosomal localization is dependent on Teflon.  To date, neither SNM nor Teflon 

are detectible on autosomes, but it is likely that the lack of detection is owing to technical 

reasons.  An MNM/SNM/Teflon complex has been proposed to regulate autosome 

conjunction, while an MNM/SNM complex may regulate sex chromosome conjunction 
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(Thomas et al. 2005; Thomas and McKee 2007).  These proteins may function in a 

manner analogous to chiasmata in female meiosis, to hold paired homologs together until 

anaphase I segregation once conjunction is lost.  The 240 bp IGS repeats on the X and Y 

and analogous euchromatic sequences dispersed along the arms of the autosomes 

previously thought of as “pairing sites” may primarily serve as conjunction sites for 

MNM/SNM/Teflon proteins to bind and hold homologs together. 

The possibility remains that other sequence homologies on the sex chromosomes 

and on the autosomes have the ability to pair, and once the conjunction complex is 

assembled, fall apart at all locations other than the conjunction complex sites.  There 

appears to be, at least in part, some chromosomal level control over pairing sites since the 

cis- and trans-acting components vary for the autosomes and the sex chromosomes.  The 

rDNA IGS sequences are perfectly capable of directing XY segregation while rDNA 

translocated to an autosome does direct segregation from the X.  Pairing needs to be 

investigated in very early prophase I, S1-S2 cells, because by the time chromosomes 

condense at mid-prophase I, conjunction complex proteins are present and other intimate 

pairing may have been lost. 

Goal of Study 

To better understand the relationship between chromosome pairing, conjunction, 

and segregation by investigating the process of meiotic homolog pairing in a system that 

is devoid of the recombination-dependent meiotic mechanisms, the male fruit fly 

Drosophila melanogaster.  
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CHAPTER II 
 

SEX CHROMOSOME PAIRING MEDIATED BY EUCHROMATIC  
HOMOLOGY IN DROSOPHILA MALE MEIOSIS 

 
 

Christopher A. Hylton, Katie Hansen, Andrew Bourgeois and John E. Tomkiel 
Dean. 2020. ‘Sex Chromosome Pairing Mediated by Euchromatic Homology in 
Drosophila Male Meiosis’, Genetics, 214(3): 605-616. 

 
 

Introduction 
 

Meiosis is the highly conserved process comprised of two cell divisions that 

produce four haploid daughter cells from a single diploid parent cell.  To ensure an equal 

distribution of homologous chromosomes to gametes, homologs must locate each other, 

pair, conjoin, and segregate with high fidelity.  Several events have been identified that 

aid in homolog pairing, but the mechanisms of partner recognition remain enigmatic.  

Multiple plant species create a chromosome “bouquet” by clustering and imbedding all 

telomeres into the inner nuclear membrane thereby confining homolog identification and 

pairing to a smaller region of the nucleus (Bahler et al. 1993).  Caenorhabditis elegans 

uses microtubule/dynein-mediated movements through linkages to telomeric 

chromosomal sites deemed “pairing centers” which are thought to facilitate interactions 

between homologs (MacQueen et al. 2005; Sato et al. 2009; Wynne et al. 2012).  The 

budding yeast Saccharomyces cerevisiae establishes DNA sequence-independent 

associations between homologous centromeres prior to bouquet formation to enhance the 

odds that homologous pairs of kinetochores attach to the correct spindle pole 
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(Kemp et al. 2004).  Despite progress in understanding the mechanisms that aid in 

homolog association, the molecular basis of pairing itself remains poorly understood.  

Recombination appears to play an essential role in pairing in some systems.  

During meiosis I of S. cerevisiae, the formation of double-stranded breaks, a prerequisite 

for recombination, occurs prior to homolog synapse initiation.  In spo11 yeast that lack 

double strand breaks, homologs fail to synapse (Giroux, Dresser, and Tiano 1989; Weiner 

and Kleckner 1994), which indicates that the homology search achieved by single-

stranded DNA during recombination in yeast is required for homolog pairing and 

synapsis.  In contrast, mei-W68 and mei-P22 Drosophila females lack double-strand 

breaks and assemble SC indicating recombination is not required for pairing and synapsis 

(McKim et al. 1998).  Taken together, these results reveal that while some species require 

recombination for pairing, other species have evolved separate recombination-

independent mechanisms to pair and segregate homologs. 

Male Drosophila, which completely lack recombination, have two genetically 

separable pathways to pair and segregate chromosomes.  One pathway is specific for the 

sex chromosomes and the other for the autosomes.  Sex chromosomes pair at specific 

sites, originally termed collochores, that were identified based on the observation that 

certain regions of the X and Y remain associated at prometaphase I and metaphase I 

(Cooper 1959).  Potential pairing sites were identified in the repetitive heterochromatic 

region near the centromere of the X chromosome and near the base of the short arm of 

the Y chromosome.  These two regions contain sequence homology of the rDNA genes, 

which contain 200-250 tandem copies of the genes for the ribosomal subunits (Ritossa 
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1976).  Males with rDNA-deficient X chromosomes exhibit high levels of XY 

nondisjunction (NDJ).  A transgenic copy of the rDNA gene on the X restores disjunction 

(McKee and Karpen 1990).  The 240 bp intergenic spacer (IGS) region located upstream 

of each 18S and 28S rDNA repeat is necessary and sufficient for pairing (McKee, 

Habera, and Vrana 1992). 

In contrast to the sex chromosomes which pair only at the rDNA, autosomes pair 

at sequences that are distributed throughout the euchromatin, and both the amount and 

chromosomal location of euchromatic homology may be important for conjunction 

(McKee, Lumsden, and Das 1993).  Cytological and genetic tests show that autosomes 

with only heterochromatic homology fail to segregate from each other at meiosis I 

(Yamamoto 1979; Hilliker, Holm, and Appels 1982).  These studies suggested that 

autosomal heterochromatin lacked pairing ability. 

Because these conclusions were largely derived from observations of 

chromosome associations during late prophase I to prometaphase I, sequences were only 

defined as pairing sites if they had the ability to remain conjoined.  The initial 

interactions needed for homolog recognition and pairing occur premeiotically, however, 

and at these later stages, many interactions may have already been resolved.  Thus, the 

previously defined “pairing sites” may really represent regions that remain conjoined and 

may not necessarily represent all sequences involved in pairing. 

Direct observations of pairing provide a more accurate assessment of pairing sites. 

Meiotic pairing is temporally separable from homolog associations that occur in somatic 

cell (“somatic pairing”).  Homologs are not paired at the earliest stage that germline cells 
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can be distinguished in the embryo, but then begin to associate in gonial cells prior to 

meiosis (Joyce et al. 2013).  Examination of early prophase I pairing in vivo using the 

GFP-Lac repressor/lac operator system, found that homologs were paired at each of 13 

different single autosomal loci (Vazquez, Belmont, and Sedat 2002).  In agreement with 

earlier studies, this shows that many autosomal sequences can pair.  Heterochromatic 

homologies also pair with similar kinetics, as shown by in situ hybridizations to 

autosomal satellite repeats (Tsai, Yan, and McKee 2011). 

Distinct from pairing, conjunction refers to the ability of paired homologs to 

remain coupled during prophase I condensation and prometaphase/metaphase I spindle-

mediated movements.  Teflon (Tef), Modifier of Mdg in Meiosis (MNM), and Stromalin 

in Meiosis (SNM) have all been shown to be required for conjunction of the autosomes, 

while sex chromosome conjunction requires only MNM and SNM (Tomkiel, Wakimoto, 

and Briscoe 2001; Thomas et al. 2005).  MNM and SNM localize to the rDNA on the sex 

chromosomes (Thomas et al. 2005) specifically at the rDNA IGS (Thomas and McKee 

2007).  Potential MNM/SNM/Tef and MNM/SNM complexes may regulate autosomal 

and sex chromosome conjunction respectively, holding paired homologs together until 

anaphase I (Thomas et al. 2005; Thomas and McKee 2007).  Recently, super resolution 

microscopy and temporally expressed transgenes showed that MNM and SNM are 

required to maintain conjunction but cannot establish pairing themselves (Sun et al. 

2019).  Thus, while the 240 IGS pairing sites on the X and Y certainly have the ability to 

mediate pairing and may serve as a site for conjunction protein binding, they may not be 
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the only sequences with the ability to pair.  It remains to be examined if other sequence 

homologies can pair but lack the ability to stabilize conjunction. 

Here, we directly examine pairing and its relationship to conjunction.  We 

describe a system to examine sex chromosome pairing during early prophase I at 

homologies other than the IGS repeats.  We show that X euchromatic sequences placed 

on the Y chromosome are able to pair and in some cases facilitate conjunction and 

segregation of sex chromosomes in the absence of X chromosome rDNA.  This system 

allowed us to identify sequences capable of pairing, to ask how much homology is 

sufficient for pairing, and to determine whether the location of homology is important for 

pairing and conjunction. 

Materials and Methods 

 Drosophila Stocks and Crosses 

Drosophila were raised on a standard diet consisting of cornmeal, molasses, agar, 

and yeast at 23°C.  Dp(1;Y) chromosomes (Cook et al. 2010) and Df(tef)803∆15 (Arya et 

al. 2006) are previously described.  The tef z3455, snmz0317, snmz2138, mnmz5578, mnmz3298, 

and mnmz3401 alleles were originally obtained from the C. Zuker laboratory at the 

University of California at San Diego (Wakimoto, Lindsley, and Herrera 2004) and are 

previously described (Tomkiel, Wakimoto, and Briscoe 2001; Thomas et al. 2005).  All 

other stocks were obtained from the Bloomington Stock Center (Gramates et al. 2017). 

 Genetic Assays of Meiotic Chromosome Segregation 

In(1)sc4Lsc8R and Df(1)X-1 are X chromosomes that have been reported to be 

rDNA-deficient.  We found that Df(1)X-1 X resulted in sterility in combination with the 
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Dp(1;Y) Y chromosomes tested, and therefore the In(1)sc4Lsc8R X was selected for 

crosses.  Segregation of In(1)sc4Lsc8R from a Dp(1;Y) chromosome was monitored by 

crossing In(1)sc4Lsc8R y1 / Dp(1;Y)BS Y y+ males to y w sn ; C(4)RM ci ey / 0 females.  

Offspring are scored as either normal (BS y+ sn sons or y1 daughters), sex chromosome 

diplo- (BS y+ females), or sex chromosome nullo-exceptions (y w sn males).  The 

midpoint of the duplicated X euchromatin on each Dp(1;Y) was calculated by taking the 

average of the distal- and proximal- most estimations of breakpoints (Cook et al. 2010). 

Fourth chromosome missegregation was monitored by the recovery of ci ey nullo-

4 progeny.  In crosses involving tef mutations, males were made homozygous for the 

fourth chromosome mutation spa to allow monitoring of both nullo-4 and diplo-4 

progeny. 

 Probe Design 

Probe pools were generated to selected sequences at a density of 10 probes/Kb 

and a complexity of ~10,000 probes per pool (Arbor Biosciences, Ann Arbor, MI).  

Triple-labeled Atto-594 oligonucleotide probes were generated to sequences present on 

both In(1)sc4Lsc8R and the following Dp(1;Y) chromosomes: Dp(1;Y)BSC76 (X salivary 

gland chromosome bands 2E1-3E4 spanning base pairs 2606837 - 3606837); 

Dp(1;Y)BSC185 (X salivary gland chromosome bands 12A4-12F4 spanning base pairs 

3824004 - 14826069); and Dp(1;Y)BSC11 (X salivary gland chromosome bands 16F7-

18A7 spanning base pairs 18193946 - 19193592). 

A triple-labeled Atto-488 probe was generated to bp 20368577 - 21368577 (56F-

57F) on chromosome 2.  An Atto-488 probe (Eurofins MWG Operon, Louisville, KY) 
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was synthesized to the Y-specific AATAC heterochromatic repeat (Lohe and Brutlag 

1987). 

 FISH 

Slides of testis tissue were processed for FISH using a modification of the 

protocol as described (Beliveau, Apostolopoulos, and Wu 2014).  Testes from larvae 

(Pairing Assay) or pharate adults (NDJ Assay) were dissected in Schneider’s Drosophila 

media (GIBCO BRL, Gaithersburg, MD).  Tissue was transferred to a drop of 

Schneider’s on a silanized coverslip and gently squashed onto a Poly-L-Lysine coated 

slide (Electron Microscopy Sciences, Hatfield, PA).  Coverslips were immediately 

removed after freezing in liquid nitrogen.  Tissue was fixed in 55% methanol/25% acetic 

acid for 10 min followed by 10 min dehydration in 95% ethanol.  Slides were processed 

immediately or stored for up to 1 week at 4°C. 

For hybridizations, slides were rehydrated in 2X saline-sodium citrate/Tween-20 

(SSCT) at room temperature for 10 min.  Membranes were permeabilized and DNA 

denatured by incubation in 50% formamide/2X SSCT for 2.5 min at 92°C then 60°C for 

20 min.  Slides were rinsed in 1X phosphate buffered saline (PBS) for 2 min and allowed 

to dry.  5 µl of probe master mix containing 12.5 µl hybrid cocktail (50% dextran sulfate, 

20X SSCT), 12.5 µl formamide, 1 µl of 10 mg/ml RNase, 2 µl of probe 1 (5 pmol/µl), 

and 2 µl of probe 2 (5 pmol/µl) was pipetted directly onto a silanized 18 x 18 mm 

coverslip which was placed on the tissue and sealed with rubber cement.  Slides were 

heated at 92°C for 2 min to denature the DNA then incubated in a damp chamber at 42°C 

for >18 hours.  Following incubation, coverslips were removed, and slides were 



21 

incubated in 2X SSCT at 60°C for 20 min, 2X SSCT at RT for 10 min, and 0.2X saline-

sodium citrate (SSC) at RT for 10 min to remove unbound probe.  DNA was stained with 

1 µg/µl 4’,6-diamidino-2-phenylindole (DAPI) (Sigma, St. Louis, MO) and tissues 

mounted in ProLong Gold antifade (Invitrogen, Carlsbad, CA).  Probes were visualized 

using a Keyence BZ-X700 Fluorescence Microscope.  S1-S2 spermatocytes were 

selected based on size (10 to 20 µm), and signals were scored as paired when within 0.8 

µm (Beliveau, Apostolopoulos, and Wu 2014). 

 Estimation of the Ability of Paired Sequences to Direct Segregation 

To determine how frequently pairing led to disjunction, we assumed that 

chromosomes that did not pair would segregate at random.  First, we determined the 

pairing frequency from FISH assessment of S1-S2 cells (= % Paired).  We then 

cytologically determined the frequency of secondary spermatocytes and spermatids in 

which the X and Y had segregated to opposite poles at meiosis I (= % NDJ).  We 

assumed that this latter frequency represented meiocytes in which XY pairings underwent 

normal segregation, plus half the frequency of random disjunctions that resulted when the 

X and Y failed to pair.  Based on this assumption, we calculated the percent of cells in 

which pairing of XY chromosomes led to normal disjunction as: 

Paired then disjoined = (% Paired – [%NDJ – (1/2 % Unpaired)]) / % Paired. 

 rDNA Magnification Assay 

rDNA magnification was assessed by crossing In(1)sc4Lsc8R y1 / Y males (Cross 

A) or In(1)sc4Lsc8R y1 / Dp(1;Y)BS Y y+ BSC76 males (Cross B) to C(1)RM, y w f / y+ Y 

females.  Fifty In(1)sc4Lsc8R y1 / y+ Y sons generated from cross A or B were then crossed 
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to y w sn females to determine sex chromosome NDJ.  NDJ was calculated amongst 

progeny of each father, and distributions of NDJ frequencies were compared by one-way 

ANOVA. 

Results 

 Euchromatic Homology Directs Segregation of the X from the Y 

We developed a system to ask if euchromatic homologies could direct pairing and 

segregation of the sex chromosomes utilizing a series of Dp(1;Y) chromosomes (Cook et 

al. 2010) and the rDNA-deficient In(1)sc4Lsc8R X chromosome that is missing the sex 

chromosome pairing sites.  Each Dp(1;Y) chromosome contains a unique segment of X 

euchromatin.  The size and position of the duplicated homology with the X chromosome 

partner also varies (Figure 1).  We reasoned if the euchromatic homology was sufficient 

to pair, conjoin, and direct segregation of the sex chromosomes, then In(1)sc4Lsc8R / 

Dp(1;Y) males would produce fewer exceptional progeny than In(1)sc4Lsc8R / Y males. 
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Figure 1.  Normal XY Pairing vs. Pairing at Euchromatin (Hatched Boxes).  (A) 
Wildtype showing rDNA pairing sites.  (B) In(1)sc4Lsc8R X lacking rDNA.  The locations 
of the X duplications on the collection of Dp(1;Y)s tested are indicated above the X.  
Dp(1;Y)BSC76 is shown paired with its euchromatic homology on the X. 
 

 
 
 

As a metric of segregation, we monitored NDJ of the sex chromosomes among 

progeny of In(1)sc4Lsc8R / Dp(1;Y) males.  Direct comparisons of the behaviors of the 

different Dp(1;Y) males are complicated as the viabilities of Dp(1;Y)-bearing sons differ 

greatly (data not shown), most likely a result of gene dosage imbalance contributed by 

the X duplications.  To directly compare the behaviors of different Dp(1;Y) 

chromosomes, we considered only two classes of progeny that were genetically identical 

from all crosses.  X/0 sons were used as a metric of sex chromosome NDJ, and X/X 

daughters were used as a metric of normal disjunction.  We used the ratio of (X / 0) / (X / 

X + X / 0) as an estimate for the frequency of missegregation of sex chromosomes in 

each class of test males, and for the remainder of the manuscript, sex chromosome NDJ 
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will be determined as such.  We found that some of the Dp(1;Y)s were better at 

segregating from the X chromosome (Table 1).  The ability to segregate was not related 

to the length of the duplicated X euchromatin sequence (Figure 2A).  In fact, 

Dp(1;Y)BSC11, which contains over 1 Mbp of  X euchromatin homology, showed no 

improvement in segregation relative to y+Y.  However, we noted a relationship between 

proper XY segregation and the chromosomal location of X homology.  When the 

homologous sequences on the inverted X chromosome were closer to the centromere, less 

NDJ was observed (Figure 2B).  The poorest segregating duplication, Dp(1;Y)BSC11, 

contained the distal-most homology.  As a control, chromosome 4 segregation was also 

monitored to determine if X duplicated material itself generally perturbed chromosome 

segregation due to effects of aneuploidy.  Chromosome 4 NDJ was less than 1% in each 

of the Dp(1;Y)-bearing males tested, indicating that none of the Dp(1;Y)s increased 

autosomal NDJ (data not shown). 
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Table 1.  Frequency of XY NDJ among Progeny from In(1)sc4Lsc8R / Dp(1;Y) Males. 
 
 
  Sperm genotype:              X        Dp(1;Y)      X/Dp(1;Y)       0         0/(X+0) 
 
 

           X region  
Paternal Y     duplicated on Y* 
y+Y                  -   925           434             52                579          0.38 
Dp(1;Y)BSC76         2E1--3E4  321       51              0                  29            0.08 
Dp(1;Y)BSC172       7A3--7D18  319       41              0                  31            0.09 
Dp(1;Y)BSC47       10B3--11A1  387       35               2                  118          0.23 
Dp(1;Y)BSC185     12A4--12F4  421       75              2                  129          0.23 
Dp(1;Y)BSC240     14A1--15A8  660       59              1                  98            0.13 
Dp(1;Y)BSC67        15F4--17C3  307       35              1                  133          0.30 
Dp(1;Y)BSC11        16F7--18A7  495       69               19                419          0.46 
 
* Salivary gland chromosome bands. 
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Figure 2.  Sex Chromosome NDJ Frequencies among Progeny of In(1)sc4Lsc8R / 
Dp(1;Y)BSC Males Versus (A) Euchromatic Homology Length and (B) Genomic 
Sequence Position of the X Homology. 
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We conclude that the duplicated X euchromatin on the Y chromosome is capable 

of facilitating pairing, conjunction, and segregation of the sex chromosomes, and that the 

ability to do so is related to underlying sequences and/or chromosomal position.  

However, a potential caveat to our interpretation is that our genetic metric may be 

influenced by ‘meiotic drive’, a phenomenon that results in the unequal recovery of 

reciprocal meiotic products.  Meiotic drive is induced by a failure of sex chromosome 

pairing in male flies, and drive strength is directly proportional to the pairing frequency 

(McKee 1984).  Although termed ‘meiotic drive’, this process has been shown to result in 

a post-meiotic differential elimination of sperm dependent on chromatin content 

(Peacock, Miklos, and Goodchild 1975).  Thus, it was a formal possibility that the 

differences we had observed could somehow result from differential effects of the various 

Dp(1;Y) chromosomes on meiotic drive.  To avoid this potential complication, we turned 

to a direct cytological assessment of chromosome behavior in meiosis. 

We used FISH with X- and Y-specific probes to directly assess the outcomes of 

meiosis in secondary spermatocytes and onion stage spermatids.  An Atto-594 (Red) X 

chromosome probe labels an X euchromatic sequence, while an Atto-488 (Green) Y 

chromosome labels the unique AATAC heterochromatic repeat.  Segregation frequencies 

of the sex chromosomes were determined by examining related pairs of secondary 

spermatocytes, or related tetrads of spermatids (Figure 3).  This analysis confirmed our 

conclusions based on our genetic observations, that the fidelity of segregation from 

In(1)sc4Lsc8R varied among tested Dp(1;Y)s, and this variation was related to proximity of 

the homology to the X centromere (Table 2). 
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Figure 3.  FISH Examination of In(1)sc4Lsc8R / Dp(1;Y)BSC76 Disjunction in DAPI-
stained Spermatocytes.  The X chromatids are marked with a red probe and the Y 
chromatids are marked with a green probe to the AATAC repeat.  (A) Normal XY 
segregation during meiosis I and (B) meiosis I NDJ.  (C) Meiosis II division after a 
normal meiosis I division and (D) after a meiosis I NDJ.  Scale bar = 2 µm. 
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Table 2.  XY NDJ Frequencies as Determined by FISH. 
 
 
         X            Y     # Divisions Scored               XY NDJ 
 
 
Canton S  Canton S    206        0.00 
In(1)sc4Lsc8R  y+Y     200        0.33 
In(1)sc4Lsc8R  Dp(1;Y)BSC76   307        0.11 
In(1)sc4Lsc8R  Dp(1;Y)BSC185   214        0.22 
In(1)sc4Lsc8R  Dp(1;Y)BSC11   237        0.30 
In(1)sc4Lsc8R  Dp(1;Y)BSC90   201        0.12 
In(1)sc4Lsc8R  Dp(1;Y)BSC214   206        0.08 
 
 
 

While these observations clearly suggest that the various Dp(1;Y) chromosomes 

were pairing with the rDNA-deficient X, they do not address where this pairing might be 

occurring.  It is known that in the presence of structurally altered Y chromosomes, a 

process termed rDNA magnification can be induced (Tartof 1974).  This process involves 

stable increases and/or decreases in rDNA copy number on an rDNA-deficient X via 

unequal sister chromatid exchange (Ritossa 1968).  Although the In(1)sc4Lsc8R 

chromosome is reportedly deleted for all of the rDNA, one or more cryptic rDNA 

cistrons could be potentially induced to magnify and restore XY pairing via the 

endogenous rDNA pairing sites.  As few as six copies of the rDNA intergenic spacer 

repeats may restore pairing between the X and the Y (Ren et al. 1997), thus it was 

important to determine if our results could be explained by rDNA magnification rather 

than pairing outside the rDNA.  To test for rDNA magnification, we provided potential 

magnification conditions by passing an In(1)sc4Lsc8R X through a male bearing a Dp(1;Y).  

We chose the Dp(1;Y) that exhibited the highest fidelity of segregation, Dp(1;Y)BSC76, 
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as this would be predicted to show the greatest amount of magnification, if it were indeed 

occurring.  We recovered the potentially amplified X chromosomes in sons, and 

genetically tested their ability to segregate from the Y.  As a control, we tested 

genetically identical males which had received an In(1)sc4Lsc8R that had not been exposed 

to potentially magnifying conditions.  If magnification was occurring, then we expected 

that sons bearing the potentially magnified In(1)sc4Lsc8R would demonstrate improved 

segregation of the sex chromosomes relative to the controls.  For each test, we scored 

progeny of 50 males.  No statistical difference was found between the two classes 

(ANOVA, F value = 1.76527; p value = 0.17475) (Figure 4, Table 3).  We conclude that 

the ability of a Dp(1;Y) to segregate from an rDNA-deficient In(1)sc4Lsc8R is not a 

consequence of rDNA magnification and likely reflects pairing between X euchromatic 

homologies. 
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Figure 4.  Test for rDNA Magnification of In(1)sc4Lsc8R in Dp(1;Y)BSC76 Males.  
Distributions of NDJ frequencies in sons of In(1)sc4Lsc8R / Dp(1;Y)BSC76 or 
In(1)sc4Lsc8R / Y males. 
 

 
 
 
Table 3.  Frequency of XY NDJ among Progeny from In(1)sc4Lsc8R / Y Males after 
Potential rDNA Magnification. 
 
 
      Sperm genotype:             X              Y              X/Y               0            XY NDJ 
 
 
No Magnification                1962         747             86             2146            0.45 
Potential Magnification   1668         563             74             2009            0.48 
 
 

Homologies from various non-overlapping regions of the X chromosome 

enhanced segregation demonstrating that multiple sequences are capable of acting as 

pairing sites.  Because no relationship between the length of the Dp(1;Y) and the ability 
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to direct segregation was observed, we wanted to determine if these pairing site 

sequences were distributed randomly throughout the X euchromatin.  To ask if we could 

potentially map a pairing site within a duplicated region, Dp(1;Y)s nested within the 

Dp(1;Y)BSC76 euchromatic duplication were tested.  The two smallest nonoverlaping 

duplications Dp(1;Y)BSC90 and Dp(1;Y)BSC214 were equally proficient at directing XY 

segregation albeit at a lower frequency than Dp(1;Y)BSC76 (Table 4).  These data 

suggest at least two different euchromatic segments within this one region are capable of 

pairing and directing XY segregation. 

 
Table 4.  Mapping Segregational Ability within Dp(1;Y)BSC76. 
 
 
       Sperm genotype:                  X        Dp(1;Y)   X/Dp(1;Y)    0          0/(X+0) 
 
 

               X region  
Paternal Y               duplicated on Y* 
Dp(1;Y)BSC76         2E1-2E2--3E4  1347          196          7            154           0.10 
Dp(1;Y)BSC80         3A6-B1--3E4  1286          95            1            226           0.15 
Dp(1;Y)BSC83         3B3-B4--3E4  2105          420          14          280           0.12 
Dp(1;Y)BSC84         3C2-C3--3E4  1364          241          7            209           0.13 
Dp(1;Y)BSC88         3C6-D2--3E4  1834          541          7            190           0.09 
Dp(1;Y)BSC90         3D5-3E4--3E4  628            155          20          129           0.17 
Dp(1;Y)BSC214       2E2-2F2--2F6  984            252          12          199           0.17 
 
* Salivary gland chromosome bands. 
 
 
 Direct Observation of Pairing between Euchromatic Homology on the X and Y 

To directly ask if pairing was occurring between the euchromatic sequences on 

the In(1)sc4Lsc8R and Dp(1;Y)s, we designed a FISH assay to cytologically visualize sex 

chromosome pairing in spermatocytes at early prophase I (S1-S2) (Figure 5).  
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Spermatocytes with diameters between 10 and 20 microns were selected because at this 

size they are considered to be in S1-S2a stage (Cenci et al. 1994) where pairing is 

observed (Vazquez, Belmont, and Sedat 2002).  To assess pairing, a single copy X probe 

(Atto-594-Red) was hybridized to both the intact X and the X euchromatin duplicated on 

the Dp(1;Y) (Figure 5).  Because both pairing and sister chromatid cohesion is lost as 

spermatocytes mature (Vazquez, Belmont, and Sedat 2002), a control chromosome 2 

probe (Atto-488-Green) was used to assure the cells observed had not progressed beyond 

S2 (Figure 5).  Cells with two or more green signals were not scored as they may have 

already begun their progression to S3 when homologs no longer exhibit pairing.  The X 

and Y were deemed paired when one red signal was present or two distinct signals were 

present that were less than 0.8 microns apart (Joyce et al. 2013). 

There are two potential errors in this meiotic pairing assay that must be 

considered.  First, there can be a slight asynchrony in the loss of pairing and sister 

chromatid cohesion on different chromosomes at the end of S2.  Thus, some cells were 

predicted to be observed in which the X and Y had indeed paired, but sex chromosome 

pairing or sister chromatid cohesion had been lost prior to loss of pairing at the control 

autosomal site.  This occurrence would have led to a false negative scoring of these cells 

as unpaired.  To estimate how often this occurred, we hybridized the same probes to 

spermatocytes of males with wildtype sex chromosomes, so the red probe would only 

hybridize to the X.  Ten percent of spermatocytes of the selected size in four such males 

had one autosome signal and two X signals representing sister chromatid separation (n = 
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188).  This means that we may be underestimating pairing frequencies by as much as 

10%. 

Second, false positives in which pairing is erroneously scored are expected to 

occur by chance overlap of unpaired X signals.  To estimate how often this occurs, from 

four testes, we counted the number of spermatocytes that had overlap (within 0.8 µm) of 

the X and autosome signals.  Five percent of spermatocytes showed overlap of X and 

autosome signals (n = 178).  Overall, based on these two error rates, our measured 

frequencies may overestimate pairing by roughly five percent.  Considering both sources 

of error, we expect that our overall estimates of pairing may be up to 5% less than the 

actual pairing frequencies. 
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Figure 5.  FISH Examination of Pairing in DAPI-stained S1-S2 Primary 
Spermatocytes.  The X chromosomes are labeled red and chromosome 2s are labeled 
green.  (A) Paired XY and paired chromosome 2 bivalents.  (B) Unpaired XY and a 
paired chromosome 2 bivalent.  (C) A paired XY bivalent and unpaired chromosome 2.  
(D) Both unpaired.  (E) Sister chromatid separation from a paired XY bivalent.  Scale bar 
= 2 µm. 
 

 
 
 

Although Dp(1;Y)s varied in their ability to segregate from In(1)sc4Lsc8R, all 

duplicated euchromatic sequences showed similar ability to pair with the homologous 

sequences on the intact X (Table 5).  Considering our potential errors in estimation of 

pairing, some sequences showed nearly complete pairing.  These results indicate that the 

observed differences in segregation of the various Dp(1;Y)s from the X could not be 

accounted for by differences in pairing ability (Table 5), but rather that pairing at some 

sites led to better segregation, possibly because of a greater ability to remain conjoined.  

To examine this possibility, we estimated that frequency at which paired chromosomes 
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ultimately segregated properly for five different Dp(1;Y) genotypes.  To avoid 

complications of meiotic drive, these estimates were based on direct measurements of 

pairing and segregation by FISH (see Materials and Methods).  The abilities of the five 

Dp(1;Y)s to disjoin differed and showed the same trend with respect to the centromere 

proximity (Figure 6).  These estimates supported our previous conclusion that the more 

proximal to the centromere the homology was on the X, the better its ability to direct 

segregation. 

We next asked if the ability of these euchromatic sequences to pair was dependent 

on the lack of the native X rDNA pairing sites.  One possibility was that pairing might 

normally occur only at the rDNA if it had the ability to outcompete other homologies for 

limited pairing proteins.  To test this possibility, we measured pairing between an X 

chromosome bearing rDNA and Dp(1;Y)BSC76 and found that pairing at the euchromatic 

homology was not diminished (Table 5).  This shows pairing at the rDNA did not 

compete with pairing at the euchromatic homology. 
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Table 5.  XY Pairing in S1-S2 Primary Spermatocytes. 
 
 
                % Paired that 
         X        Y             # Cells Scored           % Paired          Disjoined* 

 
 
In(1)sc4Lsc8R       Dp(1;Y)BSC76           202               78.2               100.0 
In(1)sc4Lsc8R       Dp(1;Y)BSC185           215               73.5                 87.0 
In(1)sc4Lsc8R       Dp(1;Y)BSC11           213               84.0      74.0 
In(1)sc4Lsc8R       Dp(1;Y)BSC90           204               92.2      91.3 
In(1)sc4Lsc8R       Dp(1;Y)BSC214           236               93.2      94.7 
wildtype       Dp(1;Y)BSC76           195               91.8      ND 
 
* See Materials and Methods for calculation. 
 
 
Figure 6.  Frequency of Disjunction of Paired In(1)sc4Lsc8R and Dp(1;Y)BSC 
Chromosomes Versus Genomic Sequence Position of the X Homology. 
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 Effects of tef and snm on Euchromatin-mediated Sex Chromosome Segregation 

We next used our pairing system to examine the requirements for the conjunction 

proteins Tef, MNM and SNM.  Tef is normally required to maintain conjunction between 

autosomes, has no effects on sex chromosome segregation, and has been proposed to be 

autosome-specific (Tomkiel, Wakimoto, and Briscoe 2001).  However, because 

autosomal pairing sites are euchromatic and sex chromosome pairing sites are normally 

heterochromatic, the autosomal specificity of Tef may actually reflect a specificity for 

euchromatin.  To test this possibility, we used the In(1)sc4Lsc8R / Dp(1;Y) pairing system 

to determine if Tef was required for euchromatic sex chromosome conjunction and 

segregation.  First, we confirmed that the In(1)sc4Lsc8R chromosome behavior was not 

altered in a tef background.  We monitored sex chromosome NDJ of In(1)sc4Lsc8R / y+ Y 

males bearing a tef mutation and found that sex chromosome missegregation rates were 

statistically the same for tef / + vs tef, ((p > 0.95), Table 6).  Next, we compared sex 

chromosome NDJ from In(1)sc4Lsc8R / Dp(1;Y)BSC76  males homozygous or 

heterozygous for tef, and results did not differ statistically for tef / + vs tef, ((p > 0.50), 

Table 6).  These results suggest that Tef is indeed autosome-specific and is not required 

for conjunction of these X euchromatic homologies. 

We similarly attempted to test the requirements for MNM and SNM to establish 

conjunction between X euchromatic homologies.  Unfortunately, we were unable to 

perform the same test.   For unknown reasons, In(1)sc4Lsc8R / Dp(1;Y) males homozygous 

for mnm or snm were sterile.  This was true for all alleles tested both as homozygotes and 

transheterozygotes (snmz0317, snmz2138, mnmz5578, mnmz3298, and mnmz3401).  X / Dp(1;Y) ; 



39 

mnm males were also sterile; however, we were able to assay NDJ in X / Dp(1;Y) ; snm 

males (i.e. males bearing a wildtype X).  As SNM is necessary for conjunction at the 

rDNA, we reasoned that any segregation of the X from the Dp(1;Y) observed in snm 

males could be attributed to the behavior of the X euchromatic homologies.  Therefore, 

we compared sex chromosome NDJ frequencies from snm or snm / + males bearing 

Dp(1;Y)BSC76 or Dp(1;Y)BSC67. 

Sex chromosome segregation in X / Dp(1;Y)BSC76; snm males was randomized, 

and not significantly different from control  X / Bs Y y+; snm males (p > 0.75, Table 7).  

NDJ in X /  Dp(1;Y)BSC67; snm males was actually slightly higher than in control snm / 

+ males (p < 0.05).  Whereas in previous crosses, In(1)sc4Lsc8R / Dp(1;Y)BSC76 and 

In(1)sc4Lsc8R / Dp(1;Y)BSC67 showed different NDJ frequencies, no differences were 

observed here (p > 0.25).  These data indicate that SNM is required to mediate 

conjunction between X chromosome euchromatin. 
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Table 6.  Effect of tef z3455 / Df(tef)803∆15 on XY Segregation in In(1)sc4Lsc8R / Dp(1;Y)BSC76 Males. 
 
 
                   4   XY 
Sperm genotype:       X;4       Y;4      0;4     X/Y;4     X;0     X;4/4     Y;0    Y;4/4    0;0    0;4/4    X/Y;0   X/Y;4/4    NDJ      NDJ 
 
 
Paternal Genotype: 
FM7a / y+Y 
 tef / +  3148 2813 8 9 0 7 0  4  0 0  0 0 0.00 0.00 
 tef           1221 996 3 0 514 397 441  403  1 0  0 1 0.44 0.00 
 
In(1)sc4Lsc8R / y+Y 
 tef / +     2071 745 1112 90 4 1 2 4  0 18  1 4 0.01 0.30 
 tef          614 273 341 37 237 144 133 90  112 125  21 12 0.41 0.30 
_____________________________________________________________________________________________________ 

FM7a / Dp(1;Y)BSC76  
 tef / + 1048 270 1 2 0 0 0 0  0 0  0 0  0.00 0.00 
 tef           643 229 2 0 234 116 94 64  0 1  0 0  0.37 0.00 
 
ln(1)sc4Lsc8R / Dp(1;Y)BSC76    

  tef / +  1804 240 205 11 1 0 0 0  1 0  0 0 0.00 0.10 
 tef 280 35 37 6 96 89 22 13  4 6  1 0 0.39 0.09 
 
Progeny of tef z3455 / + and Df(tef)803D15 / + did not significantly differ and were combined. 
 

 



 

 
 

41 

Table 7.  Effect of snmz0317 / snmz2138 on XY Segregation in X / Dp(1;Y)BSC Males. 

 
Sperm genotype: X;4 Y;4 0;4 X/Y;4  X;0 Y;0 0;0 X/Y;0   4 NDJ      0/(X+0) 

 
 
Parental Genotype: 
X / Bs Y y+  snmz0317 / + 1204  858  1 0            0  0 0 0    0.00         0.00 
    snm  425  274  386 182  112  104 121 98    0.26         0.49 
______________________________________________________________________________________________________ 
 
X / Dp(1;Y)BSC76 snmz0317 / + 1296  385  3 0            0  0  0 0    0.00         0.00  
   snm  387  113  413 126        123  37 106 53    0.24         0.50 
______________________________________________________________________________________________________ 
 
X / Dp(1;Y)BSC67  snmz0317 / + 881  217  20 7            0  0 0 0    0.00         0.02 
     snm  154  37  170 40  29  10 48 11    0.20         0.54 
 
 

http://flybase.org/reports/FBab0046109.html
http://flybase.org/reports/FBab0046109.html
http://flybase.org/reports/FBab0046109.html
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Discussion 

The Drosophila male is an interesting model in which to study meiosis because 

homologs do not recombine, and thus they lack the canonical mechanism of homolog 

attachment and segregation.  It is also of particular interest because it was the first 

organism in which specific sequences were identified that function as meiotic pairing 

sites.  A 240 bp sequence within the IGS of the rDNA is sufficient for pairing and 

segregation of the X from the Y (McKee and Karpen 1990; McKee, Lumsden, and Das 

1993; McKee, Habera, and Vrana 1992).  Although the X and the Y share significant 

sequence homology other than these IGS sequences in both the rDNA cistrons and at the 

stellate/crystal loci (Livak 1990), these homologies do not seem to promote pairing and 

segregation.  Lack of pairing at other homologies suggested that there was a unique 

property of the IGS sequences with respect to sex chromosome meiotic pairing. 

Similarly, there appeared to be some specificity to which autosomal sequences 

could function as “pairing sites”.  Euchromatic segments of chromosome 2 translocated 

to the Y are capable of pairing and directing segregation from the intact chromosome 2 

homolog, but a translocated segment of chromosome 2 heterochromatin is not (McKee, 

Lumsden, and Das 1993).  Likewise, rearranged autosomal homologs that share only 

heterochromatic homologies do not pair and segregate from each other (Yamamoto 1979; 

Hilliker, Holm, and Appels 1982).  These studies raised the question as to how the cell 

restricts pairing to specific sequences. 

 

 



  

43 
 

 Are there Specific “Pairing Sites” in Male Meiosis? 

Our work here suggests an alternative interpretation of these previous results.  

Prior observations of meiotic pairing were made during late prophase I, prometaphase I, 

and/or metaphase I (Yamamoto 1979; McKee, Habera, and Vrana 1992; McKee and 

Karpen 1990; McKee, Lumsden, and Das 1993).  In these studies, chromosomes were 

judged as paired only if associations were observed in these later stages, and as such, 

failed to distinguish between the processes of pairing and conjunction. 

Here, we have separately examined pairing and segregation (and by inference 

conjunction) utilizing a series of Dp(1;Y)s (Cook et al. 2010) and the rDNA-deficient 

In(1)sc4Lsc8R X chromosome.  Using in situ hybridization in combination with genetic 

tests of chromosome transmission, we were able to directly observe meiotic pairing 

independently of conjunction and assay its relationship to segregation.  Our results 

indicate that 13 different Y chromosome rearrangements bearing X euchromatic 

homology are capable of pairing with the X.  Rather than being limited to specific 

sequences, we suggest that pairing in males, as in other systems, may simply be 

homology-based.  This possibility is consistent with observations that autosomal 

heterochromatic repeats are indeed paired in early prophase I (Tsai, Yan, and McKee 

2011), and that lacI repeats inserted in 13 different euchromatic positions are all paired in 

early prophase I (Vazquez, Belmont, and Sedat 2002). 

We found that all homologous segments tested paired with high fidelity (>74%).  

No relationship between homology length and pairing ability was observed, which means 

that either (1) pairing sites are not evenly distributed along the X chromosome (i.e. some 
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short segments may have as many or more pairing sites as other longer segments) or (2) 

the duplicated sequences tested (~700 Kbp – 1500 Kbp) were all above the minimum 

threshold required for efficient pairing.  We conclude that either all euchromatin can pair 

or that pairing sites are distributed throughout the euchromatin. 

To further address if there are minimal sequence requirements for XY pairing, we 

subdivided a duplicated euchromatic sequence into two smaller 120 Kb and 161 Kb 

fragments.  We found that both sequences paired equally well, implying that the 

subdivided segment contains at least two sequences capable of pairing.  Further analysis 

using deletions of these duplicated regions will be necessary to determine if pairing 

occurs at all euchromatin or if there are unique pairing sites within each tested region.  In 

the absence of evidence for the latter, the most parsimonious explanation for our data is 

simply that all homologous sequences have the ability to pair. 

 What Determines Conjunction in Male Meiosis? 

If all homologous sequences can pair but not all remain associated and/or have the 

ability to direct segregation, then specific sequences may act as conjunction sites.  Three 

proteins necessary for conjunction have been identified to date, MNM, SNM, and Tef.  A 

putative MNM/SNM complex is required for conjunction for all bivalents, whereas Tef 

only affects conjunction between autosomal homologs (Thomas et al. 2005).  By 

examining the pairing behavior of integrated lacO sites, it was concluded that mutants in 

mnm and snm do not disrupt pairing in S1 (Thomas et al. 2005), whereas the effects of tef 

mutants on pairing have not yet been examined.  Both MNM and SNM localize to the 

240 bp IGS repeats embedded within the rDNA cistrons (Thomas and McKee 2007).  Tef 
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is needed to localize MNM (and presumably SNM) to sites along the autosomes (Thomas 

et al. 2005).  Whereas Tef binding sites have yet to be identified, the existence of three 

canonical C2H2 zinc fingers in Tef suggest that there may indeed be a consensus 

sequence for establishing conjunction on autosomes (Arya et al. 2006). 

In our system, we examined the ability of X chromosome homologies to remain 

conjoined and thereby direct segregation.  It was possible that these sequences lacked the 

MNM/SNM binding sites present in IGS sequences and also the autosomal binding sites 

potentially recognized by Tef.  We wondered which, if any, of these proteins might be 

involved in mediating conjunction.  We first tested if tef mutations had any effect on X / 

Dp(1;Y) segregation.  Although tef mutations show an autosome-specificity, it was 

possible that this specificity reflected a euchromatin-specific function that did not affect 

the normally heterochromatic XY conjunction.  If this were the case, we might have 

expected tef mutations to disrupt the euchromatin-mediated XY conjunction.  We found, 

however that Tef was not required suggesting that Tef is indeed specific for autosomes. 

We next sought to test the requirements for MNM and SNM.  While SNM and 

MNM show binding specificity to IGS sequences (Thomas and McKee 2007), the exact 

binding sites within the IGS have not been determined.  It is not known if potential 

binding sequences might also be distributed throughout X euchromatin. 

Unfortunately, we were unable to test the role of MNM because for an unknown 

reason, MNM mutants in combination with the sex chromosome rearrangements were 

sterile.  However, we were able to test SNM, and indeed, found it to be required for 

segregation in our XY euchromatic pairing system.  This result shows that SNM is 
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necessary for conjunction between X euchromatin and suggests that sequences sufficient 

for SNM binding are present in X euchromatin.  Because Tef is not required, the 

mechanism of SNM binding to the X euchromatin likely differs from the mechanism by 

which SNM binds to the autosomes.  There may be homology to IGS sequences in the X 

euchromatin that directly bind SNM, although we could not identify extensive homology 

using BLAST (Altschul et al. 1990).  Interestingly, there is a cluster of IGS-like 

sequences present on chromosome 3R that share almost 90% identity to the rDNA IGS 

repeats (FLYBASE).  Polymorphisms that differentiate these sequences from the X 

rDNA IGS sequences may be critical in determining SNM binding. 

An alternative explanation for SNM-mediated conjunction at X euchromatin is 

that In(1)sc4Lsc8R may have a small number of remaining IGS sequences. One or two IGS 

sequences on their own may not be sufficient for establishing pairing but may be 

sufficient for mediating conjunction if pairing via euchromatin occurred in cis. 

 Centromere-proximal Sequences are More Effective at Directing Segregation 

Interestingly, although we found all homologous sequences paired with similar 

fidelity, not all sequences behaved the same in the ability to direct segregation.  Pairings 

between centromere proximal sequences were better at directing homolog segregation.  

The distal-most X and Dp(1:Y) pairing observed, in fact, failed to measurably contribute 

to segregation. A similar observation was made for the segregation of Dp(2;Y)s from 

intact chromosome 2 homologs.  Euchromatic homology found to be most effective at 

directing segregation was the histone locus, which resides on 2R adjacent to the 

centromere (McKee, Lumsden, and Das 1993). 
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Why might centromere-proximal association demonstrate a greater frequency of 

proper segregation?  One possibility is that pairing close to the remaining 

heterochromatin of the In(1)sc4Lsc8R X may be more effective at establishing conjunction 

at cryptic IGS sequences.  Proximal pairing may be better at bringing such sites on 

homologs close enough to facilitate conjunction.  Very distal pairings, as in the case of 

Dp(1;Y)BSC11, may be ineffective.  Alternatively, centromere-proximal attachments 

could simply be better at establishing tension across the bivalent at metaphase I.  Tension 

is important for stabilizing kinetochore attachments necessary for establishing bipolar 

orientation (Salmon and Bloom 2017).  In many systems, when tension is not present at 

kinetochores because of insufficient microtubule attachment, a metaphase arrest is 

triggered (Nicklas et al. 2001).  In male Drosophila, however, activation of this 

checkpoint by unpaired chromosomes merely delays the transition to anaphase I (Rebollo 

and Gonzalez 2000).  It is conceivable that meiosis would proceed through anaphase I 

even if the XY bivalent had not formed stable bipolar attachments, leading to NDJ.  This 

possibility may explain why the centromere-proximal rDNA locus evolved as the native 

XY pairing site. 

In summary, our examination of XY euchromatic pairing suggests some 

fundamental differences in the previous models of meiotic pairing and conjunction in 

male flies.  Rather than pairing being limited to specific sequences, we propose that the 

simplest model is that all homologous sequences can pair, and only a subset of 

homologies function as conjunction sites during meiosis I.  The repeats with the IGS 

sequences of the rDNA are most likely conjunction sites which serve to bind the 
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conjunction proteins MNM and SNM (Thomas and McKee 2007), and a putative 

complex of these proteins with Tef may localize to conjunction sites within autosomal 

euchromatin.  Conjunction sites may be able to pair, but not all pairing sites may be 

capable of establishing conjunction. 

Our assay promises to be useful to further define requirements for meiotic pairing.  

Deletion analysis of euchromatic region may delimit the minimal sequences required for 

pairing and determine whether specific sequences are required for pairing and/or 

conjunction. 
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CHAPTER III 
 

PAIRING BETWEEN THE X AND Dp(1;3)s  
IN DROSOPHILA MALE MEIOSIS 

 
 

Introduction 

When a cell divides meiotically, a diploid parent cell is reduced into four haploid 

daughter cells.  It is of grave importance to perform these divisions flawlessly, as errors 

in meiosis produce aneuploid gametes, and gene dosage imbalances can lead to offspring 

that are inviable or have severe genetic syndromes.  Homologous chromosomes must first 

find their partners, pair, and conjoin before they can segregate properly.  The process of 

pairing is critical as all subsequent steps cannot occur without first pairing.  Research has 

identified some requirements of homolog pairing; however, the overall process is not 

well understood.   

The male fly is a good model to characterize pairing as meiosis occurs without the 

complicated steps of recombination.  Most studies that examined pairing requirements for 

male meiosis have analyzed condensed chromosomes at prometaphase I or metaphase I 

rather than during early prophase I, when pairing is established.  Therefore, the data from 

these studies do not address pairing per se but are limited to defining requirements for 

both pairing and conjunction, the ability to maintain association after intimate pairing is 

released.  However, chromosome sequences may exist that are involved in pairing but not 

maintained through conjunction.  
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For the autosomes, euchromatic but not heterochromatic, sequence homologies 

have been shown to be capable of mediating both pairing and conjunction (Yamamoto 

1979; Hilliker, Holm, and Appels 1982).  Because the X and Y lack euchromatic 

homology, the sex chromosomes must utilize different sequences for pairing and 

conjunction.  The tandem rDNA repeat embedded in the heterochromatin near the 

centromere of the X and on the base of the Y short arm have been identified as the 

required sites (Cooper 1959; Ritossa 1976; McKee and Karpen 1990).  Specifically, 

transgene studies have shown that pairing and conjunction map to a repeated 240 bp 

intergenic spacer (IGS) region in the promoter of the 18s rDNA genes (McKee, Habera, 

and Vrana 1992; McKee and Karpen 1990). 

To better understand the requirements of pairing, experiments using transpositions 

and duplications have been used.  At mid-to-late prophase I, transpositions of 

chromosome 2 euchromatin onto the Y chromosome will pair and conjoin with the intact 

chromosome 2 partner, while transpositions of chromosome 2 heterochromatin will not 

(McKee, Lumsden, and Das 1993).  Similar to what is seen with euchromatic pairing and 

conjunction between homologs, the longer the duplicated chromosome 2 material is, the 

more proficient this homology between heterologs is at pairing, conjoining, and directing 

segregation (McKee, Lumsden, and Das 1993).  These experiments performed during late 

prophase I to metaphase I demonstrate that euchromatic sites along the autosomes and the 

rDNA on the X and Y are required for pairing and conjunction.  Importantly, other 

potential sites of pairing may occur in early prophase I, but might not remain paired 

through late prophase I. 
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The first study to assay pairing of native sequences during early prophase I used 

FISH to euchromatic sequences on Dp(1;Y)s and an rDNA-deficient In(1)sc4Lsc8R X 

chromosome.  All the euchromatic homologies duplicated on the Dp(1;Y)s tested had the 

ability to pair during S1-S2a of prophase I; however, not all duplications were able to 

segregate chromosomes with the same success (Hylton et al. 2020).  The closer the 

duplicated sequences on the Dp(1;Y) lie to the centromere on the X, the better at 

segregation, but no relationship to duplication length was identified (Hylton et al. 2020).  

These results suggest that all homologies can pair, but conjunction is determined by 

different parameters than pairing.  Conjunction may only occur at specific sites, or there 

may be more extensive homology required for establishing conjunction than is required 

for pairing. 

Together these observations suggest that chromosome level mechanisms exist to 

regulate pairing and/or conjunction at different sites.  With the characterization of pairing 

during early prophase I possible using FISH, we wanted to test the ability of X 

euchromatin duplicated on to chromosome 3 to pair and direct segregation from the X.  Y 

chromosomes bearing as few as 120 Kb of X euchromatin were shown to pair and 

segregate from chromosome 2 (McKee, Lumsden, and Das 1993); therefore, Dp(1;3) 

chromosomes ranging in size from 21 to 177 Kb were selected to determine size and 

sequence requirements for pairing and segregation. 

Next, we wanted to ask if any temporal differences in pairing exist between the 

two types of rearranged chromosomes: re-establishment of pairing between homologs 

and pairing between otherwise heterologous chromosomes.  We compared In(1)sc4Lsc8R 
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X and Dp(1;Y) pairing versus chromosome 3 and Dp(1;3) pairing in primary 

spermatocytes during prophase I to determine if a mechanism may exist to resolve 

inappropriate pairings between similar sequences on non-homologous chromosomes.  

Our data show that in early prophase I, pairing can occur between homologies on the X 

and chromosome 3.  Pairings between Dp(1;3)s and the X are resolved earlier in 

prophase I than are the pairings between the Dp(1;Y)s and In(1)sc4Lsc8R.  Disruption of 

inappropriate pairing may occur with the formation of chromosome domains, a process 

by which homologous pairs are isolated in separate locations of the cell during mid-to-

late prophase I.  As would be expected when pairing between heterologs is resolved prior 

to anaphase I, duplications of X material on chromosome 3 are not very effective in 

directing segregation of the X and Dp(1;3).  These results suggest that separate 

mechanisms are in place to resolve homologous and non-homologous pairing. 

Materials and Methods 

 Drosophila Stocks and Crosses 

Drosophila were raised on a standard diet consisting of cornmeal, molasses, agar 

and yeast at 23°C.  All Dp(1;3) stocks were obtained from the Bloomington Stock Center 

(Gramates et al. 2017). 

 Genetic Assays of Meiotic Chromosome Segregation 

Segregation of a Dp(1;3) chromosome from an intact X chromosome was 

monitored by crossing y w sn / Y; Dp(1;3) / + males to y w sn females.  y w sn / y w sn; 

Dp(1;3) / + females were crossed to y w sn / Y males to control for viability. 



  

53 
 

The segregation value S is the proportion of euploid progeny from y w sn / Y; 

Dp(1;3) / + fathers in which the duplication segregates from the X adjusted for viability 

difference using segregation data from y w sn / y w sn; Dp(1;3) / + mothers. 

S = (X + 3 from Fathers) / [(X + 3 from Fathers) + [(Y + 3 from Fathers) * [(X + 

3 from Mothers) / (Y + 3 from Mothers)]]] 

 Testis Dissection 

Testes from larvae or pharate adults were dissected in Schneider’s Drosophila 

media (GIBCO BRL, Gaithersburg, MD).  Tissue was transferred to a drop of 

Schneider’s on a silanized coverslip and gently squashed onto a Poly-L-Lysine coated 

slide (Electron Microscopy Sciences, Hatfield, PA).  Coverslips were immediately 

removed after freezing in liquid nitrogen.  Tissue was fixed in 55% methanol / 25% 

acetic acid for 10 min followed by 10 min dehydration in 95% ethanol.  Slides were 

processed immediately or stored for up to 1 week at 4°C. 

 Probe Design 

Triple-labeled probes pools were generated to selected sequences at a density of 

10 probes/Kb and a complexity of ~10,000 probes per pool (Arbor Biosciences, Ann 

Arbor, MI).  ATTO-594 oligonucleotide probes were generated to hybridize to 1,000 Kbp 

present on the X chromosome and the following regions of X chromosome sequences 

duplicated on the Dp(1;3) chromosome 3s: Dp(1;3)RC017 (X salivary gland chromosome 

bands 3D5-3E1 spanning base pairs 3543803 - 3606837); Dp(1;3)RC029 (X salivary 

gland chromosome bands 12A4-12D2 spanning base pairs 13824546 - 14001084); and 
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Dp(1;3)RC035 (X salivary gland chromosome bands 17F2-18A2, spanning base pairs 

18900731 - 19062922). 

A triple-labeled ATTO-488 probe was generated to bp 20368577 - 21368577 

(56F-57F) on chromosome 2. 

 FISH 

Slides of testis tissue were processed for FISH using a slight modification of the 

protocol as described in Beliveau, Apostolopoulos, and Wu (2014) and as reported in 

Hylton et al. (2020).  S1-S2a (10 to 20 µm) and S2b (>20 to 30 µm) spermatocytes were 

selected based on size, and signals were scored as paired when within 0.8 µm as in 

Beliveau, Apostolopoulos, and Wu (2014). 

Results 

 Dp(1;3)s Pair with but do not Effectively Segregate Away from the X 
 

To ask if X euchromatic homologies duplicated on chromosome 3 could pair and 

direct segregation from an intact X, Dp(1;3) chromosomes were selected that contain 

duplicated X euchromatin of different lengths and from different locations all along the 

arm of the X chromosome (Figure 7).  The duplicated X euchromatin homology on each 

Dp(1;3) varies from 21 to 177 Kb, and these Dp(1;3)s were selected since they were 

roughly the same size range as the ~120 Kb of X homology found to be sufficient for the 

X and Y to pair and segregate (Hylton et al. 2020). 

Pairing of the Dp(1;3)s and the X chromosome were monitored using FISH 

probes that bind euchromatic sequences on the intact X and the X euchromatic sequences 

duplicated on the Dp(1;3).  Pairing is observed in spermatocytes during early S1-S2 
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(Cenci et al. 1994) of prophase I (Vazquez, Belmont, and Sedat 2002), and these cells 

were selected based on size (Between 10 and 20 µm).  The pairing assay is described at 

length in (Hylton et al. 2020). 

 
Figure 7.  Regions of X Euchromatin Duplicated on Each Dp(1;3) Chromosome.  
Euchromatin is marked by hatched boxes.  * Pairing examined by FISH. 
 

 
 
 

Of the three Dp(1;Y)s analyzed for their abilities to pair with the intact X 

chromosome, all were paired in greater than 90% of the cells analyzed (Figure 8, Table 

8).  Pairing did not appear to be affected by the length of the X euchromatin duplicated 

on the Dp(1;3) or by the location of the homology on the X chromosome. 
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Figure 8.  FISH Examination of X / Dp(1;3) Pairing in DAPI-stained S1-S2 Primary 
Spermatocytes.  The X and chromosome 3 are labeled red and chromosome 2 pair are 
labeled green.  (A) Paired X / Dp(1;3) chromosomes and paired chromosome 2 bivalents.  
(B) Unpaired X / Dp(1;3) chromosomes and a paired chromosome 2 bivalent.  (C) Paired 
X / Dp(1;3) bivalent and unpaired chromosome 2s.  Scale bar = 2 µm. 
 

 
 
 
Table 8.  X / Dp(1;3) Pairing in S1-S2 Primary Spermatocytes. 
 
 
          X       3             # Cells Scored        % Paired 
 
 
wildtype       Dp(1;3)RC017           212             92.9 
wildtype       Dp(1;3)RC029           204             93.1 
wildtype       Dp(1;3)RC035           383             90.3 
 
 
 
 X / Y; Dp(1;3) / + fathers used in the crosses produce four sperm classes (X; +, Y; +, 

X; Dp(1;3), and Y; Dp(1;3)).  The latter two will form a zygote triploid for the duplicated 

region after fertilization, and the viability of such zygotes greatly depends on the 
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duplicated region.  To eliminate these effects of the duplication on viability, only the 

euploid classes were considered in this analysis.  To control for any other potential 

viability differences between the resulting classes, the viabilities of the identical progeny 

generated from X / X; Dp(1;3) / 3 females was measured.  In these females, the Dp(1;3) 

must segregate with one of the two identical Xs, so any variability in the recovery of X; + 

sons versus daughters will reflect any viability differences.  Using the viability 

differences from the female data, the segregation frequency at which the X segregated 

from the Dp(1;3) in males could be calculated (Segregation Ratio, S) (See Materials and 

Methods).   

Data show that the Dp(1;3)s do not consistently segregate from the X (Table 9).  

Some of the calculated S values for the Dp(1;3)s are significantly greater than 0.5, which 

is the expected frequency if the Dp(1;3) and X chromosome segregated randomly (Table 

9).  None of the Dp(1;3)s segregated from the X as effective as the Dp(1;Y)s segregated 

from the In(1)sc4Lsc8R X (Hylton et al. 2020), which in some cases was greater than 0.9.  

The Dp(1;3) that exhibited the best S value was only 0.6. 
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Table 9.  Segregation of Dp(1;3) Chromosomes from an Intact X Chromosome. 
 
 
    Transmission:         _          Paternal                           Maternal          _                            
        Genotype:               X;TM6C        Y;TM6C     X;TM6C         Y;TM6C             S 
 
    
  Length of         X Region 
Chromosome 3†   Dp(1;3) (Kb) Duplicated on 3†† 
Dp(1;3)RC002  140          1Lt--1A1     691  674     533  532  0.506 
Dp(1;3)RC017  163       3D5--3E5      1298   1105    420 422  0.541* 
Dp(1;3)DC139  94        5A1--5A5      729   787     244 232  0.468 
Dp(1;3)DC177  94       7B3--7B4    611  612    227 292  0.562* 
Dp(1;3)DC219  105       9A5--9B2    704   669    330 280  0.472 
Dp(1;3)RC029  177      12C6--12D2   648    581    262 351  0.599* 
Dp(1;3)DC316  94     14E1--14F2     775   683    408 471  0.567* 
Dp(1;3)RC035  162     17F2--18A2     837   739    350 426  0.580* 
Dp(1;3)RC063  160     20F1--20F4    735  655    450 528  0.568* 
Dp(1;3)DC398  21     20F3--20F3     678   619     405 453  0.551* 
 
S = paternal segregation ratio adjusted for viability by the maternal segregation ratio (see Materials and Methods). 
* Indicates significance at p < 0.05.  † All Dp(1;3) chromosomes arose from BAC insertions of X euchromatin at 65C. 
†† Salivary gland chromosome bands. 
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 Dp(1;3) and X Pairings are Resolved Earlier than are Dp(1;Y) and X Pairings 

The Dp(1;3)s paired very efficiently with the X chromosome, but unlike pairings 

between similarly sized X duplications on Dp(1;Y)s, the X / Dp(1;3) pairings did not 

efficiently direct merotelic segregation of the paired chromosomes.  This lack of 

segregation suggested that X / Dp(1;3) pairings might be disrupted before affecting 

orientation at meiosis I.  Previous work examining pairing at inserted LacO arrays found 

that homologs separate during S2b of prophase I (Vazquez, Belmont, and Sedat 2002).  

At this stage, the formation of three chromosome domains can first be visualized around 

the periphery of the cell, each of which contain a homologous major chromosome pair 

(Cenci et al. 1994; Vazquez, Belmont, and Sedat 2002).  It has been theorized that the 

formation of chromosome domains sorts out heterologous pairings while maintaining 

proper homologous pairings (Vazquez, Belmont, and Sedat 2002).  We wondered if the X 

and Dp(1;3) pairings were disrupted as a consequence of domain formation. 

The FISH pairing assay allows direct visualization of chromosomes during the 

early stages of prophase I.  We used FISH to compare the dynamics of pairing between 

the X and Dp(1;3)s versus the X and Dp(1;Y)s.  We expected that heterologous pairings 

may be resolved earlier than homologous pairings.  A probe to chromosome 2 was used 

to monitor the progression of unpairing between homologs.  Because there is some 

asynchrony in unpairing, we expect that unpairing of chromosome 2 might proceed the 

unpairing of X and Dps in a fraction of the cells.  Because we wanted to avoid including 

cells where the X and Dp had failed to pair, we only scored cells in which the X 

sequences were paired.  In S2b cells where the chromosome 2 probe was unpaired, we 
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scored the fraction of the Dps remaining paired.  We reasoned that if the Dp remained 

paired later into prophase I, then the fraction of cells in which the autosome probe was 

unpaired would increase.  Conversely, if pairing at the Dp was disrupted early, we would 

find very few cells in which unpairing of the autosome probe proceeded the unpairing of 

the Dp. 

The S1-S2a cells were selected by size (10 to 20 µm) based on criteria from Cenci 

et al. (1994).  In a small frequency of these cells, the chromosome 2 pairings had already 

been resolved prior to reaching the S2b size (>20 to 30 µm).  In such cells, there were 

significantly more X and Dp(1;3) unpairings than X and Dp(1;Y) unpairings (Figure 9).  

This difference in the behavior of Dp(1;3)s and Dp(1;Y)s was even more striking in S2b 

cells where unpairing had further progressed.  At this stage, there was a significantly 

higher fraction of cells where the X and Dp(1;3) was unpaired than were cells where the 

X and Dp(1;Y) was unpaired (Figure 9).  This finding suggests that the timing of X and 

Dp(1;3) unpairing is earlier than the X and Dp(1;Y), and this unpairing may occur 

concomitantly with domain formation. 
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Figure 9.  Dissolution of Pairing at X Euchromatin on Dp(1;Y)s vs. Dp(1;3)s Relative 
to Autosomal Pairing.  Frequencies of X / Dp(1;3) pairings versus X / Dp(1;Y) pairings 
in cells where chromosome 2s have unpaired.  NS = No significance.  Significant 
difference at * p < 0.05; ** p < 0.01; *** p < 0.001. 
 

 
 

Discussion 

The Drosophila male is the first organism in which meiotic pairing sites were 

identified.  XY pairing was thought to primarily occur at the 240 bp sequence within the 

rDNA IGS because this region is sufficient for XY segregation (McKee and Karpen 

1990; McKee, Lumsden, and Das 1993; McKee, Habera, and Vrana 1992) while other 
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homologies such as the stellate/crystal loci (Livak 1990) are not.  However, prior 

experiments monitored pairing during late prophase I when conjunction is already in 

effect.  At this stage, pairing at sites that do not conjoin may have been lost. 

With the development of the FISH pairing assay, intimate pairing can be studied 

during early prophase I and the steps of pairing and conjunction can be successfully 

separated (Hylton et al. 2020).  Using this assay, we have previously shown that 

euchromatic X duplications as small as 120 Kb on the Y are sufficient for X / Dp(1;Y) 

pairing and segregation (Hylton et al. 2020).  Next, we aimed to revisit the topic of 

pairing between heterologous chromosomes using the FISH pairing assay.  

Transpositions of chromosome 2 material to the Y chromosome, Tp(2;Y)s, have been 

shown to pair and conjoin from an intact chromosome 2 at mid-to-late prophase I 

(McKee, Lumsden, and Das 1993).  In addition, many of the Tp(2;Y)s tested were able to 

direct segregation albeit at a frequency not much higher than random.  Unfortunately, we 

were unable to use the Tp(2;Y) chromosomes for our experiments because many of the 

stocks are no longer available.  Instead, we used Dp(1;3)s which are chromosome 3s with 

a duplicated sequence of X euchromatin. 

Three Dp(1;3)s were monitored for their abilities to pair with the X during S1-

S2a.  We found the X and Dp(1;3) paired in over 90% of the cells scored.  These three 

Dp(1;3)s along with seven others were tested for their ability to direct segregation from 

the X.  Some Dp(1;3)s were able to segregate away from the X; however, similarly to the 

X and Tp(2;Y) segregation frequencies, their segregation was at best only 10% better than 

random. 
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Since it was evident that homologous sequences duplicated on a heterologous 

chromosome can pair at a frequency > 0.90, we wondered what was interfering with X 

and Dp(1;3) segregation.  After all, most X and Dp(1;Y) segregation frequencies were 

very high, including Dp(1;Y)BSC76 which exhibited a segregation frequency of 0.92 

(Hylton et al. 2020).  It has been suggested that pairings between heterologous 

chromosomes are sorted out during domain formation (Vazquez, Belmont, and Sedat 

2002).  We used the FISH pairing assay to monitor pairing between the X and Dp(1;Y) 

and the X and Dp(1;3) during S2b of prophase I, the stage when chromosomes begin to 

unpair and domain formation is first evident (Vazquez, Belmont, and Sedat 2002; Cenci 

et al. 1994).  In S2b cells where the control chromosome 2 bivalent had already unpaired, 

the X and Dp(1;Y) were remained paired in a significantly higher number of cells than 

were the X and Dp(1;3). 

Since we monitored both pairing between homologs and pairing between 

heterologs using the same sequence homologies for the pairing, our results suggest that 

two separate mechanisms exist to separate chromosomes.  The X and Dp(1;3) unpairing 

appears to occur concomitantly with domain formation as suggested by Vazquez, 

Belmont, and Sedat (2002).  This possibility would also explain why the X and Dp(1;Y) 

stay paired longer and can segregate.  The paired duplicated X euchromatin on Dp(1;Y) is 

able to conjoin with the X, migrate to the same domain, and segregate at anaphase I.  

Perhaps, the paired duplicated X euchromatin on Dp(1;3) is unable to conjoin with the X 

or if it does conjoin, not strong enough to maintain conjunction when heterologs migrate 

to different domains. 
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Drosophila male meiosis is unique because it lacks many aspects of the traditional 

meiotic script including the synaptonemal complex, formation of chiasmata between 

homologs, and recombination.  Thus, separate mechanisms had to evolve for successful 

meiosis, including how to resolve inappropriate pairings between heterologs.  The 

formation of domains may occur to resolve heterologous pairing by quarantining 

homologs to different sites in the cell.  This possibility is similar to the one proposed in 

the C. elegans system.  A KASH/SUN-domain protein complex connects chromosomal 

“pairing centers” to the cytoskeleton, and chromosome movements are thought to jostle 

apart inappropriate pairings between heterologs while maintaining homolog pairings 

(Sato et al. 2009; MacQueen and Villeneuve 2001).  The movement of chromosomes in 

C. elegans and the formation of chromosome domains in Drosophila may both serve the 

same purpose to minimize heterologs from interfering with homolog segregation in 

meiosis I.  Real time analysis of domain formation using translocations and duplications 

should be used to better characterize this mechanism in the male fly. 
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CHAPTER IV 
 

APPLICATIONS OF THE FISH PAIRING ASSAY 
 
 

Introduction 

Historically, Drosophila male meiotic mutants have been characterized by tests of 

genetic segregation and cytology; however, there are drawbacks to these methods.  

Genetic crosses are somewhat limited as aneuploid progeny can often be inviable, and 

gametes with less chromatin are often recovered at a higher frequency than those with 

more chromatin.  This unequal recovery of gametes is termed ‘meiotic drive’ (Sandler 

and Braver 1954), and the cause is not well understood.  Traditional cytological methods 

such as DAPI or orcein staining require chromosomes to be in a condensed state for 

visualization limiting assessment of cells in late prophase I to metaphase I.  Today, highly 

selective FISH probes to single-copy sequences can be generated at a moderate cost 

(Beliveau et al. 2012), and scoring meiotic divisions using FISH can eliminate these 

issues of viability and meiotic drive.  Additionally, a single generation genetic test in flies 

requires 20 days to complete while FISH only requires about 36 hours to process. 

Analyzing spermatocytes and spermatids cytologically with single-copy FISH 

probes can provide better insight into which aspects of meiosis are disrupted in a mutant.  

For example, the mutation orientation disruptor (ord) (Sandler et al. 1968) causes an 

increase in reductional and equational NDJ of the sex chromosomes and chromosome 4s 

in both males and females (Mason 1976).  Genetic inference from this data suggested that
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defects at both MI and MII occur.  Later, cytology using orcein staining suggested that 

precocious separation of sister chromatids during early MI was the cause of the defect in 

females and leads to random segregation of sisters at MII (Goldstein 1980; Miyazaki and 

Orr-Weaver 1992).  Finally, FISH probes to satellite repeats near the centromere were 

used to confirm the cohesion defect as the source of the mutant phenotype in females 

(Bickel, Orr-Weaver, and Balicky 2002).  In the case of ord, using FISH to directly label 

chromosomes was a more direct way of rapidly assessing male meiotic mutants to 

determine which meiotic stage is affected.  

As a proof of concept, I aimed to address the two aforementioned applications of 

FISH to directly score the outcomes of XY segregation after meiosis I and II.  First, I 

selected male fly lines that in segregation assays exhibit a range of NDJ and used FISH to 

score the cytological XY NDJ.  Cytological NDJ was then compared to NDJ calculated 

by genetic testing.  Second, I selected a previously uncharacterized male meiotic mutant, 

from a collection of 60, to analyze (Wakimoto, Lindsley, and Herrera 2004).  Genetic 

segregation data of this mutant was collected and FISH used to score sex chromosome 

segregation in secondary spermatocytes. 

Results 

 FISH Eliminates Viability Differences and Meiotic Drive in the Calculation of 
XY NDJ 
 

Dp(1;Y) chromosomes along with wildtype and In(1)sc4Lsc8R X chromosomes 

were used for this study.  Genetic crosses were set up as described in Chapter 2 and 

progenies scored for XY NDJ.  Progeny bearing Dp(1;Y)s may express viability 

differences due to the Dp(1;Y) itself, and this difference could potentially alter NDJ 
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frequency.  To avoid this possibility previously, sex chromosome segregation was 

calculated by ignoring the Dp(1;Y) classes and using the formula NDJ = X / (X+0) (See 

Chapter 2).  Here, however, sex chromosome NDJ was calculated using all progeny 

classes because all sperm classes are scored in the cytological analysis.  Meiotic divisions 

were monitored by scoring secondary spermatocytes and spermatids for XY content 

using FISH probes to the AATAC repeat on the Y and the 2E1-3E4 on the X. 

Results indicate that the cytological and genetic NDJ frequency calculations are 

significantly different for seven of the twelve tested genotypes (Table 10).  Males bearing 

an In(1)sc4Lsc8R X exhibit higher levels of XY missegregation because of the missing 

rDNA on the X, and consequently will have a more pronounced effect of meiotic drive.  

Data shows that many of these males with higher NDJ frequencies exhibit larger 

variances between NDJ calculation methods (Table 10).  Cytological observation is 

clearly more accurate for monitoring chromosome segregation.  FISH is more direct than 

measuring outcome because it eliminates the effects of meiotic drive and aneuploid-

related viability differences. 
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Table 10.  NDJ Frequency Calculations: FISH vs. Progeny Recoveries. 
 
 
                              By FISH                 _ __Genetic__ 
 X Y     # Divisions Scored      XY NDJ    XY NDJ 
 
 
Canton S y+Y   206 0.01   0.01 
In(1)sc4Lsc8R y+Y   200 0.33   0.32 
+  Dp(1;Y)BSC76 207 0.03   0.04* 
In(1)sc4Lsc8R Dp(1;Y)BSC76 307 0.11   0.07* 
+  Dp(1;Y)BSC185 224 0.02   0.00* 
In(1)sc4Lsc8R Dp(1;Y)BSC185 214 0.22   0.21 
+  Dp(1;Y)BSC11 200 0.02   0.00 
In(1)sc4Lsc8R Dp(1;Y)BSC11 237 0.30   0.44* 
+  Dp(1;Y)BSC90 204 0.05   0.00* 
In(1)sc4Lsc8R Dp(1;Y)BSC90 201 0.12   0.16 
+  Dp(1;Y)BSC214 200 0.01   0.00* 
In(1)sc4Lsc8R Dp(1;Y)BSC214 206 0.08   0.15* 
 
*  Indicates a significant difference between cytological and genetic NDJ frequencies 
at p < 0.05.
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Using FISH to Screen Uncharacterized Male Meiotic Mutants 

Male meiotic mutant CG38303Z265-61 has not been fully characterized and is part 

of a collection of ethyl methane sulfate-induced mutations (Wakimoto, Lindsley, and 

Herrera 2004).  NDJ was calculated genetically through crosses and cytologically using 

X and Y FISH probes.  NDJ frequencies were almost 50%, suggesting that chromosome 

segregation for both the XY and 4th chromosome were nearly random at MI (Table 11).  

FISH analysis of the mutant revealed that sister chromatids separate precociously during 

MI and segregate to opposite poles in over 75% of the cells scored (Figure 10, Table 12). 

The directed segregation of sisters to opposite poles at MI is characteristic of 

mutants in the components of the monopolin complex in yeast, previously undescribed in 

Drosophila.  In S. cerevisiae, the monopolin complex is involved in chromosome 

segregation during meiosis I by crosslinking and mono-orienting sister chromatids to 

ensure segregation of homologs (Monje-Casas et al. 2007; Corbett et al. 2010).  The core 

of the complex, including Csm1 and Lrs4, has been shown to bind the kinetochore-

associated protein DSN1 which is broadly conserved among many eukaryotes (Rabitsch 

et al. 2003; Plowman et al. 2019).  Homologs of these proteins cannot be identified in 

flies by homology searches, but it is believed that flies must have an analogous system 

since chromosomes perform the same segregation.  Perhaps this protein could be the first 

component of the complex identified in flies.  This monopolin-like phenotype in 

CG38303Z265-61 identified by FISH would not have been possible by strictly analyzing the 

genetic data. 
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Table 11.  Effect of CG38303Z265-61 on Sex and Chromosome 4 Segregation in Males. 
 
 
                     4    XY 
Sperm Genotype:       X;4       Y;4      0;4     X/Y;4     X;0     X;4/4     Y;0    Y;4/4    0;0    0;4/4    X/Y;0   X/Y;4/4    NDJ      NDJ 
 
 
Paternal Genotype: 
CG38303 99 73 104 28 32 34 32  44  56 31  15 18  0.46 0.45 
CG38303 / Cy 474 726 5 0 0 0 0  0  0 0  0 0  0.00 0.00 
 
 
 
Table 12.  FISH Analysis of Sex Chromosome Segregation Patterns in CG38303Z265-61 Males. 
 
 
                            Reductional       Equational         
MI Divisions:      XX<->YY   X<->XYY   XXY<->Y   X<->/XY    XXYY<->0   XY<->X   X<->X         X        Y            X        Y 
 
 
Paternal Genotype: 
CG38303 23  1    5      70        0            1              1   0.28*  0.24*     0.72*  0.76* 

CG38303 / Cy   35  0    0      0          0            0  0      1.00   1.00      0.00   0.00 
 
* Indicates significance at p < 0.001. 
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Figure 10.  FISH Analysis of Secondary Spermatocytes in CG38303Z265-61 Males.  The 
red probe binds the X and the green probe binds the Y.  Spermatocytes that contain both a 
red and green signal are products of a meiosis I in which sister chromatids segregated 
merotelically.  Scale bar = 10 µm.  * Indicates cyst cells. 
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Conclusion 

The benefits of using FISH for analysis of meiosis are plentiful, especially since 

the cost of probes is more affordable.  Off-targeting has become less of an issue with the 

production of oligopaint probes (Beliveau et al. 2012).  In addition, the entire process of 

FISH takes less than 36 hours from tissue dissection to fluorescence analysis.  By 

avoiding analysis of outcome, both meiotic drive and viability differences due to 

aneuploidy are eliminated.  FISH is a much more direct analysis of chromosome behavior 

and can be used in the future to more completely and efficiently describe meiotic 

mutants. 
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CHAPTER V 
 

CONCLUSIONS AND FUTURE WORK 
 
 

The research described here contributes to the field of meiotic chromosome 

pairing.  For the first time, we were able to examine chromosome pairing at native 

Drosophila sequence homologies when pairing is initiated during early prophase I.  

Using the FISH pairing assay we developed, we found that euchromatic homology 

between the X and Y is sufficient for pairing.  Not all pairings are created equal as some 

pairings were capable of directing segregation from their partners while other pairings did 

not direct segregation.  When the duplicated X euchromatin on the Y lies closer to 

centromere on the X, segregation occurs more consistently.  We speculated the reason 

this segregation occurs is because the tension required to bypass the metaphase 

checkpoint is satisfied when paired closer to the centromere.  In fact, this may be what 

drove the evolution of the centromere-proximal rDNA as the native XY pairing sites. 

FISH also revealed that duplications of X euchromatin on chromosome 3 are 

sufficient to pair the heterologs X and chromosome 3; however, segregation does not 

effectively occur regardless of where the homology lies on the X.  This result contrasts 

the ability of the Dp(1;Y)s to direct segregation from the X chromosome and shows that 

the ability to direct segregation is not explainable merely by size of the homologies 

involved in the pairings.  Instead, it suggests that there may be some fundamental 

difference in the manner in which a cell deals with pairings between homologous versus 
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heterologous chromosomes.  By analyzing pairing at the S2b stage of prophase I, we 

found that more of the Dp(1;3) and chromosome 3 pairings were resolved than were the 

Dp(1;Y) and X pairings.  This earlier release of pairing and lack of segregation that 

occurs when homology is duplicated between heterologs provides evidence of 

chromosome level regulation of pairing. 

These findings provide the first evidence to support the model, first proposed by 

Vasquez, Belmont, and Sedat (2002), that the formation of chromosome domains acts as 

a means of “sorting” out the chromosomes into domains of homologous pairs.  In C. 

elegans, pairing centers on chromosomes are bound by a KASH/SUN-domain protein 

complex which connects the chromosomes and the cytoskeleton through the nuclear 

envelope (Sato et al. 2009; MacQueen and Villeneuve 2001).  Chromosome movements 

are thought to jostle apart inappropriate, heterologous connections while leaving 

homologous chromosomes attached.  It is important to resolve pairing between non-

homologs before segregation to avoid possible aneuploid gametes.  For example, when a 

chromosome translocation occurs, a piece or all of one chromosome fuses to another 

chromosome which can cause aneuploidy.  Approximately 5% of trisomy 21 cases in 

humans are due to adjacent segregation of translocations (Flores-Ramirez et al. 2015), 

and this segregation pattern is likely a result of unresolved conjunction between the 

transposed sequences. 

Now that we have developed a system to segregate chromosomes with only a 

small duplicated region of homology, experiments can be designed to determine the 

minimum requirements for pairing.  The shortest duplicated sequence that was shown to 
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pair was 120 Kb for XY pairing and 162 Kb for X and chromosome 3 pairing.  The 

methodology described within now provides a way to further delimit requirements for 

pairing and segregation.  The next steps should be to subdivide these sequences into 

smaller fragments.  CRISPR-Cas9 technology is the most current and efficient method to 

create deletions in the genome and could be used to target the duplicated euchromatin.  

By creating smaller nested fragments within the duplicated regions, one can determine 

whether there is a threshold of homology required for pairing, or perhaps specific 

sequences lie within these fragments that are required for pairing. 

Using the FISH pairing assay, we can, for the first time, clearly separate pairing 

from conjunction.  We have identified that these sequences can participate in conjunction, 

so a next step could be to determine if the sequences are bound by conjunction proteins.  

A possibility to explain the pairing between euchromatic homology on the X and Y is 

that conjunction proteins may bind to specific sites within the duplicated X regions.  On 

autosomes, conjunction proteins bind all along the arm, and this pattern may also occur in 

the X euchromatin.  We found further evidence for this possibility as SNM is required for 

the segregation of Dp(1;Y)s from an X chromosome.  We have already demonstrated that 

the conjunction protein Teflon, which is normally required for segregation of the 

autosomes, is not needed for XY segregation using euchromatic homology.  The 

dispensability of Teflon at euchromatin-mediated XY conjunction sites indicates that 

Teflon is specific for the autosomes and not for euchromatin.  Using FISH in 

combination with antibodies to the conjunction proteins MNM and SNM would reveal if 

MNM/SNM are binding to the paired euchromatic sequences on the X and Y. 
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We have demonstrated that many different X euchromatic sequences can facilitate 

pairing both between homologs and heterologs.  The rDNA IGS sequences have long 

been referred to as “pairing sites”, which they are, yet our work is important in that it 

shows that other homologies can also pair.  That is, the rDNA is not unique in its ability 

to pair.  This finding leads to the conclusion that the rDNA is more likely a “pairing and 

conjunction” site. 

Our work supports the implications on the suitability of the male fly as a model 

for meiosis.  The identification of the rDNA as a special “pairing site” led to the 

conclusion that male flies might be unique with respect to pairing, and therefore not an 

appropriate system to study pairing in general.  However, this work has shed light on the 

fact that pairing in male Drosophila may be more similar to pairing in the female and 

other organisms than was previously suggested. 
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