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Comparison of Multivariate Calibration for

Low-cost Environmental Sensors
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Abstract. Data obtained from low-cost environmental sensors can have
various issues such as low precision and accuracy and incompleteness. A
calibration process is often applied to address such issues. With the re-
cent advances in artificial intelligence, we have seen an increased number
of applications that starts to use an artificial neural network (ANN) to
calibrate the sensors, and their results are promising. In this work, we
used a six-months worth of real hourly data to demonstrate that the
ANN may not always be the best choice of a calibration method. Our
evaluation compares an ANN-based method with a simple regression-
based method in various aspects. The result shows that the ANN-based
method does not consistently outperform the regression-based method.
More interestingly, in the comparison, our results suggest that the per-
formance of a calibration can be more sensitive to some of the factors
(e.g. training and testing data, model parameters) than the use of differ-
ent calibration methods. Even though the results may not be generalised
in other sensors or datasets, our evaluation provides evidence showing
that inappropriate use of a calibration method can compromise the cal-
ibration result, and the use of the ANN will not magically solve that
problem.

Keywords: Low-cost sensors, Sensor calibration

1 Introduction

Low-cost environmental sensors have been widely used in monitoring of urban
environment as they can provide much better spatial and temporal resolutions
than the regulatory monitoring instruments [15, 9, 3, 4]. However, the low-cost
sensors are prone to temporary failure and are sensitive to the environmental
interference, which results in the obtained data being much less structural in
term of size, completeness and integrity [11]. More importantly, the data quality
from these low-cost sensors is often reported to be insufficient and requires pre-
processing [3, 24, 19, 13].

Sensor calibration is one of a process to improve data quality. In this paper,
sensor calibration is to determine a model that transfers the data of low-cost
sensors to minimise the difference with the data from the co-located reference
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instruments. According to the literature, the state-of-the-art in-field sensor cali-
brations often use multiple variables to calibrate a sensor, which is referred to as
multivariate calibration [9, 8, 10, 7]. Multivariate calibration means the calibra-
tion model is constructed using not only the parameter of interest but also other
supporting parameters, e.g. including temperature when calibrating NO2 [18].
The intuition is if the response of NO2 is related to or affected by the temper-
ature, a more accurate calibration of NO2 can be determined if it includes the
temperature and accounts for the related effects.

Multivariate calibration can be accomplished in many ways, and the two
most prominent methods seen in current literature are a simple regression-based
method and and artificial neural networks (ANNs) based method [9, 12, 10, 7,
19]. With the recent advance in machine learning, we have seen an increased
number of applications that starts to use an ANN-based method to calibrate the
sensors, and their results are promising. This makes us wonder if the ANN-based
methods can also work better on the imperfect data (e.g. the small size, noisy
data) and whether the ANN-based method should always be the first choice
when comes to the selection of a calibration method.

This paper presents a systematic comparison of those two calibration tech-
niques (i.e. a regression-based method and an ANN-based method) using a real
dataset, and focuses on determining how their calibration results can be affected
under various conditions. This work not only compares the calibration accuracy
but also analyses the sensitivity of each method to different settings of training
and testing dataset. This gives us an evidence and insight to reason weather the
ANN-based method is really the holy grail in the calibration of low-cost sensors.

Main contribution: Even though a few existing works have demonstrated the
comparison of the calibration methods for calibrating low-cost sensors, to the
best of our knowledge, this paper is the first work that focus on the sensitivity of
the calibration methods with respect to various scenarios (e.g. imperfect data).
With the main contribution, the following additional contributions are made:

– Reality: Real hourly data from 6-month worth of deployment was used to
simulate the calibration of sensors for a short deployment.

– Practicality: The selection of model parameters are demonstrated to show
the variability of the calibration process, which are often ignored in the
existing comparison.

– Sensitivity: Both models are trained and tested under different settings to
gain an in-depth knowledge on the sensitivity of the methods.

After the review of the existing comparison of multivariate calibrations in
Section 2, Section 3 explains how the calibration models can be constructed us-
ing both approaches and what the model parameters need to be determined;
Section 4 illustrates the determination of the model parameters for both ap-
proaches; Sections 5, 6, and 7 compare the approaches in conditions of model
generation, varying training and testing dataset and varying data characteristic
respectively. Section 8 concludes the paper.
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2 Related work

We have seen an increasing number of sensor calibration starts to use an ANN-
based method to calibrate a low-cost sensor [19, 24]. However, to the best of our
knowledge, a little work has done to demonstrate a systematic comparison of
different calibration methods, especially when calibrated data are imperfect.

A prominent existing comparison, such as [24], is limited to comparing the
calibration result in terms of calibration accuracy, which is often represented as
the averaged error between the model predictions and the reference, e.g. root-
mean-squared error (RMSE) or mean-absolute error (MAE). Since two identical
averaged errors may represent different error distributions, using an averaged
error as the only metric for the comparison would not help us to gain an insight
of the performance. Further, while a focus on aggregate measures allows us to
characterise the mean error of different methods, such metrics can be skewed by
outliers and hence are insufficient to determine which method is most likely to
give the best results.

To solve that issue, authors in [10, 7] provided a more detailed compari-
son for multivariate calibration approaches. In their work, the approaches were
cross-compared not only for the calibration accuracy (determined by the mean
absolute error) but also for the capability of dealing with different training sce-
narios. In work [10], the calibration result was compared by varying a different
number of training and testing samples with more than 40000 instances in to-
tal. However, it is noted that the variation of the training and testing samples
were divided by a cut-off value. Since a cut-off value can change the size of
both the training and testing dataset, it difficult to determine which changes are
responsible for the variation of the result.

Devito et al. [7] analysed how the calibration accuracy was affected by using
different model parameters. For example, Devito et al. compared the calibration
accuracy by varying the certain model parameters in the ANN network. In that
case, Devito et al. would have to assume that the model parameters of the ANN
are independent or partially dependent. However, this assumption does not hold
in our evaluation as demonstrated in Section 4.3.

3 Determine the calibration models

Sensor calibration is a process of finding a calibration model that minimises
the difference between the model output and the reference. In this section, we
demonstrate how calibration models can be constructed using both methods,
and discuss what model parameters are important for each of the methods. For
the demonstration, we assume that calibrating X1 to its reference X̃1 requires
X2 and X3 as the supporting parameters. Then, we further assume that all the
parameters, including the reference, have the same number of samples taken
during the same time window.
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3.1 Calibration using an ANN-based method

A mathematical representation of an ANN can be extremely complicated, as
discussed in [5]. Hence, instead of a detailed mathematical construct, we use
more abstrat notations of ANN’s. The training process determines the calibration
model. The model would provide an approximation of the calibrated X̃1 given
the uncalibrated inputs, X1, X2 and X3. According to the literature, there are
a number of model parameters are important for the ANN-based method [22],
which are summarised in Table 1.

Table 1: Model parameters to be needed for an ANN-based method
Model parameters Examples

Activation function Sigmoid, ReLU [21], SeLU [17], etc.

Number of neurons 1 to +∞

Number of layers 1 to +∞

Type of neurons Dense, LSTM, etc.

Batch size 1 to the total number of training samples

Epoch 1 to +∞

Loss function Mean squared error, Mean absolute error, etc.

Optimisation method Gradient descent, Adam, etc.

3.2 Calibration using a regression-based method

In contrast to the ANN-based method, a regression-based method is easier to be
presented mathematically, and it does not require many pre-determined param-
eters [12, 19]. For example, a linear calibration model to calibrate X1 using the
corresponding coefficients βi can be constructed based on Equation 1.

X̃1(i) = β0 + β1 ·X1(i) + β2 ·X2(i) + ...+ βn ·Xn(i) + ε(i) (1)

In Equation 1, ε stands for the error term and the i indicates that the mea-
surements are taken from the same time frame. X̃1 is the reference of X1; X2 to
Xn are the supporting parameters of the calibration. The calibration model is
then to determine the coefficient β based on the Equation 2.

E = minimise

N
∑

i=1

ε(i)2 (2)

Note that the example in Equation 1 uses a linear combination of first order
terms to describe the relationship between the inputs variables and output (i.e.
linear). If a more complex non-linear relationship needs to be utilised in the
model, a pre-determination of the model is required (e.g. including non-linear
terms or applying a non-linear transformation). Therefore, we consider the re-
lationship between input variables and output as the only model parameter for
the regression based method.
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4 Determining the model parameters

In this section, we demonstrate the determination of the model parameters, and
discuss the practical issues encountered during the process. Firstly, we present
the data and programming environment used for this experiment. Then, we
demonstrate the process for both methods respectively.

4.1 Data and programming environment

An ELM unit, a product from Perkin Elmer [23], is used as low-cost sensor
in this work. The unit was situated at York, UK, next to a busy junction. It
measures multiple parameters: nitrogen dioxide (NO2), ozone (O3), nitrogen
oxide (NO), temperature (T ), humidity (H). The ELM unit was co-located with
a regulatory monitoring instrument from [6], and the hourly NO2 data from
this instrument was used as the reference for the sensor calibration in this work.
Due to restrictions on reporting the data, we are unable to provide information
on the exact quantities, including units, but all data are comparable.

The collected data is pre-processed in advance, which aggregates the ELM
data into the same temporal resolution as the reference (hourly) and excludes
data gaps in the averaged data. The process ensures the consistent samples in
the dataset and it is required by the method. After the process, the dataset has
4000 samples with a temporal resolution of one hour.

The regression based method was programmed in Matlab, and the ANN-
based method was programmed in Python using Keras library [16] and Tensor-
Flow [26].

For the selection of model parameters, the entire dataset was divided se-
quentially into two equally sized partitions. The first 2000 samples are used as
training (i.e. the first half of sensor’s operative time span) and the rest of the
samples are used as testing. This is to simulate the situation where only 2000
samples were available (i.e. a short development with 3-month worth of data)
for training the model. Furthermore, as calibrating NO2 is often reported to be
problematic and would require multivariate calibration to compensate [18, 20,
24], the calibration of NO2 is used as an example for this paper.

4.2 Model parameters for a regression based method

Most of the existing works for the regression based method utilise the linear
relationship to construct the calibration model [12, 19]. This experiment is to
determine whether using a more complex relationship (e.g. non-linear) would
improve the calibration accuracy. The complex relationship is referred to as
adding higher order terms into the existing linear model.

For the experiment, the calibration errors from using different models are
illustrated in Figure 1. The calibration error is defined as the difference between
the model output (y) and the reference (Y ), given by Equation 3. It is noted
that i indicates the number of samples.
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error(i) = Y (i)− y(i) (3)

In the figure, the number in the X-axis differentiate calibration models. The
first model uses a linear combination of first order terms, which is identical
to Equation 1, and expressed as f(NO2, O3, NO, T,H). The following mod-
els are constructed by gradually including a second order term into the ex-
isting model as well as their interactions [14]. We express the second model
as f(NO2, O3, NO, T,H, (NO2)

2) and the last model as f(NO2, O3, NO, T,H,

(NO2)
2, (O3)
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, which have 32 models in total. In the
figure, X-axis (1) indicates the linear model; whereas X-axis (2) to (32) indicates
non-linear model in which one or more higher order terms were introduced.

Figure 1 shows that utilising a more complex relationship in the calibration
model does not appear to improve the calibration result. Therefore, a linear
relationship is used for the model of the regression based method.

Fig. 1: The error distributions for different model settings

4.3 Model parameters for an ANN-based method

It is noted that the determination of the model parameters for an ANN-based
method, which is also known as hyperparameter optimisation [2], is still an open
challenge, and the trial by error is currently the best practice for this purpose [1].
Since the parameters often need to be selected from a large parameter space, it
would be impractical to test all possible combinations. Therefore, the selection
of the parameters in this paper is tested in a certain range only, for which the
decision is made based on either existing works or expert knowledge. This also
reflects the disadvantage of using ANN.

Activation function The Sigmoid, RuLU, and SeLU are tested. It is clear
that each neuron can have a different activation function. However, since
it is impractical to test the combination of activation functions, the same
activation function is applied to all neurons in a network setting.
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Type of neurons Dense and LSTM are tested. As above, due to the exponen-
tial cost of varying each neuron, the same type of neurons are used in all
neurons in the network.

Number of neurons and layers We vary the number of neurons in each layer
as [5 20 35] and the number of layers in [1 2 3 4 5]. The same number of
neurons are used in each layer. These test ranges was chosen as the similar
range of the parameters was used in [7].

Batch size and epoch We test the number of batch size in [1 6 11 16 21 26]
and epoch in [1 6 11 16 21 26], which is 1 to 26 with an increment of 5, as
no significant different in results can be determined with further increase of
the batch and epoch sizes.

Loss function We test the Mean Absolute Error (MAE), Poisson and Mean
Squared Error (MSE) as the loss function in the experiment as they are
often used as the evaluation of sensor calibrations.

Optimization method Gradient descent, RMSprop and Adam are tested in
the experiment.

In the experiment, we vary all eight model parameters. As a result, the model
parameters would be selected from eight dimensional parameter space. The se-
lection is based on the Root Mean Squared Error (RMSE) between the reference
and the model output. We use determination of the loss function as example to
demonstrate how the model parameter is selected.

We classify all networks into three groups with respect to the use of the loss
functions. Then, we determine the percentage of the model in each group that
the error in terms of RMSE is below an RMSE threshold. The RMSE threshold
varies from small to large, and the process is applied to all three groups. The
result would indicate the difference between the loss function. We consider the
optimal parameters as the one that has the highest percentage with the lowest
RMSE threshold. The result is showing in Figure 2.

Fig. 2: Percentage of model below threshold for different loss functions

In addition, we perform a statistical test to determine the probability that
one method is more likely to produce a better result than another. This is ac-
complished by fixing parameters of a given test apart from the parameter of
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interest. Once the data is gathered, a null hypothesis test [25] is conducted with
the null hypothesis being that the varying the parameter between two values
has no effect. If the evidence supports the alternative hypothesis, that one of the
parameter values has consistently better performance, we can reject the null hy-
pothesis for this configuration. By repeating this experiment across all possible
values of other parameters, we can derive an estimate for the probability that
a parameter is more likely to produce a better result; this is shown in Table 2
for the Loss function, where we can conclude Mean Squared Error has highest
chance of producing the best result from the three loss functions. The result is
also in-line with Figure 2.

Table 2: Probability of dominance when varying Loss Function

mean squared error mean absolute error poisson

mean squared error 42% 63%
mean absolute error 37% 61%

poisson 27% 24%

The same process is applied to all eight parameters. We summarise the pa-
rameters used in this work in Table 3.

Table 3: The parameters used in the ANN-based method
Model parameters Parameter used

Activation function ReLU

Number of neurons 20

Number of layers 1

Type of neurons LSTM

Batch size 26

Epoch 21

Loss function MSE

Optimisation method Adam

5 Variability of model generation

In this section, we want to understand how the model output would be affected
by the model generation process. Hence, we train the model with identical param-
eters multiple times and compare their model outputs, with the only difference
being the random seed used for training the ANNs.

The training and testing datasets used in this experiment are identical to the
previous experiment, which have been discussed in Section 4.1. The RMSE of
the calibrated results is shown in Figure 3.

Figure 3-b shows the 100 model outputs obtained from the regression based
method. It is clear that the regression based method provides a consistent result
as long as the model settings and the use of the data are identical as the RMSE for
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the regression based method shows no variation over the 100 iterations. Figure 3-
a presents the 100 model outputs obtained from the ANN-based method. In
comparison to the regression based method, Figure 3-a indicates that the ANN-
based method is sensitive to the model generation process as the variation of
the model output can be observed. While the ANN-based method does produce
a slightly better RMSE, it does not produce a significant advantage.

While there is a clear variation in the RMSE of the ANN-based method,
it is comparatively small when compared to the variation in the RMSE from
changing the model parameters. Given this, we assume that provided the model
parameters are set correctly, the variation in ANN models due to the training
process is largely insignificant. Hence for the remainder of this work we will
ignore the random effects of training the ANN model.

Fig. 3: Comparing the variation of RMSE over 100 repetitions

This section demonstrate that the regression based method would provide
a consistent calibration result for the model generation; however, the model
generation would introduce a variation in the calibration result for the ANN-
based method.

6 Comparing the model under different training and

testing scenarios

This section compares the difference between in performance of the methods
using different settings of training and testing dataset. The first experiment
varies the size of training dataset, and then with varying the size of testing
dataset.

6.1 Varying the training dataset

This experiment is designed to understand how the increasing size of training
dataset would affect the calibration result for both methods. In the experiment,
the same dataset used previously is divided sequentially and evenly into to 10
partitions with each partition having 10 percent of the data and following the
temporal dimension. The calibration model is determined by using the training
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dataset that gradually increasing the data size; and the result of the calibration
is evaluated in the same testing dataset. This could help us to understand how
to size of training data plays in the calibration process. The classification and
the use of the training and testing dataset are illustrated in Figure 4.

Fig. 4: Varying the training datasets

Figure 4 shows how the data is divided into ten equal partitions, numbered
from (1) to (10). For the testing dataset, the last partition (10) is used; and
for the training dataset, different combinations of the partitions are applied. As
illustrated in Figure 4, the training dataset steadily increase from 10 percent of
the data to 90 percent of the data with each step being 10 percent. In order
to preserve the temporal dependencies of the data, the first experiment uses
Partition (9) for the training dataset (to preserve the dependencies with Partition
(10)). More data is added to the later experiments by going backwards from
Partition (9) e.g. the second experiment uses Partitions (8) and (9). We label
the use of the different training datasets as 10% to 90% to simplify the labelling
in the later plots.

The calibration errors from using the different training datasets are illus-
trated in the boxplots in the Figure 5. Comparing the boxplots in the figure,
the difference between the methods as well as the effect of increasing size the
training dataset is not obvious. Therefore, we plot the mean value of the errors
with the confidence interval in Figure 6 to analyse it further.

In Figure 6, the bars show the mean of the errors, the error bars indicate the
confidence level of the mean. The color of the bar differentiates the calibration
methods. The figure shows that the regression-based method would over predict
when the training dataset is relatively small, and under predict when the training
dataset is relatively large. Whereas, the ANN-based method over predict in all
circumstance. The result suggests that the change of the training dataset does
have significant impact on the calibration results.

While the averaged errors allow us to determine a general accuracy of the
calibration, they do not indicate which method is most likely to give the best
result. To accomplish this we perform a null-hypothesis test [25] on the output
data of the models, using the null-hypothesis that the two methods are equal -
i.e. that for a given input vector, the regression-based method has a 50% chance
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Fig. 5: The errors when using different training datasets

of producing a lower error than the ANN-based method. We then compute the
probability of the actual result of the experiment under the null-hypothesis, and
if this probability is sufficiently unlikely, we can reject the null-hypothesis. This
method allows us to have statistical confidence in our claim of which method is
most likely to produce the lowest error. Our degree of confidence is derived by
the standard method of determining how many standard deviations (σ) from the
mean of the null-hypothesis deviation the observed result is [25]. At confidence
levels above 3σ, we can claim that a method is better, and that at 5σ, we are
certain that a method is better. The result is shown in Table 4.

Table 4 shows that the ANN-based method provide consistent better results
when a larger training dataset is used. It suggests that an ANN-based method
would potentially benefit from using a larger training dataset.

6.2 Varying the testing dataset

This experiment is designed to understand how the calibration result is affected
by increasing the size of the testing dataset, which may reflect on how long a
calibration function can hold. For this experiment, the same dataset is divided
into the partitions as in the previous experiment in Section 6.1, but the training
and testing datasets are utilised differently as illustrated in Figure 7.

The errors between the model output and the reference when utilising differ-
ent testing datasets are illustrated in Figure 8. The boxplots represent the error
distribution and x-axis indicate the testing dataset increases from 10 percent to
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Fig. 6: Error mean with the confidence interval

Table 4: Significance between calibration results when varying training dataset
Training dataset P-value Significance of P-value

10% 0.0976 No significant difference (1σ)

20% 0.0554 ANN potentially better (2σ)

30% 0.9708 Regression better (3σ)

40% 0.5000 No significant difference (0σ)

50% 0.0815 No significant difference (1σ)

60% 0.0063 ANN better (3σ)

70% 0.0083 ANN potentially better (2σ)

80% 0.0035 ANN better (3σ)

90% 0.0010 ANN better (3σ)

Low P-values indicate ANN is better, High P-values indicate Regression is better.

Results given to 4 decimal places

90 percent of the dataset according to Figure 7. In the figure, using 10 percent
of the data shows the best result for both methods in comparison to using other
testing datasets. It suggests that the calibration function would obtain a better
result if the testing dataset and the training dataset are close in time and have a
similar data size. Furthermore, comparing Figure 8-a to Figure 8-b, the errors for
the ANN-based method contain more extreme values than the regression-based
method.

We further plot the mean of the errors with the confidence interval in Fig-
ure 9, which show the error mean and 95% confidence interval from the experi-
ment. The figure shows that the error mean for both methods gradually increase
with more testing data used. It suggests that both calibrations would degrade
over time with a similar tend, and the performance of the calibration can be
more sensitive to the testing dataset than the calibration method.

We also apply the statistical analysis for this experiment, again using the
null-hypothesis that the methods are equal. The result is shown in Table 5. The
table shows the regression-based method is consistently better than the ANN-
based method with the increasing size of the testing dataset. This implies that
the degradation of the calibration for the regression-based method is much less
significant than the ANN-based method.



Are Neural Networks Really the Holy Grail 13

Fig. 7: Training models by varying the testing datasets

Table 5: Significance between calibration results when varying testing dataset
Testing dataset P-value Significance of P-value

10% 0.4210 No significant difference (0σ)

20% 0.9880 No significant difference (1σ)

30% 0.9998 Regression better (3σ)

40% 0.9999 Regression better (4σ)

50% 1.0000 Regression certainly better (5σ)

60% 1.0000 Regression certainly better (5σ)

70% 1.0000 Regression certainly better (5σ)

80% 1.0000 Regression certainly better (5σ)

90% 1.0000 Regression certainly better (5σ)

Low P-values indicate ANN is better, High P-values indicate Regression is better.

Results given to 4 decimal places

7 Influence from the data characteristics

In previous section, we have seen that the size of training and testing dataset can
have a large impact on the calibration result for both methods. In this section,
we investigate how the performance of the calibration methods is sensitive to
the change of data characteristics. The experiment was performed using the
same dataset as the previous experiments. However, the training dataset was
selected based on indices that randomly selected from 50% of the data, and the
rest of the data are used for testing. This process is to ensure that the data
characteristics between the training and testing datasets are consistent (e.g.
training and testing data are from the same distribution). Then, we artificially
manipulate the characteristics of the testing datasets to create a different data
characteristics. It is clear that the data characteristics can be different in many
ways. In this experiment, we consider three properties as they are commonly
observed in the low-cost sensors [13]: 1) a sensor outputing a constant value,
2) a sensor outputing an offset value and 3) a sensor outputing values with a
greater spread (represented as a higher standard deviation).

The modification of the testing dataset was performed according to Table 6.
The changes of mean and standard deviation are with respect to the original
testing data. For the constant value, all samples in the testing dataset are re-
placed by the mean value of the testing dataset. The offset mean doubles the
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Fig. 8: The errors of both methods when using different testing datasets

Table 6: Different configurations for varying the test data characteristics

Constant value
STD = 0
Mean Not changed

Offset mean
STD Not changed
Mean 2*mean

Higher standard deviation
STD 2*STD
Mean Not changed

mean value of the the testing dataset but the standard deviation of the data
remains the same. The higher standard deviation changes the standard devia-
tion of the testing dataset but the mean remains. Since different parameters may
contribute to the calibration result differently, the modification was performed
on all parameters. It is noted that there only one parameter being modified for
every calibration.

Figure 10, 11 and 12 show the calibration results when the testing dataset
of one parameter is modified according to Table 6. The figures differentiate the
different modifications, i.e. offset, constant value and higher standard deviation.
The boxplots in each figure represent the calibration errors, with the label on
the X-axis indicating which parameter (if any) is modified.

Figure 10 and Table 8 presents the results when one parameter of the testing
data becomes constant. Figure 10 shows no observable difference in terms of the
errors, which suggests that the constant value would only have a small impact
on both calibration methods. The table indicates that the constant value only
causes a small variation in RMSE, and it has even less impact on the error mean,
especially for the regression-based method.
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Fig. 9: Error mean with the confidence interval

Table 7: Significance of the calibration result (constant value)
Constant value

Modified parameter P-value Significance of P-value

NO2 0.9999 Regression better (4σ)

O3 0.4115 No significant confidence (0σ)

Humidity 0.0006 ANN better (3σ)

Temperature 0.0006 ANN better (3σ)

NO 1.0000 Regression certainly better (5σ)

Low P-values indicate ANN is better, High P-values indicate Regression is better.

Results given to 4 decimal places

Table 8: The calibration results when using the testing dataset with constant
value

Constant value

Original NO2 O3 H T NO

ANN
based method

RMSE 9.10 8.51 7.17 6.53 6.53 11.74
Mean 5.33 ± 0.47 -2.22 ± 0.45 -2.55 ± 0.38 -1.33 ± 0.37 -1.33 ± 0.37 -4.61± 0.58

Regression
based method

RMSE 6.65 7.86 7.12 6.94 6.94 9.28
Mean -0.12 ± 0.37 -0.12 ± 0.42 -0.12 ± 0.39 -0.12 ± 0.38 -0.12 ± 0.38 -0.12 ± 0.52

Fig. 10: The calibration errors when using the testing dataset with constant value
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Table 9: Significance of the calibration result (offset mean)
Offset mean

Training dataset P-value Significance of P-value

NO2 1.0000 Regression certainly better (5σ)

O3 0.9463 ANN potentially better (2σ)

Humidity 1.0000 Regression certainly better (5σ)

Temperature 1.0000 Regression certainly better (5σ)

NO 1.0000 Regression certainly better (5σ)

Low P-values indicate ANN is better, High P-values indicate Regression is better.

Results given to 4 decimal places

Table 10: Significance of the calibration result (higher standard deviations)
Higher standard deviation

Training dataset P-value Significance of P-value

NO2 0.9780 Regression potentially better (2σ)

O3 0.9239 No significant difference (1σ)

Humidity 0.8683 No significant difference(1σ)

Temperature 0.9413 No significant difference (1σ)

NO 0.9999 Regression better (3σ)

Low P-values indicate ANN is better, High P-values indicate Regression is better.

Results given to 4 decimal places

The result of the statistical analysis is summarised in Table 7, which shows
that the ANN-based method is more sensitive to the NO2 and NO readings
becoming constant, and regression-based method is more sensitive to Humidity
and Temperature becoming constant. This indicates that both calibrations may
assign different weight to the input parameters when constructing a calibration
model.

Figure 11 and Table 11 illustrate the calibration result when the mean value
of one parameter is doubled than the original testing dataset. Figure 11 shows
a large variation in the errors when the mean value of the testing dataset is
modified, which suggests the change of the mean value would have significantly
higher impact on the calibration result. Table 11 shows that most of the RMSE
and error mean are significantly worse than the result using the unmodified data.
The results suggests the change of mean value of the testing dataset would have
a great impact on the calibration result. The statistical test is shown in Table 9,
which suggests that the regression-based method is significantly better than the
ANN-based method most of the time. It implies that both methods can have
different tolerance to drift of mean, and the regression-based method seems to
have a better tolerance based on our result.

Figure 12 and Table 12 show the calibration results when one parameter in
the testing data have a higher standard deviation. The figure shows that the
higher standard deviation in the testing dataset would also have a small impact
on the calibration result as the variation of the errors between using modified
data and non-modified data is not significant.
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Table 11: The calibration results when using the testing dataset with offset mean
Offset mean

Original NO2 O3 H T NO

ANN
based method

RMSE 9.10 14.68 7.53 11.02 18.34 13.04
Mean 5.33 ± 0.47 -12.23 ± 0.53 -3.4 ± 0.41 -9.02 ± 0.40 -17.91 ± 0.43 -7.36 ± 0.59

Regression
based method

RMSE 6.65 9.76 7.64 6.71 13.67 9.88
Mean -0.12 ± 0.37 -6.36 ± 0.42 4.53 ± 0.39 1.39 ± 0.37 13.18 ± 0.38 -2.80 ± 0.15

Table 12: The calibration results when using the testing dataset with a large
standard deviation

Higher standard deviation

Original NO2 O3 H T NO

ANN
based method

RMSE 9.10 7.87 6.95 6.87 7.21 8.94
Mean 5.33 ± 0.47 -1.83 ± 0.45 -1.78 ± 0.38 -1.52 ± 0.38 -2.05 ± 0.39 -1.56 ± 0.53

Regression
based method

RMSE 6.65 7.55 6.96 6.66 7.01 8.53
Mean -0.12 ± 0.37 -0.13 ± 0.44 -0.13 ± 0.40 -0.12± 0.37 -0.13 ± 0.39 -0.12 ± 0.53

Cross-comparing the results above, we conclude that the difference between
the training and testing dataset in terms of data characteristics does have a
higher impact on the calibration result than the methods itself. However, in
general, the ANN-based method is more sensitive to these influences than the
regression-based method. Among the different data characteristics, both meth-
ods can cope well with the constant value and the higher data standard devia-
tions, but not for the offset mean. This implies that a re-calibration of sensors
may be needed if actual training and testing dataset are significantly different
in the mean value.

8 Conclusions

This paper provided a systematic comparison between two of the most popu-
lar calibration methods, regression-based method and ANN-based method, with
detail sensitivity analysis under various conditions.

The comparison shows that the calibration results are extremely sensitive to
some of the factors such as the use of hyperparameters in the calibration models
or different training and testing datasets. The calibration result can be more
sensitive to some of those factors than the use of different calibration methods.
In addition, in our comparison, the ANN-based method did not consistently
show a better calibration result compared to the regression-based method, and
in some of the conditions, it performed much worse than the regression-based
method. The result suggests that the ANN-based method may not always be the
best option for calibrating a low-cost sensor as the its performance is sensitive
to many factors.

Even though some of the results obtained in this study may not be generalised
in or directly applied to other sensors or datasets, we have a good reason to
believe based on our evaluation that the performance of a sensing calibration
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Fig. 11: The calibration errors when using the testing dataset with offset mean

Fig. 12: The calibration errors when using the testing dataset with higher stan-
dard deviation

is not only dependant on the use of a method but also heavily related to many
associated factors (e.g. the training and testing data, the selection of model
parameter, the characteristic of the monitored data). Therefore, understanding
the key factors and their influence can be important for selecting an appropriate
calibration method.
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