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Abstract 
Most mental disorders are characterised by impaired cognitive function and behaviour 
control. Their often chronic reoccurring nature and the lack of efficient therapies 
necessitate the development of new treatment strategies. Brain-computer interfaces, 
equipped with multiple sensing and stimulation abilities, offer a new toolbox, whose 
suitability for diagnosis and therapy of mental disorders has not yet been explored. Here, 
we developed a soft and multimodal neuroprosthesis to measure and modulate prefrontal 
neurophysiological features of neuropsychiatric symptoms. We implanted the device 
epidurally above the medial prefrontal cortex of rats and obtained auditory event-related 
brain potentials reflecting intact neural stimulus processing and alcohol-induced neural 
impairments. Moreover, implant-driven electrical and pharmacological stimulation 
enabled successful modulation of neural activity. Finally, we developed machine 
learning algorithms which can deal with sparsity in the data and distinguish effects with 
high accuracy. Our work underlines the potential of multimodal bioelectronic systems 
to enable a personalised and optimised therapy.  
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Introduction 

The prefrontal cortex (PFC) represents a fundamental structure for behavioural 
top-down control and modulates attention, working memory, reward evaluation and the 
ability to self-control actions, emotions and stress. Disturbances of prefrontal neural 
network activity underlie many cognitive and behavioural impairments observed in 
neuropsychiatric diseases such as addictive disorders, schizophrenia or autism. The 
complex aetiology of these diseases makes optimal treatment challenging (1). Current 
therapeutical interventions often present with side effects and lack long-term efficacy. 
In particular, systemic pharmacotherapy shows poor topical specificity and adaptability 
to changes in patient-specific needs regarding treatment duration and intensity (2). The 
chronic reoccurrence and high relapse rates following treatment (3) thus warrant the 
development of new treatment approaches.   

Brain stimulation techniques, such as Deep Brain Stimulation (DBS) and 
transcranial Direct Current Stimulation (tDCS), have gained increasing attention as 
alternative treatment options. DBS can be precisely delivered to specific brain areas 
through deeply implanted electrodes. Predominantly applied in Parkinson´s disease to 
improve motor function (4), DBS also showed beneficial effects in neuropsychiatric 
disorders such as depression (5), drug addiction (6, 7), as well as obsessive compulsive- 
and anxiety disorders (8). However, due to its invasiveness and continuous stimulation 
mode, DBS holds the risk of side effects such as impaired speech, gait and cognition (9) 
and has therefore been restricted to a small number of severe and otherwise treatment 
resistant cases. In contrast, tDCS offers scalp-applied and thus non-invasive brain 
stimulation with no or just minimal side effects (10). Prefrontal tDCS has been shown 
to reduce symptoms of depression (11) and schizophrenia (12) as well as craving and 
drug consumption in substance use disorders (13). However, reports of varying treatment 
efficacy (14) in response to tDCS might be due to identical stimulation parameters used 
for all subjects in a rigid “one-size-fits-all” fashion not taking into account individual 
differences in brain anatomy, underlying pathology and temporal changes in brain states 
(15). Furthermore, up to ~75 % of epicranially applied currents are attenuated by scalp 
and skull (16) hampering target region and dose specification. 

Epicortical neuroprosthetics, equipped with multiple sensing and stimulation 
abilities, might offer a new off-the-beaten-track toolbox for diagnosis and therapy and 
may overcome some of the limitations of current brain stimulation techniques. Implanted 
epi- or subdurally and made of soft and biocompatible materials (17–19), epicortical 
devices can adapt to the curvilinear surface of the brain resulting in reduced tissue 
inflammation and improved long-term stability compared to brain penetrating electrodes 
(20, 21). Furthermore, direct cortical stimulation via small surface electrodes provides 
effective and precise stimulation close to the target structure (22). Furthermore, 
epicortical neuroprosthesis enables combined neuromonitoring and stimulation in one 
device allowing immediate detection of stimulation effects on neural activity. Current 
clinical applications of epicortical electrodes for electrocorticography (ECoG) and direct 
cortical stimulation focus on real-time functional brain mapping to assess language, 
motor and sensory function during surgical intervention for medically intractable 
epilepsy and brain tumours (22, 23). Besides intraoperative epileptic seizure localisation, 
an ECoG-type array combined with direct cortical stimulation has been successfully 
implemented to reduce an incipient seizure by detecting abnormal neural activity that 
subsequently triggers stimulation. This so-called Responsive Neurostimulation System® 
(NeuroPace®, Mountain View, CA, U.S.A.) is the first demonstration of a genuinely 
bidirectional, closed-loop brain-computer interface approved for clinical application (22, 
24).  

Closed-loop neuromodulation may also open opportunities in the treatment of 
neuropsychiatric disorders by utilising artificial intelligence and advanced machine 
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learning algorithms to identify brain states and optimise stimulation parameters on the 
basis of pre-defined neural features (25). Event-related potentials (ERPs) present eligible 
biomarkers for this purpose. These short electrical deflections induced in the brain 
immediately following an external or internal event have proven valuable for 
investigating sensory information processing and higher-order cognition in healthy 
individuals as well as psychopathological conditions (26). Within scalp-recorded 
electroencephalograms (EEG), ERPs appear as time-locked local negative or positive 
maxima of a few microvolts (µV) lasting tens to hundreds of milliseconds (ms). They 
are commonly labelled according to their polarity (negative = N, positive = P) and 
latency (in ms post-stimulus or order of appearance within the recorded waveform) (27). 
The best-known paradigm to elicit ERPs is the ”oddball“ paradigm in which subjects are 
confronted with a series of frequent (e.g. auditory or visual) stimuli (”standards“) 
randomly interspersed with rare stimuli („deviants“). Common ERP components 
observed in such tasks include P1, N1, P2, N2 and P3. The components P1, N1 and P2 
reflect pre- and early attentive automatic stimulus processing and sensory gating that 
constitutes an inhibitory filter mechanism to enable focusing on salient stimuli while 
disregarding irrelevant or repetitive information (28). The N2 is elicited by rare events 
and reflects a change-detection response sensitive to novelty and stimulus probability 
(29, 30). Likewise, amplitudes of the P3 vary with stimulus incidence and significance 
but also depend on a subject’s motivation, attentional resources and cognitive 
capabilities (29, 31). Modified ERPs indicate impaired PFC functioning and cognitive 
deficits associated with neuropsychiatric diseases (32). For example, delayed and/or 
reduced ERP amplitudes have been observed in alcohol-addicted patients and animal 
models (33–36). Primarily a disturbed P3 component has been related to poor behaviour 
control and increased relapse probability and therefore judged as a suitable predictor for 
the relapse risk after drug withdrawal (37, 38).  

ERPs measured by scalp-EEG have high temporal precision but lack spatial 
resolution, are sensitive to noise, and, like in tDCS, electrical signals are partly silenced 
through the skull (39). ECoG electrodes are in closer proximity to the source of relevant 
brain activity and have demonstrated superior signal sensitivity, broader bandwidth, 
higher topographical resolution and a lower vulnerability to artefacts than EEG resulting 
in accurate ERP acquisition (21, 40).  

So far, ECoG electrodes have been placed over lateral, sensorimotor areas based 
on clinical requirements for epileptic seizure localisation (40, 41) or to enable paralysed 
patients to control external devices using movement-related neural activity patterns (42, 
43). However, the potential of an epicortical implant to target cognitive ERPs from 
central prefrontal brain regions remains unexplored.  

Based on the advantages and opportunities of an implanted bidirectional brain-
computer interface, we set out to build a tailor-made soft and multimodal epicortical 
device to measure and modulate neurophysiological features relevant to the diagnosis 
and therapy of neuropsychiatric disorders. We implanted our device epidurally above 
the medial (m) PFC of rats and tested its feasibility to obtain auditory ERPs. We detected 
activity alterations induced by acute alcohol intake and implant-driven neuromodulation 
with direct application of electrical pulses and pharmacoactive naltrexone (NTX). We 
furthermore deployed machine learning algorithms to distinguish treatment-specific 
brain responses from single ERP trials with potential use as feedback for closed-loop 
adjustment of neurostimulation in a therapeutic neuroprosthesis. Finally, we performed 
an immunohistochemical analysis of implant and intervention tolerability. 
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Results 

Development and implantation of an epicortical neuroprosthesis to interface the 

PFC  

We initially developed a custom implantable device covering the surface of the frontal 
lobe of the rat cortex. Implants consisted of electrodes arranged in a 3 x 3 matrix and 
labelled according to their position above the mPFC as frontocentral (FC), frontal left 
(FL), frontal right (FR), medial central (MC), medial left (ML), medial right (MR), 
posterior central (PC), posterior left (PL) and posterior right (PR). Eight of the electrodes 
(0.2 × 0.2 mm2) were used for neural recording only. The larger FC electrode 
(1 × 1 mm2) was used for both, recording and electrical stimulation of the mPFC 
spanning both hemispheres at 3.2 mm anterior to bregma. A microfluidic channel was 
integrated to enable local delivery of liquids at 2.2 mm anterior to bregma. We used a 
recently established prototyping technology allowing rapid fabrication of soft and 
customised bioelectronic implants. Thereby, arrays were 3D-printed layer-by-layer 
using soft silicones and a conductive platinum ink (Fig. 1 A-C) (17, 19). 

Electrode impedances at 1 kHz measured in vitro were 10.14 ± 1.96 kΩ 
(mean ± standard error of the mean (SEM)) for recording electrodes (n = 80 from 10 
implants) and 4.36 ± 1.41 kΩ (n = 10 from 10 implants) for stimulating electrodes (Fig. 
1 D, Fig. S 1, Table S 1). 

The bioelectronic devices were implanted epidurally above the mPFC (Fig. 1 C) 
of 10 rats in a delicate surgical procedure involving trepanation directly above the 
superior sagittal sinus and adjacent blood vessels. Attention was paid to limit drilling to 
a few seconds at a time at a low drill rotational speed under constant flushing with cold 
phosphate-buffered saline (PBS) to prevent thermal tissue damage though occasional 
microbleedings could not be avoided. To allow influx of NTX solution, the dura was 
incised bilaterally about 0.5 mm next to the position of the microfluidic channel. 

The stability of implants in vivo was evaluated for up to 3 weeks, during which 
impedances of individual electrodes were measured every third day. A general trend of 
impedance increase was observed over time in recording electrodes, while impedances 
of stimulating electrodes remained stable (Fig. 1 D, Table S 1). Functional electrodes 
suitable for further ERP analysis were defined as having an impedance below 600 kΩ. 
Throughout the study period, more than 80 % of electrodes remained functional (Table 
S 1). One of the stimulation electrodes lost functionality at the last session time point.  
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C) 

D

A) B) 

Fig. 1 Multimodal epicortical array for recording and modulation of neural activity (A) i) Silicone 
base layer (DOWSIL™ SE1700) including holes defining the active sites of electrodes and the microfluidic 
channel. ii) A second silicone layer defines the borders for electrode interconnects and the microfluidic 
channel. iii) The conductive portions of the array are ink-jet printed from platinum-silicone composite. iv) 
Connection of microwires. v) Connection of silicone fluidic channel. vi) Isolation of the array using 
SYLGARDTM184. vii) Isolation of the cable contacts using DOW CORNING® 734. (B) Photograph of an 
implant (C) Implantation of the array above the rat mPFC encompassing anterior cingulate (ACC), prelimbic 
(PrL) and infralimbic (IL) cortices. Stereotactic coordinates (in millimeters) are relative to bregma. (D) 
Impedances in vitro (at 1 kHz) of recording (blue, n = 80 electrodes of 10 implants) and stimulation 
electrodes (red, n = 10 electrodes of 10 implants) and in vivo (varying implant numbers, see Table S 1). Data 
are presented as mean ± SEM. 
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Implementation of ECoG measurements of prefrontal cortical activity  
We set out to establish if our technology is capable to reliably obtain 

characteristic ERPs in awake rats (n = 10). We used an auditory oddball paradigm 
similar to those applied in human ERP studies to elicit typical sound-specific ERP 
responses. To reduce movement artefacts, rats were placed in a sling within an 
electrically shielded and soundproofed audiometry booth (Fig. 2). During a 5 × 5 min 
session, rats passively listened to a series of frequent standard sounds (50 ms, 1 kHz, 
70 dB sound pressure level (SPL), 1200 times = 87 % of trials) presented once every 
second and randomly interspersed with rare deviant sounds (50 ms, 2 kHz, 80 dB SPL, 
180 times = 13 % of trials).  

 

 
The acquired neural data were initially pre-processed involving filtering, data 

segmentation and artefact rejection followed by averaging standard and deviant trials for 
each animal. Then, ERP amplitudes were computed as averages within a time window 
of 10 ms around the peak latency determined within the following time intervals post-
stimulus: P1: 30 – 75 ms, N1: 80 – 105 ms, P2: 110 – 125 ms, N2: 130 – 180 ms, P3: 
200 – 500 ms. As the positive P2 component was observed to be in the negative value 
range here, the N1-P2 peak-to-peak difference was exceptionally used for calculating 
the P2 amplitude.  

Differences in neural activity underlying perception of the standard and deviant 
sounds should result in different voltage waveforms recorded through the implant. To 
determine if the neural responses to the two sounds can be distinguished in the ECoG 
recordings, we performed statistical analysis using a channel-wise one-sample t-test of 
the difference curve (deviant minus standard) against zero value. The resulting p-values 
from these contrasts were corrected post-hoc for multiple comparisons and additionally 

Fig. 2 Set-up and timeline for ECoG recording sessions. Experiments were planned as a within-subjects-
design with all animals undergoing an initial habituation period, surgical intervention and neural recordings 
without previous treatment (sham) and following alcohol injections, electrical brain stimulation and 
cortical administrations of NTX in a randomised order. Electrical potentials elicited during the auditory 
oddball task were amplified and digitised at a sampling rate of 3 kHz via the Intan RHD2000 recording 
system and visualised and saved on a computer using the Intan recording software. 
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reported as FDR (false discovery rate)-adjusted p-values. Effect sizes were calculated 
using Cohen´s d with |d| ≥ 0.2 indicating a small, |d| ≥ 0.5 a medium and |d| > 0.8 a large 
effect. 

Grand average ERPs over all animals revealed significantly different neural 
activities elicited by the two sounds with large effect sizes for P1, N1 and P3 components 
at all electrode sites, also bearing FDR correction (Fig. 3, Table S 2). The components 
P2 and N2 were not clearly recognisable at each electrode though significant differences 
within these time intervals have been detected at some channels (e.g. electrode FL, P2: 
t(9) = 2.318, p = 0.046 uncorrected; N2: t(9) = -2.514, p = 0.033 uncorrected) but did 
not withstand FDR correction. 

 
 

 

Electrical and pharmacological modulation of neural activity 
Following the successful acquisition of ERPs in untreated animals (sham), we 

tested if we can detect changes in neural activity induced by acute systemic alcohol 
administration, as well as electrical stimulation and NTX, both applied directly to the 
cortex through the implant. Following each of the interventions, animals were subjected 
to the same auditory oddball task. Interventions could not be performed on all animals 
due to issues with connectors, cement adhesion or blockage of the microfluidic channel, 
which necessitated these animals to be dropped from the study. 

In each treatment condition, neural responses to the standard sound appeared flat, 
as was the case for untreated animals (presumably due to habituation effects caused by 
the high rate of repetitions). Therefore and in order to focus on treatment-induced 
changes of neural activity, subsequent analysis was performed on ERP difference curves 
(deviant-minus-standard sounds). 

Fig. 3 Grand average ERPs elicited by the standard sound (blue), deviant sound (red) and their difference 
curves (black) at all electrode sites. Traces are averaged from 10 animals. The components P1-N1-P2 are 
characteristic for pre- and early attentive auditory signal processing while N2 and P3 are indicative for 
conscious stimulus evaluation. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454271doi: bioRxiv preprint 



8 
 

Animals received a low (1.5 g/kg, n = 6) or a high (3.0 g/kg, n = 9) dose of 
ethanol (EtOH, 20 % v/v, injected intraperitoneally, i.p) about 20 min before recording. 
Behaviourally, the low dose induced a slightly tottering gait, while the high dose resulted 
in ataxia and immobility. In line, paired t-tests revealed a delay of the N2 component at 
four channels in the low ethanol condition, but no significant impact on ERP amplitudes 
(Fig. 4, Fig. S 2, Table S 3, S 4). In contrast, high dosed ethanol significantly impaired 
neural functioning as reflected by a diminished N1 component (Fig. 4, Fig. S 2, Table 
S 6). Analysis of ERP latencies for high ethanol was performed for the P1 component 
(Table S 6) as other ERP components were suppressed entirely. 

Next, we investigated the effects of direct cortical stimulation on neural activity 
by applying biphasic, charge-imbalanced pulses (20 min, 100 µA anodal/ 
80 µA cathodal, 130 Hz) as such waveforms have been shown to provide a good 
compromise between effective neural activation and adverse effects such as tissue 
damage and dissolution of platinum electrodes (44). Animals (n = 8) did not display 
behavioural changes upon stimulation, however increased P1, N1 and/or N2 amplitudes 
at six channels indicated an enhancing effect of electrical stimulation on brain activity 
(Fig. 4, Fig. S 3, Table S 8). For the N1 component, this effect was more pronounced in 
closer proximity to the stimulation site as revealed by paired t-tests using mean N1 
responses combined for frontal (t(6) = -4.703, p = 0.003, |d| = 0.936) and mid row 
electrodes (t(6) = -3.139, p = 0.020, |d| = 0.516) compared to posterior electrode sites 
(Fig. 4 B). ERP latencies were unchanged (Table S 7). 

Finally, we investigated the effects of epicortical administration of NTX, an 
opioid receptor antagonist well established in recuperation but with just moderate effects 
in conventional oral application (45). We tested three different doses (3 µg (NTX3, 
n = 5), 6 µg (NTX6, n = 4), 30 µg (NTX30, n = 5)), dissolved in artificial cerebrospinal 
fluid and administered in a volume of 1 µl via the integrated microfluidic channel. 
Differences in animal behavior upon NTX administration at either of the tested doses 
were not observed. NTX at 3 µg/µl and 30 µg/µl decreased latencies of P1 and N1 
components (Table S 9, S 13) and all concentrations displayed enhancing effects on 
amplitudes of N1, P2, N2 or P3 components (Fig. 4, Fig. S 4, Table S 10, S 12, S 14). 
However, results remained significant following FDR-correction only at channels near 
the microchannel outlet for N1 amplitudes following 3 µg/µl (channels FC, MC, FL, 
ML) and 30 µg/µl (channels FC, FL) and for the P2 at channel FL following 30 µg/µl.  
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Single-trial ERP classification 

Computing ERP grand averages in standard offline ERP analysis procedures is 
unsuitable for a neuroprosthetic device designed to operate in real-time. Thus, we 
applied machine learning algorithms to perform single-trial classification of ERP 
responses. We aimed to see if the aggregate of the classifier outputs provided an accurate 
differentiation of which treatment had been applied to each session for each individual. 
Classifications were performed comparing one-vs-one combinations of all treatments as 
depicted in Table 1. 

A) B) 

Fig. 4 Impact of alcohol and implant-driven electrical and pharmacological brain stimulation on 

prefrontal neural activity. (A) Representative grand average deviant-minus-standard ERP difference 
curves at channel FC following administration of alcohol at 1.5 g/kg (n = 6, rose) and 3 g/kg (n = 9, red),
electrical brain stimulation (n = 8, yellow), cortical delivery of naltrexone (NTX) at 3 µg/µl (n = 5, light
blue), 6 µg/µl (n = 4, mid-blue) and 30 µg/µl (n = 5, dark blue)  and untreated animals (sham, n = 10, 
black). (B) ERP amplitude differences between interventions and untreated animals at all channels. 
Implant channels are displayed in 3 x 3 matrices for each treatment (rows) and ERP component (columns) 
with suppressing or enhancing treatment effects on ERP amplitudes illustrated in blueish or reddish 
colours, respectively. The bottom left inset illustrates channel locations with the highlighted FC
stimulation electrode and the microfluidic channel between electrodes FC and MC. Numbers indicate 
significant p-values (uncorrected). 
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We used the FC electrode as this was the channel in which successful recordings 
were consistently available, only missing NTX3 for one animal. Furthermore, specific 
ERP components, such as N1 and P3, are known to peak at frontocentral electrode sites 
(29, 46). Data were low-pass filtered and resampled to 64 Hz to reduce dimensionality, 
thus decreasing the possibility of overfitting (47). As grand average data showed notable 
differences between sham recordings and EtOH treatments, especially of the N1 and P3, 
time-domain data in the time windows of these components were chosen for feature 
extraction based on voltage differences between sham recordings and treatments. Next, 
ERP difference trials were generated as shown in Fig. 5 A to represent the contrast 
between responses to standard and deviant sounds in a given condition. To train a model 
predicting the treatment applied in a particular session for a given animal, all difference 
trials from all other animals were combined to form the training data. No trials from the 
test animal were used as training trials, as these could bias the results and reduce the 
generalisability of the training model. Difference trials from the test animal under a given 
treatment were used as the test data. Next, we performed a stepwise linear discriminant 
analysis (SWLDA), chosen as a combined feature selection and classification strategy. 
SWLDA has previously been proven effective in these areas when processing P3 data 
(48), including performing single-trial classification (49). Putative feature sets were 
generated to find the feature set that provided the best separability of the two classes of 
training data. Starting with an empty model, individual features were systematically 
added to or removed from the model at each step until no further improvements could 
be made to the model. At this stage, the features in the model were used as the selected 
set, as depicted in Fig. 5 B. Then, linear discriminant analysis involving the stepwise 
selected features was carried out to classify each test trial from a given session under 
either treatment A or B (Fig. 5 C). Finally, a simple majority vote predicted the overall 
treatment class of the session, as shown in Fig. 5 D.  

The accuracy of the predictions for each one-vs-one comparison of treatment 
types is presented in Table 1. When comparing sham condition against treatment of 
3 g/kg of EtOH, the correct treatment was predicted for 94.4 % of sessions, with only 
one misclassification. Furthermore, brain states induced by electrical stimulation were 
correctly distinguished from all other conditions with a precision up to 100 % (low EtOH 
dose). Pharmacological treatments with NTX were correctly classified in at least two-
thirds of sessions for every comparison. Contingency tables reporting the predictions in 
each treatment comparison are shown in Supplementary Table S 15 – S 29. 
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A) Generation of training and test trials 

B) Session-level feature selection 

C) Classification of single trials   D) Session-level classification 
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Fig. 5 Approach to distinguish the treatment applied for each session. (A) Generation of ERP 
difference trials for a single animal and treatment. Upper row (red): deviant ERP responses, including the 
mean (right). Mid row: standard ERP responses, including the mean (left). Bottom row: resulting 
difference trials. Time ranges that were not used for classification are obscured in light grey. (B) Example 
result of the stepwise feature selection phase representing a model for testing whether the animal´s session 
could be correctly classified as ‘alcohol high’ against ‘sham’ treatment. Solid green line: mean of all 
difference trials under ‘sham’ treatment. Solid brown line: mean of all difference trials under ‘alcohol 
high’ treatment. Shaded areas above and below these lines represent 1 standard error. Each individual 
feature represents the voltage at a given time point of each trial. For example, the feature highlighted by 
the blue dotted line represents voltages of each trial at 388 ms post-stimulus. Time ranges, not eligible for 
classification, are obscured in light grey. Non-selected features are obscured in dark grey and marked with 
crosses above. Features selected for the classification model remain visible with check marks above. The 

p-values reported in the last iteration of stepwise feature selection are reported alongside the status of each 
feature as either included or excluded. (C) Simplified example of the linear discriminant classifier 
employed to classify each individual trial as a result from a specific treatment type. For the purpose of 
visualisation, the two features with smallest p-values in the feature selection example shown in part B are 
extracted and the 100 samples closest to the arithmetic mean of each class are displayed. Green circles: 
samples from ‘sham’ treatment. Brown triangle: samples from `alcohol high’ treatment. The hyperplane 
generated by the classification model best separating the two classes, is indicated as a dashed black line. 
An example test sample is shown as a blue star. As this sample falls on the lower right side of the 
hyperplane, it is correctly classified as an `alcohol high’ sample. (D) Overall classification made by the 
model. After each test trial (as generated in part A and tested as in part C with the features selected in part 
B), the majority of trials in this example was classified as ‘alcohol high’. Therefore, the overall prediction 
for the session is ‘alcohol high’. 

 

Table  1 Percentage of sessions in which the treatment was accurately predicted for each one-vs-one 

treatment type comparisons. 

 

 

  
Treatment 

A 
Treatment 

B 
n 

Session Classification 
Accuracy 

 

p-value 

sham alcohol high 9 94.4 % < 0.001 

sham alcohol low 6 66.7 % 0.248 

alcohol low alcohol high 6 83.3 % 0.014 

sham el. stimulation 8 75.0 % 0.046 

alcohol high el. stimulation 7 92.9 % 0.001 

alcohol low el. stimulation 6 100.0 % < 0.001 

sham NTX3 4 87.5 % 0.029 

sham NTX6 4 75.0 % 0.103 

sham NTX30 5 90.0 % 0.001 

alcohol high NTX3 3 100.0 % 0.014 

alcohol high NTX6 3 83.3 % 0.083 

alcohol high NTX30 4 75.0 % 0.103 

alcohol low NTX3 3 66.7 % 0.410 

alcohol low NTX6 3 66.7 % 0.410 

alcohol low NTX30 4 75.0 % 0.103 
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Biocompatibility of implant materials and applied treatments 

Finally, we investigated the biointegration of the device itself and the effects of 
the combined interventions on brain tissue after four weeks of implantation. This 
involved immunohistochemical evaluation of neuroinflammation by applying antibodies 
against glial fibrillaric acidic protein (GFAP) and ionized calcium binding adaptor 
molecule 1 (Iba1) and stainings of laminins and platelet endothelial cell adhesion 
molecule (also known as cluster of differentiation 31 (CD31)), revealing cerebral 
vascular integrity. We furthermore investigated neuronal cell survival by using 
antibodies against the neuronal marker Hexaribonucleotide Binding Protein-3 (NeuN) 
and cysteine-aspartic protease (caspase3), a mediator of programmed cell death.  

Immunostainings were performed on three experimental groups: 1.) sham-
operated animals without implants (n = 3), 2.) animals that received a non-functional 
dummy implant (n = 3) and 3.) rats with an active implant that underwent EtOH 
injections, electrical stimulation and NTX delivery (n = 7). Each fluorescence staining 
was performed on six slices from each brain. For subsequent image analysis, we defined 
a region of interest (ROI) covering the entire implant width and the cortex up to a depth 
of 2 mm (Fig. 6 A). Zoomed-in microscopic images of Fig. 6 B depict the 
immunoreactivity within the left motor cortex at 3.2 mm anterior to bregma next to the 
stimulation electrode. The percentage of stained area, counts of stained objects per mm2 

and mean fluorescence intensity were averaged over brain slices for each animal for 
statistical analysis (Fig. 6 C, Table S 30). 

In line with other studies using ECoG implants (20, 50), we observed fibrous 
tissue surrounding the electrode array leading to a slight depression of brain tissue 
underneath. We observed a lower number of NeuN positive cells in the treatment group 
(F(2,10) = 4.474, p = 0.045) indicative for an effect of treatment rather than caused by 
the device as animals that received an implant dummy did not display a significant 
difference in %area stained and numbers of NeuN positive cells compared to sham-
operated rats (Fig. 6 B, C, Table S 30). No differences between groups were observed 
for GFAP, Iba1and caspase3, indicating that neither the dummy implant nor the 
treatments induced significantly enhanced inflammation or acute cell loss (Fig. 6 B, C, 
Table S 30). However, we observed treatment-related cellular alterations within the 
cerebral vascular system indicated by lower laminin expression in animals of the 
treatment group compared to sham-operated rats (fluorescence intensity: 
F(2,10) = 8.793, p = 0.021, %area of ROI: F(2,10) = 7.853, p = 0.042) and rats with 
implant dummies (fluorescence intensity: F(2,10) = 8.793, p = 0.021, %area of ROI: 
F(2,10) = 7.853, p = 0.020) (Fig. 6 B, C, Table S 30)). 
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C) 

A) 

B) 

Fig. 6 Immunohistochemical evaluation of implant and treatment tissue response. (A) Cross section 
of rat brain and the biomedical implant at 3.2 mm anterior to bregma including the region of interest (ROI) 
defined for biocompatibility analysis following device explantation and magnified view presented in (B). 
(B) Representative microscopic images of the left motor cortex at 3.2 mm anterior to bregma next to the 
stimulation electrode. Insets are 50 × 50 µm squares. (C) Selected biotolerance indicators for each, six 
brain slices per staining of sham-operated animals (n = 3), rats that received an implant dummy (n = 3) 
and treatments (n = 7) are normalised and presented as mean ± SEM. Asterisks indicate significant 
differences (p < 0.05). 
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Discussion 

 
We established a multimodal neural interface in combination with machine 

learning to acquire, modulate and classify ERP components in awake rats. While 
available ECoG-based systems typically focus on sensorimotor brain areas, this study 
proposes the first-time application of an epicortical implant to target cognitive ERPs 
from higher-order prefrontal networks. The applied tools have potential applications in 
diagnosing and treating neuropsychiatric diseases and aim to pave the way for intelligent 
closed-loop neuroprostheses. 

Custom electrode arrays were manufactured using a 3D printing technology with 
robot-controlled deposition of soft and conductive materials that allowed tailoring the 
implant layout to match the surface area above the mPFC. The flexible Pt-silicone 
electrodes of our arrays provided low impedances in vitro. Previous studies demonstrate 
that electrode impedances increase during the first weeks after implantation but decline 
over more extended periods (51). Similarly, we observed increasing impedances at 
1 kHz of recording electrodes during the 3-week study period though we did not perform 
measurements over longer implantation durations to clarify if a decrease in impedances 
would also occur in our devices. Impedances of stimulation electrodes were lower 
compared to recording electrodes due to their larger surface area and remained stable 
over the entire study period. A potential explanation for this may be that electrical 
stimulation supposedly has a “rejuvenating” effect on the electrode-tissue interface by 
decreasing the tissue interface resistance resulting in improved signal quality and 
reduced electrode impedances (52). The stability enabled reliable and high-quality field 
potential recordings. 

Neuropsychiatric disorders are associated with disturbances in prefrontal brain 
activity that also translate into altered ERPs. Their monitoring is therefore increasingly 
supported to become part of the clinical routine (53). We recorded ERPs appearing in 
the brain as early stages of auditory perception immediately after the onset of sounds. In 
healthy subjects, they differ depending on sound characteristics (e.g. pitch, loudness). 
Our bioelectronic implant was capable to reliably measure these ERP differences 
between rare deviant and frequent standard sounds. Likewise, we could successfully 
detect dose-dependent ERP changes following acute administration of alcohol. In line 
with previous studies in humans and rodents, the application of EtOH substantially 
affected the N1 component indicating impaired sensory gating and perceptual 
disturbances (36, 54, 55).  

Although ERPs have been recognised as disease biomarkers (56), their targeted 
monitoring and modulation is not in the focus of current therapeutic interventions. In 
real-life, ERP abnormalities in the context of alcohol use disorders would express in 
reaction, e.g. to hearing the sound of opening a beer bottle or seeing people drinking 
alcohol. In an addicted individual, such alcohol-associated stimuli exceedingly attract 
attention and challenge inhibitory abilities to withstand alcohol consumption (57). These 
processes also express as altered neural activity patterns that are supposed to normalise 
when neuromodulation is applied to improve behaviour control and decrease relapse 
risk. First studies using tDCS to correct neural disturbances in substance use disorders 
could positively affect N2 and P3 components (for review see (58)). In our study, 
implant-driven direct cortical stimulation successfully enhanced the N1, P2 or N2 
components at most channels, indicating improved auditory processing, sensory gating 
and enhanced perception of the deviant stimulus. Especially for the N1 component, this 
effect was more pronounced at electrodes closer to the stimulation site. Nguyen and Lin 
(59) further demonstrated that the frontal N1 might not just reflect passive sensory 
processing but also indicates motivational salience shown by increased N1 amplitudes 
in rats correctly responding to a reward-coupled deviant sound compared to miss 
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responses. Modulating the N1 component could therefore influence early inhibition of 
stimulus-activated actions (60), which is relevant to addictive diseases because relapse, 
as previously mentioned, is triggered by drug cue-induced craving and impaired 
inhibitory control (57). Abnormalities in stimulus-locked P2 and N2 have furthermore 
been associated with drug users that discontinued treatment (61, 62), suggesting that 
monitoring and modulation of these components could predict and influence treatment 
outcome. The P3 component was not significantly influenced by stimulation here. 
However, the P3 is more pronounced in the context of practical tasks involving active 
action planning and behaviour control than under passive conditions as applied here (46). 

Upon local delivery of NTX directly onto the PFC, we observed decreased 
latencies of P1 and N1 components (3 µg/µl and 30 µg/µl) and increased amplitudes of 
N1, P2, N2 or P3 (all doses applied) at several channels pointing to improved auditory 
processing. Although already approved in 1984 for addiction treatment (63), 
investigations of NTX effects on electrophysiological parameters are sparse and 
inconclusive. EEG studies could not detect an influence of systemic NTX application on 
the ERPs of our interest. In an auditory oddball paradigm with social drinkers, previous 
oral intake of NTX significantly reduced the late negative difference at 200 – 500 ms 
post-stimulus indicative for an NTX-induced impaired selective attention (54). In 
contrast, a somewhat improved neural functioning by NTX was concluded from an 
increased language-related N4 in a semantic memory task performed by opioid addicts, 
long-term treated with NTX via an abdominal subcutaneous implant (64).  

Towards autonomous identification of brain states evoked by neuromodulation 
and pharmacological treatment, single-trial ERP data underwent a machine learning 
procedure involving SWLDA. SWLDA has a strong track record in the classification of 
P3-related data and has again performed well here. The comparison between sham 
condition and a high dose of alcohol was classified correctly in 17 out of 18 sessions, 
with a high degree of statistical significance (p < .001). Interestingly, the administration 
of the two different doses of alcohol was accurately distinguished, supporting recent 
findings in which machine learning approaches revealed that ERPs correlate with 
individual differences in alcohol consumption behaviour in patients suffering from 
alcohol use disorders (65). Machine learning techniques using ERP components have 
proven to differentiate patients from healthy controls also in schizophrenia (66), 
attention deficit hyperactive disorder (67) and autism (68). Importantly, our SWLDA 
approach could identify animals that received direct cortical stimulation. This is crucial 
for the development of closed-loop neuroprosthetics, which intend to reduce side effects 
and increase efficiency by switching on brain stimulation only if and as long as an 
abnormal neural activity is detected, adaptively adjusting stimulation parameters and 
switching off as soon as brain activity has been normalised (69). Besides the NeuroPace® 
RNS® System for epilepsy, a closed-loop system utilising a machine learning approach 
has been successfully implemented for DBS in Parkinson´s disease to extract patient-
specific cortical signals that indicate tremor-evoking movement and adjusts stimulation 
voltage in real-time (70). ERPs and machine learning can thus support diagnosis of 
psychiatric symptoms and contribute to developing predictions about disease 
progression and treatment outcomes in individual subjects, enabling a personalised and 
optimised therapy (53, 71). 

Although we have successfully demonstrated the suitability of our biomedical 
implant to obtain and modulate prefrontal ERPs, the safety of neural implants is crucial. 
Immunohistochemical analysis revealed good biocompatibility of the used implant 
materials, while animals in the treatment group displayed some variability in their 
cortical morphology. Note that animals received alcohol, electrical stimulation and local 
delivery of NTX. Therefore we cannot tell if the effects shown are caused by a specific 
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treatment or result from interactions of treatments. However, this might reflect a clinical 
scenario where patients are treated with a combination of different approaches. 

Differences in immunoreactivity were predominantly observed for laminins, a 
family of glycoproteins that belong to the extracellular matrix and are relevant to blood-
brain-barrier and neuronal functioning (72). Therefore, the detected decrease in 
expression of laminins likely affected neurons as well. Surgical interventions to implant 
biomedical interfaces go along with neural and vascular injury and typical foreign body 
reactions to the implanted devices (73). Here, the necessary incision of the dura mater to 
allow the influx of NTX solution likely induced some vascular damage causing the 
observed changes in laminin expression in some animals. However, both, vascular 
dysfunction and neuronal loss, have also been associated with oxidative stress caused by 
alcohol abuse (74). Knabbe et al. (75) demonstrated that even a single intoxicating 
exposure to alcohol has long-lasting molecular and cellular effects in the brain. Electrical 
stimulation is capable to increase permeability of the blood-brain barrier as well. 
However, this effect is transient and reversible (76). Studies applying DBS suggest that 
electrical stimulation might regulate and even reduce neuroinflammation and apoptosis, 
thus excerting a neuroprotective effect (77). Further, alcohol-induced neurodegeneration 
has been associated with enhanced microglial and astrocytic expression (78). However, 
we did not observe significantly enhanced GFAP and Iba1 immunoreactivity in the 
treatment group. Since NTX has been shown to have anti-inflammatory and 
neuroprotective functions counteracting drug-induced activation of astrocytes, microglia 
and caspase3 (79, 80), we conjecture that NTX might have inhibited the potential 
damaging effects of repeated alcohol administration. 

 
Limitations  

  
 With the here applied passive auditory oddball paradigm it is not possible to 
clarify if targeted ERP normalisation through an epicortical implant is able to re-
establish lost behaviour control. This would necessitate an experimental approach 
requiring subjects to actively respond to or inhibit their response to certain stimuli (81). 
When applied e.g. in addiction models, stimuli can be paired with the availability and 
self-administration of drugs. The implant would then allow to monitor and modulate 
neurophysiological correlates of drug-cue reactivity and associated drug seeking and 
consumption behaviour. As validated animal models are available (82), the experimental 
set-up presented here can be used straightway to target a wide range of neuropsychiatric 
disorders where disturbed sensory processing is a characteristic feature and closely 
related to the clinical symptomatology, global cognitive impairments and poor 
functional outcomes (83). 
 Neural measurements were currently performed following stimulation and their 
analysis was carried out offline. For a medical device, these elements need to be 
combined to enable autonomous measurement, analysis and modulation of neural 
activity in real-time. Integration of a controllable liquid infusion unit might allow a 
simpler, more straightforward and precise cortical drug delivery. 

The used machine learning procedures to identify different treatment conditions 
were chosen on the assumption that linear classifiers perform well in the classification 
of brain signals compared to more complex approaches such as deep neural networks as 
they offer the possibility of overfitting, due to relatively small data sets usually being 
available (47). However, in this scenario, the training data set is made up of trials from 
numerous animals. If a large cohort of animals is used, there may be enough training 
data to make deep learning an attractive alternative approach. In the current data set, the 
stimulation electrode was the only channel consistently recorded in all sessions for all 
animals. Increased reliability of channel recordings may be advantageous to 
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classification, allowing more spatial information to be utilised. The current approach 
relies on patterns being learned in a group of animals and transferred to a different test 
animal. However, brain signals are known to suffer from variability (31). Further 
sessions of all conditions would allow the use of calibration trials from the test animal’s 
other sessions to build a better model to generalise to a new session. With data from 
multiple sessions of each condition, it may even be possible to build fully subject-
dependent models for each animal, which may aid accuracy. 

Finally, for analysis of treatment-induced tissue reactions, rats received a 
combination of interventions that hinder allocation of the outcomes to a specific 
treatment. Further biocampatibility evaluations should be performed after longer, 
clinically relevant implantation durations assessing persistent effects (73). 

 

Materials and Methods 

Implant design & fabrication 

The neuroprosthetic devices were manufactured using the 3D bioprinter 
3DDiscoveryTM Evolution (regenHU Ltd., Villaz-St-Pierre, Switzerland). The design of 
the implants was prepared with the printers´ bioprinting software suite BioCADTM  and 
in G-code using a custom-developed Python (Version 3.7) based software. The implants 
consisted of eight recording electrodes (0.2 × 0.2 mm2) and one larger frontocentral 
electrode (1 × 1 mm2) used for recording and electrical stimulation of the mPFC at 3.2 
mm anterior to bregma. The electrodes were arranged in a 3 × 3 matrix with a distance 
between adjacent electrodes of 1.5 mm in the medio-lateral direction and 2.0 mm in the 
rostro-caudal direction. The implants were assembled with a 100 µm thick base layer of 
a silicone elastomer (DOWSIL™ SE 1700, Dow Inc., Midland, USA) with holes at the 
position of electrode contact sites and the microchannel. A second silicone layer on top 
of the base layer defined the borders of interconnects, electrodes and chemotrode. A 
third layer of a platinum powder (chemPUR, Karlsruhe, Germany) dispersed in 
tri(ethylene glycol) monomethyl ether (TGME, Merck KGaA, Darmstadt, Germany) 
was used for the conductive interconnects and electrode contact sites. Quality of all 
printing and processing steps was evaluated under a stereo microscope and defects were 
manually corrected. After printing each of the layers, the implants were placed on a 
heating plate at 120°C to enable polymerisation and evaporate the dispersing solvent. 
Then, a drop of PDMS (SYLGARDTM184, Dow Inc., Midland, USA) pre-cured for 90 s 
in an oven at 90°C was manually applied under a microscope at the position of each 
electrode and baked on a hot plate at 105°C. The application and baking was done for 
each electrode separately to ensure quick polymerisation. This procedure is required to 
prevent formation of a thin film of PDMS covering the electrode site which is otherwise 
formed due to accumulation of silicone under the platinum layer. The microchannel was 
a silicone tubing (inner : 0.51 mm, 45630102, DowCorning Silastic, Freudenberg 
Medical Europe GmbH, Kaiserslautern, Germany) manually connected to the implant 
using SE1700 silicone and allowed insertion of microsyringes to inject fluidics. Each of 
the interconnects was manually connected to PFA-coated stainless steel microwires (: 
0.23 mm, 7SS-2T, Science Products GmbH, Hofheim, Germany) using silver-containing 
epoxy adhesive (EPO-TEK® H27D, part A, Epoxy Technology Inc., Billerica, USA) 
diluted in EtOH. Solvent was evaporated after application of the adhesive at 90°C. 
Implants were insulated with a final layer of PDMS and polymerised at 90°C. The wire 
connection was further insulated with a thick silicone layer using DOW CORNING® 
734. Finally, the microwires were soldiered to a connector (TC-2506280, Conrad 
Electronic SE, Hirschau, Germany) and insulated with hot glue. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454271doi: bioRxiv preprint 



19 
 

Electrochemical impedance measurements 

The impedances of implant electrodes in vitro were recorded in PBS (pH 7.4) at 
room temperature using a potentiostat equipped with a frequency response analyser 
(AUTOLAB PGSTAT204, Deutsche Metrohm Prozessanalytik GmbH & Co. KG, 
Filderstadt, Germany). A platinum wire served as counter electrode and an Ag/AgCl 
electrode as reference. Impedance measurements in vivo were carried out right before 
each ERP recording session using the Intan RHD2000 USB interface system (Intan 
Technologies, Los Angeles, USA). The counter electrode was a stainless steel wire (7SS-
2T, Science Products GmbH, Hofheim, Germany) whose de-insulated ending was 
connected to a microscrew fixed into the interparietal bone. 

Animals 

All investigations within this project have been approved by the ethics 
committees of TU Dresden and the Saxonian ministry of  the interior (Landesdirektion 
Sachsen, TVV 58/2018). Experiments were performed in accordance with the guidelines 
of the Directive 2010/63/EU on the protection of animals used for scientific purposes of 
the European Commission with great attention to avoid suffering and to reduce number 
of animals used. 

The study involved n = 10 adult male Wistar wildtype rats (Janvier Labs, Le 
Genest-Saint-Isle, France) initially housed in groups of up to four animals. After surgery, 
rats were housed in single cages (Makrolon®, Type III, Tecniplast Deutschland GmbH, 
Hohenpeißenberg, Germany) on sawdust bedding (Ssniff - Bedding 3/4 S, Altrogge, 
Lage, Germany) and with Bed-r’Nest material (Datesand Ltd., Bredbury, UK) as 
enrichment. Pelleted food (V1534-300, ssniff Spezialdiäten GmbH, Soest, Germany) 
and water were available ad libitum. Housing rooms were temperature (20 - 22°C) and 
humidity (40 - 55 %) controlled with a 12 h automatic light-dark cycle with lights on at 
6.00 am. Prior to surgery, animals were habituated to the experimenter and the recording 
set-up through daily handling over a duration of two weeks.  
 

Surgery  

Surgeries to implant the device were performed under subcutaneous anaesthesia 
with Fentanyl (0.005 mg/kg), Midazolam (2.00 mg/kg) and Medetomidinhydrochloride 
(0.135 mg/kg) injected into a nuchal fold. The animals´ head was fixed into a stereotactic 
frame via ear pins and jaw brackets. First, the skullcap and cranial suture were exposed 
and two microscrews were drilled into the skull: the first one in the left parietal skull 
bone which is later cable-connected to the implant connector and serves as reference and 
the second one in the right frontal skull bone serving as anchor screw to improve fixation. 
The skull was slowly trepaned ( 6.0 mm, < 1500 rpm) under constant flushing with 
cold PBS at -2.6 – 3.2 mm with reference to bregma. The dura mater was then carefully 
incised bilaterally next to the position of the microchannel outlet (2.2 mm anterior to 
bregma) using microscissors. The implant was placed centrally on the cortex with the 
stimulation electrode located at 3.2 mm anterior to bregma. Artificial dural sealant 
(1A:3B, 3−4680, Dow Corning, Midland, USA) was applied on the implant to close the 
drill hole. The external parts of the implant were fixed to the skull with dental cement 
(Paladur, Kulzer GmbH, Hanau, Germany) and the wound was sutured. Upon 
completion of surgery, anaesthesia was antagonised by subcutaneous injection of 
Naloxon (0.12 mg/kg BW), Flumazenil (0.2 mg/kg) and Atipamezol (0.75 mg/kg). 
Animals received Meloxicam (1.0 mg/kg, s.c.) as pain medication right after surgery and 
on the following day. 
 

Experimental procedures 

ECoG recordings started 3 days after surgery and were performed at a sampling 
rate of 3 kHz using the Intan RHD2000 USB interface system with the RHD2132 
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amplifier chip  (Intan Technologies, Los Angeles, USA), cable-connected to the implant 
connector. Recordings were initially performed without and thereafter – in randomised 
order – every 3 days following intraperitoneal injection of 1.5 or 3 g/kg EtOH (20 % v/v, 
20 min prior to recording), electrical or chemical stimulation. Electrical stimulation of 
the mPFC through the frontocentral electrode was applied as biphasic, charge-
imbalanced pulses (100 µA anodal/-80 µA cathodal, 130 Hz) for 20 min prior to 
recording using a computer-interfaced current generator (STG4004, 
MultiChannelSystems, Reutlingen, Germany). For chemical stimulation, naltrexone 
(Merck KGaA, Darmstadt, Germany) was dissolved in artificial cerebrospinal fluid (125 
mM NaCl, 3 mM KCl, 2.5 mM CaCl2, 1.3 mM MgSO4, 1.25 mM NaH2PO4, 26 mM 
NaHCO3, 13 mM C6H12O6) and applied in different dosages (3, 6 or 30 µg/µl) at a 
volume of 1 µl via the implant´s microchannel 20 min prior to recording.  
 

ECoG recording set-up 

Auditory stimuli to induce ERPs were generated using custom-written Matlab 
scripts (Version R2019a, The Mathworks Inc., Natick, MA, USA) and consisted of 
frequent (standards: 50 ms, 1 kHz, 70 dB SPL, 1200 times = 87 % of trials) and rare 
(deviants: 50 ms, 2 kHz, 80 dB SPL, 180 times = 13 % of trials) sinusoidal sounds with 
rise and fall times of 5 ms and with 1 s interstimulus interval. Deviant tones were 
interspersed with at least one standard sound avoiding that two deviants occurred 
successively. One animal at a time was placed in a rodent sling (Lomir Biomedical Inc., 
Notre-Dame-de-l'Île-Perrot, Canada) within an electrically shielded and soundproofed 
audiometry booth. Sound stimuli were presented in 5 blocks of 5 min via loudspeakers 
at a distance of 40 cm and an angle of 45° centrally above the animals´ head.  

Data processing & analysis 

Data processing was performed using the EEGLAB toolbox (84) (Version 
2019.1) for Matlab. Initially, data were filtered offline using a 0.1 – 45 Hz bandpass FIR 
filter (Kaiser windowed, Kaiser β = 5.65, filter length 54330 points). Data were 
segmented in epochs between -100 and 700 ms relative to stimulus onset separately for 
standard and deviant sounds and baseline-corrected using the pre-stimulus interval (-
100 ms to 0 ms) of these epochs. Artefacts were identified and excluded based on a delta 
criterion of 400 µV before averaging epochs for single subjects and over all animals 
(grand average), respectively. ERP peak latencies were identified within standard time 
intervals confirmed by visual inspection (P1: 30 – 75 ms, N1: 80 – 105 ms, P2: 
110 – 125 ms, N2: 130 – 180 ms, P3: 200 – 500 ms). The amplitudes of the ERP 
components were calculated as averaged amplitudes within a time window of 10 ms 
around the peak latency. Amplitudes of the P2 component are N1-P2 peak-to-peak 
amplitudes, whereas all other components are baseline-to-peak amplitudes. 
 

ERP Single-Trial Classification 

Filtered and artefact-free neural recording files already segmented for standard 
and deviant sounds, were further used for single-trial ERP classification. Procedures 
were performed on the data provided by the frontocentral electrode. 

Dataset generation for treatment classification 
Data were low pass filtered using a least squares linear phase anti-aliasing FIR 

filter with a cut-off frequency of 32 Hz and downsampled to 64 Hz. Time domain data 
were then extracted in the ranges of the N1 (80 – 105 ms) and P3 (200 – 500 ms) 
resulting in a total number of 22 feature time points per trial. Next, ERP “difference 
trials” for individual sessions and animals were generated through subtracting 1.) the 
mean response to standard stimuli from each response to a deviant stimulus and 2.) each 
response to a standard stimulus from the mean response to deviant stimuli Applying both 
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of these approaches allows the generation of a more extensive training set compared to 
performing only one of the methods. To train the model to predict a treatment of a 
particular session for a given animal, all difference trials from all other animals were 
combined to form the training data set. Difference trials from an animal undergoing the 
classification procedure were excluded from the training set. 

Feature selection and classification 

Time-domain features (i.e. the voltage values recorded at each time point, after 
pre-processing) were used as inputs for the feature selection phase. SWLDA feature 
selection first involved the creation of an initial model with no features and subsequent 
stepwise regression performed on the training data. A regression analysis was performed 
on potential models during each step, including or excluding each feature in turn and 
producing a F-statistic with a p-value for each feature. Smaller p-values indicated 
features with the highest likelihood of being beneficial. If any feature not already in the 
model had a p-value below the entry threshold of 0.05, then the feature with the smallest 
p-value would be added to the model. If no features were added, but any feature currently 
in the model now had a p-value above the removal threshold of 0.1, then the feature with 
the highest p-value would be removed from the model. For example, upon starting the 
feature selection process for a given dataset, new models would be generated containing 
each individual time-domain feature, and the performance of each of these models on 
the training data would be compared to the performance of the empty set. If we imagine 
that a feature achieved the lowest p-value at t = 250 ms, and that this p-value was below 
0.05, the model containing only this feature would be the current model at the end of the 
first step. During the second step, models containing each other available feature, 
together with the feature at t = 250 ms, would be generated, and their performance on 
the training data would be compared to that of the current model. If the lowest p-value 
was achieved by a feature at t = 90 ms, and this p-value was below 0.05, the current 
model at the end of the second step would be the model containing both features at 
t = 90 ms and t = 250 ms. These steps continued until no features were added to, or 
removed from, the model.  If this process failed to select any features, then the single 
feature with the smallest p-value would be selected. For the classification phase, a linear 
discriminant analysis model was trained and tested using the selected features. Each 
training trial is represented as a point in an n-dimensional space to build the model, 
where n is the number of selected features. A linear hyperplane is then fitted in this n-
dimensional space to separate best the two sets of points representing the two classes. 
The class with the fewest training trials was oversampled to ensure that training occurred 
with an equal number of trials per class. Using this method, each difference trial in the 
test set from a given session was classified. In order to obtain these single-trial 
classifications, the test trial was represented as a point in the n-dimensional space. 
Depending on which side of the hyperplane it lay, it would be classified as either 
treatment A or treatment B. A simple majority vote was then carried out, based on the 
classifier outputs of all test trials in the session, to provide an overall session-level 
classification of which treatment had been applied. This approach was tested on one-vs-
one combination for all interventions. For all treatment comparisons, each session's 
actual treatments and predicted treatments were cross-tabulated to form a contingency 
table on which a chi-square test was performed. The classification of a given treatment 
comparison was considered to be statistically significant overall if the p-value of the chi-
square statistic was less than 0.05. 
 

Immunohistochemistry 

Analysis was performed on three groups: 1.) animals that received the surgical 
intervention but no implants (sham, n = 3), 2.) rats with a non-functional implant 
(dummy, n = 3) and 3.) animals with an active implant that received a combination of 
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EtOH injections, electrical stimulation and NTX delivery (treatment, n = 7). After 
4 weeks of implantation, rats were perfused with PBS and paraformaldehyde (PFA) and 
brains were extracted and stored at 4°C in PFA for 24 hours. To dehydrate the tissue, 
brains were kept in sucrose (30 %) at 4°C for up to one week before freezing them into 
methylbutan within liquid nitrogen at -40°C for 2 min. Brains were stored at -80°C until 
further processing. Brains were cut into slices of 40 µm thickness using a microtome and 
kept free-floating into anti-freeze medium at -20°C until immunohistochemical staining. 
Staining was performed as double-staining. From each brain, six slices were used per 
double-staining. Each first slice was derived from underneath the stimulation electrode 
at 3.2 mm anterior to bregma. Consecutive sections were always 24 sections apart 
covering the complete area underneath the implant. Slices were stained according to a 
standard staining protocol for free-floating sections. Each step preceded multiple washes 
in PBS. Sections were blocked in PBS containing 0.3 % Triton X-100 and 10 % serum 
for 2 h before incubation at 4°C overnight with primary antibodies (Table S 31) in 
blocking solution. The following day, slices were incubated with secondary antibodies 
and fluorescent dye (Table S 31) in blocking solution for 2 h before mounting on slides 
using Mowiol.  

Fluorescent images of the brain sections were acquired with 10x magnification 
using the ZEISS AxioScan.Z1 Digital Slide Scanner. Image analysis was performed 
using the image processing suite Fiji (85). Thereby, images were initially background-
corrected and a global threshold was applied to extract relevant objects (Fig. S 2). For 
each brain slice we defined a region of interest covering the entire implant width and all 
cortical layers up to a depth of 2 mm. The density of immunostaining (percentage of 
stained area per ROI, counts/mm2) and mean fluorescence of the six brain slices per 
staining were averaged to represent an animals cortical immunoreactivity to the implant 
and treatments. 

Statistical analysis 

Statistical analysis was carried out using SPSS (Version 25, IBM Corp., Armonk, 
NY, USA). Initial ERP data of untreated animals underwent a one-sample t-test of the 
difference curve (deviant minus standard) against zero value. Treatment-induced 
modulations of neural activity were analysed applying two-tailed paired t-tests (α = 0.05) 
for each treatment vs. sham condition. The resulting p-values were corrected post-hoc 
for multiple comparisons (accounting for false positives amongst the 9 channels) using 
the Benjamini-Hochberg procedure with a threshold of 5 % and additionally reported as 
FDR-adjusted p-values. Effect sizes were calculated using Cohen´s d with differences 
of means divided by their standard deviation. Statistical analysis of 
immunohistochemical investigations involved a one-way ANOVA and Holm-Sidak 
post-hoc testing comparing numbers of stained objects, percentage of total area stained 
and fluorescence intensities between sham-operated animals, rats receiving an implant 
dummy and treatment conditions. Effect sizes were calculated using Cohen´s f . 
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