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Abstract

We prove the existence of non-negative martingale solutions to a class of
stochastic degenerate-parabolic fourth-order PDEs arising in surface-tension driven
thin-film flow influenced by thermal noise. The construction applies to a range of
mobilites including the cubic one which occurs under the assumption of a no-slip
condition at the liquid-solid interface. Since their introduction more than 15 years
ago, by Davidovitch, Moro, and Stone and by Griin, Mecke, and Rauscher, the
existence of solutions to stochastic thin-film equations for cubic mobilities has
been an open problem, even in the case of sufficiently regular noise. Our proof
of global-in-time solutions relies on a careful combination of entropy and energy
estimates in conjunction with a tailor-made approximation procedure to control
the formation of shocks caused by the nonlinear stochastic scalar conservation law
structure of the noise.
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1. Introduction

In this work, we consider the stochastic thin-film equation

du = —d, (M(u) 8314) dr + 9, (‘/M(u) ° dW) in Or, (1.1)

where u = u(t, x) denotes the height of a thin viscous film depending on the
independent variables time ¢t € [0, T], where T € (0, co) is fixed, and lateral
position x € T, where T is the one-dimensional torus of length L:=|T|, and
Q7:=[0,T] x T. Equation (1.1) describes the spreading of viscous thin films
driven by capillary forces (acting at the liquid-air interface) and thermal noise and
decelerated by friction (in the bulk or at the liquid-solid interface). The function
M : R — [0, 00) is called mobility and the following results apply to the choice
M(r) = |r|" forr € R, wheren € [% 4). In particular, this covers the physically
relevant case of a cubic mobility, that is, n = 3, modelling no slip at the liquid-
solid interface in the underlying stochastic Navier—Stokes equations of which (1.1)
is an approximation. The symbol W denotes a Wiener process in the Hilbert space
H(T).

Since its introduction over 15 years ago, by DAVIDOVITCH, MORO, and STONE
in [13], and by the fourth author, MECKE, and RAUSCHER in [26], the existence of
solutions to stochastic thin-film equations for cubic mobilities has been an open
problem, even in the case of sufficiently regular noise W in (1.1). Attaining a
solution of this problem is the main goal of this work.

We refer to [3,9,44] for details on the physical derivation by means of a lu-
brication approximation and on the relevance of (1.1) in the deterministic case,
where W = 0 in [0, T] x T. Stochastic versions of the thin-film equation have
been proposed independently in [13] and [26]. The former paper is concerned with
the question of how thermal fluctuations enhance the spreading of purely surface-
tension driven flow. On the contrary, the paper [26] considers the effect of noise on
the stability of liquid films and time-scales of the dewetting process. Therefore, the
energy considered in [26] differs from that one of [13] by an additional effective
interface potential — giving rise to a so called conjoining-disjoining pressure in the
equation. We emphasize that the structure of the noise term in (1.1) is common to
[26] and [13]. We further refer to [14] for a more recent derivation of the model
including the discussion of detailed-balance conditions.

A first existence result of martingale solutions to stochastic thin-film equations
has been obtained in [17] by Fischer and the fourth author of this paper, in the
setting of quadratic mobility M (r) = r?, additional conjoining-disjoining pres-
sure, and It6 noise. We also mention the paper [7] by Cornalba who introduced
additional nonlocal source terms and in this way obtained results for more general
mobilities. In [21], the second and the third author of this paper have studied (1.1)
with Stratonovich noise and quadratic mobility M (r) = r? without conjoining-
disjoining pressure. It turns out that non-negative martingale solutions exist that
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allow for touch down of solutions with complete-wetting boundary conditions.
The case of quadratic mobility is special and simpler since in this case the stochas-
tic partin (1.1) becomes linear. This allows to separately treat the deterministic and
stochastic parts in (1.1), a fact crucial to the approach in [21], and which fails in
the case of non-quadratic mobility.

In this paper, we study the existence of weak (or martingale) solutions to (1.1)
in the situation in which the gradient-noise term d; (v/M (u) o dW) is nonlinear in
the film height u, in particular covering the situation M (r) = |7 |3. This includes
precisely the situation studied in [13] in the complete-wetting regime.

The analysis of the present work is based on a combination of estimates of

the surface (excess) energy % fT(Bxu)2 dx = % II(’)xulli2 T and the (mathematical)
entropy [ Go(u) dx, where
r27n
——— forr >0
Go(r) = { G-m-n) ’ (1.2)
0 00 forr <0.

The main difficulty comes from the fact that - in contrast to the case of quadratic
mobility and Stratonovich noise - the energy estimate cannot be closed on its own.
This is caused by the nonlinear, stochastic conservation law structure of the noise
in (1.1). Indeed, this nonlinear structure may lead to the occurrence of shocks
and, hence, to the blow up of the energy % ||8xu||i2 T In the light of this, the
task becomes to understand if the thin-film operator, that is, the deterministic part
in (1.1), has a sufficiently strong regularity-improving effect to compensate the
possible energy blow up caused by the stochastic perturbation. Since the thin-film
operator degenerates when u = 0, this requires a control on the smallness of u.
Such a control is obtained by the entropy estimate, which explains its importance
in the case of non-quadratic mobility. Indeed, in the present work we prove that a
blow up of the energy can be ruled out by means of a combination of energy and
entropy estimates. Once this importance of the entropy estimate for the construction
of weak solutions to (1.1) is understood, the next task is to find approximations to
(1.1) which allow for uniform (energy) estimates. In light of the previous discussion,
these approximations are chosen in a careful way, compatible with both energy and
entropy estimates.

We next give a brief account on the literature for the deterministic thin-film
equation: A theory of existence of weak solutions for the deterministic thin-film
equation has been developed in [1,4,6] and [5,43,45] for zero and nonzero contact
angles at the intersection of the liquid-gas and liquid-solid interfaces, respectively,
while the higher-dimensional version of (1.1) with W = 01in [0, T'] x T and zero
contact angles has been the subject of [11,32]. For these solutions, a number of
quantitative results has been obtained — including optimal estimates on spreading
rates of free boundaries, that is, the triple lines separating liquid, gas, and solid,
see [2,18,30,34], optimal conditions on the occurrence of waiting time phenomena
[12], as well as scaling laws for the size of waiting times [19,20]. We also refer to
[31] for an existence result based on numerical analysis.

A corresponding theory of classical solutions, giving the existence and unique-
ness for initial data close to generic solutions or short times, has been developed
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in [22-25,27,28] for zero contact angles and in [15,37—40] for nonzero contact
angles in one space dimension, while the higher-dimensional version has been the
subject of [29,36,47] and [8] for zero and nonzero contact angles, respectively.

The paper is structured as follows: In §2, we introduce the necessary mathe-
matical framework and state our main result on existence of martingale solutions.
In §3 we introduce a suitable approximation of (1.1) using a Galerkin scheme, a
regularization of the mobility M controlled by a small parameter ¢, and a cut-off
in ||lu|l Loo(y. The Galerkin scheme only makes use of the energy inequality, which
is valid also in the infinite-dimensional setting but ceases to hold as ¢ N\ 0. In §4
we then derive an energy-entropy estimate which is uniform in ¢ and the cut-off
in |lullpeo(r) (the latter is removed at the end of this section). Finally, in §5 the
limit ¢ N\ O is carried out and the existence of martingale solutions to the original
problem (1.1) is obtained.

2. Setting and Main Result

2.1. Notation

Foraset X and A C X we write 14 : X — {0, 1} for the indicator function of
A, that is,

1 forxeA,

La(o):= !O forx € X\ A.

For a measurable set D C RY, where d € N, we write | D| for its d-dimensional
Lebesgue measure. We write T:=R/(LZ) for the one-dimensional torus of length
L > 0. For any T € [0, 00) we write Q7:=[0, T] x T for the corresponding
parabolic cylinder.

For a1, a2 € (0,1) and T > 0, we introduce the Holder space C*"*2(Qr) to
be the subset of all functions on Q7 which satisfy

lu(ty, x) — u(tz, x)|

[u]cereaopy:=sup  sup

xeT 11,0€[0,T] [t — 1]%!
1#h
lu(t, x1) — u(t, x2)|
+ sup sup % ,
1€[0,T] x1,x2€T |x1 — x2]
X17#Xx2

and we set
lullcereacory:=sup |u(t,x)| + [u]lcere(gr).
(t,x)eQr

For p € [1, 00], a measure space (2, A, ), and a Banach space (X, ||-]|), we
write L? (2, A, u; X) for the X-valued Lebesgue space of -measurable functions
Q — X with separable range and finite norm ||-[| .» (@, A, ..; x), Where

(o lvO)IP du)) 7 if p € [1, 00),

”U”LP(Q,_A,M;X) = .
p-ess-sup,cq [v(y)|  if p = oo,
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where
[1-€88-SUp,,c [v(y)| :=1inf {C € [0, 00] : [|v]| £ Cu-almost everywhere}

denotes the essential supremum of |v|. For p = 2 and a Hilbert space (X, (-, -)),
we have [[vll 2y, 4,4 x) =/ (Vs V) 12w, A, x)» Where the inner product is given
by (Wi, w2) 12 A ux) = Jy (W1 (3), w2 () x du(y) for wi, wa € LA(U). We
write LP (U, A, w):=LP(U, A, u; R)if X = R. If U C R4 with d € N is Borel
measurable, A is the Borel o-algebra B(U), and © = Ay the Lebesgue measure on
U, we simply write L?(U; X):=LP (U, B(U), Ay; X) and if additionally X = R,
we write L?(U):=L?(U; R). For v € L'(U), we write

1
AW):=— d
(v) |U|/Uv(y) y

for its average value.

Fork e N,1 < p <oo,and U C R? with U € C®, we write WP (U; X)
for the Sobolev space of all u € LP(U; X) such that 0“u € LP(U; X) for all
o € Ng with || £ k, where the norm is given by

lullwerw:x) = Z Haa“HLMU;X)'
lo| Sk

Fors € (0,1) and u : U — X measurable, we define

1
_ P >
s oy = ( / M) =T dy> '
vJu

lx — yI*P

Fors € (0, 00), we define the Sobolev-Slobodeckij space W* 7 (U; X) as the space
of all u € WI1-P(U; X) such thar [0%ulys—1s1py.x) < oo forall a € N¢ with
|a| = |s], where the norm is given by

””“W“’(U;X) = ”””WLSLP(U;X) + Z [aau]stLSJ.p(U;X).
la|=Ls]

For k € Ny we define the periodic Sobolev space H K(T) as the closure of all
smooth v : T — R such that the norm ||v|| g is finite, where

||U||Hk(1r) =/, V) gk

and the inner product is defined as

k

(wr, wz)Hk(T) = Z (3){11)1, 3){ u)z)

2
j=0 LA

for all smooth wi, wy : T — R. We define H *(T):= (Hk(T))/ as the dual of
H*(T) relative to L>(T).
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For s € R\ Z we introduce the fractional Sobolev space H*(T) as the clo-
sure of all smooth v : T — R such that the norm |[v||gs(T) is finite, where

lvll s (Ty :=+/ (v, V) g5 (1) and the inner product is defined as

(Wi, w2) gsqry =y, (14 47) 1 (k) da(k)
keZ

for all smooth w;, wy : T — R, where

w; (k)::% /Tek(x)wj(x) dx

is the discrete Fourier transform with respect to the family (e )<z defined in (2.2a)
below and Ay (229 #
For s € R we write HJ (T) for the space H’(T) endowed with the weak

topology.

2.2. Setting

Suppose that we are given a stochastic basis (€2, F, F, P), that is, the triple
(2, F,P) is a complete probability space and F = (F;);¢[0,7] is a filtration satis-
fying the usual conditions. Further suppose that independent real-valued standard
F-Wiener processes (fx)xc7 are given. For what follows, we write

M(r)::Foz(r), where Fo(r):=|r|% for r e R, 2.1

and n = 1 is a fixed real constant called mobility exponent. Further assume
that o:= (0% )ren 18 an orthogonal family of eigenfunctions for the negative one-
dimensional Laplacian —A = —83 on T (that is, periodic boundary conditions are
employed). Specifically, we introduce the orthonormal basis (ex)2 _ . of L(T)
with

cos (Z5)  fork > landx € T,

21, 't
ek(x).z\/; 7 fork=0andx € T, (2.2a)
sin (%) fork < —landx €T,
so that, in particular,
2k 472k
e = % ey and — 8% = NLZ er for keZ,  (2.2b)
——— —— —
=sign(k)/7x =M
where
4r2k?
M= (2.2¢)

We then write
ox=:vrer withv, € R (2.2d)
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and assume

ngug < oo. (2.2¢)
keZ

Notice that because of (2.2b), this implies that

D okl gy < 0 (2.2f)

keZ

Now, we introduce the H2(T)-valued Wiener process

Wt x):=Y_ ox(x)*() for (t.x)€[0,T]xT. (2.3)
keZ

The stochastic partial differential equation (SPDE) (1.1) thus attains the form

du = , (—Fg(u)agu) dr + Ig 3, (o Fou)) 0 dgX in [0, T] x T

It is more convenient for the subsequent analysis to rewrite this equation using It6
calculus, leading to a stochastic correction of the drift (in the physics literature
sometimes referred to as the spurious drift), that is,

du = [ax (-Fg(u)a)?u) + % > 0 (on F () (okFo(u))):| dr

keZ

+ D O (o Fo(u)) dp* 24

keZ

in[0,T] x T.

2.3. Main result and discussion
We have the following notion of weak (or martingale) solutions to (2.4):

Definition 2.1. A weak (or martingale) solution to (2.4) for Fy-measurable initial
data u©® e L2(Q; H(T; R(J)r)) is a quadruple

[@ Z BB, Bowes @, i}

such that (Q, F, F, P) is a filtered probability space satisfying the usual conditions,
i is fo measurable and has the same distribution as u(?, (,Bk) kez are indepen-
dent real-valued standard F-Wiener processes, and # is an F- adapted continuous
HW(']I‘) -valued process, such that

(@) Esup, <7 1201317, < 00
(ii) For almost all (@, ) € € x [0, T'], the weak derivative of third order 83 I exists

on {u(t) # 0} and satisfies ]E||1{M#O}Fo(u) a3 u||L2(Q ) <
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(iii) For all ¢ € C*°(T), dP-almost surely, we have

@), p)r2my = (ﬁ(o), <P)L2(T)
t
4 / / R () (330" (o) dr dr’
{a(t")>0}

——Z / (ox F(@(t')ox (01 Fo@(t"))) . :0) 2y dt

keZ

- / GLFO((1). 84¢) 2y B (1) @5)

keZ

forallt € [0, T].
The main result of this paper reads as follows:

Theorem 2.2. Let T € (0,00), n € [3,4), p > n+2 g > 1 satisfying

q = max{4ln e 5} Suppose that

u® e Lp (sz Fo. P; Hl(’JI‘)>

such that u® > 0, dP-almost surely, IE|A(M(0))|2PII < 00, and
E ” Go ( (O)) ”LI(T) < 00. Then (2.4) admits a weak solution

[@ 7 5B, Bower, @,

in the sense of Definition 2.1 such that i = 0, dP ® dr ® dx-almost everywhere.
This solution satisfies the estimate

B[ sup fo, AN 2y + sup G0 G ) + 11 Tia-0 12 (FD]2 0,

t€l0,T]
_112rq ]
u
ez

< CIE|:1 + ‘.A(u(o))‘z +|Gow |

©© ‘

2.6
Ll(’]I‘) Lz(’]I‘)] (2.6)

where C < o0 is a constant depending only on p,q,c = (0k)kez.n, L, and T.
Moreover,

Y

iie LV (Q,F, P, C57(0r), forall ye(0,1) and p/e[l Z—P)

The proof of Theorem 2.2 is given in Section 5.2 below.

Theorem 2.2 is a global existence result for weak solutions to the stochastic thin-
film equation (2.4) for arange of mobility exponents, including the cubic onen = 3,
corresponding to a no-slip condition at the substrate of the underlying stochastic
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Navier—Stokes equations (see [13] for details on the modelling and a non-rigorous
derivation). Therefore, Theorem 2.2 in particular applies to the physically relevant
situation considered in [13]. We expect that the limitations n = % andn < 4 are due
to technical reasons and that these restrictions can be potentially removed in future
work by making use of so-called a-entropies as first introduced in [1]. Similarly,
upgrading Theorem 2.2 to cover higher dimensions, as done in [11,32], would be
an interesting direction for future research. Notably, our solutions are non-negative
as in [21] but since ||Go (@ (2)) || 1.1 (T is dr ® dP-almost everywhere finite, by (1.2)
it holds [{zz(t) =0} = O for all t+ € [0, T], dP-almost everywhere. Since the
arguments in [21] are purely energetic, the support of the initial data in [21] is not
necessarily T and in general this is not the case for the corresponding solution of
the SPDE, either. We expect that it is possible to overcome this constraint also in
the situation of this paper by using a renormalization technique, which will be left
as an endeavour for future research, too.

3. Galerkin Approximation

In this section, we use the definitions and assumptions of §2.2.

3.1. Setup

We write Vy = span{e_y, ..., ey}, where the (e;) jcz are defined as in (2.2a),
N e N, and let Ty : L>(T) — Vy be the orthogonal projection given by

N

Myv= Y (v.¢j)qej forany veL*(T). 3.1)
j=—N

It is immediate from (2.2b) that 8%1'[ Ny = Iy 8%. Furthermore, we obtain for any
v € L?(T) through integration by parts and with our specific choice of eigenfunc-
tions,

N N
Iy (9xv) w Z (3xv’ej)L2(1r) ej =— Z (vvaxej)LZ(T) €j
j=—N j==N
(2.2b) al —2mj  (ab) N
= Z (v’e_j)Lz(’]I‘) L % = Z (v’e—j)LZ(T) dxe—j
j=—N j=—N
=9, (Myv). (3.2)

Let g : [0, 00) — [0, 1] be a smooth function such that g = 1 on [0, 1] and g =0
on [2, 00). Further define gr(s):=g(s/R) for s € [0, 00) and set for ¢ = 0

n

F.(r).= (r2 + £2> Y forr e R, 3.3)

where n > 0 is constant. Notably, for ¢ = 0 the definition (3.3) is consistent with
the corresponding expression in (2.1), but we will assume ¢ > 0 and thus that Fy is
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smooth with Fy(r) = ¢ forall » € R until §5. We consider the Galerkin scheme,
that is, the finite-dimensional stochastic differential equation (SDE)

due gn = Ty [3y (= F2(ue,r.N)33 e p.n)] dt

1
58k (e ooy ) v {Z ch (akFg(ug,R,N)ax(okFg(us,R,N)))} di

2 keZ
+8r (”us,R,N HLOC(T)> My |:Z x (0% Fe(ue,r.N)) dﬁk:| . (34
keZ

The approximation in (3.4) is three-fold. While applying the projection Iy yields a
finite-dimensional SDE, additionally the mobility FO2 isregularized with F, 82, so that
the limiting equation as N — oo is non-degenerate if ¢ > 0. For technical reasons

in what follows, we also cut off the noise with the pre-factor gg (H Ug RN H 100 (11‘))'

Notice that (3.4) is equivalent to the system on RZV+!
dy =[A1(y) + Ax()1de + Y BX(y) dB* (o), (3.5)
keZ

where, with the short-hand notation vy (x) = Z}V:f v Y ej(x) fory e R2NHL

N
AL = [ F2wy) Y. yiole;. e :
j=—N LZ(T)
: 1
20 = =& (Ivyll=cm) (Z ok FL(vy)0y (04 Fe (vy), am) :
keZ LZ(T)

B*(y) = - (gR (|| vy ||Looar)> ok Fe(vy), axei)Lz(’]I‘) '

Let us consider on R?¥*! the inner product

N
1.2 JJ
) = E Aj )
(y y )A ' iyiya
J=N

and denote by || - ||, the corresponding norm. By (2.2b), it is easy to see that for all
y € R2V*1 we have

(A1(0), )5 = =1 Fe(0y) 33 vyl 2(r) < 0.

In addition, because of the truncation in R and the finite dimensionality, it is easy
to see that there exists a constant C = C(R, N) such that for all y € R2N+!

o0
1A lx+ Y IBF»I; £ .
k=1

This shows that the system (3.5) is coercive, which combined with the local Lip-
schitz continuity of the coefficients implies that for any JFp-measurable random
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variable in R*M*! | there exists a unique solution of (3.5) starting from yy. In par-
ticular, (3.4) has a unique solution starting from ug\(,)):zl'l ~u'@. Finally, notice
that with (3.2) it follows that (3.4) is still in divergence form so that in particular
Aug, g N(1) = A(ue, g N (0)) forany r € [0, T].

3.2. Energy estimate for the Galerkin scheme

Lemma 3.1. Suppose p € [2, 00), u® e r (Q Fo, P: H! (T)) and n > 0. Let
ue RN be the unique solution to (3.4) with initial data uN) Then ug g n satisfies

E SuP |Bxe, r,n (2) HLZ(’]I‘) ‘ L2(07)

< p
= C< ) (3.6)

where C < o0 is a constant depending only on g, R, p, 0 = (0k) ez, 1, and T (but
noton N ).

©) ‘
X

Proof. For convenience, we drop the dependence on ¢, R, and N in the notation
and simply write u and y, (¢):=ggr (||u(t) ”Loo(']r)). Applying 1t6’s formula to (3.4),
we have, dP-almost surely,

1 . 2 1 p 2
5 deu(t)”Lz(’I[‘) -3 ||axu(0)”L2(T)

=- /(;t (3xu(t/), Oy (HNax (Fsz(“(f/))a;”(t,)>))LZ(T) d’

+5 Z / Vi (@) (8xu(t"), By (TN By (ox FL ()3 (0% Fe w(t'))))) 12, &’
kEZ

+= Z / 2@y || 8y (T dx (ox Fe(u(r'))) ||L2(T)
keZ

+Z/ Vu(t') (cu(t’), 0x (Mydx (ok Fe u(@)))) 21 apka’

keZ
for all + € [0, T']. Since Iy is an orthogonal projection, it furthermore holds
(v, Myw) 2y = TIyv, w)2T) for any v, w € L%(T). Since Myu = u and
ITIvvllL2ery = IVl L2(r) for any v € L?(T), we obtain with the help of (3.2) the
simpliﬁcation

O ‘

1
2 1°
< —/Ot (axu(r’),af (Fg(u(t’)) agu(z’))) 27

+5 Zf 7 (@) (). 87 (1 FL @) 0y (ox Few(@)))) ,  df

2
keZ L5

+Z/yu

a ”a M(t)||L2(T) LZ(T)

t/

Harwo)|,
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t
2 k
+y /0 vu@) (e, 0% (or Fewa)) |, - a5,
keZ
Integration by parts gives for the terms to the right of the inequality

2
LA(T)’

Fe(u) d3u

2 2 3 —
(axu, 52 (FE ) axu))u(m =
% / (1) (ok F (1) (0 Fe (1)) dx

T
[ o (—%(F;P(u) @w?+ (%) w (Bxu)4> dx
+ 3y 2 (LFSZ/// +i Fs/z/ >3x 3d
[ (o)) (F5r2" w0 + 5 (#02) @) o a
+ /T (22@D) (FFED2 @ + F(F ") @x)? dx

-5 L (skep) P2anas,

1 2
5 /T (af(okFg(u))) dx
/ o} (% (FD2() (92u)? + (%(F!)Z(m — (2 (u)) (Bxu)4) dx

% /’Jr (3:0P)) (FD?) @) @ e

+ [ (@vo? = 20 @30 (FLP @ @ ax

1 4 2
+ ok (0yox) Fg(u)dx,
2Jr

/(axu)ax2 (0% Fe (1)) dx =/ ok Fe(u) 03u dx,
T T

so that we can infer that

1 2 1 2

5 Haxu(f)”Lz(T) -3 ||axu(0)”L2(T)
2

L2(Qr)

1 t
+e Z/ yuZ/ o (F[)?(u) (9yu)* dx dr’
kez’0 T

T Z/tﬁ/ (axo)) ((Fz)”'(u)+4((F’)2>/(u)> (@xu)® dx d’
16k 7, 0 u T k € 3

+iZfl 2 [ (8 (@on? - anteon) 2w
16keZ0yM'ﬂ‘ wok A
+(226%) (P @) (xw? dx dr

1 t
+ Z/ yMZ/ (4ak oy — a;‘(akz)) F2(u)dxd’
8 (/0 T

t
+Z/ yu/ ok Fe(u) 33udx dBX (t)).
kez’0 T

< — || Fe(u) 83u
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For j, £ € Ny with j + £ < 4 we have

) (2.22),(2.2b),(2.2d) o i+t

J 5 (3¢ 2
> (a"“")(axm‘)umm) S
keZ keZ

2 2.2¢),(2.2
ZZ<1+A§)U,§( 98229 o
keZ

This and our control of [u|| ;T via the cut-off function y, imply, together with
(3.3), that

A

1 2 1 2
— _ (0)
3 N1y = 5 o,
3 2
< — ‘ Fe.(u) BXM‘ 200
t

t
+C8,R,0',n (l +/ )/,3/ ((8Xu)4 + |3xu|3 + (8)(”)2) dx dt/)
0 T

t
+Z/0 yu/Tak Fo(u) 83udx dgk().

keZ

Now, note that |8xu|3 < %(axu)4 + %(8xu)2. Furthermore, if 3, > 0, then we have,

through integration by parts, that

3
/(8xu)4 dx = —3/ u(@u)?9%u dx = ——/(8Xu2) (1) 02u dx
T T 2 Jr

3 3
= —/Tuz (8?14)2dx—|—§/u2 (0xu) 83udx

2
dx) < CR/ |01
T

T
Cr (/(aﬁu)de/ 9l
T T
+ Ce. R Yu l19xull T,

A

u 33u|dx.

Consequently, by Young’s inequality, we have

2
83 u
L2(T)

8"
Ce.R,00n Yu f(axu)4 dx < —
T 2

so that

1 2 1 ! 2 3.5N2
3 10xu )17 27y + Z/O /11‘F8 (u) (07u)” dx dr’

1 2 !
< - C F.(u) 3udx dpk(’
=3 LZ(T)+ &,R,o.n +I<EZZ/(; Vu/]rgk e (1) uax B (")

s

t
2
+C6,R,o,n/ ” axu(f/) ” dr’.
0
Let us set
t
T, = inf {t =0: ||3xu(t)||iz(T) +/0 AFf(u) (E);u)2 dx dt’ > m} AT.

By replacing ¢ with ¢ A 1, in the above inequality, raising to the power g, taking
expectations, and using Gronwall’s lemma, we conclude that
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E sup [l9:u(®)l}

3 P
t€[0,7,] M tE H Hom Fe o) 8XM”L2(QT)

AT
S Cerpont | 1+E|0u® 2my TE sup / /crkF(u)a udx dgF (z) ,
L2(T) telo, TJ ez
3.7
The Burkholder-Davis-Gundy inequality and the Cauchy-Schwarz inequality im-
ply
B
AT
Ce.R,pon,TE sup / / o Fe(u) 8 udx d,B
t€l0,T] ke,
P
2 3
< CstonTE<Z/ Vi </ okFg(u)agudx> dt’)
kel
(2.26) I ) 3 ) Z
g Ca,R,p,o,n,T E </ Yu / Fg (u) (axu) dx dt )
< Conpont + 5 B |NomFe@ dul,
L2(0r)’
which shows that the last term at the right hand side of (3.7) can be dropped. The
claim then follows by letting m — 0o and using Fatou’s lemma. O

3.3. Passage to the limit in the Galerkin scheme

Let us consider the equation
— 2 3
dute, = Oy (= F2(ue,0) 93 v )

1
3 22 8k (futeurl e ) 05 (00 F, e, r) D (01 Fi e )

keZ
+ Z 8R (”ué‘,R ||L°O(T)) (ax (UkFa(Ma,R))) dIBks (38&)
keZ
ue.r(0,) =u?. (3.8b)

Definition 3.2. Let R € (0, co]. A weak (or martingale) solution to (3.8) is a
quadruple

[@ 7 8. B), Borez, i, iic.r)

such that (Q, F, T, P)is a filtered probability space satisfying the usual conditions,
4 s ]—'0 measurable and has the same distribution as u (¥ (ﬂk) ez are independent
real-valued standard F-Wiener processes, and i, g is an IF- adapted continuous
H'(T)-valued process, such that
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(i) E||ﬁ5’Rl|iw(0,T;Hl(T)) < oo and for almost all (&, 1) € £ x [0, T], the weak

derivative of third order 83 ile, g exists and satisfies
B[\ Feiie,g) 0301e,817 2, < 00
& £, xYe, LZ(QT) ’

(ii) For all ¢ € C*°(T), dP-almost surely, we have

(ﬁa,R ®, (P)Lz (T)

t
= (2@, F2(iie. r (1) (3300, (1)) (9x9) dx df’
(5.0) o+ | /{MWO} 2 k1) (032 5(0) (Brg) d dr

1 t
-3 /0 &k (e | o)) (04 FL Gt r () (01 Fo it 1)) 0:0) 2y A1
keZ

t
- k% /0 8 (e, o)) (04 Fee r (@), 8:6) 2y 4B (1)

forallt € [0, T].

Remark 3.3.

1. Note that Definition 3.2 covers also the case that the cutoff by gr is not active
— just by formally setting R = oo.

2. (Mass conservation) In the situation of Definition 3.2 by setting ¢ = 1 in (ii) it
follows that

/ fe.r(f, x)dx = / i9x)dx=:LAG®) for 7€[0,T], dP-almost surely.
T T

Hence, by Poincaré’s inequality there exists a constant C; < oo, only depend-
ing on L, such that we have

lite. k] 2y S Co (0ite. k)] 2y + IAG)] ) fore € [0, T1, (3.9)

dP-almost surely.

Proposition 3.4. Forn € (0,4], p = n+2, and u® e L? (Q; 7o, P; H'(T)),
problem (3.8) admits a weak solution in the sense of Definition 3.2.

Proof. Let (2, F, F, IP) be afiltered probability space carrying a sequence (,Bk);il
of independent F-Wiener processes and on this probability space let u, g y be the
unique —probabilistically— strong solution of (3.4). From now on, since ¢ and R
are fixed, we drop them and we write u y instead of u, g n in order to simplify the
notation. By Lemma 3.1 we have that u satisfies the bound

p
E sup [0 un ()]
t€[0,T]

<C, (3.10)

14
L%(T) t+E ‘ L2(07)

Foun)dun|

where C < oo is independent of N. Let us introduce the notation

Yw(®):=gr (lw(®)|loo(T)), and let us decompose uy as uy = u%) + ug\%), where

u(l)(t)'zu(o)_}- 18 (l'[ (_Fz(u (t/))83u (t/)))dt’
N D)=y , U e VN xIN



DAREIOTIS ET AL.

+3 Z/ Vi, (t) 0y (TIy (0x FL (un (1)) (0% Fe (un (t))))) de’

keZ o
and
>(r)—2/ Vin () 8y (T (0 Feun (1)) dB (2,
keZ

(recall that we can interchange the projection operator and the derivative by virtue
of (3.2)). Letx € (O ) such that ¢ > - By Sobolev’s embedding and Young’s
inequality, we have

sup E ‘ )H
NeN wer(0,T;H- l(11‘))
<coms|i]
NeN W12(0T H-1(T))
2
< C su EH © —HE‘ (un)du ‘ )
- Ne%< L2(T) SR FETE )
+C sup Y B o FL(un)ds (0 Feun) | 720,
NeNkeZ
2
(| )
LAD  NeN L2(Qr)
2
+C sup ) B |lox F (un)dx 0k Feun) | 129,

NENkeZ

(3.3),2.20) i
S C{l+supE sup [lunllyiiy,

NeN t€[0,T]
n+2 3.10
+C sup E G2 )
NeN L2(Qr1)

where we have used 2n — 2 < n + 2. By [16, Lemma 2.1] we get

T

(2) p
su E‘u H SCsu/]Eu t dr
e L = Sl

(3.10)
<Csup sup E IIuN(t)IIH](T) < 00.
NeNte[0,T]
From these two estimates we have that
SupE”MN”W(xp(OTH l(T))ﬁLOC(OTHl(T)) < OQ. (3]1)

NeN

Let us set

By=Yy 27 M @) «,

keZ



Non-negative Martingale Solutions to the Stochastic Thin-Film Equation

where (e)kez is the standard orthonormal basis of ¢2(Z). We now fix s € (3, 1).
By [48, §8, Corollary 5] we have that the embedding

wer (0,7 BTN D) A L% (0,73 HI(D)) < € (10, T1; B (D)

is compact. Combining this with (3.10) and (3.11), it follows that for each § > 0
a compact set Ks C Z:=C ([0, T]; H*(T)) x Y x 0%(Z) exists, where ) denotes
the linear space L (0, T; H3 (']I‘)) endowed with the weak topology, such that

sup P{(un,un,B) € Ks} =2 1-36.
NeN

By [35, Theorem 2] (ProkhorovA’s thAeorem fgr gon—metric spaces), there exist
Z-valued random variables (y, 0N, Bn), (1,0, B), for N € N, on a probability
space (€2, F, P) such that in Z,

(lin,On, By) = (4,0, B) as N — oo, dP-almost surely, (3.12)
and for each N € N, as random variables in Z
(@n, On, BN) ~ (un, uy, B). (3.13)
It follows that

Oy =iy and 6 =i. (3.14)
We set 1©:=1(0, ). Let F = (]—A'[),E[oj] be the augmented filtration of

Gii=o (i), B’y 1)
and let

B =21 (B0, et) 2z

It follows that Bk, k e Z, are mutually independent, standard, real-valued
.7-} -Wiener processes (see, for example, [21, Proposition 5.3] or [10, Proof of Propo—
sition 5 4] or [17, Lemma 5.7]). We claim that the probablhty space (Q .7-" IF P)
with F: fT, together with the Wiener processes (,Bk) rez and the process i set up
a weak solution of (3.8a).

Notice that Definition 3.2 (i) is satisfied because of (3.10), (3.12), (3.13), and
Fatou’s lemma. Hence, we only have to prove Definition 3.2 (ii) and the continuity
of & as a process with values in in H L(T). Let us set

M, 1):=ii(t) — (0, ) — /0, (ax (—Fﬁ(ﬁ(r’))agﬁ(z’))) dr’

+5 Z/ 2(t') (9 (ox FL(()) 0 ok Fe ((t'))))) d

keZ
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and for v € {ay, uy}
t
My (v, £):=v(t) — v(0) — / My (ax (—Ff(v(t/))agv(ﬂ))) dr’
0
1 ' 4 ’ / / /
T3 gzz/o y2 (T (3 (or FL(u(t')dx (0 Fe (v(t))))) dt’.

Fix an arbitrary / € Z. We will show that for any ¢ € H~!(T), the processes

M (@, 1):=(M (@, 1), ) -1 7,

t
M@, 1):=(M (@, 1), )10y — /0 y2(t') (3 (0 Fe@(t')) . ¢) 3oy 47,
keZ

t
M@, 1):=p (M@, 1), ¢) g1 (1) — /O va(t) (3x (o1 Fe(@t"))) s 9) 11,y dt”

are continuous ﬁ,-martingales. We first show that they are continuous
G;-martingales. Let us further assume for now that ¢ € |Jyey Vi, and for i =
1,2,3and v € {uy, iy}, let us also define the processes M};,(v, ) as M (a4, 1), but
with &1, M (i, t), 0y (ox Fe (1)) replaced by v, My (v, t), I1y0y (o} F(v)), respec-
tively. Let us fix 7 < ¢ and let ® be a bounded continuous function on

c ([0, 1; H’l(']I‘)> x C ([0, 1; 62(2)) .
‘We have that

t
(My Gy 0. @)1y 2y /0 Y (") (T B (03 Fo e (1)) 9) o1 oy 4857,
keZ

It follows that the ij (un, t) are continuous F;-martingales. Hence,
E [ @@l Bl (M. 1) = Miy(uy. )| =0,
which, combined with (3.13), gives that
E[®inlo,01. B o) (M (i, 1) — MiyGiin, 1)))] = 0. (3.15)
Next, notice that since ¢ € Vy; for some M, we have, forall N > M,
t
2.7 / 3A / /
| (o (<r2Gn@nain) o),
T
- / / Lo (1) F2(n (1) @3 (1)) B (1 — &) g dx dr'
0 T

By (3.12) we have that dP-almost surely iy —d HC(QT) — 0as N — oo, which,

in particular, implies that, dP-almost surely in L2(QT),

]l[()’,]FEz(ﬁN) — ]l[o’,]Fsz(ﬁ) as N — oo.
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Since in addition from (3.12) and (3.14) we have that, dP-almost surely in LZ(QT),
iy — 9’0 as N — oo,
one easily deduces that for each ¢ € [0, T, dP-almost surely,
(MN(ﬁN, 1), ¢)H*1(11‘) — (M(ﬁ, 1), QO)H*I(T) as N — oo. (3.16)

In addition, we have

. 2 . ~1 \?
7, (Tnds (0cFe (i)« 0) 3oy = Vi (okFe (in) o1 = 2)70) .

which combined with (3.12) (uniform convergence in (¢, x)) implies that, dP-almost
surely as N — oo,

t
/0 y2, @) (My s (0 Fe (in (1)) @) 31y A

! 2 / Al -1 2 /
»/0 72, @) (o Fe () 0 = 279, i

L%(T)
t
= [ 7.6 G P 00) )

Hence, we have in particular that szv(ﬁ N.1) — M?(i,t) as N — oo in prob-
ability. Similarly one shows that M13v (iy,t) — M?3(@,1). Therefore, for each
t € [0, T] we have that ij(ﬁN, t) — M (a,t) in probability for i e {1,2,3}.
Moreover, for q::%” > 2, we have that

~ " q
SUPE (MN(MNvt)» gD)H’l(T)‘
NeN

q
=sup E
NeZ

Z/ 72, @) (o Felun @), 01 = A7) | dB*()

L%(T
keZ M

[

<cC supE(/O ZVMN(I)(UkF (un(), 0c(I — A)~ lfp))Lz(T) )

NeN k=1

<cC (Z ||ak||L2(T))
(3.10)

(2.2¢) -
< Cc|1+swpE sup ””N(I)”HI(T) =%
NeN te

1
U . (1+;ng||uN||Lm<QT)>

where in the last step we have used % = p, Sobolev’s inequality, and (3.8a)
combined with conservation of mass. Similarly, for q::%p > 2,

q

supI@l(Z/ )/A (") (3x (ox Fe(iin (1)), ) -1(T) )

NeN keZ,
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%
§CsupE<Z/ 72, (o Feun @), 01 = 2)7') zmdf)

NeN keZ,

(22¢) (3.10)
< C(1+supE sup HuN(t )”Hl('ﬂ‘) < 00,
NeN  1€[0,T]

from which one deduces that for eachi = 1,2,3 and ¢ € [0, T, the M’ (u N, 1) are
uniformly integrable in & € 2. Hence, we can pass to the limit in (3.15) to obtain

E [@(ﬁ“o‘l/], /§|[0,t/])(Mi(ﬁ, f) — Mi(l:i, l/))] =0. (317)

In addition, using the continuity of M (i1, t) in ¢, the uniform integrability in Q,
and the fact that | J Vi is dense in H ~1(T), it follows that (3.17) holds also for
all g € H™ I(T). Hence, for all ¢ € H™(T), i = 1,2, 3, one can see that the
M (i1, t) are continuous G- martingales having finite —-moments where ¢:= —2”
In particular, by Doob’s maximal inequality, they are uniformly integrable (1n

€ [0, T]), which combined with continuity (in ¢t € [0, T]) implies that they
are also ﬁt—martingales. By [33, Proposition A.1] we obtain that dlP-almost surely,
forallp € H-'(T),t € [0, T,

(@@, (p)H*I(']I‘)

= (a(0, .),¢)H_1(T)+/t (o (~FP2@aa3aa)) 0) |\ dr

L(T)

+> Z/ v (1) (0 (0x FLG@ () 0k Fe(@(t)))) s @) gy oy At

keZ

+) / Va(t) (3x (ox Fe(@(t"))) s ) 1,0y 4B (1) (3.18)

keZ

Choosmg p:=( — A)¢¥ in (3.18) for v € C°(T), we obtain that, for
dP ® dt-almost all (o,1) € & x [0, T],

@@, ¥) 2y = @O ) gorny + / (F%u(t NI, B w) dr’

L(T)

1 t
-3 / Vi () (0x FLG) 03 (0 Fe (1)), 95) 2y i’
+Z/ Vi (") (01 Fe (@(t')), 0 oy dBE (1),

keN

By [41, Theorem 3.2] we have that i is an ]ﬁ‘-adapted coptinuous L2(']I‘)-Valued
process and therefore the above equality is satisfied dP-almost surely, for all
t €[0, T']. Moreover, from the above and the fact that i satisfies Definition 3.2 (i),
it follows that for all ¥+ € C*°(T), for almost all (@, t) € Q x (0, T), we have

t
(axﬁ(t)v W)LZ(T) = (axu(0)7 w)Lz(T) +1) Hfz(T) (U*(t/), ¢>H2(11~) dt/
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+ (M(I;, t)’ I/I)LZ(T) )
where
vi=A (—Ff(ﬁ)aﬁﬁ)
is a predictable H ~2(T)-valued process such that v* € L2((0, T); H2(T))
with probability one, M (i, -) is an L?(T)-valued martingale, and the duality
between HZ(T) and H2(T) is given by means of the inner product in L2(T).
Hence, 3,1 also satisfies the conditions of [41, Theorem 3.2] with the choices

V = H*(T) and H = L*(T). Consequently, d, 1 is also continuous L2(T)-valued.
This finishes the proof. O

4. A-Priori Estimates

In this section, we use the definitions and assumptions of §2.2.

4.1. Entropy estimate

For r € R, let us set

G.(r) fwfw—l dr”dr’ d H.(r) /Oo—l dr’ 4.1
r) = r'dr- an r) = r, .
’ r e F207) ‘ r o Fe(r)

where F, (r) was introduced in (3.3). We collect some properties of Fy, G, and H,
that we will need later on.

Lemma 4.1. Let n > 2. Then there exists a constant C, < 00, only depending on
n, such that for allr € R and all ¢ € (0, 1) we have

lIn Fe ()| = Cp (Ge(r) + Irl + 1).
Proof. Suppose first that » = 0. We have

33)
n Fe(r)] = 7

C, (r+£+(r+s)2_"+l).

‘m (r2 + 82)‘ < % (In2+ 2 |In(r + &)|)

A

Then, notice that
o o0 oo 1 Yo 4.1)
(r+e¢) =mn-10n-— 2)[ / mdr dr’ £ C,Ge(r), (4.2)
r r!

since (r" +¢)™" < ((r”)2 + 52)_% = F2(r"). This proves the inequality when
r 2 0.If r < 0, let us first consider the case r2 4 g2 = 1. In this case, we have

(3.3)

n n
I F)l = 7 [in (2 +e?)| £ Zindiri+)7 < 2 (irl+e).

n
4
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due to ([r| +&)> = r2 + &2 > 1. This again shows the desired inequality. If
0 <r2+4¢62 <1, then

B3y
[In F.(r)] < —‘lns ‘<C "< C, / / —dr”dr
(r//+8)n

@.1
§ C,G:(0) § CnGe(r),

since G, is decreasing. This finishes the proof. O

Lemma 4.2. Let n > 2. Then there exists a constant C,, < 00, only depending on
n, such that for allr € R and all ¢ € (0, 1) we have

HZ(r) £ CuGel(r).

Proof. Let us first look at the case r = 0. We have

(33 00 1 2 2%+2
H(r) £ 28 ( [ —— dr’) = et
. o) =2

ppon =1
<22 — f / — — dr"
n 2 / (I" + 8)

(3.3)

22+2”

G (), (4.3)

where for the last inequality we have used (4.2). Hence, we only have to check the
case r < 0. In this case we have

0 (3.3)
H,(r) = / o) dr’ + H.(0) < 2H.(0)

since F; is even. Therefore,
n —1
H2(r) < 4H2(0) £ 255G (r),
n J—

where we have used (4.3) and the fact that G is decreasing. This finishes the proof.
O

Lemma 4.3. (Entropy Estimate) Suppose thatn € (2,4], T € (0,00), p = 1, and

u® eLr (Q; Fo,P; H! (T)). For a weak solution of problem (3.8) in the sense of
Definition 3.2 it holds that

2p
E sup “ Ge (u€ R(t))”Ll(T) ue R‘ L2(07)
<ck (HG ( “”) ) . ‘A (ﬁ“”)(zp n 1) , (4.4)

where C < 00 is a constant depending only on p, 0 = (0k) ez, and T .
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Proof. For the convenience of the reader, we simply write & instead of i, g. By
1t6’s formula [42] we have

/Gs (a(1)) dx (3‘8"‘)/ G. ( (°> dx+/ /G’/(u)Fz(u)(Z)Su)a i dx df’
T

+5 Z/ V‘/ .« (0% FL(it) 0y (03 Fe (1)) dx dt’

keZ

) Z/ Vu/G”(M) Ox (o Fo()))” dx di’

keZ

+Z/ yufG (@) (. (or Fe (@) dx dB* (1),

keZ

dP-almost surely, where y;(1'):=gx (Hﬁ(l") I} o (T))’ so that after integration by
parts we get

/Gs (i(1)) dx (‘2’/ G () dx / /(azu)zdxdt
T T

+5 Z/ Vi /(8 Gk)F 1(”) (8 (ox Fe (H))) dx dr’

keZ

—Z/ Vi /akF L(@) (9ei1) dx dB* (1), (4.5)

keZ

dP-almost surely. Then we have for all § > 0

3 / (0c00) (@) (9 (0 Fe (@))) dx

keZ
—Z/(a o)t dx — = /(32 ) In Fo(4i) dx
keZ keZ
22 "
< Cos ( (T)) +8 ]l -

where for the last inequality we have used Lemma 4.1. Moreover, since 9, has
zero average, we get from Poincaré’s inequality using conservation of mass (cf. Re-
mark 3.3),

[a®)] 2y < Co (10O oy + fr i) dx])
< ¢ (|02 o, + 1AG)).

Consequently, for any § > 0 we have

/ (dc0ox) Fy 1 (@) (3x (0x Fe (4))) dx
keZ
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A (0) 2 A
< Crios (14 [AGO| + [ Ge@)] 1,

2
u ’
iz

Using this in (4.5), choosing § > 0 small, rearranging, and taking the p-th power

gives
. 2p
|Ge@N71 i, + 07 ”L2(Q,) S CLrop (HG ( (()))HL‘(’H‘) ‘A(u(")) + 1)

1, /0 [Ge |2y '+ Cp ML,

dP-almost surely, where

M():=~ Z/w/@memmwa>

keZ

is the martingale from (4.5). Notice that G, (u(¢)) is a continuous L' (T)-valued
process and let us set

T = inf{r > 0 |G 111 +/ 10201125 ry A’ > m} AT,

Taking supremaup to 7,, At’, for ¢’ € [0, T],in the above inequality and expectation,
we obtain by virtue of the Burkholder-Davis-Gundy inequality
%0

X

1) sup HG (u(t/\rm))HLl(T)—i-E
te[0,t’

< i (Jo )]

¢

+c,,fEf0 |Ge@t” At 71 dt” +Cp (M )m (4.6)

Lz(Qt ' Nem)

‘A(ﬁ(‘)))‘ + 1)

LY(T)

Next, by integration by parts, we have

ATy 2
' AT =k (Z/ Vi </ (dyox) He (i) dx> dt”)
keZ
(22) t' Aty
= C < / / (He () dx dﬂ’)
keZ

By Lemma 4.2 we see that

N )3 R N A 2
EM)/ s, S Conll ( fo |G @D 1, dt”)

~

(M) ?

N\'w

[S13S]

< Conpr (1 +1E/ |Ge@” At 1) dt )

Using this and rearranging in (4.6), we have the desired inequality by virtue of
Gronwall’s inequality and Fatou’s lemma. O
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4.2. Uniform energy estimate
The following auxiliary result is convenient for deriving an energy estimate.

Lemma 4.4. Fore € (0, 1), n € (2, 00), and r € R we have

1+ |r" 3 ifn >3,
‘/ (F*(rydr'| £ C, {Co (1+|r|l’+G}Z(r)) ifn=3 4.7)
14+ G2 (r) ifne2,3).

for any v > 0, where C,, < 0o only depends on n and Cy only depends on v.
Proof. First note that

Flr) 2 2702 + 625!

F/(r) =202 +eH)i™ —l—n(% — 2% +e?)i7?

2
so that because of —"— < 1 we have

(FY(r) £ Cu(r? +6H372

This implies

r r 1 n—3 if 3,
[ e sc [ortarse T T oz,
1 1 Inr ifn =3,

r 1 1 n=3 if 3,
/ (FY2(rydr'| < Cn/ ¢ *dr' £ ¢, { T ifn# fore <r <1,
1 r

—Inr ifn =3,

r 1 e
/ (Fg//)2(r/) dl’/ é Cn (/ (r/)n74 dr' +f 8n74 dr’)
1 £ —&

14+6"3  ifn#3,
—Ine+2 ifn=3,

A

for —e <r<e,

r & —r
‘ f (FY*ohydr'| £ C ( / (" *dr + / " dr + / 0 K dﬂ)
1 & —& &
L3 4 |r "3 ifn # 3,
<C, ) forr < —e,
—2Ine+2+1In(—r) ifn =23,
so that, because of ¢ € (0, 1),
. ) |r|"73 ]l{ng} +1 ifn > 3,
‘f (Fg”(r’)) dr’'| £C, {In|r|| ]l{ng} + (0 —=Ing)l<g ifn =3,
. Z

(1 + |V|"_3) 11{@8} + (1 + 8”_3) Ly<ey ifn <3.

Furthermore, notice that

G.(r) (41)/ / dr dr” > / /°° dr” dr’ > €2
(l’”)z N &2 r'"Hn

I\/
M\:
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for r 2 ¢ and

Ge(r) _ gz_n /‘OO /00 dr/ dr// Q - gz_n /OO /‘OO dr/ dr// ﬁ
c ! ((,,//)2 + 1)2 1 » ((r//)z + 1)2
> Cpe?™" forr < e,
so that we may infer that (4.7) holds true. ]

Lemma 4.5. Fore € (0, 1), n € (2, 00), and r € R we have

14 |r|"2 ifn €[3, 00),

'(Fg O (ET) O H G . 39,

where C,, < oo only depends on n.

Proof. We compute

(D2 ) 5 2 (2 4 )52
which implies that

<(FE/)2>/ (=" + 2772+ Y (o ki

‘((Fgﬁ)/ ")

Furthermore,

so that

< Cr (4 e)i 2L G0+ )T

(F2 () =nr (7 + 77!
which gives
F2') =n@?+e)2 +nn—2)r2 (2 + 65272
and
(F2)"(r) =3n(n = 2)r (2 + &322 +n(n = 2)(n — 4 r* (4677,
whence

(P 0] £ Cutr? + 607

Because of (r? + 82)% < C, (1 + |r|”_3), the first part of (4.8) is immediate.

Forn € (%, 3) we use

(r? +8)2 (n—2)/ (r) +s)2dr/<(n—2)/ (r) +8)2dr

=(n—-2)(n— 1)/ f (" + &2 )’Tdr”dr/

e ’ g @D
< (n—2)(n—l)/ / 7 //)d &= -2 (= 1) Ge(r),

so that (4.8) also holds true in this parameter range, too. O
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Lemma 4.6. Suppose n € [$,4), T € (0,00), p 2 1,
u® e LP (2 Fo. B HU(D)),

¢ € (0,11, and let ¢ > 1 such that ¢ = max {ﬁ, 2"n:25 } Then, for any weak

solution of problem (3.8) in the sense of Definition 3.2 it holds
Folite,p) 03ite 1|

P
LZ(QT):|
p
LZ(T))

A ~ p
+C <Etes[lé’pﬂ ” Ge(itg, (1)) “LI('IF) 1[%’3] () +

. . p
: |:tes[3.pT] | 0xcite, r (0) ||L2(T) + ‘

<ch (1 +1AGOIT + H 9,4©

2 A
Bxus,R

2pq 4.9)
L2n )’

where C < o0 is a constant depending only on p, q, 0 = (0x)rez, 1, L, and T.

Proof. For convenience of the reader, we write i instead of i, g. By It6’s formula
(see, for example, [42]) we have

1 N 2 (3.8a)1 2 ! 2 A 3 A2 ,
E|}axu(z)HL2(T) = Lzm_/o /TFE (@)(3;0)* dx dr

! 1
+3 /0 V2 /T 5 (0uid) 02 (01 FL(@)d (01 Fe () dx

keZ

1 ! N2
+§Zf yﬁz/ <8f(0kFg(u))) dx df’
kez’0 T

t
+y /0 Vi /T (0xd) 7 (o Fe (i) dx dB* (1),

keZ

3,4 ‘

dP-almost surely, where we write y;(t):=gg (”ﬁ(z‘) || oo (T))' The same reasoning
as in the proof of Lemma 3.1 leads to

oo |2
z xu() LZ(T)
2 t
- F2(@) (330)% dx dt’
2 /0 /T o (1) (07u)” dx

1 ! . .
+2) / Vi / o (FI)2 (@) (8,i0)* dx dr’
keZ 0 T

=i Z/l y?/ (ax(frZ)) <(F2)/”(ﬁ) 4 ((F’)z)/(ﬁ)) (0,4)° dx dt’
16z Jo " J ‘ ’ ‘

3 f o
+1—6;§z: fo vi /T (8 (@00?* — ax(@2on)) (F)* @)

1 N
= E Haxu“))‘
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+ (35(013)) (Ff)”(ﬁ)) (0c0)* dx dit’
+y Z /t Vuz/ (40k dfor — 3)?(6,3)) F2 (@) dx dt’
8 0 T

+Z/ yu/Uk Fo(i) 030 dx dB* (1), (4.10)

keZ

dP-almost surely.
(9 11)*-term We first focus on estimating the term

Z/ Yi / of (F/)* (@) (3,i)*dx d’

keZ

and note that through integration by parts we have

Z/ /ok (F/)* (@) (8,0)* dx dr’

keZ

(2.2) t ). »
< Caf /(Fs//) (i) (0x01)* dx dt’

= —-3C, / f </ (F!) (r)dr) (0,0)2 (i) dxdr’.  (4.11)

With help of the Cauchy-Schwarz and Holder’s inequality, we have

—3/ (/ (Fg”(r))zdr) (8511)? (8201) dux
T 1
i 2 2
<3 /(/ (Fg”(r))2dr> dx
T 1

Next, since d,# has zero average, we use that

2)\

L2(T)

H aquLocmr) =C ||8 ”HLZ L2('11‘) (4.12)
Inthe case n € [%, 3], we deduce, with help of Lemma 4.4, that
> / o (F))* () (8,0)* dx
keZ
2\
GHU{(MZ)C i od . NE
< F
s | [([ wree) ar) | il
2

2 A

4.7 R . max{ :l’fg , 19} R
S GCow (1 + ] 1y + ||G8(”)||L1(T)> [oxt] .- O PEreS
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ax]3=2 9
<Cpi (1+||axﬁ||Lz(T)+|A<ﬁ<°>>|+||Gg<ﬁ>||u(m)m‘“{" i) X

2
024

X Ox

L2(T)’

dP-almost surely, where ¥ > 0 and we have applied conservation of mass (cf. Re-
mark 3.3) and the second Poincaré inequality. Integration in time yields for any
9 >0,

> / / o (F)2 (@) (8,it)* dx dt’

keZ

ma:
S ConniL (H‘ WOP ||BX"(’)”LZ(T)""A(”(O))H qllP ||G (@t ))||L1(T>>
7€l0.1]

Ll 2A
X [/il[](f[] ” it (t )” L2(T) ” Oyt LZ(Q,) )
dP-almost surely. Applying Young’s inequality and confining ¢ to the interval (0, 1)
yields for any 6 > 0

Z/ Vu/"k(F”) (@) (0,i)* dx dr’

keZ

<3§ sup ||axﬁ(t,)HL2(T)
t'€[0,1]

4n-2) 4
. l,})
s

+Conps (1 +IAGO)? + up |Ge@a 1y + 1020 120,
t'€[0,t

(4.13)
dP-almost surely.
In the case n € (3, 4) we get with Lemma 4.4 and Holder’s inequality
i
L[ rorzar) @ @i
T \J1
4.7
< ¢, (f (14 [a[*~*)d ) R
LX(T)
(4. < R 24|12
Cot (1 ]y ) 05t 2 [ 02 .
~f[n—=3 ~(0)yn—3 0 0
é Cn’L (l + ” 8xu||rliz(']r) + |A(u( ))|n > ” 8XMHLZ XY L2(T) ’

dP-almost surely, where we have employed mass conservation (Remark 3.3) and
the Sobolev embedding in the last line. Hence,

Z/ fak (F/) (@) (8,)* dx de’

keZ
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4.11) 5
< C 1+ sup [aa@)|" 5% + AGOY 2 824
- n’L( pen [0 2, +1 ) 20
<5 sup |[ayia(r) +C L8(1+|A(u(0))|2 924 = )
oo | RN 20,

(4.14)

dP-almost surely, where we have used Young’s inequality in the last estimate.
Combining (4.13) and (4.14), we end up with the bound

Z/ Vi /Gk(F//) (i) (0¢)* dx dr’

keZ
<8 sup ||8 u(t )”Lz(T)
1'€[0,T]

+an30<1+|u4(u(0))|2+ sup [ Ge (") |71 py 1 23 }m))
t'€[0,t] 3

4 42 4
max{4 w0 2n=3 ’1719}

) (4.15)
LZ(Q:)

+C<r,n,8,z9

dP-almost surely, where § > 0 and & € (0, 1) are free parameters.
(3 1)3-term We have

Z/ / (8P ((F2)”’( )+ 4 (R ) (u)> (9.i2)3 dx dr’

keZ
2.2)

t /
<o ‘(Fﬁ)’”(ﬁ)+4(<Fg>2) (i)
0 JT

This implies

0,4 dx dr’.

/ ‘(Ff)/”(ﬁ) +4 ((F;)Z)/ @) |oxa|® dx
T

‘(Ff)’”(ﬁ) +4(?) @

dx H it H 3L°O(11‘)

(4.12)
<cf ‘(F V'@ +4 () @

2A"’

dx || Oy || 12 2

and Lemma 4.5 yields

/ 1+ n—3 i 3’4 ’
/ ‘(Ff)’”(ﬁ) +4((F?) @]dx < Gy ( fT’ "dx) ifne3.4)
T f Gn z(u)dx ifne[§’3)’
that is,
A n—3 .
/ I+ |u ifn €[3,4),
/ ‘(ng)///(ﬁ) +4 ((Fg/)z) @)|dx < Cu1 ( ” “Ll(’u‘))
T (e ifne [%7 3).

(T)
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‘We further use that

|vilar = (@i ar = [ adkiax < al,

20 .
L%(T)

(4.16)

For n € [3, 4), by employing mass conservation (Remark 3.3) and the Sobolev
embedding, we get, for any 6 > 0, that

! 2 2y
[ [y +a (@) @
0 JT

! n—3 3
< o [ (1+ 30 }iE,) 1))

o] dx df’

dr’

2 A
a2
Lzmr)

(4.16) t . 3 L . 3 A
< quL/é < n (T)) H”(I/)“ZZ(T) ”axu(t/)Hz 32 LZ(T) dr’
<c,,L<1+ sup ||axu(t)|}Lz(T)+A(ﬁ(O))I"_2> LZ(Q,)

€[o,

o3

<5 sup |axa(t) ||2Lz(rﬂ-) +CnLs (1 + 114G 12 +

t'€[0,t]

4
L2<Q ))

dP-almost surely, where we have applied Young’s inequality in the last step.
Forn € [%, 3), with an analogous reasoning we obtain, for any § > 0,

/ / '(Fﬁ)”/(ﬁ) +4(<Fg>2)’m>
0 JT
§ Cn,L /l ||GF 7 :

“. 6)

< nL/ |G @)

}Bxﬁ|3dx dr’

()

LZ(T

M()

7?11‘) |uct )HL 2(T) |oxa(’ )HL2

LZ(T)

<Cur sup HGE

X

(1+ v Ha ”(I)”LZGDHA(M(O))I) 12(0))

S48 sup HB i )”LZ(T)
t'€l0,t]

4(n-2)
~ 2 ~ A n—.
+Cnrs (14 sup |G|y +1AGO)2 + |82a] 77 ).
€[0,¢] L=(Q:)

dP-almost surely, where we have applied Young’s inequality again.
Altogether, for n € [% 4), we obtain

! /
Z /O Vi /T (3x(o;3)) ((FS)/”(ﬁ)+4((Fg)2) (ﬁ)) (8xi2)* dx dr’

<6 sup [oxi( )”Lmr)
t'€[0,1]

+anm(1+|A<u<°>>| + sup. ||G @D 71 m 1 [t ](n)>
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4 4n-=2)
4=n>"2n-5

Lz(Qz)

max {

+Cu,L.T.s

, 4.17)

dP-almost surely.
(3 1)%-term We start out with

> / Vi / (8 ((Bxow)? — ok (8701)) (F*(@) + (37 (o)) (FH)" (@) (3,2)* dx de’
keZ
(2.2)

t
<G / / ((FD*@) + [(FD)" @)]) (@:id)* dx de’.
0 JT
Next, we compute
33 —
(D2 2 5 2 (2 4 )2 < g2
and
(2 )| Z |06 + )3 4 nn =272 2+ 69872 < G2+ ),
so that
[ (2@ + |
T

Similarly as before, we estimate using conservation of mass (Remark 3.3) and that
1t has zero average,

1+ [a]"7%) i) dx
[ (112 ?) i

(1 + ”u”LOO(T)) I axﬁ”imr)

"Nen

) @i dx < c,,A (14 [a]"?) @i d.

An—2 N _ N
<Cr (U a2y, + 1AGON2) o],
dP-almost surely, so that
t
f / (14 [a") @uiy? dx d’
0 JT
2

<crr |1+ sup [oca()) + | A@GOy 2 < 2&‘ )

< veio] | I2=cr o VAITS)

dP-almost surely. Hence, by Young’s inequality we arrive at

> / / (8 ((3x0n)* = ox(0700)) (F)*(@) + (37 (o)) (FH)(@)) (8:0)* dx '

keZ

<5 sup o u(z)lle<T)+caLm<1+|A<u<°>)| + Joza

4
4—n
, (4.18)
1'€[0,1] LZ(Q’))

dP-almost surely, for any 6 > 0.
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(9, 11)0-rerm We first use

Zf yA/ 4oy, 940y — 84(ok)> Fz(u)dxdt’ ? c, / /Fz(u)dxdt

keZ

and

t 3.3) t "
/ fFf(ﬁ)dxd/ < Crr (1+f /|:2| dxdt/).
0 JT 0 JT

Then, we estimate, using conservation of mass (Remark 3.3) and the Sobolev em-
bedding,

/JT @l dx < Co [y < Cron (14 06 +1AGO)")

2
< Con (1 |20, 19200, + LAGO")

dP-almost surely, where we have also employed that 0, has zero average. Inte-
grating in time yields

t
al"dxdi’ < Cppp |1+ sup [yt 0% +AGO) ),
[ [ (1 s 1012, 18T,
dP-almost surely, so that by Young’s inequality it follows that, for any § > 0,
"o 4 402 2
Z/ Vi f (40k dyor — 9y (oy )) FZ () dx dt’
0 T

<5 sup |t )”LZ(T) +Co,L.7.5 <1 + A
1'€l0,1]

4 n )
Lz(Qr)

(4.19)

dP-almost surely.

Closing the estimate Inserting all the previous estimates (4.15), (4.17), (4.18), and
(4.19) in (4.10) and choosing § sufficiently small and an appropriate ¥, we arrive

forn e [%, 4) at

t
}|axﬁ(z)|{izm+/o fTF,f(zz) (830)2 dx d’

2
<2|0,4©
L2(T)

+2|M@)]

+ Cq on,L,T.§ (1 + |-A(u(0))|n + Sup ”G (u(t ))”LI(T) [% ](”) + ”azﬁHLZ(Q ))
(4.20)
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dP-almost surely, where ¢ = max {ﬁ, 2",,:25} and ¢ > 1 with a constant
Cy.on,L,T,5 < 00. Here,

M(t)—Z/ yu/UkF (u)83udxd/3 "

keZ

denotes the martingale in the last line of (4.10). Let us set as usual

t
rm:inf{t>0:/ /Ff(ﬁ)(3§ﬁ)2dxdﬂ>m}/\T
0 JT

We now discard the second term on the left-hand side of (4.20), we take suprema

in time up to T' A t,,,, We raise to the power g, and we take expectation to obtain
with help of the Burkholder-Davis-Gundy inequality

E sup 8¢t At)||7s
s (it n )
sand

+Cp,q,<r,n,L T (1 +E Sup ”G (u(t))HLI(T) [% :|

<c, (E [a.a @]

3%a

Lz(QT))

4.21)

dP-almost surely. Next, notice that

» (221‘) TATn 4
EM)7,,, = ( / / F2(@) (83u)2dxdt> ) (4.22)

Now we go back to (4.20), we discard the first term at the left-hand side and
we conclude that

T Aty %
E([ /Ff(ﬁ) (aﬁﬁ)zdxdt>
0 T
< B r B3
= G v T M,

+c,,,q,mu(1+|A<u<°>>|"+1a up. }|Gg(u(r)>||Ll(T) 45 ](n)+||82 ||i’§‘(’QT))

(4.22) TA, X - ,
LX(T) +E </0 /T F; (i) (9yu)" dx dt)

+Cp,q,n,,,u(1+|A<u“’>)|z” +E sup HGs(M(t))“le ik ]<”>+||82 a7 )

30 ®

Q)

L2(Q7)

dP-almost surely. From this it follows with Young’s inequality that

T Aty g
E </ / F2(@) (33)* dx dt)
0 T
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p
L%(T)
+C D up ||G @)’ ’2’"1
p.q.o.n,L,T LI(T) [ ] L2(07) s
which, combined with (4.21) and (4.22), yields, by virtue of Fatou’s lemma,
~ p ’ 2 332 :
E| sup [aii2) ||L2(T) + (/0 /TFg () (070)" dx dt)

1€[0,T]
LZ(T))

+Cp,q,c7,n,L,T <E SuP ||G (u(t))”Ll(T) [% ]

= CpgomL,T <1 + |A(ﬁ(0))|% +E Haxﬁ(O)’

S Cpqon LT <1 + I.A(u(o))| 7+ Ha ﬁ(O)‘

2pq
LZ(QT) '

which was stated in (4.9). O

4.3. Passage to the limit to remove the cut off

In this section we consider the SPDE

1 /
dup = 0, (—Fg(ug)afug) dr + 5 30 (01 FL(ue)d (0n Fe (ue))) dt

keZ
+ ) (3 (0k Fe (1)) dB", (4.23a)
keZ
u: (0, ) = u®. (4.23b)

The definition of a weak solution {(2, F, F, P), Biorez, 19, i} of equation
(4.23) is covered by Definition 3.2 taking for gr the function g = 1.

Proposition 4.7. Suppose that n € [%,4), pz2n+2¢6¢€(0,1),andqg > 1
satisfying ¢ = max {41 } Suppose that u® e L? (SZ Fo,P; H (']T)) such

n’ 2n
that

K(M(O)’p’q’8):=E‘A(u(0))‘2 +E HG (u(o))H +E Haxu«))HP < 0.

LI(T)

Then there exists a weak solution {(S2 F. T, IED), (,Bk)kez, 11530), ig) to (4.23) in the
sense of Definition 3.2, satisfying

IE|: sup |9yt ()]}
te[0,T]

2pq ]
L%2(Q7)

g C (1 + IC(M(O)a pv q, 8)) ’ (424)

2(QT) " 0] |GG,

2V
xUe

+ 19

where C < 00 is a constant depending only on p, q, 0 = (0x)rez, 1, L, and T.
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Proof. Let i, g be a weak solution of (3.8a). By Lemmata 4.3 and 4.6 we have

~ p
Bl sup [ocie x(®)]" +‘F(ﬁ YE R‘
L[o,pr] [oie. 2] 2y Fre TR 20
+B| sup |Getier@)|P . + |02 R‘zpq
o) LI(T) SR PEITYS

S CpgonL,T (1 + Kw®, n,q, 8)) ,

and notice that the constant does not depend on R. From this estimate, the con-
struction of a weak solution {(2, F, F, P), Bowez, 1, i} is very similar to the
construction in Proposition 3.4 (in fact, easier) and is left to the reader. Estimate
(4.24) follows from the above estimate and Fatou’s lemma. ]

Remark 4.8. The right-hand side of (4.24) can be formulated independently of ¢,
just noting the inequality

SR 1 (3.3) poo poo 1
Ge(r) @D / / dr’”dr’ < / / ar’ ar’ & Go(r)
r r! ng(r//) r r’ F()2(r”)
and choosing ¢ = 0 in IC(u(O), P.q,8). O

5. The Degenerate Limit

In order to prove Theorem 2.2, we first prove additional regularity in time in
order to obtain dP-almost surely uniform convergence in the limit ¢ N\, 0 using a
version of Prokhorov’s theorem (cf. [35, Theorem 2]) and a compactness argument.
Subsequently, we prove that (2.6) is recovered in this limit by employing the energy-
entropy estimate, Proposition 4.7 . The proof is concluded by showing that the
weak formulation (2.5) is valid, which follows by applying [33, Proposition A.1]
to characterize the martingale.

For ¢ € {n"};’f’:l, we denote by {(Qg,fg,lﬁ‘g,]f”s), (Bf)kez, zftéo), g} the
weak solution of (4.23a) constructed in Proposition 4.7. In order to drop the

e-dependence from the probability space we will be considering ((,é§ Vkez, :220) L llg)
on a common probability space given by

(SYZ, j:" Fv I\E/D):zl_[(éé‘v -7:—22’ I\F81 I\E/DE)

&

5.1. Compactness
The reasoning of this section uses techniques of [17] and of [21, §4].
Lemma 5.1. (Regularity in time). Suppose that T € (0,00), ¢ € (0,1],
n€[8/3,4), p > 1,q > | satisfying ¢ = max {ﬁ, %} and

u® ¢ Lo+Dp (Q Fo, P; HI(T))
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such that u® > 0 dP-almost surely, [E ’A(u(o))‘z(nﬂ)pq < oo, and
E H Go (u(o)) ||(Ln1t§;pq < 00. Then, the weak solutions i, constructed in Propo-
sition 4.7 satisfy for any p’ € [1, 2p),

i, e LV (sz F. P ch ([0, T1: Lz(’]I‘)>) (5.1a)
with
el , . 1
LV (©:CF ([0.71:L2(T)))

2(n+2)pq (n+2) pg 9 )
xUu

(n+2)p ﬁ
L2(T) '

(5.1b)

+ G0

LI(T)

<c []E <1 v ’.A(u(o))

where C is a constant depending only on p, p’, q, (0x)kez, L, and T.

Proof. Starting from the weak formulation (cf. Definition 3.2 (ii))
n
(e (12) = it (1), 9) 2 +/tl /TFf(ﬁg)aﬁﬁsaxgo dx dr
%) B v
+3) / ok F, i)y (0% Fe (ife)) e dr di =) / / Oy (0% Fe (ite)) ¢ dx d B
kez YN kez /T
(5.2)

forallp € H YT, 11,10 € [0, T] withr; < 1, and dP-almost surely, we obtain, by
an approximation argument based on the separability of H 1(T) that the P-zero set
can be chosen independently of ¢, that is, dP-almost surely,

15}
(e (12) — i1 (1), ) 2y + / /T F2(i10)9 i1 dyp dx di
n

n
+1y f 0k FL(iie)y (00 Fe (i) dxpdxdr < sup  [(1o(t2) — Le(11), W)l
kez Yl Illl'IILz(Tél

for all ¢ € H'(T) with |¢|| 12ty = 1. Here, we have used the abbreviation

t
(=7 /0 x (0w Fe (ize)) dB". (53)

keZ

Following the lines of the proof of Lemma 4.10 in [17], the choice

[y Lvia(IZ)_ﬁs(tl) LI . . . .
(P-——” RS =R [y and Young’s inequality imply that there is a finite constant

C independent of ¢ > 0 such that, dP-almost surely,

|| e (ty) — tte(11) H iZ(T)

<c(

5]
/ /T F2(i1) 83110y (it (12) — i1 (1)) dx dt
1
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Z/ /;TakFg/(’/vls)ax (’/Vls(t2) - lza(tl)) Ox (O'kFe(ﬁs)) dx dr
1

keZ )

+1e(2) = L) o gy =:R7 (11, 12) + R3 (11, 12) + R3 (11, 12). (5.4)

By [46, Theorem 3.2 (vi)], forall0 <o < 1/2,1 < p’ < 2p,
(Al

L7 (@077 ([0.T]:LA(T)))

S Crpr poo 1@ (0% Fe (i) kezll 120 (@: 1o (0.T: Lo (2(2: L2(TY)))

P 2p
=C |:IF: sup (Z ||3x(UkF£(lZ£))||i2(T)) :|

te[0,T] ke

P1%
<cC {E sup (Z ||axok||%oom||Fe<ag>||izm> }

tel0.71 \}oz,

9
\7‘”

p
+C [fa sup (Z ||ak||iz®||F;(ﬁs>||%m(qr)||axﬁg||izm) ]

tel0,T] ke?
1
(2.2¢) 2p
< C|E sup (IFG@NE gy + NG i I0sdie 150 ) |
re[0.T] & Lz(T) eJly, (’]I') & LZ(T)

We then use that

P (33 n
| FeGio) 75 ) = (/ Ff(ua) < (|40 + taiicts +1)7
T
. pn .
< ¢ (1+]Aaa®)|" + 1o, 127)
and
(33)

“ —1
L el oo ()2 707 it |28

LG 7 oy N 175 ) = (
< ¢ (1+|Aa|” + o 17%)

L%(T)

to get for R3 the estimate

- R3(t1, 12) >pl ¥ -0 |P" . N
£ sup (7 <c|E sup <1+‘A(u( >)\ + o) |
n.nel0,7] \ 2 — 11]1/2=9) 1€[0,T] ¢ e
(5.5)

(3.3)
valid for any o € (0, 3). For Ry, we estimate, using F,(r) < (> + £2)1,

[Ry (21, 12)]

n Y
< C( / / F2(iie) (35 (e (12) — tie (1)) dux dz)
131 T
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1
1%} I
x ( / f F2(ie) (31:)* dx dt)

n JT

i ONE==2 .22

S Clp—nl3 |1+ 1A@)* + sup [aviie | 3
1€[0,T]
r :
x ( f / F2 (i) (011)* dx d;)
0 JT

1
S Cla —nl*

< (0)« 12 L2 T ) ) !
x |1+ IA(MEO))I Z + sup ||8xug HLﬁ(T) + (/ /Ff(ug) (agug)z dx dz)
fE[O,T] 0 T

1

(5.6)
Hence,
o
B wp RCL0)I
1.0€l0,T] |tp — t1|*
h « (0 n+2)p’ . n+2)p’ T ). e %
SCE[1+14G 7 + sup [avite | o0, +</ /Fg(us)(axug) dxdt)
t€(0,T] 0 T
5.7
The term R% is split as follows:
2 Lo, 5
2Ry (11, 1) = Zf /ak FL(ite)* 8y (it (12) — tie (11)) Bytie () dx dr
kez/n JT
n
+2 [ [ onmon Fi Fuia, (ist) — i)
kez /0 VT
=:R3, + R3,. (5.8)
For Ry, we estimate
%
(323) " . i
IRl = C lowll7 o / sup (14 i) = sup || 9eite (1)
é o 1 te[O.,T]< ” € ”L (T))te[O,T] ” e HLz(T)
(2.2¢) \ 1 e ] .
S CTéln—nl* |1+ ‘_A(u< ))‘ + sup ||3xua(t)||22 ) (5.9)
1€[0,7] LD

1
2

Finally,
o)
[Rn2l £ € ( Y llowll oo 1304 o) f / | Félite) Feite)ds (ike (12) — it (1)) | d dt
keZ nr
22,633 1 ONE: . 3
< CTilp—n) 1+‘A(”s )‘ + sup [dciie®] o, ) - (510)
t€l0,T]
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Hence, we get

/

) < CE <1+\A<u<0>)\ + sup ||au8<t);|L2m>
(5.11)

. Ry(t1, 1
]E( sup [Ro (11, 12)]

1
11,0€[0,T] |ty — t1|%

Altogether, combining (5.5), (5.7), (5.11) and choosing o = %, we get

laell” =~
LV (@:C#((0,T:L2(T))

/

2p

v pn .

SC[E sup (14| A@®)| +||axus<r)||§’z’)}
te[0,T]

_v . (n+2)p .
+C E(H‘A(ug‘”)‘ + sup Haxus (ﬁ;”)]

/

&
+C (f /Fz(us)(a* E)dedz> }

+C E<1+‘A(g§0>)‘ + sup ||3X116(r)|{’2’;m>}
t€[0,T]

N‘-;

P

“\

)

P

/

. o | arp) |7
<c [JE (1 + ]A(ug(”)] "4 sup | ||(Ln2-:’ll‘;p>:|
tel0,T]

/

LT P15
c |:IE (/ fFSZ(IZE)(B)?IIE)de dz) }
0 T

2(n+2)pq

/

m+2)p %
L2(T)

(4.24)

(n+2)
g C |:1 +E )A(M(O)) n Pq

LI(T)

+E |9,u®

X

+E Hco(u(0>)

which gives the desired estimate (5.1b). Note that we have used Proposition 4.7 to
get an estimate in terms of the initial data. O

By interpolation, we get the following result on Holder regularity with respect to
space and time (for details, see [17, Lemma4.11, p. 437]). Note thatin Corollary 5.2,

we control the moment of order p’ of ||i, HC%_%( | for any p’ € [1, 2p) while in
T

[17] only estimates for second moments have been provided. This is due to (5.1a)
as the analogous estimate in [17] has been formulated only for p’ = 2.

Corollary 5.2. (Holder-continuity) Under the assumptions of Lemma 5.1, the solu-
tions ug constructed in Proposition 4.7 are space-time Hélder-continuous,
dP-almost surely. In particular, there is a finite constant C independent of ¢ > 0
such that

E [H%HZQ,%(QJ <c (5.12)

forany p' € [1,2p).
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In the next proposition we will consider the space of all functionsu : Q7 — R
such that u € CT-7(Q7) forall y € (0, 1/2), that is,

csor Q= () CEron.

y€(0.1/2)

We endow €32~ (Qr) with the topology generated by the metric

o0
d(u,v):=Y 27" (llu— Oll 2 ) A 1),

n=1

Remark 5.3. Despite the fact that for each y < % crv (Qr) is not separable, the
1

space C%_'%_(QT) is separable: If u € C3 - there exists u, € C*°(Qr) such
that, for all y < 1/2,

lim ||u, —ul| v =
n_mll n HCW(QT)

Moreover, there exists a countable set D C C*°(Q7) such thatforallv € C*°(Q7)
and all & > 0, there exists v € D such that [|[v — v||¢c1(g,) < ¢. It follows that D is
dense in C¥ =2~ (Q7).

In addition, it is complete, since C o (Qr) is complete for each n. Therefore
it is a Polish space.

Finally, since every bounded sequence in C 507 (Qr) has asubsequence that con-
verges in crv (Qr), for all y < %, it follows that the embedding

C$2(Qr) C C3727(Qr) is compact.

Proposition 5.4. (Point-wise convergence) Let T € (0, 00), n € [% 4), e e (0,1],

p > 1, g > 1 satisfying ¢ = max 4Tln, 2"n__25 } Suppose that

u® e L02r (Q, Fo, P HI(D)

such that u©® > 0, dP-almost surely, E |A(u(0))|2(n+2)p 7 < 0o, and
E H Go (u(o)) ||(L'll—;,ﬂ%;p T < 00. Let ii ¢ be the weak solution constructed in Proposi-
tion 4.7. Further define J;::Fe(itg) 8)%125 (pseudo-flux  density) and
Wg:zzkezakﬂvé‘. Then, up to taking a subsequence of ug, on the probability
space ([0, 11, B([0, 1), Afo,17), there exist random variables

i, iie : [0, 1] > C257(Qr),
T, Je 10,11 — L*(Q7),
W. W, :[0.1] — C ([0, T]: HZ(T)>,
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with
e, Jeo We) ~ (e, Jo, W), (5.13)
such that
(@) — (@) as e\ 0 in C§727(Qp), (5.142)
Je(w) = J(w) as ¢\ 0 in L*(Qr), (5.14b)
W) — W(w) as &\ 0 in c([o, T];Hz(']I‘)> (5.14¢)

for every w € [0, 1]. It holds that
ie L (QF P;C"7(Qr), forall ye(0,1) and p el1,2p). (5.15)

Proof. It suffices to show the tightness of the laws p;_ , 1 i and My, corre-

sponding to the families u,, Je, and W;. The proposition then follows by applying
[35, Theorem 2].

Tightness of the law ., follows because w;, is a Radon measure in the Polish
space C ([0, T1; H*(T)) implying regularity from interior and thus tightness.

Tightness for u;, as a family of measures on s %_( Q) is a direct conse-
quence of Corollary 5.2, in particular estimate (5.12) (see also Remark 5.3) .

By Markov’s inequality we have for any R € (0, 00), using conservation of
mass (cf. Remark 3.3) and the Sobolev embedding theorem,

P{IJel 20, > R}

| T

s SE|Je
R L2(Qr)
C . " 3 | nt+2

§ EE[I"_ HFS(M{:‘)axué‘ LZ(QT)]

424 ¢ 2(n+2)q (n+2)q n—+2

< CE[1+|Aw®) + | Go®) 8u® -0
R LY(T) L2(T)

as R — oo, where we have used Proposition 4.7.
Finally, (5.15) holds by virtue of (5.14a) and Corollary 5.2. This finishes the
proof. O

For what follows, we define F = (.7:-;)1‘6[0’T] as the augmented filtration of
(F))iefo,1, where

Fli=o (i), W(t') : 0 7). (5.16)
‘We further define
i o, We (1) i or, W(t)
ﬂf(t):z(g—z)”zm and /3"(;):=(—2)”2“D. (5.17)
”Uk”Hz(T) ||Uk||H2(T)

Then, we work in the filtered probability space
(@, F, F, B):=([0, 11, B(0, 1), (Fsero, 71> Ao,17)-
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Lemma 5.5. The 8% are mutually independent, standard, real-valued (ﬁ,)—Wiener
processes.

Proof. The reasoning is quite standard and contained in detail for instance in
[21, Proposition 5.3] or [10, Proof of Proposition 5.4] or [17, Lemma 5.7]. O

Proposition 5.6. (Weak convergence, a-priori estimate, non-negativity, continuity)
Lt T € (0,00), n € [3,4), ¢ € (0.1, p > 1 g > 1 satisfring

g = max {ﬁ, 2’;__25 } Suppose that

u® e L7 (@, Fo, P HI(D)

such that u©® > 0, dP-almost surely, E|A(u(0))|2(n+2)p 7 < 0o, and

E H Gy (u(o))||gllt,ﬂ%§p 7 < 0. With the notation of Proposition 5.4, up to taking

subsequences, it holds that
Opiie — dyii in LUDP(Q, F By L0, T; L2(T))),
020, =~ 0 in LPHPU(Q, F,B; L2 (0r)),
Jo =T in LOP(Q, F B L2(01)

as ¢ \( 0, and the energy-entropy estimate
= ~ (n+2)p ~ (n+2) pq 2 ~12(n+2) pg = (n+2)p
E| sup [lo,u(@)] + sup [|Go (@())| + 058 200, T I
L[OJ] LM o P L et L2(0r)
2(n+2)pq (n+2)pq
LI(T)

,u®

<CE [1 " ‘A(u(o)) (5.18)

+ | Go®)

(n+2)p
m |’

is satisfied, with a constant C < oo depending only on p,q,0 = (0k)kez, 1, L,
and T. It holds it = 0 and |{it = 0}| = 0, dP-almost surely. Furthermore, it is a
continous Hvlv (T)-valued process.

Proof. From Proposition 5.4 we derive that, up to taking subsequences, we have
fie(w) — @(w) in CVT(Q7) for y < 5 and Jo(@) — J(w) in L?(Q7),
dP-almost surely. From (4.24) of Proposition 4.7 we can conclude by compact-
ness that, up to taking subsequences once more, we have

dpiie — @ in LUIP(Q, FB; L®(0, T; LX(T))),
20 =~ ity in L2TIP(Q, FL B L2(01),

Jo = Ji in LUP(Q, F Py LX(Qr))

as ¢ Ny 0. From (5.12) of Corollary 5.2 we have that I~[-3||128||p/yZ for
C4(0r)
p € [1,2p) is uniformly bounded in ¢. Hence, we obtain with Vitali’s conver-

gence theorem E ||z, — ﬁ”c%%(g ) — 0 as e N\ 0. Thus, we have for j € {1, 2}
T
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and ¢ € L>®(Q, F,P; C2(Q7)),

I~E<B,{ﬁg—ﬁj,d~>> —0 as &\ 0

L1(0,T; L1 (T)) x L% (0,T; L% (T))

by weak-x-convergence while by the Cauchy-Schwarz inequality

E (e — .019)
L'(0,T; Ll(T))xLoo(o T:L%°(T))
<E

lie —tllccor — 0 as &\, 0.

L®(Qx Q1)

This implies it; = 8,{ u, dP-almost surely.
Since J; () — J (w) in L? 07), dP-almost surely, and

Je € LW (Q, F,P; L2(Q7))
is uniformly bounded, we have

(Je- $)20p (/. $)1207)

strongly in LU+ (Q, F,P) for any p' < p and ¢ € L?>(Qr). Since also
(Je. ¢)L2(Qr) - (J1,¢)L2(QT) weakly in L7 (Q, F, P) we have J; = J.

Estimate (5.18) follows from (4.24) of Proposition 4.7 by weak lower-
semicontinuity of the appearing norms and Fatou’s lemma.

The fact that # = 0 and |{#z = 0}| = 0, dP-almost surely, is a consequence
of i € C(Qr), dP-almost surely, #(0, -) = 0, dP-almost surely, and finiteness of
~ ~ 2
E sup, (.71 1Go (u)||<L";T;”q because of (5.18).

The fact that & is an Hv}, (T)-valued process follows at once from
ii e L>(0,T; H(T)) N C71(Q7), dP-almost surely. o

Proposition 5.7. Assume the conditions of Proposition 5.6 and
u® ¢ 2w (Q Fo. P; H‘(T)) .
Then, the distributional derivative 8;’& Sulfills 8)?12 € L120C ({a > 0}) and

we can identify Jo = F. (iip) (83&8) and J = ]l{,;>0}122 (Bku). In particular, the
following energy-dissipation estimate holds

i e
B0t @i o |

(n+2)p 2(n+2)pq

©0)
X

+ ’A(u(o))

+ H Gou'®)

L2(T) LI(T)

(5.19)

<CE [ (n+2)pq} .
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Proof. The proof follows the lines of the proof of [21, Proposition 5.6], with the
additional complication of taking care of the approximation F,(r) of the square
root of the mobility F(r) = |r|2.

Since the laws of (ng, itg) and (]NS, iig) coincide (cf. Proposition 5.4), it holds
for ¢ € C*(Qr),

’

0=F ‘(ig — Fe(iie) 32, ¢>)

_E ’(1 ~ Fy (i) 8. 9)

L2(07) L%(Qr1)

which implies J; = Fe (it;) 83iie.
Because of estimate (4.24) of Proposition 4.7, Jo = Fo(ily) 8?&,;, and (3.3), it
holds for fixed r > 0,

T
3 -
E/() /T(axug) 1[||’;£_’;‘|L°°(QT)<%}ﬂ{ﬁ>r} dx dt
o T
: _”E/ / F2 i) @3i)* dx dr < C(ru),  (520)
o Joo Naew>15)

where C(r, ug) < oo is independent of €. Hence, by taking a subsequence again
denoted by i, it holds that for some 1" € Lz(Q, F, P, LZ(QT)),

3~ -
Ote L i —ilyon gy <5 Jti=ry — 7 L) 35 € N0 (5-21)
in L2(Q, F.P; L*(Q1)).
We next show that " = Bgﬁ on {u > r} forany r > 0, that is, for almost every
(w,1) € 2 x[0,T]and all p € CF ({uu(w, t) > r}) we have

fﬁ’@dxz—fﬁa§¢dx.
T T

It is enough to show that for almost every w € Q and all ¢ € C° ({i(w) > r}) we

have
T T
/ /ﬁ’gbdxdt:—/ /ﬁa;’@dxdt.
0 T 0 T

For every w € Qand N € Nlet {y € C®(R?) such that gy(r,x) = 0 for
(t,x) € {u(w) > r}° and

1 ifdist (¢, %), i (@) > ) = &

0 ifdist (7, x), (@) > r}) < yig

)?N(f,x)=<

for all (z, x) € {i(w) > r}. Then it is enough to show that for almost every o € €2,
all € C° (R?), and all N € N it holds

T T
/ /ﬁr¢)?Ndxdt=—/ /ﬁaf(gb)ZN)dxdt.
o Jr o Jr
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Observe that for every ¢ € C°({ii(w) > r}), we have
dist(supp ¢, d{u(w) > r}) > 0.
Hence, for N sufficiently large,
Ing =¢ for ¢ e C({iu(w) > r}).

The equality above in particular holds if for all § € C® (R?), N € N, and
6 e L°°(§z, ]F’, I@) we have

T T
IE/ fﬁ’gz;zNédxdtz—E/ /ﬁag@)z[ve)dxdz.
0 T 0 T

§In O € L¥Q,F,P; C(Qr)),
it suffices to prove tha} for E € L°°(S~2,.7-',If”; C3(QT)) such that
SUPP(; x)e0, & € {#t > r}, dP-almost surely, we have

T T
E/ /ﬁ’dedt = —]E/ /ﬁaﬁfdxdt. (5.22)
0 T 0 T

Therefore, take £ € L>®(Q, F,P; C3(Qr)) such that supp(,’x)eQTE € {u > r},
dP-almost surely. Then, integration by parts gives

T
- . )
E/o /T(a"”’“‘")l{llﬂs—ﬂlLoo(QT><§}m{ﬁ>r}gdx dr
T
_T 3~ -
_E[l{llﬁg—a|m(gﬂ<§}/o /T(axug)Cdxdt]

T
=-F e 1 837 dx dr
/O /T”S [l oo o) <3 ) w6

T
—>—E/ /ﬁag'édxdt as &\, 0 (5.23)
0 T

Since

for any r > 0, where in the last line we have applied Vitali’s convergence theorem.
Indeed, by Proposition 5.4 it holds that

i }(832)—”28?5 as &\ 0,

ue 1y .
& {\lus—ullLOO<QT><%

dP ® dr ® dx-almost everywhere, and for some p’ > 1, we have that
T
gy
0o JT

T
S a3~ P o E/ / ” p/]l N _ d dt
= ” XC||LOQ(§2,f,P;LOC(QT)) < 0 T(ué‘) {Hus—u||LOO(QT)<%} X
< Cuo),

pl
| (aﬁz)' dx dr

g 1y, .
{Hus*MHLOO(QTK%
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for some constant C(ug) independent of ¢, r, where we have used the e-uniform
bound (4.24) of Proposition 4.7. Therefore, by (5.21) and (5.23), we get (5.22),
which in turn implies that

7= (5.24)

X

on {u > r} for everyr >0.
Now, take ¢ € L*®(Q, F,P; L*®(Q7)), r > 0, e € (0, 1], and separate ac-
cording to

T
1(8):=IE/ / Jegpdxdt = I (r, &) + L(r, ¢), (5.25)
0 T

where because of i > 0, dP-almost surely (cf. Proposition 5.6), we may choose

T
Ii(r, 8):=IE/0 /TJg IL[IIﬁs—ﬁ\lLOC(QT)<§]ﬂ{ﬁ>r}¢dx dz,
T
= J. 1
Ly(r, ) E/O /TJE {“ﬁs*'zHLOC(QT >z ]U{0< < }qbdxdt
Then, we separate according to

T
1(r, &) —]E/ /uZ @) Lgopy dx dt = I (r, &) + I1a(r €),  (5.26)
0 T

where

n 3~ ~
o=t [ [ (ko - 08) O30 Lo o< ion) § 54

.=~ 3~ a3~ ,,% ~
Tare): E/O /T(axus 8xu)1[\Iﬁg—ﬁ||Loc(QT)<%}ﬂ{ﬁ>r}u ¢ dxdr,

where we have used J; = F; (i) 83&8. For the first integral, we note that

n

1
2 2
Fe (i) —u?
I (r, 8) = (E/ /( F, (i) ) ﬂ{uagaLw<QT)<£|“{‘;>”dth)
T
> 2/~ 3~ 32 g
(e /Fs w0570 0) 8] 60
(33)(424)
(/ng(ug)—MZ dxdt) Hd’”m (07 F1m0n)’

—0 as ¢ \ O, (5.27)

where C < oo is independent of r, ¢, and ¢~>, and we used Vitali’s convergence
theorem and Proposition 4.7.
Because of

n o~ - [T P
/ / i3 é dxdt§C(1+Ef /ﬁ”“dxdt)”q)” o
0o Jr L (2.F. B (0n))
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(5.18)

< cw®) H&(z

’

LDO(s”z,ﬁ,P;LDC(QT)) =

where the Sobolev embedding, mass conservation (Remark 3.3), and Proposi-
tion 5.6 have been applied, we have ii 2 ¢3 cL? (Q, ]:', I@; LZ(QT)) and by the weak

convergence stated in (5.21), combined with (5.24), it follows that I12(r, &) — 0
as &€ N\ 0, which in conjunction with (5.26) and (5.27) gives

T
L(r, &) — E/ /ﬁ% (3201) Lizopy pdxdr as &N\ 0. (5.28)
0 T

The integral I (r, ¢) in (5.25) can be estimated as
. (T 5 3~ \2 -
L(r. &) <C E/ /F i) (8] dxdt)H |
|2( )|_ < 0 T g(s) YUe ¢L°°(, ;L°°(QT))

Q,F,P
1
X (E/(; /’;[‘I]-{lﬁs_ﬁ|L°O(QT)2£}U{O<ﬁ§r} d.xdt)
4.24)

Oy |4
< ) H‘/’Hmo(fz, FEL¥(0r))

. T !
X <EA Aﬂ{lﬁgﬁlLoo(QT)zg}U{0<l;Sr} d.x dl) s

where C, C (u(o)) < oo are independent of r, ¢, and ¢~>, and Proposition 4.7 has
been used. Then, we note that

1{Hﬁa—anLowQT)z%]U{0<ﬁ§r} = Lo<izry a5 € N0,

dP ® dr ® dx-almost everywhere, due to Proposition 5.4. Therefore, by bounded
convergence it follows that

1
limsup I (r, € SCH~H o x(IEI 0<i<rl)’,
9 20, £ € 0] 551y < (EIO <2 1)
which, in combination with (5.25) and (5.28), leads to

lim sup

e\0

<c(Elo=azr) [4],.,

T
I(e)—E/ /ﬁ” (330) Loy ¢ dx dr
0 T

&.F.Breon)’

where C < oo is independent of r. In the limit » ~ 0, we infer by monotone
convergence lim sup,« o E [{0 < & < r}| = 0, which finishes the proof. O
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5.2. Recovering the SPDE

In this section, we give the proof of the main result Theorem 2.2:

Proof of Theorem 2.2. We first note that the results of §5.1 can be applied due to
the assumptions of Theorem 2.2, with p in §5.1 replaced by ﬁ from the statement
of Theorem 2.2.

We will show that {(€2, F, F, P), (Bi)rez, i(0), it} is a solution of (2.4). The
fact that 7(0) has the same distribution as u© follows from Proposition 5.4 and
(5.13) therein. By Proposition 5.6, i is an fF—adapted continuous H‘},('I[‘)—Valued
process, so that in particular #(0) is ]:"o—measurable. The fact that the ,3]‘ are in-
dependent real-valued standard [F-Wiener processes is the content of Lemma 5.5.
The Holder regularity stated in (2.7) is a consequence of (5.15) of Proposition 5.4.
Moreover, (i) and (ii) from Definition 2.1 follow from (5.18) and (5.19). Hence,
we only have to show (iii).

Denote by i, the sequence of Proposition 5.4 and notice that by (5.13) we have
that i, satisfies (4.23), that is, for ¢ € C°°(T) we have, dP-almost surely, that

t
(I/le(t)7 ¢)L2(T) = (ﬁg(O), (p)Lz(T) +/0 (ng (ﬁs(t/)) agﬂs(t/), 8X¢)L2(T) d[/
1 ! _ o, /
_Elé'/o (ok F, (its(t")) 0 (ok Fe (i1 (1)) , 3xg0)L2(,ﬂ,) dr
t
-3 /0 (0k Fe (it (1)) , Bx9) 1oy ABE (), (5.29)
keZ

forall ¢+ € [0, T]. We claim that for all r € [0, T],

(i (1), ©) 2T — (u(t), ©)2(T) > (5.30a)
t
/ / F2 (it (1)) (agag(t’)) 9, dx di’
0 JT
t
- / / (@@)" (830" b drdr, (5.30b)
0 J{u(")>0}

and

1 t
32 /0 (0 F{ (e (1)) By (0 Fe (e (1)) . 99) 2y A’

keZ
1 ! ! [~ l4 ~ ls /
azk% /0 (01 F4 (5)) 0 (0 Fo (01)) . 0x9) oy A’y (5300)

as &€ — 0, dP-almost surely.
Argument for (5.30a) Since by Proposition 5.4 it holds that ||it; — itllc(g,) — 0
ase \( 0, dP-almost surely, it follows that

sup [ (e (1), @) r2ery — @), @) g2em)| < lite — iillccop lgllziery = 0
t<T

as £ \ 0, dP-almost surely.
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Argument for (5.30b) By Proposition 5.7, we can identify

t
f /F2 ug(z) 83u8(t )) xgodxdt/z/ /Fs (s (1)) Jo (') 3y dx dt’
0 JT

/f (@) (8314(1‘) xcpdxdt_// (i(t"))? J(t') depdx dr’,
{u(r’)>0}

so that the limit in (5.30b) follows from (3.3), #, — u in C(Q7), and Jo — Jin
L?*(Q7), dP-almost surely.

Argument for (5.30c) Applying the chain rule and integration by parts yields

) [ ouF, (e(t)) B (0 (7)) . 0:0) 12, 0

keZ
i (1)
__Zf (f (F;)z(r)dr,ax(a,faxw)> dr’
keZ LX(T)
2 1
25 f (@) Fe (@) uoding) , ot

keZ

Since by Proposition 5.4 we have ||t — it||c(p,) — 0ase 0, dP-almost surely,
and by reversing the application of the chain rule and integration by parts, we obtain

Z/ UkF Ms(t )) (UkFa (us(t ))) , X¢)L2(T) dr’

keZ

— Zf (/ (Fé)z(r)dr,ax(okzaxw)> dr’

keZ L2(T)

+- Z/ Fy (1)) Fo (i (") , (0 Jk)axgo) dar'

2
keZ L@

= Z/ OkFO M(f )) (OkFO (I/t(t ))) ’ x§0)Lz(T) dt

keZ

uniformly int € [0, T], dP-almost surely. We note that the application of the chain
rule is justified due to the dP-almost surely boundedness of u, and i and the local
Lipschitz continuity of the occurring nonlinearities.

Hence, we have showed (5.30). It follows that for all € [0, T'],

My ()= — Z/ (0k Fe (e () . 0c0) p20m) ABEW) — My (1) (5.31)

keZ
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as e \( 0, dP-almost surely, for some process My (t). Since the limits in (5.30)
are continuous processes, so is M,,. By virtue of Proposition 4.7, we can choose
k € (1,2) such that for any ¢ € (0, 1)

E sup M (0)]*
+€[0,T]

§C]E< / (or Fe (1 (1)), ax‘P)L2(']1‘) >
keZ

K
sCT* <Z ||ak||L2(T)> E sup IFe @175 ry 13x0175 o,
kel

(2.2e),(3.3),(4.24) -
< c(1+E[a@|" +E swp 1aash ey,

tel0,T]
C <u<0>> ,

where C (u(o)) < oo is independent of ¢ and where Remark 3.3 (mass conserva-
tion), the Sobolev embedding theorem, and Poincaré’s inequality have been applied.
In particular, we have

(4.24)
<

sup E sup \Mw,(t)lz"Jr sup E Z/ (ox Fe (i1 (1)), 3xg0)L2(T)dl <oo, (5.32)
ee(0,1) €[0.T] ccO.)  \rey,

which implies by Fatou’s lemma that
E[M, (1) < 0o
In order to complete the proof, we only have to show that
Mty =—-Y / 0uFo (1)) . 059) oy ABH (@Y. (5.33)
keZ

For this, it suffices by virtue of [33, Proposition A.l1] to verify that for
0t <t <Tandk € Z, we have

B M, (0) — Myt fﬂ] —0, (5.34)
E | (My(0)" = (My(h)" = ) f o Fo (A(t".)) 3 2 " f} =0,
L keZ
(5.35)

» " t
E | B5(t) My (1) — B* (') My (t) + / (0w Fo (1", ) , 0x) 12y di
t/

oo

(5.36)
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Notice that M, , as defined in (5.31) is a square-integrable .7-' ! ,-martingale, where
fg’t:za <u5(t Y We@):0< 1 < t). Hence, we infer that for 0S¢V =st<T
and any

deC (C(Qﬂ) x C ([0, ot H2(T)) 10, 1])
it holds that
E [(Mg,w(t) - M‘g’w(l/)) &)8(,’)] -

E[((Ms,(p(t)) (#1ep)’ > / ouF, (", ). Xw)izmdz”> &w/)}:

~ ~ ~ ~ ~ t ~
E [(ﬂﬁ(r) M, (1) — BE() My (1) + f (o Fe (@, ) 3x9) o) dt”) <1>g<z’>]
p

0,

where
D (t'):=D (ﬁs|[0,t’], Wel[o,z’]) .

By the convergence stated in (5.14a) and (5.14c¢) of Proposition 5.4 and (5.31), com-
bined with the uniform integrability of all the terms appearing in the expectations
above, which in turn follows from (5.32), we conclude that

B[ (M) = My(1) )| =

]E|:((M¢(t)) (M, (t) Z/ ok Fo (u(t”, )),axga)imr) dt”) cin(ﬂ)} =0

kel
~ ~ Y r g
- [(ﬂ"m My (6) = B My (1) + / (oFo (", ) ) ) dt”) qm} B
f/
where
&)(/)::@ (lﬂ[o’,/], W|[O,ﬂ]> .

Since ® was arbltrary, we conclude that (5. 34) (5.35), and (5.36) are valid with
Fy replaced by .7-' The passage from .7-" to Fy follows by a standard continuity
argument employlng Vitali’s convergence theorem. This finishes the proof. O
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