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Abstract

Evolutionary algorithms are powerful tools to discover novel
and diverse solutions to complex problems. Here, we discuss
how open-ended algorithms, such as novelty search, can be
used to design and evaluate new unconventional computing
systems, from the design of materials to the creation of new
computational models.

Introduction

Computing with unconventional materials is a growing area

of research across many disciplines (Adamatzky, 2016a,b).

Unconventional computers have the potential to be faster

and consume less power than conventional CMOS technol-

ogy (Stepney et al., 2018). However, to achieve this re-

quires innovations in material design and the discovery of

new computational models.

Designing new materials creates significant technical

challenges often requiring advanced computer modelling,

new fabrication techniques, ingenuity and creativity. There

are many approaches to material design, for example,

bottom-up design where structures can grow and self-

organise, or top-down design where ‘basic’ components are

connected together in a well-defined manner. Design and

validation of any material is typically expensive, labour in-

tensive and requires considerable expertise.

The other challenge in unconventional computing is de-

signing new computational models. Getting the right com-

putational model is critical. The computational model

should naturally fit the material’s implementation; a poor

model causes inefficiencies, requires extensive engineering

and may ignore promising qualities of the material.

Computational models are typically abstracted from or in-

spired by the behaviours of specific physical or biological

processes. One problem is that designing new models is dif-

ficult without some formal language to express them. An-

other problem is how to experimentally validate these mod-

els, how to assess their suitability for a specific material.

To reduce the need for expertise and to automate design,

search algorithms inspired by natural evolution are often

used. Artificial evolution requires minimal prior knowledge

of the system; this makes them easy to implement and re-

moves designer bias. In the field of Evolvable Hardware,

evolution is used to create and optimise the design of hard-

ware systems, from analogue circuits to robots (Tan et al.,

2004; Doncieux et al., 2015). Recently, algorithms inspired

by the qualities of open-ended evolution, such as novelty

search and quality diversity algorithms (Lehman and Stan-

ley, 2008; Pugh et al., 2016), have added new methods to

design artefacts, producing solutions that direct optimisation

often struggles to recreate.

We have developed a framework (Dale et al., 2019b) that

exploits novelty search to assess the quality of material sub-

strates. Here we discuss how it can be modified to improve

material design and to evaluate new computational models.

Computing with Materials

To compute with materials we need to be able to deter-

mine when some desired abstract computation is performed,

in contrast to the material undergoing other natural physi-

cal processes. To determine when a physical or biological

system is computing, abstraction/representation theory (AR

theory) has been developed (Horsman et al., 2014, 2017;

Stepney and Kendon, 2019). AR theory defines when a ma-

terial substrate is computing with respect to a model, ac-

cording to a representation. The theory defines the general

compute cycle for a physical computer, starting with an ini-

tial abstract problem, the encoding step in terms of an ab-

stract computational model, and its instantiation into a phys-

ical material. The theory defines the compute process and

whether the system fulfils the computing definition, but it

does not evaluate the efficiency of the material or the suit-

ability of the model.

We have developed a framework to explore and compare

the computational expressiveness and capability of physi-

cal materials with respect to one particular computational

model, that of Reservoir Computing (Lukoševičius et al.,

2012). This CHARC (CHAracterisation of Reservoir Com-

puters) framework (Dale et al., 2019b) provides a means to

characterise a material’s quality for reservoir computing ac-

cording to its range and diversity of physical behaviours.
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Reservoir computing is a popular computational model

to exploit a range of novel physical computing devices. Its

structure and simplicity make it suitable to be implemented

in many open non-linear dynamical systems. A recent re-

view of physical reservoirs highlights the diversity of sys-

tems the model is applied to, including chemical, optical,

electronic and mechanical systems (Tanaka et al., 2019).

There are typically two stages to program a physical reser-

voir. The first stage is to find a set of physical configuration

parameters that induce desirable system dynamics. In this

state, the reservoir acts as a dynamical filter on its inputs.

The second stage is to train a separate task-specific read-

out layer, typically forming a linear combination of system

states.

What tailors the CHARC framework to reservoir comput-

ing is the dynamical properties and metrics used to define a

behaviour. In reservoir computing, some properties are de-

scribed as being essential, such as non-linearity and a fading

memory (Dambre et al., 2012).

CHARC Framework Outline

The CHARC framework measures the quality of a material,

where quality is defined as the total capacity to realise dis-

tinct reservoirs in terms of different dynamical properties.

To characterise a test material, two phases must be com-

pleted: quality assessment of a reference material (phase

one), and characterisation of the test material (phase two).

Phase one provides a baseline to compare to, and is typi-

cally carried out only once, provided a suitable reference is

chosen. The basic process for each phase has three steps.

Step one, create an abstract space to explore, map, and

measure. This space represents the dynamical properties of

the material when configured. We refer to this space as the

behaviour space, inspired by the same representation used

in novelty search. To form each behaviour, n independent

property measures are used. Increasing the number of mea-

sures leads a more detailed representation of the material,

but also increases the size of search space – a suitable trade-

off is therefore needed. In previous work, three measures

are used to define the behaviour space: Kernel Rank (non-

linearity), Generalisation Rank (stability), and Memory Ca-

pacity; for more information about these measures, see Dale

et al. (2019b). These measures are somewhat generic and

build a basic dynamical picture of the material. For example,

low values in both rank measures signify a material config-

ured in an ordered regime, and high values equate to chaotic

regimes.

Step two, explore the material configurations. Here, the

mapping between abstract reservoir and material configu-

ration is explored. Exploration is carried out in the be-

haviour space using novelty search (Lehman and Stanley,

2008). Novelty search, an open-ended and objective-free

genetic algorithm, navigates the behaviour space searching

for novel solutions. In this implementation, every behaviour

considered is stored in an external database for later use.

This database forms the core resource used to analyse the

relationship between parameters, tasks and behaviours after

the search process.

Step three, measure the quality. To do this, the behaviour

space is divided into voxels; the number and size of voxels

depends on the spaces being compared. The total number of

voxels occupied by discovered behaviours forms the mea-

sure of quality. The quality value therefore represents an

approximation of the system’s dynamical freedom, or, the

material’s capacity to instantiate different reservoirs.

Substrate Design

In Dale et al. (2019b), CHARC is used to manipulate a lim-

ited set of parameters referred to as configuration parame-

ters. These do not change the physical material, only how

to interact with it. In AR theory, this would cover how to

encode the abstract problem and instantiate the material.

To explore material design, material properties can be

added to the parameter search space, for example, param-

eters that define the physical structure of the material, or

the natural unperturbed behaviour of the material. Proper-

ties such as these could be realised through fabrication tech-

niques or specific layouts of components.

To demonstrate the concept, CHARC has been used to

compare different simulated network topologies of vary-

ing complexities as an analogy for material design (Dale

et al., 2019a). Using CHARC, the dynamical limitations

and boundaries of different structures are characterised. It

is shown that simple structures with greater network size

can mimic the same behaviours of smaller complex network

structures.

Computational Model Design

The CHARC framework is not fundamentally limited to the

reservoir computing model. The measures defining the be-

haviour space are adapted according to the specific compu-

tational model. The same process is then repeated as before.

Given a suitable language for computational models, such

as a general dynamical systems representation (Stepney,

2019), novelty search could explore the space of models

whilst parameters of the material remain constant. A co-

design approach is also possible (Stepney, 2019). Both ma-

terial and model design are combined, to improve each indi-

vidually and also the fit between them.

We believe that this framework could be exploited for co-

designing materials and models for many forms of ALife,

such as soft-bodied robots (Cheney et al., 2014) and other

forms of embodied cognition.
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